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Notation and Conventions

General Conventions

Wherever there are different conventions on signs in use in the literature (e.g. for the
metric, the Riemann, and the Einstein tensor), we keep to the (+ + +) convention in the
terminology of [1].

This implies the Lorentzian metric signature (− + · · ·+). We will need only spherical
coordinates. For an event x they are

time: xt ≡ x0, radius: xr ≡ x1, elevation: xθ ≡ x2, and azimutal angle: xϕ ≡ x3.

In cases where there is no danger of confusion, e.g., if we consider only one spacetime
point, we may write t, r, θ, and ϕ instead.

Wherever it is important to distinguish between quantities defined in spacetimes of
different dimension, we indicate the dimension by a superscript in parentheses, e.g.

g(2)
µν ,

√
−g(3) , R(4) .

Variations and differential operators always act on all the terms written to the right of
them. If there are brackets around the expression including the operator, then its action
is restricted to inside the brackets. See, as an example, eqn. (6.15).

Units are chosen such that c = G = ~ = kB = 1. Here, c is the speed of light, G de-
notes Newton’s gravitational constant, ~ is Planck’s constant, and kB denotes Boltzmann’s
constant.

Definitions

The spatial angular element on the two-dimensional unit sphere is given by

dΩ2 = dθ2 + sin2 θ dϕ2 where θ ∈ [0, π] and ϕ ∈ [0, 2π) . (1.1)

In spherical coordinates, spacetime intervals are determined by

ds2 = gµνdxµdxν = −dt2 + dr2 + r2dΩ2 .

They are classified as follows:

ds2


< 0 for timelike
= 0 for lightlike (null)
> 0 for spacelike

intervals. (1.2)
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In the context of two-dimensional Minkowski space, the finite interval between two events
x and y is usually defined as

σxy =
1
2
(
(xr − yr)2 − (xt − yt)2

)
=

1
2

(xu − yu)(xv − yv) . (1.3)

Symmetrization of two indices is denoted by parentheses,

A(µBν) =
1
2

(AµBν +AνBµ) , (1.4)

and antisymmetrization by square brackets,

A[µBν] =
1
2

(AµBν −AνBµ) . (1.5)

As (anti-)symmetrization involving more than two indices doesn’t occur in the course of
this work, it is implicitly understood that any indices occurring between those immediately
adjacent to parentheses or square brackets are not affected by (anti-)symmetrization. In
the following example, this applies to α:

A(µαν) =
1
2

(Aµαν +Aναµ) , A[µBαν] =
1
2

(AµBαν −AνBαµ) .

The quantities of Riemannian geometry – Christoffel symbols, the Riemann and Ricci
tensors, and the curvature (Ricci) scalar – are then defined (in the order given)[1]:

Γαβγ =
1
2
gαµ(gµβ,γ + gµγ,β − gβγ,µ) , (1.6)

Rµναβ = ∂[αΓµνβ] + Γµσ[αΓσνβ] , (1.7)
Rµν = Rαµαν , (1.8)
R = Rµµ . (1.9)

The last relation is independent from the sign conventions. In addition, the Einstein tensor
is defined as

Gµν = Rµν −
1
2
gµνR . (1.10)

Functions and distributions

For the sake of clarity, we give the definitions of Dirac’s and Heaviside’s functions as we
will use them.

Dirac’s δ function (which is actually a distribution or generalized function) in n dimen-
sions:∫

d2y δn(y − x)Ψ(y) = Ψ(x) , δn(y − x) = δ(y1 − x1)δ(y2 − x2) · · · δ(yn − xn) . (1.11)

In contrast, the covariant δ function:∫
d2y

√
−g(y) δn(y, x)Ψ(y) = Ψ(x) , δn(y, x) =

1√
−g(y)

δn(y − x) . (1.12)

The step function (Heaviside’s function):

Θ(x) =

{
0 x < 0
1 x > 0

. (1.13)
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Green functions

We will describe solutions to differential equations in terms of Green functions.
Denote by Gm(x, y) the general massive Green function of an operator F̂ acting on the

coordinates of an event x: If

F̂Gm(x, y) = F̂xG
m(x, y) = δn(x, y) (1.14)

then the inverse wave operator is defined as follows:[
1
F̂

Ψ
]

(x) =
[

1
F̂ y

Ψ(y)
]

(x) =
∫

d2y
√
−g Gm(x, y)Ψ(y) . (1.15)

In the massless case we write

G(x, y) ≡ Gm(x, y)
∣∣
m=0

. (1.16)

Finally, we derive a property of symmetric Green functions. If Gm(x, y) = Gm(y, x),
we have∫

d2x
√
−g(x) Ψ(x)

[∫
d2y

√
−g(y)Gm(x, y)Φ(y)

]
=
∫

d2y
√
−g(y)

[∫
d2x

√
−g(x)Gm(y, x)Ψ(x)

]
Φ(y) .

If we relabel the integration variables on the right-hand side, x↔ y, we obtain∫
d2x
√
−gΨ

1
F̂

Φ =
∫

d2x
√
−g
[

1
F̂

Ψ
]

Φ . (1.17)

Variational formulae

We will need the following variations of curvature terms and Green functions:

δgαβ = −gαµgβνδgµν , therefore Aµνδg
µν = −Aµνδgµν , (1.18)

δ
√
−g =

1
2
√
−g gµνδgµν , (1.19)∫

d2x
√
−g (δR)S =

∫
d2x
√
−g (δgµν)(S;µν − gµνS;ε

;ε −RµνS) , (1.20)∫
d2x
√
−g A(δ�)B =

∫
d2x
√
−g (δgµν)

[
A,(µB,ν) − 1

2
gµν(A,εB,ε +AB;ε

;ε)
]
, (1.21)

δ
1

m2 −�
=

1
m2 −�

(δ�)
1

m2 −�
and δ

1
�

= − 1
�

(δ�)
1
�
. (1.22)

For relations (1.20) and (1.21), we refer to A. Zelnikov, for (1.22) see [2].
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Chapter 1

Introduction

This diploma thesis is concerned with the quantum field theoretical observation that Black
Holes are not entirely black but instead radiate particles with a thermal energy distribu-
tion. This phenomenon has been known since the mid-seventies and is named, after its
discoverer, the Hawking effect [3].

The present work consists of two main parts: First, a general discussion of Black Holes
and the Hawking effect that basically reflects the process of acquainting myself with the
subject. Here, the basic formulae needed in the later chapters are introduced. The second
part lends itself to two-dimensional models of gravity, mostly dilaton models, and the
problem of defining them in such a way that their results qualitatively agree with the
four-dimensional theory.

The reader is assumed to be familiar with Einstein’s theory of General Relativity (which
predicts the objects of our primary interest: Black Holes) and the theory of quantum fields
in flat space. However, chapter 2 gives a short account of Schwarzschild Black Holes as a
solution to Einstein’s equations, of the Schwarzschild geometry, and of Penrose diagrams,
a means to visualize infinitely extended regions of spacetime in finite-sized diagrams.

Those aspects of quantum field theory in a general curved spacetime which are needed
in this work will be developed along the way. Here, [4] will be the primary reference.

Black Holes and the Hawking effect

In 1916, Karl Schwarzschild found his famous solution to Einstein’s equations for a mass
distribution consisting of – and hence, a classical energy momentum tensor corresponding
to – a point mass M located at the origin of spatial coordinates but an otherwise perfectly
empty space. This solution gives rise to spherical objects of radius 2M that have zero
angular momentum and electric charge.

Such objects have been referred to as Black Holes since no physical entity – subject to
the limit of the speed of light, c, as the maximum speed possible – can escape from their
interior due to the mass’ gravitational attraction. This holds for massive particles as well
as for massless photons and, in fact, any kind of information.

All the more surprising was Hawking’s announcement that from the quantum field the-
oretical point of view, ‘Black Holes are not black’. This statement has to be understood in
the sense that if the spacetime surrounding a Black Hole is supposed to be filled with clas-
sical vacuum, nevertheless a thermal flux of energy or thermal radiation of particles, resp.,
can be measured to come from it according to quantum field theory. The temperature of
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that radiation, called the Hawking temperature TH, has been calculated to be

TH =
1

8πM
.

The reason for this phenomenon is – as will be pointed out in chapter 4 – that the
notion of vacuum is ambiguous in quantum field theory. We obtain Hawking radiation if
we consider a quantum state which corresponds to vacuum defined in the region light rays
going into the Black Hole come from, but measure the particle flux in the region they go
to. In these regions, called past and future lightlike infinity (see chapter 2) or ‘in’ and ‘out’
region, particles and thus vacuum can be defined unambiguously, but the two definitions
do not correspond to the same quantum state.

Furthermore, Hawking radiation is an important piece in the theory of the thermody-
namics of Black Holes as it adds to the analogy between geometrical quantities appearing
in the context of Black Holes and thermodynamical quantities the concept of temperature.

Chapter 3 will demonstrate how a non-Minkowskian spacetime can ‘produce’ particles
by the mechanism just outlined. There, the simple example of a conformally flat spacetime
expanding suddenly at t = 0 is considered. Although Hawking radiation is concerned with
a metric depending on the radial coordinate instead of time, it is helpful to understand the
mechanism of particle creation and – technically – Bogoliubov transformations explained
by the simpler example in order to understand the nature of Hawking radiation.

Chapter 4 lends itself to the actual Hawking effect in a four-dimensional spacetime.
Three approaches to the explanation of the effect will be given: an intuitive one considering
pairs of virtual particles being torn apart by the Black Hole’s gravitational field, an attempt
to describe the scattering of field modes responsible for the different notions of particles
in the ‘in’ and ‘out’ region by reducing the problem to potential scattering, and an outline
of Hawking’s derivation of Black Hole radiation.

Two-dimensional dilaton models and the effective action approach

Although the Hawking radiation itself can be calculated in quantum field theory, the same
cannot be said for other effects. Already the computations needed to obtain the energy
momentum tensor of Hawking radiation are very laborious and involved, making use of
techniques like regularization and renormalization.

One interesting issue is the influence of the energy flux from the Black Hole on its geom-
etry, known as the back-reaction. As the Black Hole radiates off energy and thereby loses
mass, it decreases in size and in the end, evaporates. This process can, however, not yet be
formulated in a mathematically consistent way, even in the semi-classical approximation.

People hope to learn about such mathematically complicated questions by considering
substantially simplified models: they assume spherical symmetry of the geometry (given
in the Schwarzschild case) and fields and, by restricting their attention to the time and
radial coordinate only, reduce the problem to two dimensions.

Several such approaches to dimensional reduction will be reviewed in chapter 5. Two
aspects have to be considered: how to dimensionally reduce the gravitational action, and
how to do so with the matter action. Both times, the possibilities are either to ignore
the spherical variables, or to integrate all quantities with respect to them. The latter
procedure leads to the so-called dilaton gravity.
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It will turn out that the dilaton model will be conceptually preferable to the inherently
two-dimensional one as it is rooted in the four-dimensional theory and can thus be expected
to yield results which are better comparable to those from the full four-dimensional theory.

As the trace of the quantum energy-momentum tensor of a field in its vacuum state
is non-zero – which is known as the conformal trace anomaly in explained in chapter 5
– it can be used to compute an action which then plays the rôle of the matter action
in the two-dimensional theory. It is called the effective action. It is required to lead to
an energy-momentum tensor whose trace is just the trace anomaly, but it contains only
geometrical quantities instead of the quantum fields.

It turns out, however, that the Hawking radiation obtained from this anomaly induced
effective action in the dilaton model leads to disagreement with the four-dimensional theory
as it implies a negative energy flux from the Black Hole.

The anomaly-induced effective action has been the subject of some debate. There has
been disagreement on the coefficient of a particular term appearing in that action, and
it was part of the task of this diploma thesis to investigate this ambiguity. In the course
of the work I convinced myself that there is actually no ambiguity but rather a variety
of different models considered, as had been published by J.S: Dowker [5] shortly before.
During 1999 when I worked on my thesis, this explanation gained acceptance among the
colleagues. The solution of the apparent ambiguity of the anomaly-induced effective action
will be explained in chapter 5.

There have been attempts to restore a positive flux by adding conformally invariant
terms to the effective action. These don’t change the trace of the corresponding energy-
momentum tensor (see chapter 5) but might contribute a useful correction to the individual
components. Two such attempts will be described: the one suggested by V. Mukhanov,
A. Wipf, and A. Zelnikov [6] which is not able to produce qualitative agreement between
the two- and four-dimensional theories for all vacuum states, and the one proposed by R.
Balbinot and A. Fabbri [7] which can do so but is obtained in a rather ad hoc way.

Chapter 6 is dedicated to a third proposal, made by Y. Gusev and A. Zelnikov [8]
which is derived via heat kernel regularization. The implications of their conformally
invariant contribution to the effective action have not yet been investigated. We will be
able to compute the components of the energy-momentum tensor corresponding to this
contribution, up to the numerical treatment of the integrals obtained. Once those integrals
are known at least numerically, one can decide what the proposal by Gusev and Zelnikov
implies for the Hawking flux in the dilaton model.

Criticism of the model

There are two issues about the two-dimensional models considered in this diploma thesis
which are subject to criticism:

First, it is not clear whether two-dimensional models built on an effective action can
reproduce the spherically symmetric four-dimensional theory. The trouble is not so much
with the dimensional reduction; it is the fact that presently no procedure for a strict
computation of the effective action exists that is proven to work. Whether the effective
action approach is able to yield a satisfactory two-dimensional theory will probably become
clear only when a full four-dimensional theory of quantum Black Holes exists.
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Second, the models considered in this work and those referred to are all semiclassical
approximations. Also their reliability can probably be judged only by comparison with a
full theory of quantum gravity. In particular, it might turn out that Hawking radiation
even prevents Black Holes from being created by gravitational collapse as they evaporate
in the process. See also chapter 5 on this issue.
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Part I

Black Holes & the Hawking Effect
in Four Dimensions
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Chapter 2

The Spacetime of Black Holes

2.1 The exterior Schwarzschild solution

2.1.1 The Schwarzschild metric as a solution to Einstein’s equations

The solution to Einstein’s equations for a point mass

According to Einstein’s theory of General Relativity, the effect of a gravitating mass
on its surroundings can be expressed in purely geometrical terms. In the Newtonian
theory, bodies move through ordinary space, their gravitational interaction causing them
to deviate from trajectories which would be straight otherwise (given the absence of other
forces). In Relativity, they always move along – properly defined – ‘straight’ trajectories,
but through a spacetime ‘curved’ by their gravitating masses. That is, the flat and static
metric of space is replaced by the metric of spacetime which depends on the distribution
of matter (mass as well as energy). This dependence is determined by Einstein’s equations

Rµν −
1
2
gµνR = 8πTµν

where Rµν and R are defined by (1.8) and (1.9) and Tµν is the matter stress energy tensor.
Consider a distribution of total mass M concentrated on the origin of coordinates,

implying spherical symmetry. Assuming zero electrical charge and angular momentum,
the geometry away from the origin is the Schwarzschild geometry [1]

ds2 =
(

1− 2M
r

)
dt2 − dr2

1− 2M/r
− r2 dΩ2 (2.1)

where dΩ2 is defined by (1.1).

A few properties of Schwarzschild spacetime

• The most prominent property of Schwarzschild spacetime is the fact that nothing
that moves as fast as or even slower than light can escape the region inside the sphere
of radius rS = 2M . This radius is called the Schwarzschild radius. The surface of
the sphere is referred to as the event horizon, and the interior region as a Black Hole,
as no matter or information can propagate from inside the horizon outside.

• Schwarzschild coordinates have a singularity at r = 2M whereas there is no physical
singularity there; the only physical singularity is at r = 0. One can see the regularity
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of spacetime by considering an observer falling freely through the event horizon.
He will not experience infinite forces or, more generally, measure quantities that
become infinite just at the horizon [1]. Mathematically, the curvature scalar of the
Schwarzschild metric does not diverge at the horizon.

• Although matter falling into the Black Hole arrives at the singularity within finite
proper time (and light does so at a finite value of the affine parameter of its trajec-
tory), the Schwarzschild time t goes to infinity at the moment of crossing the horizon
and decreases after [1]. Thus, an observer watching signals sent back from some ob-
ject that falls into the Black Hole will never see it disappear. The object appears to
approach the horizon more and more slowly, and the signals received become more
and more red-shifted.

• The rôle of space and time inside the horizon is just the reverse of that outside in
the following sense: An observer in the exterior region, in moving along his geodesic
trajectory in the direction of growing proper time or – in the limit of motion at
the speed of light – growing affine parameter, will inevitably cross every existing
hyperplane of constant time exactly once on his way to future infinity but may stay
at the same point in space.

Such an observer is bound to cross every hypersurface of constant radius exactly once
on his way into the singularity at r = 0 but may stay at a constant time coordinate.
The only exception is the motion along the horizon.

This property, stated here rather roughly and qualitatively, will become clearer when
Kruskal diagrams are available for illustration.

Curvature in two and four dimensions

In four dimensions, the Ricci tensor Rµν as well as the curvature scalar R of the metric
(2.1) vanish identically everywhere except at the origin. Outside the event horizon we
have

R(4) ≡ 0 , R(4)
µν ≡ 0 .

For a two-dimensional Schwarzschild Black Hole the metric of which is just the (t, r)
part of the metric (2.1),

d(s(2))2 =
(

1− 2M
r

)
dt2 − dr2

1− 2M/r
,

these quantities behave differently. The two-dimensional curvature terms outside the event
horizon at r = 2M are

R(2) = −4M
r3

, R(2)

tt =
2M(r − 2M)

r4
, R(2)

rr = − 2M
r2(r − 2M)

, R(2)

tr = R(2)

rt ≡ 0 .

Even though they are not as simple as the four-dimensional pendants, these terms satisfy
a simple relation which is, however, not specific to the Schwarzschild geometry but holds
for any two-dimensional spacetime,

1
2
R(2)g(2)

µν −R(2)
µν ≡ 0 . (2.2)
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2.1.2 Kruskal coordinates

A set of regular coordinates

One possible set of coordinate transformations (with coefficients chosen according to [4])
removing the spurious singularity of Schwarzschild coordinates at the horizon reads

U = ∓4M e−u/4M , V = 4M ev/4M for r ≷ 2M (2.3)
where u = t− r∗ , v = t+ r∗ (2.4)

and r∗ = r + 2M ln
∣∣∣ r
2M
− 1
∣∣∣ . (2.5)

As r → 2M ± 0, r∗ → −∞ so U → 0, thus the change of sign of U doesn’t cause any
discontinuity.
U and V are called Kruskal coordinates. They have the following properties:

• Already the ‘simple’ null coordinates u, v yield a conformally flat (t, r∗)-part of the
line element:

ds2 =
(

1− 2M
r

)
du dv − r2 dΩ2 . (2.6)

In order to obtain (2.6),

dr∗ =
r

r − 2M
dr for r > 0 (2.7)

has been used.

• In Kruskal coordinates, the line element reads

ds2 =
2M
r
e−r/2M dU dV − r2 dΩ2 .

This metric has a conformally flat (t, r) part as well, and the artificial (coordinate)
singularity at r = 2M has been removed.

Analytic completion of the spacetime manifold

• Kruskal coordinates give rise to a doubling of the spacetime manifold exterior of the
horizon:

The map r ↔ r∗ is bijective for r > 2M and r < 2M separately, and U and V can
be uniquely determined from r and r∗ and vice versa. Yet looking at the range of U
and V as obtained by (2.3), one realizes that only half the (U, V ) plane is covered
(see fig. 2.1).

An attempt to calculate r and t from pairs (U, V ) taken from the other half yields
perfectly well-behaved values; in fact, two pairs (U, V ) and (−U,−V ) correspond to
each (t, r):

UV = ∓16M2 er
∗/2M ,

U

V
= −et/2M (for r ≷ 2M) . (2.8)

So two more transformations can be introduced:

U = ±4M e−u/4M , V = −4M ev/4M for r ≷ 2M .
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Figure 2.1: A Kruskal diagram which clearly shows the doubling of the space-time manifold by
the introduction of Kruskal coordinates (taken from [1], fig. 31.3). Kruskal ’time’ and ’radius’ are
defined in (2.9).

• Kruskal time and space coordinates can be defined from U and V by

T =
1
2

(U + V ) , R =
1
2

(V − U) . (2.9)

Thus, two pairs (T,R) exist for each point (t, r).

Table 2.1 lists the complete set of transformations needed to cover the whole plane
of Kruskal time and radius.

• The transformation can be interpreted in the following way: A whole plane of Kruskal
coordinates U and V is plotted. Each quadrant corresponds to one of the regions
I - IV as a portrait of the whole or the left half of a (t, r∗) plane, resp. The map
applied is x→ ex acting on both null directions, mapping (−∞,∞)→ [0,∞). Since
the plane is shrunk in the null directions, these directions are kept invariant while
axes t = const and r∗ = const are transformed into hyperbolae, particularly those
representing the singularity, namely r∗ = 0 in regions II and IV.

• Radial null rays make angles of 45 degrees with respect to T and R. This is because
U and V are obtained by purely stretching the u and v axes which are null geodesics
and make angles of 45◦ with the t and r∗ axes themselves. In contrast, null geodesics
plotted in (t, r) coordinates look like the plot of r∗ itself (fig. 2.2), up to shifting and
mirroring. Let’s check that t = ±r∗ + c describes null geodesics:

A light ray moving radially in- or outward will keep its angular coordinates because
of the symmetries of the metric, thus we have dΩ2 = 0. Hence t = ±r∗+ c describes

9



Table 2.1: The complete set of Kruskal coordinate transformations. The regions I - IV are labeled
according to fig. 2.1 and [1]. Null coordinates: u = t− r∗, v = t+ r∗ (see eqn. (2.4)),
abbreviations: A = er

∗ ∣∣
r>2M

=
√
r/2M − 1 er/4M , B = er

∗ ∣∣
r<2M

=
√

1− r/2M er/4M

Region r U/4M V/4M T/4M R/4M

I > 2M −e−u/4M ev/4M A sinh
t

4M
A cosh

t

4M

II < 2M e−u/4M ev/4M B cosh
t

4M
B sinh

t

4M

III > 2M e−u/4M −ev/4M −A sinh
t

4M
−A cosh

t

4M

IV < 2M −e−u/4M −ev/4M −B cosh
t

4M
−B sinh

t

4M

null rays,

ds2 =
(

1− 2M
r

)
(dr∗)2 − dr2

1− 2M/r

=
(

1− 2M
r

)(
dr +

2M
r/2M − 1

dr
2M

)2

− dr2

1− 2M/r
= 0 ,

and satisfies the geodesic equation

dxα

dr
+ Γαβγ

dxα

dr

β dxγ

dr
= 0 (2.10)

where the derivatives are taken, in the first place, with respect to some affine pa-
rameter of the curve which we then choose to be r [9]. We only have to check the t
and r components. We have

dr
dr

= 1 ,
d2r

dr2
= 0 ,

dt
dr

=
1

1− 2M/r
,

d2t

dr2
=

−2M/r2

(1− 2M/r)2

Γrtt =
M

r2

(
1− 2M

r

)
, Γttt =

M

r2

1
1− 2M/r

, Γrrr = −M
r2

1
1− 2M/r

.

r

r∗

0
2M

Figure 2.2: The ‘tortoise’ coordinate r∗ plotted against r (see eqn. (2.5)). Radially in- and
outgoing null geodesics t = ±r∗ + c in the Schwarzschild geometry look like this. The event
horizon is the vertical line r = 2M .
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All other non-angular Christoffel symbols vanish. With these, (2.10) is satisfied.

• Thus, if the T axis points upward, timelike curves remain ‘steeper’ than 45◦, spacelike
curves are ‘flatter’ than that, and causal relationships can be clearly read off the
diagram.

Interpretation

The interpretation of the four regions (I - IV) in the analytically continued Schwarzschild
spacetime (which is the region between the singularities in the Kruskal diagram 2.1) is as
follows:

• The interior region bounded by the future horizon is what is called the interior of
the Black Hole since no timelike or null curve starting from a point inside can lead
out of the region. Therefore, neither matter nor information can leave this region
(II).

• Similarly, region IV bounded by the past horizon is often referred to as a White Hole
as every timelike or null curve starting from inside must leave the region in finite
time. On the other hand, nothing can fall in from outside.

• There are indeed two causally disconnected exterior regions (I, III) which join to-
gether at the event horizon. Since the Kruskal diagram preserves the direction of
null rays and thus the causal structure of spacetime, it is obvious from it that no
timelike or null curve connects regions I and III.

Sometimes, the exterior regions are charted in an embedding diagram (fig. 2.3, expla-
nation is given there). The interior region is no longer part of the geometry covered
by this diagram.

• In a Kruskal diagram, the exchange of the rôles of space and time in a Black Hole
geometry mentioned earlier can be seen clearly.

2.2 Penrose diagrams

2.2.1 A simple example: Minkowski spacetime

The simplest transformation

In order to visualize an infinitely extended spacetime we perform a non-linear coordinate
transformation which maps infinity to finite values of the new coordinates.

In spherically symmetric spacetimes we are concerned with here, the first step is to use
spherical coordinates t, r, θ, φ so there’s only one spatial coordinate capable of assuming
infinite values, namely r.

One possible function relating a finite to an infinite interval is the tangent function
(fig. 2.4); the most näıve thing to do would be the transformation

t = tan t′ , r = tan r′ . (2.11)

This already yields a compact portrait of spacetime (fig. 2.5) but on closer inspection, we
find two ‘flaws’ we shall wish to overcome:

11



Figure 2.3: Embedding diagram of the exterior region of a Black/White Hole pair, joined
together at their event horizons (taken from [1], fig. 31.5). Here, t = T = 0 and θ = π/2. The
interior geometry of the pictured surface is that of the z = 0 plane in the real world. The surface
is given by revolving the hyperbola z̄ = 2M + (x̄2 + ȳ2)/8M about the z̄ axis.

x
π/2

π/2
0

ta
n
x

Figure 2.4: The tangent
function relating the
compact interval [−π/2, π/2]
to the infinite interval
(−∞,∞)

0 r

t

I+

I−

I0

I +

I −

0 r′

t′

π/2

π

2

−π
2 I−

I+

I0

I +

I −

Figure 2.5: The compact portrait of (t, r)-space under the
transformation (2.11). I0, I±, and I ± denote spatial, past
and future, and past and future null infinity, resp. The same
three null lines are drawn in both pictures.
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0 r, r′

t, t′

π

2

π

2

−π
2

I0

I+

I−

I −

I +

u, u′

v, v′

Figure 2.6: The compact portrait of (t, r)-space under
the transformation (2.12)

0
I0

I+

I−

r′

I −

I +

t′

1

2

Figure 2.7: Lines of constant r (1)
and constant t (2)

1. Null rays are not in general straight lines inclined by 45◦. Only those passing through
the origin are.

2. The metric is no longer conformally flat:

ds2 = dt2 − dr2 − r2dΩ2 =
1

cos4 t′
dt′2 − 1

cos4 r′
dr′2 − tan2 r′ dΩ2 .

Null coordinates

In our näıve model we observe that lines t = const and r = const remain straight lines in
the horizontal and vertical directions, resp. Thus, the idea is to shrink the (t, r)-subspace
not in the r- and t-directions but in the directions in which we want to keep lines straight.
Let’s introduce null coordinates

u = t− r , v = t+ r

and perform a transformation

u = tanu′ , v = tan v′ . (2.12)

Now the images of the several regions of infinity (time-like, space-like, null infinity) look
different as compared to our näıve attempt (see fig. 2.6) but null rays u′ = 0 and v′ = 0
are straight lines inclined by 45◦ like in a plain spacetime diagram.

The price we pay for this is illustrated in fig. 2.7: Lines with r = const or t = const are
not horizontal or vertical straight lines anymore, except for the coordinate axes themselves
as they coincide with the old ones. The coordinates r′ and t′ used in the figures are defined
by

t′ =
1
2

(u′ + v′) , r′ =
1
2

(v′ − u′) .

A look at the metric transformed according to (2.12) shows us another property of this
transformation. It reads

ds2 = du dv − (v − u)2

4
dΩ2 =

du′ dv′

cos2 u′ cos2 v′
− (tan v′ − tanu′)2

4
dΩ2

which is not conformally flat, either, but its (t, r)-part is.
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2.2.2 Black Holes

Finally we can apply the technique of compactifying an infinite manifold by means of
conformal transformations to the Schwarzschild geometry, thereby obtaining Penrose dia-
grams of Black Holes.

Again we want null rays to remain at 45◦ with respect to the new time and space
coordinates T ′ and R′. This is ensured by the transformations

U

4M
= tanU ′ ,

V

4M
= tanV ′ (2.13)

and T ′ =
1
2

(U ′ + V ′) , R′ =
1
2

(V ′ − U ′) .

In terms of the new null coordinates, the line element reads

ds2 =
2M
r

e−r/2M
1

cos2 U ′ cos2 V ′
dU ′ dV ′ − r2 dΩ2

which has a conformally flat (U ′, V ′) part again.
Transforming a whole (U, V ) plane according to (2.13) one would expect a diamond-

shaped portrait (cf. fig. 2.6). However, only the part of the plane between the two r = 0
hyperbolae belongs to our spacetime manifold, so we ask the question: What becomes of
those hyperbolae?

If r = 0, i.e. r∗ = 0,

U

4M
V

4M
= ±1 or tanU ′ = cotV ′

(see eqn. (2.8)). With both U ′, V ′ ∈ [−π/2, π/2] this condition is satisfied if

U ′ + V ′ = ±π
2
.

Thus, the curves marking the singularity at r = 0 are mapped to straight lines parallel to
the R′ axis (fig. 2.8).
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Figure 2.8: Penrose diagram for an ever-existing Black Hole (taken from [9]). Lines of constant t
are basically ‘sideways’ directed in regions I and III, lines of constant r are basically ‘upward’
directed there, and vice versa in II and IV.
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Chapter 3

Particle Creation by Non-Minkowskian

Spacetimes

3.1 Quantum fields and the particle concept

In this chapter, we are concerned with a phenomenon that doesn’t arise from classical
theories like General Relativity alone: the creation of particles defined as excitations of
field modes.

It occurs in quantum field theory if one considers, e.g., external fields (including the
curvature of spacetime by gravitation), boundary conditions, or non-inertial motion. Ex-
amples include cosmological particle creation, the Hawking and the Casimir effect, and –
for accelerated motion – the Unruh effect.

We consider a scalar quantum field Φ̂.

3.1.1 Quantum fields and the wave equation

The field equation and conformal transformations

Scalar fields obey the Klein-Gordon equation(
�−m2 + ξR

)
Φ̂ =

(
1√
−g

∂µ
(√
−g gµν∂ν

)
−m2 + ξR

)
Φ̂ = 0 . (3.1)

Here, m denotes the mass assigned to the field, � is the curved spacetime d’Alembertian
with metric gµν , and ξ determines the coupling of the matter field to the curvature of
spacetime beyond that implied by the geometry dependence of the covariant derivatives
involved.

There are two special cases of coupling: If ξ = 0, the field is said to be minimally
coupled. For

ξ = ξc(n) =
1
4
n− 2
n− 1

where n denotes the number of spacetime dimensions, we speak of conformal coupling. In
two dimensions, minimal and conformal coupling are the same.

We speak of conformal coupling because for this kind of coupling, the field equation is
essentially invariant under conformal transformations: A conformal transformation of the
metric,

gµν(x)→ ḡµν(x) = C(x)gµν(x) , gµν(x)→ ḡµν(x) =
1

C(x)
gµν(x) ,
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implies for the conformally coupled wave operator the relation

�+ ξc(n)R(x)→ �+ ξc(n)R(x) =
[
C(x)

]−(n+2)/4(
�+ ξc(n)R(x)

)[
C(x)

](n−2)/4
. (3.2)

On the other hand, the transformation of fields reads

Φ̂→ ¯̂Φ =
[
C(x)

]−(n−2)/4Φ̂ .

Given the Klein-Gordon equation (3.1), these quantities satisfy[
C(x)

]−(n+2)/4(
�+ ξc(n)R−m2

)
Φ̂ = 0(

�̄+ ξc(n)R̄
) ¯̂Φ−

[
C(x)

]−(n+2)/4
m2
[
C(x)

](n−2)/4 ¯̂Φ

=
(
�̄+ ξc(n)R̄− m2

C(x)

)
¯̂Φ = 0

where R̄ is the Ricci scalar of the transformed metric ḡµν .
Thus, ‘essentially invariant’ means invariant up to a rescaling of the mass parameter.

Obviously, a massless wave equation is conformally invariant.
In particular, this allows us to reduce the wave equation for a conformally flat metric

to the one for Minkowski space.

Decomposition of fields

Let’s decompose the field in normal modes fk,

Φ̂ =
∫

d3k
(
âkfk + â†kf

∗
k

)
. (3.3)

The vector index k counts the normal modes. It has the same dimension as space, (n− 1),
and is, physically, the spatial wave vector of the modes.

The modes fk are normalized with respect to the Klein-Gordon scalar product defined
by [4]

〈ψ|ζ〉 = −i
∫ √
−gΣ n

µ ψ
←→
∂µ ζ

∗ dΣ (3.4)

where Σ is supposed to be a spacelike hyper 3-surface, nµ a future-directed unit vector
field orthogonal to Σ, and gΣ is the determinant of the metric within Σ.

The choice of the scalar product (3.4) ensures that the inner product of two solutions
to the Klein-Gordon equation (3.1) is conserved as the parameter time advances.

Orthonormalization can now be expressed in terms of the scalar product just defined:

〈fk|fk′〉 = δ(k− k′) and 〈f∗k |fk′〉 = 0 . (3.5)

3.1.2 Symmetries and the particle concept

In static regions where the space-time admits a Killing vector field which is timelike and
hypersurface-orthogonal everywhere, the normal modes can be written in the form

fk(x) = Fk(x) · eiω(k)x0
.
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Here, we have chosen coordinates such that the x0 axis points in the direction of the Killing
vector field and x lies inside a hypersurface orthogonal to it, x0 = const. Of course, the x0

parameterization must be chosen appropriately.
By (3.3), this implies a unique decomposition of the field into creation and annihilation

operators of excitations of each mode k. If the Killing vector field is a global one, then
this decomposition is the same everywhere, and a vacuum |0〉 can be globally defined:

âk|0〉 = 0 for all k.

It is also possible to find a unique notion of vacuum and thus of particles in regions
which permit a Killing field which is timelike everywhere, but not hypersurface-orthogonal
[10]. Such regions are called stationary.

If no global Killing vector field exists, a vacuum must be defined by choosing local
coordinate systems. It is not possible to choose them in such a way that the thus defined
vacua agree for all x. Since the quantum state is a global concept, it is then impossible
to define a global vacuum. If one observer locally detects vacuum, there is always another
one who will see particles.

The same thing happens when an observer in a spacetime which at least locally admits a
Killing vector field, doesn’t follow it. An example is accelerated motion in flat space which
allows for several global Killing vector fields which are, however, not Lorentz invariant.
This phenomenon is known as the Unruh effect.

3.1.3 Asymptotic regions and Bogoliubov transformations

A special case of a spacetime that doesn’t admit global Killing vector fields is a spacetime
with asymptotic regions that do allow for Killing fields restricted to each of the regions.
An example which is important for us is the Schwarzschild spacetime where the asymptotic
regions are I + and I − (see fig. 2.8).

These Killing fields will, in general, not lead to the same vacuum state. Thus an observer
who goes from one asymptotic region to another will register a changing occupation of the
quantum state with particles. In particular, he will see particles being created out of an
initial vacuum.

Mathematically, this means a mixing of annihilation and creation operators defined
in each of the asymptotic regions. Annihilation operators of one region (1) will contain
creation operators from the other (2) [4]:

â2,k′ =
∫

d3k
(
αkk′ â1,k + β∗kk′ â

†
1,k

)
and (3.6a)

â1,k =
∫

d3k′
(
α∗kk′ â2,k′ − β∗kk′ â

†
2,k′
)
. (3.6b)

The same coefficients αkk′ and βkk′ connect the sets of modes:

f2,k′ =
∫

d3k
(
α∗kk′f1,k − βkk′f

∗
1,k

)
and (3.7a)

f1,k =
∫

d3k′
(
αkk′f2,k′ + βkk′f

∗
2,k′
)
. (3.7b)

This relation between different sets of modes as well as creation and annihilation operators
is called a Bogoliubov transformation.
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As a consequence of orthonormalization, the coefficients satisfy the following conditions:∫
d3l
(
αklα

∗
k′l − βklβ

∗
k′l

)
= δ(k− k′)∫

d3l
(
αklβk′l − βklαk′l

)
= 0 .

A vacuum state in region (1) may contains particles defined in region (2):

â2,k|01〉 =
∫

d3k′β∗kk′ â
†
1,k′ |01〉 =

∫
d3k′β∗kk′ |11,k′〉 .

This yields the particle number in the mode k:

Nk =
∫

d3k′ |βkk′ |2 . (3.8)

3.2 An example of particle production:
the sudden expansion of the ‘universe’

3.2.1 The metric

Following the lines of [4] we consider a metric

ds2 = −dt2 + a2(t)dr2

which reads
ds2 = C(η)

(
−dη2 + dr2

)
where η is the conformal time coordinate defined by

t =

η∫
a(η′) dη′ and a2(t) = C

(
η(t)

)
.

In [4], a continuous function C(η) is considered whereas we want to calculate a simpler
example which can be compared to the limit of the continuous one: a step function

C(η) = C−Θ(−η) + C+Θ(η) = C− + (C+ − C−)Θ(η)

describing a sudden expansion of space. Then

C,η(η) = (C+ − C−)δ(η) .

With ηµν being the Minkowskian metric of signature (−+ ++), our metric then reads

gµν(η) =
1

C(η)
ηµν or gµν(η) = C(η)ηµν

implying √
−g = C2 ,

√
g(3) = C3/2 ,

and the curvature (Ricci) scalar (as obtained by using Maple)

R =
3
2

2C(η),ηηC(η)−
(
C(η),η

)2
C(η)3

.

Not that this expression involves the square of a δ distribution. However, we will not need
to do explicit calculations with R at η = 0 as we will solve the wave equation only where
R is well-defined and match the solutions afterwards.
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3.2.2 The Klein-Gordon equation

In our case, the Klein-Gordon-equation (3.1) reads(
1
C2

∂µ(C∂µ)−m2 + ξR

)
Φ̂ = 0 . (3.9)

For conformal coupling, (3.2) allows us to rewrite (3.9) as(
C−

3
2�0C

1
2 −m2

)
Φ̂ = 0 (3.10)

where
�0 = −∂2

η +4

is the d’Alembertian in a Minkowskian metric.
We want to calculate mode functions fk and write them in the form [4]

fk(η, r) =
1√

(2π)3
χk · eikr . (3.11)

Plugging fk into (3.10), we obtain(
C−

3
2∂2

ηC
1
2 + C−1k2 −m2

)
χk · eikr = 0 . (3.12)

In order for fk to be a solution, it must be finite, and so must χk. Thus, we know all terms
in (3.12) to be finite except ∂2

ηC
1/2χk; for the equation to hold, this one must be finite as

well, implying differentiability to first order of C1/2χk.

3.2.3 Solutions

Solutions in each time region

In the two regions η ≷ 0 where C± = const we can solve this equation very easily,

χ±,k = ν±,k
(
α±,ke

iω±,kη + β±,ke
−iω±,kη

)
(3.13)

where ω±,k =
√

k2 − C±m2 .

Here, we demand
|β±,k|2 − |α±,k|2 = 1

and choose the normalization constant ν±,k such that solutions fk are normalized with
respect to the Klein-Gordon inner product (3.4).

We choose Σ to be ordinary three-dimensional space at a fixed time η such that
nµ = C−1/2(−1, 0, 0, 0) and −gΣ = g(3) = C3. Equation (3.4) now reads

〈ψ|ζ〉 = −iC(η)
∫

d3rψ
←→
∂0 ζ

∗ . (3.14)

Now we impose the orthonormality conditions (3.5) on solutions to the Klein-Gordon
equation (3.9),

〈f±,k|f±,k′〉 = δ(k− k′) and 〈f∗±,k|f±,k′〉 = 0 . (3.15)
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Applying (3.14) to fk and fk′ as given by (3.11) and (3.13) and making use of

1
(2π)3

∫
d3r ei(k− k′)r = δ(k− k′)

we obtain
〈fk|fk′〉 = 2C± |ν±,k|2 ω±,k

which, by comparison to (3.15), yields

|ν±,k| =
1√

2C±ω±,k
or ν±,k =

1√
2C±ω±,k

eiξk , ξk real . (3.16)

Using (3.13) and (3.16) in (3.11), we can write down the solutions in the following way:

f±,k(η, r) =
1√

2(2π)3C±ω±,k

(
α±,ke

iω±,kη + β±,ke
−iω±,kη

)
· eikr+iξk . (3.17)

The Bogoliubov transformation

We now want to perform the Bogoliubov transformation between the sets of solutions
(3.17) in the two regions η < 0 and η > 0. With creation and annihilation operators
defined according to (3.3),

Φ̂ =
∫

d3k
(
â±,kf±,k + â†±,kf

∗
±,k
)
,

the transformations (3.6) and (3.7) yield

â+,k =
∫

d3k′
(
α∗kk′ â−,k′ − β∗kk′ â

†
−,k′
)

and
f+,k =

∫
d3k′

(
αkk′f−,k′ + βkk′f

∗
−,k′
)
.

Since a single mode solution has a defined spatial frequency k, the coefficients are of
the form

αkk′ = αkδ(k− k′) and βkk′ = βkδ(k− k′) .

If we assume that there is no wave propagating backwards in time for η < 0,

χ−,k = ν−,ke
iω−,kη ,

we can identify the Bogoliubov coefficients with our α and β from eqn. (3.13),

α+,k = αk and β+,k = βk .

In order to calculate them, we remember that C1/2χk is continuous and differentiable
everywhere, including η = 0:√

C− χ−,k

∣∣∣
η=0

=
√
C+ χ+,k

∣∣∣
η=0

and
√
C− ∂ηχ−,k

∣∣∣
η=0

=
√
C+∂ηχ+,k

∣∣∣
η=0

.

21



Plugging in χ±,k at η = 0, we have

√
C−

eiξk√
2C−ω−,k

eiω−,kη

∣∣∣∣∣
η=0

=
√
C+

eiξk√
2C+ω+,k

(
α+,ke

iω+,kη + β+,ke
−iω+,kη

)∣∣∣∣∣
η=0

and
√
C− e

iξk√
2C−ω−,k

(iω−,k)eiω−,kη
∣∣∣∣∣
η=0

=
√
C+ e

iξk√
2C+ω+,k

(iω+,k)
(
α+,ke

iω+,kη − β+,ke
−iω+,kη

)∣∣∣∣∣
η=0

.

This simplifies to

1
√
ω−,k

=
1

√
ω+,k

(α+,k + β+,k) and

√
ω−,k =

√
ω+,k (α+,k − β+,k) .

The solutions to these equations (and thus, the Bogoliubov coefficients) are

αk =
1
2

√
ω+,k

ω−,k

ω+ + ω−
ω+

and βk =
1
2

√
ω+,k

ω−,k

ω+ − ω−
ω+

. (3.18)

3.2.4 Comparison to the results from the literature

In the referred book, a smooth expansion is considered instead of our metric jumping at
η = 0. For a conformal scale factor

C(η) = C− + (C+ − C−) tanh(ρη) ,

the Bogoliubov coefficients for a transformation between the regions η → −∞ and η →∞
are computed to be

αk =
√
ω+,k

ω−,k

Γ
(

1− i
ω−,k
ρ

)
Γ
(
−i
ω+,k

ρ

)
Γ
(
−i
ω+,k + ω−,k

2ρ

)
Γ
(

1− i
ω+,k + ω−,k

2ρ

) and

βk =
√
ω+,k

ω−,k

Γ
(

1− i
ω−,k
ρ

)
Γ
(
i
ω+,k

ρ

)
Γ
(
i
ω+,k − ω−,k

2ρ

)
Γ
(

1 + i
ω+,k − ω−,k

2ρ

)
where

ω±,k =
√

k2 − C±m2 .

Actually, only two dimensions are considered so the authors have k instead of k but the
result ought to be the same.

We are interested in the limit ρ→∞; using Maple, we obtain

lim
ρ→∞

Γ(ia/ρ)
Γ(ib/ρ)

=
b

a
.

With Γ(1) = 1, this leads to our results (3.18).
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Chapter 4

The Hawking Effect

In the last chapter, we gave an example for particle production by a spacetime different
from Minkowski spacetime. There, the geometry changed with the time coordinate, in a
very simple way. Basically the same effect is possible in a spacetime with a metric that
changes along arbitrary worldlines. Vacuum has then to be defined in asymptotic regions
that are characterized other than by their time parameter.

One such spacetime is that of a Black Hole; a Black Hole metric depends on the radial
coordinate r, and the asymptotic regions are I + and I −, see fig. 2.8.

If, in particular, the quantum state is such that there is vacuum at I −, it will corre-
spond to a thermal ensemble of particles at I + with the Hawking temperature TH. This
effect is called Hawking radiation.

There is a variety of ways to explain the phenomenon of radiating Black Holes. We will
consider three of them:

• The first one allows us to estimate (but not strictly derive) TH in the picture of pairs
of virtual particles torn apart by the Black Hole’s gravitational field [11].

• Then we will consider the wave equation and make an ansatz for its solution by which
we can reduce it to a Schrödinger-type wave equation with a complicated scattering
potential [12]. If we could solve it explicitly, we could proceed as in the previous
chapter.

• Last, there will be an outline of Hawking’s own explanation of the Black Hole radi-
ation [3].

4.1 The virtual particle picture

4.1.1 Separation of virtual particle pairs

It is a well-known quantum mechanical result that no particle can be at rest at a precisely
given position, or alternatively have exactly zero energy at a precisely given moment of
time. The reason for this is the uncertainty principle.

According to the same principle, quantum field theory doesn’t allow for a perfect vac-
uum in the sense that a field mode has zero energy at any exactly given moment of time.
Field modes can be in their ground state; if all the modes of a field are, this is referred to
as ‘vacuum’. But the uncertainty principle, one form of which is

∆E ·∆t ≥ 1 , (4.1)
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allows the mode to be in an excited state at ∆E above the ground state for the time ∆t,
but not longer.

One can imagine these fluctuations as producing particles of energies ∆E and −∆E,
resp., which have to recombine after a time ∆t at the longest.

There is no admissible trajectory for the negative energy particle outside the Black
Hole. Consider a radially moving particle and denote the three-momentum p = (p1, p2, p3).
Then, the norm of the four-momentum is

pµpµ = −
(

1− 2M
r

)
(−∆E) +

1
1− 2M/r

(p1)2 . (4.2)

If r > 2M , this quantity is positive whereas it is bound to be negative in order for the
particle to have a timelike trajectory.

However, since the geometry in the vicinity of the event horizon of a Black Hole is well-
behaved, the negative energy particle can cross the horizon during this interval. Inside
the event horizon, the expression given by eqn. (4.2) is certainly negative. The particle
can propagate freely towards the central singularity as space and time exchange their rôle
with regard to propagation towards increasing proper time, see chapter 2.

As the negative energy particle is no longer denied free motion, the particles become
real. The remaining positive energy particle is free to escape to infinity. By this process,
the Black Hole effectively radiates off the energy ∆E.

4.1.2 Estimating the Hawking temperature

We will use the uncertainty relation (4.1) to obtain the average energy, ∆E, of the particle
escaping to infinity. In order to do this, we need an estimation for the time the particle
exists in the classically forbidden state.

Starting a distance ε away from the horizon, it takes a proper time interval

∆τ = −
2M∫

2M+ε

dr√
2M
r
− 2M

2M + ε

≈ 2
√

2Mε

to reach the horizon [11]. With this value, we obtain from the uncertainty relation

∆E = Er+ε =
1

2
√

2Mε

for the energy of the particle at a distance ε from the horizon. It is related to the energy
of the same particle at infinity by [11]

E∞ = Er+ε

√
ε

2M
.

This yields an energy at infinity, i.e., the energy measured by the observer who investigates
the Hawking radiation, of

E∞ =
1

8πM
.
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If we define the temperature of the radiation by T = E where E is the average energy of
the detected Hawking particles, and Boltzmann’s constant, kB, has been put equal to 1,
we end up with a temperature

T =
1

8πM
which coincides with the Hawking temperature obtained in the strict derivation of the
Hawking effect.

These considerations do, however, not explain why the Black Hole radiation has the
spectrum of black body radiation.

4.2 The curvature of spacetime as a scattering potential

Let’s now consider waves instead of particles. For the problem at hand, this is the better
approach by far as the very particle concept is ill-defined in a generally curved spacetime.

4.2.1 The s-wave equation for four-dimensional Black Holes

We restrict ourselves to spherically symmetric waves, called s-waves. This allows us to
suppress the angular degrees of freedom in the calculations and provides a bridge to the
two-dimensional models considered in the second part of this work.

Furthermore, we will talk only about a massless scalar field. This simplifies calculations
considerably and suffices as the purpose of this section is just to demonstrate qualitatively
the relation between particle production by a Black Hole and the scattering of a wave as
considered in quantum mechanics.

As we deal with the exterior of four-dimensional Schwarzschild Black Holes in this
chapter, the curvature scalar R vanishes identically, thus rendering the distinction between
minimally and conformally coupled fields unnecessary.

In the setup just outlined, the Klein-Gordon equation reads

�Φ̂ =
1√
−g

∂µ
(√
−g gµν∂ν

)
Φ̂ = 0 . (4.3)

In the s-wave approximation, derivatives with respect to the angular variables vanish; thus
eqn. (4.3) becomes

∂t
(√
−g gtt∂tΦs

)
+ ∂r∗

(√
−g gr∗r∗∂r∗Φs

)
= 0 (4.4)

where we have already chosen tortoise coordinates (2.5). In these coordinates, we have

ds2 =
(

1− 2M
r

)(
−dt2 + dr∗2

)
− r2 dΩ2 ,

−gtt = gr
∗r∗ =

1
1− 2M/r

,

and
√
−g =

(
1− 2M

r

)
r2 sin θ .

Plugging this into (4.4), dividing by sin θ, and using (2.7), we get

−r2∂2
t Φs + ∂r∗

(
r2∂r∗Φs

)
= 0 ,

−r2∂2
t Φs + r2∂2

r∗Φs + 2r
(

1− 2M
r

)
∂r∗Φs = 0 (4.5)
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4.2.2 Reduction to a scattering problem

We consider spherically symmetric normal modes fi(t, r∗) and make a separation ansatz

fi(t, r∗) =
1
r
T (t)R(r∗) .

Dividing (4.5) by r, we have

R
d2T

dt2
− rT d2

dr∗2
R

r
− 2T

(
1− 2M

r

)
d

dr∗
R

r
= 0

and dividing further by RT yields

1
T

d2T

dt2
=

r

R

d2

dr∗2
R

r
+

2
R

(
1− 2M

r

)
d

dr∗
R

r
= ω2 = const (4.6)

since each of the expressions is independent of one of the variables t, r∗. Therefore the
time-dependent part of the solution is a harmonic oscillation,

T (t) = T1e
−iωt + T2e

iωt , T1, T2 = const .

Normal modes are counted by the continuous parameter ω which we assume to be positive.
Using

d
dr∗

R

r
=

1
r

dR
dr∗
− 1
r2

(
1− 2M

r

)
R and

d2

dr∗2
R

r
=

1
r

d2R

dr∗2
− 2
r2

(
1− 2M

r

)
dR
dr∗

+
(

2
r3
− 6M

r4

)(
1− 2M

r

)
R

the r∗-dependent part of (4.6) reduces to

d2R

dr∗2
+
[
ω2 −

(
1− 2M

r

)
2M
r3

]
R = 0 . (4.7)

This reminds us of a potential scattering problem as known from quantum mechanics,
only with a very complicated potential. The wave R depends on r∗ while the potential
depends on r which in turn is a transcendental function of r∗. It is the so-called Lambert
W function which is available only tabularized.

4.2.3 Discussion

Finally, let’s look at the field modes we were just talking about in a Kruskal diagram (see
fig. 2.1) or Penrose diagram (see fig. 2.8) of Schwarzschild spacetime.

We have a wave Rin incident from r∗, r → ∞ (the wave coming from I −) which is
partly transmitted to the region r∗ → −∞, r → 2M (RBH , swallowed by the Black Hole),
and partly reflected back off the potential wall to r∗, r → ∞ (Rout, having the same
frequency as R ∈ as V is the same). No wave is incident from r∗ → −∞ since we assume
the White Hole located there not to emit. See figure 4.1.

In the region r∗ →∞, eqn. (4.7) reduces further to a harmonic oscillator equation with
wave number k = ω,

d2R

dr∗2
= ω2R ,
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Figure 4.1: Left: The potential V =
(

1− 2M
r

)
2M
r3

as a function of r and r∗, resp. Right: The

wave Rin incident from I − is partly swallowed by the Black Hole (RBH) and partly reflected to
I + (Rout) while the White Hole doesn’t emit.

R(r∗) = R1e
−ikr∗ +R2e

ikr∗ , R1, R2 = const .

Far from the singularity we thus have plane waves of asymptotically constant wavelength
with respect to both r and r∗.

On the other hand, near the horizon the wavelength is asymptotically constant with
respect to r∗ as well but, as r∗ → −∞ and r → 2M , more and more wave fronts pile
up against the horizon the closer one gets to it, thus infinitely shortening the wavelength,
and the wave is blue-shifted as seen by an observer falling freely into the Black Hole (who
crosses the horizon in finite proper time, just as the r coordinate runs through a finite
interval while doing so).

4.3 Hawking’s derivation of Black Hole radiation

4.3.1 Gravitational collapse

In order to follow the derivation of Black Hole radiation as given by Stephen Hawking
himself, we need to consider the gravitational collapse of a star into a Black Hole, as
opposed to eternal Black Holes.

We will consider a star which is supposed to consist of spherically symmetrically dis-
tributed matter, without making any further assumptions on the nature or radial distri-
bution of that matter. It will turn out to be of no importance for the Hawking process.

By Birkhoff’s theorem (see, e.g., [1]) the gravitational field at some point within such a
distribution of matter depends only on the total mass contained inside a sphere concentric
with the distribution and possessing a surface that contains the point in question. All
matter outside that sphere gives rise to zero total gravitational influence.

Applied to our case, this means that outside a collapsing star, the gravitational field
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Figure 4.2: Left: Kruskal diagram and right: conformal diagram of the gravitational collapse of a
star. Its interior is marked by hatching. Figures taken from [13] and [3], resp.

is always that of Schwarzschild spacetime. Points on the surface itself follow trajectories
through the spacetime of a Black Hole of mass M which is the total mass of the star.

In order to draw a spacetime diagram of gravitational collapse, one can take the diagram
belonging to the (t, r) part of an eternal Black Hole and ‘cut out’ everything that lies on
the Black Hole’s side of a radial geodesic assigned to some particle that falls inwards from
infinity, as we let – for simplicity – our star collapse from infinity. See figure 4.2, left.

To draw the corresponding Penrose diagram (see fig. 4.2, right), we apply a conformal
transformation different from that introduced in chapter 2. It is the same only as far as the
exterior region is concerned, but transforms that part of the line r = 0 which is not yet a
singularity into a straight vertical line. However, the lines representing the hypersurfaces
I + and I − remain unchanged by this procedure, as do the paths of light rays anywhere
inside the diagram.

4.3.2 Black Hole radiation

The light rays coming from I − or going to I + mark lines of constant phase of a normal
mode of the matter field propagating along I − and I +, resp. Therefore, if we map a
point P+ on I + to a point P− on I − by following the light ray coming out on I + at
P+ back to I −, the phase of a normal mode considered at both points will be the same.
By taking into account small vicinities of the points P+ and P−, we can compare the
frequency of the mode along I + with that along I −. This is what we need in order to
perform the Bogoliubov transformation between the modes on I + and I − and, via the
Bogoliubov coefficients, calculate the radiation from the Black Hole assuming there is an
incoming vacuum.

As our spacetime diagrams contain a radial coordinate, we have to reflect a light ray
going through the origin from the line r = 0. Doing so in the Penrose diagram in fig. 4.2,
we see that all the rays arriving at I + come from that part of I − with v < v0. Light rays
at later advanced times v are swallowed by the Black Hole. As I + is an infinite interval
and v0 is a finite coordinate value, wave crests equidistant on I + pile up near v0 when
followed back to I −. This means very high frequencies which retrospectively justifies
using the geometrical optics approximation made when considering light rays that pass
through the interior of the collapsing star undisturbed.

As I +, I −, and all light rays are at angles of 45◦ in our figure, distances between two
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particular wave crests measured in the diagram are the same at I + and at I −. So we
need to know the relation between the coordinates used in the diagram and the actual u
and v coordinates. This relation is given by the conformal transformation applied when
drawing the diagram. For I +, it is given by eqn. (2.13).

Thus, we can compare outgoing normal modes of frequency ω defined on I + – with
respect to u – to incoming ones with frequency ω′ defined on I − – with respect to v –
and propagated to I +. A part of each mode will be reflected off the static gravitational
potential outside (static because of Birkhoff’s theorem, see above) and arrive at I + with
the frequency ω′. The part going through the interior of the mass distribution experiences
a changing potential and thus will be effectively red-shifted. For this latter part, Hawking
[3] obtains Bogoliubov coefficients αωω′ and βωω′ which satisfy the relation

|αωω′ | = eπω/κ|βωω′ |

where κ = 1/4M is the surface gravity of the Black Hole of mass M . The approximation
made here is to consider incoming modes to have the asymptotic form valid near v0 even
at earlier advanced times v.

Demanding, as in the example in the previous chapter,

|αωω′ |2 − |βωω′ |2 = 1 ,

we obtain
|βωω′ |2 =

1
e2πω/κ − 1

. (4.8)

By eqn. (3.8), the number of particles defined with respect to the outgoing mode of fre-
quency ω is infinite which corresponds to a steady finite emission rate that remains forever
after the gravitational collapse. However, expression (4.8) describing the ratio of particle
emission in different outgoing modes corresponds to thermal radiation at the Hawking
temperature

TH =
1

8πM
.

In [3], Hawking does not consider particles as excitation of field modes but as wave
packets instead. Both approaches lead to the same thermal distribution at the Hawking
temperature.
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Part II

Two-Dimensional Models &
the Effective Action Approach
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Chapter 5

Two-Dimensional Effective Action

Models

5.1 Why consider two-dimensional models?

Black Holes lose mass by the process of Hawking radiation which we reviewed in the
previous chapter. The emission rate is the higher the higher the Hawking temperature of
the Hole, i.e., the smaller its mass. This implies a permanent acceleration of the emission
process which is probably destined to end in an outburst of radiation that destroys the
Black Hole.

Simple as this might sound, it is not possible today to strictly calculate this process of
a Black Hole’s evaporation.

The full theory needed to describe the evolution of a radiating Black Hole is a theory
of quantum gravity which is, however, not yet available. The next thing to work with is a
semiclassical approximation: matter is supposed to obey quantum laws where the geometry
of spacetime is treated as a classical one which, in turn, is related to the expectation value
of the matter energy-momentum tensor by the semiclassical Einstein equations,

Gµν ≡ Rµν −
1
2
gµνR = 8π〈Tµν〉 . (5.1)

Whether such an approach makes sense is subject to debate [4]. Due to the non-linearity
of gravity, it will certainly fail for effects that occur on the scale of the Planck length or
involve singularities. Thus it will certainly not be possible to correctly describe, among
other things, the very final stage of Black Hole evaporation in a semiclassical model. On
the other hand, one might expect meaningful results as long as one stays in the region
exterior of a reasonably sized Black Hole. It is hoped that the semiclassical approximation
in gravity works similarly to the quantum electromagnetic one which is, e.g., able to
describe particles in exterior electromagnetic fields.

Yet in the semiclassical approximation as well as in full quantum gravity, the equations
describing the evolution of the system must be solved self-consistently. In four dimensions,
this poses a problem: One is only able to calculate, e.g., the Hawking radiation for a fixed
background metric such as a Black Hole created by gravitational collapse. Little success
has been made so far to include the effect of the back-reaction of Black Hole emission on
the geometry.

In order to get an idea of what the back-reaction might look like, one considers two-
dimensional models as they are easier to deal with. One reason for this is that every
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two-dimensional metric is conformally flat. In terms of null coordinates u and v it reads

ds2 = −e2σ du dv ,
√
−g =

1
4
e2σ where σ = σ(u, v) . (5.2)

This is an important property to be used in two-dimensional calculations. Probably
these models cannot yield more than qualitative suggestions as to the result of the four-
dimensional case. However, even to achieve qualitative agreement with respect to the
Hawking radiation on a fixed geometry is still an open problem.

The second part of this work is dedicated to two-dimensional model spacetimes, the
problem of qualitative agreement between two- and four-dimensional Hawking radiation
[6, 7], and an ansatz for a possible solution made by Y. Gusev and A. Zelnikov [8].

5.2 Action principle and conformal trace anomaly

5.2.1 The action principle

The gravitational part

If we build our theory on an action principle, we obtain the quantities of interest by
variation of an action functional. This functional cannot be derived but rather must be
assumed. The equations which describe the evolution of the system under consideration
reflect the requirement that the action functional, evaluated on a given field configuration,
be extremal.

The action S describing a relativistic field theory consists of two parts: the gravitational
action Sg, and the matter action Sm:

S = Sg + Sm .

It is possible in four dimensions to directly derive equation (5.1) from the action S. In
order to do this, we have to decide on an explicit expression for Sg. In four dimensions we
choose

S(4)
g =

1
16π

∫
d4x

√
−g(4) R(4) . (5.3)

This action is known as the Einstein-Hilbert action [1]. Its variation with respect to the
metric yields the left-hand side of eqn. (5.1).

The matter part

The right-hand side is not further specified in eqn. (5.1). Depending on the kind of matter
under consideration, an action Sm is chosen and the expectation value of the energy-
momentum tensor is derived from it by variation with respect to the metric.

For a minimally coupled, massless, non-self-interacting scalar matter field Φ in four-
dimensional spacetime, the action S(4)

m reads

S(4)
m = − 1

(4π)2

∫
d4x

√
−g(4) (∇Φ)2 . (5.4)

The classical energy-momentum tensor is now obtained in the following way,

Tµν =
−2√
−g

δSm

δgµν
, Tµν =

2√
−g

δSm

δgµν
(5.5)
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which follows from the definition of the action,

δSm = −
∫

d2x

√
−g(x)

2
Tµν(x)δgµν(x) . (5.6)

The change of sign in eqn. (5.5) is due to the way contravariant metric components are
varied with respect to covariant ones, see eqn. (1.18) below.

In quantum field theory, a relation corresponding to eqn. (5.5) can be formally formu-
lated for the vacuum expectation value of the energy-momentum tensor:

〈Tµν〉 =
−2√
−g

δSe

δgµν
, 〈Tµν〉 =

2√
−g

δSe

δgµν
, (5.7)

δSe = −
∫

d2x

√
−g(x)

2
〈Tµν(x)〉δgµν(x) . (5.8)

Here, Se is the effective action introduced below.

The energy-momentum tensor in two and four dimensions

The authors of [14] give a simple relation between the energy-momentum tensor in two
dimensions and the one in four dimensions assuming spherical symmetry,

〈T (4)
µν〉 =

〈T (2)
µν〉

4πr2
.

However, there is also the possibility to determine the angular components of the four-
dimensional energy-momentum tensor. In four dimensions, we vary the action with respect
to the angular components of the metric. These do not occur in a two-dimensional model.
The information on the angular metric components is contained in the dilaton field φ and
the knowledge about spherical symmetry instead. With these, we obtain the tangential
pressure [14]

〈T (4)θ
θ〉 = 〈T (4)ϕ

ϕ〉 =
1

8πr2
√
−g(2)

δSm

δφ
. (5.9)

The (θ, θ) and (ϕ,ϕ) components are equal because of spherical symmetry.

5.2.2 Conformal invariance and its breaking

The conformally flat two-dimensional case

If we work in two dimensions and the metric gµν is related to the flat metric ηµν by a
conformal transformation,

gµν(x) = eσ(x)ηµν(x) , gµν(x) = e−σ(x)ηµν(x) , (5.10)

eqn. (5.8) can be written

δSm = −
∫

d2x

√
−g
2
〈Tµν〉(δσ)eσηµν = −

∫
d2x

√
−g
2
〈Tµν〉(δσ)gµν

= −
∫

d2x

√
−g
2
〈Tµµ〉δσ .
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Since every two-dimensional metric can be represented in the form (5.10), the trace of the
classical energy-momentum tensor in two dimensions is given by

Tµµ =
−2√
−g

δSm

δσ
, (5.11)

and, accordingly, its quantum counterpart is given formally by

〈Tµµ 〉 =
−2√
−g

δSm

δσ
(5.12)

where the action Sm is, in contrast to the one in the previous equation, the action of the
quantum matter field.

The conformal anomaly

Classically, a conformally invariant action yields, by eqn. (5.11), a zero trace of the energy-
momentum tensor. If the theory in question does not contain any kind of length scale,
the action may be invariant as conformal transformations are, essentially, a rescaling of
lengths. A mass parameter introduces such a length scale.

On the contrary, the trace of the vacuum expectation value of the quantum energy-
momentum tensor will – in the case of our massless scalar field – never be zero, even
in the massless case. More precisely, the trace will formally vanish, but that is not a
physically meaningful quantity. Individual components of the energy-momentum tensor
are divergent – which may be understood by the existence of a infinite energy density in
the ground state of fields – and these divergences must be dealt with using the formalism
of regularization and renormalization. In this process, 〈Tµµ 〉 acquires a trace.

Because the resulting theory is no longer conformally invariant – the now finite trace will
be rescaled by the conformal factor – one speaks of the breaking of conformal invariance or
symmetry breaking. Thus the phenomenon at hand is known as the conformal anomaly.

5.3 Two-dimensional gravitational action & dilaton gravity

Let’s now assume spherical symmetry of the geometrical as well as the matter part of the
action. Then no physical quantity depends upon the angular variables, and we can get rid
of them in some fashion. The following section investigates how to reduce the dimension
of spacetime from four to two.

If we want to set up a two-dimensional spacetime modeling a four-dimensional one and
containing a matter field, we must consider two things: what kind of two-dimensional
gravitation, i.e., Einstein equations to use, and what kind of matter in two dimensions.

5.3.1 The näıve reduction: ignoring two dimensions

The simplest way to get rid of the two angular dimensions is to ignore them. This would
result in a two-dimensional gravitational action

S(2)
g =

1
16π

∫
d2x

√
−g(2) R(2) .
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Even though one can, of course, consider such a model, it does not reflect the four-
dimensional situation. Ignoring some dimensions inevitably leads to results that are qual-
itatively very different from those obtained for the original number of dimensions.

A simple example is a system emitting radiation, e.g. an oscillating electromagnetic
dipole. Due to the conservation equations, the energy density of the radiation must be
proportional to some decreasing function of the distance r from the source. The dimension
n of the spacetime considered enters this function as a parameter. Speaking in an intuitive
way, the power radiated off must disperse over an (n− 2)-dimensional sphere of radius r.
This means the energy density of radiation emitted from an antenna in our world decreases
as r−2 whereas in a two-dimensional spacetime, it doesn’t decrease at all.

5.3.2 The more physical case: dilaton gravity

We do not run into the difficulties just mentioned if we do not alter the quantities we
consider. That is, we propose an action S(2) which is physically related to S(4) instead of
imitating it as far as the two common spacetime dimensions are concerned.

To achieve this, we perform all integrations over the angular variables, thereby getting
rid of them and ending up not with different physics but with the two-dimensional aspects
of physics in four dimensions. Spherical symmetry allows us to perform the integrations
without difficulty.

A four-dimensional spherically symmetric metric is given by

ds2 = g(2)

αβdxαdxβ + r2dΩ2

where α, β ∈ {0, 1}. We generalize this metric by introducing the so-called dilaton field φ,

ds2 = g(2)

αβdxαdxβ + e−2φ(x)dΩ2 . (5.13)

By putting φ = − ln r we can always reconstruct the special case that corresponds to
spherically symmetric four-dimensional spacetime.

For the determinant of the metric (5.13), we have

g(4) = e−4φ sin2 θ g(2) . (5.14)

Using this relation in the Einstein-Hilbert action (5.3) and making use of the fact that
R(4) does not depend upon θ and ϕ, we obtain

S(2)
g =

1
16π

∫
d2x

π∫
0

dθ sin θ

2π∫
0

dϕ
√
−g(2) e−2φR(4)

=
1
4

∫
d2x

√
−g(2) e−2φR(4) . (5.15)

If the metric components gαβ and hence the relation between R(2) and R(4) are known, one
can obtain a two dimensional dilaton-dependent gravitational action from eqn. (5.15). The
action thus obtained is suitable for meaningfully modeling the four-dimensional theory.
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5.4 Matter in two dimensions and effective action

5.4.1 The concept of effective action

As far as the conformal anomaly is concerned, the only property of the field the action
S depends upon is its spin. For the four-dimensional case, the anomaly and its spin
dependence is given, e.g., in [4]. The conformal anomaly depends only on geometrical
quantities [4]; thus, it may be used as a starting point for describing those aspects of the
theory in question which likewise depend only on geometry. This leads to the so-called
anomaly induced effective action.

An effective action contains only geometrical quantities, just as the trace anomaly. It is
chosen in such a way that it leads to a vacuum expectation value of the energy-momentum
tensor (by eqn. (5.7) or, more directly, eqn. (5.12)) whose trace coincides with the trace
anomaly. This requirement determines only the anomaly induced part of the effective
action; one can always add conformally invariant terms.

The effective action is used in order to calculate physical effects, among them the
Hawking radiation. However, it turns out that the anomaly induced part alone is not
sufficient, see below.

In the previous chapter, two possible geometries for two-dimensional spacetime models
were discussed: an inherently two-dimensional spacetime, and a so-called dilaton model
derived from four-dimensional spacetime by dimensional reduction under the assumption
of spherical symmetry.

We will derive the effective action corresponding to a scalar field. For the genuine two-
dimensional model, it is called the Polyakov action [15], for the more sophisticated model,
it contains dilaton-dependent terms in addition to the Polyakov term.

5.4.2 Genuinely two-dimensional matter and Polyakov action

Just as in the case of the gravitational action, the simplest two-dimensional model is one
that shows no reminiscence of four dimensions. The two-dimensional pendant to the action
(5.4) would then be

S(2)
m = − 1

4π

∫
d2x

√
−g(2) (∇Φ)2 . (5.16)

For this action, the trace anomaly reads

〈Tµµ 〉 =
R

24π
. (5.17)

Derivation of the Polyakov action

The Polyakov action can be obtained by integrating the trace anomaly as the energy-
momentum tensor derives from the action through variation. In order to do this, we first
introduce an auxiliary metric

gµν = e−2τσηµν , gµν = e2τσηµν .

In the end, we will put τ = 1. Let, in the following equations, a bar mark quantities refer-
ring to the Minkowski metric ηµν . Then we have for the two-dimensional case considered
here

√
−g = e−2τσ = e−2τσ√−ḡ and
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� = e2τσ∂µe
−2τσ

(
e2τσηµν

)
∂ν = e2τσ�̄.

This leads immediately to the invariant quantity
√
−g� =

√
−ḡ �̄ . (5.18)

Now we consider the effective action in the model with parameter τ ; let’s call it Se(τ).
First of all, we take its derivative with respect to τ and make use of eqn. (5.7):

dSe(τ)
dτ

=
∫

d2x
δSe(τ)
δgµν

dgµν
dτ

= −
∫

d2x

√
−g
2
〈Tµν〉

d
(
e−2στηµν

)
dτ

=
∫

d2x
√
−g 〈Tµν〉 · σgµν =

∫
d2x
√
−g σ〈Tµµ 〉 . (5.19)

For the curvature scalar, we have (see, e.g., [7])

R = −2τ�σ , σ = − 1
2τ

1
�
R . (5.20)

Plugging the trace anomaly (5.17) and eqn. (5.20) into eqn. (5.19) we obtain

dSe(τ)
dτ

=
1

24π

∫
d2x
√
−g σR = − τ

12π

∫
d2x
√
−g σ�σ . (5.21)

Because of the invariance (5.18), the integral does not depend upon τ .
Next, we integrate eqn. (5.21) with respect to τ from 0 to 1. The value τ = 0 corresponds

to Minkowski space. As Minkowski space is translation invariant, there is no coordinate
dependence of Se(0). With other variables being absent, it must be a constant which can,
by way of renormalization, be put equal to zero. Therefore, we have

Se(1) = − 1
12π

1∫
0

dτ τ
∫

d2x
√
−g σ�σ = − 1

24π

∫
d2x
√
−g σ�σ .

This is already the Polyakov action; let’s rewrite it using eqn. (5.20) with τ = 1:

SPol = − 1
96π

∫
d2x
√
−gR 1

�
R . (5.22)

Of course, this quantity is only defined up to the dependence of the inverse d’Alembertian
on the boundary conditions the scalar field has to satisfy.

The energy-momentum tensor

First of all, we write down the general variation of the Polyakov action (5.22):

δSPol = − 1
96π

∫
d2x

{(
δ
√
−g
)
R

1
�
R+ 2

√
−g (δR)

1
�
R+
√
−g R

(
δ

1
�

)
R

}
. (5.23)

By eqn. (1.22) and (1.17) we obtain∫
d2x
√
−g R

(
δ

1
�

)
R = −

∫
d2x
√
−g R 1

�
(δ�)

1
�
R = −

∫
d2x
√
−g
[ 1
�
R
]
(δ�)

1
�
R .
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Now we plug this into eqn. (5.23) and perform the variations by eqn. (1.19), (1.20), and
(1.22),

δSPol = − 1
96π

∫
d2x
√
−g (δgµν)

{
1
2
gµνR

1
�
R + 2

([ 1
�
R
];µν
− gµνR −Rµν 1

�
R

)

−
[ 1
�
R
],(µ[ 1

�
R
],ν)

+
1
2
gµν

([ 1
�
R
],ε[ 1
�
R
]
,ε

+
[ 1
�
R
]
R

)}
.

Here, marked terms cancel by the identity (2.2), leaving the expression:

δSPol = − 1
96π

∫
d2x
√
−g (δgµν)

{
2
[ 1
�
R
];µν
−
[ 1
�
R
],µ[ 1
�
R
],ν

−gµν
(
−1

2

[ 1
�
R
],ε[ 1
�
R
]
,ε

+ 2R
)}

. (5.24)

We can now read off from (5.24) the vacuum expectation value of the energy-momentum
tensor arising from SPol according to (5.7),

〈TµνPol〉 =
1

48π

{
2
[ 1
�
R
];µν
−
[ 1
�
R
],µ[ 1
�
R
],ν
− gµν

(
2R− 1

2

[ 1
�
R
],ε[ 1
�
R
]
,ε

)}
. (5.25)

This energy-momentum tensor agrees with [7] up to an overall factor of −2 which would
achieve consistency of the cited paper. This factor is present in the later publication [14].

We can simplify the expression (5.25) by writing the curvature scalar R in terms of the
conformal factor,

R = −2�σ , σ = −1
2

1
�
R ,

and choosing null coordinates (2.4). This yields

〈TµνPol〉 = − 1
12π

(σ;µν + σ,µσ,ν) = − 1
12π

(
(∂µσ)(∂νσ)− ∂µ∂νσ

)
which can be proven to satisfy the conservation equations.

Hawking radiation and comparison with the four-dimensional theory

We want to shortly summarize the discussion of this result by R. Balbinot and A. Fabbri
[7].

The authors evaluate the expectation value for three specific vacua:

1. Boulware vacuum |B〉. This state is defined as the asymptotic vacuum, i.e., there
are no particles far away from the Black Hole. Field modes are not regular on the
event horizon; suitable ones are those with respect to Schwarzschild coordinates t, r.

In the Polyakov model, these properties are retained. The components of the energy-
momentum tensor vanish at infinity.

2. Hartle-Hawking vacuum |H〉. In this state, the radiating Black Hole can be regarded
as being in equilibrium with a thermal bath of particles outside or, equivalently, as
being surrounded by a reflecting shell. Field modes are regular on the horizon which
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is related to the asymptotic behaviour of 〈Tµν〉 near r = 2M . (These relations
go back to Christensen and Fulling [16].) Field modes are defined with respect to
Kruskal coordinates.

In the two-dimensional model, the same properties hold, and the state |H〉 defined
there is a thermal state at the Hawking temperature TH = 1/(8πM).

3. Unruh vacuum |U〉. The Unruh state corresponds to the gravitational collapse of
spherically symmetric matter to form a Black Hole, see chapter 4. Field modes are
required to be regular on the future event horizon.

Again, the Polyakov model is able to reproduce the features of four-dimensional
gravitational collapse as far as Hawking radiation is concerned. It leads to thermal
radiation at the correct Hawking temperature.

Thus, the combination of this genuine two-dimensional matter and the dilaton-depen-
dent gravitational action (5.15) yields a surprisingly good qualitative agreement with the
four-dimensional setting with respect to Hawking radiation.

However, this combination is questionable as it is rather inconsistent: two different
schemes of dimensional reduction have been used in order to obtain the gravitational and
matter parts of the action. Therefore, it would be desirable to use a concept of matter in
two dimensions which is rooted in the four-dimensional one as well.

5.4.3 Spherically symmetric matter in four dimensions

The matter action in the dilaton model

Making use of spherical symmetry and the relation (5.14), we can obtain a matter action
for the two-dimensional dilaton model from the four-dimensional matter action (5.4),

S(2)
m = − 1

(4π)2

∫
d2x

π∫
0

dθ sin θ

2π∫
0

dϕ
√
−g(2) e−2φ(∇Φ)2

= − 1
4π

∫
d2x

√
−g(2) e−2φ(∇Φ)2 . (5.26)

Just as in the case of the gravitational action, this matter action does not imply physics
different from the four-dimensional one but rather describes only that aspect of four-
dimensional physics which is spherically symmetric. This is also known as the s-channel,
and the approximation made by requiring spherical symmetry is called the s-wave approx-
imation.

As roughly 90% of the Hawking flux are contributed by the s-channel, this approxima-
tion makes rather good sense.

Trace anomaly and effective action

We just derived the effective action for a massless scalar field in genuine two-dimensional
spacetime. Now we include the dilaton field φ.

For a dilaton model of a scalar field theory with the action (5.26), the trace anomaly
reads [6, 17, 7]

〈Tµµ 〉 =
1

24π
(
R− 6(∇φ)2 + 6�φ

)
. (5.27)
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There has been a controversy about this expression. It is the subject of the following
subsection.

By a derivation similar to that of the Polyakov action, we can obtain the anomaly
induced effective action for our dimensionally reduced dilaton model [7],

Saind = − 1
96π

∫
d2x
√
−g
(
R

1
�
R− 12(∇φ)2 1

�
R+ 12φR

)
. (5.28)

The energy-momentum tensor

We start by splitting the anomaly-induced effective action (5.28) into the Polyakov action
(5.22) and the dilaton dependent part,

Saind = SPol −
1

8π

∫
d2x
√
−g

[
φR− (∇φ)2 1

�
R

]
. (5.29)

Now we perform the variation; in the following equations, marked terms cancel according
to (2.2):

δSaind = δSPol −
1

8π

∫
d2x

{(
δ
√
−g
) [
φR− (∇φ)2 1

�
R

]
+
√
−g δ

[
φR− (∇φ)2 1

�
R

]}
= δSPol −

1
8π

∫
d2x
√
−g
{

1
2
gµν(δgµν)

[
φR− (∇φ)2 1

�
R

]
+ φ(δR)

−
(
δgαβφ,αφ,β

) 1
�
R− (∇φ)2

(
δ

1
�

)
R− (∇φ)2 1

�
(δR)

}
= δSPol −

1
8π

∫
d2x
√
−g

{
(δgµν)

(
1
2
gµν

[
φR − (∇φ)2 1

�
R

]
+ φ;µν − gµν�φ −Rµνφ

+ φ,µφ,ν
1
�
R

)
+
[ 1
�

(∇φ)2
]
(δ�)

1
�
R−

[ 1
�

(∇φ)2
]
(δR)

}

= δSPol −
1

8π

∫
d2x
√
−g (δgµν)

{
−1

2
gµν(∇φ)2 1

�
R+ φ;µν − gµν�φ+ φ,µφ,ν

1
�
R

+
[ 1
�

(∇φ)2
],(µ[ 1

�
R
],ν)
−1

2
gµν

([ 1
�

(∇φ)2
],ε[ 1
�
R
]
,ε

+
[ 1
�

(∇φ)2
]
R

)

−
[ 1
�

(∇φ)2
];µν

+ gµν(∇φ)2 + Rµν
1
�

(∇φ)2

}
. (5.30)

We can now read off from eqn. (5.30) the vacuum expectation value of the energy-
momentum tensor according to (5.7) where 〈TµνPol〉 is given by (5.25),

〈Tµνaind〉 = 〈TµνPol〉+
1

4π

{
φ,µφ,ν

1
�
R+

[ 1
�

(∇φ)2
],(µ[ 1

�
R
],ν)
−
[ 1
�

(∇φ)2
];µν

+ φ;µν

−1
2
gµν

(
(∇φ)2 1

�
R+

[ 1
�

(∇φ)2
],ε[ 1
�
R
]
,ε
− 2(∇φ)2 + 2�φ

)}
.

Again, this agrees with the result given in [7] up to a factor of −2 which is fixed in [14].
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Comparison with four-dimensional spacetime

Again we refer to the discussion in [7]. As pointed out by the cited authors, the Boulware
state |B〉 corresponding to asymptotic Minkowski vacuum is still properly described by
the two-dimensional model. However, the model yields a negative Hawking flux ((u, u)
and (v, v) components of the energy-momentum tensor) for the Hartle-Hawking state |H〉.

Therefore, one wishes to improve the model. One requirement Saind had to fulfill
was that it should yield an energy-momentum tensor whose trace is just the conformal
anomaly. By adding conformally invariant parts to the action, one gets, by eqn. (5.12),
only trace-free contributions to the energy-momentum tensor. Thus one is free to do so
without violating the trace condition on the effective action.

One such conformally invariant contribution to Saind has been proposed by V. Mukha-
nov, A. Wipf, and A. Zelnikov [6]. They obtain the correction to Saind from a classical
approximation of the heat kernel. The problem of negative Hawking flux in the state
|H〉 can be cured by their approach. However, the properties of the Minkowski vacuum
are changed as well, to the effect that Minkowski vacuum is not a solution of the field
equations derived from the altered action. Therefore, the contribution to the effective
action proposed by Mukhanov et.al. is not satisfactory.

Another suggestion is due to A. Balbinot and R. Fabbri [7]. They start from a cou-
ple of physical requirements the two-dimensional energy-momentum tensor ought to ful-
fill. These are the conservation equations, the vanishing of the tensor components for
Minkowski vacuum, and state independence of the trace of the energy-momentum ten-
sor. These requirements reflect the properties of the pendant four-dimensional energy-
momentum tensor.

The correction actually made is, however, only defined in an ad hoc way. Though it can
qualitatively reproduce the behaviour of the four-dimensional energy-momentum tensor in
all three states |B〉, |H〉, and |u〉, it would be preferrable to be able to derive the correction
from the knowledge of the four-dimensional theory.

This has been done by Y. Gusev and A. Zelnikov [8]. Their proposal will be the subject
of the following chapter.

5.4.4 The controversy about the anomaly induced effective action

There had been a discussion about the trace anomaly and induced effective action in the
dilaton case. The subject of controversy was the coefficient in front of the �φ and φR
term, resp.

The apparent ambiguity of this coefficient was an open question when this diploma
work began; it was part of the subject of this work to consider this question.

In the course of this work I convinced myself that a recent paper by J.S. Dowker
[5] actually contains the solution to the puzzle; by then, this result had been generally
accepted by the colleagues. I will explain the different points of view and how they can
be reconciled in this section.
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The point of controversy

The trace anomaly of the dilaton scalar field theory, eqn. (5.27), has been given in several
publications, among them [18, 6, 17, 19, 20, 21]. They all agree on

〈Tµµ 〉 =
1

24π
(
R− 6(∇φ)2 + α�φ

)
where α is the coefficient in question [5]. The corresponding anomaly induced effective
action reads

Saind = − 1
96π

∫
d2x
√
−g
(
R

1
�
R− 12(∇φ)2 1

�
R+ 2αφR

)
.

For the coefficient α there exist, however, three suggestions.

1. α = 6 obtained by Elizalde et.al. [18] and V. Mukhanov, A. Wipf, and A. Zelnikov
[6]. This result turned out to be correct in the end and is thus used in this work.

2. α = −2 proposed by R. Bousso and S.W. Hawking [20] which turned out to be a
mistake.

3. α = 4 obtained by Kummer et.al. [17, 19, 21] for the same setup of the two-
dimensional model as was used by Bousso and Hawking.

In order to sort out this variety of apparently contradictory results, it is not necessary
to start the calculations all over again, repeating the procedure of regularization and
renormalization. It is enough to have a closer look at the cited publications in order to
see what statements are really made and where real mistakes occur. This is what Dowker
did [5].

The value α = −2: a mistake

The only result which involves a real mathematical mistake is that obtained by Bousso
and Hawking.

If we derive the effective action (5.28) from the trace anomaly (5.27) by a procedure
similar to our derivation of the Polyakov action above, we get as an intermediate result
the expression

Saind = − 1
96π

∫
d2x
√
−g
(
R

1
�
R− 12(∇φ)2R+ 12�φ

1
�
R

)
.

The last term is the one with the coefficient in question. In order to turn it into an
expression of the form φR, we have to account for the zero modes of the d’Alembertian
as the inverse d’Alembertian is defined up a linear combination of these zero modes.

We will not concern ourselves with the exact nature of these zero modes. All we need
to know is that they are different for different topologies of the two-dimensional spacetime
under consideration. In particular, a spacetime with the topology of a two-dimensional
plane has different zero modes than one with the topology of a two-sphere [5].

In [20], Bousso and Hawking do not consistently work with any one of these topologies
but rather switch from a spacetime with plane topology to one with a two-sphere topology
without paying attention to the extra zero modes. This is what causes their calculation
to fail.
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The generalized spacetime model by Kummer et.al.

In [17], Kummer and his co-authors introduce a more general model of dilaton gravity
than we have used so far. Instead of the dilaton field, they use different functions of the
dilaton in the matter and gravitational parts of the action. They call these functions ϕ(φ)
in the matter part and ψ(φ) in the gravitational part.

From their point of view, the dilaton gravity we have considered so far is just the special
case where these functions are the same. (And of this special case, the dimensionally
reduced four-dimensional theory is, in turn, just a special case.)

It turns out that the effective action obtained from this more general model in the case
ϕ(φ) = ψ(φ) = φ is exactly the same as that obtained in, e.g., [6], i.e., α = 6. This is just
a check of both calculations as this choice of ϕ and ψ describes the model used in [6], and
thus agreement was to be expected.

In the calculation examined above, Bousso and Hawking use a model where ϕ(φ) = φ
and ψ(φ) = 0. This assumes a matter action as we have considered all along but a
gravitational action that ignores the dilaton. If we consider this model and calculate the
effective action without making the same mistake as Bousso and Hawking, we find α = 4,
the result also obtained for this model by Ichinose [21].

Thus there is not any contradiction between the α = 4 and α = 6 results. People have
simply considered different models of dilaton gravity. For the model used throughout this
work, α = 6 is a certain fact.
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Chapter 6

A Conformally Invariant Correction

to the Effective Action

In the previous chapter, we derived an effective action for our two-dimensional dilaton
model. This effective action is determined uniquely by the conformal anomaly arising
from the scalar quantum field. Like that anomaly, it contains only geometrical quantities:
the curvature scalar, the dilaton, and, implicitly, the metric via the covariant derivatives.

However, trying to reconstruct Hawking radiation from it, we ended up with a qualita-
tive difference from the well-known four-dimensional result.

In order to cure this shortcoming, people have tried to add conformally invariant terms
to the effective action or, equivalently, suitable contributions to the energy momentum
tensor. These do not change the resulting trace of the energy momentum tensor and thus
are not in conflict with the conformal anomaly, but yield contributions to the Hawking
flux which – hopefully – result in a qualitative agreement between the two-dimensional
and the four-dimensional theory.

One such attempt has been made by R. Balbinot and A. Fabbri [7]. These authors
propose a contribution to the energy momentum tensor determined by some physical
requirements.

An alternative contribution to the effective action has been suggested by Y. Gusev and
A. Zelnikov [8]. Instead of an educated guess, they give a strict derivation using heat
kernel regularization. It is this latter proposal we shall work on in this chapter.

6.1 The contribution to the effective action

6.1.1 The proposal made by Gusev and Zelnikov

In [8], an improved effective action for the two-dimensional dilaton model is given, namely

Seff = Saind + S(2) + S(3) ,

S(2) = − 1
8π

∫
d2x
√
−g (�φ) ln

(−�
µ2

)
φ , (6.1)

S(3) =
1

8π

∫
d2x
√
−g ln(�2/�3)

�2 −�3

1
�1

R1(�φ2)(�φ3) . (6.2)

The anomaly-induced effective action, Saind, is given by eqn. (5.29). S(2) and S(3) are the
conformally invariant corrections to second and third order in curvatures, resp. The cited
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authors work, however, in the Euclidean section with metric (++), so we use different
signs than they do. In (6.1) and (6.2) the following definitions have been used [8]:

ln
(−�
µ2

)
≡ −

∞∫
0

dm2

(
1

m2 −�
− 1
m2 − µ2

)
, (6.3)

ln(�1/�2)
�1 −�2

≡ −
∞∫

0

dm2 1
m2 −�1

1
m2 −�2

. (6.4)

In (6.3) the regularization parameter µ occurs; this notation is, however, only symbolic.
Later in this chapter, we will see explicitly how the regularization is done. Indices 1 and
2 in (6.4) indicate points in spacetime where the d’Alembertian in question acts.

The derivation of the corrections S(2) and S(3) in [8] already fixes the boundary condi-
tions: They describe the spherically symmetric collapse of a cloud of dust in the distant
past. ‘Distant’ means that we have approximately stationary radiation at the time when
we evaluate the energy momentum tensor. The scalar field had been in the vacuum state
of the asymptotic Minkowski space that existed long before the collapse.

In order to restrict considerations to the physical case, in other words, in order to ensure
causality, the Green function implicit in the inverse differential operators (see eqn. (1.15))
must be the retarded one which will be calculated below.

In the next sections, we will derive the contributions to the energy momentum tensor
that arise from S(2) and S(3). These results have not been previously published.

6.1.2 The retarded Green function

In the following, we will need the retarded, massive Green function GmR (x, y). It is sup-
ported only where y is in the causal past of x which is the physical case.

Up to zeroth order in curvatures, GmR is the same for conformally flat space as for
Minkowski space [22]; let’s now calculate GmR for Minkowski space.

We know the Green function in momentum representation and can obtain the position
representation by a Fourier transform. We will calculate GmR via Wightman functions [23].

Within this subsection, we will write t, r instead of xt − yt, xr − yr.
Wightman functions are defined by

Gm± (x, y) =
1

(2π)2

∞∫
−∞

dk1 eik
1r

∫
C±

dk0 e−ik
0t 1
−(k0)2 + ω2

k

,

ω2
k = (k1)2 +m2 .

The contours of integration are closed loops running clockwise around the singularities in
the complex k0 plane. C± encircles k0 = ±ωk,

Gm± (x, y) =
1

(2π)2

∞∫
−∞

dk1 eik
1r

∫
C±

dk0 e−ik
0t 1

2ωk

(
1

ωk + k0
+

1
ωk − k0

)

=
1

(2π)2

∞∫
−∞

dk1 eik
1r 1

2ωk
(−2πi) Res

k0=±ωk

e−ik
0t

ωk ∓ k0
. (6.5)
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We calculate the residua at the singularities k0 = ±ωk,

e−ik
0t

ωk ∓ k0
= ∓e∓iωkt e

−i(k0∓ωk)t

k0 ∓ ωk
= ∓e∓iωkt 1

k0 ∓ ωk

[
1− it(k0 ∓ ωk) + O(k0 ∓ ωk)

]
,

thus Res
k0=±ωk

e−ik
0t

ωk ∓ k0
= ∓e∓iωkt ,

and plug them into (6.5),

Gm± (x, y) =
±i
4π

∞∫
−∞

dk1 eik
1r 1
ωk
e∓iωkt . (6.6)

Now we introduce a parameter η defined by

k1 = m sinh η , ωk = m cosh η ; dk1 = ωk dη .

Equation (6.6) now reads

Gm± (x, y) =
±i
4π

∞∫
−∞

dη exp
[
i(∓tm cosh η + rm sinh η)

]
. (6.7)

In the end, only the region inside the lightcone, |t| ≥ |r|, is of interest. Then,

t cosh η ± r sinh η = sgn(t)
√
t2 − r2 cosh

(
η ± ln t+r

t−r

)
. (6.8)

We now need to explicitely cut off the region outside the lightcone from Wightman func-
tions using a step function as defined by eqn. (1.13). We insert (6.8) into (6.7), shift the
integral appropriately, and make use of the fact that cosh η and cos η are even functions
whereas sin η is odd. With σxy given by eqn. (1.3), we obtain

Gm± (x, y) =
±i
4π

Θ(−σxy)
∞∫
−∞

dη exp
[
∓i sgn(t)m

√
−2σxy cosh η

]

=
±i
2π

Θ(−σxy)
∞∫

0

dη cos
(
m
√
−2σxy cosh η

)

∓sgn(t)
2π

Θ(−σxy)
∞∫

0

dη sin
(
m
√
−2σxy cosh η

)
= Θ(−σxy)

[
∓i
4
N0

(
m
√
−2σxy

)
+

sgn(t)
4

J0

(
m
√
−2σxy

)]
(6.9)

where N0 and J0 denote the Neumann and Bessel function of index 0, resp.
The retarded Green function is defined in terms of Wightman functions by

GmR (x, y) = Θ(t)
[
Gm+ (x, y) +Gm− (x, y)

]
.
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We insert (6.9) and obtain the massive retarded Green function,

GmR (x, y) =
1
2

Θ(xt − yt)Θ(−σxy)J0

(
m
√
−2σxy

)
. (6.10)

The wave equation satisfied is

(�x −m2)GmR (x, y) = −δ(x− y) ,

and the inverse wave operator acting on a function Ψ reads[
1

m2 −�
Ψ
]

(x) =
∫

d2y
√
−g(y)GmR (x, y)Ψ(y) . (6.11)

GmR (x, y) depends only on differences of coordinates, therefore

∂

∂xµ
GmR (x, y) = − ∂

∂yµ
GmR (x, y) .

6.2 The second order correction

6.2.1 Variation

Analogously to the procedure in the previous chapter, we have to vary the correction to
the effective action with respect to the metric in order to determine its contribution to
the energy momentum tensor.

The general form of the variation of (6.1) reads

δS(2) =
−1
8π

∫
d2x

{
(δ
√
−g)(�φ) ln

(−�
µ2

)
φ+
√
−g
[
(δ�)φ

]
ln
(−�
µ2

)
φ

+
√
−g (�φ)δ ln

(−�
µ2

)
φ

}
. (6.12)

When we apply (1.22) to (6.3), the term
1

m2 −�
does not contribute as it doesn’t depend

on the metric:

δ ln
(−�
µ2

)
= −

∞∫
0

dm2 δ
1

m2 −�
= −

∞∫
0

dm2 1
m2 −�

(δ�)
1

m2 −�
.

Now we use this in the last term of (6.12) and then apply (1.17):

∫
d2x
√
−g (�φ) δ ln

(−�
µ2

)
φ = −

∫
d2x
√
−g

∞∫
0

dm2 (�φ)
1

m2 −�
(δ�)

1
m2 −�

φ

= −
∫

d2x
√
−g

∞∫
0

dm2
[ 1
m2 −�

�φ
]
(δ�)

1
m2 −�

φ .
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At last, we plug this result into (6.12) and perform the variations by (1.19) and (1.21),
resp.:

δS(2) =
−1
8π

∫
d2x
√
−g (δgµν)

{
1
2
gµν(�φ) ln

(−�
µ2

)
φ

+
[
ln
(−�
µ2

)
φ
],(µ

φ,ν) − 1
2
gµν

([
ln
(−�
µ2

)
φ
],ε
φ,ε +

[
ln
(−�
µ2

)
φ
]
�φ

)

−
∞∫

0

dm2

[[[ 1
m2 −�

�φ
],(µ[ 1

m2 −�
φ
],ν)

−1
2
gµν

([ 1
m2 −�

�φ
],ε[ 1

m2 −�
φ
]
,ε

+
[ 1
m2 −�

�φ
]
�

1
m2 −�

φ

)]]}
. (6.13)

6.2.2 The stress tensor

The freedom to choose a particular coordinate system allows us to make the expression
(6.13) easier to handle. Light cone coordinates with the metric (5.2) simplify the diagonal
stress tensor components considerably: only terms without gµν survive.

Of the (u, u) and (v, v) components, we consider 〈T uu(2) 〉. The other one has the same
form, only with v in place of u. Keeping (1.18) in mind, we can almost immediately read
off the (u, u) component from (6.13),

〈T(2)uu〉 =
1

4π

[ln(−�µ2

)
φ
]
,u
φ,u −

∞∫
0

dm2
[ 1
m2 −�

�φ
]
,u

[ 1
m2 −�

φ
]
,u

 .

By eqn. (6.3), this can be written as

〈T(2)uu〉 =
1

4π

∞∫
0

dm2

{
1

m2 −�
φ,uφ,u −

[ 1
m2 −�

�φ
]
,u

[ 1
m2 −�

φ
]
,u

}
.

The inverse wave operators can then be expressed in terms of the retarded Green function
by eqn. (6.11) where the Green function itself is given by eqn. (6.10),

〈T(2)uu〉 =
1

4π

∞∫
0

dm2

{
φ,u(x)

∫
d2y

√
−g(y)GmR (x, y)φ,u(y)

−
[∫

d2y
√
−g(y)GmR (x, y)�yφ(y)

]
,u

[∫
d2z

√
−g(z)GmR (x, z)φ(z)

]
,u

}
. (6.14)

If we want to evaluate this expression in the Schwarzschild geometry, we must use
coordinates which can be conformally transformed into Minkowski coordinates. This is
not possible with Schwarzschild coordinates; we will have to use the tortoise coordinate
r∗ (see eqn. (2.5)) instead of the Schwarzschild radial coordinate r.

Thus we have to perform integrations with respect to the tortoise coordinate whereas
the integrands depend on the Schwarzschild coordinate through the dilaton field, see
eqn. (5.13) and the discussion thereafter. It seems that such an integral is not exactly
solvable and only numerical results can be expected. The numerical evaluation of the
expression (6.14) with (6.10) inserted for GmR is left for future work.
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6.3 The third order correction

The conformally invariant correction to third order in the curvatures, S(3), is somewhat
harder to handle. The particular difficulty arises from the fact that because of the non-
locality – which results in quite a lot of integrations – sometimes up to five different
spacetime points – integration variables except for x itself – are involved in a single ex-
pression.

In order to keep track of the arguments of functions but at the same time keep expres-
sions readable, we add subscripts ’x’ or i to an expression defined at the point x or xi,
resp.

Moreover, we append similar subscripts to differential operators in order to indicate
what point’s coordinates they act on, and to inverse differential operators in order to
indicate the second argument of the Green function involved. According to eqn. (1.15),
the first argument of that Green function is the point at which the result of the action of
the inverse operator is defined.

6.3.1 Variation

We first write eqn. (6.2) with the subscripts x, 1, 2, 3 introduced above:

S(3) =
1

8π

∫
d2x
√
−gx

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[ 1
�1

R1

]
x

Now we carry out the variation, in general terms:

δS(3) =
1

8π

∫
d2x

{
(δ
√
−gx)

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[ 1
�1

R1

]
x

+
√
−gx

(
δ

ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

)
x

[ 1
�1

R1

]
x

+
√
−gx

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

(
δ

1
�1

R1

)
x

}
. (6.15)

Using the definition of
ln(�2/�3)
�2 −�3

, eqn. (6.4), and the variation rule for
√
−gx, eqn. (1.19),

we obtain

δS(3) =
1

8π

∫
d2x
√
−gx

{
1
2
gµνx (δgµν x)

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[ 1
�1

R1

]
x

−
(
δ

∞∫
0

dm2 1
m2 −�2

1
m2 −�3

(�φ)2(�φ)3

)
x

[ 1
�1

R1

]
x

+
[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[(
δ

1
�1

)
R1 +

1
�1

δR1

]
x

}
. (6.16)

The symmetry of
ln(�2/�3)
�2 −�3

with respect to the points 2, 3 allows us to write its variation
as
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(
δ

∞∫
0

dm2 1
m2 −�2

1
m2 −�3

(�φ)2(�φ)3

)
x

= 2

∞∫
0

dm2
[ 1
m2 −�2

(�φ)2

]
x

(
δ

1
m2 −�3

(�φ)3

)
x

= 2

∞∫
0

dm2
[ 1
m2 −�2

(�φ)2

]
x

[(
δ

1
m2 −�3

)
(�φ)3 +

1
m2 −�3

(δ�φ)3

]
x

.

We plug this expression into (6.16) and apply the variation rule for inverse wave operators,
eqn. (1.22):

δS(3) =
1

8π

∫
d2x
√
−gx

{
1
2
gµνx (δgµν x)

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[ 1
�1

R1

]
x

− 2

∞∫
0

dm2
[ 1
m2 −�2

(�φ)2

]
x

[
1

m2 −�3

(
(δ�3)

[ 1
m2 −�4

(�φ)4

]
3

+ δ�3φ3

)]
x

[ 1
�1

R1

]
x

+
[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[
1
�1

(
−(δ�1)

[ 1
�5

R5

]
1

+ δR1

)]
x

}
.

Now we make use of the symmetry of Green functions, eqn. (1.17):

δS(3) =
1

8π

∫
d2x
√
−gx

{
1
2
gµνx (δgµν x)

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
x

[ 1
�1

R1

]
x

− 2

∞∫
0

dm2

(
1

m2 −�3

[ 1
m2 −�2

(�φ)2

]
3

[ 1
�1

R1

]
3

)
x

(δ�x)
(

1
m2 −�4

(�φ)4 + φ

)
x

+
(

1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

)
x

(
−(δ�x)

[ 1
�5

R5

]
x

+ δRx

)}
.

These steps have put us into a position where we vary only objects defined at the point
x. Therefore, we can safely drop subscripts x from now on.

In a last step, we apply the variation rules for δ�, eqn. (1.21), and δR, eqn. (1.20);
marked terms cancel due to the identity (2.2):

δS(3) =
1

8π

∫
d2x
√
−g (δgµν)

{
1
2
gµν
[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

][ 1
�1

R1

]

−
∞∫

0

dm2

[[
2
(

1
m2 −�3

[ 1
m2 −�2

(�φ)2

]
3

[ 1
�1

R1

]
3

)(,µ( 1
m2 −�4

(�φ)4 + φ

),ν)

− gµν
[(

1
m2 −�3

[ 1
m2 −�2

(�φ)2

]
3

[ 1
�1

R1

]
3

),ε( 1
m2 −�4

(�φ)4 + φ

)
,ε

+
(

1
m2 −�3

[ 1
m2 −�2

(�φ)2

]
3

[ 1
�1

R1

]
3

)
�

(
1

m2 −�4
(�φ)4 + φ

)]]]
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−
(

1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

)(,µ [ 1
�5

R5

],ν)

+
1
2
gµν

[(
1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

),ε [ 1
�5

R5

]
,ε

+
(

1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

)
R

]

+
(

1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

);µν

− gµν
[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
−Rµν

(
1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

) }
. (6.17)

6.3.2 The stress tensor

Again we choose coordinates such that the diagonal metric elements vanish and consider
the (u, u) and, analogously, (v, v) component of the energy momentum tensor. By defini-
tion (5.7), we extract 〈Tµν〉 from eqn. (6.17) and obtain

〈T uu(3) 〉 =
1

8π

{
2

∞∫
0

dm2

(
1

m2 −�3

[ 1
m2 −�2

(�φ)2

]
3

[ 1
�1

R1

]
3

)
,u

(
1

m2 −�4
(�φ)4 + φ

)
,u

+
(

1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

)
,u

[ 1
�5

R5

]
,u
−
(

1
�1

[ ln(�2/�3)
�2 −�3

(�φ)2(�φ)3

]
1

)
;uu

}
.

If we substitute the definition of
ln(�2/�3)
�2 −�3

, we can use the symmetry with respect to the

points 2, 3 to write in shorthand notation

〈T uu(3) 〉 =
1

8π

∞∫
0

dm2

{
2
(

1
m2 −�3

[ 1
m2 −�2

(�φ)2

]
3

[ 1
�1

R1

]
3

)
,u

(
1

m2 −�4
(�φ)4 + φ

)
,u

+
(

1
�1

[ 1
m2 −�2

(�φ)2

]2

1

)
,u

[ 1
�5

R5

]
,u
−
(

1
�1

[ 1
m2 −�2

(�φ)2

]2

1

)
;uu

}
.

As in the case of the second-order correction, we can now express the inverse wave
operators in terms of Green functions,

〈T uu(3) 〉 =
1

8π

∞∫
0

dm2

{
2

[∫
d2x3

√
−g(x3)GmR (x, x3)

×
(∫

d2x2

√
−g(x2)GmR (x3, x2)(�φ)2

)(∫
d2x1

√
−g(x1)GR(x3, x1)R1

)]
,u

×

[
φ+

∫
d2x4

√
−g(x4), GmR (x, x4)(�φ)4

]
,u
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+

[∫
d2x1

√
−g(x1)GR(x, x1)

(∫
d2x2

√
−g(x2)GmR (x1, x2)(�φ)2

)2
]
,u

×

[∫
d2x5

√
−g(x5)GR(x, x5)R5

]
,u

−

[∫
d2x1

√
−g(x1)GR(x, x1)

(∫
d2x2

√
−g(x2)GmR (x1, x2)(�φ)2

)2
]

;uu

}
. (6.18)

Clearly, we are not better off with this expression than we were with (6.14); this one can
also be solved only numerically. This is left for future work as well.

6.4 The tangential pressure

6.4.1 Variation with respect to the dilaton

While performing the variation with respect to the dilaton, we keep the two-dimensional
metric fixed and independent from the dilaton. To the approximation made in [8] (ne-
glecting fourth orders in curvatures), the second-order and third-order contributions to
the effective action, (6.1) and (6.2), can be replaced by a term similar to (6.1) but with
flat-spacetime differential operators [22],

S̄ = − 1
8π

∫
d2x (�̄φ) ln

(−�̄
µ2

)
φ . (6.19)

In order to vary (6.19), we first integrate by parts and neglect the surface terms which
are not varied. Then we interchange the gradient with the inverse d’Alembertian which is
always possible in flat space.

S̄ =
1

8π

∫
d2x (∇̄µφ)∇̄µ ln

(−�̄
µ2

)
φ+ (surface terms)

=
1

8π

∫
d2x (∇̄µφ) ln

(−�̄
µ2

)
∇̄µφ .

By (1.17) and after raising and lowering indices, we write the variation as

δφS̄ =
1

4π

∫
d2x (δφ∇̄µφ) ln

(−�̄
µ2

)
∇̄µφ

=
1

4π

∫
d2x (∇̄µδφφ) ln

(−�̄
µ2

)
∇̄µφ .

Now we again integrate by parts, neglect surface terms, and interchange the gradient with
the inverse d’Alembertians to obtain

δφS̄ =
−1
4π

∫
d2x (δφφ) ln

(−�̄
µ2

)
�̄φ . (6.20)
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6.4.2 The tangential pressure

Reading off from the variation of the effective action

Let’s first have a look at the expression �̄φ in the Schwarzschild geometry. As φ = − lnxr

in this case – see eqn. (5.13) and the following lines – we have

�̄φ = −∂µηµν∂ν lnxr = −∂2
xr∗ lnxr =

(
1− 2M

xr

)(
− 1
xr2

+
4M
xr3

)
. (6.21)

From eqn. (6.20), we can read off the (θ, θ) component of the energy-momentum tensor
or tangential pressure according to eqn. (5.9) and substitute eqn. (6.21),

〈T θθ (x)〉 =
−1

32π2xr2
ln
(−�̄
µ2

)(
1− 2M

yr

)(
− 1
yr2

+
4M
yr3

)
.

Performing the regularization

Next, we want to explicitly perform the regularization we have implicitly assumed before
by carrying along the parameter µ. In order to do so, we start with the integral

〈T θθ (x)〉 =
1

32π2xr2

∞∫
0

dm2 1
m2 −�

(
1− 2M

yr

)(
− 1
yr2

+
4M
yr3

)
.

Here we have used the definition of ln� which corresponds to eqn. (6.3) up to the reg-
ularization parameter µ which, in (6.3), is only a symbolic notation. Next we write the
expression just obtained in terms of Green functions and plug in the retarded Green func-
tion (6.10),

〈T θθ (x)〉 =
1

32π2xr2

∞∫
0

dm2

∫
d2y GmR (x, y)

(
1− 2M

yr

)(
− 1
yr2

+
4M
yr3

)

=
1

64π2xr2

∞∫
0

dm2

∫
d2yΘ(xt − yt)Θ(−σxy)J0

(
m
√
−2σxy

)
×
(

1− 2M
yr

)(
− 1
yr2

+
4M
yr3

)
. (6.22)

This integral is divergent (see eqn. (6.24)); in order to regularize it, we introduce a
small parameter ε > 0 and write

〈T θθ (x)〉 =
1

64π2xr2
lim
ε→0

∞∫
0

dm2

∫
d2yΘ(xt − yt)Θ(−σxy)J0

(
m
√
−2σxy

)
J0(mε)

×
(

1− 2M
yr

)(
− 1
yr2

+
4M
yr3

)
. (6.23)

We can now make use of a formula which can be found, e.g., in [24]:
∞∫

0

dm2 J0

(
m
√
−2ξ1

)
J0

(
m
√
−2ξ2

)
= 2δ(ξ1 − ξ2) .
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Plugging this into eqn. (6.23), that expression simplifies to

〈T θθ (x)〉 =
1

32π2xr2
lim
ε→0

∫
d2yΘ(xt−yt)Θ(−σxy)δ(σxy+ε/2)

(
1− 2M

yr

)(
− 1
yr2

+
4M
yr3

)
.

As ε > 0, the delta distribution selects only negative σxy so there is no need for the
Θ(−σxy),

〈T θθ (x)〉 =
1

32π2xr2
lim
ε→0

∫
d2yΘ(xt − yt)δ

(
1
2

[
(yr
∗ − xr∗)2 − (yt − xt)2 + ε

])
×
(

1− 2M
yr

)(
− 1
yr2

+
4M
yr3

)

=
1

32π2xr2
lim
ε→0

∞∫
−∞

dyr
∗
∞∫
−∞

dyt Θ(xt − yt) −1
yt − xt

δ
(
yt − xt ±

√
(yr∗ − xr∗)2 + ε

)
×
(

1− 2M
yr

)(
− 1
yr2

+
4M
yr3

)

=
1

32π2xr2
lim
ε→0

∞∫
−∞

dyr
∗ 1√

(yr∗ − xr∗)2 + ε

1
yr2

. (6.24)

At this point we see clearly that the expression (6.22) (where ε = 0) is divergent at the
point y = x.

Next, we must get rid of the parameter ε by singling out and discarding the divergent
terms. These terms are meant by the symbolic µ term in eqn. (6.3). We start with
integrating by parts,

〈T θθ (x)〉 =
1

32π2xr2
lim
ε→0

{[(
1− 2M

yr

)(
− 1
yr2

+
4M
yr3

)

× ln
∣∣∣∣yr∗ − xr∗ +

√
(yr
∗ − xr∗)2 + ε2

∣∣∣∣
]yr∗=∞

yr∗=−∞

+ 2

∞∫
−∞

dyr
∗
(

1− 2M
yr

)(
2
yr3
− 18M

yr4
+

32M2

yr5

)
ln
∣∣∣∣yr∗ − xr∗ +

√
(yr
∗ − xr∗)2 + ε2

∣∣∣∣
}
.

(6.25)

Both limits in the first term vanish as the divergence of the logarithm is suppressed by the
coefficients each of which vanishes in one of the limits. This fact has also been checked
using Maple.

We now integrate by parts again; for this, we first compute the integral of the logarith-
mic term,∫

dyr
∗

ln
∣∣∣∣yr∗ − xr∗ +

√
(yr
∗ − xr∗)2 + ε2

∣∣∣∣
= (yr

∗ − xr∗) ln
∣∣∣∣yr∗ − xr∗ +

√
(yr
∗ − xr∗)2 + ε2

∣∣∣∣−√(yr
∗ − xr∗)2 + ε2 ,
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then obtain from eqn. (6.25) where surface terms vanish:

〈T θθ (x)〉 =
1

32π2xr2
lim
ε→0

{[(
(yr
∗ − xr∗) ln

∣∣∣∣yr∗ − xr∗ +
√

(yr
∗ − xr∗)2 + ε2

∣∣∣∣
−
√

(yr
∗ − xr∗)2 + ε2

)(
1− 2M

yr

)(
2
yr3
− 18M

yr4
+

32M2

yr5

)]yr∗=∞

yr
∗

=−∞

−
∞∫
−∞

dyr
∗
(

(yr
∗ − xr∗) ln

∣∣∣∣yr∗ − xr∗ +
√

(yr
∗ − xr∗)2 + ε2

∣∣∣∣−√(yr
∗ − xr∗)2 + ε2

)

×
(

1− 2M
yr

)(
− 3
yr4

+
44M
yr5

− 170M2

yr6
+

192M3

yr7

)}
(6.26)

Again, the surface terms vanish because the logarithmic divergence is too weak.
Finally, we deal with the parameter ε by expanding (6.26) in powers of ε and sending

ε to zero afterwards.
The expansion of the logarithm in powers of ε in the vicinity of ε = 0 reads

ln
∣∣∣∣yr∗ − xr∗ +

√
(yr
∗ − xr∗)2 + ε2

∣∣∣∣
=


ln
(
2|yr∗ − xr∗ |

)
+

1
4

ε2

(yr∗ − xr∗)2
+ O(ε4) if yr

∗
> xr

∗

[
− ln

(
2|yr∗ − xr∗ |

)
+ 2 ln ε

]
− 1

4
ε2

(yr∗ − xr∗)2
+ O(ε4) if yr

∗
< xr

∗
. (6.27)

Furthermore, introduce shorthand notation for polynomial term,

V (yr) = − 3
yr4

+
44M
yr5

− 170M2

yr6
+

192M3

yr7
.

Inserting eqn. (6.27) in eqn. (6.26) with the surface terms gone, the only ε independent
terms are

〈T θθ (x)〉 = − 1
32π2xr2

∞∫
−∞

dyr
∗
(
|yr∗ − xr∗ | ln

(
2|yr∗ − xr∗ |

)
− |yr∗ − xr∗ |

)
×
(

1− 2M
yr

)
V (yr) . (6.28)

Evaluation of the tangential pressure

Using the definition of the tortoise coordinate, eqn. (2.5), in eqn. (6.28), we obtain

〈T θθ (x)〉 = − 1
32π2xr2

∞∫
2M

dyr |yr∗ − xr∗ | ln
(

2
e
|yr∗ − xr∗ |

)
V (yr)

= − 1
32π2xr2

∞∫
2M

dyr |yr∗ − xr∗ | ln
(

2
e
|xr∗ |

∣∣∣∣1− yr
∗

xr∗

∣∣∣∣)V (yr)
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= − 1
32π2xr2

{
ln
(

2
e
|xr∗ |

) ∞∫
2M

dyr |yr∗ − xr∗ |V (yr)

+

∞∫
2M

dyr |yr∗ − xr∗ |V (yr) ln
∣∣∣∣1− yr

∗

xr∗

∣∣∣∣
}
. (6.29)

Let’s call the first part of this expression I1,

I1(x) = − 1
32π2xr2

ln
(

2
e
|xr∗ |

) ∞∫
2M

dyr |yr∗ − xr∗ |V (yr) . (6.30)

It can be exactly evaluated. First, we note that
∞∫

2M

dyr V (yr) = 0 and

∞∫
2M

dyr V (yr)yr
∗

= 0 .

Combining these yields
∞∫

2M

dyr (yr
∗ − xr∗)V (yr) = 0 .

Now we split the integration interval at yr = xr to obtain
xr∫

2M

dyr (yr
∗ − xr∗)V (yr) = −

∞∫
xr

dyr (yr
∗ − xr∗)V (yr) =

∞∫
xr

dyr (xr
∗ − yr∗)V (yr)

and thus

∞∫
2M

dyr |yr∗ − xr∗ |V (yr) = 2

∞∫
xr

dyr (yr
∗ − xr∗)V (yr) .

Using this relation in I1 as given by eqn. (6.30) yields

I1(xr) = − 1
32π2xr2

ln
(

2
e
|xr∗ |

) ∞∫
2M

dyr |yr∗ − xr∗ |V (yr)

= − 1
16π2xr2

ln
(

2
e
|xr∗ |

) ∞∫
xr

dyr (yr
∗ − xr∗)V (yr)

=
1

32π2
ln
(

2
e
|xr∗ |

)(
M2

xr4
− 6

M3

xr5
+ 8

M4

xr6

)
. (6.31)

The last integral has been solved with the help of Maple.
Let’s note that expression (6.31) vanishes in the vicinity of the horizon as well as far

away from the Black Hole.

The second remainder of expression (6.29) can not be handled as easily, and probably
it can be evaluated only numerically. As before, the numerical calculations are not part
of this diploma thesis but are left for future investigations.

In order to decide on the form of the complete 〈T θθ (x)〉, at least numerical results for
that second part must be available. In particular, it would be important to know whether
the logarithm involved gives rise to a divergence as x approaches the event horizon.
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Chapter 7

Conclusion and Outlook

The subject of this diploma thesis has been the radiation of Black Holes discovered by S.
Hawking and the definition of two-dimensional effective action models supposed to allow
for an insight into problems not solvable in a four-dimensional theory, e.g. the problem of
back-reaction of the radiation on the geometry of the Black Hole spacetime. The question
at hand is how such a model must be constructed in order to qualitatively yield the same
Hawking radiation as obtained in real four-dimensional spacetime.

In the first part of this work, we have given a review of the spacetime of Black Holes and
explained how particles can be created by a non-Minkowskian spacetime. Then we have
had a look at several explanations of Hawking radiation, including an intuitive picture as
well as an outline of Hawking’s own derivation.

In the second part, we have introduced two-dimensional models of spherically symmetric
Black Hole radiation and discussed some models where the effective action is determined
completely by the conformal anomaly of the quantum field. In particular, it was one of the
tasks of this work to investigate an apparent discrepancy between several of these effective
action models. I convinced myself that the solution was contained in a publication by J.S.
Dowker [5] which turned out to be widely accepted by that time.

These models all assume a gravitational action obtained by dimensional reduction from
the one for four dimensions. However, they are unsatisfactory because of the matter
part. The simpler model yields a Hawking flux which qualitatively agrees with the four-
dimensional one, but it is questionable because the matter part has no four-dimensional
origin. The dilaton model does have a four-dimensional origin of the matter but yields
qualitatively unsatisfactory results for the Hawking radiation.

There are approaches to cure this disagreement by adding conformally invariant terms
to the effective action. The proposal given recently by Y. Gusev and A. Zelnikov [8] is
investigated in detail. We were able to calculate its contributions to the matter-related
energy-momentum tensor up to the point where a numerical treatment is necessary. This
necessity is mostly due to the fact that terms depending on the Schwarzschild radial
coordinate r have to be integrated with respect to the coordinate r∗ (see eqn. (2.5)) which
is a function of r the inverse of which – known as the Lambert W function – is available
only tabularized.

These results are equations (6.14), (6.18), and (6.29). A part of the component given
in the latter can be exactly calculated, see eqn. (6.31). However, the other part would be
needed as well in order to be able to decide on the nature, e.g. the asymptotic behaviour,

57



of the whole expression.

The components of the energy-momentum tensor have a non-local nature. Thus it is
possible that they contribute to the Hawking flux which, due to the non-locality of the
quantum state, is a non-local effect as well.

Once numerical results are available, it will be possible to decide what contributions
the correction proposed by Gusev and Zelnikov makes to the effective action model and
whether they are able to restore qualitative agreement with the four-dimensional model
as for the Hawking flux.
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