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1. Introdution

Philosophy is written in this great book of the Universe whih is

ontinually open before our eyes, but we annot read it

without having �rst learnt the language and the haraters

in whih it is written.

It is written in the language of mathematis and the haraters

are triangles, irles and other geometrial shapes without the

means of whih it is humanly impossible to deipher a single word;

without whih we are wandering in vain through a dark labyrinth.

Galileo Galilei, "The Assayer"

To understand nature in all its details and to desribe the surrounding world with the

help of some fundamental priniples has been a dream of mankind sine the very be-

ginning. In order to ahieve suh an understanding, people are still investigating how

nature works and how it is designed at its deepest level.

Is nature made up from some elementary building bloks? The anient Greek were

the �rst who tried to answer this question. They intended to solve the problem simply by

thinking about it, without making any experiment at all. Demorit laimed that there

were suh building bloks, tiny, indivisible, immortal, and he introdued the notion

atom (greek atomos = indivisible). But the majority agreed with Aristotle, who

assumed that the struture of matter is ontinuous. During the middle ages the european

alhemists also took this point of view and people forgot about the ideas of Demorit.

It was not until the beginning of modern siene in the seventeenth entury, when

�rst experiments were performed in order to prove or vitiate these hypotheses. Dalton,

a british teaher and hemist, often alled father of modern atomi theory and hemistry,

published a famous book A New System of Chemial Philosophy in 1808, in whih he

explained his theories: all matter is made up from atoms and all atoms of a ertain

hemial element are idential, whereas atoms of di�erent elements have di�erent masses

and properties. Soon sientist were able to lassify those atoms and to determine their

intrinsi properties, and in 1870 the Russian hemistMendelejev published his periodi

table of the elements. Ingenious experiments revealed the sizes of suh atoms: they are

as small as 10

�8

entimeters.

3



CHAPTER 1. INTRODUCTION 4

Between 1894 and 1897 Thomson analysed the athode rays that had been dis-

overed in 1858: it turned out that atoms are not indivisible, but all of them ontain

negatively harged eletrons, whih an be emitted under the inuene of an eletri �eld.

In 1902 Lord Kelvin proposed a model of the atom that was later alled Thomson's

Model: a positively harge ball with imbedded eletrons.

In 1910 Rutherford and his ooperators disovered (with the help of alpha-partile

sattering experiments) that every atom ontains a very tiny, positively harged and

massive ore. These results were published in 1911 and the Rutherford Model was

born. The nuleus of the lightest element hydrogen is alled proton (greek protos =

the �rst one). In 1932 Chadwik identi�ed the seond omponent of the nuleus and

alled it neutron beaused it is eletrially neutral and its mass is lose to the mass of

the proton.

At that time the set of all known fundamental building bloks onsisted of photons,

eletrons, protons and neutrons. This was enough to explain all observed phenomena.

Almost. Already in 1931 Pauli postulated the existene of an additional neutral partile,

nowadays known as the neutrino, for the purpose of explaining the beta-deay onsis-

tently, whih auses for instane the transmutation from tritium into helium. Without

the neutrino the spin and energy onservation laws would have been violated. Cowan

and Reines veri�ed the existene of the neutrino in 1956.

Furthermore the Dira equation, already dedued in 1928, predited the existene

of so-alled antimatter: all partiles have mirror images of the same mass but opposite

harge. Anderson observed the �rst antipartile, the positron, in 1932. The antiproton

has been disovered in 1955.

Still this is not the end of the story: owing to the areful investigation of the high

energy osmi radiation and the use of apable aelerators, more and more fundamental

partiles ame into play: muons, tauons with their assoiated neutrinos, pions, kaons,

B-mesons, sigmas, his. . . , all of them together with their antipartiles.

So their number beame larger and larger, smashing the hope of the sientists that

nature an be desribed in a simple and elegant fashion at its deepest level. All those

partiles are haraterized by their quantum numbers, suh as mass, harge, spin and

baryon number.

Table 1.1.: Nuleons and Pions.

Partile Mass[MeV℄ Spin Charge

Proton p 938.3

1

2

+1

Neutron n 939.6

1

2

0

Pion �

+

139.6 0 +1

Pion �

0

135.0 0 0

Pion �

�

139.6 0 -1
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But while tabulating the system of all elementary partiles people disovered some

symmetries among them. Partiles with very similar properties an be arranged in so-

alled multiplets, indiating that some more fundamental theory should relate them to

eah other. As illustrative examples we list the nuleon doublet and the pion triplet in

Table 1.1.

In 1961 Gell-Mann [1℄ and Ne'eman [2℄ showed the possibility of arranging those

multiplets into larger families, alled supermultiplets

1

, f. Figures 1.1, 1.2 and 1.3. Here

S and I

3

denote strangess and the third omponent of isospin as quantum numbers of

the partiles. Gell-Mann alled this model The Eightfold Way and he was able to

predit the existene of the 


�

partile, whih was deted right at that time.
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baryons.

One year leater, Ne'eman and Goldberg-Ophir made the suggestion that eah

baryon is made up from three more fundamental building bloks: eah arrying baryon-

number

1

3

as well as frational eletri harge. Gell-Mann [3℄ and Zweig [4℄ improved

this model in 1964, independent of eah other they published a more preise formulated

theory: all known hadrons are made up from some fundamental building bloks, alled

quarks

2

. They labeled them by a new intrinsi property, the quark avour: there are

u (up), d (down) and s (strange) quarks. The previously (exept for the ontext of

rystallography) unfamiliar mathematial notions of group theory were used here. The

underlying symmetry group turned out to be the group of speial unitary 3�3 matries,

SU(3)

f

, where f indiates that this symmetry refers to the avour of the quarks. This

is an approximate symmetry, broken by the di�erent quark masses. Today three more

quarks are known:  (harm), b (bottom) and t (top).

Soon physiists realized that within some hadrons two or three of the quarks should be

in the same quantum mehanial state (for instane the 


�

onsists of the ombination

fsssg), but sine quarks are fermions this would violate Pauli's exlusion priniple. Han

1

These should not be onfused with the multiplets of supersymmetri theories.

2

Adopted from the book Finnegans Wake by James Joye.
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Figure 1.3.: Deuplet of heavy baryons with spin

3

2

.

and Nambu [5℄ proposed a way out by the introdution of a new quantum number, the

olor. Now all quarks ome in three di�erent olors whih are alled red, blue and green,

aordingly the antiquarks are antired, antiblue or antigreen. All baryons and mesons

are olorless ombinations of those olored quarks.

In this way the number of fundamental partiles got redued drastially. Only leptons

and quarks remain as the universal onstituents of matter. They appear in three families

and are listed in Table 1.2 together with their basi properties. The de�nite answer to

the question, where the di�erent values of the masses ome from, is still not known.

Table 1.2.: Leptons and Quarks.

Leptons Charge Mass [MeV℄ Quarks Charge Mass[MeV℄

�

e

0 < 3 � 10

�6

u +

2

3

1 : : : 5

e -1 0:511 d �

1

3

3 : : : 9

�

�

0 < 0:19  +

2

3

1115 : : : 1350

� -1 105 s �

1

3

75 : : : 170

�

�

0 < 18:2 t +

2

3

169000 : : : 179000

� -1 1777 b �

1

3

4000 : : : 4400

Besides the lassi�ation of all fundamental building bloks, a omprehensive desrip-

tion of nature also inludes the haraterization of the fores that a�et those partiles.

Today all known phenomena an be asribed to four fundamental fores. They inlude

the familiar gravitation and eletromagnetism, whih suÆe to desribe all diretly ob-
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servable e�ets on earth and in the osmos, as well as the more unfamiliar fores of the

weak and strong interation.

The gravitational fore is the �rst one, that has been desribed quantitatively in

physis: by Newton's theory, published in 1687 in his famous Philosophiae Naturalis

Prinipia Mathematia. Speial properties of gravitation are its universality and weak-

ness: gravity a�ets all kinds of matter and energy. At the level of elementary partile

physis and at energies that are aessible today it is muh too weak, to ause observable

e�ets. Exept for the searh for an uni�ed theory of all fores it does not play any role.

Einstein's General Theory of Relativity, sueedingNewton's theory and published

in 1916, is a lassial gauge theory of gravitation. The gauge freedom of this theory is

the possibility of hoosing an arbitrary oordinate system, the assoiated gauge group

is the group of di�eomorphisms on the underlying manifold.

Up to now no suessful quantum theory of gravitation has been formulated, this

remains as one of the most important problems in theoretial physis. During the last

years people have been working intensively on theories of supergravity and superstrings,

hoping to derive a uni�ed desription of gravitation and the three other fores in this

way.

For a long time mankind has been aquainted with the eletromagneti fore, too.

This fore di�ers from gravity, sine it is not universal: only harged partiles are af-

feted, whereas neutral partiles like neutrinos do not feel this fore. Between 1855

and 1865 Maxwell was able to formulate the basi laws of eletromagnetism, thereby

unifying eletri and magneti interations. People realised that this theory possesses

a residual freedom, the freedom of hoosing a de�nite form of the gauge potential, but

did not attah value to this. Nowadays eletrodynamis is known to be a U(1) gauge

theory, exatly due to this fat.

Sine Maxwell's theory obeys the laws of speial relativity from the very begin-

ning, this remained the orret desription until 1948. At that time the quantum version

of eletrodynamis, alled quantum eletrodynamis (QED), was established indepen-

dently of eah other by Tomonaga, Feynman [6, 7℄ and Shwinger [8℄. In QED the

eletromagneti fores between harged partiles are mediated by the exhange of virtual

photons. In a perturbative approah all proesses an be desribed by Feynman dia-

grams, like in Figure 1.4, and translated into formulas via the orresponding Feynman

rules. After renormalization physial observables an be alulated. This theory turned

out to be extraordinary suessful. For instane, the alulated magneti moment of the

eletron is in agreement with the experimental value with an auray of 10

�10

.

Physiists got the �rst hint for the existene of the weak fore already in 1896, when

Bequerel disovered radioativity. The �-deay of the unharged neutron into a

proton and an eletron annot be explained in the ontext of eletromagnetism:

n! p+ e

�

:

The weak interation turned out to be the reason for this proess. The �rst problem

that people enountered, the ontinuous spetrum of the emitted eletrons, was solved by

Pauli as stated above by introduing the neutrino, whih arries the remaining energy
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e
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e

�



Figure 1.4.: Feynman graph for the ollision of two eletrons (tree-level).

and the missing angular momentum:

n! p+ e

�

+ ��

e

:

The weak interation is very short-ranged, sine 1982 we know (from the masses of the

Z and W

�

bosons determined at CERN) that it is mediated only over distanes that

are smaller than 10

�18

meters. An e�etive desription of weak interation proesses is

given by the Fermi Model.

Glashow [9℄, Salam [10℄ and Weinberg [11℄ managed to unify eletromagnetism

and weak interation within the eletroweak model, as a gauge theory with gauge group

SU(2)� U(1).

It was not until 1932 when physiists realised the existene of an additional fore: the

strong interation. The disovery of the neutron fored people to introdue this new in-

teration in oder to explain, how protons and neutrons an form stable nulei. Obviously,

the strong interation only ats over a very short distane: eletromagnetism suÆes to

explain the observed orbits of the eletrons as well as the outome of Rutherford's

sattering experiments. Its range is limited to distanes of order of nulear sizes, typi-

ally 10

�15

meters. Furthermore the strong fore does not show universality: partiles

that interat via this fore are alled hadrons. In the 1960s the quark model of matter

was established. Sine that time the strong interation is understood as the interation

between quarks whih binds them to nuleons and other hadrons. The fore between nu-

leons, the nulear fore, is a rudiment of the muh stronger fore between those quarks.

It turned out that the interation between the quarks is muh easier to understand than

the ompliated fore that ats between the nuleons. This theory of quark interation

is quantum hromodynamis (QCD), the gauge theory of strong interations. The gauge

symmetry of QCD is olor symmetry, and the orresponding symmetry group is SU(3)



,

where  refers to the olor (red, green, blue) of the quarks. This symmetry is taken to

be an exat symmetry of nature.
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The four known interations between matter partiles, gravity, eletromagnetism, strong

and weak fore, reinterpreted as gauge interations, as well as their basi properties, are

listed in Table 1.3.

Table 1.3.: Fundamental Fores.

Fore Range A�ets Gauge Boson Spin Mass[GeV℄

gravitational in�nite all matter graviton 2 0

eletromagneti in�nite eletri harges photon 1 0

weak 10

�18

leptons, quarks W

�

, Z 1 80.4 / 91.2

strong 10

�15

quarks 8 gluons 1 0

In the ourse of the 20th entury the so-alled Standard Model

3

of elementary partile

physis has been established. This model turned out to be very powerful in prediting

the prodution of partiles in aelerator experiments, ross setions, lifetimes, deay

widths and so on.

The Standard Model desribes the interation of the fundamental building bloks of

nature, whih are quarks and leptons, as quantum gauge interations with gauge group

SU(3)



� SU(2)� U(1).

Reent experiments at LEP indiate that even the ultimate missing partile, the

Higgs boson (whih is needed to give �nite mass to the partiles) has been disovered,

thereby ompleting this model. But up to now only four suh events have been deteted

and the results still have to be on�rmed.

At the dawning of the 21st entury this is the (preliminary) answer of modern physis

to the question of the anient Greeks about the struture of nature.

Now we will fous on the fourth interation: the gauge theory of strong intera-

tions, quantum hromodynamis. QCD is still under investigation and | sine the

orresponding �eld equations are highly nontrivial | many problems are unsolved, in

partiular the problem of quark on�nement: quarks do never our as single partiles,

they always form quark-antiquark pairs (mesons) or ome as three-quark bound states

(baryons). Among the many mehanisms put forward to explain this phenomenon, the

most transparent is probably the so-alled dual Meissner e�et [17, 18℄, whih has

reently beome popular due to its partial on�rmation in lattie experiments and the

expliit veri�ation in some supersymmetri models. Furthermore QCD exhibits the

spontaneous breakdown of hiral symmetry (�SB): sine the masses of the up and down

(and to a lesser extent of the strange) quark are very small ompared to typial strong

interation energy sales

�

QCD

� 0:2GeV;

3

For an introdution to the Standard Model and the basi onepts of loal gauge theory, see for

instane the books by Ne'eman and Kirsh [12℄, Halzen and Martin [13℄, Ebert [14℄ and Geyer

[15℄. All experimental data are taken from the 2000 Review of Partile Physis [16℄.
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the theory is approximately invariant under SU(2)

L

� SU(2)

R

transformations (or un-

der SU(3)

L

� SU(3)

R

transformations, respetively). This is alled hiral symmetry.

However, we do not see any partile degeneray patterns asribable to suh symmetries.

The resolution to this paradox is that the physial vauum is not invariant under these

symmetries: hiral symmetry is spontaneously broken [19℄.

In this work we are going to analyse a speial lass of eigenfuntions of the Dira

operator D= , alled zero modes. Our zero modes will turn out to be losely related to

this spontaneous breakdown: from the experimental data we an determine the value

of the quark ondensate with the help of QCD sum rules due to Shifman, Vainshtein

and Zakharov [20, 21℄:

<

�

  >= �(230MeV )

3

:

This ondensate is related to the spetral density of the Dira operator �(�) near zero

eigenvalues by the Banks-Casher relation [22℄

<

�

  >= ���(� = 0):

The signi�ane of the quark ondensate is the fat that it is an order parameter for the

hiral symmetry breaking in the QCD vauum.

On the other hand, in the ultraviolet limit, the quarks show asymptoti freedom: at

high momentum the fores between them vanish and every quark an move almost as a

free partile.

In this diploma thesis we study some quantum �eld theoretial models that might be

relevant for realisti quantum �eld theories. Realisti quantum �eld theories are diÆult

to solve beause they are governed by nonlinear operator equations. In the usual per-

turbative treatment, that turned out to be so suessful in quantum eletrodynamis,

we have to start with the solution of the linearized (free) �eld equations and then to

inorporate the e�ets of interations as a power series expansion in the oupling on-

stant. For QCD | in whih we are mainly interested in | the oupling onstant is

of order unity and perturbation theory does not work. Furthermore some fundamental

properties of quantum �eld theories annot be obtained in this approah.

Therefore we proeed in a di�erent way: the operator Euler-Lagrange equations are

treated as C -number �eld equations and are solved by methods of lassial mathemat-

ial physis. Quantum mehanis is regained either by expanding the quantum theory

around the lassial solution in a power series of the oupling onstant or by quantizing

the lassial solution in a semilassial or WKB approximation. In suh an approah

the nonlinearity of the system is retained at all stages in the alulation. These non-

perturbative methods have led to new insights into the properties of quantum �eld

theories.

The lassial equations of motion usually yield a ertain number of trivial solutions,

as well as some nontrivial, solitoni solutions. Often these nontrivial lassial solutions

suggest a partile interpretation: they have �nite energy, are loalized in spae, are

stable and an be boosted to give linearly moving solutions, whih arry momentum and

display the proper relationship between mass, momentum and energy. These objets are
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alled solitons, even though they are not solitons in the strit sense of soliton theory.

Exept in the sine-Gordon model, none of the lassial solutions enountered in high

energy physis really keeps its shape after ollision. Nevertheless the notion soliton

(instead of the more aurate solitary wave) is used throughout the modern literature.

Therefore we will use it in this diploma thesis as well.

In partiular we will explore three kinds of nontrivial �eld on�gurations: the kink

solution in the �

4

theory, the 't Hooft-Polyakov monopole and the instanton solution

whih our in Yang-Mills-Higgs and pure Yang-Mills theories, respetively. After an

appropriate de�nition they turn out to arry topologial harges.

In a seond step we analyse the behaviour of fermions (quarks or leptons, depending

on the partiular model) in the bakground of those �elds. Of partiular interest are

so-alled zero modes (or Jakiw-Rebbi modes): solutions of the eigenvalue equation

H = E ;

with eigenvalue E = 0, where H is the Dira Hamiltonian and  is the fermioni wave

funtion. In the kink and the monopole bakground we alulate these zero modes

expliitly. Furthermore a powerful mathematial theorem, the Callias-Bott-Seeley

or CBS index theorem, an be used to alulate the index of appropriate di�erential

operators. This index is equal to the number of left-handed zero modes minus the

number of right-handed zero modes. It turns out that in the ases at hand there is

always only one speies of fermions (either left- or right-handed) present. Therefore the

CBS index theorem an be used to determine the absolute number of fermioni zero

modes in the given bakground. The basi statement of this index theorem relates the

number of zero modes to the topologial harge (thereby disregarding the partiular

form of the soliton): whenever the bakground �eld possesses a topologial harge there

will be fermioni zero energy modes.

In the instanton ase we are dealing with four dimensional Eulidean spae. Now we

an do the same analysis, but we fous on zero modes of the Dira Operator D= itself:

D=  = 

�

D

�

 = 

�

(�

�

+A

�

) = 0:

Here the 

�

matries form the basis of the standard Cli�ord algebra and D

�

is the ovari-

ant derivative with gauge potential A

�

, whih is given by the instanton on�guration.

In Eulidean spae, D= is an ellipti di�erential operator and the question whether or not

D= shows zero modes is a nontrivial one (in Minkowski spae D= is hyperboli and usually

there are zero modes). Again those zero modes an be alulated and their expliit shape

an be determined. Like kinks and monopoles, instantons possess a topologial harge,

alled Pontryagin index. The elebrated Atiyah-Singer or AS index theorem relates

again the number of zero modes (of D= ) to this topologial harge: the higher the harge,

the more zero modes are present. Afterwards the zero modes of the Dira operator an

be related to zero modes of the Dira Hamiltonian (here we use Weyl gauge)

H = �i�

i

D

i

by spetral ow arguments. As will be shown, fermioni zero modes in instanton �elds

are very important for an understanding of vauum tuneling proesses, the anomaly of
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the axial urrent and the hange of axial harge.

In this diploma thesis we will use the following reipe again and again:

1. Given a partiular �eld theory, we explore the lassial equations of motion that

result from the Euler-Lagrange formalism.

2. We analyse in partiular the possible vaua and give a desription of the entire

vauum struture.

3. Demanding �nite energy (or �nite Eulidean ation) results in a topologial las-

si�ation of all possible stati solutions. These solutions are alled solitons.

4. Afterwards we use topologially interesting solitons as lassial bakground �elds

and introdue fermions as quantum objets in these bakgrounds.

5. We investigate the existene of zero modes of H (or D= respetively) and determine

the number of them as well as their shape by solving the equations of motion

expliitly.

6. For all theories at hand there are powerful mathematial theorems, stemming from

the theory of di�erential operators, that predit the existene and number of suh

zero modes by relating them to topologial invariants. We apply those theorems

to the partiular ases and ompare the results.

7. In a �nal step we analyse the physial onsequenes that result from the existene

of those zero modes.

This work is organized as follows: in Chapter 2 we fous on a toy model, �

4

theory in

1+1 dimensional Minkowski spae. Chapter 3 explains Derrik's theorem: why gauge

�elds are neessary in higher dimensions if we want to have nontrivial �eld on�gurations.

In Chapter 4 we use this insight and investigate SU(2) Yang-Mills-Higgs gauge theory

and its solitons, whih turn out to be magneti monopoles. In the simplest ase, the

't Hooft-Polyakov monopole of unit harge, we solve the fermioni equations of motion

expliitly. In Chapter 5 we examine Eulidean solutions of pure SU(2) gauge theory.

The topologial solutions are alled instantons and are interpreted as tunneling events

in Minkowski spae. Finally we summarize all alulations and give an outlook, what

ould or should be done in the future. Appendix A ontains some basi de�nitions and

a sketh of the proof of the CBS index theorem. In Appendix B the same is done for

the AS index theorem.



2. �

4

Theory

2.1. The Model

Let us onsider a salar �eld theory in 1 + 1 dimensional Minkowski spae. Given the

potential density V = V(�), the Lagrangian reads

L =

1

2

�

�

� �

�

�� V(�) =

1

2

_

�

2

�

1

2

�

0 2

� V(�); (2.1)

where dot (prime) denotes di�erentiation with respet to time (spae). The total energy

and therefore V(�) must be bounded from below, and by adding a suitable onstant we

an ahieve V(�) � 0, furthermore V(�) should allow for at least two di�erent vaua

(absolute minima). The famous �

4

- and the Sine-Gordon-Model with potentials

V(�) =

1

4

�

�

�

2

�

m

2

�

�

2

(2.2)

and

V(�) =

m

4

�

�

1� os

�

p

�

m

�

��

(2.3)

respetively, f. Figures 2.1 and 2.2, have been studied in detail.
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Figure 2.1.: The �

4

potential.
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Figure 2.2.: The sine-Gordon potential.
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We are looking for stati solutions � = �(x), with energy

E[�℄ =

Z

dx

 

1

2

�

0 2

+ V(�(x))

!

<1: (2.4)

The Euler-Lagrange equations

�L

��

� �

�

�L

�(�

�

�)

= 0 (2.5)

redue to

�

00

(x) =

�V(�)

��

(x): (2.6)

After multiplying both sides by �

0

and using the hain-rule we end up with

d

dx

 

1

2

�

0 2

!

=

d

dx

V(�(x)) (2.7)

1

2

�

0 2

= V(�) + : (2.8)

In order to have �nite energy the solutions must obey

lim

x!�1

V(�(x)) = 0; (2.9)

lim

x!�1

�

0

(x) = 0; (2.10)

implying  � 0. There are trivial solutions (often referred to as vauum solutions and

labeled by an index 0): �(x) = �

0

= onst, with V(�

0

) = 0. But there are non-trivial

solutions, too. These solutions are alled solitons and are labeled by an index S. Due to

this fat di�erent setors emerge in our theory: a ertain number of vauum setors as

well as soliton setors. All of them must be treated separately. Aordingly the Hilbert

spae H - after quantization - onsists of the sum of orthogonal spaes,

H = H

0

1

� : : :�H

0

n

�H

S

1

� : : :�H

S

m

: (2.11)

The equations of motion an be solved by quadrature

1

2

�

0 2

= V(�);

d�

dx

= �

p

2V(�);

x� x

0

= �

Z

�(x)

�(x

0

)

d

~

�

q

2V(

~

�)

: (2.12)

The onstant x

0

represents the invariane of the Lagrangian L =

R

Ldx under trans-

lations in x-diretion and an be hoosen arbitrarily. Sometimes this freedom auses
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trouble if we try to quantize the theory, the appropriate tool to irumvent these diÆ-

ulties is the method of olletive oordinates [23, 24℄.

We observe that equation (2.6) is equivalent to the problem of a partile moving

along x = x(t) in the potential �V(x), if we replae x ! t and � ! x, f. Figure 2.3.

Now the vauum solutions orrespond to partiles with zero energy, resting at one of the

PSfrag replacements
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�
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�
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�V(x)

x

Energy

Time

neg. chirality

pos. chirality

Figure 2.3.: The upside down potential.

maxima of the potential all the time, and the non-trivial solutions an be interpreted

as partiles being on one of the tops of the potential at the beginning t! �1, moving

through the valley and ending at the seond maximum at late times t ! +1. By

general arguments we an onlude that suh non-trivial solutions always appear, if the

orresponding potential has at least two minima V(�) = 0. These soliton solutions share

many properties with usual partiles, as we will see soon: they are loalized in spae,

have �nite energy (rest mass), under ertain onditions they an ollide without hanging

their shape, and by means of a Lorentz-transformation we an give them an arbitrary

veloity.

The following expliit alulations are done within the �

4

theory, but the results

obtained below an easily be generalized to all theories that have a similar struture of

the potential. From the Lagrangian

L =

1

2

(�

�

�)(�

�

�)� V(�) =

1

2

_

�

2

�

 

1

2

�

0 2

+

1

4

�

�

�

2

�

m

2

�

�

2

!

| {z }

U(�)

(2.13)

we get

L[�℄ = T [�℄� U [�℄; (2.14)

where

T [�℄ �

1

2

Z

dx

_

�

2

; U [�℄ �

Z

dx U(�): (2.15)
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The Euler-Lagrange equation of motion for the stati ase (2.6) reads

��

00

�m

2

�+ ��

3

= 0; (2.16)

and has the solutions

�

0

1=2

(x) = �

m

p

�

(2.17)

and

�

S

1=2

(x) = �

m

p

�

tanh

 

m

p

2

(x� x

0

)

!

: (2.18)

The trivial solutions �

0

1=2

are the two di�erent vaua (zero indiates the vauum setor),

the non-trivial solutions �

S

1=2

are alled kink or antikink, respetively (S indiates the

soliton setor). They interpolate between the vauum on�gurations when x goes from

�1 to +1 and di�er from the trivial solutions only in a small region around x

0

, f.

Figures 2.4, 2.5.
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The total energy of the vauum solutions is zero aording to equation (2.4), whereas

the solitons arry energy (lassial mass)

E =

2

p

2

3

m

3

�

: (2.19)

The

1

�

dependene of the energy is harateristi for nonperturbative solutions of the �eld

equations, i.e. these �eld on�gurations annot be found via a power series expansion

in �. Let us reformulate the last statements in a more sophistiated way: The solutions

of the �eld equation that we found are topologially di�erent. We an lassify them
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aording to their behaviour at spatial in�nity. It is easy to guess, how one has to de�ne

an appropriate topologial harge Q

top

in this simple ase. Take

Q

top

(�) =

1

2

�

�

+

j�

+

j

�

�

�

j�

�

j

�

; (2.20)

where

�

�

= lim

x!�1

�(x): (2.21)

The vauum solutions are topologially trivial, i.e. Q

top

(�

0

1=2

) = 0, whereas the kink and

antikink arry harge 1 and �1, respetively. The demand for �nite energy fores all

solutions to take on one of the vauum values at spatial in�nity. Therefore all solutions

map the border of spae (in this partiular ase the points f�1;+1g) into the set of all

possible vauum values (here this is

�

m

p

�

;�

m

p

�

	

). Both manifolds are zero dimensional

spheres: S

0

phys

and S

0

int

, respetively.

Result: All �nite energy solutions of our �

4

theory an be interpreted as mappings

S

0

phys

! S

0

int

and aording to this an be haraterized by a number, the topologial

harge Q

top

.

2.2. Fermioni Quantization

Now we introdue fermions in all setors, taking the C -number �elds � as (spae depen-

dent) masses. This gives rise to a Hamiltonian H(�). The Hamiltonian ats on spinors

 , and in 1+1 dimensions we an realize the Dira algebra with the help of the Pauli

matries �

i

. We identify

� = �

2

; � = �

1

; 

0

= � = �

1

; 

1

= �� = i�

3

: (2.22)

Aording to this

H(�) = �p+ g�� = �

2

p+ g�

1

�; (2.23)

with momentum operator p =

1

i

�

x

and oupling onstant g. Let us rewrite the spinor

in omponents  =

�

u v

�

>

. Charge onjugation symmetry is mediated by �

3

, sine

fH;�

3

g = 0. That means �

3

turns positive (negative) energy solutions in negative

(positive) one. We have to solve

H(�) = E ;

�

0 g�� �

x

g�+ �

x

0

��

u

v

�

= E

�

u

v

�

: (2.24)

This is equivalent to

�Eu+ g�v � v

0

= 0; (2.25a)

g�u�Ev + u

0

= 0: (2.25b)
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Let us �rst hek whether there are zero modes present in one of these setors or not,

sine later on they will turn out to be essential for some unusual and unexpeted physial

e�ets. It is easy to see, that there are no normalizable modes in the vauum setor, if

we insist on E = 0. Next, look for zero modes in the kink or antikink bakground. For

E = 0 the equations deouple, we an integrate both and get

u = exp�g

Z

x

dy �

S

1=2

(y); (2.26a)

v = exp+g

Z

x

dy �

S

1=2

(y): (2.26b)

The trivial solutions are u = 0 and v = 0. Now we have to use the expliit form of �

S

1=2

and arrive at

I(x) = g

Z

x

dy �

S

1=2

(y) = �

mg

p

�

Z

x

dx tanh

�

m

p

2

x

�

= �g

r

2

�

log osh

�

m

p

2

x

�

+ onst: (2.27)

Therefore

u = exp�I(x) �

 

osh

�

m

p

2

x

�

!

�

q

2

�

g

; (2.28a)

v = exp+I(x) �

 

osh

�

m

p

2

x

�

!

�

q

2

�

g

: (2.28b)

We an ombine all these solutions, getting

�

0

0

�

;

�

0

v

�

;

�

u

0

�

;

�

u

v

�

:

For the kink only the third ombination is both nontrivial and square integrable, i.e.

only this is a physial solution, f. Figure 2.6. We normalize our zero mode

 

0

(x) = N

�

u(x)

0

�

; (2.29)

suh that

1 =

Z

dx  

y

0

(x) 

0

(x): (2.30)

Observe that  

0

is eigenfuntion of �

3

with �

3

 

0

=  

0

, i.e.  

0

is invariant under harge-

onjugation. Zero modes of the form

�

u 0

�

>

are alled left-handed. In the antikink
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Figure 2.6.: The zero mode shape.

setor we get a similar zero mode with upper and lower omponents interhanged, i.e. a

right-handed one, whih is invariant under harge onjugation up to a sign hange.

Now let us investigate the remaining spetrum. For E 6= 0 we an express v in terms

of u (via equation (2.25b)) for both, the vauum setor � = �

0

1=2

and the soliton setor

� = �

S

1=2

:

v =

1

E

(g�+ �

x

)u: (2.31)

Using this, equation (2.25a) reads

0 = �Eu+

g�

E

(g�+ �

x

)u�

1

E

(g�

0

+ �

2

x

)u�

g�

E

u

0

= (�E

2

+ g

2

�

2

� g�

0

)u� u

00

: (2.32)

This is a Shr�odinger equation for u with potential g

2

�

2

� g�

0

and energy E

2

:

(��

2

x

+ g

2

�

2

� g�

0

)u = E

2

u: (2.33)

The expliit form of �(x) yields

g

2

�

2

(x)� g�

0

(x) =

8

>

<

>

:

 

g

2

m

2

�

�

gm

2

p

2�

!

tanh

2

�

m

p

2

x

�

�

gm

2

p

2�

; � = �

S

1=2

g

2

m

2

�

; � = �

0

1=2

:

The vauum setor is trivial: no zero mode, no bound solutions, just plane waves. On the

other hand: if the soliton pro�le is suÆiently weak there are no additional normalizable

bound solutions besides the zero mode [25℄. This is a restrition on m and �: if � is

large enough, then there is only one bounded state, the zero mode. In what follows we

shall assume that there is exatly one bound state. The generalization to two or more

bounded states is straight forward. Furthermore there are sattering states for energies

E

2

�

g

2

m

2

�

. They are given by wave funtions u

k

and have eigenvalues E

2

k

= k

2

+

g

2

m

2

�

.

The positive energy solutions of the original Dira equation (2.24) an be expressed as

 

E

=

 

1

p

2

u

k

1

p

2E

(g�+ �

x

)u

k

!

; (2.34)
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the negative energy solutions are

 

�E

= �

3

 

E

=

 

1

p

2

u

k

�

1

p

2E

(g� + �

x

)u

k

!

: (2.35)

Consider E = �

q

k

2

+

g

2

m

2

�

< 0. The harge density at a given energy E (momentum

k) is

�

k

(x) =  

y

E

(x) 

E

(x) =

1

2

ju

k

j

2

+

1

2E

2

j(�

x

+ g�)u

k

j

2

=

1

2

ju

k

j

2

+

1

2E

2

(ju

0

k

j

2

+ g��

x

ju

k

j

2

+ g

2

�

2

ju

k

j

2

)

=

1

2

ju

k

j

2

+

1

2E

2

�

1

2

�

2

x

ju

k

j

2

�

1

2

�u

00

k

u

k

�

1

2

�u

k

u

00

k

+ g�

x

(�ju

k

j

2

)�

� gju

k

j

2

�

0

+ g

2

�

2

ju

k

j

2

�

; (2.36)

we use equation (2.32) in order to express u

00

in terms of u:

�

k

(x) =

1

2

ju

k

j

2

+

1

2E

2

�

1

2

�

2

x

ju

k

j

2

+ (E

2

� g

2

�

2

+ g�

0

)ju

k

j

2

+ g�

x

(�ju

k

j

2

)�

� gju

k

j

2

�

0

+ g

2

�

2

ju

k

j

2

�

= ju

k

j

2

+

1

4E

2

(�

2

x

ju

k

j

2

) +

g

2E

2

�

x

(�ju

k

j

2

): (2.37)

However, in the vauum setor ju

k

j

2

is a onstant, as is �, so that the last two terms in

(2.37) vanish. Now we determine the total harge (fermion number) of a given state:

Q =

Z

dx

Z

dk

2�

�

k

(x): (2.38)

We renormalize this in suh a way that the vauum arries no harge at all. For the

empty (i.e. no fermions present) soliton setor we get

Q �

Z

dx

Z

dk

2�

(�

S

k

(x)� �

0

k

(x))

=

Z

dx

Z

dk

2�

(ju

S

k

(x)j

2

� ju

0

k

(x)j

2

)

| {z }

�1

+

Z

dk

2�

g

2E

2

�

ju

S

k

(x)j

2

�

k

(x)

�

x=+1

x=�1

: (2.39)

The �rst integral gives -1, beause we integrate over a omplete set in the vauum setor,

while in the soliton setor the zero-mode  

0

is not inluded. Now we an evaluate the

seond term, even without expliit knowledge of the solutions u

S

k

. We desribe their

asymptotial behavior in terms of transmission and reetion oeÆients:

u

S

k

(x)! Te

ikx

for x! +1;

u

S

k

(x)! e

ikx

+Re

�ikx

for x! �1

(2.40)
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with (due to unitarity)

jT j

2

+ jRj

2

= 1: (2.41)

Therefore

Q = �1 +

Z

dk

2�

g

2E

2

(jT j

2

+ (jRj

2

+ 1))

m

p

�

= �1 +

gm

2�

p

�

Z

dk

1

E

2

= �1 +

gm

2�

p

�

Z

dk

1

k

2

+

g

2

m

2

�

= �1 +

gm

2�

p

�

gm

p

�

�

g

2

m

2

Z

d�

1

�

2

+ 1

= �1 +

1

2�

�

artan �

�

+1

�1

= �1 +

1

2

= �

1

2

: (2.42)

So we enountered a uriosity: the existene of a zero mode within the spetrum of

the Hamiltonian auses the fermion number to take on half-integer values - a novel and

fasinating quantum mehanial phenomenon, whih was previously unsuspeted. These

results were published for the �rst time by Jakiw and Rebbi in [26℄. The frational

value of Q arises essentially due to the fat that we exluded the zero mode from the

de�nition of Q, orresponding to the rule that in the ground state all negative energy

levels are �lled, whereas the rest of them remains unoupied. That this is the orret

presription an be seen from the following: after reognizing the existene of the zero

energy mode, we an reformulate the problem of fermion number frationization in terms

of seond quantized wave operators. The standard (normal ordered) harge-onjugation-

odd fermion harge density is [27℄

�(x) =

1

2

�

 

y

(x) (x) �  (x) 

y

(x)

�

: (2.43)

Together with the expansion of the wave funtion

 (x; t) =

X

n

�

a

n

f

n

(x)e

�iE

n

t

+ b

n

g

n

(x)e

+iE

n

t

�

+   

0

(x); (2.44)

this gives the fermion number

Q =

Z

dx �(x)

=

1

2

X

n

(a

y

n

a

n

� a

n

a

y

n

)�

1

2

X

n

(b

y

n

b

n

� b

n

b

y

n

) +

1

2

(

y

� 

y

)

=

X

n

(a

y

n

a

n

� b

y

n

b

n

) + 

y

�

1

2

: (2.45)

It follows that with this hoie the zero energy states of the fermion in the solitoni

�eld have a fermion number +

1

2

or �

1

2

, aordingly as 

y

or  annihilates the state. The
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fermion numbers of all states inluding the nonzero energy modes are half-integral. For

example if there is a seond fermion added to the Q = +

1

2

state, its fermion number

would be Q = +

3

2

, while if we took the Q = �

1

2

state and added a fermion to it, we

would get Q = +

1

2

for that new state. Thus one unique zero energy mode makes all

states have a half-integer fermion number and beome doubly degenerate.

Remark: in [28℄ this analysis has been extended to Dira equations that are not

symmetri under harge onjugation, due to the introdution of a symmetry breaking

term:

H(�) = �

2

p+ g�

1

�+ �

3

�: (2.46)

Now the fermioni harge beomes

Q = �

1

�

artan

�

�

�

�

gm

�

p

�

�

�

�

�

: (2.47)

In the onjugation symmetri limit, �! 0, and the previous result, Q = �

1

2

is regained.

2.3. The Polyaetylene Story

What does these results imply? Is this just a silly alulation or an one verify its

preditions? It turned out, that polymere physis indeed provides the opportunity to

do so. To understand this in detail, we have to deal with a very speial substane -

polyaetylene. Polyaetylene onsists of hains of arbon atoms, with eletrons moving

along the hains. So this is a one dimensional system. There are two kinds of bounds

between the arbon atoms: single bounds and double bounds. Let us imagine an in�nite

long hain.The displaement � of eah atom (with respet to the quasi-equilibrium with

equal spaing between all atoms) is the so-alled phonon �eld � = �(x

i

).
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Figure 2.7.: Polyaetylene: A, B.

Detailed dynamial alulations show [29, 30℄ that the energy density V(�) as a funtion

of onstant � has the double-well shape we are familiar with from our �

4

-theory. In

this ase the matrix struture of the Hamiltonian H does not arise from spin. Rather,

this struture arises through a linearized approximation and the two-omponent wave
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funtions that are eigenmodes of H refer to the right-moving and left-moving eletrons.

The �lled negative energy states are the valene eletrons, while the onduting eletrons

populate the positive energy states [31℄. Now there are two degenerate vaua alled A

and B. These orrespond to the vauum solutions �

1;2

, f. Figure 2.7.

Imagine a hain, being in the A(B) vauum at the very left, x ! �1, and in the

B(A) vauum for x! +1. This is exatly what we alled the kink (antikink), f. Figure

2.8. The irle denotes an unpaired single eletron.

PSfrag replacements

x

j�j

2

�V(x)

x

A:

B:

A!B:

B!A:

�

0

1

�

0

2

r

0:9

F

0:8

0:6

0:4

0:2

0

2

4

6

8

10

0:15

0:1

0:05

5

10

15

20

Figure 2.8.: Polyaetylene: kink, antikink.

Finally onsider a polyaetylene sample in the B vauum, but with two solitons along

the hain, and ompare this with the usual B vauum by ounting the number of links,

f. Figure 2.9.
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Figure 2.9.: Polyaetylene: BAB vs. B.

Result: the two soliton state exhibits a de�it of one link. If we now imagine separating

the two solitons a large distane, so that they are independent of one another, then eah

soliton arries a de�it of half a link and the quantum numbers are split between the two

states. But we must remember that a link orresponds to two states: two eletrons with

paired spin. Therefore the e�et of frational harge is hidden here by this degeneray.

So in polyaetylene a soliton arries a harge de�it of one unit of eletri harge. The

soliton state has net harge, but no net spin, sine all the eletron spins are paired. If

an additional eletron is inserted into to sample, the harge de�it is extinguished, and

one obtains a neutral state, but now there is a net spin. These spin-harge-assignments

(harged-without spin, neutral-with spin) have been observed, the same holds for the
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emergene of a loalized eletroni mode at mid-gap, i.e. at zero energy [32℄.

Materials with a slightly di�erent hain struture, with two single bounds and one

double bound as fundamental period, have been analyzed in [33℄. Now there are three

degenerate ground states A;B and C, two types of kinks interpolating between A and

B or B and C respetively, as well as the orresponding antikinks. A arbon opy of

our analysis now predits harges �

1

3

and �

2

3

. This spetrum (inluding gap states) is

on�rmed by numerial alulations and should be obtainable by experiment, too. One

andidate possessing an appropriate hain struture is TTF-TCNQ (tetrathiafulvalene-

tetrayanoquinodimethane) [33℄.

2.4. Index Theorem

The ourene of a zero mode in the spetrum of the Dira Hamiltonian H(�) in the

kink (or antikink) bakground of our theory is a onsequene of the powerful Callias-

Bott-Seeley index theorem [34, 35℄. This is a mathematial theorem that ounts the

number of zero modes of di�erential operators of a ertain lass and an be applied to

open spaetime manifolds with an odd number of spae dimensions. The proof of the

theorem is skethed in appendix A

1

. Let us apply this theorem to our model. From the

Hamiltonian (2.23) we read o� the operator

L = �

d

dx

+ g�(x); (2.48)

where � is either �

0

1=2

or �

S

1=2

. The index formula redues to (A.34)

index L =

1

2

�

�

+

j�

+

j

�

�

�

j�

�

j

�

= Q

top

: (2.49)

In the vauum setor the index vanishes identially, in aordane with our expliit result

that there are no zero modes. In the nontrivial setors we get

index L = �1: (2.50)

For the kink bakground index L = +1 means that the number of left-handed zero

modes minus the number of right-handed zero modes is equal to one, just as we found

it in the expliit alulations: 1 � 0 = 1. Furthermore in the antikink �eld the same

di�erene is equal to minus one: 0� 1 = �1.

2.5. Results

There are �eld theories in 1 + 1 dimensional Minkowski spae, that allow for topologi-

ally nontrivial solitoni solutions. For detailed alulations we used the �

4

theory. It

ontains two vauum setors as well as two soliton setors: the kink and the antikink

1

For basi de�nitions, please onsult this appendix.
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setor. Within the vauum setors we an solve the Dira equation and �nd that the

eigenfuntions of the Hamiltonian are plane waves, starting at energies E

2

�

g

2

m

2

�

. For

smaller values of E we �nd a gap. In the soliton setors there are sattering states for

suÆiently large energies, again there is a gap around zero energy, but now there is one

normalisable eigenstate of H exatly at E = 0. The zero energy mode signals quantum

mehanial degeneray, and as a onsequene the solitons states are doublets

�

�

�

�

S

1=2

;�

E

.

The additional label � desribes a twofold degeneray (in addition to the kink/antikink

doubling) whih is required by the zero energy fermion solution. These expliit results

are in agreement with mathematial theorems whih state that in nontrivial bakground

�elds the Dira Hamiltonian always exhibits zero energy modes within its spetrum.

The e�ets of fermion frationization an be observed within the framework of solid

state physis.



3. Derrik's Theorem

Now that we have investigated the 1+1 dimensional ase in detail, we are ready to

generalize our results to higher dimensions. Consider the standard Lagrangian for a

set of time independent salar �elds (arranged as a vetor) � = f�

a

g living in a D + 1

dimensional Minkowski spae

L =

Z

d

D

x

�

1

2

�

i

� � �

i

�� U(j�j)

�

: (3.1)

The potential U shall be non-negative, and we are looking for stati, �nite energy solu-

tions. The energy is

E[�℄ =

Z

d

D

x

�

1

2

�

i

� � �

i

�

�

| {z }

U

1

[�℄

+

Z

d

D

x U(j�j)

| {z }

U

2

[�℄

: (3.2)

Both, U

1

and U

2

are non-negative. Now we introdue a one-parameter family of �eld

on�gurations de�ned by

�(x; �) � �(�x): (3.3)

For this family, the energy is given by

E

�

[�(x; �)℄ = U

1

[�(x; �)℄ + U

2

[�(x; �)℄;

= �

(2�D)

U

1

[�℄ + �

�D

U

2

[�℄: (3.4)

By Hamilton's priniple this must be stationary at � = 1. Thus,

�E

�

��

�

�

�

�

�=1

= 0;

(D � 2)U

1

[�℄ +DU

2

[�℄ = 0: (3.5)

For D > 2 this implies that both U

1

and U

2

must vanish. For D = 2 we are left with

U

2

[�℄ = 0: (3.6)

That means, that our �eld � must be a minimum of the potential everywhere. Therefore

the set of minima of the given potential U must be ontinuous, otherwise only the trivial

solution � = �

0

= onst is possible.

26
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Result: in three or more dimensions there are no stati, �nite-energy solutions at

all, in two dimensions there are solutions but only under very speial irumstanes (see

for instane the nonlinear �-model [23℄). In order to �nd solitons also within higher

dimensional theories, we have to modify the Lagrangian. This an be ahieved by the

introdution of higher spin �elds: gauge �elds. For the time being we will fous on

a 3+1 dimensional model. The simplest gauge theory, eletrodynamis or U(1) gauge

theory, in general does not ontain solitoni solutions [23℄. Thus we will deal with a

generalization of eletrodynamis: SU(2) non-Abelian gauge theory, that an be inter-

preted as a simpli�ed model of quantum hromodynamis. This theory, its solitons and

orresponding zero modes will be analysed in the next hapter.



4. The 't Hooft-Polyakov Monopole

4.1. The Model

Consider salar �elds � = f�

a

(x; t)g and vetor �elds A

a

�

(x; t) with internal spae index

a = 1; 2; 3, living in 3+1 dimensional Minkowski spae. That means for any given a

�

a

transforms as a salar and A

a

�

as a vetor under Lorentz transformations. From the

basi priniples of gauge theory we know the Lagrangian [14℄

L(x; t) = �

1

4

G

a

��

G

a��

+

1

2

(D

�

�)

a

(D

�

�)

a

�

1

4

�(�

a

�

a

� F

2

)

2

; (4.1)

with �eld tensor

G

a

��

� �

�

A

a

�

� �

�

A

a

�

+ g�

ab

A

b

�

A



�

; (4.2)

and ovariant derivative

(D

�

�)

a

� �

�

�

a

+ g�

ab

A

b

�

�



: (4.3)

The real onstants g; F; � are parameters of the model. Observe that the potential for

the salar �elds �

a

is of the �

4

type again. A

a

�

are the SU(2) gauge �elds, �

a

form the

Higgs �eld. By onstrution L is invariant under loal SU(2) gauge transformations,

whih are de�ned as follows

�

a

(x; t) ! (U(x; t))

ab

�

b

(x; t); (4.4a)

(A

a

�

(x; t)L

a

)

b

! (U(x; t))

bd

(A

a

�

(x; t)L

a

+

i

g

1l�

�

)

de

(U

�1

(x; t))

e

; (4.4b)

where

(U(x; t))

b

� (exp(�iL

a

�

a

(x; t)))

b

; (4.5)

(L

a

)

b

= i�

ab

: (4.6)

L

a

are the three generators of SU(2) in 3 � 3 matrix representation, �

a

are group pa-

rameters, varying in group spae. To solve the orresponding �eld equations is a highly

nontrivial problem sine 15 oupled nonlinear �elds are involved. From the Lagrangian

we get the equations of motion

�L

��

a

= ��(�

b

�

b

� F

2

)�

a

+ g�

ad

A

d

�

(D

�

�)



;

�L

�(�

�

�

a

)

= (D

�

�)

a

;
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therefore

(D

�

D

�

�)

a

= ��(�

b

�

b

� F

2

)�

a

: (4.7a)

Furthermore

�L

�A

a

�

= �

1

2

�

da

A



�

G

d��

�

1

2

g�

ea

A



�

G

e��

+ g�

fa

�



(D

�

�)

f

= g�

ba

�



(D

�

�)

b

� g�

da

A



�

G

d��

;

�L

�(�

�

A

a

�

)

= G

a��

;

yielding

D

�

G

a��

= g�

da

(D

�

�)

d

�



: (4.7b)

Due to the possibility of making a gauge transformation via (4.4a) and (4.4b), we an

always ahieve A

a

0

(x; t) = 0. This speial hoie of the �elds A

a

�

is alled Weyl or

temporal gauge. If we restrit ourselves to time-independent, �nite energy solutions the

equations redue to

(D

i

G

ij

)

a

= g�

ab

(D

j

�)

b

�



; (4.8a)

(D

i

D

i

�)

a

= ��(�

b

�

b

)�

a

+ �F

2

�

a

; (4.8b)

with i; j = 1; 2; 3. The energy of suh a �eld on�guration is

E =

Z

d

3

x

�

1

4

G

a

ij

G

a

ij

+

1

2

(D

i

�)

a

(D

i

�)

a

+

1

4

�(�

a

�

a

� F

2

)

2

�

: (4.9)

It reahes its minimum value E = 0 if A

a

i

(x) = 0, �

a

(x)�

a

(x) = F

2

and (D

i

�)

a

= 0, i.e.

�

i

�

a

= 0: the gauge �elds vanish and the Higgs �eld takes on its onstant vauum value.

Several other solutions related to A

a

i

= 0 by gauge transformations, but sine (4.9) is

gauge invariant, all these solutions have E = 0, too. There is a degenerate family of

E = 0 solutions related by a global SU(2) symmetry, for any solution � = f�

a

g must

have �xed magnitude j�j = F but an point in di�erent (x-dependent) diretions in

internal spae.

Solutions with �nite energy must approah vauum on�gurations at spatial in�nity

suÆiently fast:

r

3=2

D

i

� ! 0;

� � � ! F

2

;

but � needs not to go to the same diretion in internal spae when r ! 1. Why? We

require the vanishing of the ovariant derivative D

i

� and not the ordinary derivative �

i

�.

If we express the ovariant derivative in spherial polar oordinates, the �-omponent

reads

(D�)

a

�

=

1

r

��

a

��

+ g�

ab

A

b

�

�



: (4.10)
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This ombination must fall o� fast enough,

��

a

��

needs not vanish as r !1 itself. A

a

i

�

1

r

for large r is onsistent with E <1, sine

E �

Z

d

3

x G

a

ij

G

a

ij

�

Z

dr d� d'

1

r

4

r

2

sin � �

Z

dr

r

2

<1: (4.11)

4.2. Topology

Result: di�erent internal diretions are allowed for � at spatial in�nity whereas the

modulus of � is �xed. We an identify the values of � at spatial in�nity with the

two dimensional sphere S

2

int

in internal spae, sine � � � = F

2

. Sometimes this is

alled vauum-manifold and we an identify S

2

int

' SU(2)=U(1). On the other hand the

boundary of the three dimensional physial spae is a sphere S

2

phys

with radius1. This

is in one-to-one orrespondene with the topology of the solutions of the �

4

theory, if we

replae S

0

by S

2

! As before we an draw the onlusion: the requirement E <1 permits

only those �eld on�gurations � that are related to nonsingular mappings S

2

phys

! S

s

int

.

Again we would like to lassify all possible solutions. In order to do so we have to

borrow some fats from topology. Let �

n

(S

m

) be the n-th homotopy group assoiated

with mappings S

n

! S

m

[23, 36℄. Eah element of this group orresponds to a whole

lass of funtions S

n

! S

m

, all funtions within this lass an be ontinuously deformed

into one another. For small integers n and m the homotopy groups are known and

tabulated [37℄. It turns out that �

2

(S

2

), the group that is relevant for our onsiderations,

is isomorphi to the group of integers,

�

2

(S

2

) ' Z: (4.12)

I.e. eah �nite energy solution belongs to a ertain lass of funtions (referred to as

a setor). These lasses are numbered serially by integers Q

top

. As in hapter 2 these

integers are alled topologial harges. Q

top

ounts how often S

2

int

is overed, when S

2

phys

is traversed one. Aording to the famous paper of Arafune, Freund and Goebel

[38℄ we an de�ne a onserved urrent

k

�

=

1

8�

�

����

�

ab

�

�

^

�

a

�

�

^

�

b

�

�

^

�



; (4.13)

where

^

�

a

�

�

a

j�j

: (4.14)

Beause of the antisymmetry of �

����

we have �

�

k

�

= 0, this onservation therefore

follows by onstrution, not from the dynamis, k

�

is not a Noether urrent. Assoiated

with k

�

is a onserved harge

Q

top

=

Z

d

3

x k

0

=

1

8�

Z

S

2

phys

d

2

�

i

(�

ijk

�

ab

^

�

a

�

j

^

�

b

�

k

^

�

a

); (4.15)
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whih turns out to be exatly our previously de�ned topologial harge. For a detailed

analysis and a proof see Rajaraman's book [23℄.

In the Q

top

= 0 setor � will tend to the same value as r ! 1 in any diretion or to

some (�; ')-dependent value that an be deformed so as to be (�; ')-independent. The

trivial vauum solution �

a

= Æ

3a

F belongs to Q

top

= 0.

Figure 4.1.: The hedgehog solution.

An example for the Q

top

= 1 setor is the so alled hedgehog solution, f. Figure 4.1:

here � is pointing radially outward, the internal diretion of the �eld is parallel to the

oordinate vetor.

4.3. Monopoles

Why should we all these solitons magneti monopoles? To see this, let us �rst go to

eletrodynamis. In Maxwell's theory we have the equation of motion

�

�

F

��

= 4�j

�

(4.16)

and the Bianhi identity

�

�

~

F

��

=

1

2

�

����

�

�

F

��

= 0: (4.17)

That means, there is an eletri urrent j

�

but no magneti urrent j

�

mag

. Therefore

there are no magneti monopoles in this theory and the symmetry between eletri and

magneti �elds somehow is broken. But there is the possibility to introdue magneti

monopoles and a magneti urrent by hand into these equations in order to improve the
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symmetry:

�

�

F

��

= 4�j

�

;

�

�

~

F

��

= 4�j

�

mag

: (4.18)

The onsequenes have been studied by Dira [39, 40℄ and Shwinger [41℄. Quan-

tum theory only permits eletri and magneti harges q and m that ful�ll the Dira

quantization ondition

m� q = n; n 2 Z: (4.19)

Furthermore a so alled Dira string arises. But these issues will not be disussed here.

In non-Abelian SU(2) gauge theory a magneti urrent is present without having to alter

the Lagrangian or the �eld equations at all. The Maxwell theory is a theory with a loal

Abelian U(1) symmetry. This U(1) is a subgroup of our SU(2). Is it possible to imbed

an eletromagneti system as part of a riher system? What is the eletromagneti �eld

in this ase? Piking A

3

�

as the Maxwell potential is not gauge invariant. 't Hooft [42℄

presented a de�nition for the eletromagneti �eld

F

��

�

^

�

a

G

a

��

�

1

g

�

ab

^

�

a

(D

�

^

�)

b

(D

�

^

�)



; (4.20)

whih is gauge invariant and in regions where

^

�

a

= Æ

a3

it redues to F

��

= �

�

A

3

�

��

�

A

3

�

.

Now we determine the dual of F and its divergene

~

F

��

�

1

2

�

����

F

��

; (4.21)

�

�

~

F

��

=

1

2

�

����

�

�

F

��

=

1

2g

�

����

�

ab

�

�

^

�

a

�

�

^

�

b

�

�

^

�



=

4�

g

k

�

= 4�j

mag

�

: (4.22)

Therefore

k

�

g

is our magneti urrent with k

�

being the topologial urrent de�ned in

(4.13). The magneti �eld

B

i

=

1

2

�

ijk

F

jk

(4.23)

has the property

�

i

B

i

=

1

2

�

ijk

�

i

F

jk

=

4�

g

k

0

; (4.24)

hene the total magneti harge is equal to

m =

Z

d

3

x

k

0

g

=

Q

top

g

; (4.25)

where Q

top

is the topologial harge (4.15).
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4.4. The Q

top

=1 Example of 't Hooft and Polyakov

The previous topologial onsiderations an be done without really solving the equations

of motions. This will be the next step. We would like to use symmetry arguments in

order to simplify the equations (4.8a) and (4.8b). Our solution shall be invariant under

rotations up to gauge transformations, i.e. after a rotation R the �elds � and A

a

i

are

reovered if one makes use of an appropriate global gauge transformation U at the same

time. We demand:

�(x) = U(R)�(R

�1

x)U

�1

(R); (4.26a)

A(x) = U(R)RA(R

�1

x)U

�1

(R): (4.26b)

The most general ansatz obeying this requirement is [43℄

�

a

(x) = Æ

ia

x

i

r

F (r); (4.27a)

A

a

i

(x) = �

aij

x

j

r

W (r) + Æ

a

i

W

1

(r) + x

i

x

a

W

2

(r); (4.27b)

but in our ase this an be redued to [23℄

�

a

(x) = Æ

ia

x

i

r

F (r); (4.28a)

A

a

i

(x) = �

aij

x

j

r

W (r); (4.28b)

where F (r) and W (r) have to be hosen in suh a way, that the �eld equations are

satis�ed. With the asymptotis F (r ! 1) ! F and W (r ! 1) !

1

gr

it mathes all

earlier requirements inluding boundary onditions. In the next step we will hek that

this partiular � �eld belongs to the Q

top

= 1 setor by alulating the magneti �eld

at large distanes r ! 1. Plugging in our ansatz and the orrensponding asymptoti

behaviour of F and W into the equations

B

i

=

1

2

�

ijk

F

jk

; (4.29)

F

ij

=

^

�

a

�

i

A

a

j

�

^

�

a

�

j

A

a

i

+ g�

ab

^

�

a

A

b

i

A



j

�

1

g

�

ab

(D

�

^

�)

b

(D

�

^

�)



; (4.30)

yields after a lengthy but straightforward alulation:

F

ij

!

1

gr

2

�

aji

x̂

a

; (4.31)

B

i

!

1

2

�

ijk

1

gr

2

�

akj

x̂

a

=

1

gr

2

x̂

i

; (4.32)

in the limit r!1. This orresponds to a magneti monopole of strenght

1

g

in aordane

with Q

top

= 1. Beause A

a

0

= 0 and all �elds are time independent we have F

0i

= 0,
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therefore no eletri �eld is present. Our solution arries magneti but no eletri harge.

We still have to solve the �eld equations to determine the shape of the funtions F (r)

and W (r). The partiular ansatz redues them to ordinary di�erential equations

r

2

K

00

(r) = K(r)(K

2

(r)� 1) +H

2

(r)K(r); (4.33a)

r

2

H

00

(r) = 2H(r)K

2

(r) + �H(r)(

1

g

2

H

2

(r)� r

2

F

2

); (4.33b)

where

K(r) � 1� grW (r); (4.34a)

H(r) � grF (r); (4.34b)

and prime denotes di�erentiation with respet to the argument r. This is a set of oupled

non-autonomous di�erential equations. Although muh simpler than the parent �eld

equations, these are still not easy to solve. Only in the Bogomolny-Prasad-Sommer�eld-

limit (BPS-limit) �! 0 the exat solutions are known [44, 45℄. In this limit we have

K(r) =

rgF

sinh(rgF )

; (4.35a)

H(r) =

rgF

tanh(rgF )

� 1: (4.35b)

This orresponds to

W (r) =

1

gr

�

F

sinh(rgF )

; (4.36a)

F (r) =

F

tanh(rgF )

�

1

gr

: (4.36b)

The shapes of these funtions are shown in Figure 4.2, with the speial hoie of pa-

rameters g = 1 and F

�1

= 1 unit of length. As it must be, F (r) approahes its vauum

value F for large r, and W (r) goes to zero like

1

r

in the same limit.

In the BPS-limit, where the potential energy of the Higgs �eld vanishes with �, we an

dedue a lower bound on the energy [23, 46℄. Let us alulate

E =

Z

d

3

x

�

1

4

G

a

ij

G

a

ij

+

1

2

(D

k

�)

a

(D

k

�)

a

�

=

1

4

Z

d

3

x

�

G

a

ij

� �

ijk

(D

k

�)

a

�

2

+

1

2

Z

d

3

x �

ijk

G

a

ij

(D

k

�)

a

| {z }

I

(4.37)

Now we integrate the seond integral by parts:

I =

1

2

Z

d

3

x �

ijk

�

k

�

G

a

ij

�

a

�

�

1

2

Z

d

3

x �

ijk

�

a

(D

k

G

ij

)

a

=

1

2

Z

d

3

x �

ijk

�

k

�

G

a

ij

�

a

�

�

Z

d

3

x �

a

(D

k

~

G

0k

)

a

=

1

2

I

S

2

d�

k

(�

kij

G

a

ij

�

a

); (4.38)
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P

S

f

r

a

g

r

e

p

l

a

c

e

m

e

n

t
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F (r)

W (r)

r
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:

9

F

0:8

0:6
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0
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4
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Figure 4.2.: The funtions W(r) and F(r).

where we used the Bianhi identity

D

�

~

G

��

= 0;

~

G

a��

=

1

2

�

����

G

a

��

: (4.39)

The total energy is

E =

1

4

Z

d

3

x

�

G

a

ij

� �

ijk

D

k

�

a

�

2

+

1

2

I

S

2

d�

k

�

�

kij

G

a

ij

�

a

�

; (4.40)

and the surfae integral an be rewritten again. Consider

F

��

=

^

�

a

G

a

��

�

1

g

�

ab

^

�

a

(D

�

^

�)

b

(D

�

^

�)



: (4.41)

In the limit r !1 we have:

D

�

�

a

! 0;

^

�

a

!

�

a

F

;

B

k

=

1

2

�

kij

F

ij

!

1

2F

�

kij

G

a

ij

�

a

:

Therefore

I = F �

I

S

2

d�

k

B

k

= 4�mF =

4�Q

top

F

g

; (4.42)

thus

E =

4�Q

top

F

g

+

1

4

Z

d

3

x

�

G

a

ij

� �

ijk

(D

k

�)

a

�

2

�

4�Q

top

F

g

: (4.43)
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In any given Q

top

setor the energy E is minimized if and only if the Bogomolny ondition

G

a

ij

= �

ijk

(D

k

�)

a

(4.44)

is satis�ed. If the �elds satisfy these equations, then they minimize the stati energy in

the orresponding Q

top

setor, therefore they form a lassial solution in that setor. We

an hek that the BPS-solution ((4.36a), (4.36b)) minimizes the energy in the Q

top

= 1

setor: aording to (4.9) the mass of the monopole is

M = E =

4�F

g

� 1

!

=

4�F

g

�Q

top

: (4.45)

For Q

top

> 1 or � 6= 0 no expliit solutions are available so far [47℄. Numerial work

and arguments given by 't Hooft [42℄ and Polyakov [48℄ in their original papers indiate

that nonsingular, �nite energy solutions exist also for Q

top

= 1 and � 6= 0. For expliit

alulations we have to restrit ourselves to the monopole �eld with magneti harge

Q

top

= 1.

4.5. Fermioni Quantization

Now that we identi�ed the 't Hooft-Polyakov monopoles as partiular topologially in-

teresting solutions of the Yang-Mills-Higgs equations of motion ((4.8a), (4.8b)), we will

analyse fermions moving in the bakground of suh monopoles, as we did in the �

4

theory.

Due to lak of analytial solutions for higher harges Q

top

we will restrit ourselves to this

expliit example, losely following the alulations of Jakiw and Rebbi [26℄. Again we

use a Yukawa like oupling and an interpret the soliton �eld as spae-dependent mass.

We start with the Lagrangian

L = L

YMH

+ L

 

; (4.46)

where

L

YMH

= �

1

4

G

a

��

G

a��

+

1

2

(D

�

�)

a

(D

�

�)

a

�

1

4

�(�

a

�

a

� F

2

)

2

; (4.47)

L

 

= i

�

 

n



�

(D

�

 )

n

� gG

�

 

n

T

a

nm

 

m

�

a

: (4.48)

The ovariant derivative ats on spinors  as follows:

(D

�

 )

n

= �

�

 

n

� igA

a

�

T

a

nm

 

m

: (4.49)

Here g is the dimensionless Yang-Mills oupling onstant, G haraterizes the strength

of the Yukawa oupling and is dimensionless, too. F is the vauum expetation value

of the Higgs �eld � = f�

a

g as before. The matries T

a

, a = 1; 2; 3, haraterize the

transformation properties of the fermions with respet to SU(2) isospin rotations. We

have

Æ

a

 

n

= iT

a

nm

 

m

;

[T

a

; T

b

℄ = i�

ab

T



: (4.50)
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Currently we are interested in the fundamental and adjoint representation, with T

a

nm

=

1

2

�

a

nm

and T

a

nm

= i�

nam

respetively. The Dira equation in the external potential of the

't Hooft-Polyakov monopole is

�

� � pÆ

nm

+ gW (r)T

a

nm

(��
^
r)

a

+ gGF (r)T

a

nm

r̂

a

�

�

 

m

= E 

n

: (4.51)

Rewrite the spinor in omponents

 

n

=

�

�

+

n

�

�

n

�

; (4.52)

then equation (4.51) beomes

H

nm

�

�

m

=

�

� � pÆ

nm

+ gW (r)T

a

nm

(� �
^
r)

a

� igGF (r)T

a

nm

r̂

a

�

�

�

m

= E�

�

n

; (4.53)

sine we have hosen the following representation of the Dira matries:

� =

�

0 �

� 0;

�

; � = �i

�

0 1l

�1l 0

�

: (4.54)

This is a quite unusual representation, but suitable for the appliation of the Callias-

Bott-Seeley index theorem [34, 35℄, as we will see afterwards

1

.

The operator J = j+ I = l+ s+ I, the sum of orbital momentum, spin and isospin

ommutes with the Hamiltonian H in (4.53). The operators are expliitly given by

l

i

=

1

i

�

ijk

x

j

�

k

; (4.55a)

s

i

=

1

2

�

i

; (4.55b)

(I

i

)

nm

=

�

1

2

(�

i

)

nm

for isospinor fermion �elds and

i�

imn

for isovetor fermion �elds

: (4.55)

The onservation of the total angular momentum follows from the spherial symmetry

of the bakground �eld, f. [49℄ and an be heked by a lengthy alulation.

4.5.1. Isospinor Fermion Fields

With isospinor fermion �elds the Dira equation may be written

E�

�

in

= (� � p)

ij

�

�

jn

+

1

2

gW (r)(� �
^
r)

a

ij

�

a

nm

�

�

jm

�

1

2

igGF (r)�

a

nm

r̂

a

�

�

im

= (� � p)

ij

�

�

jn

+

1

2

gW (r)(� �
^
r)

a

ij

�

�

jm

((�

a

)

T

)

mn

�

1

2

igGF (r)�

�

im

((�

a

)

T

)

mn

r̂

a

:

Upon de�ning 2� 2 matries M

�

by

�

�

in

=M

�

im

�

2

mn

(4.56)

1

f. appendix A
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and using �

2

�

>

= ���

2

, one obtains for M

�

the matrix equation

� � pM

�

�

1

2

gW (r)(� �
^
r)

a

M

�

�

a

�

1

2

igGF (r)M

�

�

a

r̂

a

= EM

�

: (4.57)

Now we expandM

�

in terms of two salar and two vetor funtions (writing them as a

sum over the identity and Pauli matries):

M

�

im

(r) = g

�

(r)Æ

im

+ g

�

a

(r)�

a

im

: (4.58)

The equation (4.57) is then equivalent to the following two equations

(�

a

� gW (r)r̂

a

�

1

2

gGF (r)r̂

a

)g

�

+ i�

ab

(�

b

�

1

2

gGF (r)r̂

b

)g

�



= iEg

�

a

;

(�

a

+ gW (r)r̂

a

�

1

2

gGF (r)r̂

a

)g

�

a

= iEg

�

: (4.59)

Now we show how the existene of zero-energy solutions an be investigated diretly

from (4.59). Let us multiply the �rst equation with (�

a

�

1

2

gGF (r)r̂

a

) and set E = 0:

(�

a

�

1

2

gGF (r)r̂

a

)(�

a

� gW (r)r̂

a

�

1

2

gGF (r)r̂

a

)g

�

= 0: (4.60)

In order to simplify this, de�ne

g

�

(r) = exp

�

1

2

g

Z

r

0

dr

0

W (r

0

)

�

~g

�

(r); (4.61)

then (4.60) takes the form

0 = K

ay

�

K

a

�

~g

�

; (4.62)

K

a

�

= p

a

+

1

2

igW (r)r̂

a

� igGF (r)r̂

a

: (4.63)

But the operators K

ay

�

K

a

�

(no sum) are non-negative; it follows that any solution to

(4.62) must satisfy

K

a

�

~g

�

= 0; (4.64)

whih implies

~g

�

(r) = N

�

exp

�

1

2

g

Z

r

0

dr

0

�

W (r

0

)�GF (r

0

)

�

�

: (4.65)

Sine ~g

�

(r) inreases exponentially for r!1, we must have N

�

= 0. Substituting the

solution into (4.61) we �nd

g

+

(r) = N

+

exp

�

g

Z

r

0

dr

0

�

W (r

0

)�

1

2

GF (r

0

)

�

�

� Y

00

: (4.66)
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In the full partial wave analysis of the problem [26℄ this orresponds to the J = 0 partial

wave setor, as it should by symmetry arguments. Therefore our solution to the zero

energy equation is

M

+

im

(r) = g

+

(r)Æ

im

= N

+

exp

�

g

Z

r

0

dr

0

�

W (r

0

)�

1

2

GF (r

0

)

�

�

Æ

im

: (4.67)

Our zero mode wave funtion is of the form

�

+

in

= M

+

im

�

2

mn

= N

+

exp

�

g

Z

r

0

dr

0

[W (r

0

)�

1

2

GF (r
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)℄

�

�

2

in

= N

+

exp

�

� g

Z

r

0

dr

0

[

1

2

GF (r

0

)�W (r

0

)℄

�

� fs

+

i

s

�

n

� s

�

i

s

+

n

g; (4.68)

where

s

+

=

�

1

0

�

; s

�

=

�

0

1

�

: (4.69)
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Figure 4.3.: The zero mode pro�le (dashed line) and its density distribution.

The label i refers to Dira indies and n to the isospin omponents. Spin and isospin

form an antisymmetri singlet. The degrees of freedom of the spontaneously broken

isospin symmetry survive as spin degrees of freedom, and ouple to Dira spin ('spin

from isospin', f. [50℄). The radial pro�le of the zero mode and its density distribution

are shown in Figure 4.3, here the spei� hoie of parameters is g = G = 1 and F

�1

= 1

unit of length. Fermion number onjugation is realized by

 

C

n

=

�

�

2

0

0 ��

2

�

�

2

nm

 

�

m

: (4.70)
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Our zero mode is fermion number self onjugate, sine onjugation simply reverses the

sign of the energy in (4.53).

4.5.2. Isovetor Fermion Fields

In the isovetor example we have T

a

nm

= i�

nam

and n; m take on values 1; 2; 3. The

Dira equation is of the form

�

(� � p)Æ

nm

� gW (r)r̂

n

�

m

+ gW (r)�

n

r̂

m

� igGF (r)�

nam

r̂

a

�

�

�

m

= iE�

�

n

: (4.71)

Now we are looking for zero modes E = 0 and basially have to repeat the former

analysis. Now the equations are more ompliated, so the results an not be given in

losed analyti form. Jakiw andRebbi [26℄ again applied a partial wave deomposition

and showed that there are no zero modes for total angular momentum J >

1

2

. However,

for J =

1

2

, two linear independent zero modes our. They have the following form: the

lower omponents vanish as in the isospinor ase, and the upper omponent reads

�

+

n

= N

�

f

2

(r)�

n

+ (f

1

(r)� f

2

(r))r̂

n

� �
^
r

�

�; (4.72)

where either � = s

+

or � = s

�

, f. (4.69). f

1

(r) and f

2

(r) are determined as follows.

Let us onsider the exponentially dereasing, nonasymptoti part of W (r):

�(r) �

1

r

� gW (r); (4.73)

and de�ne

H(r) =

1

2

�

gGF (r)�

�

0

(r)

�(r)

�

1

r

�

: (4.74)

H(r) vanishes at r = 0 and tends to a positive onstant for large r. Now solve the

di�erential equation

�u

00

(r) + (H

2

(r) +H

0

(r) + 2�

2

(r))u(r) = 0; (4.75)

for u(r) and take the solution that is regular at the origin. The funtions f

1

(r) and f

2

(r)

are given in terms of u(r) [26℄:

f

1

(r) =

1

r

2

u(r) exp

�

�

Z

r

0

dr

0

H(r

0

)

�

; (4.76)

f

2

(r) =

1

2r

2

�(r)

d

dr

�

r

2

f

1

(r)

�

: (4.77)

f

2

inreases exponentially, whereas f

1

goes to zero like r

�2

. Jakiw and Rebbi [26℄

showed that by onstrution these spinors are zero energy solutions of the Dira equation.
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The twofold degeneray of the isovetor solution indiates that the solution has spin

1

2

.

With our hoie of Dira matries (4.54), fermion number onjugation is realized by

 

C

n

=

�

�

2

0

0 ��

2

�

 

�

n

: (4.78)

As before the only e�et of this onjugation, applied to our Dira equation (4.53), is

a hange of sign in the energy. Therefore our zero modes are fermion number self-

onjugate.

4.6. Index Theorem

We an apply the Callias-Bott-Seeley index theorem [34, 35℄ to our monopole bak-

ground �eld, too

2

. For massless fermions, isospinor T =

1

2

and isovetor T = 1 ase, we

get for monopoles within the Q

top

setor the following results. The index of the operator

L, whih is onstruted out of the Hamiltonian H, the di�erene in number of left- and

right-handed zero modes, is given by (A.50):

index L =

�

T (T + 1)� fmg(fmg + 1)

�

Q

top

:

In the isospinor ase

T =

1

2

; fmg = �

1

2

; Q

top

= 1; index L =

1

2

3

2

+

1

2

1

2

= 1;

and indeed we found one left-handed normalizable zero mode (and no right-handed one).

In the isovetor ase

T = 1; fmg = 0; Q

top

= 1; index L = 1 � 2� 0 = 2;

again in agreement with our expliit results.

Remark: The same alulations an be arried out with mass term m

�

 

n

 

n

in the

Lagrangian. Now the existene of zero modes depends on the relation of the oupling

onstants. Zero modes are present, if the mass is suÆiently small, m < gGF . This an

be heked expliitly [51℄ and on the other hand is ontained in the general form of the

index theorem [34℄.

Furthermore the index theorem an be used to determine the number of parameters

needed to ompletely desribe a monopole: aording to Weinberg [52℄ the dimension

of the moduli spae of a given monopole on�guration with harge Q

top

is equal to twie

the number of zero energy modes of fermions in the adjoint representation. Therefore

this on�guration belongs to a 4Q

top

�1 parameter family of solutions (after subtration

of an overall harge rotation, whih is of no physial signi�ane).

2

For de�nitions and detailed alulations see Appendix A.
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4.7. Some Remarks on the Julia-Zee Dyon

Julia and Zee [53℄ reognized, that there are also dyons, i.e. eletrially and magneti-

ally harged soliton solutions within this model. Instead of A

a

0

= 0 one takes

A

a

0

(x) =

x

a

gr

2

J(r); (4.79)

with J(r)! 0 as r ! 0. Now the �eld equations read

r

2

K

00

(r) = K(r)(K

2

(r)� J

2

(r) +H

2

(r)� 1); (4.80a)

r

2

H

00

(r) = 2H(r)K

2

(r) + �H(r)(

1

g

2

H

2

(r)� r

2

F

2

); (4.80b)

r

2

J

00

(r) = 2J(r)K

2

(r): (4.80)

Again these equations an be solved in the BPS-limit �! 0 only. The solutions are [45℄

K(r) =

rgF

sinh(rgF )

; (4.81a)

H(r) = osh 

�

rgF

tanh(rgF )

� 1

�

; (4.81b)

J(r) = sinh

�

rgF

tanh(rgF )

� 1

�

; (4.81)

with an arbitrary real onstant . The eletri harge is

q =

Z

d

3

x �

i

E

i

= �

8�

g

Z

1

0

dr

J(r)K

2

(r)

r

=

4�

g

sinh: (4.82)

Nevertheless the asymptoti magneti �eld is the same and

m =

1

g

: (4.83)

This on�guration redues to the 't Hooft-Polyakov monopole in the limit  ! 0. Now

we an analyze the properties of fermions within the dyon bakground as well. This was

also done by Jakiw and Rebbi [26℄. The main results are the following: the Dira

equation (4.53) now aquires on the right-hand side an additional term T

a

nm

r̂

a

J(r)

r

 

m

.

The omplexity of the equations prevents us from solving them expliitly. However, the

zero-energy solutions ontinue to exist, for both isospinor and isovetor fermions. The

lower omponents no longer vanish but the upper one keep their shape. Fermion number

onjugation remains una�eted by this and the zero energy solutions are self-onjugate.

The expliit onstrution of the zero modes is given in the paper by Gonzalez-Arroyo

and Simonov [54℄.
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4.8. Quantum Interpretation

A full quantum �eld theoretial treatment of the fermion-monopole system is quite

diÆult [55, 23℄. But in analogy to the kink ase we an dedue the following properties:

the Hilbert spae onsists of trivial parts, onstruted around the vaum solutions

of the Yang-Mills-Higgs equations of motion, and nontrivial parts, onstruted around

monopoles of harge Q

top

= �1;�2; : : :. The 't Hooft-Polyakov monopole of harge

Q

top

= 1 as well as the orresponding dyon hange their properties if fermions are

present. The monopole beomes a degenerate doublet with fermion number �

1

2

. The

solitons are spinless, sine no spin degree of freedom is found in the lassial solution.

In the isovetor ase we �nd a fourfold degeneray, beause now an additional spin-

1

2

degree of freedom is present. Therefore we expet to �nd two operators a

s

with s = �

1

2

.

The basi feature, that the antiommutation relation fa

s

; a

y

s

g = 1 for eah s requires two

states j�i arrying fermion number n = �

1

2

remains true also in this ase. But sine we

have now two independent pairs of operators, the soliton states will be produt vetors

of the form jii ji

0

i with fermion numbers +1 for j+i j+i, �1 for j�i j�i and 0 for j+i j�i

and j�i j+i. Thus there are four degenerate soliton states.

4.9. Results

We analysed the SU(2) Yang-Mills-Higgs equations of motion and were able to las-

sify all solutions of the orresponding �eld equations aording to their topologial

harges Q

top

. Spherial symmetry allows for an analytial desription of the Q

top

= 1-'t

Hooft-Polyakov monopole in the so alled BPS-limit. In the bakground �eld of suh

a monopole the Dira equation for fermions in the fundamental and adjoint represen-

tation exhibits one or two zero energy modes, respetively. This leads in lose analogy

to the �

4

theory to fermion number frationization, as well as to a degeneray of the

fermion-monopole states. All these expliit results are again in agreement with the

Callias-Bott-Seeley index theorem. Furthermore the analysis an be extended to

dyons with Q

top

= 1 and arbitrary eletri harge.



5. Instanton Fields

5.1. Eulidean Yang-Mills Theory in R

4

In this hapter we are going to analyse the Eulidean Dira equation

D=  = 

�

(�

�

+A

�

) = 0; (5.1)

in the bakground of instantons. What are instantons? Instantons are loalized �nite-

ation solutions of the lassial eulidean �eld equations of a given theory. In the fol-

lowing setions we will disuss the properties of instantons of pure SU(2) gauge theory

in Eulidean four-spae. First we are going to desribe in detail the model under on-

sideration, then we will lassify all possible solutions and �nally derive the expliit form

of the instanton bakground �elds. Afterwards we analyse how fermions behave in suh

�elds, disuss the zero modes and relate our results again to an important mathematial

theorem, the Atiyah-Singer index theorem

1

.

The Eulidean version of a theory involves replaing the Minkowskian metri g

��

by

the Eulidean metri Æ

��

. The spaetime vetor (x

�

)

Mink

is replaed by (x

�

)

Eul

. Now

the theory is left invariant under O(4) rotations rather than Lorentz transformations.

Obviously there is no di�erene between upper and lower omponents and in what follows

we will use only the latter. The requirement of �nite energy now is replaed by the

demand for �nite Eulidean ation. Pure SU(2) gauge theory means that - in ontrast

with the Yang-Mills-Higgs theory - there are no Higgs �elds present and the Lagrangian

redues to

L = �

1

4

G

a

��

G

a

��

: (5.2)

For the sueeding it is very onvenient to hoose the gauge �eld matries A

�

to be anti-

Hermitean and to absorb the oupling onstant in the �elds. Now g will only appear as a

prefator in the ation S. The value of g is unimportant for our lassial alulations. We

need to take are of it only in the ontext of quantum theory, where absolute values of S

(in units of ~) play a fundamental role for the alulation, e.g. of transition amplitudes.

Let

A

�

= g

�

a

2i

A

a

�

; (5.3)

1

f. Appendix B.

44
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where the generators satisfy

�

�

a

2i

;

�

b

2i

�

= �

ab

�



2i

: (5.4)

The Eulidean ation of a given �eld on�guration A

�

is

S =

1

4g

2

Z

d

4

x G

a

��

G

a

��

= �

1

2g

2

Z

d

4

x tr

�

G

��

G

��

�

; (5.5)

with this de�nition S is non-negative. Independent of the hoosen gauge (remember the

gauge freedom desribed in hapter 4, the same holds here) we an de�ne the zero ation

on�gurations. They are given by

G

��

(x) = 0: (5.6)

This is realized by

A

�

(x) = 0; (5.7)

but while (5.6) is a gauge invariant statement, (5.7) is not. With A

�

= 0 also the gauge

transformed �eld

A

0

�

(x) = U(x)(A

�

(x) + �

�

)U

�1

(x) = U(x)�

�

U(x)

�1

(5.8)

desribes a zero ation on�guration. Fields of the form (5.8) are alled pure gauges.

Here U(x) is any element of SU(2) in its 2 � 2 matrix representation. One an show

that G

��

= 0 if and only if A

�

is of the form (5.8) [23℄.

Finite-ation solutions must approah suh a pure gauge on�guration suÆiently

fast at spatial in�nity. In fat G

��

must fall to zero faster than

1

r

2

, where

r

2

= x

�

x

�

= x

2

1

+ x

2

2

+ x

2

3

+ x

2

4

is the radius in four dimensions. This implies the boundary onditions

lim

r!1

A

�

(x) � U(x)�

�

U

�1

(x); (5.9)

and we an assign to every �nite-ation on�guration A

�

an SU(2) valued funtion U at

spatial in�nity. Spatial in�nity orresponds to a three-dimensional sphere with radius

r =1 and is alled S

3

phys

.

Sine U depends only on the Euler angles �

1

; �

2

and �

3

of S

3

phys

we annot de�ne

a radial derivative of U , whereas A

�

(x) may have a nonvanishing radial omponent at

in�nity. We an overome this diÆulty by making a gauge transformation, suh that the

radial omponent vanishes identially everywhere. Suppose A

r

6= 0 and let us onstrut

the gauge funtion

~

U(x) = P

�

exp

Z

r

0

dr

0

A

r

(x

0

)

�

; (5.10)
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where P denotes path ordering. Now alulate the radial omponent of the gauge trans-

formed �eld

A

0

r

(x) =

~

U(x)A

r

(x)

~

U

�1

(x) +

~

U(x)�

r

~

U(x)

�1

;

=

~

U(x)(A

r

(x)�A

r

(x))

~

U (x)

�1

= 0: (5.11)

Hene we an rewrite the boundary ondition (5.9)

A

0

�

(x)

�

�

�

�

S

3

phys

= U(�

1

; �

2

; �

3

)�

�

U

�1

(�

1

; �

2

; �

3

): (5.12)

This enables us to make a homotopy lassi�ation

2

. The gauge funtions U provide

mappings from the boundary of Eulidean four-spae S

3

phys

into the group spae of

SU(2) whih is known to be isomorph to a three dimensional sphere in internal spae,

sine every matrix U in the de�ning representation of SU(2) an be parametrized by

U = i(a

1

�

1

+ a

2

�

2

+ a

3

�

3

) + a

4

1l, with

P

�

a

�

a

�

= 1. That means

U : S

3

phys

! S

3

int

; (5.13)

and again we refer to topology and borrow the following two fats: �rst, the third

homotopy group of the target sphere S

3

is isomorph to the group of integers Z,

�

3

(S

3

) ' Z; (5.14)

all funtions U an be lassi�ed aording to their topologial harge, whih in this ontext

is alled Pontryagin index, Q

Pont

2 Z. With this we an also lassify all �nite-ation

solutions, aording to their behaviour at in�nity. Seond, this topologial harge for a

given �eld on�guration A

�

an be alulated via the formula

Q

Pont

=

Z

d

4

xQ

Pont

(x) = �

1

16�

2

Z

d

4

x tr

�

~

G

��

G

��

�

; (5.15)

where the dual �eld strength is de�ned as in hapter 4,

~

G

��

=

1

2

�

����

G

��

: (5.16)

2

Furthermore the boundary onditions allow for an e�etive ompati�ation R

4

! S

4

. This will

turn out to be important, sine the Atiyah-Singer index theorem, whih we are going to disuss

afterwards, is appliable only in the ase of ompat manifolds.
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Q

Pont

(x) an be rewritten in the following way

tr G

��

~

G

��

= tr

�

(�

�

A

�

� �

�

A

�

)

~

G

��

+ (A

�

A

�

�A

�

A

�

)

~

G

��

�

= tr

�

(�

�

A

�

� �

�

A

�

)

~

G

��

+A

�

[A

�

;

~

G

��

℄

�

= tr

�

(�

�

A

�

� �

�

A

�

)

~

G

��

�A

�

�

�

~

G

��

�

= tr �

����

�

(�

�

A

�

)(�

�

A

�

+A

�

A

�

)� �

�

(A

�

�

�

A

�

+A

�

A

�

A

�

)

�

= tr �

����

2�

�

�

A

�

�

�

A

�

+

2

3

A

�

A

�

A

�

�

; (5.17)

where we used D

�

~

G

��

= 0 and

tr �

����

(�

�

A

�

)A

�

A

�

=

1

3

tr �

����

�

�

(A

�

A

�

A

�

):

Finally

Q

Pont

(x) = �

�

k

�

; (5.18)

k

�

= �

1

8�

2

�

����

tr A

�

�

�

�

A

�

+

2

3

A

�

A

�

�

: (5.19)

In regular gauge (i.e. no singularities in the interior) we an use Stokes theorem to get

Q

Pont

=

Z

d

4

x Q

Pont

(x) =

I

S

3

phys

d�

�

k

�

: (5.20)

On the surfae at in�nity we have G

��

= 0, therefore

0 = �

����

G

��

= 2�

����

(�

�

A

�

+A

�

A

�

); (5.21)

leading to

Q

Pont

=

1

24�

2

I

S

3

phys

d�

�

�

����

tr (A

�

A

�

A

�

)

=

1

24�

2

I

d�

�

�

����

tr

�

U(�

�

U

�1

)U(�

�

U

�1

)U(�

�

U

�1

)

�

: (5.22)

A oneptional proof that Q

Pont

really ounts, how often the target spae S

3

int

is overed

when the basis spae, i.e. the boundary S

3

phys

, is traversed one, is given in [23℄.

Remark: we an distort the boundary S

3

into a large ylinder with spaelike hy-

persurfaes R

3

orresponding to the oordinates x

i

; i = 1; 2; 3, f. Figure 5.1. In Weyl

gauge, A

4

= 0, there are only ontributions from the abutting faes and the topologial
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Figure 5.1.: Boundary of spae.

harge an be alulated as the di�erene of two winding numbers (Chern-Simons num-

bers) of the gauge �eld on�guration at x

4

= �1 and x

4

= +1, respetively.

Q

Pont

= Q

CS

(+1)�Q

CS

(�1); (5.23)

where

Q

CS

=

1

16�

2

Z

d

3

x�

ijk

tr

�

A

i

�

j

A

k

+

2

3

A

i

A

j

A

k

�

: (5.24)

In this language a more suggestive interpretation is possible: �eld on�gurations with

Pontryagin index Q

Pont

start at a ertain �eld on�guration A

i

(�1) with Chern-Simons

number Q

CS

(�1). As the Eulidean time x

4

goes by, the gauge �elds evolve and end

up at a di�erent on�guration A

i

(+1), now with Chern-Simons number Q

CS

(+1) =

Q

CS

(�1) + Q

Pont

. In order for the whole gauge �eld to have �nite ation, both on-

�gurations A

i

(�1) have to be pure gauges. This �eld on�gurations, reinterpreted as

tunneling events in Minkowski spae, are alled instantons. Now we are going to derive

the expliit form of these instantons. Like in the ase of the 't Hooft-Polyakov monopole

we use a trik to solve the highly nontrivial equations of motion.

5.2. Instanton Con�gurations

Consider the inequality

�

Z

d

4

x tr

��

G

��

�

~

G

��

�

2

�

� 0: (5.25)

With

tr (G

��

G

��

) = tr (

~

G

��

~

G

��

) (5.26)
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this is equivalent to

�

Z

d

4

x tr (G

��

G

��

) � �

Z

d

4

x tr (G

��

~

G

��

); (5.27)

that is

S �

8�

2

g

2

jQ

Pont

j: (5.28)

The �eld equations are derived from the ation priniple ÆS[A

�

℄ = 0. This variation an

be done separately in every homotopy setor. S reahes its absolute minimum

S =

8�

2

g

2

jQ

Pont

j (5.29)

if and only if

~

G

��

= �G

��

: (5.30)

Field on�gurations, that satisfy (5.30) are alled selfdual �elds or anti-selfdual �elds,

respetively. Every (anti-)selfdual �eld on�guration is a solution of the equations of

motion, sine they minimize the ation S. It is muh easier to �nd a solution of the

duality equations than to solve the equations of motion.

Remark: observe that in the (anti-)selfdual ase ation S and topologial harge

Q

Pont

oinide up to a fator. Aording to the review artile by Sh

�

afer and Shuryak

[56℄ all solutions of the equations of motion that are neither selfdual nor anti-selfdual

are just saddle-points and not extrema of the ation.

Following the book by Rajaraman [23℄, we make the ansatz

A

�

(x) = i

�

�

��

�

�

log �(x) (5.31)

where

�

�

��

�

1

2

��

a��

�

a

;

and

��

a��

� �

a��

� Æ

a�

Æ

�4

+ Æ

a�

Æ

�4

are the so-alled 't Hooft symbols. Let us alulate the �eld strength and its dual

G

��

= i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �))

� i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �))� i

�

�

��

(�

�

log �)

2

; (5.32a)

~

G

��

= i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �))

� i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �)) + i

�

�

��

�

�

�

�

log �; (5.32b)
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where we used

1

2

�

����

�

�

��

= �

�

�

��

: (5.33)

Requiring

~

G

��

= G

��

is equivalent to two equations, the �rst one gives an identity, the

seond one reads

�

�

�

�

log �+ (�

�

log �)

2

= 0: (5.34a)

This an be written as

��

�

= 0: (5.35)

The only nonsingular solution for � is � = onst and therefore A

�

= 0. But singular �

will yield in addition nontrivial, nonsingular gauge �elds A

�

.

Example: for

� =

1

jxj

2

(5.36)

we alulate

�� = �4�

2

Æ

4

(x);

��

�

= 0: (5.37)

The same result holds for the more general form

�(x) = 1 +

Q

Pont

X

i=1

�

2

i

(x� a

i

)

2

; (5.38)

with real onstants a

i�

and �

i

. After a gauge transformation this will yield the Q

Pont

-

instanton solution. In the simplest nontrivial ase we get the one-instanton solution,

Q

top

= 1. Using

y

�

= x

�

� a

�

; (5.39)

we have

�(x) = 1 +

�

2

y

2

: (5.40)

The gauge �eld reads

A

�

(x) = �2i�

2

�

�

��

y

�

y

2

(y

2

+ �

2

)

= �i��

a��

�

a

�

2

y

2

(y

2

+ �

2

)

; (5.41)
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and is singular at y = 0. The singularity an be removed by a gauge transformation

mediated by

U

1

(y) =

1

jyj

(y

4

1l + iy

j

�

j

): (5.42)

We alulate

U

�1

1

�

�

U

1

= �2i

�

�

��

y

�

y

2

; (5.43)

therefore A

�

an be written

A

�

=

�

2

y

2

+ �

2

U

�1

1

�

�

U

1

; (5.44)

and after a gauge transformation we get

A

0

�

= U

1

(A

�

+ �

�

)U

�1

1

=

�

�

2

y

2

+ �

2

� 1

�

(�

�

U

1

)U

�1

1

= �

y

2

y

2

+ �

2

(�

�

U

1

)U

�1

1

=

y

2

y

2

+ �

2

U

1

�

�

U

�1

1

: (5.45)

With the abbreviations

�

��

�

1

2

�

a��

�

a

;

�

a��

� �

a��

+ Æ

a�

Æ

�4

� Æ

a�

Æ

�4

;

we an express

U

1

�

�

U

�1

1

= �2i�

��

y

�

y

2

; (5.46)

and �nally have

A

0

�

(x) = �2i�

��

y

�

y

2

+ �

2

= �2i�

��

(x� a)

�

(x� a)

2

+ �

2

= �i�

a��

�

a

(x� a)

�

(x� a)

2

+ �

2

: (5.47)

This is the gauge transformed instanton solution whih is non-singular everywhere, pro-

vided that � 6= 0. It has the following properties: the selfdual �eld strength is

G

0

��

= 2i�

a��

�

a

�

2

((x� a)

2

+ �

2

)

2

; (5.48)

for x!1 the �eld redues to a pure gauge A

0

�

! U

1

(x)�

�

U

�1

1

and the ation is

S = �

1

2g

2

Z

d

4

x tr

�

G

0

��

G

0

��

�

=

48�

4

g

2

Z

d

4

x

1

(y

2

+ �

2

)

4

=

8�

2

g

2

; (5.49)

therefore Q

Pont

= 1.



CHAPTER 5. INSTANTON FIELDS 52

The same analysis an be done for the anti-instanton, the anti-selfdual solution of

the Yang-Mills equations of motion with Q

Pont

= �1. In this ase the gauge �elds read

A

0

�

(x) = �2i

�

�

��

(x� a)

�

(x� a)

2

+ �

2

= �i��

a��

�

a

(x� a)

�

(x� a)

2

+ �

2

: (5.50)

Remark: the identi�ation instanton and anti-instanton, as well as Q

Pont

= �1 is

merely a matter of de�nition.

The �eld equations are invariant under translations, this is reeted by the four free

parameters a

�

, sale invariane leads to the emergene of one parameter �, global gauge

rotations orrespond to three free parameters. In total there are eight free parameters.

Brown, Carlitz and Lee [57℄ proved, that a solution in the Q

Pont

setor has exatly

8Q

Pont

degrees of freedom

3

. Usually the overall gauge orientation is �xed, so e�etively

the Q

Pont

instanton solution exhibits 8Q

Pont

� 3 degrees of freedom. For the Q

Pont

-

instanton solution

A

�

(x) = i

�

�

��

�

�

�

log

�

1 +

Q

Pont

X

i=1

�

2

i

y

2

i

��

; (5.51)

we �nd

S =

8�

2

g

2

�Q

Pont

: (5.52)

The ation of an Q

Pont

-instanton solution is equal to Q

Pont

times the ation of the

single instanton solution. This is a remarkable property for solutions of non-linear �eld

equations.

5.3. Fermions in Instanton Fields

Now we are ready to study the behaviour of fermions within the bakground of suh

instanton on�gurations. In partiular we are interested in zero modes of the Eulidean

Dira operator. We use the hiral representation for the  matries. In Eulidean spae

we an hoose all of them to be anti-Hermitean



i

�

�

0 �

i

��

i

0

�

; 

4

� i

�

0 1l

1l 0

�

; 

5

� �

1



2



3



4

=

�

�1l 0

0 1l

�

: (5.53)

They obey the following relations



y

�

= �

�

; f

�

; 

�

g = �2Æ

��

: (5.54)

3

They point out a remarkable onnetion between the dimension of the moduli spae of an instanton

on�guration, i.e. the number of free parameters, and the number of zero modes of fermions in the

adjoint representation of SU(2): the number of free parameters is exatly twie the number of those

zero modes. In Appendix B we show, how to ount the number of zero modes and we �nd that there

are

2

3

� 1 � (1 + 1) � (2 + 1) �Q

Pont

= 4Q

Pont

zero modes, therefore the dimension of the moduli spae

is 8Q

Pont

.
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The Hermitean Dira operator is

D= = 

�

D

�

= 

�

(�

�

+A

�

): (5.55)

Let

�

�

� (�

i

; i1l); ��

�

� (�

i

;�i1l);

with the properties

2Æ

��

= �

�

��

�

+ �

�

��

�

; (5.56a)

2i

�

�

��

= i��

a��

�

a

=

1

2

(�

�

��

�

� �

�

��

�

); (5.56b)

2i�

��

= i�

a��

�

a

=

1

2

(��

�

�

�

� ��

�

�

�

): (5.56)

The Dira operator an be written as

D= =

�

0 iD

4

+ �

i

D

i

iD

4

� �

i

D

i

0

�

=

�

0 �

�

D

�

���

�

D

�

0

�

: (5.57)

With the projetors

P

�

�

1

2

(1l� 

5

); P

+

=

�

0 0

0 1l

�

; P

�

=

�

1l 0

0 0

�

; (5.58)

the orresponding Weyl operators read

D

+

= D= P

+

=

�

0 �

�

D

�

0 0

�

; (5.59a)

D

�

= D= P

�

= D

y

+

=

�

0 0

���

�

D

�

0

�

; (5.59b)

and aording to this we de�ne the Laplaians

4

+

= D

�

D

+

=

�

0 0

0 ���

�

�

�

D

�

D

�

�

; (5.60a)

4

�

= D

+

D

�

=

�

��

�

��

�

D

�

D

�

0

0 0

�

: (5.60b)

Sine [D= ; 

5

℄ = 0 on the spae S of all zero modes, we an hoose all of them to be

eigenfuntions of 

5

as well. Let

S

�

= f : D=  = 0; 

5

 = � g (5.61)

be the set of all zero modes with positive or negative hirality, respetively. In our

representation zero modes of positive hirality have omponents

�

0 �

�

>

2 S

+

and
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are alled right-handed, whereas

�

� 0

�

>

2 S

�

have negative hirality and are alled

left-handed.

In order to analyse 4

�

, we alulate

��

�

��

�

D

�

D

�

=

1

2

(��

�

��

�

� �

�

��

�

� �

�

��

�

+ �

�

��

�

)D

�

D

�

=

1

2

(�2Æ

��

+ 4i

�

�

��

)D

�

D

�

= �D

�

D

�

+ 2i

�

�

��

[D

�

;D

�

℄

= D

2

� 2i

�

�

��

G

��

(5.62)

For selfdual �elds

�

�

��

G

��

vanishes sine

�

�

��

is anti-selfdual. D

2

= �(iD)

2

< 0 is a

negative operator

4

, as a onsequene 4

�

and D

�

do not have any zero modes. The

index of D

+

equals the total number of zero modes in an instanton �eld (the index of

D

�

equals the number of zero modes in an anti-instanton �eld). In an instanton �eld all

zero modes have positive hirality and are right-handed, in an anti-instanton �eld they

have negative hirality and are left-handed. Now we want to derive the expliit form of

those zero modes.

5.4. Expliit Form of Zero Modes

To �nd the zero modes in an instanton �eld we still have to solve the equation

�

�

D

�

� = 0: (5.63)

� is a 2 � 2 matrix beause it arries spin and isospin indies. In this derivation we

follow losely the work of Grossman [61℄. Using the fat that �

>

�

= ��

2

��

�

�

2

we an

bring the �-matries to the right an get

(�

�

+A

�

)'��

�

= 0; (5.64)

where

' = ��

2

: (5.65)

Now we take the Q

Pont

-instanton solution of the form

A

�

= i

�

�

��

b

�

; b

�

= �

�

log �;

1

�

�� = 0; (5.66)

and expand ' in terms of the �

�

(beause the �

�

form a basis of all 2� 2-matries)

' � �iM

�

�

�

: (5.67)

4

First of all D

2

is a non-positive operator, D

2

� 0. But by the very de�nition there are no zero modes

of D

�

in the Q

Pont

6= 0 setor, sine the instanton number of any reduible onnetion vanishes

[58, 59, 60℄, therefore D

2

< 0.
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Then equation (5.63) reads

2i

�

�

��

(�

�

M

�

�

1

2

b

�

M

�

) + (�

�

M

�

+

3

2

b

�

M

�

) = 0: (5.68)

Sine

�

�

��

is a traeless tensor, we an take the trae of (5.68) and get the following:

�

�

��

(2�

�

M

�

� b

�

M

�

) = 0; (5.69a)

�

�

M

�

+

3

2

b

�

M

�

= 0: (5.69b)

De�ne

N

�

� �

�1=2

M

�

; (5.70)

so the orresponding equations are

�

�

N

�

� �

�

N

�

� �

����

�

�

N

�

= 0; (5.71a)

�

�

(�

2

N

�

) = 0: (5.71b)

If we make the ansatz

N

�

� �

�

h+ g

�

; (5.72)

with �

�

g

�

= 0, we an derive g

�

from an antisymmetri (and beause of the additional

three free parameters also anti-selfdual) tensor g

�

= �

�

X

��

. From (5.71a) it follows

� X

��

= 0; (5.73)

admitting only singular ontributions or ontributions that are non-vanishing at in�nity.

Therefore we have g

�

= 0. If we furthermore set

h �

!

�

; (5.74)

then equation (5.71b) implies � ! = 0. Now we speify our � and list the possible

harmoni solutions !. Taking the form that exhibits 5Q

Pont

+ 4 degrees of freedom for

the Q

Pont

instanton on�guration

� =

Q

Pont

+1

X

i=1

�

2

i

(x� a

i

)

2

; (5.75)

one obtains Q

Pont

+ 1 solutions (yielding non-singular wave-funtions) of the form

!

(k)

=

�

2

k

(x� a

k

)

2

; k = 1; 2; : : : ; Q

Pont

+ 1: (5.76)

Although eah !

(k)

as well as � are singular, the singularities math, so that the resulting

M

(k)

�

= �

1=2

�

�

�

!

(k)

�

�

(5.77)
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are non-singular and normalizable. Finally

�

(k)

= �iM

(k)

�

�

�

�

2

; k = 1; 2; : : : Q

Pont

: (5.78)

Remark: these are only Q

Pont

independent solutions, sine

P

Q

Pont

+1

k=1

M

(k)

�

= 0.

Now let us onentrate on the Q

Pont

= 1 instanton setor again. With �

2

! 1,

ja

2

j ! 1 suh that

�

2

ja

2

j

= 1 and a

1

� a, �

1

� � and y � x� a, we have

A

�

= �i��

a��

�

a

�

2

y

�

y

2

(y

2

+ �

2

)

; (5.79)

� = �2U

�1

1

(y)

�

2

(y

2

+ �

2

)

3=2

�

2

: (5.80)

This is the gauge �eld and the orresponding zero mode in the singular gauge, f. (5.41).

After a gauge transformation bak to regular gauge via U

1

we end up with the regular

form

A

�

= �i�

a��

�

a

y

�

y

2

+ �

2

; (5.81)

� = �2

�

2

(y

2

+ �

2

)

3=2

�

2

: (5.82)

This agrees with the result by 't Hooft [62℄. The full right-handed spinor  (x) with

its four Dira and two isospin omponents is given by

 (x) �

�

2

((x� a)

2

+ �

2

)

3=2

0

B

B

B

B

B

B

B

B

B

B

�

�

0

0

�

�

0

0

�

�

0

�1

�

�

1

0

�

1

C

C

C

C

C

C

C

C

C

C

A

: (5.83)

5.5. Index Theorem

The number of fermioni zero modes in the bakground of a given Eulidean Yang-Mills

�eld on�guration with topologial harge Q

Pont

an be determined with the help of

the Atiyah-Singer index theorem [63, 64℄. The number of zero modes with positive

hirality (n

+

) minus the number of zero modes with negative hirality (n

�

), i.e. the

index of the Weyl operator D

+

, an be expressed as

5

:

index D

+

=

Z

M

D

h(G) =

1

(D=2)!

�

i

2�

�

D=2

Z

M

D

tr G

D=2

; (5.84)

5

For de�nitions and a proof see appendix B.
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whih in our ase (D = 4) redues to

index D

+

=

1

2!

�

i

2�

�

2

Z

S

4

tr G

2

= �

1

8�

2

Z

S

4

tr G

2

= �

1

16�

2

Z

d

4

xtr G

��

~

G

��

= Q

Pont

= n

+

� n

�

: (5.85)

With the help of our vanishing theorem (see setion 5.4) we an onlude, that in an

Q

Pont

instanton �eld there are exatly Q

Pont

zero modes and all of them are of positive

hirality, whereas in a jQ

Pont

j anti-instanton �eld there are jQ

Pont

j zero modes but all of

them are of negative hirality. The alulations �a la Grossman are in agreement with

the preditions of the Atiyah-Singer index theorem.

5.6. Quantum Interpretation

The existene of zero modes of the Dira operator in the instanton �elds implies some

astonishing physial e�ets. Massless fermions will lead to a suppression of the tunnel-

ing amplitude between gauge �eld on�gurations with di�erent Chern-Simons numbers.

Furthermore zero modes give rise to the so-alled level rossing, the eigenvalues of the

Dira Hamiltonian vary with time, some of them ross zero and hange their sign. These

e�ets will be disussed in the next subsetions.

5.6.1. Suppresion of Tunneling

Interpret the instantons in R

4

as tunneling events in 3+1 dimensional Minkowski spae

and let us onsider the transition from a gauge �eld on�guration with Chern-Simons

number Q

CS

(�1) at t = �1 to Q

CS

(+1) at t = +1 in the presene of massless

fermions. Quantization via the path integral formalism [65, 66, 67℄ results in the tran-

sition amplitude

hQ

CS

(�1) Q

CS

(+1)i =

Z

DA

0

�

D D

�

 expS: (5.86)

Gauge �xing terms are understood to be inluded. The prime denotes integration only

over �elds A

�

with appropriate topologial harge Q

top

= Q

CS

(+1) �Q

CS

(�1). The

ombined ation of Yang-Mills and Fermi �elds is given by

S = S

A

+ S

 

; (5.87)

S

A

= �

1

2g

2

Z

d

4

x tr G

��

G

��

;

S

 

=

Z

d

4

x

�

 D=  =

Z

d

4

x  

y



�

(�

�

+A

�

) :
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The fermions an be integrated out exatly, sine the ation depends on those �elds in

a bilinear fashion. So we get

hQ

CS

(�1) Q

CS

(+1)i = NdetD=

Z

DA

0

�

expS

A

: (5.88)

This transition amplitude vanishes identially sine the Dira operatorD= has zero modes.

Massless fermions suppress the tunneling between topologially distit vaua of the Yang-

Mills �elds. If the fermions arry mass m, all eigenvalues are shift, the determinant no

longer vanishes and tunneling is possible again.

5.6.2. The Spetral Flow

The equations of motion for a massless Dira �eld formally onserve the axial-vetor

urrent j

5

�

(x) =

�

 (x)

�



5

 (x) as well as the vetor urrent j

�

(x) =

�

 (x)

�

 (x). This

would imply hiral U(1)
 U(1) symmetry. But the bilinear produt

�

 (x) (y) diverges

in quantum �eld theory as x approahes y. Therefore one has to de�ne these urrents

more arefully, and in doing that we hoose a gauge invariant regularization. Aording

to Shwinger [68℄ this an be done by separating the two points slightly

j

5

�

=

�

 

�

x+

1

2

�

�



�



5

P

�

exp

�

�

Z

x+

1

2

�

x�

1

2

�

A

�

dx

0

�

��

 

�

x�

1

2

�

�

; (5.89)

similarly for j

�

. If one alulates the divergene of both rede�ned urrents one gets [23℄

�

�

j

�

(x) = 0; (5.90)

�

�

j

5

�

(x) =

i

8�

2

tr G

��

~

G

��

= �2i�

�

k

�

= �2iQ

Pont

(x); (5.91)

where Q

Pont

(x) is the Pontryagin density. The divergene of the axial-vetor urrent

no longer vanishes at the quantum level, the lassial symmetry is violated and we

entountered what is alled an anomaly. The appropriate Noether harge, whih is not

onserved anymore, is the so-alled axial harge Q

5

, whih is equal to the number of

partiles with positive hirality minus the number of partiles with negative hirality:

Q

5

=

Z

d

3

xj

5

0

: (5.92)

For the hange in Q

5

we get from (5.91)

4Q

5

� Q

5

(t = +1)�Q

5

(t = �1) = 2Q

Pont

: (5.93)

This hange is equal to two times the Pontryagin index of the bakground �eld: instan-

tons ause the axial harge to hange. How an one understand this?

Consider the Dira Hamiltonian H in Weyl gauge, whih is given by

H = ��

4

 = �

4



i

(�

i

+A

i

) = �i�

i

D

i

 ; (5.94)
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and depends on x

4

via the gauge �elds. For eah �xed value of x

4

we an solve the

eigenvalue equation

H(x

4

) 

x

4

(x) = �(x

4

) 

x

4

(x): (5.95)

We know that the Hamiltonians at x

4

= �1 and x

4

= +1 in the instanton bakground

di�er only by a unitary gauge transformation. Therefore they have the same spetrum.

But as the 'time' x

4

goes by these eigenvalues are subjet to hange and a partiular

eigenmode needs not to ome bak to its starting value but may be shifted upwards or

downwards.

The spetral ow of H is de�ned as the number of modes hanging their negative

energy eigenvalues to positive ones minus the number of modes hanging their eigenvalues

the other way round. A generalization of the Atiyah-Singer index theorem by Atiyah,

Patodi and Singer immediately leads to the following

Theorem: Spetral Flow

The number of zero modes of the Dira operator is equal to the spetral ow of the Dira

Hamiltonian.

A rigorous mathematial proof an be found in the literature [69℄. Here we are going

to use some physial arguments in order to substantiate this theorem. Let us assume that

the bakground �elds are slowly-varying and allow for an adiabati approximation

6

. We

rewrite the wave funtion, by separating the x

4

oordinate, as the produt of a funtion F

whih depends solely on x

4

and a funtion  

x

4

whih depends on the spatial oordinates

x = fx

1

; x

2

; x

3

g and parametrially on x

4

:

 (x; x

4

) = F (x

4

) 

x

4

(x); (5.96)

we have

��

4

F (x

4

) 

x

4

(x) = HF (x

4

) 

x

4

(x) = �(x

4

)F (x

4

) 

x

4

(x);

�

dF

dx

4

= �(x

4

)F (x

4

); (5.97)

and the solution is

F (x

4

) = F (0)� exp

�

�

Z

x

4

0

d��(�)

�

: (5.98)

Obvioulsy  (x; x

4

) is normalizable if and only if � is positive for x

4

! +1 and negative

for x! �1.

The existene of Q

Pont

zero modes of the Dira operator (with positive hirality) in

an Q

Pont

-instanton �eld neessarily implies that Q

Pont

fermioni levels ow from negative

to positive values. We have the spetrum indiated in Figure 5.2. Sine the spetrum of

6

For a more general proof, whih does not require the �elds to hange adiabatially, see the paper by

Christ [70℄.
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H is symmetri [71℄, there are also Q

Pont

fermioni modes with negative hirality, that

interpolate between positive eigenvalues at x

4

= �1 and negative values at x

4

= +1,

f. Figure 5.3.
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Figure 5.3.: Level rossing in the setor with negative hirality, Q

Pont

= 2.

For a jQ

Pont

j anti-instanton �eld it is the other way round. The expliit form of the wave

funtion  

x

4

(x) at the ross-over point in the one instanton �eld, where H = E = 0,

has been alulated by Kiskis [72℄.

Interpretation: Proesses that hange the winding number are aompanied by the

absorbtion and emission of fermions, depending on their hirality. In terms of the seond

quantization the one partile state orresponds to a situation where all negative energy

states and the lowest positive energy state are �lled and all other positive energy states

are empty. Now in the presene of an instanton one of the negative energy states is

shifted to positive values, one partile with positive hirality emerges. At the same time

one of the positive energy states with negative hirality turns into a negative energy

state. The partile vanishes in the Dira Sea. As an illustrative example we ould

imagine the spetrum whih is indiated in Figure 5.4.

In total the instanton �eld an turn a negative hirality partile into a positive hirality
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one (by winding from one vauum on�guration to another one). We �nd that the

total harge is onserved, sine 4Q = 1 � 1 = 0, but the axial harge hanges 4Q

5

=

1 � (�1) = 2, in aordane with the anomaly equation (5.93). In fat no fermion ever

hanges its hirality, all of them just move one level up or down. The axial harge is

said to ome from the bottom of the Dira Sea [56℄. In this way one an understand how

instantons an hange the total axial harge of the system.

Remark: these e�ets an expliitly be shown using a toy-model (the Shwinger

model on a irle), see the book by Bertlmann [73℄ pp. 227-233. 't Hooft [74℄ gives

the following pitorial desription of how an instanton a�ets fermions:

An instanton is like a little door, that suddenly appears, opens to let one or several

partiles through, to or from this in�nite reservoir alled the 'Dira sea', and then loses

and disappears.[...℄ What an instanton does in quantum hromodynamis is the follow-

ing: it turns the energy of one right heliity partile state from positive to negative and

does the opposite to one left heliity state. So one right heliity partile will seem to dis-

appear and a left heliity partile pops up. It is as if a right heliity partile transmuted

into a left heliity one! This is why heliity is no longer onserved, and onsequently the

algebra that was assoiated with it breaks down.



6. Summary and Outlook

In this diploma thesis we analysed a variety of �eld theoretial models: the �

4

model

in 1 + 1 dimensions, the SU(2) Yang-Mills-Higgs theory in 3 + 1 dimensions and pure

SU(2) Yang-Mills theory in Eulidean four-spae.

All models exhibit nontrivial lassial solutions, whih are alled kink, 't Hooft-

Polyakov monopole and instanton, respetively. The kink and the monopole are solitons,

i.e. solutions of the lassial �eld equations with partile-like properties: they have �nite

energy, are loalized in spae, an be boosted and display the orret relationship between

energy, momentum and mass. Furthermore they annot be found in a perturbative

expansion sine they depend in an nonanalytial fashion on the oupling onstant. The

instanton turned out to be a tunneling event in Minkowski spae and a pseudo-partile

in Eulidean spae.

All those �eld on�gurations are stable for topologial reason, they an be lassi�ed

aording to the homotopy groups �

0

(S

0

), �

2

(S

2

) and �

3

(S

3

) respetively, and therefore

arry topologial harge. In these on�gurations, the �elds approah di�erent degenerate

vaua as one approahes spatial in�nity in di�erent diretions. The vaua are hosen

in suh a fashion that they annot be ontinuosly deformed to a single vauum. This

guarantees the stability of the soliton, and gives rise to a new type of quantum number:

the topologial harge. Due to onservation of this harge these objets are stable.

In a seond step we used the soliton and instanton on�gurations as bakground

�elds and analysed the behaviour of fermions in these �elds. Sine the orresponding

equations of motion are quite simple (in the ase of the kink solution) or an be redued

drastially (like in the ase of the 't Hooft-Polyakov monopole and the instanton) due

to symmetry arguments, an expliit solution is possible.

In the models with an odd number of spae dimensions we investigated the Dira

Hamiltonian and its zero modes

H = 0:

Now the total number of zero modes an simply be ounted. On the other hand we used

the Callias-Bott-Seeley index theorem to determine their number and afterwards

ompared both results.

In the kink and the monopole ase the existene of fermioni zero energy modes

leads to some important physial e�ets. First of all the soliton states beome multiply

degenerate: soliton plus empty fermioni zero mode and soliton plus �lled zero mode

arry the same energy. As a seond e�et the fermion number no longer takes on only

integer values but beomes frational.

62
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The preditions from the kink model an be tested in solid state physis: the phonon

�eld of polyaetylen exhibits a �

4

potential, the eletrons show a zero energy mode (at

mid-gap) and the frationization is reeted in a wrong spin-harge assignment: neutral

hains of polyaetylen arry spin, whereas harged hains are spinless. Both e�ets have

been observed experimentally.

Sine the relevant properties are the same, the 't Hooft-Polyakov monopole is assumed

to show these e�ets, too.

In the instanton �eld we did a similar analysis, but now we started with the Dira

operator D= and examined its zero modes

D=  = 0:

Zero modes of the orresponding Dira Hamiltonian an be related to the zero modes

of the Dira operator by spetral ow arguments. We have shown, how the Atiyah-

Singer index theorem an be used to ount their number: the number of zero modes is

proportional to the topologial harge of the bakground �eld.

Also in the instanton ase those zero modes have important physial onsequenes:

massless fermions suppress the tunneling between topologially distint vaua, in the

massive ase, the proess in Minkowski spae that orresponds to the instanton �eld, is

aompagnied by a hange of axial harge 4Q

5

. Therefore the U(1) axial symmetry of

the theory breaks down, and this solves the famous U(1) problem.

Perhaps the proedures, theorems and results that have been given in this diplom

thesis an be aplied to some | up to now | unresolved problems.

Studying hiral symmetry breaking requires an understanding of quasi-zero modes,

the spetrum of the Dira operator near the � = 0 eigenvalue, sine the order parameter

for this phase transition, the quark ondensate <

�

  >, is related to the spetral density

�(�) by the Banks-Casher relation [22℄

<

�

  >= ���(� = 0):

If there is only one instanton the spetrum onsists of a single zero mode, plus a on-

tinuous spetrum of non-zero modes. But if there is a �nite density of instantons, the

spetrum is ompliated, even if the ensemble is very dilute. The zero modes are ex-

peted to mix, so that the eigenvalues spread over some range 4�. A preise desription

of the faith of zero modes within suh an ensemble would ontribute to a better under-

standing of the ground state of QCD as well as of the hiral symmetry breaking. The

fermions ould be simulated on a lattie and furthermore one ould try to alulate the

exat eigenmodes of D= in an instanton-antiinstanon bakground.

The question, whether or not the two main e�ets of low temperature QCD, hiral

symmetry breaking and on�nement are related, is not answered yet. One of the phys-

ial senarios of olor on�nement is based on the idea of monopole-antimonopole pair

ondensation in the vauum state of quantum Yang-Mills theory. The hiral symmetry

breaking is supposed to happen due to the inuene of instanton on�gurations.

Reently a new deomposition of the Yang-Mills onnetion A

�

has been proposed

by Cho [75, 76, 77℄, Fadeev and Niemi [78, 79, 80℄ and Shabanov [81, 82℄. This is a
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generalization of the Abelian projetions introdued by 't Hooft and is supposed to

give a new e�etive desription of the low energy phase of QCD. There we rewrite

A

a

�

= �

a

�

+ C

�

n

a

+W

a

�

;

with oupling onstant g and

�

a

�

= g

�1

�

ab

(�

�

n

b

)n



;

W

a

�

n

a

= 0:

This gives an e�etive theory for the unit vetor �eld n

a

. The projeted gauge �eld �

a

�

depends on A

a

�

and n

a

.

Fermioni zero modes of this onnetion are still under investigation. Naively the

Pontryagin index of the �-�eld vanishes beause this is an reduible onnetion, but

sine the Higgs �eld n turns out to be singular, a areful analysis is needed.

For the time beeing we have to analyse the one instanton on�guration. The unit

vetor in 3-diretion, n

a

= Æ

a3

, is related to the standard Hopf map

n

H

=

0

�

2x

1

x

2

+ 2x

3

x

4

2x

1

x

4

� 2x

2

x

3

x

2

1

+ x

2

3

� x

2

2

� x

2

4

1

A

by the same gauge transformation U

1

(f. hapter 5) that takes the singular form of the

instanton �eld to the regular form and bak [60℄. Hopf maps are maps

S

3

! S

2

; (6.1)

and an be haraterized by a topologial invariant, the Hopf index.

The onnetion between this Hopf index, the topologial harge of the instanton

on�guration and the magneti harge of monopoles that arise after projetion, as well

as the onnetion between on�nement and hiral symmetry breaking in this Faddeev-

Niemi deomposition are subjet of urrent researh [83, 84, 85, 86, 87, 88℄.



A. Callias-Bott-Seeley Index Theorem

A.1. Introdution - The Problem

In this appendix we give some basi ideas, how to derive index theorems for Dira

operators on open spaes of odd dimension, losely following the work of Callias [34℄.

The derivation is not straight forward but onsists of many Lemmata and Propositions

that are needed in order to substantiate the main theorems. Some of those intermediate

steps are skethed, for the remaining details see [34℄.

We are interested in Dira equations in Minkowski spae with non-degenerate stati

(time-independent) modes. Suh a Dira equation an be written in the form

H =

�

0 L

L

y

0

�

 = i�

t

 ; (A.1)

where L is an ellipti operator on odd-dimensional Eulidean spae. We will see that L

has a nonvanishing index. The general idea is to use traes of the type

Tr (e

�tL

y

L

� e

�tLL

y

) (A.2a)

or

Tr

��

z

L

y

L+ z

�

s

�

�

z

LL

y

+ z

�

s

�

; (A.2b)

where the trae is taken in the Hilbert spae as well as over Dira and internal indies.

On a ompat manifold either of these traes gives the index for any value of t or z,

beause all eigenvalues are disrete and the spetrum of LL

y

and L

y

L is the same up to

a di�erent number of zero modes.

Proof: let  

�

be an eigenfuntion of L

y

L:

L

y

L 

�

= � 

�

;

then we �nd a orresponding eigenfuntion of LL

y

with the same eigenvalue

LL

y

(L 

�

) = L(L

y

L) 

�

= �(L 

�

):

On an open spae we get the index by taking the limit t ! 1 for (A.2a) or z ! 0 for

(A.2b), f. [89℄. We will use the seond one with s = 1.
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We study Dira operators that arise in Yang-Mills theories with both gauge and

Higgs �elds. The most general Dira equation in D + 1 dimensional Minkowski spae is

�

i�

i

�

i


 1l

m

+ �

i


A

i

(x)� � 
 �(x)

�

 (x; t) = �i�

t

 (x; t): (A.3)

Here  (x; t) is a 2pm-omponent spinor. The 2p� 2p Dira matries are given by

�

i

=

�

0 Æ

i

Æ

i

0

�

; � = i

�

0 �1l

p

1l

p

0

�

; (A.4)

where the D p� p matries Æ

i

satisfy an Eulidean Dira algebra

Æ

i

Æ

j

+ Æ

j

Æ

i

= 2Æ

ij

1l

p

: (A.5)

The oeÆients are given by Hermitean m � m matries A

i

(x) and �(x). They are

assumed di�erentiable and bounded in x and

lim

jxj!1

A

i

(x) = 0; (A.6)

and �(x) approahes a onstant as jxj ! 1. Now separate the time variable

 (x; t) =  (x)e

iEt

; (A.7)

and express (A.3) as an eigenvalue problem

H =

�

0 L

L

y

0

��

 

+

 

�

�

= E

�

 

+

 

�

�

; (A.8)

where L is a �rst order pm� pm matrix di�erential operator on R

n

:

L = iÆ

i

�

i


 1l

m

+ Æ

i


A

i

(x) + i1l

p


 �(x); (A.9)

L

y

is the Hilbert spae adjoint of L. We are interested in stati (t-independent) solutions,

i.e. the E = 0 eigenspae. For these solutions we have

L  

�

= 0; (A.10a)

L

y

 

+

= 0: (A.10b)

The dimension of the E = 0 spae is given by

k � k

+

+ k

�

; (A.11)

where

k

+

� dim ker L

y

; k

�

� dim ker L: (A.12)

We annot in general determine k, but we an �nd a formula for

index L � k

�

� k

+

= dim ker L� dim ker L

y

; (A.13)
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in terms of the behaviour of the operator L at in�nity. Sometimes one an �nd either

k

+

or k

�

a priori, see [89℄ and hapter 5. Then our formula will determine k.

De�nition : L is Fredholm if both k

�

and k

+

are �nite and L is losed [90, 91℄.

If L is Fredholm, so are L

y

; LL

y

and L

y

L. In what follows we will restrit ourselves

to this speial lass of operators.

A property of the index whih will turn out to be extremly useful in the derivation of

the index formula is its homotopy invariane: If t ! L(t) is a norm ontinuous map of

the interval [0,1℄ into the spae of Fredholm operators then index L(0) = index L(1). It

is also invariant under perturbations that are ompat relative to the original operator,

f. [91℄, p. 445.

De�niton: If H is a Hilbert spae, B : H ! H is ompat relative to L : D(L) !

H;D(L) � H, if B is ompat as an operator D(L)! H, where D(L) is equipped with

the norm k:k + kL:k.

We need preise onditions that tell us, when an operator of the form (A.9) is Fred-

holm. For more general ases one an use the

Theorem 1: (Seeley) Let A =

P

j�j�m

a

�

(x)

�

i

�

�x

�

�

be a di�erential operator, where

the a

�

(x) are bounded and their derivatives are ontinuous and vanish at 1. Then A is

Fredholm if there are onstants  and C suh that

�

�

X

j�j=m

a

�

(x)�

�

�

�

� j�j

m

8x 2 R

n

;

(i.e. A is uniformly ellipti) and

�

�

X

j�j�m

a

�

(x)�

�

�

�

is bounded away from 0 for jxj � C. Conversely, if A is Fredholm then there exist suh

onstants  and C.

Proof: see [92℄.

Restrited to the form (A.9) of L, we get the

Corollary: The operator L de�ned by (A.9) is Fredholm if j�(x)j � B for jxj � C

where B and C are positive onstants. The index of L is equal to the index of

~

L if

~

L is

an ellipti operator suh that

~

L = iÆ

i

�

i


 1l

m

+ i1l

p


 U(x) (A.14)

for jxj > C, where U(x) is the Hermitean unitary matrix

U(x) � j�(x)j

�1

�(x);

j�(x)j = (�

y

(x)�(x))

1=2

: (A.15)

Remark: That means that the index of L an be expressed solely in terms of the Higgs

�eld �. The partiular properties of the gauge �elds, determined by the equations of

motion, are nonrelevant in this regard.

Proof: Let

L

1

= iÆ

i

�

i


 1l

m

+ i1l

p


 �(x): (A.16)
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L is Fredholm if and only if L

1

is Fredholm sine the fat that the A

i

(x) are bounded

and vanish as jxj ! 1 implies that the term Æ

i


A

i

(x) is L

1

-ompat, by the Rellih

Lemma. Notie that

L

y

1

L

1

= ��

2

1l� Æ

i


 �

;i

(x) + 1l

p


 j�(x)j

2

: (A.17)

Sine �(x) is C

1

and asymptotially homogeneous we have

L

y

1

L

1

� ��

2

1l�

�

j�j

1l +B1l; (A.18)

where B is suh that j�(x)j

2

> B. The operator on the righthand side has a disrete

spetrum of eigenvalues ontained in (�1; B), so that if B > 0 it is Fredholm. Then so

is L

y

1

L

1

and therefore L

1

as well. The one parameter family of operators

L(t) = tL

1

(t) + (1� t)

~

L = iÆ

i

�

i


 1l

m

+ i1l

p


 [t�(x) + (1� t)U(x)℄; (A.19)

for 0 � t � 1, is a homotopy of L

1

to

~

L within the lass of Fredholm operators. Thus

~

L

has the same index as L

1

and L.

A.2. General First Order Operators

We now derive some general formulas for �rst order ellipti operators with arbitrary

oeÆients. These formulas readily yield the index theorem. Consider an arbitrary

operator L, whih is assumed to be losed on a dense domain D(L) in a Hilbert spae

K, whih is the diret sum of M opies of another Hilbert spae H, K =

L

M

i=1

H. L is

a matrix of operators on H, L = [L

ij

℄, i; j = 1; 2:::M .

De�nition: Given an operator A = [A

ij

℄ on K we de�ne the internal trae of A, tr A

to be the following operator on H

tr A =

X

i

A

ii

; (A.20)

with domain

T

M

i=1

D(A

ii

).

For L as in (A.9) the operators LL

y

and L

y

L are selfadjoint and positive. If z is a

non-negative real number, (LL

y

+ z)

�1

and (L

y

L + z)

�1

are bounded operators on K

and

B

z

� z tr

�

(L

y

L+ z)

�1

� (LL

y

+ z)

�1

�

(A.21)

is a bounded operator on H. Let f(z) = Tr B

z

, where Tr denotes the trae in the

Hilbert spae H: if f�

k

g

1

k=1

is an orthonormal basis for H, then Tr B =

P

1

k=1

(�

k

; B�

k

).

Now, under ertain assumptions, the index of L an be expressed in terms of the trae

of B

z

on H.

Lemma 1: Suppose K, H, L, B

z

are as above and furthermore L : D(L) ! K is
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Fredholm and B

z

is trae-lass on H, and Tr jB

z

j is bounded for z in a domain C in the

omplex plane having z = 0 as a limit point. Then

index L = lim

z!0

f(z): (A.22)

Proof: Sine L is Fredholm, so are L

y

L and LL

y

and the zero eigenvalues of L

y

L and

LL

y

are isolated. Obviously ker L

y

L = ker L and ker LL

y

= ker L

y

. Let P

+

be the

projetion on ker L

y

L and P

�

the projetion on ker LL

y

. Then the operator

~

B

z

= tr

z

L

y

L+ z

� tr P

+

� tr

z

LL

y

+ z

+ tr P

�

= B

z

� tr P

+

+ tr P

�

(A.23)

is trae-lass sine B

z

is and P

�

are �nite dimensional projetions. Further lim

z!0

~

B

z

=

0 strongly. Let f�

k

g

1

k=1

be an orthonormal basis. Then the series

Tr

~

B

z

=

1

X

k=1

(�

k

;

~

B

z

�

k

) (A.24)

onverges absolutely and uniformly for z 2 C and the limit of eah term as z ! 0 is 0.

Thus

lim

z!0

Tr

~

B

z

= 0;

lim

z!0

f(z) = lim

z!0

Tr

~

B

z

+Tr P

+

� Tr P

�

= index L: (A.25)

Now we �nd the bridge between the region z ! 0 where the index is omputed (aording

to Lemma 1), and z !1 where Tr B

z

is omputed expliitly.

Lemma 2: With all the assumptions and de�nitions preeding Lemma 1, suppose B

z

is

trae-lass for z in a domain C. Then f(z) = Tr B

z

is analyti for z 2 C.

Proof: Let f

N

(z) �

P

N

k=1

(�

k

; B

z

�

k

). Then eah f

N

(z) is analyti and f

N

(z) is bounded

for all N and all z in a ompat subset of C. Thus f(z) = lim

N!1

f

N

(z) is analyti in

C.

Now the analyti funtion f(z) an be expressed as

2f(z) = lim

R!1

Z

S

D�1

R

dS

i

J

i

z

(x; x) +

Z

d

D

xA

z

(x; x); (A.26)

with suitable de�ned funtions J

z

and A

z

, see [34℄, Proposition 1. In the speial ase

of (A.9) that we are interested in, the bulk ontribution of A

z

vanishes and we are left

with an integral over the boundary S

D�1

1

:

f(z) =

1

(1 + z)

D=2

Q[U ℄; (A.27)

Q[U ℄ =

1

2

�

D�1

2

�

!

�

i

8�

�

D�1

2

lim

R!1

Z

S

D�1

R

tr

�

U(x)

�

dU(x)

�

D�1

�

: (A.28)

For a proof see [34℄.



APPENDIX A. CALLIAS-BOTT-SEELEY INDEX THEOREM 70

A.3. An Index Formula for Dira Operators

Together with Lemma 1 this gives the �nal result:

Theorem 2: Let L be a �rst order di�erential operator on R

D

, D odd, whih up to

C

1

zero order terms vanishing at in�nity is of the form

L = iÆ

i

�

i


 1l

m

+ i1l

p


�(x); (A.29)

where the Æ

i

are onstant p� p matries, p = 2

(D�1)=2

, satisfying the algebra

Æ

i

Æ

j

+ Æ

j

Æ

i

= 2Æ

ij

1l

p

: (A.30)

�(x) is a m � m Hermitean matrix of C

1

funtions suh that j�(x)j � B > 0 for

jxj � C, where B and C are onstants, further �(x) homogeneous of order 0 as x!1.

Let U(x) � j�(x)j

�1

�(x). Then the index of L is given by

index L =

1

2

�

D�1

2

�

!

�

i

8�

�

D�1

2

lim

R!1

Z

S

D�1

R

tr

�

U(x)(dU(x))

D�1

�

; (A.31)

where (dU)

D�1

is the (D � 1)st power of the matrix dU with the di�erentials being

multiplied by exterior multipliation.

Remark: The formula (A.31) remains essentially the same if D is even, and it gives

trivially that index L = 0 in that ase, for any L of the form (A.9).

A.4. Example: the Kink

Consider D = 1 spae dimension, only one internal degree of freedom and L of the form

L = �

d

dx

+ �(x); (A.32)

where �(x) is a real valued funtion on R. Observe that this exatly oinides with the

upper right part of the Hamiltonian of our �

4

theory in hapter 2. Let

lim

x!�1

�(x) = �

�

<1: (A.33)

Then we an apply (A.31) and get

index L =

1

2

�

�

+

j�

+

j

�

�

�

j�

�

j

�

: (A.34)

The vaum setors have vanishing index, whereas kink and antikink arry index +1

and �1, respetively.
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A.5. Example: SU(2) Monopole

We study the Dira equation for an isospin T partile in the �eld of a stati system of

SU(2) magneti monopoles in 3 + 1 dimensional Minkowski spae. We have the gauge

potentials and Higgs �eld

A

i

(x) = A

a

i

(x)T

a

;

�(x) = �

a

(x)T

a

+m; (A.35)

with a running from 1 to 3. �

a

is a vetor in internal spae and takes on its �xed vaum

expetation value �

a

�

a

= F

2

as jxj goes to in�nity. m is the mass of the fermions. The

generators of isospin rotations are

[T

a

; T

b

℄ = i�

ab

T



; T

a

T

a

= T (T + 1)1l: (A.36)

The on�guration

A

a

0

= 0; A

a

i

= A

a

i

(x); �

a

= �

a

(x); (A.37)

ould arise as a stati �nite energy solution of the oupled Yang-Mills-Higgs equations

in the absene of fermions. If this is the ase, A and � = f�

a

g meet the earlier require-

ments

1

. This on�guration represents a system of total magneti harge (Kroneker

index, Brouwer degree, Poinare-Hopf index, homotopy number) [38℄

Q

top

= �

1

8�

Z

S

2

1

�

ab

�

a

d�

b

d�



: (A.38)

Q

top

is essentially the degree of the mapping � : S

2

phys

! S

2

int

, where S

2

phys

orresponds

to the boundary of the physial spae and S

2

int

to the possible values of the �eld � with

�xed length. The index formula redues to (D = 3)

index L =

i

16�

Z

S

2

1

tr UdUdU; (A.39)

where U = j�j

�1

� = (�

y

�)

�1=2

�. What is left is to evaluate this (A-independent)

integral. Let therefore �

�

(x);  

�

(x) be the eigenvalues and eigenvetors of �(x):

�(x) 

�

(x) = (�

�

(x) +m) 

�

(x): (A.40)

At jxj ! 1 those �

�

are just �T;�T + 1; : : : ; T � 1; T (for the moment we an take

F = 1, sine the index depends only on the ratio

m

F

, �nally we an go bak to arbitrary

F ). Now we have to verify [93℄ the formula

�

j

U =

X

�

2

�

�

(x)� �

�

(x)

sign�

�

(x)( 

�

(x); �

j

�(x) 

�

(x))

�

 

�

(x)( 

�

(x))

y

; (A.41)

1

For a disussion of the asymptoti behaviour f. hapter 4.
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where (: ; :) denotes the inner produt in the �nite-dimensional spae of the matrix �(x)

and the sum is over all � and � where the produt (�

�

(x) +m)(�

�

(x) +m) is negative.

In the next step we perform matrix multipliation and trae operation in order

to alulate the index via (A.39). This an be done as follows: at eah point x let

�

a

(x); �

a

1

(x); �

a

2

(x) be an orthonormal set of three-vetors. The following alulations

are performed at spatial in�nity. There �

a

is a vetor with �xed length and we have

�

j

�

a

= 

1j

�

a

1

+ 

2j

�

a

2

�

j

�(x) = �

j

(�

a

T

a

+m) = 

1j

T

1

+ 

2j

T

2

; (A.42)

with

T

0

� T

a

�

a

= ��m; (A.43a)

T

i

� T

a

�

a

i

; i = 1; 2: (A.43b)

These T

i

an be arranged to form raising and lowering operators

T

�

� T

1

� iT

2

; (A.44)

with

T

�

 

�

=

p

T (T + 1)� �

�

(�

�

� 1) 

��1

: (A.45)

Conversely

T

1

=

1

2

(T

+

+ T

�

); T

2

=

1

2i

(T

+

� T

�

): (A.46)

Then it is easy to alulate the following matrix elements

( 

�

; T

1

 

�

) =

1

2

Æ

�

�

;�

�

�1

p

T (T + 1)� �

�

(�

�

+ 1)

+

1

2

Æ

�

�

;�

�

+1

p

T (T + 1)� �

�

(�

�

� 1); (A.47a)

( 

�

; T

2

 

�

) =

1

2i

Æ

�

�

;�

�

+1

p

T (T + 1)� �

�

(�

�

� 1)

�

1

2i

Æ

�

�

;�

�

�1

p

T (T + 1)� �

�

(�

�

+ 1): (A.47b)

Let fmg be the largest eigenvalue of �

a

T

a

smaller than m, or, if there is no suh eigen-

value, the smallest eigenvalue of �

a

T

a

minus one. Then only (�

�

; �

�

) = (fmg; fmg+ 1)

and (�

�

; �

�

) = (fmg+ 1; fmg) ontribute, sine �

�

and �

�

have to di�er exatly by �1

(otherwise all matrix elements vanish due to the Kroneker Æ in (A.47a) and (A.47b))

and the values �

�

+m and �

�

+m have di�erent sign, therefore (�

�

+m)(�

�

+m) < 0,

so they appear within the sum (A.41). With this information, a short alulation gives

tr UdUdU = 2i

�

T (T + 1)� fmg(fmg + 1)

�



1i



2j

dx

i

dx

j

: (A.48)
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Using

�

ab

�

a

d�

b

d�



= 

1i



2j

dx

i

dx

j

(A.49)

and formula (A.38) for Q

top

we get

index L =

i

16�

Z

S

2

1

tr UdUdU

= �

1

8�

�

T (T + 1)� fmg(fmg + 1)

�

Z

S

2

1

�

ab

�

a

d�

b

d�



=

�

T (T + 1)� fmg(fmg + 1)

�

Q

top

: (A.50)

For arbitrary F replae m by

m

F

in this formula. For Q

top

= 1 and m = 0 two ases have

been studied by Jakiw and Rebbi [26℄:

� Isospinor ase

T =

1

2

;

�

m

F

�

= �

1

2

;

with index

1

2

�

3

2

+

1

2

�

1

2

= 1.

� Isovetor ase

T = 1;

�

m

F

�

= �1;

with index 1 � 2� 0 = 2.

Remark: Here

m

F

and an eigenvalue of � oinide, and therefore the ontinuum

spetrum extends down to zero. So zero is no longer isolated, L not Fredholm.

But Weinberg [94℄ argues, that there are no ontributions from the ontinuum

to the index and (A.31) is still appliable.

The general formula (A.31) is in agreement with the expliit alulations.



B. The Atiyah-Singer Index Theorem

B.1. Basi De�nitions

Consider the eigenvalue equation of the Eulidean self-adjoint Dira operator

D= '

n

(x) = 

�

(�

�

+A

�

)'

n

(x) = �

n

'

n

(x): (B.1)

The '

n

form an orthonormal basis. Sine f

�

; 

5

g = 0 we have

D= 

5

'

n

(x) = ��

n



5

'

n

(x); (B.2)

so 

5

takes eigenfuntions with positive eigenvalues into eigenfuntions with negative

eigenvalues and vie versa. In the subspae S of zero modes

S � f'

0

n

: D= '

0

n

= 0g; (B.3)

we have

[D= ; 

5

℄'

0

n

= (D= 

5

� 

5

D= )'

0

n

= 0; (B.4)

and therefore an hoose the zero modes to be eigenfuntions of 

5

with positive or

negative hirality. Let

P

�

�

1

2

(1l� 

5

); (B.5)

and onstrut

'

0

n�

(x) � P

�

'

0

n

(x); (B.6)

with



5

'

0

n�

(x) = �'

0

n�

(x); D= '

0

n�

(x) = 0: (B.7)

The index of eah self-adjoint operator vanishes by de�nition,

index D= = dim ker D=

y

� dim ker D= = 0; (B.8)

and nothing an be said about the number of zero modes of D= . Instead of D= we analyse

the Weyl operators

D

�

� D= P

�

: (B.9)

74
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We have

D

y

�

= D

�

; (B.10)

furthermore de�ne Laplae operators aording to

4

+

� D

y

+

D

+

= D

�

D

+

; (B.11a)

4

�

� D

y

�

D

�

= D

+

D

�

: (B.11b)

On the spaes of zero modes S

�

of positive and negative hirality,

S

�

= f'

0

n�

: 

5

'

0

n�

= �'

0

n�

g; (B.12)

they at as shown in Figure B.1, for instane

D

+

'

+

= D= P

+

P

+

' = D= P

+

'

=

1

2

D= (1l + 

5

)' =

1

2

(1l� 

5

)D= ' = P

�

D= '

= �P

�

' = �'

�

: (B.13)
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Figure B.1.: The zero mode spae.

The index of the Weyl operator is given by

index D

+

= dim ker D

+

� dim ker D

y

+

= dim ker D

+

� dim ker D

�

= n

+

� n

�

; (B.14)

the index of D

+

is the number of zero modes with positive hirality (n

+

) minus the

number of zero modes with negative hirality (n

�

). Furthermore

index D

�

= �index D

+

: (B.15)

Now we want to �nd a onnetion between the index of a di�erential operator D (later

D = D

+

) and the heat kernel of the orresponding Laplae operators4

+

= D

y

D; 4

�

=
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DD

y

. In the ase of a ompat manifold M, the spetrum of 4 is disrete and eah

eigenvalue has �nite degeneray.

Lemma 1: The spetrum of nonzero eigenvalues of 4

+

and 4

�

is the same.

Proof: suppose the eigenvalue equation

4

+

�

�

= D

y

D�

�

= ��

�

: (B.16)

Then D�

�

=  

�

is an eigenfuntion of 4

�

with the same eigenvalue

4

�

 

�

= DD

y

D�

�

= �D�

�

= � 

�

: (B.17)

Remark: this argumentation does not hold for zero modes, the number of zero modes

may be di�erent for both operators.

Lemma 2: ker 4

+

= ker D; ker 4

�

= ker D

y

.

Proof: We have ker 4

+

= ff : 4

+

f = 0g and ker D = ff : Df = 0g. If Df = 0

then automatially 4

+

f = D

y

Df = 0 and if f 2 ker 4

+

, so we have 0 = (D

y

Df; f) =

(Df;Df) and onsequently Df = 0, i.e. f 2 ker D.

B.2. An Index Formula for Eulidean Dira Operators

With the de�nitions E

+

= f�

�

g (eigenfuntions of 4

+

) and E

�

= f 

�

g (eigenfuntions

of 4

�

) we have the following

Theorem 1: index and heat kernel

index D = tr

E

+

e

�t4

+

� tr

E

�

e

�t4

�

; 8t > 0: (B.18)

Proof:

tr

E

+

e

�t4

+

� tr

E

�

e

�t4

�

=

X

�;�

�

D

�

�

e

�t4

+

�

�

E

�

X

�; 

�

D

 

�

e

�t4

�

 

�

E

=

X

�

e

�t�

�

X

�

�

h�

�

�

�

i �

X

 

�

h 

�

 

�

i

�

=

X

�

e

�t�

�

dim E

+

(�)� dim E

�

(�)

�

and, sine for � 6= 0 the dimensions of E

+

(�) and E

�

(�) are equal,

tr

E

+

e

�t4

+

� tr

E

�

e

�t4

�

= e

�t�0

�

dim E

+

(0)� dim E

�

(0)

�

= dim ker 4

+

� dim ker 4

�

= dim ker D � dim ker D

y

= index D: (B.19)

In the ase of our Weyl operator we have the

Theorem 2:

index D

+

= tr

S



5

e

�tD=

2

; 8t > 0: (B.20)
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Proof:

index D

+

= tr

S

+

e

�tD

�

D

+

� tr

S

�

e

�tD

+

D

�

= tr

S

+

e

�tD=

2

P

+

� tr

S

�

e

�tD=

2

P

�

= tr

S=S

+

�S

�

e

�tD=

2

(P

+

� P

�

)

= tr

S



5

e

�tD=

2

� tr 

5

e

�t4

: (B.21)

Here we used a power series expansion of the exponential funtion as well as the yli

property of the trae operation.

What is left is to evaluated the right-hand side of equation (B.21). In order to do

this, we expand the funtion e

�t4

into eigenfuntions �

n

(x) of 4 [73℄. Applied to a

square integrable test funtion ' we get

e

�t4

'(x) =

Z

dy e

�t4

X

n

�

n

(x)�

�

n

(y)'(y)

=

Z

dy

X

n

e

��

n

t

�

n

(x)�

�

n

(y)'(y)

�

Z

dy G

4

(x; y; t)'(y): (B.22)

The operator e

�t4

has a kernel funtion, the heat kernel

G

4

(x; y; t) =

X

n

e

��

n

t

�

n

(x)�

�

n

(y) =

D

x e

�t4

y

E

; (B.23)

whih sati�es the so-alled heat equation

4G

4

(x; y; t) = �

�

�t

G

4

(x; y; t): (B.24)

This allows for the alulation of the index via the Fujikawa proedure [95, 73℄: expand

the heat kernel into Seeley oeÆients a

n

,

G

4

(x; y; t) =

1

(4�t)

D=2

exp

�

�

(x� y)

2

4t

�

X

n

a

n

(x; y)t

n

; (B.25)

pik up the t-independent part and perform t! 0. In D dimensions only the oeÆient

a

D=2

ontributes. For the Dira operator we �nd a

0

� 1l, a

1

� G, a

2

� G

2

; : : :.

For general even dimensional ompat manifolds M

D

follows the Atiyah-Singer

index theorem. Atiyah and Singer have shown [63, 64℄, that the analyti index de�ned

in (B.14) equals another index whih is fully determined by topology and therefore alled

topologial index. This is a topologial invariant. Moreover, it an be expressed as an

integral over ertain harateristi lasses, whih an be found expliitly for a given

di�erential operator.
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In the ase of the Dira Operator D= ontaining the Yang-Mills gauge potential A =

A

a

�

dx

�

T

a

the harateristi lasses are determined by the Chern harater.

De�nition: the Chern harater h(G) is given by

h(G) = tr exp

�

i

2�

G

�

= r +

i

2�

tr G+

1

2!

�

i

2�

�

2

tr G

2

+ : : : ; (B.26)

where r is the dimension of the group, and G is the urvature two-form

G = dA+A

2

: (B.27)

Theorem: Atiyah-Singer index theorem

index D

+

=

Z

M

D

h(G): (B.28)

The integral is taken over the ompat manifoldM

D

with dimension D, so the D=2-th

term is piked up

index D

+

=

1

(D=2)!

�

i

2�

�

D=2

Z

M

D

tr G

D=2

: (B.29)

B.3. Examples: 2 and 4 Dimensions

Example: in D = 2 dimensions we get

index D

+

= �

1

4�

Z

dx �

��

F

��

= �

1

2�

Z

S

2

F: (B.30)

This equation an be used to determine the number of zero modes loalized near vortex-

like on�gurations in planar eletrodynamis [96℄, but will not be disussed here.

Example: in D = 4 dimensions we get in the same way

index D

+

=

1

2!

�

i

2�

�

2

Z

S

4

tr G

2

= �

1

8�

2

Z

S

4

tr G

2

; (B.31)

observe that the index is equal to the topologial harge of the Yang-Mills bakground

�eld de�ned in hapter 5:

index D

+

= Q

Pont

: (B.32)

Interpretation: in a bakground �eld with Pontryagin index Q

Pont

the number of zero

modes with positive hirality minus the number of zero modes with negative hirality is

equal to Q

Pont

.

Due to the trae operation the index depends on the representation of the gauge

group. In the fundamental representation of SU(2), where tr T

a

T

b

= �

1

2

Æ

ab

the index

of D

+

is equal to Q

Pont

, in the adjoint representation we have tr T

a

T

b

= �2Æ

ab

and

the index of D

+

is equal to 4Q

Pont

. In general, for fermions in the representation with

isospin T , we have [97, 98℄

index D

+

= n

+

� n

�

=

2

3

T (T + 1)(2T + 1)Q

Pont

: (B.33)
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