
Chapter 3

The Harmonic Oscillator

To get acquainted with path integrals we consider the harmonic oscillator for which the path

integral can be calculated in closed form. We allow for an arbitrary time-dependent oscillator

strength and later include a time dependent external force. We begin with the discretized path

integral (2.29) and then turn to the continuum path integral (2.32).

3.1 Solution by discretization

The action of a one-dimensional harmonic oscillator with mass m is

S =
m

2

∫ t

t′
ds
(

ẇ2(s)− ω2(s)w2(s)
)

, (3.1)

where ω(s) is a time-dependent circular frequency. To calculate the propagator from q′ at initial

time t′ to q at final time twe divide the time interval in n intervals of equal length ǫ = (t−t′)/n.

Our starting point is (2.35) with the following classical action for a broken line path

S(n)(w) =
m

2

n−1∑

j=0

[1

ǫ
(wj+1 − wj)

2 − ǫ ω2
jw

2
j

]

with ωj = ω(t′ + jǫ). (3.2)

For the following manipulations is it convenient to introduce two n − 1-tupels, one with the

integration variables as entries and the other with the positions of the endpoints,

ξ = (w1, w2, . . . , wn−1) and η = (q′, 0, . . . , 0
︸ ︷︷ ︸

n−3 times

, q). (3.3)

Then the action can be rewritten as

S(n)(w) = S(n)(η, ξ) =
m

2

(
1

ǫ
(η, η) +

1

ǫ
(ξ, Cξ)− 2

ǫ
(ξ, η)− ǫ ω2

0q
′ 2
)

, (3.4)
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where the n− 1-dimensional matrix C is

C =









µ1 −1 0 · · · 0

−1 µ2 −1 · · · 0
...

...

0 −1 µn−1









, µj = 2− ǫ2ω2
j . (3.5)

For vanishing ωj the square matrix C is proportional to the discretized second derivative (one-

dimensional lattice Laplacian) on the discrete time lattice. We are left with calculating the

Gaussian integral

Kω(t, q, t
′, q′) = lim

n→∞
An

ǫ

∫

dn−1ξ eiS
(n)(ξ,η)/h̄, where Aǫ =

(
m

2πih̄ǫ

)1/2

, (3.6)

and the lattice action (3.4) is a quadratic function of the integration variables ξ. As a function

of these variables it is extremal at ξcl, given by

δS(n)

δξi
(ξ = ξcl) = 0 or Cξcl = η. (3.7)

ξcl is the classical solution of the discretized equation of motion. Expanding the action about

this solution yields

S(n)(ξcl + ξ) = S(n)(ξcl) +
m

2ǫ
(ξ, Cξ) (3.8)

with the following action of the classical solution

S(n)(ξcl) =
m

2ǫ

[

η2 − (η, C−1η)
]

− 1

2
mω2

0ǫq
′2. (3.9)

Terms linear in ξ are absent since ξcl is an extremum of S. Inserting (3.9) into (3.6) leads to

Kω(t, q, t
′, q′) = lim

n→∞
An

ǫ e
iS(n)(ξcl)/h̄

∫

dn−1ξ e im/2ǫh̄ (ξ,Cξ). (3.10)

Here we encounter for the first time a Gaussian integral. Such integrals appear frequently in

path integral calculations. The one-dimensional Gaussian integral is

∫

dξ e−αξ2/2 =

√

2π

α
. (3.11)

The generalization to multi-dimensional Gaussian integrals follows after a diagonalization of

the matrix defining the quadratic form in the exponent and is given by

∫

d pξ exp
(

−1

2
(ξ, Bξ)

)

=
(2π)p/2√
detB

. (3.12)

————————————
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Here B is a p-dimensional symmetric matrix with non-negative real part. For a non-symmetric

B the antisymmetric part does not contribute to the integral and B is replaced by (B + B†)/2

on the right hand side. For an imaginary B the result (3.12) holds in the distributional sense.

Using this useful formula in (3.10) and performing the continuum limit yields

Kω(t, q, t
′, q′) = lim

ǫ→0

√
m

2πih̄

1√
ǫ detC

eiS
(n)(ξcl)/h̄. (3.13)

It remains to calculate the determinant of the matrix C and the matrix element (η, C−1η) enter-

ing the classical action in (3.9).

To find the determinant of the n− 1-dimensional matrix C in (3.6) we consider the p-

dimensional matrix

Cp =









µ1 −1 0 · · · 0

−1 µ2 −1 · · · 0
...

...
...

0 · · · −1 µp









, µj = 2− ǫ2ω2
j , (3.14)

and denote its determinant by dp. Expanding the determinant in the last row yields the recursion

relation dp = µpdp−1−dp−2 with the initial conditions d1 = µ1 and d0 = 1. To solve this

recursion relation we write it in the form

dp − 2dp−1 + dp−1 = −ǫ2ωpdp−1 (3.15)

and divide by ǫ2. Furthermore we set dp = d(sp), where sp = t′ + pǫ denotes the time after p

time-steps have passed since the initial time t′. For ǫ → 0 we may approximate differences by

differentials such that the recursion relation turns into the differential equation,

d̈(s) = −ω2(s)d(s). (3.16)

The initial slope of d diverges in the continuum limit since d2 − d1 = 1 + O(ǫ2). Hence we

rescale d(s) → D(s) = ǫ d(s) in order to get a non-singular function. At initial time t′ the

rescaled function vanishes and has unit slope. Hence in the continuum limit we have

ǫ detC = ǫdn−1
ǫ→0−→ D(t, t′), (3.17)

where the D-function solves the Gelfand-Yaglom initial value problem [5]

d2D(s, t′)

ds2
= −ω2(s)D(t, t′), D(t′, t′) = 0,

∂D(s, t′)

∂s
|s=t′ = 1. (3.18)

Note that the D-function depends on the initial time t′ since it solves the initial values problem.

The determinant is the values of D at the final time t. The factor ǫ in ǫ detC = D(t) chancels

against ǫ in (3.15) and in the continuum limit we obtain a finite evolution kernel.

————————————
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Besides the determinant we need the matrix element (η, C−1η) in the classical action. It

only depends on the elements in the corners of the matrix C−1. These are given by

C−1 =
1

dn−1






cn−2 · · · 1

. · · · .

1 · · · dn−2




 , (3.19)

The elements on the diagonal are cn−2 = d(t, t′ + ǫ) and dn−2 = d(t − ǫ, t′). Expanding in ǫ

the classical action is now seen to depend only on the function D and its time derivatives as the

initial and final time as follows,

S(n)(wcl)
ǫ→0−→ S[wcl] =

m

2D(t, t′)

(

q2
dD(t, t′)

dt
− q′ 2

dD(t, t′)

dt′
− 2qq′

)

. (3.20)

Since the solution D of the initial value problem (3.18) determines both the classical action and

the determinantal factor, see (3.17), it determines the exact time evolution kernel

Kω(t, q, t
′, q′) =

√
m

2πh̄i

1
√

D(t, t′)
eiS[wcl]/h̄. (3.21)

Differentiating the action of the classical path S[wcl] with respect to the initial and final position

we recover the D-function,

1

m
∂q∂q′S[wcl] = − 1

D(t, t′)
. (3.22)

We see that the classical action determines both the phase factor and the determinantel factor

infront of the phase factor. The evolution kernel of the time-dependent oscillator is completely

determined by the classical action,

Kω(t, q, t
′, q′) =

√

1

2πh̄i

(

−∂
2S[wcl]

∂q∂q′

)1/2

e iS[wcl]/h̄. (3.23)

For the oscillator with constant frequency ω the D-function reads

D(t, t′) =
1

ω
sinω(t− t′). (3.24)

Setting t′ = 0 we find the following explicit formula for the evolution kernel

Kω(t, q, q
′) =

√

mω

2πih̄ sin(ωt)
exp

{

imω

2h̄

[

(q′
2
+ q2) cot(ωt)− 2qq′

sin(ωt)

]}

. (3.25)

It is not difficult to see that this kernel satisfies the Schrödinger equation and for t → 0 it

reduces to the free evolution kernel (2.22) and thus to the delta function. Hence it obeys the

————————————
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initial condition (2.20). The kernel Kω(t, q, q
′) is singular for ωt = nπ. This apparent problem

can be dealt with by integrating the kernel against wave packets. The Feynman path integral for

ψ(t, q) =
∫

dq′ 〈q|e−itH/h̄|q′〉ψ0(0, q
′), (3.26)

has no singularities.

After this rather involved manipulation let us recapitulate the crucial steps in deriving the

evolution kernels. First we replaced the integration variables ξ by ξcl + ξ, where ξcl has been

an extremum of the classical ’action’. This shift eliminates the linear in ξ terms in the clas-

sical action. Without mentioning, we also assumed the measure to be translational invariant,

dn−1(ξcl + ξ) = dn−1ξ, which is of course correct for a finite product of Lebesgue measures.

The resulting Gaussian integral can be calculated and is given in (3.13).

3.2 Oscillator with external source

One may wonder whether the formal continuum path integral is of any practical use for realistic

quantum systems. Fortunately the answer is yes and we shall see how to use the continuum path

integral if one allows for certain formal manipulations.

Here we derive the path integral for an oscillator with time-dependent frequency and driven

by a time-dependent and position-independent external force. The Hamiltonian function reads

H =
1

2m
p2 +

m

2
ω2q2 − jq, (3.27)

where the time-dependent source j(s) is proportional to the external force. The classical action

entering the continuum path integral (2.32) reads

Sj[w] = S[w] + (j, w), where (j, w) =
∫ t

t′
ds j(s)w(s) (3.28)

and S denotes the action (3.1) of the oscillator without external force. By considering the forced

oscillator we shall encounter several problems which one comes across in various approxima-

tions to more realistic and complicated systems. In addition, the resulting path integral yields

the generating functional for the Greenfunctions and thus will be of use when we derive the

perturbation expansion for interacting quantum system.

Classical solutions are extremal points of the action and fulfill the equation of motion

−δS[w]
δw(s)

∣
∣
∣
wcl

= mẅcl(s) +mω2(s)wcl(s) = j(s). (3.29)

Similarly as for the discrete path integral considered in the previous section we expand an

arbitrary path about the classical trajectory,

w(s) −→ wcl(s) + ξ(s), where wcl(t
′) = q′ and wcl(t) = q. (3.30)

————————————
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The classical path wcl obeys the boundary conditions such that the fluctuations ξ vanishes at the

endpoints, ξ(t′) = ξ(t) = 0. With

Sj [wcl + ξ] = Sj[wcl] + S[ξ], (3.31)

the path integral for the propagator reads

Kω(t, q, t
′, q′; j) =

∫

Dw eiSj [w]/h̄ = eiSj [wcl]/h̄

ξ(t)=0∫

ξ(t′)=0

Dξ eiS[ξ]/h̄. (3.32)

The path integral factorizes into a classical part depending on the source and the endpoints

and a path integral over the fluctuations. The latter is just the propagator Kω of the force-free

oscillator (3.21) for the propagation from q′ = 0 to q = 0. For vanishing endpoints the action

S[wcl] entering Kω in (3.21) is zero and we obtain the simple formula

Kω(t, q, t
′, q′; j) =

√
m

2πh̄i

1
√

D(t, t′)
eiSj [wcl]/h̄, (3.33)

where the D-function solves the initial value problem (3.18).

Let us finally isolate the part of the classical action depending on the source j. To that aim

we decompose the classical path wcl into the classical path w0
cl starting and ending at the origin

and the solution wh of the homogeneous equation of motion (without source) starting at q′ and

ending at q,

wcl(s) = w0
cl(s) + wh(s),

δS

δw

∣
∣
∣
w0

cl

= −j, w0
cl(t

′) = 0, w0
cl(t) = 0

δS

δw

∣
∣
∣
wh

= 0, wh(t
′) = q′, wh(t) = q. (3.34)

Without external source an oscillator at the origin stays at the origin such that w0
cl(s) = 0 for a

vanishing source. On the other hand , for q′ = q = 0 the homogeneous solutionwh(s) vanishes.

The action of wcl decomposes as

Sj[wcl] = Sj [w
0
cl] + Sj [wh] +m

∫

ẇ0
clẇh −m

∫

ω2w0
clwh.

After a partial integration in the integral of ẇhẇ
0
cl the last two term can be written as

m
∫ t

t′

d

ds
(w0

clẇh)−m
∫ t

t′
w0

cl(ẅh + ω2wh) = 0.

The first term is zero because w0
cl vanishes at the endpoints and the second term is zero because

wh obeys the homogeneous equation of motion. Thus we obtain

Sj [wcl] = Sj[w
0
cl] + S[wh] +

∫

ds j(s)wh(s). (3.35)

————————————
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When the source is switches off then the action reduces to the source-independent term S[wh]

and the propagator reduces to the kernel Kω in (3.21), such that

Kω(t, q, t
′, q′; j) = Kω(t, q, t

′, q′) eiWω[j]/h̄, (3.36)

where we introduced the Schwinger functional for the harmonic oscillator

Wω[j] =
∫

ds j(s)wh(s) + Sj [w
0
cl]

=
∫

dsj(s)wh(s) +
1

2

∫

dsj(s)w0
cl(s). (3.37)

To prove the last identity one uses the equation of motion for the classical path w0
cl. In order to

find the explicit source dependence of the Schwinger functional we introduce the Greensfunc-

tion GD with respect to Dirichlet boundary conditions,

m

(

d

ds2
+ ω2(s)

)

GD(s, s
′) = δ(s, s′). (3.38)

As Greenfunction of a selfadjoint and real operator GD is symmetric in its arguments and van-

ishes at the endpoints,

GD(s, s
′) = GD(s

′, s) and GD(t, s) = GD(s, t
′) = 0. (3.39)

Now we can construct the solution w0
cl with the help of this Greensfunction as follows,

w0
cl(s) =

∫ t

t′
GD(s, s

′)j(s′)ds′. (3.40)

Inserting this result into (3.37) yields the following expression for the Schwinger functional,

Wω[j] =
∫

ds j(s)wh(s) +
1

2

∫

dsds′ j(s)GD(s, s
′)j(s′). (3.41)

The first term is linear and the second is quadratic in the source. Note that according to (2.55)

and (2.52) the kernel in (3.36) generates all Greenfunctions of time-ordered products of the po-

sition operators at different times. For example, the correlator of two positions for the oscillator

without source is

〈q, t|T q̂(t1)q̂(t2)|q′〉 =

(

δWω

δj(t1)

δWω

δj(t2)
+
h

i

δ2Wω

δj(t1)δj(t2)

)
∣
∣
∣
j=0

Kω(t, q, t
′, q′)

=

(

wh(t1)wh(t2) +
h̄

i
GD(t1, t2)

)

Kω(t, q, t
′, q′). (3.42)

Next we calculate the kernel and in particular the Schwinger functional for the free particle and

for the oscillator with constant frequency.

————————————

A. Wipf, Path Integrals



CHAPTER 3. THE HARMONIC OSCILLATOR 3.2. Oscillator with external source 25

Free particle

For simplicity we take t′ = 0 as initial propagation time of the free particle. The Greenfunction

and homogeneous solution are

GD(s > s′) =
1

mt
(s− t)s′ and wh(s) =

1

t
[sq + (t− s)q′]. (3.43)

The quadratic Schwinger functional (3.41) for the free particle has the explicit form

W0[j] =
1

t

∫ t

0
ds (sq + (t− s)q′)j(s) +

1

mt

∫ t

0
ds
∫ s

0
ds′ (s− t)s′j(s)j(s′) (3.44)

and it enters the propagator in the presence of an external source

K0(t, q, q
′; j) = K0(t, q, q

′) eiW0[j]/h̄. (3.45)

Note that for vanishing endpoints we arrive at the simpler formula

K0(t, 0, 0; j) =
(

m

2πih̄t

)1/2

exp

{

i

h̄

∫ t

0
ds
∫ s

0
ds′

(s− t)s′

mt
j(s)j(s′)

}

. (3.46)

Harmonic oscillator with constant frequency

Again we take as initial time t′ = 0. For a constant frequency ω the Greenfunction and solution

of the source-free oscillator read

GD(s > s′) =
1

mω sinωt
sinω(s− t) sinωs′

wh(s) =
1

sinωt
{q sinωs+ q′ sinω(t− s)}. (3.47)

Hence the Schwinger function of the oscillator has the explicit form

Wω[j] =
1

ω sinωt

∫ t

0
ds (q sinωs+ q′ sinω(t− s)q)j(s)

+
1

mω sinωt

∫ t

0
ds
∫ s

0
ds′ sinω(s− t) sinωs′ j(s)j(s′), (3.48)

and for a vanishing frequency is converges to the Schwinger functional of the free particle. The

functional Wω enters the formula for the propagator of the oscillator with constant frequency

Kω(t, q, q
′; j) = Kω(t, q, q

′) eiWω [j]/h̄. (3.49)

For vanishing endpoints the evolution kernel for j = 0 on the right hand side simplifies further

and we obtain the simple formula

Kω(t, 0, 0; j) =

√
mω

2πih̄ sinωt
exp

{

i

h̄

∫ t

0
ds
∫ s

0
ds′

sinω(s− t) sinωs′

mω sinωt
j(s)j(s′)

}

. (3.50)

It generates all correlations of time-ordered products of oscillator positions at different times.

————————————
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3.3 Mode expansion

The path integral (3.32) factorizes into a factor containing the action of the classical trajectory

wcl with prescribed initial and final positions and a factor containing the path integral over the

fluctuations ξ. The latter is independent of the endpoints since the fluctuations vanish for t′ and

t and for its computation we need the explicit form of the action

S[ξ] =
1

2
(ξ, S ′′ξ) with S ′′ = −m

(

d2

ds2
+ ω2(s)

)

. (3.51)

The operator S ′′ is called fluctuation operator since it acts on the fluctuations about wcl. It is a

self-adjoint operator on functions vanishing at times t′ and t. Hence we can diagonalize it

S ′′ξn = λnξn, where ξn(t
′) = ξn(t) = 0. (3.52)

The eigenmodes may be chosen to be orthonormal

(ξn, ξm) ≡
∫ t

t′
ds ξn(s)ξm(s) = δn,m, (3.53)

and an arbitrary fluctuation ξ(s) can be expanded in terms of these modes,

ξ(s) =
∑

n

anξn(s). (3.54)

Since the map ξ(s) −→ {an} is a unitary map form L2 to ℓ2 the ’measure’ in Dξ is equal to the

’measure’
∏
dan. Inserting the expansion into the exponent in (3.32) we obtain

ξ(t)=0∫

ξ(t′)=0

Dξ ei(ξ,S′′ξ)/2h̄ =
∫
∏

dan e
iλna2n/2h̄ =

∏
(

2πih̄

λn

)1/2

. (3.55)

The product of the eigenvalues λn is the determinant of the fluctuation operator S ′′ and thus the

path integral leads to an inverse square root of the determinant of S ′′,

Kω(t, q, t
′, q′) =

N
√

det(∂2 + ω2)
eiS[wcl]/h̄. (3.56)

For simplicity we assumed that the external source has been switched off. The divergent nor-

malization factor N can be fixed a posteriori by considering the ratio of two path integrals. This

is sufficient in quantum mechanics where the ratio of two fluctuation determinants is finite. It

is not sufficient in field theory where an additional regularization may be necessary. Before

considering the ratio of determinants we quote a classical result of WEYL [23], according to

which the eigenvalues in (3.52) grow asymptotically as

|λn| ∼ const ·
(

n

t− t′

)2

, (3.57)

————————————
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implying that the determinant does not exist. This is not surprising since already in the regular-

ized path integral on the time lattice (3.17) detC ∼ 1/ǫ also tends to infinity in the continuum

limit. The problem with this harmless divergence is resolved as follows: imagine that we repeat

the same steps leading to (3.56) for the free particle instead of the oscillator. We obtain

K0(t, 0, t
′, 0) =

N
√

det(∂2)
, (3.58)

since the classical trajectory starting and ending at the origin is just wcl(s) = 0 and hence the

action S[wcl] in (3.56) vanishes in this case. On the other hand we know from (2.21) that

K0(t, 0, t
′, 0) =

√

m

2πih̄(t− t′)
. (3.59)

Now we divide the evolution kernel in (3.56) by K0 as in (3.58) and multiply again by K0 as in

(3.59). The unknown constant N chancels in the quotient and we obtain

Kω(t, q, t
′, q′) =

√

m

2πih̄(t− t′)

(

det
∂2 + ω2(.)

∂2

)−1/2

eiS[wcl]/h̄. (3.60)

According to (3.17) the ratios of the determinants are given by the ratios of the D-functions of

the corresponding fluctuation operators. The D-function of ∂2 is D(s, t′) = s− t′, such that

Kω(t, q, t
′, q′) =

√
m

2πih̄

1
√

D(t, t′)
eiS[wcl]/h̄. (3.61)

Alternatively we could divide and multiply (3.56) with the evolution kernel Kω of the oscillator

with constant ω, as given in (3.25). One finds

Kω(t, q, t
′, q′) =

√

mω

2πih̄ sinω(t− t′)

(

det
∂2 + ω2(.)

∂2 + ω2

)−1/2

eiS[wcl]/h̄, (3.62)

where ω and ω(.) are the constant and time-dependent frequencies. Inserting the D-function

1/ω · sinω(t− t′) of the oscillator with constant frequency again leads to the result (3.61).
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