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1 Introduction

In recent years studies of electronic band touching have received increasingly much

attention. Due to special behavior arising from higher symmetry states occurring

on these band junctions, investigations of materials exhibiting these structures in-

tensified as they promise interesting and complex optical and electronic properties.

Models with linear band touching or crossings, such as mono-layer graphene or cer-

tain d-wave superconductors, have since been investigated using relativistic Gross

- Neveu type models and evince a quantum phase transition at finite interactions

[1, 2, 3]. In those cases spontaneous symmetry breaking occurs at a critical cou-

pling leading to the bands separating at finite interaction strengths. For quadratic

band touchings (QBT) however, a different behavior emerges. Due to their higher

momentum dependence, spontaneous symmetry breaking can already occur for

infinitesimal couplings. This phenomenon leads to varying properties depending on

the dimensionality of the system. For example in 2D bi-layer graphene, non vanish-

ing densities remain in these quadratic band touchings causing the non-interacting

ground state to be unstable towards repulsive interactions [4, 5, 6, 7]. On the other

hand, those characteristics differ when examining 3D QBTs which have been ob-

served in, for example, grey tin or mercury telluride [8, 9, 10]. State densities now

vanish at the Fermi-point resulting in long range electron-electron interactions at-

taining a dominant role. In either case, investigations on QBTs raise more and more

interest in fields like material science, optics and electronics. Therefore, a good

description of fermions with a quadratic dispersion relation is of increasing concern.

Many works have been published which present a Euclidean quadratic Hamiltonian

in order to model these phenomena. Rooted in the works of J.M. Luttinger, the

corresponding particles are referred to as Luttinger fermions [11].

Another topic that has gained increasing attention in recent years is the study of

ultraviolet complete quantum field theories [12]. The standard model exhibits prob-

lematic behavior in that it is not necessarily well defined on all scales. When ap-

proaching a finite UV - limit couplings diverge, for example in the hypercharge U (1)

sector, due to phenomena like Landau poles [13, 14, 15]. However, in order to avoid

these complications we can only set the coupling to zero yielding a non-interacting

theory. This is often referred to as the triviality problem. Studying whether such poles

arise and are actually relevant or lie outside the physical parameter range, as it is the

case in QED, has become a major focus. As couplings diverge, perturbative methods

fail to describe the theory accurately, demanding non-perturbative approaches to be

used. Functional renormalization group (FRG) methods have been at the forefront
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in these investigations [16, 14, 17, 18]. Especially the study of fixed points in the

theory space of couplings transpires to show promising results as these fixed points

may attract the renormalization group flow in the UV-regime towards finite values,

rendering theories well defined at all scales. Theories exhibiting these fixed points are

called asymptotically safe whereas Gaussian fixed points mark a special case in which

the theory is not only UV-finite but asymptotically free. Studying these phenomena

provides insights into the applicability of quantum field theories on different scales.

In light of both of these intriguing topics we want to investigate a theory which bridges

the gap between those two areas by establishing a relativistic quantum theory of

Luttinger fermions and exploring its dynamics using FRG methods which will lead

us to an asymptotically free theory. In order to do this, this thesis is organized into

three parts. We start by considering the necessary algebraic structure underlying a

quadratic fermionic theory and construct a relativistic Luttinger action. We continue

by giving an introduction to functional renormalization group techniques such as

the Wetterich equation [18]. In chapter 4.1 we apply those methods to the derived

action and interpret the resulting flow equations in special cases. Lastly, we examine

the dynamics for a partially bosonized action and discuss spontaneous symmetry

breaking as well as potential mass generation in chapter 4.2. For this we use standard

quantum field theory conventions which are specified in Appendix D.
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2 Relativistic Luttinger Fermions

2.1 Spin Coupling Matrix Gµν

To start off, we aim to find a non-trivial way of constructing a second order fermionic

theory. In a fashion similar to the Dirac equation, we search for a kinetic operator the

square of which is equivalent to the square of the d’Alembert operator:

K̂ 2 =□ 2, (2.1)

where K̂ is the operator in question. To achieve this, we first construct the most

general form of an operator quadratic in the derivative by introducing Gµν:

K̂ =−Gµν∂
µ∂ν. (2.2)

To derive some properties of Gµν, we follow the steps of [10] where this has been

done for the Euclidean case. First, let us consider the operator K̂ in a momentum

representation:

K̂ =Gµνpµpν. (2.3)

Now we demand K̂ 2 = p41, so that only even powers of the components of p remain

in K̂ 2. In order to fulfill this condition, the matrices Gµν have to satisfy the following

anticommutation relations which, can be obtained directly (see Appendix A) by

decomposing the Einstein summation of the indices in (2.3):

{
Gµµ,Gκλ

}= {
Gµν,Gκλ

}= 0, (2.4)

with µ ̸= ν, κ ̸=λ and (µ,ν) ̸= (κ,λ) so that any off-diagonal element anticommutes

with all others. Using these two identities, the squared kinetic operator reads1:

K̂ 2 =
D∑
µ=1

G2
µµ(pµ)4 + ∑

µ<ν

(
4G2

µν+
{
Gµµ,Gνν

})
(pµ)2(pν)2. (2.5)

By normalizing all Gµµ to 1 our imposed condition of H 2 = p41 is satisfied provided

4G2
µν+

{
Gµµ,Gνν

}= 2gµµgνν (2.6)

for µ ̸= ν. We note that we can decompose Gµν with respect to its Lorentz indices into

1We want to emphasize that in equation (2.5) Einstein summation convention is not used.
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2.1 Spin Coupling Matrix Gµν RG Studies of Luttinger Fermions

Gµν =GTL
µν+

gµν
D

G , (2.7)

where G = gµνGµν and GTL
µν is the traceless part. Since K̂ is supposed to be a kinetic

operator for a field theory, the trace part will only contribute a Klein-Gordon type

term in K proportional to G which can be added later on if desired. For now, we only

want to focus on the irreducible derivative tensor structure ∂µ∂ν− gµν

D ∂2 by setting the

trace of G to zero. From now on, Gµν will therefore correspond only to the trace-less

part i.e. Gµν ≡GTL
µν in this work. Without a trace, another restriction on Gµν has been

imposed, leading to yet another anti-commutation relation:

0 = {
Gµµ,

D∑
ν=1

gννGνν

}= 2+{
Gµµ,

∑
µ̸=ν

gννGνν

}
{
Gµµ,Gνν

}=− 2

D −1
gµµgνν for µ ̸= ν.

(2.8)

Together with (2.4) and a normalization, we have four anti-commutation relations

which can be used to construct a general Clifford algebra. Because the tensor struc-

ture must respect Lorentz invariance and has to be symmetric, the algebra can only

be spanned by the metric. Using products of gµν for an ansatz, the general form

reads:

{
Gµν,Gκλ

}=− 2

D −1
gµνgκλ+

D

D −1

(
gµκgνλ+ gµλgνκ

)
. (2.9)

This algebra is fundamental for further investigations in this quadratic theory. There-

fore, some more basic properties should be discussed before moving on to the con-

struction of a quadratic fermionic action. Since Gµν is a D-dimensional, trace-less,

symmetric matrix in terms of its Lorentz indices, it has 1
2 D(D −1) off-diagonal and

(D −1) diagonal independent elements. Thus, in order to span the space of all Gµν

de = 1

2
D2 + 1

2
D −1 (2.10)

anticommuting elements are needed. These are available in a dγ-dimensional Dirac-

Clifford algebra. For convenience, we choose it to be Euclidean:

{
γm ,γn

}= 2δmn . (2.11)

It is spanned by de different matrices γm . In order to keep the full structure of (2.9),

the Gµν can be spanned by:
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2.1 Spin Coupling Matrix Gµν RG Studies of Luttinger Fermions

Gµν = am
µνγm , (2.12)

where am
µν are symmetric second rank Lorentz tensors for each value of m ∈ (1,...,de .

Since Gµν is traceless with respect to the Lorentz indices, the am
µν must fulfill the same

restriction. Inserting (2.12) into (2.9) and contracting with gµκ and gνλ yields:

aµνm am
µν =

D(D +2)

2
. (2.13)

Furthermore, other restrictions on the am
µν can be taken from (2.9). Especially the

normalization conditions of different Gµν lead to:

∑
m

(
am
µµ

)2 = 1

∑
m

(
am

i j

)2 = 1

2

D

D −1∑
m

(
am

0i

)2 =−1

2

D

D −1
.

(2.14)

The construction of an explicit representation of the Gµν in 3+1 dimensions is straight

forward: Due to the large freedom in the parameters of all am
µν, a simple ansatz can

be chosen. All the off-diagonal elements can be represented by (G01,G02,G03) =p
2

3 i (γ1,γ2,γ3) and (G12,G13,G23) =
p

2
3 (γ4,γ5,γ6). Since we need de = 9 different anti-

commuting matrices to span all Gµν in 4 dimensions, we have 3 elements left to

construct the diagonal parts:

G00 = γ7 G11 = 1

3
γ7 +

p
8

3
γ8 (2.15)

G22 = 1

3
γ7 −

p
2

3
γ8 +

√
2

3
γ9 G33 = 1

3
γ7 −

p
2

3
γ8 −

√
2

3
γ9 .

From this representation the am
µν are fixed and of the form:

a1 =
p

2

3
i

(0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
a2 =

p
2

3
i

(0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

)
a3 =

p
2

3
i

(0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

)
a4 =

p
2

3

(0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

)
a5 =

p
2

3

(0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

)
a6 =

p
2

3

(0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

)
(2.16)

a7 = 1

3

(3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
a8 =

p
2

3

(0 0 0 0
0 2 0 0
0 0 -1 0
0 0 0 -1

)
a9 =

√
2

3

(0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 -1

)
.
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2.2 Dimensionality of Gµν RG Studies of Luttinger Fermions

This is only one out of many possible choices for the Lorentz-factors. However,

the γ matrices themselves can have different forms. In accordance with standard

Dirac theory’s spin base invariance, a similar symmetry is found in the Clifford

algebra (2.11). Thus, even more different full representations of Gµν exist apart from

those that emerge through the ambiguities of am
µν. More precisely, the Luttinger

algebra (2.9) is invariant under GL(dγ, C) with the subgroup SL(dγ,C) acting non-

trivially on the Gµν. This spin base symmetry will be used later on in chapter 2.3 to

define a conjugate spinor hence it is important to point it out. Having constructed a

representation for all Gµν in 4 dimensions, it is time to try and incorporate it into an

action that can be used to study the behavior of quadratic fermions in more detail.

But before constructing a relativistic Luttinger fermion theory with the derived Gµν,

another matter has to be addressed carefully.

2.2 Dimensionality of Gµν

Due to the fact that we only consider the trace-less part of Gµν, de is odd for D = 4.

This leads to γm being at least 16x16 matrices. In general, this dimensionality can be

computed straightforwardly. Depending on whether de is even or odd, dγ is obtained

directly for the irreducible representation[19]:

even: dγ = 2
de
2 odd: dγ = 2

de−1
2 . (2.17)

For even dimensions de , this can be compared to a Dirac algebra. Whereas in an

odd number of dimensions d ′
e the space of all Gµν can still be spanned by de = d ′

e −1

independent matrices γm if we include γ∗ ≡ γd ′
e
=α∏de

m=1γm as a final element. The

matrix γ∗ is often called chiral element of the algebra and anticommutes with all its

factors γm :
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2.2 Dimensionality of Gµν RG Studies of Luttinger Fermions

γ∗ ·γm =α
de∏

n=1
γn ·γm

=α
m−1∏
n=1

γn ·γm ·
de∏

n=m+1
γn ·γm

(2.11)= α
m−1∏
n=1

γn ·γm ·γm ·
de∏

n=m+1
γn · (−1)de−(m+1)

=α(−1)m−1−1γm ·
m−1∏
n=1

γn ·γm ·
de∏

n=m+1
γn · (−1)de−(m+1)

=α(−1)de−3γm ·γ∗
de even=====⇒ {

γ∗,γm
}= 0.

(2.18)

To determine the prefactor α, it suffices to demand γ2∗ =1 so that it obeys equation

(2.11). It turns out that α = i is needed since the number of γ-matrices produces

a negative sign in the squaring process. Moreover, it causes γ∗ to be hermitian.

Altogether, γ∗ then reads:

γ∗ = iγ1γ2γ3γ4γ5γ6γ7γ8γ9γ10

γ2
∗ =1 and γ†

∗ = γ∗
(2.19)

meaning that for even dimensions de an element in the Clifford algebra exists which

anticommutes with the whole set of generators apart from the identity. In the context

of Dirac theory, this leads to the emergence of chirality. In contrast, for odd dimen-

sions d ′
e the additional matrix γ∗ does not exist since it is used up as yet another

generator, and the product of all γm in that case just ends up to be the identity (up to a

factor). Hence, in odd dimensions anticommutativity is completely exhausted within

the generators. However, to construct a chiral theory we need an extra anticommut-

ing element or else it cannot be defined [20]. This is often expressed in terms of the

statement that chirality does not exist in odd dimensional spacetime. In spite of that,

generalized definitions of chirality become possible using reducible representations.

Closely connected to this problem are the existence of a parity operator as well as

Kramer’s theorem [21] which establishes a connection between spin and the squared

time reversal operator. In particular, as shown in [10] for the Euclidean case, in four

space dimensions the Gµν give rise to a spinless theory. Similar problems occur for

a generalization to the Minkowski metric. All of these complications arise due to
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2.3 Construction of a quadratic action RG Studies of Luttinger Fermions

the underlying Lorentz-symmetry and its spin representation which depends on

the Clifford algebra structure in (2.9). To circumvent this and to construct a chiral,

quadratic theory which describes fermions with half integer spin, an adjustment

needs to be made. In particular, the root of the problem is the absence of a chiral

element in odd dimensions de . Thus, we can just expand the dimensionality of de

to the next even number to prevent the problem. This, however, comes at the price

of doubling the number of spinor components for odd de but allows us to define a

relativistic theory as we will see later on. Explicitly, this means that for D = 4 we have

de = 9, which we expand to de = 10. By doing so, dγ is raised to 32 and the Clifford

algebra (2.11) has 10 anticommuting generators. But since Gµν still only needs 9

independent parts to be spanned in four dimensions, nothing changes from chapter

2.1. The only difference is that γ10 and also
∏10

m=1γm = γ∗ exist and both of them

anticommute with γ1...9. As a result, we are not only able to define a chiral theory but

we even have two different options at our disposal.

2.3 Construction of a quadratic action

2.3.1 Spin metric h and conjugate spinor

After establishing the basic aspects of a kinetic operator for relativistic Luttinger

fermions, it is now time to incorporate said operator into an action. For the theory to

be consistent, we want it to be Lorentz invariant, spin base invariant and of course

unitary. Within the spin base invariance, there exists the subset of transformations

that will correspond to chiral symmetry. We start by studying the kinetic part:

Skin =
∫

dDx ΨGµν(−i∂µ)(−i∂ν)Ψ. (2.20)

Firstly, we have to clarify howΨ is defined. Just like with regular Dirac fermions, we

can useΨ as an abbreviation forΨ†h, where h is often referred to as the spin metric

[22, 23, 24, 25]. This spin metric has to satisfy certain conditions. For example, h

should be hermitian because when a mass term is introduced it should be real:

(m

2
ΨΨ

)∗ = (m

2
Ψ†hΨ

)∗
= m

2
Ψ†h†Ψ

!= m

2
Ψ†hΨ= m

2
ΨΨ

−→ h = h†.

(2.21)
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2.3 Construction of a quadratic action RG Studies of Luttinger Fermions

Secondly, for the action to be real we can insert Ψ =Ψ†h into (2.20) to see that h

must satisfy:

Skin
!= S∗

kin

=
∫

dDx (i∂µ)(i∂ν)Ψ†G†
µνΨ

†

=
∫

dDx Ψ†hh−1G†
µν(i∂µ)(i∂ν)h†Ψ

=
∫

dDx Ψh−1G†
µνh†(−i∂µ)(−i∂ν)Ψ

−→Gµν
!= h−1G†

µνh†,

(2.22)

where in the third line we used integration by parts and inserted1= hh−1. With these

constraints and the representation derived in chapter 2.1, the following relations

must hold:

G0i = h−1G†
0i h† =−h−1G0i h†

−→ hG0i =−G0i h† =−G0i h

−→ {
h,G0i

}= 0, (2.23)

Gi j = h−1G†
i j h† = h−1Gi j h†

−→ hGi j =Gi j h† =Gi j h

−→ [
h,Gi j

]= 0 ,
[
h,Gµµ

]= 0. (2.24)

Due to Gµν being traceless, we find that h has to obey 9 equations. In order to find

a solution, let us examine the algebra in a more granular matter. Since we have 10

basis elements γi along with the identity matrix, we can create a set of generators Ξ

for the algebra (2.11). It consists of the identity, the basis elements and all possible

products of them, including γ∗. Any matrix S ∈ GL(32,C) can then be represented as

a linear combination of certain elements in Ξ:

Ξ= {
1,γ1, ...,γ10,γ1γ2, ...,γ9γ10,γ1γ2γ3,...,γ∗

}
.

S = eωAΞ
A

with ωA ∈C and ΞA ∈Ξ.
(2.25)
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2.3 Construction of a quadratic action RG Studies of Luttinger Fermions

It may be of interest to examine the size of Ξ, in order to derive which integer values

A can take. To construct Ξ, not all possible products of γi need to be considered.

Since (2.9) holds, the order of the products does not matter up to possibly prefactors

of (−1). Moreover, products with repeated γi are also unnecessary, as they can be

broken down to some other element ΞA by switching the order according to (2.9)

and contracting said index i . Hence, it suffices to consider only products where every

index αi is unique and no order is relevant. Due to these simplifications, calculating

the size of Ξ boils down to a combinatorics problem. When looking at the number of

possible products of length k, the answer is just given by
(n

k

)
. Thus, the total number

of products in Ξ equals:

#Ξ=
10∑

k=0

(
10

k

)
=

10∑
k=0

(
10

k

)
110−k 1k = (1+1)10 = 210 = 1024. (2.26)

The case k = 0 denotes a product of zero γ-matrices, i.e., the identity. This result

goes to show that we need 1024 generators to span GL(32,C), which is in one to one

correspondence to the number of complex elements within a 32×32 matrix. But with

the set of generators in mind, the space of solutions to (2.23) and (2.24) must be a

subspace of Ξ. In order to determine this subspace, we can start by assuming that

any h fulfilling (2.23) and (2.24) can be represented by a basis element of Ξ, meaning

it is of the form:

h =
n∏

j=1
γα j , (2.27)

where αi ∈ (1,...,10) are n different indices, so that h is an element of Ξ up to possibly

a sign. We proceed by considering the equations one by one and ask whether h

contains the corresponding basis element. Beginning by (2.23), we get two cases:

Either h contains γi where i ∈ (1,2,3) or it does not. The first case leads to:

Master Thesis 11



2.3 Construction of a quadratic action RG Studies of Luttinger Fermions

{ n∏
j=1

γα j ,G0i
}= p

2

3
i
{ n∏

j=1
γα j ,γi

}
∼

n∏
j=1

γα j ·γi +γi

n∏
j=1

γα j

=
i−1∏
j=1

γα j ·γαi ·
n∏

j=i+1
γα j ·γi +γi

n∏
j=1

γα j

γαi = γi = (−1)n−1γi

i−1∏
j=1

γα j ·γαi ·
n∏

j=i+1
γα j +γi

n∏
j=1

γα j

= (−1)n−1γi

n∏
j=1

γα j +γi

n∏
j=1

γα j

!= 0

−→ n is even. (2.28)

Analogously, this can be done for the second case where it then leads to n being odd.

Continuing with the first case, now knowing that an even number of γ matrices is

needed, we shall have a look at the other 6 equations from (2.24). Since they all share

the same structure, it suffices to consider
[
h,Gi j

]= 0:

[ n∏
j=1

γα j ,Gi j
]= p

2

3

[ n∏
j=1

γα j ,γk ]

∼
n∏

j=1
γα j ·γk −γk

n∏
j=1

γα j

Appendix A = (
1−2

n∑
i=1

δαi ,k
)
(−1)nγk

n∏
j=1

γα j −γk

n∏
j=1

γα j

n is even = 2γk

n∏
j=1

γα j

n∑
i=1

δαi ,k
!= 0

−→ δαi ,k = 0 ∀i ∈ (1,...,n).

(2.29)

Therefore, none of the matrices that comprise h are found in Gi j or, due to a similar

argument, in Gµµ. With representation (2.15), h is then restricted to γi , where i ∈
(1,2,3) and γ10. For h to fulfill all 3 equations from (2.23), it must contain γ1,γ2 and

γ3. But this product does not consist of an even number of γ matrices. Thus, γ10 has

to be included leading to a first solution of h:

h = γ1γ2γ3γ10. (2.30)
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But similarly, the second case, where one starts with no γi for i ∈ (1,2,3) in h, leads

to a solution that is, in a sense, "conjugate" to the first one. Following the same

calculations, we arrive at:

h̃ = iγ4γ5γ6γ7γ8γ9γ10. (2.31)

The prefactor of i is needed to ensure that h is hermitian. Now we are left with

two independent options which span a space of solutions. Due to the linearity of

anticommutators and commutators, equations (2.23) and (2.24) allow any linear

combination of h and h̃. Not only this, but we ignored the fact that γ∗ could also be

used as a forth part in h or a seventh part in h̃:

h′ = γ1γ2γ3γ∗ and h̃′ = iγ4γ5γ6γ7γ8γ9γ∗. (2.32)

But if γ∗ is expanded, both alternative solutions relate to the former ones like:

h′ =−h̃ and h̃′ = h, (2.33)

meaning the space of solutions is spanned only by h and h̃. Although technically

any pre-factors are allowed, only real ones keep a composite solution H hermitian.

Furthermore, demanding H 2 = 1 restricts the solutions even more:

H =αh +βh̃ α,β ∈R
H 2 =α2 h2︸︷︷︸

=1
+β2 h̃2︸︷︷︸

=1
+αβ{

h,h̃
}︸ ︷︷ ︸

=0

=α2 +β2 != 1.

(2.34)

Still, there are infinitely many H in the span of h and h̃ fulfilling all 9 conditions

(2.23), (2.24). This ambiguity is introduced by the necessary increase of de . It hints at

the theory not being irreducible, but diving deeper into this topic goes beyond the

scope of the thesis. Whereas we do have infinite options for the spin metric, from

now on we will only be using arguably the simplest representation, namely h, for

convenience. To finish the studies on the spin metric, we want to address one more

interesting feature. Let us start by attempting to find a parity operator. As usual,

we can begin by using the definition of the parity operator and try to find a matrix

representation in spinor space:
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P = diag(1,−1,−1,−1) =Λµν
GκλΛ

κ
µΛ

λ
ν = S ·Gµν ·S−1

am
κλΛ

κ
µΛ

λ
νγm = an

µνS ·γn ·S−1

with am from (2.16): ΛT amΛ=−am m ∈ (1,2,3)

ΛT amΛ= am m ∈ (4,...,10)

−→ {
S,G0i

}= 0 (2.35)

−→ [
S,Gi j

]= 0 and
[
S,Gµµ

]= 0 . (2.36)

It becomes apparent that the spinor representation S of the parity operator has to

fulfill the exact requirements that apply to h
(
(2.23), (2.24)

)
meaning P is also part

of the span of h and h̃. Therefore, also P technically has an infinite number of

representations as long as its usual properties (hermitian, unitary, involutory) are

kept [26]. Thus, the parity operator is of the form presented in (2.34).

P =αh +βh̃ with (α,β) ∈ {
(x,y) ∈R2

∣∣x2 + y2 = 1
}
. (2.37)

To keep the formalism simple, we propose to just use α = 1 and β = 0 i.e. setting

P = h. Although, we should not forget that any other representation is a parity

operator as well. Since h and P are part of the same subspace of the algebra, we can

conclude that h has a nice physical interpretation. It changes the parity of the spinor

it acts on.

2.3.2 Luttinger action, symmetries and interaction terms

After establishing the conjugate spinor by introducing the spin metric h which coin-

cidentally also is a parity operator, we are now ready to introduce the final kinetic

action:

Skin =−
∫

dDx ΨGµν∂
µ∂νΨ. (2.38)

By construction this action is real. But with the new interpretation of h as a parity

operator, it can be shown quite easily as well by considering:

Ψ(t ,⃗x) =Ψ†(t ,⃗x) ·h =P
(
Ψ†(t ,⃗x)

)=Ψ†(t ,− x⃗). (2.39)

Inserting this identity into (2.38) will help simplify the calculation of S∗
kin to show that
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Skin is in fact a real quantity:

S∗
kin =−

∫
dDx ∂µ∂νΨ†(t ,⃗x)G†

µνΨ(t ,− x⃗)

i.b.p. =−
∫

dDx Ψ†(t ,⃗x)G†
µν∂

µ∂νΨ(t ,− x⃗)

=−
∫

dDx Ψ†(t ,⃗x)
[
G†

00∂
0∂0 +2G†

0i∂
0∂i +G†

i j∂
i∂ j

]
Ψ(t ,− x⃗)

(2.15),(2.16) =−
∫

dDx Ψ†(t ,⃗x)
[
G00∂

0∂0 −2G0i∂
0∂i +Gi j∂

i∂ j
]
Ψ(t ,− x⃗)

now let x⃗ 7→ −x⃗ i.e.
∫

dDx 7→
∫

dDx , ∂0∂i 7→ −∂0∂i

=−
∫

dDx Ψ†(t ,− x⃗)
[
G00∂

0∂0 +2G0i∂
0∂i +Gi j∂

i∂ j
]
Ψ(t ,⃗x)

(2.39) =−
∫

dDx ΨGµν∂
µ∂νΨ(t ,⃗x)

= Skin.

(2.40)

This action is not only real and obviously Lorentz invariant but also shares a very

large symmetry with the standard Dirac action, namely a spin base symmetry, which

historically dates back to Schrödinger and Bargmann [27, 22, 23]. In the year 2001,

it was picked up by Weldon to describe fermions in curved spacetime without the

use of vierbeins [24]. In our case, it is part of a larger symmetry of type GL(32,C).

Meaning any complex 32×32 matrix is valid for the following transformation:

Ψ→Ψ′ = SΨ S ∈ GL(32,C). (2.41)

Additionally, the adjoint spinor and Gµν transform analogously to the Dirac case in

in [24, 25] sinceΨ is also defined by a spin metric h and equation (2.12) illustrates

the similarity to the Dirac matrices. The only difference is that the whole space of

solutions for h transforms as well according to h → (S†)−1hS−1. Nonetheless, the

mapping reads:

Ψ→Ψ
′ =ΨS−1 and Gµν→G ′

µν = SGµνS−1. (2.42)

Now it can be shown quite easily that under this transformation the algebra (2.9) and

the action remain invariant:
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{
G ′
µν,G ′

κλ

}= SGµνS−1SGκλS−1 +SGκλS−1SGµνS−1

= SGµνGκλS−1 +SGκλGµνS−1

= S
{
Gµν,Gκλ

}
S−1

= S
(
− 2

D −1
gµνgκλ+

D

D −1

(
gµκgνλ+ gµλgνκ

))
1S−1

=
(
− 2

D −1
gµνgκλ+

D

D −1

(
gµκgνλ+ gµλgνκ

))
SS−1

= {
Gµν,Gκλ

}
(2.43)

and

S′ =−
∫

dDx ΨS−1SGµνS−1∂µ∂νSΨ

=−
∫

dDx ΨGµν∂
µ∂νΨ

= S. (2.44)

With this spin base symmetry in place, we start to examine it in order to recognize

certain parts, in particular a chiral transformation. Since GL(32,C) is isomorphic to

SL(32,C)×L 2, it decomposes into the spin base transformations SL(32,C), a U (1)

symmetry and a dilatation symmetry represented by multiplication with a real factor

λ ∈R+. It is important to note that SL(32,C) covers the similarity transformations

of the Clifford Algebra (2.9) completely [25]. Hence, the representation of a chiral

transformation must also be a part of this group. To show this more explicitly, it is

helpful to look at the generation of any element in GL(32,C) as presented in (2.25):

S = eωAΞ
A

. (2.45)

By taking the determinant on both sides, it becomes apparent that 1 generates the

residual symmetry L while all other ΞA are responsible for the similarity transforma-

tions from SL(32,C):

det(S) = det
(
eωAΞ

A
)
= eωA Tr

(
ΞA

)
= e

ω1 Tr(1)+ωA′ Tr
(
ΞA′

)
= e32(a+i b)e

ωA′ Tr
(
ΞA′

)
Appendix (A) =λe iϕ,

(2.46)

2L is a residual symmetry composed of arbitrary complex numbers.
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where A′ denotes the residual summation from 2 to 1024 and λ = e32a as well as

32b = ϕ. We have used that Tr
(
ΞA′) = 0 which is proven in Appendix A. Therefore,

1 is the generator responsible for changing the determinant of S from 1 to be any

complex number. Hence, removing 1 from the generators leaves us with only the

symmetry group of SL(32,C). In analogy to the Dirac case, chiral symmetry can be

defined using an element of the SL(32,C) algebra which anticommutes with all basis

elements spanning Gµν. But due to the reducibility of our theory, we have a choice

to make: either we use γ10 or γ∗. Both matrices should work because Gµν does not

include either one. But the choice for the spin metric h induces a choice for chirality.

We want the chiral transformation to read:

Ψ→Ψ′ = SΨ= e iαγchiral , Ψ→Ψ
′ =Ψe iαγchiral , (2.47)

where γchiral refers to either γ10 or γ∗ and α is a real number. It becomes apparent

that the chiral symmetry is not a part of the spin base symmetry SL(32,C) as (2.47)

does not correspond to (2.42). In order to work, chiral symmetry acts only on the

fieldsΨ andΨ and is generated by an element of the SL(32,C) algebra. For (2.47) to

hold, h must anticommute with γchiral:

{
γchiral,h

}= 0. (2.48)

Due to our choice of h = γ1γ2γ3γ10, only γ10 fulfills (2.48). Thus, defining our chiral

transformation as:

Ψ→Ψ′ = SΨ= e iαγ10 Ψ→Ψ
′ =Ψe iαγ10 . (2.49)

Had we chosen h̃, chirality would have been established using γ∗. Similarly, for

any composite H as the spin metric the chiral element would have been a linear

combination of γ10 and γ∗. Either way, chirality is defined and the kinetic action

remains invariant under chiral transformations:

S′ =−
∫

dDx Ψ
′
Gµν∂

µ∂νΨ′

=−
∫

dDx Ψe iαγ10Gµν∂
µ∂νe iαγ10Ψ

=−
∫

dDx ΨGµνe−iαγ10 e iαγ10∂µ∂νΨ

= S.

(2.50)
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By contrast, a mass term of the form m2

2 ΨΨ is not chirally symmetric. Studying the

behavior of this symmetry breaking in more detail reveals that the discrete chiral

transformationΨ→Ψγ10 leaves the mass term almost symmetric up to a factor of

−1. But this motivates the introduction of an interaction term of a form ∼ (
ΨΨ

)2

since it remains invariant under the said transformation. This symmetry is analogous

to the ones found in Gross-Neveu models in which spontaneous chiral symmetry

breaking occurs due to fermionic self interactions which induce a finite vacuum

expectation value 〈ΨΨ〉 leading to the generation of a fermion mass [28]. Closely

related to this are studies concerning the generation of massless bosonic modes

which align with field excitations along the remaining unbroken symmetries, so

called Gold-stone bosons [29, 30]. But our studies will mainly be focused on the mass

generation. This mechanism is of interest to us since it gives further insight into the

behavior of relativistic Luttinger fermions. Hence, our focus from now on shall be on

an action of the form:

S =
∫

dDx

[
−ZΨΨGµν∂

µ∂νΨ+ λ0

2

(
ΨΨ

)2
]

, (2.51)

where we introduced ZΨ as the fermionic wave function renormalization also called

field strength renormalization([31]) and λ0 as a coupling constant. Further terms

not violating the invariance underΨ→Ψγ10 can also be added. Especially, another

term, quartic in fermions, is of interest: (ΨGµνΨ)2. This interaction will become very

important later on as it is dynamically generated by the λ0 channel which we will see

in chapter 4. But for now it suffices to simply add it to (2.51):

S =
∫

dDx

[
−ZΨΨaGµν∂

µ∂νΨa + λ0

2

(
ΨaΨ

a)2 + λt

2

(
ΨaGµνΨ

a)2
]

. (2.52)

Moreover, in (2.52) another generalization is established. The index a represents

different flavours of the Luttinger fermions and runs from one to N f , the total number

of flavours. This expands the model to multiple flavours and will allow us to introduce

a mean field approximation in chapter 4. On the other hand λt is introduced as a

coupling for the tensor channel. It turns out that this channel is actually symmetric

under the total chiral transformation in (2.49). In view of a generalized Gross Neveu

model [28, 32], there might also be other interaction terms, for example (Ψγ10GµνΨ)2,

that could be used to dynamically generate our two channels, or (Ψγ10Ψ)2, which

together with (ΨΨ)2 would result in a theory fully symmetric under (2.49). But this

goes beyond the scope of this thesis and shall be of interest to further studies on

relativistic Luttinger fermions.
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3 Functional Renormalization Group - Concept

3.1 Introduction to functional RG

Let us now introduce the concept of the functional renormalization group. This

method aims to combine functional approaches to quantum theories with tech-

niques of the renormalization group (RG).

In the former, the physical information of the system can be extracted from a gener-

ating functional. The approach has similarities to statistical physics and has since

been widely used in modern quantum theories as it provides a way to extract any n-

point function by differentiation. Hence, once the generating functional is obtained,

all relevant physical quantities can be derived arguably easier compared to other

computational methods. The crux lies in calculating the generating functional in the

first place. But still, it remains a useful method for analytic computations. For a more

detailed introduction to this area, it suffices to look into any standard literature in

quantum field theory like [31] or others.

The RG aims to bridge the gap between microscopic quantum theories and their be-

havior at large scales. Renormalization is often viewed as a standard tool to deal with

arising infinities in all kinds of quantum theories. Often debated to be just a mathe-

matical means in order to remove diverging behavior of perturbative calculations, it

has since become a much more physically relevant topic over the years. Especially,

the meaning of a cutoffΛ has evolved from a mathematical necessity to a self-evident

idea. As physics changes across different scales, we do not know the behavior of a

theory beyond certain energies. Emergent properties like temperature arise only at

large scales as a macroscopic phenomenon whereas quantum effects such as tun-

neling occur (in a significant manner) exclusively in the smallest of regimes. Hence,

establishing a cutoff Λ for quantum theories seems only natural as we cannot just

assume the quantum interactions to play the same role on every scale. Furthermore,

even belowΛ a change of dynamics is to be expected. Firstly proposed by Kadanoff

to describe the Ising model near a critical temperature [33], the idea to group nearby

variables to "cells" which are microscopically large in order to just use the collective

variable of each cell already paints a picture of changing scales. Further developed

by Wilson [16, 14], Wegner and Houghton [34] and later on Polchinsky [17] as well as

Wetterich [18], the notion of scale-dependent Lagrangians consolidates its physical

pertinence. This scale-dependence is realized through parameters in the theory, i.e.

coupling "constants". By renormalizing these couplings, they can be adjusted to

represent the physics of a model correctly on a given scale. We are then able to go
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one step further and imagine the set of all renormalizations which change the theory

to fit a certain scale - the renormalization group. This set of transformations can

then be used to extrapolate the theory from a given scale to any other one. Moreover,

studies on phase transitions have become a central aspect of the renormalization

group as it can be used to find fix points in the flow of couplings which can relate to

characteristic phase transitions of a system.

Amalgamating both approaches yields a method for obtaining an understanding of a

theory’s macroscopic dynamics purely in terms of the description of its microscopic

interactions or vice versa. More specifically, we can take the average action as a

generating functional describing the macroscopic expectation values of the fields

and examine it in the presence of microscopic sources. We can then relate this action

to a "bare action" corresponding to the classical theory at a large scale cutoffΛ and

the full quantum action involving the sources at a limit where the scale approaches

zero, k → 0, by introducing a regulator function that allows us to integrate out the

fluctuations momentum shell by momentum shell. Then the RG flow equations

can be determined to derive a flow function β for the couplings which governs their

evolution through scales. At last, we can use these flow equations to examine the

behavior of the theory for k → 0 and study the full quantum action. This approach

has been used widely in the literature to analyze different quantum theories and

even theories of quantum gravity [14, 10, 35, 36, 37, 38, 39]. The great advantage of

this method compared to perturbative calculations lies in its applicability to the case

of strong interactions. We will therefore use it to analyze the relativistic Luttinger

action and its self interaction in a more detailed manner. For this, we closely follow

the construction of the Wetterich equation which in turn can be used to compute β

functions [18, 40, 35]. As a starting point, let us consider a UV-regularized generating

functional Z [J] whereΛ denotes that we only integrate over fields for which p <Λ:

Z [J] =
∫
Λ
DΨ(p) e i S[Ψ]+iJT·Ψ. (3.1)

Here, p denotes a dependency on all pi where i ∈ (1,...,D). Ψ and J should be

understood as vectors in field space just like it is done in [35]:

Ψ(p) =
(

Ψ(p)

Ψ
T

(−p)

)
and J=

(
J

T

J

)
. (3.2)

Furthermore, the scalar product in (3.1) is used as a short hand notation to write∫
dDx JΨ+ J TΨT. At this point, we want to address a common problem: The complex-

valuedness of the generating functional. As the imaginary phase leaves Z [J] not well
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defined, let us instead have a look at a Euclidean version. In order to do this, we need

to employ a Wick rotation t → iτ rendering the exponential real. A careful approach

has to be taken since the algebra also changes under this transformation, which is

calculated in Appendix B. The Euclidean generating functional then reads:

Z [J] =
∫
Λ
DΨ(p) e−S[Ψ]+JT·Ψ. (3.3)

3.2 IR regularization

From here onward, we want to introduce a mechanism which ensures that our theory

is also infrared finite. This can be achieved by inserting an additional term ∆Sk :

∆Sk [Ψ] = 1

2

∫
dDp

(2π)2
Ψ

T
i (−p)R i j

k (p)Ψ j (p) = 1

2
Ψ

T ·Rk ·Ψ, (3.4)

where we sum over i , j which both run from 1 to 2. In the last step we used our

previously defined scalar product together withΨT ≡ΨT(−p) to shorten the notation.

The term Rk can be viewed as an IR regulator function suppressing modes with

momenta
∣∣p∣∣ < k, hence it should be of a similar form as the kinetic term in our

action. Furthermore, Rk is matrix valued in field space which permits the following

representation:

Rk =
(

0 −GT
µνpµpν

Gµνpµpν 0

)
ZΨrΨ, (3.5)

where ZΨ is again the wave function renormalization and rΨ represents a dimension-

less regulator shape function [35]. We can now insert (3.3) into (3.1) in order to arrive

at a generating functional Zk [J] that is UV and IR regularized:

Zk [J] =
∫
Λ
DΨ(p) e−S[Ψ]−∆Sk [Ψ]+JT·Ψ . (3.6)

Now we want to have a closer look at Rk and see if we can find some sensible con-

straints. Firstly, it should obey:

lim
p2

k2 →0

Rk > 0. (3.7)

This implements the IR regularization. Additionally, demanding that we can retrieve

Z [J] in the IR-limit Zk→0[J] = Z [J] as well as sending Rk to infinity for k → Λ will

provide a way to interpolate between the bare action without any sources and the full

quantum action as we will see later. Therefore, two more conditions can be posed:
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lim
k2

p2 →0
Rk = 0 and lim

k→Λ
Λ→∞

Rk →∞. (3.8)

Since Rk can be represented like (3.5), these three conditions translate directly to rΨ.

For simplicity we will use a regulator function of Litim form [41]:

rΨ =
(√

k2

p2
−1

)
θ(k2 −p2). (3.9)

With this Rk in place, we can now immediately see that Zk [J] approaches the full

quantum action Z [J] for k → 0. Moreover Zk→Λ[J] leads to the exponential being

heavily suppressed. This justifies a saddle point approximation which results in

leading order to just the bare action being quantized: Zk→Λ[J] ≃ e−S[Ψmin]. For now,

this regulator shape function will suffice as it satisfies all necessary conditions. In

future studies potentially better choices may be found such that the theory converges

more rapidly towards the full quantum action. We are now one step closer to obtain-

ing the coarse grained effective action Γk which interpolates our theory from a bare

action to the full quantum action. But beforehand, we need a few more mathematical

ingredients.
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3.3 The effective action Γ

Now let us introduce the generating functional of connected correlators [31, 42]:

W [J] = ln(Z [J]). (3.10)

In simple terms, W represents a more efficient way of storing the physical informa-

tion in our system. With this at hand we can define a new action Γ:

Γ[Φ] = sup
J

(JT ·Φ−W [J]). (3.11)

Here,Φ is a vector in field space and is related to the expectation value analogue of

(3.2) as we will see now. If we apply a functional derivative of J at J= Jsup to equation

(3.11) it yields:

−→
δ

δJT
i (y)

Γ[Φ] =
−→
δ

δJT
i (y)

(∫
dDx JT

a(x)Φa(x)−W [J]

)

0 =Φi (y)−
−→
δW [J]

δJT
i (y)

−→Φi (y) =
−→
δW [J]

δJT
i (y)

= 1

Z [J]

−→
δ Z [J]

δJT
i (y)

= 〈Ψi (y)〉JT
i

.

(3.12)

〈Ψ〉J can be understood as the expectation value of each component ofΨ that arises

in presence of each component of J respectively. We want to remark that this func-

tional derivative acts toward the right. The direction needs to be specified when

working with Grassmann valued fields as sign changes may arise otherwise. With

this in mind, we can construct a quantum analogue of equations of motion for the

field expectation valuesΦi at J= Jsup:

Γ[Φ]

←−
δ

δΦi (x)
=

∫
dDy JT

a(y)Φa(y)

←−
δ

δΦi (x)
−W [J]

←−
δ

δΦi (x)

= JT
i (x)+

∫
dDy

δJT
a(y)

δΦi (x)
Φ

a(y)−
∫

dDy
δJT

a(y)

δΦi (x)

δW [J]

δJT
a(y)

(3.12)−−−→ δΓ[Φ]

δΦi (x)
= JT

i (x), (3.13)

here we inserted a functional derivative analogue of the chain rule in the second line
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and simplified the notation of the functional derivatives3. From these equations of

motion (3.13) we can interpret Γ[Φ] as an effective action governing the dynamics of

the field expectation values including all quantum fluctuations.

3.4 Derivation of the Wetterich equation

With this formalism in place we can now go back to (3.3) and combine the IR regular-

ization from (3.6) with our effective action model. For this, let us perform a shift of

the integration variable: Ψ→Ψ+Φ. This leads to:

Z [J] = eW [J] =
∫
Λ
DΨ e−S[Ψ+Φ]+JT·Ψ+JT·Φ

−→ eW [J]−JT·Φ =
∫
Λ
DΨ e−S[Ψ+Φ]+JT·Ψ

J=Jsup−−−−→ e−Γ[Φ] =
∫
Λ
DΨ e−S[Ψ+Φ]+ δΓ[Φ]

δΦ(x) ·Ψ

(3.14)

At this point, a way of calculating Γ does not present itself as an easy matter as

equation (3.14) shows the effective action to be determined by a non linear functional

differential equation nested into a functional integral. Thus, solving it exactly for

generic cases is out of the question. Nevertheless, there are functional methods that

feature approximation schemes. It turns out that using a vertex expansion of Γ[Φ]

and inserting it into (3.14) allows a comparison of coefficients leading to an infinite

tower of coupled differential equations, namely the Dyson-Schwinger equations

[43]. Solving these equations corresponds to integrating out all fluctuations at once

yielding a solution to the full quantum action. But for our purposes, we want to

use another approach which relies on RG techniques that we have already set up in

equations (3.4) to (3.9). For this to work, we have to include the IR regulator term

again by modifying our calculation in (3.14). We will start again with Zk [J] and derive

a similar form for Γk [Φ], the coarse grained average effective action:

Zk [J] = eWk [J] =
∫
Λ
DΨ e−S[Ψ+Φ]−∆Sk [Ψ+Φ]+JT·(Ψ+Φ). (3.15)

Since we performed the shift again we have to deal with ∆Sk [Ψ+Φ]. We can do this

by using its definition: ∆Sk [Ψ] = 1
2Ψ

TRkΨ. Inserting it into (3.15) allows us to split

the terms and rearrange those that are not dependent onΨ:

3We want to remark that for the rest of this thesis functional derivatives with respect to a transposed
term always act from the left whereas functional derivatives with no transposition act from the right
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eWk [J]−JT·Φ+∆Sk [Φ] =
∫
Λ
DΨ e−S[Ψ+Φ]−∆Sk [Ψ]− 1

2Ψ
T·Rk ·Φ+JT·Ψ− 1

2Φ
T·Rk ·Ψ

=
∫
Λ
DΨ e−S[Ψ+Φ]−∆Sk [Ψ]− 1

2Ψ
T·Rk ·Φ+(JT− 1

2Φ
T·Rk+ 1

2Φ
T·RT

k )·Ψ

J→Jsup−−−−−→ e−Γk [Φ] =
∫
Λ
DΨ e−S[Ψ+Φ]−∆Sk [Ψ]+ δΓk

δΦ Ψ.

(3.16)

In the last line we have used the fact that the coarse grained action Γk now obeys the

equations:

Γk [J] = sup
J

(
JT ·Φ−Wk [J]

)−∆Sk [Φ]

and
δΓk [Φ]

δΦ(x)
= JT(x)− 1

2
Φ

T ·Rk +
1

2
Φ

T ·RT
k .

(3.17)

Since we are working with fermionic fields, we want to address a special property

of scalar terms in spinor space likeΨT ·Rk ·Φ. As they are Grassmann-valued they

generate a minus sign under transposition:

Ψ
T ·Rk ·Φ= (ΨT ·Rk ·Φ)T =−ΦT ·RT

k ·Ψ. (3.18)

Nonetheless, this formalism can be extended to also contain various other fields

within Ψ and Φ which are not Grassmann-valued. But for our studies it suffices

to only consider fermionic components. We can see with (3.5) that Rk transposes

to itself up to a minus sign. Inserting this fact into (3.17) simplifies our modified

quantum equations of motion to:

Γk [Φ]

←−
δ

δΦ(x)
= δΓk [Φ]

δΦ(x)
= JT(x)−ΦT ·Rk . (3.19)

Concerning (3.19), we see Γk still governs the dynamics of field expectation values

and converges towards (3.13) for k → 0. We can also deduce another relationship

from (3.19) by applying another functional derivative, this time acting to the right:

−→
δ JT(x)

δΦT(y)
=

−→
δ Γk [Φ]

←−
δ

δΦT(y)δΦ(x)
+Rk (x,y). (3.20)

This term relates the functional derivative of J with respect to the field expectation

values to the second functional derivative of Γk with the added regulator term. The

right hand side has an important physical meaning which we will establish now. As
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we saw in (3.12) field expectation values can be calculated by a functional derivative

acting on W . This obviously still holds for Wk . By applying another functional

derivative of J to the left we obtain:

Φ(x)
←−
δ

δJ(y)
=

−→
δWk [J]

←−
δ

δJT(x)δJ(y)
= K (x,y). (3.21)

Here we have defined K which can be understood as the propagator for connected

correlators (see Appendix B). Now we can combine (3.20) and (3.21) to achieve an

important identity (in operator notation) which gives meaning to the right hand side

of (3.20):

1= δΦ(x)

δΦ(x ′)
= δΦ(x)

δJ(y)
· δJ(y)

δΦ(x ′)
= K (x ′,y) ·

( −→
δ Γk [Φ]

←−
δ

δΦT(x ′)δΦ(y)
+Rk (y,x ′)

)
= K ·

(
Γ(2)

k +Rk

)
.

(3.22)

Here we introduced a short hand notation for the second functional derivative of Γk ,

where both ones indicate that a derivative is applied form left and right once. With

this equation in place we can see that the right hand side of equation (3.20) can be

interpreted to be the inverse of the connected propagator:

K =
(
Γ(2)

k +Rk

)−1
. (3.23)

Now we have arrived at a point where all ingredients are in place to derive the flow

equation of Γk at J= Jsup with t = ln
(

k
Λ

)
as the "RG" time [35]:

∂tΓk =−∂t Wk [J]−∂t∆Sk [Φ]

Appendix B−−−−−−−→= 1

2
STr

[
∂t Rk ·K

]
(3.23)−−−→= 1

2
STr

[
∂t Rk ·

(
Γ(2)

k +Rk

)−1
]

,

(3.24)

where STr stands for the supertrace. Since we used generalized field vectors, we

need to distinguish between bosonic and fermionic contributions as the latter are

Grassmann-valued. The supertrace enforces this distinction by assigning a negative

sign to fermionic parts while bosonic terms remain positive [44, 45]. The derived

equation in (3.24) is called the Wetterich equation [18]. It is of major importance

to modern FRG studies and will be the main tool to analyze relativistic Luttinger

Master Thesis 26



3.4 Derivation of the Wetterich equation RG Studies of Luttinger Fermions

fermions in chapter 4. For this reason, let us discuss some of its intricacies now

before we move on to manipulate it further.

Although (3.24) has a one-loop structure similar to those in standard QFT calcula-

tions, it is an exact equation and not an approximation which is indicated by the

appearance of K , the exact propagator, in the denominator. This structure is a conse-

quence of ∆Sk being quadratic inΦ. Moreover, ∆Sk implements IR regularization as

Rk screens any modes for which the momentum is much smaller than k. Due to this

and Rk vanishing for p →∞, the regulator has to drop off around p2 ≈ k2. This drop

off leads to the derivative of Rk with respect to k (or t ) peaking around p2 ≈ k2 and

being small anywhere else. The exact form depends, of course, on the choice of Rk

but the general behavior stays the same. This ensures that we can integrate out field

fluctuations at p2 ≈ k2 while those of different p are suppressed. Hence, we do not

have to include all fluctuations at once but are able to deal with them momentum

shell by momentum shell. For each of these shells we have to consider a different

theory as the dynamics changes with the scale. The set of all these theories spans

a space of action functionals. Within this space there is not only the bare action S,

which we know, but also the full quantum action Γ. By starting at the bare action

S = ΓΛ and integrating out momentum shell by momentum shell, we can end up

with the full quantum action Γ. The set of all points in between are characterized by

Γk which provide a trajectory from the bare action to the full theory. Solving the flow

equation then corresponds to finding this trajectory by starting at k =Λ and traveling

along until we hit the endpoint at which we arrive at Γ. The exact shape of this

path depends on the form of Rk but the endpoints do not as long as the Wetterich

equation is solved exactly. This is to be expected since non-universal quantities

do in fact depend on the renormalization scheme but the final result, i.e. the full

quantum action is invariant under change of Rk which we ensured with (3.7) and

(3.8). Therefore, equation (3.24) yields a method of extracting all relevant physical

information of a theory. It produces results that respect all quantum fluctuations

arising in presence of a source.
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3.5 Approximative solutions

However, we first need to solve (3.24) in order to obtain this information. To accom-

plish this, let us manipulate the equation so that it is more reminiscent to a one-loop

perturbative correction term to the effective action by introducing a formal partial

derivative ∂̃t that acts only on the scale dependence in Rk :

∂tΓk [Φ] = 1

2
STr

(
∂̃t ln

(
Γ(2)

k [Φ]+Rk

))
. (3.25)

It turns out that with this form the necessary calculations become more transparent.

By separating the propagator into a field-dependent part Ik and a field-independent

part Dk it is possible to construct a power series expansion in the fields:

∂tΓk [Φ] = 1

2
STr

(
∂̃t ln

(
Γ(2)

k [Φ]+Rk

))
= 1

2
STr

(
∂̃t ln(Ik +Dk [Φ])

)
(3.26)

= 1

2
STr

(
∂̃t

(
1

Ik
Dk [Φ]

))
− 1

4
STr

(
∂̃t

(
1

Ik
Dk [Φ]

)2)
+ 1

6
STr

(
∂̃t

(
1

Ik
Dk [Φ]

)3)
− ... .

(3.27)

These definitions might at first seem redundant as Rk is already a field-independent

part, but since there are parts of Γ(2)
k that do not depend onΦ as well, we can group

them together to form Ik . If we now represent Γk in terms of field operators with

respective couplings that encode the scale dependence we are able to extract flow

equations for those couplings by simply comparing coefficients of the operators on

the left hand side and right hand side of equation (3.27). In order to better understand

this, let us have a look at a simplified example where Γk is of the form:

Γk [φ] ∼ ∂µφ∂µφ+ gkφ
4, (3.28)

where φ is an arbitrary scalar field. The left hand side of (3.27) would now contain

a term ∼ ∂t gkφ
4 whereas a similar potential appears on the right hand side as well,

however without any derivative involved. Instead, a function of gk will appear as

a pre-factor which occurs due to the interaction of Ik with Dk leading to a term

∼ f (gk )φ4. A comparison of coefficients of φ4 terms leads to a flow equation:

∂t gk = f (gk ). (3.29)
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This method can easily be extended to multiple couplings and has a major advantage:

If we know the form of Γk in terms of field operators we can already see which parts

of the logarithmic power series expansion will produce the desired terms. Due to

Γ(2)
k being a second derivative of Γk it is comprised of operators containing exactly

two fields less. This means we can predict which powers of fields occur on the right

hand side of (3.27) allowing us to neglect any terms that will not produce the same

operators as found in the original Γk . However, for all of this to work we need an

appropriate ansatz for Γk as discussed after (3.27). Such an ansatz can be achieved in

terms of an operator expansion. In particular, an expansion of derivative operators is

of interest since we can use them as a systematic expansion scheme starting with the

Luttinger action in (2.52) as lowest order. The average action can then be expressed

as a sum of an effective potential term V eff
k followed by kinetic terms of increasing

mass dimension:

Γk [Ψ] =
∫

dDx
[

V eff
k (Ψ)−ZΨΨ

TGµν∂
µ∂νΨ+O(∂4)

]
. (3.30)

In this case, the scale dependence and therefore the quantum fluctuations are en-

coded in the coupling "constants" within V eff
k as well as the wave function renormal-

ization ZΦ and its higher order analogues in O(∂4). Using this approach of course

demands a truncation to be implemented since we cannot hope to solve an infinite

number of coupled flow equations arising from (3.30) inserted into (3.27). By ignor-

ing higher order derivative terms as well as terms in V eff
k exceeding a certain power

inΨwe truncate the ansatz which necessarily introduces a source of errors. These

errors may in fact be grievous depending on the theory since we neglect the effect

of higher order n-point functions on the ones we chose to keep, possibly leading to

instabilities in the IR regime [35]. In order to make sure that results do not deviate too

much from the true behavior, we have to check that the expansion scheme converges

towards a stable solution. This can be done in a variety of ways. One of which is

to rely on the fact that physical observables are independent of our regularization

scheme, i.e. independent of Rk . Hence, we can vary Rk and check whether results

of the truncated theory stay the same or vary only weakly. If that is the case, this

truncation might be a useful candidate for further investigations. A physical way

of deciding whether a certain ansatz is at least potentially a good candidate to ap-

proximate the flow equation is to make sure that all relevant degrees of freedom (in

terms of field operators) in S are represented in the ansatz for Γk . But still, there will

be a discrepancy between a full representation of Γk and a truncated one. However,

discussing this mismatch in detail goes beyond the scope of this thesis. Assuming
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that the truncation is able to represent aspects of the full quantum action, we will

therefore proceed without any higher derivative orders beyond the quadratic one.

Furthermore, the potential part V eff
k is not considered to contain any terms that are

of a higher order inΨ as the bare action S.

After this discussion, we can now apply the derivative operator expansion to the

Luttinger action (2.52). Due to our definition ofΨ in (3.2), we seemingly obtain two

kinetic terms after truncating any parts containing four or more derivatives. But since

we can rewrite terms of the form ∂µΨTGT
µν∂

νΨ
T

intoΨGµν∂
µ∂νΨ by transposing and

integrating by parts, the kinetic term is unique and it suffices to consider an effective

average action of the form:

Γk [Ψ] =
∫

dDx

[
−ZΨΨaGµν∂

µ∂νΨa + λ̄0

2
(ΨaΨ

a)2 + λ̄t

2
(ΨaGµνΨ

a)2
]

. (3.31)

Introduced in (3.31), λ̄0 and λ̄t are the scale-dependent couplings for which flow

equations need to be determined. Together with the k dependence of ZΨ they encode

all quantum fluctuations induced by the Luttinger action (2.52). Of course a flow

equation for ZΨ can also be determined but we will see later that it vanishes within

our ansatz (3.31). Additionally, the index a refers to a flavour index and is being

summed over as established in (2.52). With this truncation at our disposal, we are

ready to study the behavior of relativistic Luttinger fermions by computing said flow

equations.
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4 Dynamics of Luttinger fermions

4.1 RG-flow equations

With the methods established in the previous chapter, we now want to calculate flow

equations for λ̄0 and λ̄t as well as ZΨ. For this, we evaluate the effective average

action for constant homogeneous background fields ψ:

Ψ=
(
Ψn(p)

Ψ
T
n(−p)

)
with Ψ(p) =ψ(2π)Dδ(D)(p) (4.1)

Ψ
T = (

ΨT
m(−p),Ψm(p)

)
Ψ(p) =ψ(2π)Dδ(D)(p).

Γ(2)
k will also be evaluated for those fields. But first, we need compute it. We proceed

by taking a look at its definition once again:

Γ(2)
k =

−→
δ

δΨT
m(−p)

Γk

←−
δ

δΨn(p ′)
, (4.2)

where the arrows denote the direction in which the derivative acts as established in

chapter 3. In order to compute this directly using the operator expansion in (3.31), we

need to perform a Fourier transformation on the kinetic and potential parts. Doing

so results in:

Γkin =
∫

dDq

(2π)D
ZΨΨa(q)GµνqµqνΨa(q) (4.3)

Γ0 = λ̄0

2

3∏
i=1

∫
dDqi

(2π)D
Ψa(q1)Ψa(q2)Ψb(q3)Ψb(q1 −q2 +q3) (4.4)

Γt = λ̄t

2

3∏
i=1

∫
dDqi

(2π)D
Ψa(q1)GµνΨ

a(q2)Ψb(q3)GµνΨb(q1 −q2 +q3). (4.5)

Here we decomposed Γk = Γkin +Γ0 +Γt into three separate parts: The kinetic term,

a scalar channel term and a tensor channel term. This will become useful later on

for our calculations. Concerning the derivative of Γk with respect to the transposed

fields with negative momentum, we can simply transpose Γk as it is a scalar in

spinor space. Thus, using properties of Grassmann-valued fields together with a

substitution q →−q for the kinetic term, equations (4.3) - (4.5) read:

Master Thesis 31



4.1 RG-flow equations RG Studies of Luttinger Fermions

Γkin =−
∫

dDq

(2π)D
ZΨΨ

a T(−q)GT
µνqµqνΨ

T
a(−q) (4.6)

Γ0 = λ̄0

2

3∏
i=1

∫
dDqi

(2π)D
Ψa T(q2)Ψ

T
a(q1)Ψb T

(q1 −q2 +q3)Ψ
T
b(q3) (4.7)

Γt = λ̄t

2

3∏
i=1

∫
dDqi

(2π)D
Ψa T(q2)GT

µνΨ
T
a(q1)Ψb T

(q1 −q2 +q3)GµνT
Ψ

T
b(q3). (4.8)

By splitting Γk into these three parts we can immediately see that Γkin will contribute

a field-independent part in Γ(2)
k whereas Γ0 and Γt remain field-dependent after their

respective functional differentiation. Therefore, we split the computation of Γ(2)
k

into three different parts as well. Furthermore, we can construct the corresponding

regulator function in accordance with chapter 3 but modified to include the flavour

indices. Computing the functional derivatives for Γk then yields (Appendix C):

Γ(2)
kin = ZΨ

(
0 −GT

µνpµpν

Gµνpµpν 0

)
(2π)Dδmnδ

(D)(p −p ′) (4.9)

Rk = ZΨ

(
0 −GT

µνpµpν

Gµνpµpν 0

)
rΨ(2π)Dδmnδ

(D)(p −p ′) (4.10)

Γ(2)
0 =−λ̄0

(
D11

0 D12
0

D21
0 D22

0

)
(2π)Dδ(D)(p −p ′) (4.11)

Γ(2)
t =−λ̄t

(
D11

t D12
t

D21
t D22

t

)
(2π)Dδ(D)(p −p ′), (4.12)

where

D0 =
(
D11

0 D12
0

D21
0 D22

0

)
=

(
ψ

T
mψn (ψψ)δmn −ψT

mψ
T
n

−(ψψ)δmn −ψmψn ψmψ
T
n

)
,

and

Dt =
(
D11

t D12
t

D21
t D22

t

)

=
(

GT
µνψ

T
mψnGµν (ψGµνψ)GµνTδmn −GT

µνψ
T
mψ

T
nGµνT

−(ψGµνψ)Gµνδmn −GµνψmψnGµν Gµνψmψ
T
nGµνT

)
.
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Here we have introduced (ψψ) = ψaψ
a in order to simplify expressions and em-

phasize that terms in brackets are scalars in field space. Moreover, D0/t is used to

summarize field-dependent parts of Γ(2)
k . In fact, the separation of the propagator as

proposed in (3.27) can now be implemented immediately:

Ik = Γ(2)
kin +Rk Dk =D0 +Dt . (4.13)

We also want to note that due to the definition ofΨ and its transpose Ik and Dk both

have a special property: Their off diagonal elements are negative transposes of each

other. In order to continue the calculations, we need to find the inverse of Ik . It can

easily be checked that

I−1
k =

(
0 Gµνpµpν

−GT
µνpµpν 0

)
1

ZΨ(1+ rΨ)p4
(2π)Dδmnδ(p −p ′), (4.14)

does in fact act as an inverse of Ik (Appendix C). Furthermore, we notice that poten-

tial terms consisting of four fermion fields as in the scalar and tensor channels λ̄0, λ̄t

in Γk can only be generated by (I−1
k Dk )2 on the right hand side of (3.27). Hence, it

suffices to calculate this term of the expansion and neglect all others. Moreover, as

we apply a trace operator we do not need any off diagonal elements. By squaring

(
I−1

k Dk
)= (

GµνD21 GµνD22

−GT
µνD11 −GT

µνD12

)
pµpν (2π)Dδ(D)(p −p ′)

ZΨ(1+ rΨ)p4
, (4.15)

we arrive at:

(
I−1

k Dk
)2 =Mpµpνpκpλ (2π)Dδ(D)(p −p ′)

Z 2
Ψ(1+ rΨ)2p8

with M=
(

GµνD21GκλD21 −GµνD22GT
κλ
D11 ...

... GT
µνD12GT

κλ
D12 −GT

µνD11GκλD22

)
,

(4.16)

where the dots indicate the remaining matrix entries which are not of interest to us

as they will not contribute to the trace. Now we can proceed by differentiating those

parts with respect to t which come from the regulator, i.e. ZΨrΨ. Since the matrix

does not contain any of these terms we just focus on the scalar factor

∂̃t
1

Z 2
Ψ(1+ rΨ)2

=−2
∂t rΨ−ηΨr

Z 2
Ψ(1+ rΨ)3

, (4.17)
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where we introduced the so called anomalous dimension ηΨ =−∂t ln ZΨ. This term

is the associated "small" parameter of the operator expansion of Γk [35]. As long as

ηΨ stays reasonably small our expansion is justified. As we will see later, we can in

fact show that ηΨ vanishes in the present approximation. Moving on, we need to

apply the trace operator. Some caution is needed as this supertrace not only acts on

the generalized matrix but also on the flavour indices and momenta:

∂tΓk =−1

4
Tr

(
∂̃t

(
I−1

k Dk
)2

)
= 1

2

N f∑
i=1

∫
dDp

δ(D)(0)

p8

∂t rΨ−ηΨr

Z 2
Ψ(1+ rΨ)3

pµpνpκpλ (−TrM11 −TrM22) .
(4.18)

Here, M is again the matrix from equation (4.16). The delta function might seem

problematic at first as it diverges due to the trace acting on the momenta. But if we

did this calculation more rigorously and in position space, it would turn out that

this factor corresponds to the space time volumeΩ. When inserting the background

fields into the left hand side of (3.27) such a factor arises as well. Of course, one

has to be careful when working with diverging quantities but in principle the whole

calculation could be done for a finite spacetime volume such that this factor cancels

on both sides of the equation leading to a converging calculation. Then the limit

for Ω→∞ can be implemented. But for our purposes it suffices to just compare

coefficients and cancel both of the arising divergences with one another. Therefore,

the only thing left to compute is the trace of M. A nice simplification can be made

by exploiting properties of the trace as well as the fact that the off-diagonal elements

of Dk are negative transposes of each other:

TrM22 = Tr
(
GT
µνD12GT

κλD12 −GT
µνD11GκλD22

)
= Tr

(
GT
µνDT

21GT
κλD

T
21

)
−Tr

(
GT
µνD11GκλD22

)
= Tr

(
D21GµνD21Gκλ

)−Tr
(
GµνD22GT

κλD11
)

= Tr
(
GµνD21GκλD21 −GµνD22GT

κλD11
)

= TrM11.

(4.19)

Therefore, the calculation of the flow equations boils down to just one of those traces:

∂tΓk =−Ω
N f∑
i=1

∫
dDp

∂t rΨ−ηΨr

Z 2
Ψ(1+ rΨ)3p8

pµpνpκpλTr(M11) . (4.20)
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We calculate the trace in Appendix C and also use the fact that we can replace the

momenta pµpνpκpλ in the integral by 2p4

D(D+2) together with a totally symmetric

Lorentz index contraction of corresponding Gµν in the trace of M (see also Appendix

C). Furthermore, we include the factor 2
D(D+2) in the trace which then, together with

the sum over flavour indices, yields:

Tr(M11) = (ψψ)2
[
λ̄2

0

(
N f dγ−2

)− λ̄0λ̄t
D

D −1
(2de +4)

]
+ (ψGµνψ)2

[
− λ̄2

0
4

D(D +2)
+ λ̄0λ̄t

(
2− 4

de

)
− λ̄2

t
D

de (D −1)

(
N f dγ (de −2)+2

(
d 2

e −de +2
))]

= (ψψ)2 f̄
(
N f ,D, λ̄0, λ̄t

)+ (ψGµνψ)2ḡ
(
N f ,D, λ̄0, λ̄t

)
,

(4.21)

where we have introduced de and dγ again in correspondence to (2.10) and (2.17).

Moreover, the functions f̄ and ḡ are shorthand notations where the bar indicates

their dependence on λ̄0 and λ̄t . Let us now introduce renormalized, dimensionless

couplings:

λ0 = λ̄0Z−2
Ψ kD−4 and λt = λ̄t Z−2

Ψ kD−4. (4.22)

Using these new parameters and their corresponding functions f
(
N f ,D,λ0,λt

)
and

g
(
N f ,D,λ0,λt

)
as well as the calculated trace, (4.20) simplifies a lot once we cancel

some prefactors depending on k and ZΨ which emerge from our substitution (4.22)

on the left hand side of (3.27). This leads to a flow equation of the form:

∂tΓk =−Ω[
(ψψ)2 f + (ψGµνψ)2g

] ϑD

2

∫ ∞

0
dx x

D−6
2
∂t rΨ−ηΨr

(1+ rΨ)3
, (4.23)

where ϑD denotes the D-dimensional solid angle and x = p2

k2 . The integral over x is

often called a threshold function and encodes the entirety of our regularization and

therefore corresponds to a scheme-dependent factor. Depending on the choice of

rΨ this factor changes. For our purposes, we evaluate the integral for a regulator of

Litim form (3.9) in Appendix C. Meanwhile, the left hand side of (3.27) can also be

calculated straightforwardly. Since the derivative acts only on the renormalized cou-

plings and not on any fields, we can immediately perform the integration as the delta

functions in our background fields produce another divergent term corresponding

to the spacetime volume. We can also ignore the kinetic term as none such operator
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is on the right hand side. Canceling remaining factors of k and ZΨ with the ones on

the right, the left side reads:

∂tΓk = (2π)D

2
Ω

[
(ψψ)2 (

∂tλ0 − (D −4+2ηΨ)λ0
)

+ (ψGµνψ)2 (
∂tλt − (D −4+2ηΨ)λt

)]
.

(4.24)

Now comparing coefficients of the field operator terms leads directly to flow equa-

tions for λ0 and λt . Inserting the result of the threshold function from Appendix C

yields:

∂tλ0 = (D −4+2ηΨ)λ0 − ϑD

(2π)D

(
2

D −2
− 2ηΨ

(D −2)(D −1)

)
f (N f ,D,λ0,λt )

∂tλt = (D −4+2ηΨ)λt − ϑD

(2π)D

(
2

D −2
− 2ηΨ

(D −2)(D −1)

)
g (N f ,D,λ0,λt ).

(4.25)

The result is a system of two coupled differential equations. We can group them into

a total flow function β by treating them as part of a vector

β= ∂t

(
λ0

λt

)
, (4.26)

which results in a vector field that we can analyze. But before that, let us discuss the

flow of the wave function renormalization ZΨ in a little more detail. Its equation

can be derived by considering a background field that corresponds to incoming and

outgoing particles in the form of plain waves. In momentum space this corresponds

to a shift in the delta functions of (4.1) by an external momentum U :

Ψ(p) =ψ(2π)Dδ(D)(p −U ) and Ψ(p) =ψ(2π)Dδ(D)(p +U ). (4.27)

However, this leads to the left hand side of(3.27) being dependent on U whereas

the right hand side will not produce any U dependence in the bi-linear field terms.

Therefore, comparing coefficients leads to a vanishing flow of ZΨ:

∂t ZΨ = 0. (4.28)

Hence, we can assume the wave function renormalization to be constant. This has

the additional benefit of a vanishing anomalous dimension justifying our expansion

of Γk . Since the flow vanishes we can simply set ZΨ = 1 for the rest of our analysis.
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Next, we want to focus on the β function (4.26). With the definition of the solid angle

ϑD = 2πD/2Γ(D/2)−1 and the aforementioned fact that ηΨ = 0 we can evaluate the

flow for the special case where we set D = 4 and N f = 1. This then yields:

β= ∂t

(
λ0

λt

)
=− 1

(12π)2

(
540λ2

0 −528λ0λt

−3λ2
0 +28λ0λt −992λ2

t

)
. (4.29)

This equation represents the flow of both quartic couplings. It encodes the dynamics

of relativistic Luttinger fermions on different scales. For this reason, let us study the

β function in a little more detail and discuss its properties.

Theβ function consists of two coupled first order differential equations. While similar

flow functions have been derived for other theories, for example the Gross Neveu

model [28], they normally contain a linear term in their respective channels. In D = 4

this is not the case for Luttinger fermions which is due to the quadratic derivative

term in the kinetic operator. By construction, this leads to the flow function only

containing purely quadratic terms in the couplings rendering them perturbatively

renormalizable. Moreover, there is no contribution to the flow of λ0 which does not

depend on λ0 itself. Therefore, the scalar channel cannot be generated dynamically

by the tensor channel, but has to be excited in the first place in order to contribute to

the total quantum fluctuations. In contrast to this, the flow of the tensor channel λt

does contain a term quadratic in λ0. This means even if the system starts with only

the scalar channel, i.e. λt = 0, quantum fluctuations in form of the tensor channel

will arise and contribute to the total dynamics since ∂tλt does not vanish:

∂t

(
λ0

λt

)
=− 1

(12π)2

(
540λ2

0

−3λ2
0

)
. (4.30)

Here, the contribution to the tensor channel is comparatively small in relation to

the scalar one. But as we will see later on this does not necessarily mean that the λ0

channel stays dominant. On the other hand, when we start with no scalar channel

the system remains in a state without λ0 terms. Thus, the differential equations

decouple into two analytically solvable equations:

∂t

(
λ0

λt

)
=− 1

(12π)2

(
0

−992λ2
t

)
(4.31)

−→ ∂tλ0 = 0 and ∂tλt = 62

9π2
λ2

t . (4.32)
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In this case λ0 is constant with respect to t or k and remains zero if we start with

it being zero. λt is a little more interesting as its corresponding axis forms an RG

invariant subspace within our truncation. Its differential equation can now be solved

analytically. Fixing the coupling at some scale µ0, λt ,µ0 =λt (µ0), yields

∫ λt

λt ,µ0

dλ′
t

1

λ′
t

2 = 62

9π2

∫ k

µ0

dk ′ 1

k ′

−→λt (k) = λt ,µ0

1− 62
9π2λt ,µ0 ln

(
k
µ0

) .
(4.33)

This evolution equation has some interesting properties and is illustrated in Figure 1.

We observe two distinct cases which we discuss separately.

In the case of λt ,µ0 > 0 the theory becomes non-interacting in the IR-limit as the

coupling tends to zero. For increasing k on the other hand the coupling approaches

a Landau pole. This pole signals a break down of the theory since we cannot safely

let the UV- cutoff approach infinity as the corresponding coupling diverges as well.

Therefore we are unable to obtain a UV-complete theory. This behavior is similar

to QED where it was established that such a pole could spell trouble for the theory

[46]. In order to fix this problem multiple studies have been focused on detailed

investigations around non perturbative methods to mend QED. Nowadays it is clear

that such a pole, at least in QED, does not impede on the validity of said theory as it

was shown that non perturbative dynamics such as spontaneous symmetry breaking

or non Gaussian RG fixed points cause the Landau pole to remain outside the reach

of physical parameters [47, 48]. Similar analytic methods may be applied here but

for our purposes it suffices to attain only a general insight into the behavior of the

system without digging too deep into its details.

In the second case, where λt ,µ0 < 0, the dynamics differ. For increasing k the coupling

approaches the UV-limit not only safely but even vanishes rendering the theory non-

interacting. But now the Landau pole is situated in the IR-regime. This behavior can

be compared to QCD where quarks are asymptotically free in the UV-regime but only

occur in confined states for smaller scales. The IR-pole does not indicate a breakdown

of the theory but can be removed using higher twist corrections and instead only

hints at critical behavior in the form a phase transition toward confinement [49]. In

order to perform a similar analysis in our case, we would need to employ higher order

truncations. Therefore, we want to finish the discussion on the lone tensor channel

for now and move on toward the total flow (4.29).
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Figure 1: Evolution of λt (k) for vanishing scalar channel. Here µL =Λexp
(

9π2

62λt ,µ0

)
marks a Landau pole which is a UV pole for λt ,µ0 > 0 marking the UV incompleteness
of the theory, and an IR-pole for λt ,µ0 < 0 indicating potentially the onset of a phase

transition.

When not setting the scalar channel to 0, we have no method of solving theβ-function

analytically. But we can numerically approximate its behavior and therefore still gain

a lot of insight into the dynamics. As discussed above, the scalar channel provides a

negative sign in its quadratic term as well as many mixed terms and contributions to

the tensor channel thereby inducing a complex interplay between the couplings. In

order to analyze these dynamics, we can simulate β numerically by plotting a vector

field (Figure 2). It is useful to plot −β in order to visualize the flow towards the IR

regime.
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Figure 2: −β-function (4.29) plotted as a vector field. The vertical axis represents
the tensor channel while the horizontal one illustrates the scalar channel
coupling. A colour gradient shows values of

∣∣−β∣∣=√
(∂tλ0)2 + (∂tλt )2

emphasizing the existence of a Gaussian fixed point at (0,0).

Due to this, we can clearly see that (0,0) is an asymptotically free Gaussian fixed

point in the UV regime for starting values λ0 and λt in the forth quadrant. Since the

flow diverges in all other quadrants towards the UV we can disregard these areas

as we want to focus on a theory that provides asymptotic safety. Therefore, we will

only consider positive values for λ0 and negative ones for λt . However, this does not

entirely ensure asymptotic freedom since there remains a zone just below the λt = 0

axis where the tensor channel is able to induce enough fluctuations to force β across

the axis resulting in λt becoming positive and for large k divergent. In order to avoid

UV divergences which render our theory unphysical, we need to find separatrices that

divide phase space into distinct domains in which different asymptotic behaviors

emerge. By fine-tuning initial conditions, the boundaries of these domains can be

approximated and are shown in Figure 3.
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Figure 3: β function plotted with approximated separatrices (red lines). The Gaussian
fixed point is indicated by a blue dot at (0,0) and areas I, II and III mark
domains of different behavior for k →∞

One such separatrix is given by the invariant subspace λ0 = 0. It divides phase space

into 2 parts which never interfere with one another. For initial conditions left of

this boundary, i.e. λ0 < 0 (II) in Figure 3), the UV behavior always shows the scalar

channel approaching negative infinity whereas the tensor channel flows towards

positive infinity. Even for negative initial λt this holds, since for any λ0 < 0 the flow of

λt will always remain positive which follows from 3λ2
0−28λ0λt +992λ2

t < 0 having no

solutions for λ0 < 0. The phase space in which λ0 > 0 is split into two other domains

by the second separatrix. In domain III both channels diverge towards positive infin-

ity. Moreover, λt always ends up dominating the scalar channel. However, this is not

the case in domain I. For any initial pair of couplings starting in this area the theory

is UV-finite. Not only this but the UV flow always converges towards a Gaussian fixed

point F guaranteeing not only asymptotic safety but actually asymptotic freedom

thereby ensuring a consistent model at any scale. For this reason we want to dedicate

the rest of this thesis on domain I and restrict the Luttinger theory to suitable initial

conditions.
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With our model now being a free theory in the UV limit, we still have strong inter-

actions occurring in the IR regime. In general, such a difference of dynamics on

different scales often leads to critical behavior or phase transitions. For example,

in QCD quarks are free particles in a high energy limit whereas their behavior dras-

tically changes towards lower energy scales as they form condensates and bound

states such as mesons or even protons and neutrons. This, of course, occurs due to

them being coupled with gluons [50]. It induces a strong fermionic self interaction

which may cause spontaneous symmetry breaking leading to critical changes in

the dynamics [29]. In order to study these phenomena, we can try to express the

action (2.52) in a partially bosonized form. This method allows us to disregard four

fermion interactions at the cost of introducing an auxiliary field φ which is in turn

of bi-fermionic natureΨΨ. Such a pairing often occurs when dealing with strongly

interacting fermions like in QCD, or in condensed matter physics where it leads

to superconductivity and superfluidity [51, 52]. The new field φ then carries infor-

mation about the field expectation value of a bound stateΨΨ. Since the Luttinger

model does in fact feature strongly interacting fermions in the IR regime, it may

be of interest to apply a partial bosonization in order to gain more insight into the

macroscopic dynamics of the theory. However, to make use of this method we cannot

keep both interaction channels. If we did introduce, for example, φ ∼ΨΨ to get

rid of the four fermion scalar channel but kept the tensor channel it could simply

induce new fluctuations in the scalar channel as they are coupled to each other. This

renders the bosonization only approximate since as soon as we would change k

the flow equation could generate a scalar channel term through changes in λt and

vice versa. In principle, this problem can be solved by the technique of dynamical

bosonization [53]. For simplicity, we will confine our investigations in the following

on the scalar channel and ignore the tensor channel. To achieve good approximate

results nonetheless, we need the impact of the tensor channel to be comparatively

small meaning λ0 should be the dominant part. By integrating out both couplings

numerically, we can approximate for which initial conditions in phase space λ0 stays

dominant when approaching the IR regime. We choose initial conditions lying on the

unit circle in phase space and integrate out all of them for k ∈ [0,1] as the couplings

rapidly tend to infinity. Using the last values of the integrated couplings we can

compare both channels with respect to the angle α= arctan
(
λt
λ0

)
at which their initial

conditions were chosen. By doing so, we can define a susceptibility of β in domain I

as done in Figure 4.
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Figure 4: Susceptibility of β displaying the coupling strengths depending on the

angle α= arctan
(
λt
λ0

)
of initial conditions in the fourth quadrant of figure 2.

From this graph we can infer that for any initial conditions in the forth quadrant

of Figure 2 for which α < −45.765◦ the tensor channel coupling stays dominant

when being integrated out towards the IR regime. On the other hand, for angles

greater than −45.765◦ the scalar channel takes over. Furthermore, we observe an

interesting property of λ0 at an angle around 20◦ where its graph hits a maximum.

This phenomenon occurs due to β always having a non-zero second component

∂tλt . The flow of λt starts to pull λ0 towards zero for smaller values of λt . However,

this should not be confused with the separatrix which separates domains I and II. Its

appearance occurs much later at an angle of approximately −0.72◦. But the influence

of the tensor channel on the scalar one kicks in much earlier. Nonetheless, the scalar

channel stays dominant for −45.765 < α < 0 meaning we can neglect the impact

of the tensor channel and still approximate the theory reliably. Therefore, we can

combine the results of Figure 3 with this angle dependent behavior in order to find a

domain of initial conditions which not only exerts asymptotic freedom but can also

be approximated using partial bosonization to determine macroscopic dynamics.
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Figure 5: β function with its domains of different asymptotic behavior I, II and III.
Red solid lines represent separatrices as boundaries of those domains. The
black dashed line indicates at which angle (−45.765◦) of initial values λ0(Ia)
or λt (Ib) dominates the IR-regime. Due to the scaling of the axes the line
appears to be at a wider angle. F is the Gaussian fixed point which attracts
the flow in domain I.

In Figure 5 this domain is precisely represented by area Ia. This concludes our

discussion on the β function of relativistic Luttinger fermions. In the next section,

we will focus on applying a partial bosonization which may provide insights on mass

generation, spontaneous symmetry breaking, and possible stability issues.
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4.2 Partial bosonization

In this section, we introduce the well-established method of partial bosonization by

applying a Hubbard-Stratonovich transformation [54, 55]. This method provides a

transition from four-fermionic interactions to a scalar field, to which our fermions

are coupled. In principle, this can be done analogously for a theory that is completely

chirally symmetric by adding a potential term of the form −(Ψγ10Ψ)2 [28]. In do-

ing so, we would need to establish the modified flow equation of λ′
0 as well which

would likely lead to a dynamical generation of an axial tensor channel (Ψγ10GµνΨ)2.

Therefore, we would have to start with such a term in our ansatz and compute the

total flow. After that we would again need to consider in which domain the tensor

channels could be neglected. However, this goes beyond the scope of this thesis.

Thus, a minimal approach suffices for now, where we only work with a partial chiral

symmetry as in action (2.51):

S0[Ψ,Ψ] =
∫

dDx

[
−ZΨΨGµν∂

µ∂νΨ+ λ0

2

(
ΨΨ

)2
]

. (4.34)

This Luttinger action is symmetric under Ψ → γ10Ψ. Such a symmetry may be

broken spontaneously according to the Goldstone theorem leading to the generation

of massless bosons [29]. This happens only if the vacuum expectation value 〈ΨΨ〉
becomes finite. But as we do not have a continuous symmetry we do not expect any

massless bosons to be generated as there will not be any residual symmetry left after

the spontaneous breaking. Hence, we only focus on the potential mass generation.

The corresponding Euclidean generating functional for (4.34) reads4:

Z =
∫
DΨDΨ e−S0[Ψ,Ψ]. (4.35)

We can again set ZΨ = 1. Now we introduce an auxiliary field φ to bosonize the scalar

four fermion interaction by multiplying our generating functional with a constant

factor:

1 = 1

N

∫
Dφ e−∫

dDx m2

2 φ2
, (4.36)

where N is a normalization factor. We can now introduce a coupling term that

induces interactions between φ andΨ to arrive at a theory of the form:

Z =
∫
DΨDΨDφ e−SFB[Ψ,Ψ,φ] (4.37)

4We omit the source terms here for convenience.
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with

SFB[Ψ,Ψ,φ] =
∫

dDx

[
−ΨGµν∂

µ∂νΨ+h0ΨφΨ+ m2

2
φ2

]
, (4.38)

where h0 is the corresponding coupling constant and the subscript FB is chosen to

illustrate that this action contains fermionic and bosonic fields. This new theory can

now be related to (4.35) if we consider the equations of motions of φ. Since we do

not have any kinetic term for this scalar field, the e.o.m. are trivial and read:

m2φ+h0ΨΨ= 0

φ=− h0

m2
ΨΨ.

(4.39)

Inserting this result back into (4.38) yields

SFB =
∫

dDx

[
−ΨGµν∂

µ∂νΨ− h2
0

2m2

(
ΨΨ

)2

]
. (4.40)

Therefore, SFB is equivalent to (4.34) if we demand:

λ0 =− h2
0

m2
. (4.41)

This partially bosonized action is now symmetric under the combined transforma-

tions Ψ→ γ10Ψ and φ→−φ. If this was done with a continuous chiral symmetry,

meaning an additional term −(Ψγ10Ψ)2 was in the action to begin with, we would

have introduced two real or one complex scalar field which would result in a con-

tinuous symmetry transformation. Nonetheless, the generating functional of this

partially bosonized action now has one great advantage over the the one in (4.35). It is

only quadratic in fermionic fields and therefore we can straightforwardly perform the

integration over them. This assumes that we do not have any bosonic fluctuations

and that the bosonic ground state is identical to the one of the classical bosonic

action. These assumptions correspond to a mean field approximation where φ= 〈φ〉.
Furthermore, we shift our view from the generating functional towards an effective

action of φ. We can approximate this effective action to one loop order as:

Γ[φ] = S[φ]+Γ1-loop[φ], (4.42)

where Γ1-loop[φ] is the fermionic one-loop correction which we will derive from

(4.37). Assuming φ to be homogeneous, we take φ= const. which reduces Γ[φ] to an

effective potential, where S[φ] is only of the form:
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S[φ] =
∫

d4x
m2

2
φ2. (4.43)

Now we are left with the task to calculate Γ1-loop. Starting out with (4.37) and using

(3.11), while omitting source terms, we arrive at:

Γ1-loop[φ] =− ln

[
N

∫
DΨDΨ exp

(
−

∫
dDp

(2π)D
Ψ

(
Gµνpµpν+h0φ

)
Ψ

)]
, (4.44)

where we performed a Fourier transform in the exponent. But this path integral is

analytically solvable with standard QFT procedure since the exponent is quadratic in

Ψ. Therefore, we only need to evaluate a Gaussian integral resulting in:

Γ1-loop[φ] =− ln
[
N det

(
Gµνpµpν+h0φ

)]
. (4.45)

This expression can still be highly non-local due to the complex structure involving

the natural logarithm of a determinant. However, since we chose φ to be homoge-

neous it does not contain any spacetime dependencies leaving us with an expression

that we are able to evaluate analytically. Inserting γ2
10 into the determinant simplifies

the expression as calculated in Appendix C:

Γ1-loop[φ] =−1

2
Tr

[
ln

(
N (−p4 +h2

0φ
2)

)]
. (4.46)

Moreover, since Γ1-loop[φ] depends only on φ once we have performed the trace op-

eration, we can fix the normalization condition such that for a field expectation value

of φ= 0 the generating functional Z vanishes as well. Applying this normalization

yields:

Γ1-loop[φ] =−1

2
Tr

[
ln

(
p4 −h2

0φ
2

p4

)]
. (4.47)

Now we would like to use Frullani’s formula [56] in order to rewrite the logarithm

and calculate Γ1-loop[φ] analytically as it is done in standard QFT. But we cannot

apply this method since the numerator in the logarithm may very well be negative

ruling out Frullani’s formula. We address this problem by examining equation (4.41).

Since λ0 has already been restricted to positive values in the previous section and

m2, representing a mass term, needs to be positive as well, h2
0 is forced to be negative.

Hence, we can replace h0 with i |h0|. The absolute value ensures that we cover all

cases since (±i h0)2 both yield −h2
0. Inserting this substitution leads to a slightly
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different form of (4.47). The numerator has an overall negative sign which together

with the normalization condition yields:

Γ1-loop[φ] =−1

2
Tr

[
ln

(
p4 +|h0|2φ2

p4

)]
. (4.48)

We can now apply Frullani’s formula as the numerator and denominator are real

and strictly positive. This allows us to calculate the one-loop correction explicitly

(Appendix C):

Γ1-loop[φ] = (V T )

2π2

(
|h0|2φ2 (

γ−1
)+|h0|2φ2 ln

( |h0|2φ2

Λ4

))
, (4.49)

where γ is the Euler-Mascheroni-constant, (V T ) is a factor representing the space-

time volume andΛ∼ p represents a UV cutoff. Combining this correction with S[φ]

and performing the spacetime integral in S[φ] leads to

Γ[φ] = (V T )

(
m2

2
+ |h0|2

2π2

((
γ−1

)+ ln

( |h0|2φ2

Λ4

)))
φ2,

= (V T )Veff[φ],

(4.50)

where we defined Veff[φ] as an effective potential [31]. Let us now discuss some

properties of Veff. It has the form of a Coleman-Weinberg potential [57] which has

been studied in multiple contexts as it arises, for example, in φ4 theories. It exhibits

two non-trivial minima which determine the field expectation value. By inserting
|h0|2
|h0|2 in the first term we can identify m2

|h0|2 with equation (4.41) and the substitution

we made h0 → i |h0| to find a dependence on λ0:

Veff[φ] = |h0|2φ2

2λ0
+ |h0|2φ2

2π2

(
γ−1+ ln

( |h0|2φ2

Λ4

))
. (4.51)

Now we can determine both minima as they follow from

dVeff

dφ

∣∣∣∣
〈φ〉

= 0. (4.52)

Apart from a trivial solution 〈φ〉 = 0, the two non-trivial solutions read:

|h0|〈φ〉 =±Λ2 exp

(
− π2

2λ0
− γ

2

)
. (4.53)
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Figure 6: Effective potential Veff(φ) over φ. Characteristic minima appear at ±ζ =
± Λ2

|h0| exp
(
− π2

2λ0
− γ

2

)
.

Them being non-trivial corresponds to spontaneous symmetry breaking of the par-

tially bosonized action. The transformationΨ→ γ10Ψ together with φ→−φ does

leave the action invariant but the field expectation value of φ attaining a non-zero

value breaks this invariance. Usually, this would induce a fermionic mass as a result

of strong coupling quantum interactions. However, we have to be careful with such

interpretations as we modified h0 → i |h0| to be imaginary. In order to better un-

derstand what kind of physical consequences the spontaneous symmetry breaking

may have for the theory, let us consider the partially bosonized propagator since

it indicates whether masses are generated by its pole structure. Returning to the

partially bosonized action with the substituted i |h0|, we switch to a momentum

representation which allows us to find the propagator directly:

SFB[Ψ,Ψ,φ] =
∫

dDx

[
−ΨGµν∂

µ∂νΨ+ i |h0|ΨφΨ+ m2

2
φ2

]
=

∫
dDp

(2π)D

[
Ψ

(
Gµνpµpν+ i |h0|φ

)
Ψ+ m2

2
φ2

]
−→ K −1 =Gµνpµpν+ i |h0|φ.

(4.54)
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Inverting the expression in (4.54) yields:

K = Gµνpµpν− i |h0|φ
p4 +|h0|2φ2

K = Gµνpµpν− i |h0|φ
(p2 + i |h0|φ)(p2 − i |h0|φ)

,

(4.55)

which results in the propagator having not a real, masslike pole but two conjugate

complex poles instead. Therefore, the substitution from h0 to i |h0| to ensure a real

scalar field mass m and positive λ0 in (4.41) leads to the poles in the propagator

being shifted off the real axis and into the complex plane. To be precise, we can

identify these poles as two conjugate imaginary mass poles i m2
Ψ which is obvious

when deriving the equations of motion forΨ from the partially bosonized action SFB

(4.38):

δSFB = 0

0 = (
Gµνpµpν+h0φ

)
Ψ

φ=〈φ〉−−−−−−→
h0=i |h0|

0 = (
Gµνpµpν± i m2

Ψ

)
Ψ,

(4.56)

where in the last step we assigned the imaginary fermion mass term i m2
Ψ = i |h0|〈φ〉.

Hence, we could also write m2
Ψ on the left hand side of equation (4.53). The two

propagator poles at i m2
Ψ and −i m2

Ψ exhibit an asymptotically free behavior meaning

for λ0 → 0 they both collapse and vanish leaving us with a non-interacting theory.

This corresponds to the Gaussian fixed point we found in the previous section and

confirms our results, as we concluded to obtain asymptotic freedom there as well,

which of course implies that there are no interactions left which could cause sponta-

neous symmetry breaking in the first place. Therefore, the γ10 symmetry is restored

in the UV limit and at any finite scale the fermions stay in a broken phase. However,

as we discussed above, the fermions do not acquire a mass in said phase. What we

discovered instead is a structure reminiscent of a Gribov-Stingl type propagator [58].

These objects also contain imaginary poles and have been studied in a QCD con-

text when working, for example, with gluon self interactions. In this scenario it has

been shown that the Lehmann-Källen spectral function of the propagator does not

exhibit positive definiteness, thereby not describing any asymptotically propagating,

physical degrees of freedom [59, 60]. The same could be done in our case rendering
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the Luttinger fermions not being part of the asymptotic spectrum. In view of QCD,

an interesting interpretation emerges. Similar to gluons, Luttinger fermions might

also be confined such that they could only appear as part of composite particles (like

glueballs [61]) or else decay rapidly as seen in, for example, gluon jets [58]. However,

to confirm that Luttinger fermions may in fact show such confinement properties,

much more work is needed. Especially, a more in depth analysis of the propagator is

required as well as possible couplings to other quantum fields in order to describe

potential decaying processes. However, this exceeds the scope of this thesis but it

may be of interest to future studies. Nonetheless, we can still continue with some

examinations of the effective potential. By identifying φ as a constant bi-spinor

condensate again, we can resubstitute terms in the effective potential naively us-

ing (4.39), (4.41) and again h0 → i |h0|, to arrive at a potential for the bi-spinor (ΨΨ).

Some caution is needed because after the resubstitution the coupling term i |h0|ΨφΨ
becomes λ0

(
ΨΨ

)2, thereby contributing to the total effective potential:

Veff[ΨΨ] = λ0

2

(
ΨΨ)2 − λ2

0

2π2

(
ΨΨ

)2

((
γ−1

)+ ln

(
−λ2

0

(
ΨΨ

)2

Λ4

))
. (4.57)

A negative sign arises when replacing the fields and coupling terms which, at first

glance, causes instabilities in the log term by introducing complex parts. However,

this arises only due to the imaginary coupling i |h0|ΨφΨ which forces a complex

contribution to appear. In spite of this, the potential does provide interesting insights

in the scaling dependence. That is why we neglect any concerns for these complex

parts for now, as this remains only a naive investigation. By artificially inserting a

scale dependence k and regrouping terms with similar field dependence, we can

define a renormalized coupling λR :

Veff[ΨΨ] =
(
λ0

2
− λ2

0

2π2

(
γ−1+ ln

(
k4

Λ4

)
+ ln

(
λ2

0

)))(
ΨΨ

)2 − λ2
0

2π2

(
ΨΨ

)2 ln

(
−(
ΨΨ

)2

k4

)

= λR

2

(
ΨΨ

)2 − λ2
0

2π2

(
ΨΨ

)2 ln

(
−(
ΨΨ

)2

k4

)
.

(4.58)

This renormalized coupling now depends on the arbitrary scale term k. We derive the

flow equation for λR by simple differentiation with respect to the RG-time t = ln
(

k
Λ

)
:

∂tλR =− 4

π2
λ2

0. (4.59)

Master Thesis 51



4.2 Partial bosonization RG Studies of Luttinger Fermions

This result is equivalent to the one from section 4.1 when we consider a large flavour

limit. It can be seen immediately when we introduce multiple flavours in our

mean field approach as this would simply lead to a total prefactor N f in equation

(4.44) since the different flavours are not interacting with each other in the partially

bosonized action SFB. Hence, all the different path integrals DΨiDΨi can be reduced

to
(
DΨDΨ

)N f . Using logarithm rules, this leads to the aforementioned prefactor

N f . Thus, we modify equation (4.59) to contain this factor:

∂tλR =−4N f

π2
λ2

0. (4.60)

On the other hand, the flow equation in (4.25) for D = 4,ηΨ = 0 and vanishing tensor

channel reads:

∂tλ0(k) =−
4
(
N f − 2

dγ

)
π2

λ2
0, (4.61)

which converges towards (4.60) for large N f . Therefore, the renormalized versions

of λ0 do in fact match up as expected, again confirming the results of the previous

section. Since we did not involve the tensor channel flow or a an axial scalar channel,

this analysis is incomplete. Especially with respect to even higher order channels

there may be induced quantum fluctuations that change the dynamics of the system

compared to these results. But as a first minimal approach this should suffice to

show that relativistic Luttinger fermions may spontaneously break chiral symmetry

with some analogies to a Gross-Neveu model [28], but also major differences, as

there is no non-trivial fixed point in the coupling dynamics leading to the system

residing in a broken phase for all scales. Additionally, imaginary mass poles, similar

to a Gribov-Stingl-type propagator, arise leading to behavior vastly different from a

standard Gross-Neveu model as no mass is generated but instead other phenomena

like confinement might occur. Yet, in order to describe those dynamics and interpret

the physics correctly, more detailed investigations are needed. These results shall

conclude our first studies on relativistic Luttinger fermions for now.
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5 Conclusion

The goal of this thesis was to establish a relativistic theory on Luttinger fermions and

elaborate the first studies on their dynamics. We started by constructing a kinetic

operator K̂ :

K̂ =−Gµν∂
µ∂ν, (5.1)

which is quadratic in derivatives. For the theory to be Lorentz-invariant, we in-

troduced a spin coupling matrix Gµν in analogy to Dirac matrices. Moreover, we

determined the algebra structure of Gµν and decomposed Gµν into Lorentz tensors

am
µν and γm matrices: Gµν = am

µνγm . These γ matrices satisfy a Euclidean Clifford

algebra. By means of dimensional analysis, we concluded m ∈ (1,...,9) in four space-

time dimensions. However, we also realised that an odd dimensional Clifford algebra

is not suitable for the description of fermions with half integer spin. Therefore,

we implemented a reducible representation where the algebra is spanned by 10

independent γ matrices instead. Due to this, we were able to derive a spin metric

h = γ1γ2γ3γ10 which provided a way to define a conjugate spinor Ψ=Ψ†h that al-

lowed us to devise a real action for relativistic Luttinger fermions. Since the theory is

reducible, we actually found a whole subspace of the algebra to act as such a spin

metric. Furthermore, we discovered that the same subspace also spans the set of

all parity operators meaning the spin metrics are acting as parity transformations.

By fixing the spin metric h, a unique chiral element was established. We continued

by constructing four fermion interaction terms. In particular, we found
(
ΨΨ

)2 and(
ΨGµνΨ

)2 to be of our interest as both of these interaction channels interact with

each other through quantum fluctuations. We forwent the inclusion of axial scalar

and axial tensor channels, which would have left the theory totally chirally symmetric,

for simplicity. After an introduction to functional renormalization group techniques

we used a minimal ansatz for an action of the form:

S =
∫

dDx

[
−ZΨΨaGµν∂

µ∂νΨa + λ0

2

(
ΨaΨ

a)2 + λt

2

(
ΨaGµνΨ

a)2
]

, (5.2)

and analyzed it with the aforementioned methods. This lead us to the flow equations

β. Evaluated at D = 4 and N f = 1 we found

β= ∂t

(
λ0

λt

)
=− 1

(12π)2

(
540λ2

0 −528λ0λt

−3λ2
0 +28λ0λt −992λ2

t

)
. (5.3)

We established a special case in which the scalar channel coupling vanishes and is
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not dynamically generated, which decoupled the two equations. Analyzing only the

tensor channel lead to an evolution of λt reminiscent of QED and QCD, featuring the

appearance of a Landau pole in the IR or UV regime depending on whether λt < 0

or λt > 0. Since the tensor channel flow is always dynamically generated there is

no such uncoupled case for λ0. However, we found the total flow to be asymptoti-

cally free for a certain domain of initial conditions. This is due the appearance of a

Gaussian fixed point which attracts the flow in the UV-regime. Depending on the

UV-behavior, we divided phase space into three distinct domains which are par-

titioned by two separatrices. Moreover, we computed a susceptibility of β in the

UV-finite region to determine for which initial conditions each coupling dominates.

We found that for initial conditions at an angle α= arctan
(
λt
λ0

)
the integrated scalar

channel dominates in the interval −45.765◦ < α < −0.72◦ where the upper bound

is given by the numerically approximated separatrix. Hence, we were able to ne-

glect the contributions from the tensor channel in this region, such that a partial

bosonization is justified. We proceeded to analyze the dynamics of the scalar channel

by implementing a mean field approximation for a partially bosonized action. We

discovered that the theory undergoes spontaneous symmetry breaking of its γ10 sym-

metry for any finite coupling. However, no fermion mass was generated as the poles

that arose in the propagator were of a conjugate, imaginary structure reminiscent

of Gribov-Stingl propagators which have been discussed in the QCD context. Those

poles might lead to the propagator not having a positive definite spectral function

in the Lehmann-Källen representation. Therefore, Luttinger fermions might not be

part of the asymptotically propagating physical spectrum. In view of the similarity

to the Gribov-Stingl propagators we suggested that Luttinger fermions may thus be

confined in the broken symmetry phase. But this interpretation needs further inves-

tigations to be validated. Furthermore, in our minimal approach we only considered

the discrete chiral symmetry as the introduction of an axial scalar channel might

dynamically generate an axial tensor channel as well rendering the flow analysis

incomplete. Continuous symmetries may be of interest to future studies. Moreover,

we derived a renormalized scalar channel coupling λR from the effective potential

and were able to show that this coupling matches with the renormalized coupling

from the flow equation studies in a large N f limit thereby confirming the previous

results.

This concluded our studies on relativistic Luttinger fermions. Future investigations

may develop more intricate models by including axial channels or even other ten-

sor terms. Higher order truncations or different methods, like rebosonization, will
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provide further insights into the dynamics of relativistic Luttinger fermions. The

asymptotic freedom, which is part of this model, might be an exciting property when

introducing gravity into the picture. On the other hand, comprehending the dy-

namics of the Luttinger fermions comprehensively may provide additional insights

into quadratic band touchings in general which are currently of major interest in

fields like material science and electronics. Besides, understanding the physical

mechanisms that occur when coupling the theory to other quantum fields may be of

interest. Those are only a few examples for a multitude of conceivable research areas

surrounding Luttinger fermions. We can, without any doubt, be excited for what is to

come.
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Appendices

A Luttinger algebra calculations

On the summation of
(
Gµνpµpν

)2

writing the index summation explicitly, the square of the kinetic operator reads:

K̂ 2 = p4 =
(∑
µ

pµ
(∑
ν

Gµνpν
))2

=∑
µ

(pµ)2(∑
ν

Gµνpν
)2 + ∑

µ,κ
µ̸=κ

pµpκ
(∑
ν

Gµνpν
)(∑

λ

Gκλpλ
)

=∑
µ

(pµ)2
(∑
ν

G2
µν(pν)2 + ∑

ν,σ
ν̸=σ

GµνGµσpνpσ
)
+ ...

=∑
µ,ν

(
Gµνpµpν

)2 + ∑
µ,ν,σ
ν̸=σ

(pµ)2pνpσGµνGµσ+
∑

µ,ν,κ,λ
µ̸=κ

pµpκpνpλGµνGκλ.

(4)

Now we realize that in order for K̂ 2 to contain only even powers of p the second sum

must vanish completely. For this to be the case, we have to demand
{
Gµν,Gµσ

}= 0 for

ν ̸=σwhich is part of (2.4). The remainder comes from the third sum in (4). There we

see that only even powers of p remain when either µ= ν∧κ=λ or µ=λ∧ν= κ holds.

Thus, the rest of the sum must vanish as well which is the case when
{
Gµµ,Gκλ

}= 0

with κ ̸=λ and when
{
Gµν,Gκλ

}= 0 with µ ̸= ν∧κ ̸=λ∧ (µ,ν) ̸= (κ,λ). Altogether, this

leads to the statement in (2.4). We can then proceed by simplifying (4) with these

anticommutators which leads to (2.5).
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product relations of γmatrices

In order to simplify the second line in equation (2.29), we start in the first term by

bringing γk to the left. Swapping positions of γ matrices by using (2.11) yields the

formula in equation (2.29):

n∏
j=1

γα j ·γk =
n−1∏
j=1

γα j

(
2δαn ,k −γkγαn

)
= 2δαn ,k

n−1∏
j=1

γα j −
n−2∏
j=1

γα j

(
2δαn−1,k −γkγαn−1

)
γαn

= 2δαn ,k

n∏
j=1
j ̸=n

γα j −2δαn−1,k

n∏
j=1

j ̸=n−1

γα j +
n−2∏
j=1

γα j ·γk ·
n∏

j=n−1
γα j

repeat n times = 2
n−1∑
i=0

(
(−1)iδαn−i ,k

n∏
j=1

j ̸=n−i

γα j

)
+ (−1)nγk

n∏
j=1

γα j

= 2
n−1∑
i=0

(
(−1)iδαn−i ,k γkγαn−i︸ ︷︷ ︸

=1

n∏
j=1

j ̸=n−i

γα j

)
+ (−1)nγk

n∏
j=1

γα j

all α j are different = 2
n−1∑
i=0

(
(−1)iδαn−i ,kγk (−1)n−i−1

n∏
j=1

γα j

)
+ (−1)nγk

n∏
j=1

γα j

= 2(−1)n−1γk

n∏
j=1

γα j

n−1∑
i=0

(
δαn−i ,k

)
+ (−1)nγk

n∏
j=1

γα j

= (
1−2

n∑
i=1

δαi ,k
)
(−1)nγk

n∏
j=1

γα j .

(5)

This identity holds for any set of γ-matrices αi as long as αi ̸=α j for all i ̸= j .
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Using the results of (5) we can show that the trace of any generator ΞA vanishes

except for that of 1:

Tr
(
ΞA′)= Tr

(
n∏

i=1
γαi

)

= Tr

([n−1∏
i=1

γαi

]
·γαn

)

(5), all αi different = Tr

(
(−1)n−1γαn

n−1∏
i=1

γαi

)
cyclicity of Tr = (−1)n−1 Tr

(
ΞA′)

−→
(
1− (−1)n−1

)
Tr

(
ΞA′)= 0

n is even−−−−−−→ Tr
(
ΞA′)= 0.

(6)

This covers the case where we have an even number of γ matrices. The case of an

odd numbered product is way simpler since we can just insert a 1 to show that the

trace must vanish:

Tr
(
ΞA′)= Tr

(
m∏

i=1
γαi

)

= Tr

(
m∏

i=1
γαi1

)

= Tr

(
m∏

i=1
γαiγ∗γ∗

)

using (3.18) = Tr

(
(−1)mγ∗

m∏
i=1

γαiγ∗

)
cyclicity of Tr = (−1)m Tr

(
ΞA′)

m is odd−−−−−→ Tr
(
ΞA′)= 0.

(7)

Together, (6) and (7) show the trace of any generator of GL(32,C) vanishes except for

the first one, namely the trace of 1.
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B Functional calculations

Wick rotation

Employing a Wick rotation t →±iτ in order to go from a term i S in the exponent to

−S demands that we change Gµν as well:

i S = i
∫

dDx −ΨGµν∂
µ∂νΨ

= i
∫

dDx −Ψ
[

g 00g 00G00∂0∂0 +2g 00g i ′i G0i ′∂0∂i + g i ′i g j ′ j Gi ′ j ′∂i∂ j

]
Ψ

t→±iτ−−−−−−→
gµν→δµν

= i
∫

d(±iτ)dD−1x −ΨG ′
µ′ν′∂

µ′∂ν
′
Ψ

=∓
∫

dτdD−1x −Ψ
[
δ00δ00G ′

00(∓i∂0)(∓i∂0)

+2δ00δi ′i G ′
0i ′(∓i∂0)∂i +δi ′iδ j ′ j G ′

i ′ j ′∂i∂ j

]
Ψ

!=−S

g i i=−1−−−−−−−→
g 00=δµµ=1

∓G ′
00 =G00 ∓ iG ′

0i =G0i ±G ′
i j =Gi j .

(8)

The upper sign always stands for the case where we employ the positive Wick rotation

t → iτ. These new G ′
µν = GE

µν can also be understood as the euclidean versions of

Gµν. It can now easily be shown that these GE
µν do in fact satisfy a euclidean analogue

to (2.9) where we had the Minkowski versions G M
µν:

{
GE
µν,GE

κλ

}=− 2

D −1
δµνδκλ+

D

D −1

(
δµκδνλ+δµλδνκ

)
{
G M

00,G M
00

}= 2{
GE

00,GE
00

}= 2

}
−→G M

00 =∓GE
00{

G M
00,G M

i i

}=− 2
D−1 g00gi i = 2

D−1{
GE

00,GE
i i

}=− 2
D−1δ00δi i =− 2

D−1

}
−→G M

i i =±GE
i i{

G M
0i ,G M

0i

}= D
D−1 g00gi i =− D

D−1{
GE

0i ,GE
0i

}= D
D−1δ00δi i = D

D−1

}
−→G M

0i =∓iGE
0i{

G M
i j ,G M

i j

}= D
D−1 gi i g j j = D

D−1{
GE

00,GE
i i

}= D
D−1δi iδ j j = D

D−1

}
−→G M

i j =±GE
i j .

(9)

This goes to show that we are free to choose which Wick rotation to employ as long

as we only consider the kinetic term. This differs from Dirac theory where we need to

use the negative rotation to obtain a negative sign in front of the action. This results

from the spin metric changing as well under the Wick rotation which is not the case
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for Luttinger fermions. There is no need for h to change as it is just comprised of γ

matrices and not of any prefactors am
µν. But these are the only objects which have to

transform under Wick rotations as they alone encode the spacetime metric whereas

in Dirac theory the γ matrices themselves contain this information forcing them to

transform under Wick rotation. However, if we introduce interaction terms we need

to be careful. For a scalar channel of the form (ΨΨ)2 the action transforms as follows:

i S = i
∫

dDx (ΨΨ)2

t→±iτ−−−−→=∓
∫

dτdD−1x (ΨΨ)2 =∓S.
(10)

Therefore, we have to use the positive Wick rotation. We also want to remark that an

interaction channel of the form (ΨGµνΨ)2 does in fact not change under both Wick

rotations and thus also needs a positive rotation to achieve the negative sign in front

of S.

derivative of Wk

In (3.24) some simplifications were made that will be detailed in the following calcu-

lations. In particular, the derivative of Wk with respect to t has to be computed. In

order to do this, let us establish another relation concerning (3.21):

δ2W [J]

δJT(x)δJ(y)
= δ

JT(x)

(
1

Zk

δZk

δJ(y)

)
= 1

Zk

δ2Zk

δJT(x)δJ(y)
− 1

Z 2
k

δZk

δJT(x)

δZk

δJ(y)

= 〈Ψ ·ΨT〉−〈Ψ〉 · 〈ΨT〉 = 〈Ψ ·ΨT〉−Φ ·ΦT = K (x,y).

(11)

Here the · stands for a generalized outer product in contrast to the scalar product and

K is again the propagator of connected correlators. Additionally, we need to consider

how to take the derivative of Wk with respect to k since the scale dependence lies

within the matrix valued regulator function. In general, for a scalar function g (U)

depending on the matrix U(t ) the derivative with respect to t reads [62]:

∂g (U)

∂t
= Tr

(
∂g (U)

∂U
· ∂U

∂t

)
. (12)
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Furthermore, introducing the scalar product AT ·U ·B where A and B are vectors we

can take the derivative with respect to U [62]:

∂(AT ·U ·B)

∂U
= A ·B T (13)

Therefore, we can differentiate Wk with respect to t as follows:

∂t Wk = Tr

(
∂Wk

∂Rk
· ∂Rk

∂t

)
= Tr

(
−1

2

1

Zk

∫
DΨ e−S[Ψ]−∆Sk [Ψ]+JT·Ψ

Ψ ·ΨT ·∂t Rk

)
= Tr

(((
−1

2

1

Zk

∫
DΨ e−S[Ψ]−∆Sk [Ψ]+JT·Ψ

Ψ ·ΨT
)
+ 1

2
Φ ·ΦT − 1

2
Φ ·ΦT

)
·∂t Rk

)
= Tr

(
−1

2
K ·∂t Rk −

1

2
Φ ·ΦT ·∂t Rk

)
=−1

2
Tr(K ·∂t Rk )− 1

2
Tr

(
Φ ·ΦT ·∂t Rk

)
=−1

2
Tr(K ·∂t Rk )−∂t∆Sk [Φ].

(14)

Inserting this into the first equation of (3.24) leads to ∆Sk being canceled resulting in

the Wetterich equation [18].
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C Flow equation and mean field calculations

Functional derivative of Γk

To evaluate the second derivatives of (4.6) for constant background fields (4.1), we

start by considering:

δ

δΨn(p)
Ψa(q) = (2π)Dδ(D)(p −q)δna . (15)

Furthermore, noticing that we can always transpose Γk as it is a scalar we arrive at

expressions for Γkin, Γ0 and Γt which contain the transposed spinors. Additionally,

we can substitute q →−q in the case of Γkin:

Γkin =
∫

dDq

(2π)D
−ZΨΨ

a T(−q)GT
µνqµqνΨ

T
a(−q) (16)

Γ0 = λ̄0

2

3∏
i=1

∫
dDqi

(2π)D
Ψb T

(q1 −q2 +q3)Ψ
T
b(q3)Ψa T(q2)Ψ

T
a(q1) (17)

Γt = λ̄t

2

3∏
i=1

∫
dDqi

(2π)D
Ψb T

(q1 −q2 +q3)GµνT
Ψ

T
b(q3)Ψa T(q2)GT

µνΨ
T
a(q1). (18)

For Γ0 and Γt we could also just transpose one of the scalar products ΨiΨ
i and

receive an overall minus sign. With these transposed versions in place we can easily

apply the functional derivatives. Starting with Γkin we get:

−→
δ Γkin

←−
δ

δΨT
m(−p)δΨn(p ′)

= 0

−→
δ Γkin

←−
δ

δΨT
m(−p)δΨ

T
n(−p ′)

=−GT
µνpµpνZΨ(2π)Dδ(D)(p −p ′)δmn

−→
δ Γkin

←−
δ

δΨm(p)δΨ
T
n(−p ′)

= 0

−→
δ Γkin

←−
δ

δΨm(p)δΨn(p ′)
=GµνpµpνZΨ(2π)Dδ(D)(p −p ′)δmn ,

(19)

which we can write in matrix representation to arrive exactly at (4.9). Similarly, we

can apply the derivatives to the scalar and tensor channels. There we have to be a

bit more careful as the product rule has to be taken care of. We now perform this

calculation for Γt :

Master Thesis 62



C Flow equation and mean field calculations RG Studies of Luttinger Fermions

−→
δ Γt

←−
δ

δΨT
m(−p)δΨn(p ′)

= λ̄t

2

3∏
i=1

∫
dDqi

(2π)D

·
[
−(2π)2Dδ(D)(q1 −q2 +q3 +p)δbmGT

µνΨ
T
b(q3)Ψa(q1)Gµνδ(D)(q2 −p ′)δan

−(2π)2Dδ(D)(q2 −p)δamGT
µνΨ

T
a(q1)Ψb(q3)Gµνδ(D)(q1 −q2 +q3 +p ′)δbn

]
.

(20)

Here we can now insert the background field definition and resolve the delta func-

tions with the integrations over qi . Furthermore, we can simplify the Kronecker

deltas from the flavours with the remaining fields leading to:

−→
δ Γt

←−
δ

δΨT
m(−p)δΨn(p ′)

=−λ̄0GT
µνψ

T
mψnGµν(2π)Dδ(D)(p −p ′). (21)

Moreover, we can compute the next part:

−→
δ Γt

←−
δ

δΨm(p)δΨn(p ′)
= λ̄t

2

3∏
i=1

∫
dDqi

(2π)D

·
[

(2π)2Dδ(D)(q1 −p)δamGµνΨa(q2)Ψb(q3)Gµνδ(D)(q1 −q2 +q3 −p ′)δbn

+ (2π)2Dδ(D)(q1 −p)δ(D)(q2 −p ′)δmnGµνΨb(q3)GµνΨb(q1 −q2 +q3)

+ (2π)2DΨa(q1)GµνΨ
a(q2)Gµνδ(D)(q3 −p)δ(D)(q1 −q2 +q3 −p ′)δmn

+(2π)2Dδ(D)(q3 −p)δbmGµνΨb(q1 −q2 +q3)Ψa(q1)Gµνδ(D)(q2 −p ′)δan

]
.

(22)

Again, we can insert the background fields and contract the flavour indices as well as

perform the integrations leading to:

−→
δ Γt

←−
δ

δΨm(p)δΨn(p ′)
=−λ̄t

(
−δmn

(
ψGµνψ

)
Gµν−GµνψmψnGµν

)
(2π)Dδ(D)(p−p ′), (23)

where the brackets in
(
ψGµνψ

)
indicate that we sum over the flavour indices leading

to a scalar in spinor space.
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Analogously, we can compute the rest of the the tensor channel derivatives:

−→
δ Γt

←−
δ

δΨm(p)δΨ
T
n(−p ′)

=−λ̄0Gµνψmψ
T
nGµνT(2π)Dδ(D)(p −p ′) (24)

−→
δ Γt

←−
δ

δΨT
m(−p)δΨ

T
n(−p ′)

=−λ̄t

(
δmn

(
ψGµνψ

)
Gµν−GT

µνψ
T
mψ

T
nGµνT

)
(2π)Dδ(D)(p −p ′).

(25)

Altogether, equations (21), (23), (24) and (25) can be arranged in the from of (4.12).

Moreover, Γ(2)
0 yields the same results just without any of the Gµν and Gµν terms and,

of course, with the scalar channel coupling instead.

Inverse of Ik

Checking that I−1
k from (4.14) is the inverse to Ik can be done by matrix multiplica-

tion:

I−1
k ·Ik =

N f∑
i

∫
dDp̃

(2π)D
(2π)2Dδmiδi nδ

(D)(p̃ −p)δ(D)(p̃ −p ′)
1

p4

·
(

0 Gµνp̃µp̃ν

−GT
µνp̃µp̃ν 0

)(
0 −GT

µνp̃µp̃ν

Gµνp̃µp̃ν 0

)
= (2π)Dδmnδ

(D)(p −p ′)1,

(26)

which shows that I−1
k is the sought inverse.

Trace computation

A more challenging task is the calculation of the trace of M11. In order to compute it,

let us split this matrix into three components using the definition of D0 and Dt in

equations (4.11) and (4.12):

M11 =Gµν(D0
21 +Dt

21)Gκλ(D0
21 +Dt

21)−Gµν(D0
22 +Dt

22)GT
κλ(D0

11 +Dt
11)

=GµνD0
21GκλD0

21 −GµνD0
22GT

κλD
0
11︸ ︷︷ ︸

:=M00
11

+GµνDt
21GκλDt

21 −GµνDt
22GT

κλD
t
11︸ ︷︷ ︸

:=Mt t
11

+GµνD0
21GκλDt

21 +GµνDt
21GκλD0

21 −GµνD0
22GT

κλD
t
11 −GµνDt

22GT
κλD

0
11︸ ︷︷ ︸

:=M0t
11

.

(27)
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The superscripts of M00
11, Mt t

11 and M0t
11 are used to indicate their dependence

on the couplings meaning all parts containing a λ2
0 are found within M00

11, mixed

terms λ0λt are in M0t
11 and λ2

t parts are in Mt t
11. We can now calculate each part

separately. But before that, let us observe one more thing. In equation (4.20) we

need to perform a momentum integral over over ∼ pµpνpκpλ

p8 which is an integral of

the form
∫

dDp f (p2)pµpνpκpλ. We can rewrite this integral in terms of the metric

tensors instead:

∫
dDp pµpνpκpλ f (p2)

!= c
∫

dDp p4 f (p2)
(
gµνgκλ+ gµκgνλ+ gµλgνκ

)
, (28)

where c is a constant that we need to determine. In order to calculate c, we can

contract the left side of (28) with gµνgκλ to arrive at:

gµνgκλ

∫
dDp pµpνpκpλ f (p2) =

∫
dDp p4 f (p2), (29)

whereas contracting the right hand side of equation (28) yields:

gµνgκλc
∫

dDp p4 f (p2)
(
gµνgκλ+ gµκgνλ+ gµλgνκ

)
= c(D2 +2D)

∫
dDp p4 f (p2).

(30)

Therefore, we can conclude that

c = 1

D(D +2)
. (31)

With this information we can simplify some terms in the integral (4.20). We can

contract
(
gµνgκλ+ gµκgνλ+ gµλgνκ

)
with the matrices Gµν and Gκλ in M11 which

yields a factor of two since the first addend vanishes due to Gµν being trace-less

whereas the other two contractions have the same result: Gµν and Gκλ terms in M11

are being contracted. Therefore, we can overall replace pµpνpκpλ in (4.20) with
2p4

D(D+2) and contract the matrices Gµν, Gκλ or GT
κλ

in M11 with one another. Now we

can go back to computing the trace and we start with M00
11:

Tr
(
M00

11

)
= Tr

(
GµνD0

21GµνD0
21 −GµνD0

22GµνTD0
11

)
= λ̄2

0 Tr
[
Gµν

(−(
ψψ

)
δmi −ψmψi

)
Gµν

(−(
ψψ

)
δi n −ψiψn

)−Gµνψmψ
T
i GµνT

ψ
T
i ψn

]
,

(32)
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where the brackets around bi-spinors again indicate that their flavor indices are

being summed over. Since there is a sum over flavour indices in (4.20) which arose

from the total trace, we can perform it here now in order to simplify. Furthermore,

using properties of the trace and transposing some scalar terms we end up with:

Tr
(
M00

11

)
= λ̄2

0 Tr
[(
ψψ

)2GµνGµνδmn1+2
(
ψψ

)
GµνGµν1ψmψn +2Gµνψm(ψGµνψ)ψn

]
= λ̄2

0

[
N f dγ

D(D +2)

2

(
ψψ

)2 −D(D +2)
(
ψψ

)2 −2
(
ψGµνψ

)2
]

= λ̄2
0

D(D +2)

2

[(
N f dγ−2

)(
ψψ

)2 − 4

D(D +2)

(
ψGµνψ

)2
]

,

(33)

where we used

Tr(δmn1) = N f dγ (34)

Tr
(
ψmψn

)=−(
ψψ

)
(35)

Tr
(
ψmGµνψn

)=−(
ψGµνψ

)
(36)

GµνGµν = D(D +2)

2
, (37)

to simplify the terms. Now we can include the factor 2
D(D+2) in order to simplify even

further:

λ̄2
0

[(
N f dγ−2

)(
ψψ

)2 − 4

D(D +2)

(
ψGµνψ

)2
]

. (38)

With this first expression calculated, we can move forward to Tr
(
Mt t

11

)
. For this, let

us first establish some relations between different Gµν which we need to compute

some expressions. They both result from (2.9):

GµνGκλ =
( −2

D −1
gµνgκλ+

D

D −1

(
gµκgνλ+ gµλgνκ

))
1−GκλGµν (39)

−→ Tr
[
GµνGκλ

]= 1

2
Tr

[{
Gµν,Gκλ

}]= dγ
2

( −2

D −1
gµνgκλ+

D

D −1

(
gµκgνλ+ gµλgνκ

))
.

(40)
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Using these expressions, we can now compute Tr
(
Mt t

11

)
:

Tr
(
Mt t

11

)
= λ̄2

t Tr
[
GµνDt

21GκλDt
21 −GµνDt

22GT
κλD

t
11

]
= Tr

[
Gκλ

((
ψGµνψ

)
Gµνδmi +Gµνψmψi Gµν

)
Gκλ

((
ψGµνψ

)
Gµνδi n +GµνψiψnGµν

)
−GκλGµνψmψ

T
i GµνTGκλT

GT
ρσψ

T
i ψnGρσ

]
λ̄2

t

= Tr
[
δmnGµνGκλGµνGρσ

(
ψGκλψ

)(
ψGρσψ

)+ (
ψGκλψ

)
GµνGκλGµνGρσψmψnGρσ

+GµνGκλψmψnGκλGµνGρσ
(
ψGρσψ

)+GµνGκλψm
(
ψGκλGµνGρσψ

)
ψnGρσ

+GµνGκλψm
(
ψGρσGµνGκλψ

)T
ψnGρσ

]
λ̄2

t

= λ̄2
t

[
N f dγα

D

D −1

(
ψGµνψ

)2 −2α2(ψGµνψ
)2 − (ψGκλGµνGρσψ

)
(ψGρσGµνGκλψ

)
−(ψGρσGµνGκλψ

)
(ψGρσGµνGκλψ

)]
,

(41)

where we introduced α =
(

2D
D−1 − D(D+2)

2

)
to shorten the expressions. We see that

tensor terms of higher order arise. These are problematic since they are dynamically

induced fluctuations that we did not cover in our action. However, we can manipulate

them algebraically and see that they actually cancel out, leaving only contributions

toward the tensor channel
(
ψGµνψ

)
. To perform the cancellation let us only focus

on the last term in (41) and try to change the order of matrices to match up with the

other term. For that, let us simply study how to change the order of the 3 matrices.

After that, we can insert the result in the last term in (41):

GρσGµνGκλ =
( −2

D −1
gρσgµν+ D

D −1
(gµρ gνσ+ gνρgµσ)

)
Gκλ−GµνGρσGκλ

=
( −2

D −1
gρσgµν+ D

D −1
(gµρ gνσ+ gνρgµσ)

)
Gκλ

−
( −2

D −1
gρσgκλ+ D

D −1
(gκρgλσ+ gλρ gκσ)

)
Gµν+GµνGκλGρσ

=
( −2

D −1
gρσgµν+ D

D −1
(gµρ gνσ+ gνρgµσ)

)
Gκλ

−
( −2

D −1
gρσgκλ+ D

D −1
(gκρgλσ+ gλρ gκσ)

)
Gµν

+
( −2

D −1
gµνgκλ+ D

D −1
(gµκgνλ+ gµλgνκ)

)
Gρσ−GκλGµνGρσ.

(42)
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We can no insert this result into the last term in (41). Contracting all the indices from

the metrics yields:

(ψGρσGµνGκλψ
)
(ψGρσGµνGκλψ

)
= (

ψ

( −2

D −1
gρσgµν+ D

D −1
(gµρ gνσ+ gνρgµσ)

)
Gκλψ

)(
ψGρσGµνGκλψ

)
− (
ψ

( −2

D −1
gρσgκλ+ D

D −1
(gκρgλσ+ gλρ gκσ)

)
Gµνψ

)(
ψGρσGµνGκλψ

)
+ (
ψ

( −2

D −1
gµνgκλ+ D

D −1
(gµκgνλ+ gµλgνκ)

)
Gρσψ

)(
ψGρσGµνGκλψ

)
− (
ψGκλGµνGρσψ

)(
ψGρσGµνGκλψ

)
= 2D2(D +2)

D −1

(
ψGµνψ

)2 − 2D

D −1

(
ψGµνψ

)(
ψGκλGµνGκλψ

)
− (
ψGκλGµνGρσψ

)(
ψGρσGµνGκλψ

)
= 2D

D −1

[
D(D +2)−α](

ψGµνψ
)2 − (

ψGκλGµνGρσψ
)(
ψGρσGµνGκλψ

)
.

(43)

Therefore, the tensor terms of higher order cancel and the total trace of Mt t
11 reads:

Tr
(
Mt t

11

)= λ̄2
t

[
N f dγα

D

D −1
−2α2 − 2D

D −1

(
D(D +2)−α)](

ψGµνψ
)2. (44)

Again, we can include the factor 2
D(D+2) from the integration. By using de = 1

2 D2 +
1
2 D −1 from chapter 2.1 (equation (2.10)) we can simplify by noticing two relations:

2

D(D +2)
α= 2

de
−1 (45)

D −1

D
α= 1

de
(

2

de
−1). (46)

Now we simplify (44) by multiplication with 2
D(D+2) and putting D

de (D−1) outside the

brackets:

Tr
(
Mt t

11

)= λ̄2
t

D

de (D −1)

[
N f dγ(2−de )−2(d 2

e −de +2)
]

. (47)

Taking out another minus sign leads to the desired expression in (4.21). Lastly, we

have to compute Tr
(
M0t

11

)
. For that we need to know that the trace of a single Gµν

vanishes. This can easily be checked by expanding Gµν as am
µνγm and using the trace

relations from Appendix A (equation (7)). Now we are ready to take on Tr
(
M0t

11

)
:
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Tr
(
M0t

11

)
= λ̄0λ̄t Tr

[
2GµνD0

21GµνDt
21 −GµνD0

22GµνTDt
11 −GµνDt

22GµνTD0
11

]
= Tr

[
2Gµν

((
ψψ

)
δmi +ψmψi

)
Gµν

((
ψGκλψ

)
Gκλδi n +GκλψiψnGκλ

)
−Gµνψmψ

T
i GµνTGT

κλψ
T
i ψnGκλ−GµνGκλψmψ

T
i GκλT

GµνT
ψ

T
i ψn

]
λ̄0λ̄t

= Tr
[

2GµνGµν
(
ψψ

)(
ψGκλψ

)
Gκλδmn +2

(
ψψ

)
GµνGµνGκλψmψnGκλ

+2GµνψmψnGµν
(
ψGκλψ

)
Gκλ+2Gµνψm

(
ψGµνGκλψ

)
ψnGκλ

+Gµνψm
(
ψGκλGµνψ

)T
ψnGκλ+GµνGκλψm

(
ψGµνGκλψ

)T
ψn

]
λ̄0λ̄t

=−
[

1
2 D2(D +2)2(ψψ)2 +2α

(
ψGµνψ

)2 +2
(
ψGκλGµνψ

)(
ψGκλGµνψ

)
+2

(
ψGκλGµνψ

)(
ψGµνGκλψ

)]
λ̄0λ̄t .

(48)

We see that again higher order tensor channels are generated. Let us again manipu-

late the last term such that the order of Gµν matches the second to last term:

(
ψGκλGµνψ

)(
ψGµνGκλψ

)
= (

ψGκλGµνψ
)(
ψ

( −2

D −1
gµνgκλ+ D

D −1
(gµκgνλ+ gµλgνκ)−GκλGµν

)
ψ

)
= D2(D +2)

D −1

(
ψψ

)2 − (
ψGκλGµνψ

)(
ψGκλGµνψ

)
.

(49)

This time the higher order tensor channels also cancel out. The rest then reads:

Tr
(
M0t

11

)=−λ̄0λ̄t

[(
1
2 D2(D +2)2 +2

D2(D +2)

D −1

)(
ψψ

)2 +2α
(
ψGµνψ

)2
]

, (50)

which turns into

Tr
(
M0t

11

)=−λ̄0λ̄t

[
D

D −1

(
2de +4

)(
ψψ

)2 −
(
2− 4

de

)(
ψGµνψ

)2
]

, (51)

when we include the factor 2
D(D+2) again and write some parts in terms of de . Having

computed all of the trace we can now rearrange the terms according to their channel.

After doing so, we end up with the total result of (4.21).
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Threshold function

We can manipulate the momentum integral after the introduction ofλ0 = λ̄0Z−2
Ψ kD−4

and λt = λ̄t Z−2
Ψ kD−4. Due to the couplings being quadratic on the right hand side of

(4.20) and only linear on the left hand side, we are left with a factor k4−D as well as

Z 2
Ψ in the momentum integral. ZΨ cancels nicely. Additionally, we can manipulate

the variables such that a substitution of x = p2

k2 simplifies the rest:

∫
dDp

k4−D

p4

∂t rΨ−ηΨrΨ
(1+ rΨ)3

= vD

∫ ∞

0
dp

p

k2

pD−6

kD−6

∂t rΨ−ηΨrΨ
(1+ rΨ)3

p2

k2 =x
−−−−→= vD

2

∫ ∞

0
dxx

D−6
2
∂t rΨ−ηΨrΨ

(1+ rΨ)3
.

(52)

The regulator from (3.9) can easily be expressed in terms of x:

rΨ =
(
x− 1

2 −1
)
θ(1−x). (53)

Furthermore, we can express the derivative with respect to t in terms of x:

∂t = k
d

dk
= k

d x

dk

d

d x
=−2x

d

d x
. (54)

Inserting these relations into (52) yields:

∫ ∞

0
dxx

D−6
2
∂t rΨ−ηΨrΨ

(1+ rΨ)3

=
∫ ∞

0
dxx

D−6
2

2xδ(1−x)
(
x− 1

2 −1
)
+x− 1

2θ(1−x)−ηΨ
(
x− 1

2 −1
)
θ(1−x)(

1+
(
x− 1

2 −1
)
θ(1−x)

)3

=
∫ 1

0
dxx

D−4
2 −ηΨ

∫ 1

0
dx

(
x

D−4
2 −x

D−3
2

)
= 2

D −2
− 2ηΨ

(D −2)(D −1)
.

(55)
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Simplifications on the one-loop effective action correction

We want to simplify the expression in equation (4.47). As mentioned we achieve this

by inserting γ2
10 =1:

− ln
[
N det

(
Gµνpµpν+h0φ

)]
=−1

2
ln

[
det

(
Gµνpµpν+h0φ

)2
]
− ln[N ]

=−1

2
ln

[
det

(
(Gµνpµpν+h0φ)(Gµνpµpν+h0φ)γ2

10

)]− ln[N ]

=−1

2
ln

[
det

(
(Gµνpµpν+h0φ)γ10(−Gµνpµpν+h0φ)γ10

)]− ln[N ]

=−1

2
ln

[
det

(
(Gµνpµpν+h0φ)(−Gµνpµpν+h0φ)

)]− ln[N ]

=−1

2
Tr

[
ln

(
N (−p4 +h2

0φ
2)

)]
,

(56)

where we made use of some determinant properties as well as ln[det(...)] = Tr[ln(...)].

Calculation of the one-loop correction

Using Frullanis formula [56], we can express the logarithm as:

− 1

2
Tr

[
ln

(
p4 +h2

0φ
2

p4

)]
=−1

2
Tr

[∫ ∞

0

dS

S

(
e−Sp4 −e−S(p4+|h0|2φ2)

)]
. (57)

Writing the trace as the spacetime volume and a momentum integral leads to:

−1

2
Tr

[
ln

(
p4 +h2

0φ
2

p4

)]
=− (V T )dγ

2

∫ ∞

0

dS

S

∫
dDp

(2π)D
e−Sp4

(
1−e−S|h0|2φ2

)
=− (V T )dγϑD

2(2π)D

∫ ∞

0

dS

S

(
1−e−S|h0|2φ2

)∫ ∞

0
dppD−1e−Sp4

,

(58)

where ϑD again denotes the solid angle in D dimensions. We can evaluate the

momentum integral by employing the substitution t = Sp4:

∫ ∞

0
dppD−1e−Sp4 = 1

4

1

S
D
4

∫ ∞

0
dt t

D
4 −1e−t

= Γ
(

D/4
)

4SD/4
.

(59)
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Thus, the trace simplifies to

− 1

2
Tr

[
ln

(
p4 +h2

0φ
2

p4

)]
=− (V T )dγϑDΓ (D/4)

8(2π)D

∫ ∞

0

dS

S2

(
1−e−S|h0|2φ2

)
. (60)

We perform this integral by using integration by parts twice yielding:

∫ ∞

0

dS

S2

(
1−e−S|h0|2φ2

)
= e−S|h0|2φ2 −1

S

∣∣∣∞
0
+|h0|2φ2

∫ ∞

0

dS

S
e−S|h0|2φ2

= e−S|h0|2φ2 −1

S

∣∣∣∞
0
+|h0|2φ2 ln(S)e−S|h0|2φ2

∣∣∣∞
1/Λ4

+|h0|4φ4
∫ ∞

0
dS ln(S)e−S|h0|2φ2

,

(61)

where we introduced a cutoff 1
Λ4 in order to regularize the integral. Again, we employ

a substitution, |h0|2φ2S = x in order to evaluate the last part:

|h0|4φ4
∫ ∞

0
dS ln(S)e−S|h0|2φ2 = |h0|2φ2

[∫ ∞

0
dx ln(x)e−x − ln

(|h0|2φ2)∫ ∞

0
dxe−x

]
=−|h0|2φ2 [

γ+ ln
(|h0|2φ2)] .

(62)

Only the first two addends from (61) remain. In both cases the upper bound is

exponentially suppressed. In the first term the lower bound can be evaluated using a

Taylor expansion

e−S|h0|2φ2 −1

S

∣∣∣∞
0
=− lim

S→0

1−S|h0|2φ2 +O(S2)−1

S

= |h0|2φ2.

(63)

The lower bound of the second addend can also be simplified yielding

|h0|2φ2 ln(S)e−S|h0|2φ2
∣∣∣∞

1/Λ4
=−|h0|2φ2 ln

(
1

Λ4

)
e−|h0|2φ2

Λ4

= |h0|2φ2 ln
(
Λ4)+O

(
Λ−4).

(64)

Master Thesis 72



C Flow equation and mean field calculations RG Studies of Luttinger Fermions

Collecting the results from (62), (63) and (64) and omitting O(Λ−4), we can arrange

them to the form:

−1

2
Tr

[
ln

(
p4 +h2

0φ
2

p4

)]
=− (V T )dγϑDΓ (D/4)

8(2π)D
|h0|2φ2

[
1−γ− ln

( |h0|2φ2

Λ4

)]
, (65)

which results in equation (4.49) for D = 4.
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D Conventions

Units

In this thesis we study a the relativistic quantum field theory for Luttinger fermions.

Since it is common practice to employ natural units in works on quantum fields, we

abide by these conventions and set

ħ= c = kB = 1, (66)

thereby relating SI units to an energy scale which in turn corresponds to a mass scale

as well.

Metric

We employ the "−2" convention where the Minkowski metric reads:

gµν = diag(+,−,−,−). (67)

Fourier transformation

We use a negative sign for the primary transformation from position to momentum

space and employ the normalization factor as follows:

∫
dDx e−i pµxµ = (2π)Dδ(D)(p) (68)

Ψ(x) =
∫

dDp

(2π)D
Ψ(p)e i pµxµ (69)

Ψ(x) =
∫

dDp

(2π)D
Ψ(p)e−i pµxµ . (70)
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