Chapter 5

Particles in electromagnetic fields

In this section study the dynamics of a charged particle in a given external electromagnetic field.
In reality the field is modified by a moving charge, for example by the radiation emitted by the
particle. But here we shall neglect this backreaction. This is a reasonable approximation for
strong or/and almost constant fields.

5.1 Charged scalar particle

In classical physics we use the concept of an idealized point particle with mass m and electric
charge e. Such a particle moves along a trajectory and its position at a given time is determined
by its initial conditions and the equation of motion. On a particle at a position = with velocity
z acts the Lorenz force

F:e<E(t,m)+%a’3/\B(t,m)>. 5.1)

To write down a Lagrangian or Hamiltonian function which lead to the corresponding equation
of motion one introduces the electromagnetic potentials p and A in

1
E:—Vap—E%A ., B=VAA. (5.2)

Two potentials related by a gauge transformation with gauge function A(¢, x),
Alt,z) — A(t,z) — VA, x)
10

give rise to the same electromagnetic field. The non-relativistic Lorentz equation ma = F is
the Euler-Lagrange equation for the Lagrangian

L= %332 + g At z) — ep(t, z). (5.4)
C
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A Legendre transformation leads to the classical Hamiltonian function

1

— 5 (p-Alt2) +eplt, ), (5.5)

and with the help of the correspondence principle we arrive at the Hamiltonian operator H and
time-dependent Schrodinger equation

1

L) = B, 7 =5 (b SA12))" + eplr, @), 5.6

The operator-ordering is chosen such that H gives rise to a unitary time evolution. Under a
gauge transformation (5.3) the wave function transforms as

Y(t,r) — e’ie’\(t’m)/hcw(t, x). (5.7)

If ¢ fulfills the time-dependent Schrodinger equation with potentials ¢ and A then the gauge-
transformed wave function fulfills the Schrodinger equation with gauge-transformed potentials.
According to the general rules we expect that the path integral representation for the propagation
of a charged particle from (¢, ') to (¢, ) in an electromagnetic field is given by

. t
Kzt 2) = /Dw eSwAln o [ g (%wQ + S A— ecp) , (5.8)
t C

where the values of the potentials along the particle path enter, for example ¢ = ¢(t, w(t)). To
prove that this propagator satisfies the time dependent Schrodinger equation we proceed simi-
larly as in section 2.3 and replace the time-integral (5.8) by a Riemann sum. In the discretisation
of the integral [ ds w - A we must choose the midpoint rule,

. Wit — Sj+1+S; wjy + w;
ds w(s) - A ) — P g (SR B R (59
[ ds ) - A Z { 2 2 )
with w; = w(s;). This corresponds to the socalled Ito-calculus in the theory of stochastic

differential equations. If we would take the potential at w; instead of the midpoint between w;
and w; 1, then we would obtain a gauge non-invariant propagator.

Now we take a wave function at time ¢ — ¢ and let it be propagated toward ¢. If u = — y
denotes the difference between the final and initial position then we obtain up to terms of O(€?)

Y(t, ) ~ lim A? /d3u exp (zm ) exp (%Lim) Yt —e,x—u)

e—0 27_16
eUu € u € u
Lin = ——~. A t__’ _ ) — t_—7 - =1, 5.10
¢ e ( 2" 2) es@( 9 2) (-10)

As earlier A, = (m/2mihe)'/? enters as normalizing factor. Expanding the two last factors in
the first line up to terms linear in € or quadratic in . We obtain

€€

o, a:)—hmA3/d3ueXp{2h }{w(t—e)—l—;uu]DD]w—— bt } (5.11)

A. Wipf, Path Integrals
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where we are lead to the covariant derivative

D-v-%4 (5.12)
he

The potentials and wave function between the last curly brackets in (5.11) are taken at the
position . With the help of the Gaussian integrals

1 1 ih
/al?’uexp{;;n6 2}:$ and /d?’uexp{;:; Z}Uiuj—A?’l 65”- (5.13)

we obtain in the limit e — 0 the partial differential equation

2

9 h
ihz ot z) = —%(D%)(t, z) + ep(t, ) (¢, @), (5.14)

which is just the Schrodinger equation (5.6) in the position representation. It is a useful exercise
to show that if we do not take the midpoint rule in (5.9) then we would get a different result.
Actually for the scalar potential and for the time-integration no midpoint rule is needed. We
would still get the correct propagator in the continuum limit if we would take

eu

Ly = —— - A(t,w—g) —ep(t, ), (5.15)

C €

instead of Ly, in (5.10). But with the choice (5.10) the convergence to the continuum limit is
faster. Under a gauge transformation (5.3) with gauge function A(¢, ) the action changes by
path independent boundary terms,

0

AS[w, A, ¢] = —Z /; ds <w VA £A> - —Z (Mt z) — Nt 2')} (5.16)

such that the propagator transforms covariantly under gauge transformations,
K(t, Cli;t/, x/) N efie)\(t,m)/hc K(t, Cli,t/, LL‘/) eie)\(t’,m’)/hc. (517)

This agrees with the transformation rule (5.7) for the solutions of the Schrodinger equation
under gauge transformations.

5.1.1 The Aharonov-Bohm effect

The Aharonov-Bohm effect demonstrates that in quantum mechanics a charged particle passing
through a space region without electric and magnetic field can be influenced by electric and
magnetic fields outside of this region [16, 17]. In quantum mechanics the motion is described
by the Feynman path integral for the propagator (5.8) in which the potentials and not the field
strength enter. Even if E and B vanish in some region of space, A need not vanish there due to
the presence of a magnetic field outside of the region.

A. Wipf, Path Integrals
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Here we consider the Aharonov-Bohm effect due to a magnetic flux ® confined to a solenoid.
We assume that the solenoid is straight and very long and choose the coordinate system such
that the z-axis is the symmetry axis of the solenoid. Outside the solenoid there in no magnetic
field and for an infinitely long solenoid the magnetic potential has the form

b zdy — yd
A~dw:—M, 0= 2%+ > (5.18)
27 p
We assume that the particle can not penetrate into the solenoid. Let us consider a particle
trajectory w(s) defining a curve C. The term containing the magnetic vector potential in the

action (5.8) is proportional to

t dw(s) ¢ [ xdy — ydr
A : ds = [ A@)-dw =~ [ TS 5.19
/t’ (w(s)) ds " e (2)-dz 27 Je p? (>.19)
Transforming to cylinder coordinates (z, y, z) = (p cos ¢, psin ¢, z) the line integral becomes
P
/A-dm _ —/dcp. (5.20)
c 21 Je

A path C,, : " — x outside the solenoid is characterized by its winding number n € 7. For its
definition one takes some standard contour Cjy : £’ — z and counts the number of times that
the closed curve C,, — Cy winds around the solenoid. In figure 5.1 we have depicted a reference
T

solenoid

Figure 5.1: A reference path Cy and a path C, with relative winding 1.

path Cy and a path C; with winding number one. For a path with winding n one has

o
/ Adz=n®+ [ A-de=nd+—Ag, (5.21)
n Co 2
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where A® is the angle shown in figure 5.1. In the path integral one admits all paths connecting
x’ with . We do the integration in two steps: first we integrate over the set paths {C,,} with
winding number n and then sum over all winding numbers. This yields

K(t, T, m/) _ Z }D’U) 6iS['w,A]/h _ eieCDAqb/hc Zeineé/thn(t’ T, x/)’ (5.22)
n /A{Cn n

where K, is the A-independent topologically constrained Feynman path integral

-
K,(t,z,2') = Dw exp {i/ ds <Tw2 - ecp(m)) ds} (5.23)
{Cn} h Jo 2
in which one integrates over trajectories which (when completed into a closed loop by continu-
ing them with —Cy) wind n-times around the solenoid. We see that no Aharonov-Bohm effect
will occur if the magnetic flux in the solenoid obeys the quantization condition
ed

= 0,4+1,42, ... (5.24)
he

In this cases the phase factors containing n in (5.22) are unity and the summation over n gives
, 1ed ,
K(t,z,x') = exp (h—A(b) Ko(t,xz, ") (5.25)
c

where K denotes the full, unconstrained, propagator for a particle in the absence of the mag-
netic vector potential. If the magnetic flux does not fulfill the quantization condition (5.24) then
the contributions of the various toplogical sectors to the propagator will interfere, and when a
screen is placed behind the solenoid the interference pattern on the screen will change when ¢
is increased. This is the Aharonov-Bohm effect.

We have seen that the Aharonov-Bohm effect originates in the interaction between the elec-
tron and the external gauge potential A whose B-field vanishes locally. One can show that the
effect can equally well be regarded as originating in the interaction of the magnetic field of the
electron with the distant B-field inside the solenoid. From this point of view the effect is seen
to have a natural classical origin and loses much of its mystery [18].

5.2 Spinning particles

In the non-relativistic limit the wave function of a spin—% particle has two components, it is a
spinor, and correspondingly is the Schrodinger operator, called Pauli-Hamiltonian after Wolf-
gang Pauli, a 2-dimensional matrix differential operator

H= —m{a : (p - ZA(t, w))}2 + ep(t, z)1s. (5.26)
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Here o = (01, 09, 03) is the 3-tuple of Pauli matrices. The Pauli-Hamiltonian contains a cou-
pling of the electron spin to a magnetic field with the correct g-factor of 2. Indeed, with the help
of 0,05 = i€;j01 + 15 the Pauli-Hamiltonian can be rewritten as
1 2 h
H= 5 (p — EA(t, .'L')) +ep(t,z) — % B(t,z)-s, s= 59 (5.27)
where the two first terms act as identity operator in spin space. The corresponding matrix-valued
Lagrange function

L= %xQ +Sg- At z) —eplt,z) + —B(t z)-s (5.28)

mc
should enter the path integral for a non-relativistic spin-1/2 particle. Although L is matrix
valued we could proceed as in the previous section and would end up with the result (5.10) with

interaction Lagrangian

Ling(t,x, u) = (EE . A—eap+iB -8

> . (5.29)
C € mc midpoint

If the propagation is from (t —e€, x — u) — (¢, ) as it is in (5.10), then the midpoint rule means
evaluation of the potentials and magnetic field at time ¢ — %e and position x — %u This way
one obtains for the propagator the representation

Ktz t @) = hm A3n / dPw, - - - dPw,_y ebn-1/h . gicko/h.
m’ujQ e u; e -
Lj = 56_2+E? A(5]7w]) GSD(SJ,’U)])+%B(SJ»,U)].) .8, (5_30)

where wy = x’, w, = x and we have used the abbreviations

Wit W o Sirt S

g 5= (5.31)

Uj = Wit — Wy, Wy =
As earlier the propagation time interval [¢', ¢] is divided into n intervals of length e = (¢t — t') /n
and s; = t' 4+ je. For a time and/or space dependent magnetic field two L; in (5.30) with
different j do not commute due to the B - s-term in the Lagrangian. In the (formal) continuum
limit we identify w; with the position w(s;) of the particle at time s;. Then L; is the value of
the Lagrangian at time s;. We see that the factors in (5.30) are time ordered: on the right we
have the factor exp(ieLq/h) at earliest time and on the left the factor exp(ieL,,_1/h) at latest
time. Thus we are lead to the path ordered integral

Ktz t' z') = /DwPeXp (% t/tdsL(s)),
L(s) = L{w(s), A(s,w(s)), (s, w(s))), (5.32)
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where the time is ordered along the path w(s). The path ordered integral satisfies the differential
equation

_Pexp( / ds L(s ) L(t) Pexp (h /tdsL(s)), (5.33)

and this equation together with the initial condition

.
P exp <% dsL(s)) =1 (5.34)
t/

determines the path ordered integral.

5.2.1 Spinning particle in constant B-field

Let us consider a uniform magnetic field pointing in the direction of the z-axis,

B
A= §(scey —ye,) = B = Be,. (5.35)

For a uniform magnetic field the action (5.28) for the spinning particle simplifies to

m/ w +2/ (L+2s), L=muwAw, (5.36)

with cyclotron frequency w = eB/mc. The particle moves freely in the z-direction and only
the propagation in the xy-plane is affected by the external field. Thus we may assume that x’
and x are both in the plane with z = 0 such that the whole tracetory w(s) lies in this plane.
Without loss of information we may study the two-dimensional dynamics in the zy-plane and
in the following we assume that all vectors lie in the plane, for example w = w e, + wye,.

For a uniform magnetic field the spin-term does not depend on the trajectory and hence does
not enter the equation of motion. With the help of the rotation matrix

t inwt
Riwt) = ( coswt  sinw ) (537)
—sinwt coswt
the solution of the classical equation of motion can be written as
wals) = 2/ + 28 p o) (@ —2), w=Y (5.38)
e sin(wt) ’ 27 '
and its action is given by
Slwq] = % cot(t)(z — z')” — mi(zy — ya') + wt ss. (5.39)
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The kinetic energy and the term containing the orbital angular momentum diverge if the propa-
gation time is a multiple of 27 /w. Both contributions to the action contain a term proportional
to t/ sin®(&t) and since they have different signs they cancel in the sum.

As earlier we decompose an arbitrary path as w(s) = wq(s) + &(s), where the fluctuations
& vanish at initial and final time. With

m o d
Slw] = S[wa] + 5(€’M€)’ M = ] +ZWU2£, (5.40)
the path integral yields
K(t,z,z') = N istwam, (5.41)

vdet M

We remain with calculating the determinant of the matrix differential operator M. This can be
achieved by a generalization of the Gelfand-Yaglom initial value problem. One defines a matrix
S, the columns of which are linearly independent solutions of M & = 0 vanishing at s = 0,

MS =0 with S(0)=0, S(0)=1. (5.42)

Any solution of M& = 0, £(0) = 0 is a linear combination of the columns of S. Let us now
assume that

det S(t) = 0. (5.43)

Then there is a linear combination of the columns of S which vanish at the final time ¢. It
is an eigenfunction of the fluctuation operator with zero energy such that det M must vanish.
Since the converse statement is also true, it is not surprising that the ratio of two fluctuation
determinants is given by

det M det S 1

= = —det S. 5.44
det M,  detSy £2°° 644
Here Sy = t1 is the matrix of solutions of the fluctuation operator M, with vanishing w. In

particular for the fluctuation operator in (5.40) we have

S(t) = &~ sin @t (cos Wt + i sin Ot o) (5.45)
and this leads to the following ratio of determinants:

det M <sin djt>2

= 4
det My (5.46)

Inserting this result into (5.41) yields the well known propagator for a spinning particle in a

wt

uniform magnetic field

m \3?2 Ot m
) - () g o (57 )
(t, @, ') smint)  smor OP \gp (2~ #)7 Hiwes

<o (U e - -]+ - )} G
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To obtain the propagator in 3 dimensions we have multiplied with the propagator for the free
motion in the z-direction. Similarly as for the harmonic oscillator the propagator is singular
at times t,, = 27n/w after which a classical particle returns to its starting point in the plane
orthogonal to the B-field. Note that the two spin-components acquire different phases in a non-
vanishing magnetic field. The above result (without spin-term) has been obtained by GLASSER
[20] and by FEYNMAN and HIBBS [4].
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