
Chapter 7

Brownian motion

The well-known Brownian motion is a particular Gaussian stochastic process with covariance

E(wτwσ) ∼ min(τ, σ). There are many other known examples of Gaussian stochastic pro-

cesses, for example the Ornstein-Uhlenbeck Process or the oscillator process. They all belong

to a larger class of processes which are in general not even Gaussian and which we shall discuss

in the appendix.

The Brownian process describes the disordered motion of small particles suspended in a

liquid. It is believed that Brown studied pollen particles floating in water under the microscope.

He observed minute particles executing a jittery motion. The theory of this motion has been

invented by EINSTEIN and SMOLUDCHOWSKI. The mathematically rigorous construction of

the corresponding stochastic process has been developed by WIENER.

We have seen that contrary to the complex transition amplitude K(t, q, 0) in ordinary quan-

tum mechanics, its continuation K(τ, q, 0) defines a probability density. For the free particle

starting at the origin the probability to end up at q after a ’time’ τ is

P0(τ, q) =
(

m

2πτ

)d/2

e−mq2/2τ , (7.1)

and the probability to end up in the open set O ⊂ R

n is

P0(τ,O) =
∫

O
dq K0(τ, q, 0) ≤ 1. (7.2)

P0 belongs to a Brownian motion, named after the botanist ROBERT BROWN. Although the

mathematical model of Brownian motion is among the simplest continuous-time stochastic pro-

cesses it has several real-world applications. An example is stock market fluctuations.

7.1 Diffusion

Diffusion is described by Fick’s diffusion laws [25]. They were derived by ADOLF FICK in

the year 1855. The first law relates the diffusive flux to the concentration field, by postulating
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that the flux goes from regions of high concentration to regions of low concentration, with a

magnitude and direction that is proportional to the concentration gradient,

J = −D∇φ. (7.3)

Here J is the diffusion flux, D the diffusion coefficient with dimension m2/s and φ is the con-

centration of the diffusing substance. D is proportional to the squared velocity of the diffusing

particles, which depends on the temperature and viscosity of the fluid and the size of the parti-

cles according to the Stokes-Einstein relation

D =
kBT

γ
, (7.4)

where γ is the drag coefficient, the inverse of the mobility. For spherical particles of radius

r in a medium with viscosity η the drag coefficient is γ = 6πηr. In applications the driving

force is a out of equilibrium concentration of particles, a spacial distribution of temperature or

a non-vanishing gradient of a chemical potential.

Fick’s second law predicts how diffusion causes the concentration field to change with time

τ . It follows from his first law and the continuity equation

∂φ

∂τ
= −∇ · J (7.5)

which expresses our expectation that the number of particles is conserved. The change of the

number of particles in a given region is equal to the number of particles leaving or entering the

region through its boundary. Inserting the continuity equation into (7.3) yields the second law

of Fick,

∂φ

∂τ
= ∇ · (D∇φ). (7.6)

For a constant diffusion coefficient D this law simplifies to

∂φ

∂τ
= D△φ (7.7)

and it has the same form as the heat equation. An important example is the equilibrium case for

which the concentration does not change in time, so that the left side of (7.7) is identically zero

and △φ = 0. This is Laplace’s equation, the solutions to which are harmonic functions.

If we start at time 0 with one particle at q′ the solution of (7.7) in denoted by K0(τ, q). With

the initial condition

K0(0, q) = δ(q − q′) (7.8)

the solution of the diffusion equation is

K0(τ, q, q
′) =

1√
4πDτ

e−(q−q′)2/4Dτ (7.9)

————————————
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as can be verified by substitution. This has been known since the beginning of the last century

and forms the subject of several textbooks on Brownian motion [26]. This particular solution is

just the Euclidean propagator (7.1) if we identify D = 1/2m.

7.2 Discrete random walk

The Brownian motion is the scaling limit of a discrete random walk. This means that if one

takes the random walk with very small steps one gets an approximation to Brownian motion.

The one-dimensional discrete random walk is the erratic motion of a point particle on a 1-

dimensional lattice with lattice spacing a. The particle suffers displacements in form of a series

of steps, each step being taken in either direction within a certain period of time, say of length ǫ.

We suppose that forward and backward steps occur with equal probability 1
2

and that successive

q0 q1 q2 q3q−1q−2q−3

b
a

1
2

1
2

b

Figure 7.1: The particle may jump with equal probabilities one step to the left or right.

steps are statistically independent. Hence, the probability for a transition from qj = ja to

qk = ka during a time ǫ is

Pkj = P (ǫ, qk, qj) =
{ 1

2
if |k − j| = 1

0 otherwise.
. (7.10)

This simple example of a stochastic process (actually a Markov chain) is homogeneous and

isotropic,

P (ǫ, qk, qi) = P (ǫ, qk − qi) and P (ǫ, qk, qj) = P (ǫ, qj , qk). (7.11)

After n time-steps the probability to jump from qj to qk is given by the sum of the probabilities

of the possible ways of achieving that, which is just

P (nǫ, qk, qj) =
∑

i1,...in−1

Pki1Pi1i2 · · ·Pi2i1Pi1j = (P n)kj. (7.12)

The initial position of the particle may be uncertain and the probability to find it at lattice point

qj is pj . If it sits with certainty 1 at the origin then pj = δj0. After n time-steps the system

has evolved and produced a new distribution P np. The evolution operators P n determines the

change of the initial probability distribution after n time-steps.

————————————
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It is not difficult to calculate the powers of P . The probability to hop from the lattice site qj
to the site qk after n time-steps is 1/2n times the number of paths on the lattice from qj to qk. If

n is even then k−j must be even and if n is odd then k−j must be odd. The particle must jump

r = 1
2
(n+ k − j) steps to the right and ℓ = 1

2
(n+ j − k) steps to the left. The number of paths

from qj to qk is then equal to the number of ways one can combine r steps to the right with ℓ

steps to the left to obtain a path of length n. This number is given by the binomial coefficient.

Hence one finds the following probability

P (nǫ, qk − qj) =
1

2n

(

n

r

)

=
1

2n

(

n

ℓ

)

.

With the help of the identity

(

n

r

)

+

(

n

r − 1

)

=

(

n+ 1

r

)

one obtains the difference equation

P (nǫ, q + a) + P (nǫ, q − a) = 2P (nǫ+ ǫ, q). (7.13)

where q = qk − qj denotes the displacement. This equation maybe rewritten as

1

ǫ
{P (τ + ǫ, q)− P (τ, q)} =

a2

2ǫ

1

a2
{P (τ, q + a)− 2P (τ, q) + P (τ, q − a)}, (7.14)

where τ = nǫ is the time during which the particle jumps.

7.3 Scaling limit

Now we regard the time-interval ǫ and lattice spacing a as being microscopic quantities and

perform the scaling limit

a → 0, ǫ → 0 with nǫ = τ, D =
a2

2ǫ
fixed. (7.15)

Other scaling limits are possible. For example a → 0 with fixed ǫ would lead to a situation

where the particle does not move anymore. The limit a, ǫ → 0 with fixed a/ǫ would lead to a

classical theory without fluctuations. But if we keep a2/ǫ constant then the correlations tend to

finite values in this so-called diffusion limit. The constant D is the macroscopic diffusion con-

stant. In the macroscopic description q and τ become continuous variables and the difference

equation (7.14) converts into a one-dimensional continuous diffusion equation

∂

∂τ
P (τ, q) = D

∂2

∂q2
P (τ, q). (7.16)

————————————
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At the initial time no diffusion has occurred and P (0, q) = δ(q). The solution of the diffusion

equation with this initial condition is just the Gaussian function

P0(τ, q) = K0(τ, q, 0) =
1√

4πDτ
e−q2/4Dτ . (7.17)

The transition probability for the discrete random walk is replaced by the probability

lim
q′<qj<q

P (nǫ, qj) =
1√

4πDτ

∫ q

q′
du e−u2/4Dτ . (7.18)

The trivial matrix identity P nPm = P n+m turns into the Chapman-Kolmogorov equation
∫

du P0(τ, q − u)P0(σ, u− q′) = P0(τ + σ, q − q′). (7.19)

Higher dimensions

The extension to higher dimensions is not difficult. For that we note that the lattice-Laplacian

in one dimension acts on a function on the lattice as follows,

(△Lf)(qj) =
1

a2
{f(qj + a)− 2f(qj) + f(qj − a)} (7.20)

such that the probability for a transition (7.10) can be rewritten as

P = 1 +
a2

2
△L. (7.21)

Now we calculate the n’th power of P for n → ∞ and use the scaling laws in (7.15)

P n =
(

1 +
a2

2

τ/n

ǫ
△L

)n
=
(

1 +
Dτ

n
△L

)n n→∞−→ e τD△, (7.22)

where lima→0△L = △ is the second derivative in the continuum. The kernel 〈q, τ | eτD△|0〉
is just the above distribution P0(τ, q). Now the generalization to d dimensions is natural. If j

enumerates the lattice points on a d-dimensional hypercubic lattice with lattice spacing a, then

the matrix P is given by

Pij =
{ 1

2d
i, j nearest neighbors

0 otherwise
or P = 1+

a2

2d
△L, (7.23)

where △L is the lattice Laplacian in d-dimensions, given by
(

a2△Lf
)

(qj) =
∑

k:|k−j|=1

f(qk)− 2d · f(qj). (7.24)

The factor 1/2d in (7.23) is needed such that the probability to go somewhere is 1. In the scaling

limit we end up with a similar result as in one dimension,

lim
n→∞

P n = eτD△, nǫ = τ,
a2

2dǫ
= D, (7.25)

and the Brownian motion tends to a Gaussian process with Laplacian △.
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7.4 Expectation values and correlations

In this section we calculate the observable mean values non-observable microscopic quantities.

For example, the probability for a particle starting at the origin to end up in an open set O ⊂ R

d

after a time τ is found to be

P0(τ,O) =
∫

q∈O
K0(τ, q, 0) =

(

1

4πDτ

)d/2 ∫

O
dq e−q2/4Dτ . (7.26)

The event wτ ∈ O simply means that the Brownian particle has passed the region O at time τ ,

as sketched in figure 7.2. The probability of finding the particle at time τ1 in the open set O1, at

τ time
space

O

Figure 7.2: Brownian path starting at q = 0 and passing through the window O at time τ .

time τ2 > τ1 in the open set O2 and so on, is

P0(wτ1 ∈ O1, . . . , wτn ∈ On) =
∫

On

dqn · · ·
∫

O1

dq1 P0(qn − qn−1, τn − τn−1)

· · ·P0(q2 − q1, τ2 − τ1)P0(q1, τ1). (7.27)

A stochastic process for which the finite dimensional distributions fulfills these conditions and

for which

P0(wτ=0 ∈ O) =
{

1 if 0 ∈ O
0 otherwise

(7.28)

is called a Wiener process. With the distribution P0(q, τ) at hand we can answer all possible

questions we may think of.

For example, it is not difficult to check that the expectation value (or mean value) of the

position of a Brownian particle is zero,

E(wτ ) =
∫

du uP0(τ, u) = 0. (7.29)

The process recalls the starting position 0 since future positions are constrained by (7.29).

E(wτ ) is to be interpreted as a conditional expectation. It is the mean value of wτ , given the

information w0 = 0. Let us calculate the probability that the increment wτ2 −wτ1 of a Brownian

motion starting at the origin assumes some value within the regions O ∈ Rd. The answer is

P (wτ2 − wτ1 ∈ O) =
∫

u2−u1∈O
du2du1 P0(u2 − u1, τ2 − τ1)P0(u1, τ1)

————————————
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Changing variables from u1, u2 to u1, v = u2 − u1 we can integrate over u1 and obtain

P (wτ2 − wτ1 ∈ O) = P (wτ2−τ1 ∈ O). (7.30)

The covariance for the one-dimensional process is

E(wτ wσ) =
∫

d2u u2P0(u2 − u1, τ − σ) u1P0(u1, σ)

=
1

2π
√
det Σ

∫

d2u u2u1 e
−(u,Σ−1u)/2,

where we assumed that τ > σ and used a matrix notation

u =

(

u1

u2

)

, Σ = 2D

(

σ σ

σ τ

)

.

The resulting Gaussian integral yields

E(wτwσ) = Σ12 = 2Dσ = 2D min(τ, σ), (7.31)

where have already anticipated the result for τ < σ. For the Brownian motion in higher dimen-

sions the corresponding result reads

E(wi
τw

j
σ) = 2Dδij min(τ, σ). (7.32)

One can show that a typical trajectory w(τ) of the Brownian motion is continuous. In dimension

one it is also recurrent, returning periodically to its origin. Indeed, one can prove the following

remarkable theorem:

Theorem: Let B(R, 0) ⊂ R

d be the ball with radius R centered at the origin. Then

E (wτ ∈ B(R, 0) for one τ) =
{

1 for d = 1, 2

< 1 for d ≥ 3.

The times of return of a one-dimensional Brownian motion can serve as a sophisticated random

number generator. As a mathematical model it does not only describe the random movement of

small particles suspended in a fluid; it can be used to describe a number of phenomena such as

fluctuations in the stock market. Trajectories of a Brownian motion are self-similar, a term that

is often used to describe fractals. Self-similarity means that for every segment of a given curve,

there is either a smaller segment or a larger segment of the same curve that is similar to it.

7.5 Appendix A: Stochastic Processes

In this appendix we collect some useful facts about stochastic processes, since they are related

to the Euclidean path integral. For proofs I refer to the extensive literature on measure theory,

probability and stochastic processes [15]. First we need the definition of a probability space

consisting of a triplet (Ω,A, P ).

————————————

A. Wipf, Path Integrals



CHAPTER 7. BROWNIAN MOTION 7.5. Appendix A: Stochastic Processes 67

• The set Ω is a sample space. An element ω ∈ Ω is called a simple event.

• The second entry A of the triplet denotes a σ-algebra of subsets of Ω called events. A

σ-field is closed under complementation, countable intersections and unions,

A,B,Ai ∈ A =⇒ A\B ∈ A,
∞
⋃

i=1

Ai ∈ A, Ω ∈ A. (A.1)

• The third entry P is a probability measure. To any event A ∈ A it assigns its probability

P (A) ∈ [0, 1]. The probability of the empty set ∅ is zero and that of the sample space Ω

is one. The measure has the following natural property

P ( ∪Ai) =
∑

P (Ai) for Ai ∈ A, Ai ∩Aj = ∅, i 6= j. (A.2)

A function X : A −→ R

d is called Borel-measurable, if the preimage of any Borel set in Rd

lies in A,

X−1(B) = {ω ∈ Ω|X(ω) ∈ B} ∈ A (A.3)

We recall that the Borel sets is the largest σ-algebra containing the open sets in Rd. Let X be

Borel-measurable on (Ω,A). Then X is called P -integrable, if

lim
n→∞

∞
∑

k=0

k

n
P

{

w :
k

n
< X(w) ≤ k + 1

n

}

≡ J+

lim
n→∞

0
∑

k=−∞

k

n
P

{

w :
k − 1

n
< X(w) ≤ k

n

}

≡ J−

both exist. Then one writes

∫

Ω
XdP = J+ − J− =

∫

X(ω) dP (ω). (A.4)

An A′-measurable map X : A → A′ is called random variable. If X is a random variable, then

every measure P on A it defines a measure PX on the image A′ as follows,

PX(A
′) = P

(

X−1(A′)
)

. (A.5)

PX is the distribution of X with respect to P . One has the following

Theorem: For every A′-measurable and PX integrable (numerical) function f ′ on Ω′ the func-

tion f ′ ◦X is P -integrable,

∫

Ω′

f ′dPX =
∫

Ω
(f ′ ◦X) dP. (A.6)

————————————
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Of particular importance are real-valued random variables PX . They define measures on Borel

sets in R. From the theorem one immediately concludes the

Lemma: If f is Borel measurable onR and X : Ω → R a real random variable, then

E(f ◦X) =
∫

Ω
(f ◦X) dP =

∫

R

fdPX (A.7)

In particular, the expectation value of a random variable is

E(X) =
∫

w dPX(w), (A.8)

and its positive variance is given by

V (X) = E
(

[X −E(X)]2
)

= E(X2)−E2(X). (A.9)

Let Xi, i = 1, . . . , n be R-valued random variables and

X1 ⊗ . . .⊗Xn : Ω −→ R

n, ω −→ (X1(ω), . . . , Xn(ω)). (A.10)

The corresponding induced measure for the joint distribution is defined by

PX1⊗...⊗Xn
(B1 × . . .× Bn) = P

(

X−1
1 (B1) ∩ . . . ∩X−1

n (Bn)
)

. (A.11)

This should be contrasted with

(PX1
⊗ . . .⊗ PXn

) (B1 × . . .× Bn) = P
(

X−1
1 (B1)

)

· · ·P
(

X−1
n (Bn)

)

. (A.12)

A number of random variables X1, . . .Xn is called independent if

PX1⊗...⊗Xn
= PX1

⊗ . . . PXn
=⇒ E(X1 · · ·Xn) = E(X1) · · ·E(Xn) (A.13)

holds true. Important and often used random variables are the Gaussian ones. A random variable

is called Gaussian with variance Σ ≥ 0 and mean 0 if

dPX(w) =
1√
2πΣ

e−w2/2Σ =⇒ E(X) = 0 and E(X2) = Σ. (A.14)

For a vanishing variance Σ this simplifies to δ(w)dw. A set of Gaussain random variables Xi is

joint Gaussian with means E(Xi) = 0 and covariance E(XiXj) = Σij if

PX1⊗...⊗Xn
(w) =

1
√

(2π)n det Σ
e−(w,Σ−1w)/2. (A.15)

After this preparations we introduce the notion of stochastic processes. A stochastic process is

a family of random variables labelled by a (continuous) real parameter. In most application this

parameter is time. More accurately:

————————————
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Definition: A stochastic process is characterized by a quadruple (Ω,A, P, (Xτ)τ∈I), where

(Ω,A, P ) is a probability space and Xτ a family of random variables with values in a common

space (E,B) of states. The parameter space I is typically the half line (0,∞). For every simple

event ω ∈ Ω the map τ −→ Xτ (ω) is a path of the process.

For a Gaussian stochastic process the Xτi have a joint Gaussian distribution for every finite

sequence {τ1, . . . , τn}. Let us relate this rather formal construction to the previously considered

Brownian motion. If we identify w(τ) in (7.17) with Xτ , then

P (τ, w) ∼ PXτ

in the present notation. The probability for finding the Brownian particle at time τ in the interval

between a and b is

P ({ω : a ≤ Xτ (ω) ≤ b}) =
∫ b

a
dPXτ

(w). (A.16)

Similarly, the probability for finding the particle at times τi between ai and bi, where 1 ≤ i ≤ n,

is given by

P ({ω : ai ≤ Xτi(ω) ≤ bi}) =
∫ b1

a1
. . .
∫ bn

an
dPXτ1

⊗...⊗Xτn
(w1, . . . , wn). (A.17)

Here one is naturally led to sets of the form

{ω|(Xτ1 ⊗ . . .⊗Xτn(ω) ∈ B}, B ∈ Bn.

If τ1, . . . , τn and n are arbitrary one obtains the set of cylinder sets. They do not form a σ-

algebra. In the theory of stochastic processes one uses the σ-algebra generated by this set.

Let us now indicate how one constructs a unique probability measure on the set of paths,

that is how one performs the limit from joint distributions on a finite set of random variables to

a induced probability measure dPXI
. The construction proceeds as follows:

Let J be a subset of the parameter set I and define

EJ =
∏

τ∈J

Eτ , Eτ = E and let BJ = ⊗τ∈J Bτ (A.18)

be the smallest σ-algebra in EJ such that the projections

pJ : EJ −→ E (A.19)

are measurable. For a finite set J the elements of EJ may be identified with the corners of a

broken line path and for a continuous J as a path J → E. The BJ is then a σ-algebra on these

sets. In addition, let K be a subset of J . Then the projections

pJK : EJ −→ EK , where K ⊂ J ⊂ I (A.20)

————————————
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are BJ − BK measurable. Next we consider the (EJ ,BJ) joint random variable

XJ = ⊗τ∈JXτ : Ω −→ EJ , Ω ∋ ω −→ path Xτ (ω), τ ∈ J

and let PXJ
denote the joint distribution of random variables Xτ∈J . For example, for the set

J = (τ1, . . . , τn) this means

PXJ
(B1 × . . .×Bn) = P{ω|Xτ1(ω) ∈ B1, . . . , Xτn(ω) ∈ Bn}.

Since XK = pJK ◦XJ we have

PXK
= pJK(PXJ

). (A.21)

Now we need the following definition:

Definition: If the family of probability measures (PXJ
) with finite J ⊂ I fulfills the condition

PXK
= pJK(PXj

)

for two arbitrary finite subsets K and J with K ⊂ J , then the family is called projective. Now

one can prove the following important theorem

Theorem (Kolmogorov): Is E = Rn and B the σ-algebra of it Borel sets and if I is a non-empty

set, then to each projective family PXJ
of probability measures with finite J on (EJ ,BJ) there

exists exactly one probability measure PXI
on (EI ,BI) with

pJ(PXI
) = PXJ

for all finite J.

One calls PXI
the projective limit of the family PXJ

. The following theorems are useful:

Theorem: Let Σ(τ, σ) be a continuous and real-valued function on I×I , where I is a separable

topological space. If for all {τ1, . . . , τn} the function Σ(τi, τj) is positive semi-definite, then

there exists a Gaussian process (Ω,A, P,Xτ) with covariance Σ, that is

E (Xτ ·Xσ) = Σ(τ, σ).

To explain the following theorem, due to BOCHNER, we introduce the characteristic function

of a random variable,

Definition: Let X be a Rd-valued random variable. Then the Fourier transform of its measure,

φX(j) =
∫

ei(j,w)dPX(w) = E
(

ei(j,X)
)

(A.22)

is called the characteristic function. The measure PX is uniquely determined by the character-

istic function φX of the random variable. Now we can state the

————————————
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Theorem (Bochner): A function a(j) is the characteristic function of a random variable if and

only if a(j) is continuous, a(0) = 1 and

∑

z̄ia(ji − jj)zj ≥ 0 ∀j1, . . . , jn ∈ R; z1, . . . , zn ∈ C.

The following theorem states, that under certain conditions the measure lives on the set of

continuous paths:

Theorem (Kolmogorov-Prehorov): Let (Ω,A, P,Xj⊂I) be a stochastic process. Then one may

change the random variables on a set of measure zero such that the new process (Ω,A, P, X̃τ⊂I)

is continuous, provided that there exist real numbers a > 0, b > 1, c > 0 such that

E (|Xτ −Xσ|a) ≤ c|τ − σ|b, ∀ τ, σ ∈ R+.

One concludes that almost all (in the sense of measure theory) Brownian paths are continuous.

One can also prove that almost all Brownian paths are nowhere differentiable.
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