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Introduction Spin Base symmetry of the Dirac equation

1 Introduction

The Dirac equation is one of the most well-known equations in physics. It was derived by Paul

Dirac and is still one of the most credited achievements in physics as it was the first successful

attempt at describing a theory for a massive spin- 1
2 particle which is consistent with Einsteins

special relativity. The discovery of this equation brought heaps of new insight into the field

of atomic and particle physics and is an important ingredient in the construction of the

standard model - the most accurate description of modern physics to date. Extensive study

of this equation is therefore essential for the understanding of modern physics. Over the

course of history theoretical physics used different approaches to unveil the mysteries of the

universe. The Noether Theorem is considered as one of the best approaches for analyzing a

theory by considering its symmetries and was discovered and proved by Emmy Noether [1].

These symmetries, if continuous, give rise to conservation laws. Establishing this relation

was one of Noether’s greatest achievements and layed the foundation for many following

works in modern physics. Her theorem is imperative to this thesis and leads to the results

concluded at the end of this paper.

The symmetries of the Dirac equation are diverse and wide ranged but also well known,

which is why this thesis considers a less well studied symmetry. The Dirac equation has a

rather large GL(4,C) symmetry which can be achieved by transforming not only the spinor

field but also the Dirac matrices. This spin-base invariance and the corresponding formalism

has been known since 1932 when it was discovered by Schrödinger and Bargmann [2],[3].

The invariance of the Clifford algebra under similarity transformations (also SL(4,C)) and

the resulting equivalence of the Dirac matrices, independent of their representation, was

firstly done by Pauli [4]. It is the goal of this thesis to establish all the necessary mathematical

tools to handle Noether’s Theorem in conjunction with fermions in flat space-time and

consequently to derive the corresponding conservations that arise from the spin-base

symmetry by calculating the Noether current.
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A few conventions which are used should be clarified first as it might lead to confusion

otherwise:

• Greek indices refer to space-time indices and run from 0 to 3 with 0 representing the

time coordinate and 1, 2 and 3 representing the space coordinates.

• Latin indices refer to other indices (for example a spinor index) and will be specified, if

used.

• The spacetime metric will be represented as gµν and reads: diag(1,−1,−1,−1).

• Equations in which there is any importance of units are formulated in natural units

meaning ħ= c = 1.

• The Einstein summation convention is used meaning that identical upper and lower

indices are summed over

pµxµ = gµνpνxµ = p0x0 −p1x1 −p2x2 −p3x3. (1.1)
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2 Classic fermionic field theory

2.1 Dirac Lagrangian and spinor fields

In order to analyze the behavior of fermions and describe them accurately, one finds that

they cannot be characterized by a standard vector or tensor field. The need for spinor fields

arises, as they obey the Pauli principle and meet all the mathematical needs emerging from

the observations of fermions like electrons. With the help of these spinor fields which are

represented as 4-component complex spinors and the 4×4 complex Dirac matrices satisfying

their central and defining property, the Clifford algebra

{
γµ,γν

}= 2gµν1, (2.1)

electrons can be described in a rather simple way using the action principle and a corre-

sponding Lagrangian density which reads

L = iψγµ∂µψ−mψψ. (2.2)

Where ψ=ψ†γ0 is the Dirac conjugate of ψ. It follows the equation of motion for a fermion

by using the Euler-Lagrange equation

0 = ∂L

∂ψ
−∂µ ∂L

∂(∂µψ)
. (2.3)

This in turn results in the famous Dirac equation [5] which describes the relativistic motion

of spin- 1
2 particles with mass m.

0 = (iγµ∂µ−m)ψ. (2.4)

As fermions make up an important part of standard model particles, in particular the electron,

it is almost obligatory to study this equation in a detailed manner and try to understand its

underlying physics. This has been done many times, deepening our insight on these kinds

of particles. Because of that this thesis is not focused on the Dirac equation itself and its

consequences but instead it is centered on its symmetries. Still one should get a glimpse of

classic fermion fields to better understand the analysis of its symmetries.

Taking another look at the Lagrangian density and trying to obtain the equation of motion

for the Dirac-conjugated spinor ψ it becomes clear that one can easily achieve this by using

the chain rule

iψγµ∂µψ= i∂µ(ψγµψ)− i∂µψγ
µψ. (2.5)

Inserting this into the Lagrangian density and using the fact that the total derivative term

modifies the action only by an irrelevant surface term one obtains the equivalent Lagrangian

L =−i∂µψγ
µψ−mψψ. (2.6)
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Considering the action of the field

S =
∫ ∞

−∞
d4xL , (2.7)

the total derivative term in the action becomes a surface term which vanishes for physical

fields. With this considering only the other part of the chain rule is sufficient. It then follows

the equation of motion for the Dirac-conjugated spinor using the Euler-Lagrange-equation

on (2.6)

0 = ∂L

∂ψ
−∂µ ∂L

∂(∂µψ)
, (2.8)

which directly leads to

0 =ψ(iγµ∂µ+m). (2.9)

With equation (2.4) and (2.9) the nature of fermionic behavior becomes a little clearer since

the combination of these equations leads to a rather well known result.

0 =ψ(iγµ∂µ+m)(iγµ∂µ−m)ψ, (2.10)

which by means of the Clifford algebra simplifies to

0 =ψ(∂µ∂
µ−m2)ψ. (2.11)

This means that fermionic motion must also satisfy the famous Klein-Gordon equation com-

ponentwise. Solutions to the Klein-Gordon equation are well known and can be described

by plane waves and interpreted as wavelike massive particles [6],[7]. Thus the solutions to

the Dirac equation should also have a plane wave part [8]. The full extent of solving the

Dirac equation is not necessary to understand the following parts which is why only the final

solutions will be presented. The solutions for ψ and ψ in the Dirac equation then yield

ψ= u(E ,~p) ·e−i pµxµ ψ= v(E ,~p) ·e i pµxµ

ψ= u(E ,~p) ·e i pµxµ ψ= v(E ,~p) ·e−i pµxµ ,
(2.12)

where ~p describes the standard 3-dimensional momentum and E represents the Energy of

field excitations. The u(E ,~p) and v(E ,~p) are arbitrary constant spinors that satisfy

(iγµ∂µ−m)u(E ,~p) = 0 (iγµ∂µ+m)v(E ,~p) = 0. (2.13)

Concerning the nature of fermions it should also be mentioned that the scalar product of

two spinors is antisymmetric, meaning the spinors anticommute. This must be the case as it

is the direct consequence of the Pauli principle which fermions do obey.
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2.2 Dirac matrices

To construct a mathematically consistent theory not only the spinors should obey an anti-

commutation relation as this is fundamental to the behavior of fermions. That is why a closer

look at them is essential. The γ or Dirac matrices are a specific set of complex 4×4 matrices

that satisfy the already presented anticommutation relation

{
γµ,γν

}= 2gµν1. (2.14)

This relation is the defining property of them as it demands an underlying structure: the

clifford algebra. It dictates how spin properties connect to special relativity. To better see

their connection to spin it is important to realise that these Dirac matrices can be expressed

by using the well-known Pauli matrices which are used in nonrelativistic descriptions of spin.

One representation of the γµ is called the Dirac basis and reads

γ0 =
(
12×2 0

0 −12×2

)
γi =

(
0 σi

−σi 0

)
, (2.15)

where i runs from 1 to 3 and the σ refer to the Pauli matrices. There are other known

representations that satisfy the given anticommutation relation, for example the Weyl basis.

But the actual matrix representation is not needed to handle these objects as their structural

characteristics resulting from the Clifford algebra are enough. Especially important is the

following property which directly leads to the hermicity of the zeroth Dirac matrix and the

antihermicity of the others [9]. (
γµ

)† = γ0γµγ0. (2.16)

Another well defined term connected to the Dirac matrices is the so called γ5 matrix

γ5 = iγ0γ1γ2γ3, (2.17)

which simplifies many expressions and has some interesting properties as it anticommutes

with all other Dirac matrices, is hermitian and its square is the identity as proven in appendix

A (7.1) {
γ5,γµ

}= 0
(
γ5

)† = γ5
(
γ5

)2 =1. (2.18)

The γ5 matrix is often used to discuss chirality phenomena and it can be utilized to define

left and right handed projection operators but it also makes its appearance elsewhere as

will be seen later on. Another interesting term arises when trying to commute two Dirac

matrices. The result is a totally antisymmetric tensor which forms a linearly independent set

of matrices together with γ5,γµ and γµγ5

σµν = i

2

[
γµ,γν

]
. (2.19)
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A special relation between the Dirac matrices proven in appendix A (7.1) should be established

as well since it is rather useful in the calculations of the Noether current

γµγνγσ = gµνγσ+ gνσγµ− gµσγν+ iεµνσκγκγ5, (2.20)

where ε is the antisymmetric Levi-Civita tensor.

3 Noether’s theorem

As the basics of fermionic field theory in flat space-time have been presented the next part

focuses on Nother’s Theorem [1]. Since the following section is solely centered around

establishing the mathematical methodology it is not necessary to consider spinor fields in

particular. Hence an arbitrary fieldφwith an arbitrary Lagrangian is used. Noethers Theorem

is usually derived from the classical action principle without special relativity.

S =
∫

dtL . (3.1)

This easily carries over to a relativistic format where space and time are treated equally by

looking not at the standard Lagrangian but at the Lagrangian density

L =
∫

d3xL (φ,∂µφ). (3.2)

With this the action becomes a Lorentz-invariant scalar if the Lagrangian density is Lorentz-

invariant as the measure d4x already satisfies this symmetry

S =
∫

d4xL (φ,∂µφ). (3.3)

Now one can consider symmetries by looking at infinitesimal transformations of the field.

φ−→φ′ =φ+δφ, (3.4)

where δφ is an infinitesimal continuous deformation. As we are looking at symmetry trans-

formations the field equations must remain invariant. Hence the Lagrangian density can

only change by a total derivative since these only contribute a surface term to the action as

explained in chapter 2.1

L −→L ′ =L +δL δL = ∂µK µ. (3.5)

The invariance of the action and the equations of motion can be related to a conserved

quantity which is precisely what Noether’s Theorem does. It states:

Let φ −→ φ+δφ and L −→ L +δL = L + ∂µK µ be a symmetry transformation. Then
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there is a conserved current

Jµ = ∂L

∂(∂µφ)
δφ+∂µK µ

In order to prove this one can take a look at the change of the Lagrangian density

δL = ∂µK µ = ∂L

∂φ
δφ+ ∂L

∂(∂µφ)
δ∂µφ. (3.6)

Because functional derivatives and the space-time derivatives interchange and the chain rule

can be applied the following can be obtained

∂µK µ =
(
∂L

∂φ
−∂µ ∂L

∂(∂µφ)

)
δφ+∂µ

(
∂L

∂(∂µφ)
δφ

)
, (3.7)

where it immediately becomes clear that a current is conserved since the first expression in

parentheses vanishes as it is the Euler-Lagrange equation. The rest then simplifies to

0 = ∂µ
(
∂L

∂(∂µφ)
δφ−K µ

)
= ∂µ Jµ, (3.8)

which leaves Jµ as a conserved 4-current. Not only is this a simple proof but it also provides a

straightforward way to calculate the Noether current. Moreover, there is another quantity of

interest. One can obtain the so-called Noether charge by integrating the zeroth component

of the Noether current over space

Q =
∫

d3x J 0. (3.9)

It directly follows that Q is conserved with respect to time meaning Q̇ = 0 since time and

space derivatives interchange. Using these mathematical tools will prove indispensable in

chapter 5.
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4 GL(4,C) symmetry representation

4.1 Dirac-Algebra and Action Invariance

The symmetry of interest is called spin-base symmetry and dates back to Schrödinger and

Bargmann [2],[3]. It remained largely unnoticed until Weldon picked it up again and used

it for his description of fermions in curved spacetime to show that there is no necessity for

vierbeins involved [9]. The spin-base formalism refers to the following transformations

ψ−→ψ′ = Sψ and ψ−→ψ
′ =ψS−1 as well as γµ −→ γµ′ = SγµS−1. (4.1)

As not only the spinors transform but also the Dirac matrices themselves the transforming

matrices can be elements of the GL(4,C) group. In order to see that this is actually a symmetry

transformation one should not only check the Lagrangian but also the defining property

of the Dirac matrices as they also transform. The invariance of both of them can easily be

shown. For the anticommutation relation this proof reads

{
γµ,γν

}−→ {
γµ′,γν′

}= {
SγµS−1,SγνS .−1}

= SγµS−1SγνS−1 +SγνS−1SγµS−1

= SγµγνS−1 +SγνγµS−1

= S
{
γµ,γν

}
S−1 = S2gµν1S−1 = 2gµν1

= {
γµ,γν

}
.

(4.2)

Similarly the proof for the Lagrangian density reads

L −→L ′ =ψ′
γµ′∂µψ′−mψ

′
ψ′

=ψS−1SγµS−1∂µ(Sψ)−mψS−1Sψ
(4.3)

as S is not spacetime dependent all S and S−1 cancel leading to the result

L ′ =L , (4.4)

which shows that this not only is a symmetry transformation. But since it only rotates the

field in spinor space there is no δL thus simplifying the Noether current to

Jµ = ∂L

∂(∂µψ)
δψ+ ∂L

∂(∂µψ)
δψ. (4.5)

The second part comes from the fact that ψ and ψ can be viewed as independent fields,

both of them contributing to the Noether current. Since this expression makes no sense

dimension-wise as the first term is a scalar in spinor space while the second one is a matrix,

the δψ term is supposed to be prior to the canonical momentum term creating a scalar as
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well. Because of the fermionic nature of ψ and ψ, the rearrangement causes a sign change

resulting in

Jµ = ∂L

∂(∂µψ)
δψ−δψ ∂L

∂(∂µψ)
. (4.6)

4.2 Decomposition of GL(4,C)

In order to determine the terms used to calculate the Noether current it is necessary to find

a way to express the infinitesimal change that arises in ψ and ψ. Finite changes, as long as

continuous, can always be reduced to consecutive infinitesimal changes. For a group the size

of GL(4,C) it seems reasonable to decompose it into smaller and better known groups. As

matrices with a determinant of one are much easier to handle it should be natural to try and

factorize GL(4,C) locally into SL(4,C) and a residual symmetry group L. This process can be

done using an isomorphism

GL(4,C) ' SL(4,C)×L . (4.7)

Since the only thing distinguishing GL(4,C) from SL(4,C) is having an arbitrary complex-

valued determinant, the leftover group can only be composed of complex-valued numbers.

These can be written in the form of an exponential spanning the whole complex plane

c = eλ+iϕ ∈ L . (4.8)

For simplicity’s sake and easier computation of the Noether current later on this residual

group L can be factorized even further by treating the phase and amplitude of the complex

numbers separately, leading to two smaller leftover symmetries: an R+ and a U(1) symmetry

GL(4,C) ' SL(4,C)×U(1)×R+. (4.9)

In fact, SL(4,C) is the group of all spin-base transformations that transform the Dirac matrices

nontrivially and cover the similarity transformations of the Clifford algebra completely [10].

4.3 Generators of GL(4,C)

Because GL(4,C) decomposes into SL(4,C), U(1) and R+ symmetries their currents in turn

can be calculated separately as well using their respective generators. The U(1) symmetry is

simply generated by an arbitrary angle ϕ. This manifests itself in a phase shift of ψ and ψ

which immediately satisfies the symmetry condition L ′ =L thus leaving the equations of

motion invariant

ψ−→ψ′ = e iϕψ and ψ−→ψ
′ =ψe−iϕ. (4.10)

Analogously the R+ symmetry can be represented by their generators λ which correspond to

a dilation of ψ and ψ. The only difference being the exponent not featuring an i since it does
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not have a rotational nature and only represents the real part of the residual symmetry L

ψ−→ψ′ = eλψ and ψ−→ψ
′ =ψe−λ. (4.11)

More interesting becomes the task of finding the generators of SL(4,C) since it is a much

larger symmetry group. One method of spanning this group is to use a generelization of the

Gellmann matrices [11]. These would come with an internal structure corresponding to a Lie

algebra making it easy to handle them. But an arguably better group of generators can be

obtained by using the Dirac matrices as they span an algebra with a basis of 16 independent

elements as well

Γ̃A ={
1,γ5,γµ,γµγ5,σµν

}
, (4.12)

which together with complex prefactors can also span SL(4,C). But it has the advantage of

coming with the already used Clifford algebra structure. To avoid unnecessary factoring and

provide an easily usable algebra one can normalize the elements of Γ̃A to ΓA by setting a

normalization condition

tr
(
ΓAΓB )= 4δAB . (4.13)

In appendix B (7.2) it is verified that

ΓA = {
1,γ5,γ0, iγi , iγ0γ5,γiγ5, iσ0i ,σi j }, (4.14)

satisfies this condition and thus can be used as a normalized basis. Here i and j denote

latin indices running from 1 to 3. Since σµν is antisymmetric, it only has 6 independent

entries. In order to not count twice only i > j should be regarded. This basis together with 16

independent complex factors spans SL(4,C) therefore also providing a set of generators for

the group meaning every element S of SL(4,C) can be expressed as an exponential

S = eωAΓ
A

, (4.15)

where ωA describes the complex factors and can in turn be represented like this:

ωA = {
s, p, v0, − i vi , a0, i ai , t0i , i ti j

}
. (4.16)

The sum in equation (4.15) then reads

ωAΓ
A = s1+pγ5 + vµγ

µ+aµγ
µγ5 + i

2 tµνσ
µν. (4.17)

Since the ωA have extra i terms introduced to their spacial components, the sum can be

expressed kovariantly. The factor of 1
2 in the tensor part is used to not count the terms twice

as σµν is antisymmetric and thus only 6 components contribute to the basis ΓA . The choice

of variables here is not arbitrary as it has been used in literature before [9]. The factors are
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named after the kind of object they result in later on. A scalar, pseudoscalar, vector, axial

vector and tensor part arise naming the variables. Due to the i in the normalization of ΓA

some of the ωA have a factor i as well to preserve the nature of the corresponding type of

current. It should be noted that the span of eωAΓ
A

is actually much larger than SL(4,C) due to

ωA being arbitrary and ΓA containing 1. This leads to

detS = etr
(
ωAΓ

A
)
= etr

(
s1

)
+tr

(
R
)
, (4.18)

where R represents ωAΓ
A without 1. Using the identities proven in appendix B (7.2) the trace

of R vanishes leaving only

detS = e4s . (4.19)

As s can be any complex number the determinant of S can be as well. Since in this case the

identity is the generator of the residual symmetry L leaving it out of ΓA to not cover L twice

ensures that all Noether currents can be calculated independently.

5 Noether current for the Spin-Base-Symmetry

5.1 Electric current

The U(1) symmetry transformation can be used to determine a corresponding deformation

δψ as explained in chapter 3. As it is an infinitesimal change in ψ a first-order approximation

of the transformation is sufficient

ψ−→ψ′ = e iϕψ

= (1+ iϕ)ψ

=ψ+δψ.

(5.1)

Analogously ψ is transformed thus providing δψ and δψ. With these terms, the Noether

current for the U(1) symmetry can be calculated using the equations (2.2), (2.6) and (4.6)

Jµ = ∂L

∂(∂µψ)
δψ−δψ ∂L

∂(∂µψ)

= (−iψγµ
)(

iϕψ
)− (

ψ(−iϕ)
)(−iγµψ

)
= 2ϕψγµψ.

(5.2)

The anticommutativity of ψ is giving rise to a sign when letting ∂
∂(∂µψ) act on the kinetic term

of L as ψ comes before ∂µψ. To prove that this current is actually conserved, making use of

the equations of motion turns out to be of help

∂µ Jµ = 2ϕ
(
∂µψγ

µψ+ψγµ∂µψ
)

using (2.4) and (2.9)=⇒ = 2ϕ
(
i mψψ+ψ(−i mψ)

)= 0.
(5.3)
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It is also interesting to take a look at the Noether charge

Q =
∫

d3x J 0 = 2ϕ
∫

d3xψγ0ψ= 2ϕ
∫

d3xψ†ψ. (5.4)

This term, apart from 2ϕ, can, similarly to nonrelativistic quantum mechanics, be interpreted

as a probability since it is always positive, real and nonzero for nontrivial ψ. On the other

hand, once a coupling with a photon field Aµ is introduced to the Lagrangian density of the

fermion field, it is of interest to interpret the current in a different way

L =−1
4 FµνFµν+ iψγµDµψ−mψψ. (5.5)

Fµν = ∂µAν−∂νAµ is the kinetic term of the photon field and Dµ = ∂µ−i e Aµ summarizes the

kinetic term of the spinor field and the coupling term. The theory has a problem though as it

is obviously not invariant under local gauge transformations Aµ −→ Aµ+∂µλ(x) because it

has a single Aµ term found in the coupling term. But this can be fixed by transforming the

spinor field as well

Aµ −→ A′
µ = Aµ+∂µλ(x) and ψ−→ψ′ = e i eλ(x)ψ

=⇒L −→L ′ =−1
4 FµνFµν+ iψe−i eλγµDµ

(
e i eλψ

)−mψe−i eλe i eλψ.
(5.6)

The mass term for the spinor field obviously stays the same and the kinetic photon term is

invariant under gauge transformations anyway. But by choosing the Dµ as stated, the middle

part of the Lagrangian stays invariant as well since the first and last term cancel and the

exponentials nullify

iψe−i eλγµ
(
i e∂µλe i eλψ+e i eλ∂µψ− i e Aµe i eλψ− i e∂µλe i eλψ

)= iψγµDµψ. (5.7)

Hence e can be seen as a coupling term connecting the spinor and photon field. Now

calculating the Noether current for this symmetry yields an almost identical term as before

Jµ = 2eλψγµψ, (5.8)

the only difference being the coupling constant e. Checking the dimension of e and acknowl-

edging the connection of both fields in previous theories leads to the interpretation of this

Noether current being the electric current with

Q = e
∫

d3xψ†ψ, (5.9)

representing the electric charge. Furthermore, the Lagrangian density in equation (5.5) can

then be viewed as a theory of quantum electrodynamics.
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5.2 Dilatation current Spin Base symmetry of the Dirac equation

5.2 Dilatation current

Analogously to the electric current, the R+ symmetry yields a corresponding current of high

resemblance. It is identified as a dilatation current, since its transformation is dilatating the

spinor. The transformation is very similar to the one for the electric current

ψ−→ψ′ = eλψ=⇒ δψ=λψ. (5.10)

Again δψ is calculated in the same way. Once more the Noether current follows from equation

(4.6) resulting in the dilatation current

Jµ =−2iλψγµψ, (5.11)

which is almost identical to the electric current. The verification of its conservation is

identical to (5.3). The Noether charge reads

Q =−2iλ
∫

d3xψ†ψ. (5.12)

This is an imaginary equivalent to the electric charge without the coupling term. As it is

not real and cannot become real by any means since the integrant is always real and λ is an

element of R, it is not observable, thus being more of a mathematical result than a physical

one. It is a structural consequence of GL(4,C) allowing arbitrary absolute values for the matrix

determinants. Furthermore it is, apart from the i term identical to the electric current thus

not providing any independent information.

5.3 Current for SL(4,C)-symmetry

In contrast to the dilatation and electric current the SL(4,C) current is a little more complex.

The computation of δψ follows the same process as in the sections above using the generators

found in section 4.3

ψ−→ Sψ= eωAΓ
A
ψ ψ−→ψS−1 =ψe−ωAΓ

A

= (
1+ωAΓ

A)
ψ =ψ(

1−ωAΓ
A)

=ψ+δψ =ψ+δψ.

(5.13)

Having calculated the deformations the Noether current is again computed using (4.6) result-

ing in

Jµ =−iψγµωAΓ
Aψ− iψωAΓ

Aγµψ

=−iωAψ
{
γµ,ΓA}

ψ.
(5.14)
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5.3 Current for SL(4,C)-symmetry Spin Base symmetry of the Dirac equation

Inserting the generators from (4.14) excluding 1 as it would cover the residual symmetry L

again, the current reads

Jµ =− i pψ
{
γµ,γ5

}
ψ− i v0ψ

{
γµ,γ0}ψ− i (−i vi )ψ

{
γµ, iγi }ψ

− i a0ψ
{
γµ, iγ0γ5

}
ψ− i (i ai )ψ

{
γµ,γiγ5

}
ψ− t0iψ

{
γµ, iσ0i }ψ− i

2 (i ti j )ψ
{
γµ,σi j }ψ.

(5.15)

Using the calculations in appendix C (7.3) the anticommutators simplify and the equation

reads

Jµ =−2i vνgµνψψ−2aνψσ
µνγ5ψ− tνρε

µνρσψγσγ5ψ, (5.16)

where vν =


v0

v1

v2

v3

 , aν =


a0

a1

a2

a3

 and tνρ =


0 t01 t02 t03

t10 0 t12 t13

t20 t21 0 t23

t30 t31 t32 0

.

It should be noted that tνρ is antisymmetric. The result is the Noether current for the

SL(4,C) symmetry containing a vector, an axial vector and a tensor part, all of them being

conserved separately because the ωA are completely independent

vector current: JµνV = i gµνψψ

axial vector current: JµνA =ψσµνγ5ψ

tensor current: JµνρT = εµνρσψγσγ5ψ.

(5.17)

Showing that Jµ is conserved can be done by using the equations of motion

iγµ∂µψ= mψ. (5.18)

But as γµ was transformed as well its equations of motion have to be fulfilled as well

∂L

∂γµ
= 0. (5.19)

Since the left hand side has 2 spinor indices from the Dirac matrix the equation of motion

should also have 2 spinor indices. It is also of use to contract the derivative with
(
γµ

)N
L

resulting in (
γµ

)N
L

∂L

∂
(
γµ

)M
L

= iψM

(
γµ

)N
L∂µψ

L . (5.20)

This can be written as a tensor product producing the equations of motion for the Dirac

matrices

iψ⊗γµ∂µψ= 0. (5.21)
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5.3 Current for SL(4,C)-symmetry Spin Base symmetry of the Dirac equation

Combining both equation (5.18) and (5.21) leads to

mψ⊗ψ= 0. (5.22)

This result sets all possible combinations of products of the spinor components equal to

zero. Due to that all terms of the form ψAψ must equal zero as well since they break down to

sums of products of the spinor components multiplied with the matrix entries. This leads

to the whole Noether current vanishing as it only consists of those terms. The surprisingly

simple result originates from the equations of motion for the Dirac matrices. As they are not

spacetime dependent their behavior is not dynamic which leads to very restrictive equations

of motion. These restrictions manifest themselves in constraints for the spinor field that are

too severe to yield non trivial results as seen in equation (5.22). But since the condition in

(5.22) can be satisfied as well by setting the mass of the theory equal to zero it immediatly

raises the question what happens for a massless spin- 1
2 particle. In this case the Noether

current itself remains the same. Only the equations of motion change. They read

iγµ∂µψ= 0 and ψ⊗∂µψ= 0. (5.23)

In this case the Noether current does not vanish directly. Showing that it remains conserved

now demands to look at the divergence

∂µ Jµ =−2i vνgµν
(
∂µψψ+ψ∂µψ

)−2aν
(
∂µψσ

µνγ5ψ+ψσµνγ5∂µψ
)

−2tνρε
µνρσ

(
∂µψγσγ5ψ+ψγσγ5∂µψ

)
.

(5.24)

But all of these terms vanish now because of the second part in 5.23. The equations of motion

of the Dirac matrices again prove to be very restrictive resulting in the divergence of Jµ to

vanish using the same logic as before. Still, the massless theory at least has a conserved

current consisting of a vector, an axial vector and a tensor part. This leads one to believe that

the mass term in the Dirac equation is somehow responsible for the vanishing. It can indeed

be interpreted in this way as especially the tensor part has a structure that closely resembles

a chiral current that is usually derived by looking at a chiral transformation ψ −→ e iαγ5ψ.

This chiral symmetry is directly broken by a mass term since γ5 anticommutes with γ0 which

appears in the Dirac conjugation of ψ leading to

ψψ−→ mψ†γ0γ0e−iαγ5γ0e iαγ5ψ
(2.18)= mψe2iαγ5ψ 6= mψψ. (5.25)

On the other hand, the spin-base symmetry does not exert such a behavior directly since

it is not broken by a mass term. But as this term seems to be responsible for the vanishing

Noether current taking a look at other field theories without masses peaks the interest. The

simplest non trivial model that can be investigated is the Thirring model which introduces a
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5.3 Current for SL(4,C)-symmetry Spin Base symmetry of the Dirac equation

self interaction in the Lagrangian [12]. The Lagrangian density of the theory then reads

L = iψγµ∂µψ− (
ψγµψ

)(
ψγµψ

)
. (5.26)

Since the symmetry remains the same and the kinetic term for ψ and ψ does not change the

Noether current stays invariant. But the equations of motion are vastly different. For ψ they

yield
∂L

∂ψ
= iγµ∂µψ−γµψ

(
ψγµψ

)− (
ψγµψ

)
γµψ= 0. (5.27)

Using the anticommutation of the spinor fields and adjusting the indices this simplifies to

iγµ∂µψ= 2
(
ψγµψ

)
γµψ. (5.28)

The equations of motion for the Dirac matrices can also be calculated resulting in

∂L

∂γµ
= iψ⊗∂µψ−2

(
ψγµψ

)
ψ⊗ψ= 0. (5.29)

Inserting (5.28) in (5.29) yields 0 meaning both equations contain the same information. But

the equations of motion of ψ can be used as well

i∂µψγ
µ =−2

(
ψγµψ

)
ψγµ. (5.30)

Together with equation (5.28) and (5.30) the conservation of the Noether current is easily

proven by showing that the vector, axial vector and tensor current vanish in equation (5.24)

−2i vνgµν
(
∂µψψ+ψ∂µψ

)=−2vνgµν
(−2

(
ψγµψ

)
ψψ+ψ2

(
ψγµψ

)
ψ

)
−2aν

(
∂µψσ

µνγ5ψ+ψσµνγ5∂µψ
)=−2aν

(
2i

(
ψγµψ

)
ψσµνγ5ψ+ψσµνγ5

(−2i
(
ψγµψ

)
ψ

)
−2tνρε

µνρσ
(
∂µψγσγ5ψ+ψγσγ5∂µψ

)=−2tνρε
µνρσ

(
2i

(
ψγµψ

)
ψγσγ5ψ+ψγσγ5

(−2i
(
ψγµψ

)
ψ

)
.

(5.31)

Since
(
ψγµψ

)
is just a scalar in spinor space all of the terms in parentheses on the right hand

side cancel each other, thus showing that ∂µ Jµ equals 0 resulting in the Noether current being

conserved.
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6 Conclusion

After establishing the mathematical foundation of fermionic field theory and introducing

Noether’s theorem in a methodic manner, both were used to derive a conservation law for

the spin-base symmetry of the Dirac equation. The result consists of three different currents:

An electric current, a dilatation current and an SL(4,C) current. The electric current comes

with charge conservation and its divergence can be interpreted as a continuity equation. The

electric nature arises when coupled to a photon field which results in a theory of quantum

electrodynamics. The second conserved current is identical to the electric current apart

from a factor i. Therefore it does not contain any independent information. Lastly the

SL(4,C) current was calculated. It was confirmed that the current not only is conserved but

completely vanishes, leaving no conserved quantity at all. Jµ equaling zero can be traced

back to the equations of motion of the Dirac matrices. Due to their non-dynamic nature in

flat spacetime their equations yield severely restrictive conditions for the spinor field which

in fact, leads to the current completely vanishing if the mass term is non-zero (5.22). This

peaked the interest in other theories. Checking not only the massless Dirac equation but

also the Thirring model resulted in a conserved current of the same form as before, this time

non-vanishing. Other theories could be considered in the future. Especially those that have

a spacetime dependent Dirac matrix γµ(x) since this would most likely result in less trivial

behavior of the Noether current. For example, generalizing the theory to curved space time

using the spin-base formulism again could yield interesting results because in that case a

spin connection term couples fermions to gravity. This spin connection can be expressed in

terms of derivatives of γµ [9], [10], leading to non-trivial equations of motion of γµ .
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7 Appendix

7.1 A

With the definition of γ5 follow the relations:

{
γ5,γµ

}= γ5γ
µ+γµγ5

= iγ0γ1γ2γ3γµ+ iγµγ0γ1γ2γ3.
(7.1)

As γµ must be exactly one of the other γ0...3 it can be anticommuted with the other matrices

until it is next to an identical Dirac matrix. They contract to 1 for µ= 0 or −1 for the other

values. If γµ has to anticommute with the other matrices n times to reach its identical

counterpart, the second addend of
{
γ5,γµ

}
has to anticommute the γµ exactly 3−n times

since there are always five Dirac matrices in the products of the addends of
{
γ5,γµ

}
. This

causes a difference in sign for the first and second term for any value of µ meaning the

anticommutator always equals 0 proving the first equation in (2.18).

In order to show that γ5 is hermitian making use of equation (2.16) proves useful

(
γ5

)† =−i
(
γ0γ1γ2γ3)†

=−i
(
γ3)†(

γ2)†(
γ1)†(

γ0)†

=−iγ0γ3γ0γ0γ2γ0γ0γ1γ0γ0γ0γ0

using (2.14)=⇒ =−iγ0γ3γ2γ1

= iγ0γ1γ2γ3 = γ5

(7.2)

Proving the third part of the equations in (2.18) is easily done by just using equation (2.14)

(
γ5

)2 =−γ0γ1γ2γ3γ0γ1γ2γ3

=−γ0γ0γ1γ1γ2γ2γ3γ3

=−1(−1)(−1)(−1)=1
(7.3)

Calculating the Noether current for the Sl(4,C) involves a special relation which is stated in

equation (2.20). To prove it one can simply check the different cases that arise. If all indices

are equal the ε term vanishes thus leaving

γµγµγµ = gµµγµ, (7.4)

which is obiviously correct since
(
γµ

)2 is 1 for µ = 0 and −1 for the other cases matching

the sign of gµµ in either case. If on the other hand all the indices are different then the first

three terms vanish and only the Levi-Civita tensor part remains. Both sides are completely

antisymmetric. Therefore it suffices to prove the equation for the cases γ0γ1γ2, γ0γ1γ3,
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7.2 B Spin Base symmetry of the Dirac equation

γ0γ2γ3 and γ1γ2γ3. As these proofs are completely analogous it is reasonable to just show it

once

iε012σγσiγ0γ1γ2γ3 =−ε0123γ3γ
0γ1γ2γ3 = γ3γ0γ1γ2γ3 =−γ0γ1γ2(−1)= γ0γ1γ2. (7.5)

7.2 B

To satisfy the normalization condition the values of Γ̃A are simply inserted. For 1 this is

obviously true. The other results read

tr
(
γµγµ

)= tr
(1

2

{
γµ,γµ

})
= tr

(1
2 gµµ1

)
= 4gµµ =⇒ γ0 −→ γ0 and γi −→ iγi

(7.6)

For the γ5 matrix follows

tr
(
γ5γ5

)= tr
(−γ0γ1γ2γ3γ0γ1γ2γ3)

= tr
(−γ0γ0γ1γ1γ2γ2γ3γ3)

= tr
(
1
)

= 4 =⇒ γ5 −→ γ5.

(7.7)

In the same way the γµγ5 term can be normalized leading to

tr
(
γµγ5γ

µγ5
)= tr

(−γ5γ
µγµγ5

)
=−gµµtr

(
γ5γ5

)
=−4gµµ =⇒ γ0γ5 −→ iγ0γ5 and γiγ5 −→ γiγ5.

(7.8)

Similarly calculating the normalizing factor for σµν can be done. Due to the antisymmetry of

this term considering only cases µ> ν ensures to not count them twice. Because of this the

cases µ= ν can also be disregarded as they are zero.

tr
(
σµνσµν

)= tr
(−1

4

[
γµ,γν

][
γµ,γν

])
= −1

4 tr
(
γµγνγµγν−γµγνγνγµ−γνγµγµγν+γνγµγνγµ)

µ6=ν=====⇒
cyclicity

= −1
4 tr

(
4γµγνγµγν

)
= tr

(
γµγµγνγν

)
= tr

(
gµµgνν1

)
= 4gµµgνν =⇒σ0i −→ iσ0i and σi j −→σi j .

(7.9)
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7.3 C Spin Base symmetry of the Dirac equation

Now it just remains to be shown that this basis is orthogonal

tr
(
(odd#)γµ

)= tr
(
(odd#)γµγ5γ5

)
cyclicity=======⇒

using (7.1)
= tr

(
γ5(odd#)γµγ5

)=−tr
(
γ5(odd#)γµγ5

)
=⇒ = 0.

(7.10)

This also holds for any additional number of γ5 in the trace . Additionally we have

tr
(
γ5

)= tr
(
γ5γ

0γ0)
cyclicity=======⇒

using (7.1)
= tr

(
γ0γ5γ

0)=−tr
(
γ0γ5γ

0)
=⇒ = 0.

(7.11)

This works for γµγνγ5 as well which immediatly covers σµνγ5. Now considering

tr
(
γµγν

) cyclicity= 1
2 tr

({
γµ,γν

})
2.14= 4gµν,

(7.12)

and all the cases for tr
(
ΓAΓB

)
are covered. This results in (4.14) satisfying the normaliziation

condition.

7.3 C

In order to simplify the expressions in equation (5.15) calculating the anticommutators

proves to be beneficial

{
γµ,γ5

} 7.1= 0{
γµ,γν

} 2.14= 2gµν1{
γµ,γνγ5

}= γµγνγ5 +γνγ5γ
µ = γµγνγ5 −γνγµγ5 =

[
γµ,γν

]
γ5

= 2
i σ

µνγ5{
γµ,σνρ

}= i
2

{
γµ,

[
γν,γρ

]}= i
2

(
γµγνγρ−γµγργν+γνγργµ−γργνγµ)

2.20= −2εσµρνγσγ5 =−2εµνρσγσγ5

(7.13)
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