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1 Einleitung

In der Quantenfeldtheorie ist das erzeugende Funktional eine wichtige Größe. In ihren Ent-

wicklungskoeffizienten, den Korrelationsfunktionen (auch n-Punkt-Funktionen genannt), ist

die gesamte physikalische Information gespeichert, vgl. [Zin08]. Beispielsweise kann man mit

ihnen Streuprozesse zwischen Teilchen, d. h. Wechselwirkungsprozesse, beschreiben.

Um an dieses erzeugende Funktional bzw. die Korrelationsfunktionen zu gelangen, bedient

man sich einer weiteren Größe, der effektiven Wirkung, die zum erzeugenden Funktional in

Beziehung steht. Diese kann mithilfe des Konzepts der funktionalen Renormierungsgruppe

bestimmt werden, siehe bspw. [BTW02; Bra12; Dup+21; Gie12; Wet93]. Hierzu wird nach

[Wet93] zur Wirkung, auf der das erzeugende Funktional basiert, ein sogenannter Regulator-

Term hinzugefügt. Es resultiert eine neue Größe, die effektive Mittelwert-Wirkung, die zwischen

der Wirkung und der effektiven Wirkung interpoliert. Der Regulator-Term steuert hierbei

diese Interpolation.

Für die effektive Mittelwert-Wirkung gilt eine Differenzialgleichung, die Wetterich-Flussglei-

chung, welche 1993 von Christof Wetterich hergeleitet wurde, vgl. [Wet93]. Für eine Vielzahl

von Systemen gibt es Verfahren, wie diese näherungsweise gelöst werden kann, vgl. bspw.

[BTW02; Bra12; Dup+21]. Im Standard-Verfahren entwickelt man die Gleichung in eine

Reihe, erhält somit unendlich viele, gekoppelte Differenzialgleichungen und nähert das System,

indem man nur die ersten Gleichungen betrachtet. Alle weiteren Entwicklungskoeffizienten

werden auf ihren Anfangswert, d. h. oft auf null, gesetzt. In vielen Fällen funktioniert dieses

Verfahren gut.

Es gibt allerdings Fälle, in denen mit dem oben beschriebenen Verfahren bestimmte Lösun-

gen der Wetterich-Gleichung nicht gefunden werden können, die sich jedoch aus anderen

Lösungsverfahren ergeben. Beispiele können in [GZ17; Gie+19] gefunden werden, wo ein

bestimmtes Skalenverhalten in nicht-abelschen Eichtheorien angenommen und daraus auf das

zu erwartende Verhalten der höheren Kopplungen geschlossen wird. Auch in der nichtlinearen,

materiefreien Elektrodynamik wurde ein neuer Lösungstyp für quantenskaleninvariante Theo-

rien basierend auf einer nicht-trivialen Annahme für die 2-Punkt-Funktion mit einer anderen

Methode entdeckt, vgl. [GS24]. Die vielen verschiedenen Lösungszugänge verdeutlichen, wie

reichhaltig die Theorie um die Wetterich-Flussgleichung ist.
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1 Einleitung

In dieser Arbeit soll ein weiterer Ansatz untersucht werden, der in ähnlicher Form bereits in

[Zie21] vorgestellt wird. Hierbei wird zunächst eine Näherung für einen der Entwicklungskoef-

fizienten der effektiven Mittelwert-Wirkung auf allen Skalen vorgegeben. Aus dieser werden

dann über das Differenzialgleichungssystem, welches sich aus der Wetterich-Gleichung ergibt

und das in einer speziellen Struktur vorliegt, sukzessive die anderen Entwicklungskoeffizienten

berechnet.

Anstelle einer Quantenfeldtheorie, die über ein Funktionalintegral definiert ist, wird in dieser

Arbeit ein N-dimensionales Integral betrachtet. Dieses kann als nulldimensionales Analogon

eines O(N)-Modells angesehen werden. Im Zusammenhang mit der funktionalen Renor-

mierungsgruppe wurde dieses Modell erstmalig in [KB12] untersucht, um die Qualität von

Standard-Näherungsverfahren zu testen. Das Modell ist nützlich, da die exakte Lösung des

Integrals bekannt ist.

Anhand des Beispiels im RN wird im Kapitel 2 in dieser Arbeit zunächst die Problemstellung

genauer erläutert. Ferner werden wichtige Begriffe eingeführt, Beziehungen zwischen den

Entwicklungskoeffizienten des erzeugenden Funktionals und der effektiven Wirkung hergeleitet

sowie die exakte Lösung des Integrals berechnet. Im darauffolgenden Kapitel 3 wird die

Wetterich-Flussgleichung hergeleitet und das oben beschriebene Standard-Verfahren erläutert

und am Beispiel diskutiert. Schließlich führt Kapitel 4 in das alternative Lösungsverfahren ein.

Anhand zweier Klassen von Näherungen – Polynomen und speziellen rationalen Funktionen

– wird das Verfahren getestet. Den Abschluss der Arbeit bildet Kapitel 5, in dem ein Fazit

gezogen sowie ein Ausblick gegeben wird.
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2 Problemstellung und wichtige Größen

In diesem Kapitel wird zunächst die grundsätzliche Problemstellung erläutert, auf der diese

Arbeit basiert. Anschließend werden die sogenannten Korrelationsfunktionen und eigentlichen

Vertizes eingeführt sowie einige ihrer Eigenschaften hergeleitet. Schließlich wird die exakte

Lösung des Problems als Referenzlösung angegeben. Die Ausführungen in diesem Kapitel

basieren auf [Gie12; KB12].

2.1 Erzeugendes Funktional und effektive Wirkung

Im Zentrum dieser Arbeit steht das N-dimensionale Integral

Z(J) :=

∫
RN
exp(−S(ϕ) + J · ϕ) dϕ (2.1)

für J ∈ RN, dessen Analogon in der Quantenfeldtheorie erzeugendes Funktional genannt

wird. Hierbei ist

S(ϕ) :=
r

2
ϕ2 +

u

24

(
ϕ2
)2

(2.2)

als Wirkung gegeben. Das Integral konvergiert genau dann, wenn u positiv ist oder u = 0

zusammen mit r > 0 gilt. Für den zweiten Fall findet man

Zu=0(J) =

(
2π

r

)N/2
exp

(
J2

2r

)
. (2.3)

Im Folgenden wird immer r, u > 0 vorausgesetzt. Aus dem erzeugenden Funktional kann die

Größe

W (J) := ln

(
Z(J)

Zu=0(0)

)
= ln

(( r
2π

)N/2
Z(J)

)
(2.4)

abgeleitet werden.1 Ihre Legendre-Transformation heißt effektive Wirkung und ist definiert als

Γ (φ) := sup
J∈RN
(J · φ−W (J)) = Jsup(φ) · φ−W (Jsup(φ)) . (2.5)

1 In der Quantenfeldtheorie wird W in der Regel als ln(Z[J]/Z[0]) definiert, damit gewünschte Konvergenzei-
genschaften gelten. Hier ist allerdings die Definition aus [KB12, Formel (2.3)] zweckmäßig und ausreichend.
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2 Problemstellung und wichtige Größen

Der Einfachheit halber wird statt Jsup(φ) immer J geschrieben. Aus der effektiven Wirkung

leitet sich das erzeugende Funktional ab. Daher wird es die Aufgabe sein, diese zu berechnen.

2.2 Korrelationsfunktionen und eigentliche Vertizes

2.2.1 Einführung und Definition

Die Korrelationsfunktionen G(n)α , auch n-Punkt-Funktionen genannt, sind definiert durch

G(0) := Z(0) und G(n)α :=
1

Z(0)

∂αZ

∂Jα

∣∣∣∣
J=0

, (2.6)

wobei α ∈ NN0 ein Multiindex der Länge |α| = n ∈ N ist. In den Korrelationsfunktionen sind

nach [Gie12; Zin08] die Informationen über die physikalischen Prozesse enthalten, die in der

Quantenfeldtheorie untersucht werden, wie z. B. Streuprozesse. Teilt man den Integranden in

Formel (2.1) durch Z(J) und wählt dies als Dichtefunktion einer Wahrscheinlichkeitsverteilung,

so kann man die Korrelationsfunktion G(n)α für n ≥ 1 auch als Erwartungswert von ϕα auffassen:

G(n)α = ⟨ϕα⟩J=0 . (2.7)

Die Wirkung S ist rotationsinvariant. Nach [KB12] gilt dann dasselbe auch für das erzeugende

Funktional: Z(J) = Z̃(J2). Mit der Taylorreihenentwicklung von Z̃ findet man

Z(J) = G(0) + Z(0)

∞∑
m=1

1

(2m)!
G(2m)

(
J2
)m

, (2.8)

wobei

G(2m) :=
1

Z(0)

(2m)!

m!

dmZ̃

dJ̃m

∣∣∣∣
J̃=0

(2.9)

für m ≥ 1 gesetzt wurde. Mit dem Multinomialtheorem erhält man

Z(J) = G(0) + Z(0)

∞∑
m=1

∑
α∈NN0
|α|=m

1

α!

m!

(2m)!
G(2m)J2α . (2.10)

Dem gegenüber steht die mehrdimensionale Reihenentwicklung von Z, welche mit Formel (2.6)

wie folgt lautet:

Z(J) = G(0) + Z(0)

∞∑
n=1

∑
α∈NN0
|α|=n

1

α!
G(n)α J

α . (2.11)
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2.2 Korrelationsfunktionen und eigentliche Vertizes

Wegen Z(J) = Z̃(J2) sind alle Summanden null, die eine Komponente von J mit ungerader

Potenz enthalten. Die innere Summe reduziert sich also auf α ∈ (2N0)N . Eine Neuindizierung

ergibt

Z(J) = G(0) + Z(0)

∞∑
m=1

∑
α∈NN0
|α|=m

1

(2α)!
G
(2m)
2α J

2α . (2.12)

Da die Formeln (2.10) und (2.12) äquivalent sind, folgt durch einen Koeffizientenvergleich,

dass

G
(2m)
2α =

m!

(2m)!

(2α)!

α!
G(2m) (2.13)

für alle α ∈ NN0 gilt. Die G(n)α können also nur dann von null verschieden sein, wenn der

erzeugende Multiindex α nur gerade Komponenten hat; dies entspricht einer geraden Anzahl an

Ableitungen nach jeder Komponente von ϕ in Formel (2.6). Gleichzeitig zeigt Formel (2.13),

dass die verschiedenen G(n)α für ein fest gewähltes n ∈ N untereinander in Beziehung stehen.

Es genügt, nur die Größe G(n) anzugeben, um die G(n)α zu bestimmen. Daher werden ab hier

nur noch die G(2m) betrachtet, die ebenfalls als Korrelationsfunktionen bezeichnet werden.

Analoge Überlegungen können für W und Γ angestellt werden; der einzige Unterschied liegt

darin, dass der Vorfaktor 1/Z(0) nicht berücksichtigt wird. Die Koeffizienten werden mit G(2m)c

bzw. Γ (2m) bezeichnet. Letztere nennt man in der Quantenfeldtheorie eigentliche Vertizes.

2.2.2 Beziehungen zwischen den Korrelationsfunktionen und den
eigentlichen Vertizes

Die Beziehungen zwischen Z, W und Γ implizieren Beziehungen zwischen den Koeffizienten

G(2m), G(2m)c und Γ (2m). Für m = 0 folgt aus den Definitionen direkt

Γ (0) = −G(0)c = ln

((
2π

r

)N/2
1

G(0)

)
. (2.14)

Für m ≥ 1 ist etwas Vorarbeit nötig. Zunächst sollen Beziehungen zwischen den eigentlichen

Vertizes Γ (2m) und G(2m)c hergeleitet werden. Über die Beziehungen zwischen G(2m)c und G(2m)

wird später die Brücke zu den Korrelationsfunktionen geschlagen.

An der Stelle, an der das Supremum in Formel (2.5) angenommen wird, muss die notwendige

Optimalitätsbedingung

∇JW (J) = φ (2.15)

gelten. Hier wird die Bezeichnung „φ“ klar: Analog zur Begründung für Formel (2.7) ist

die Ableitung ∂W/∂Ji gleich dem Erwartungswert ⟨ϕi⟩J , d. h. φ = ∇JW = ⟨ϕ⟩J . Durch
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2 Problemstellung und wichtige Größen

Ableiten der Formel (2.5) nach φ folgt mit Ketten- und Produktregel sowie der obigen

Optimalitätsbedingung wiederum

∇φΓ (φ) = J . (2.16)

Mit den beiden Formeln (2.15) und (2.16) und dem Satz über die Ableitung der Umkehrfunktion

kann nun für die Hesse-Matrizen D2φΓ und D2JW die folgende zentrale Beziehung bestimmt

werden:

D2φΓ = DφJ = (DJφ)
−1 =

(
D2JW

)−1
. (2.17)

Im Folgenden wird angenommen, dass φ = 0 genau dann gilt, wenn J = 0 ist. Dies ist

im Allgemeinen nicht automatisch erfüllt, hier allerdings wegen der Rotationssymmetrie der

Wirkung (und damit von Z, W und Γ ) eine sinnvolle Annahme. Mit Formel (2.13) ergibt

sich somit

Γ (2) =
1

G
(2)
c

. (2.18)

Um die Beziehungen für die höheren Koeffizienten zu ermitteln, kann der Differenzialoperator

∂2m−2/∂φ2m−2i , der auf die Formel (2.17) angewendet werden muss, mit mehrfacher Anwen-

dung der mehrdimensionalen Kettenregel umgeschrieben werden. Ferner müssen Ableitungen

inverser Matrizen berechnet werden. Da dies insgesamt einen sehr hohen Rechenaufwand

bedeutet, der mit m stark anwächst, wird die Herleitung der Zusammenhänge zwischen

den Koeffizienten hier über Funktionalableitungen durchgeführt. Der Lösungsweg ist damit

allgemeiner als nötig, jedoch sind die resultierenden Aussagen auch für diese Arbeit gültig.

Formel (2.17) lautet in der Form mit Funktionalableitungen nach [Gie12, Formeln (23)–(24)]

δ2Γ

δφ2
=
δJ

δφ
=

(
δφ

δJ

)−1
=

(
δ2W

δJ2

)−1
. (2.19)

Leitet man diese Gleichung ab, so erhält man mit der Kettenregel

δ3Γ

δφ3
=
δ

δφ

[
δ2Γ

δφ2

]
=
δJ

δφ

δ

δJ

[
δ2Γ

δφ2

]
=

(
δ2W

δJ2

)−1
δ

δJ

[(
δ2W

δJ2

)−1]
= −

(
δ2W

δJ2

)−3
δ3W

δJ3
.

(2.20)

Für die vierte Ableitung findet man mit dem gleichen Vorgehen

δ4Γ

δφ4
= 3

(
δ2W

δJ2

)−5(
δ3W

δJ3

)2
−
(
δ2W

δJ2

)−4
δ4W

δJ4
. (2.21)

Dies kann man beliebig fortführen. Analog zur Variante mit partiellen Ableitungen entsprechen

δnΓ/δφn und δnW/δφn den Größen Γ (n) bzw. G(n)c . Für m = 2 erhält man damit bspw.

Γ (4) = −G(4)c

(
G(2)c

)−4
. (2.22)
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2.3 Exakte Lösung

Um den Zusammenhang zwischen G(2m)c und G(2m) zu bestimmen, wird die Formel (2.4)

mehrfach abgeleitet. Mit den obigen Ergebnissen erhält man schließlich die Beziehungen

zwischen den eigentlichen Vertizes und den Korrelationsfunktionen für m ≥ 1. Die ersten drei

Beziehungen lauten

Γ (2) =
1

G(2)
, (2.23)

Γ (4) = −
G(4)

(G(2))4
+

3

(G(2))2
, (2.24)

Γ (6) = 10
(G(4))2

(G(2))7
−
G(6)

(G(2))6
− 45

G(4)

(G(2))5
+

60

(G(2))3
. (2.25)

Für die Herleitung der Beziehungen wurde ein Python-Programm entwickelt, vgl. Anhang A.1.

2.2.3 Eine nützliche Eigenschaft

Man kann in der Definition des erzeugenden Funktionals, vgl. Formel (2.1), die Variablen-

transformation ϕ̃ :=
√
rϕ durchführen. Dann ergibt sich für die Korrelationsfunktionen mit

m ≥ 1

G(2m) =
1

rm

∫
RN
ϕ̃2m1 exp

(
−
1

2
ϕ̃2 −

1

24

u

r 2
(
ϕ̃2
)2)
dϕ̃∫

RN
exp

(
−
1

2
ϕ̃2 −

1

24

u

r 2
(
ϕ̃2
)2)
dϕ̃

. (2.26)

Hier wird deutlich, dass G̃(2m) := rmG(2m) nur vom Verhältnis von u und r 2 abhängt. Der

Quotient u/r 2 wird (dimensionslose) Kopplung genannt.

Wie man in den Formeln (2.23)–(2.25) erkennt, gilt eine ähnliche Aussage auch für die

eigentlichen Vertizes Γ (2m); die Größen Γ̃ (2m) := Γ (2m)/rm für m ̸= 1 und Γ̃ (2) := Γ (2)/r − 1
sind ebenfalls nur von der Kopplung abhängig.2 Diese Skalierung wird an späterer Stelle noch

nützlich sein.

2.3 Exakte Lösung

Das erzeugende Funktional lässt sich für das betrachtete Beispiel exakt berechnen. In diesem

Abschnitt wird die exakte Lösung für dessen Entwicklungskoeffizienten, die Korrelationsfunk-

tionen, bestimmt, welche für die späteren Betrachtungen als Referenzlösung dienen soll. Der

vorgestellte Lösungsweg basiert auf [KB12, Abschnitt III], ist aber etwas allgemeiner gehalten.

2 In Abschnitt 3.4.1 wird klar werden, wieso die Definition für Γ̃ (2) von der Definition der anderen Γ̃ (2m)

abweicht. Für die Betrachtungen hier ist der Unterschied jedoch irrelevant.
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2 Problemstellung und wichtige Größen

Zunächst wird das Integral

Z(0) = G(0) =

∫
RN
exp
(
−
r

2
ϕ2 −

u

24

(
ϕ2
)2)
dϕ (2.27)

betrachtet. Mit verallgemeinerten Kugelkoordinaten und der Abkürzung

Rn(r, u) :=
∫ ∞
0

ρn exp
(
−
r

2
ρ2 −

u

24
ρ4
)
dρ (2.28)

für n ∈ N0 ergibt sich

Z(0) = G(0) = |ωN |RN−1(r, u) . (2.29)

Hierbei steht |ωN | für den Flächeninhalt der N-dimensionalen Einheitssphäre. Rn(r, u) lässt

sich nach [KB12] durch

Rn(r, u)
(
25−3n3−1−nun+3

)1/4
=
√
u Γ

(
n + 1

4

)
1F1

(
n + 1

4
;
1

2
;
3r 2

2u

)
−
√
6r Γ

(
n + 3

4

)
1F1

(
n + 3

4
;
3

2
;
3r 2

2u

)
(2.30)

explizit angeben, wobei 1F1 Kummers konfluente hypergeometrische Funktion ist. Eine Defi-

nition für 1F1 ist zum Beispiel in [GR07, Abschnitt 9.2] zu finden.

Der Erwartungswert ⟨(ϕ2)m⟩J=0 ergibt sich mit Kugelkoordinaten und Formel (2.29) einerseits

zu 〈(
ϕ2
)m〉

J=0
=
1

Z(0)

∫
RN

(
ϕ2
)m
exp(−S(ϕ)) dϕ =

R2m+N−1(r, u)
RN−1(r, u)

. (2.31)

Andererseits erhält man mit dem Multinomialtheorem und den Formeln (2.7) und (2.13)

〈(
ϕ2
)m〉

J=0
=
∑
α∈NN0
|α|=m

m!

α!

〈
ϕ2α
〉
= G(2m)

∑
α∈NN0
|α|=m

(
m!

α!

)2
(2α)!

(2m)!
. (2.32)

Gleichsetzen der beiden Formeln führt auf die exakte Lösung für G(2m):

G(2m) =
R2m+N−1(r, u)
RN−1(r, u)

/∑
α∈NN0
|α|=m

(
m!

α!

)2
(2α)!

(2m)!
. (2.33)

In der Definition von Rn in Formel (2.28) kann wie in Abschnitt 2.2.3 eine Koordinatentrans-

formation durchgeführt werden. Mittels der Definition

R̃n
( u
r 2

)
:=

1

rN/2+n

∫ ∞
0

ρ̃n exp

(
−
1

2
ρ̃2 −

1

24

u

r 2
ρ̃4
)
dρ̃ (2.34)
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2.3 Exakte Lösung

kann man die exakte Lösung für die skalierten Korrelationsfunktionen G̃(2m) durch

G̃(2m) =
R̃2m+N−1(u/r 2)
R̃N−1(u/r 2)

/∑
α∈NN0
|α|=m

(
m!

α!

)2
(2α)!

(2m)!
. (2.35)

angeben. Insbesondere erhält man

G̃(2) =
1

N

R̃N+1(u/r 2)
R̃N−1(u/r 2)

, (2.36)

G̃(4) =
3

N(N + 2)

R̃N+3(u/r 2)
R̃N−1(u/r 2)

, (2.37)

G̃(6) =
15

N(N + 2)(N + 4)

R̃N+5(u/r 2)
R̃N−1(u/r 2)

. (2.38)

Die exakten Lösungen für die Γ (2m) bzw. Γ̃ (2m) ergeben sich unmittelbar aus den Formeln (2.14)

und (2.23)–(2.25). Abbildung 2.1 zeigt beispielhaft die exakte Lösung für Γ̃ (2) und Γ̃ (4).

0 1 2 3 4 5 6

0

1

2

3

u/r2

Γ̃
(2
m
)

Γ̃ (2)

Γ̃ (4)

Abb. 2.1: Exakte Lösung für die eigentlichen Vertizes Γ̃ (2) und Γ̃ (4) in Abhängigkeit von der Kopp-
lung u/r2 bei N = 2.

Für die Berechnung konkreter Werte sollte man beachten, dass die Formel (2.30) bei kleinen

Werten von u/r 2 auf numerische Probleme führt. Abhilfe schafft die Integraldarstellung in

Formel (2.28), die durch numerische Integration errechnet werden kann. Für größere Werte

von u/r 2 ist die Variante mit Formel (2.30) ausreichend.
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3 Lösung mittels funktionaler
Renormierungsgruppe

In der Quantenfeldtheorie können das erzeugende Funktional und die Korrelationsfunktionen im

Allgemeinen nicht exakt ausgerechnet werden. Daher wurden Näherungsverfahren entwickelt.

Eine Möglichkeit ist die Lösung mittels der funktionalen Renormierungsgruppe. In diesem

Kapitel wird dieses Lösungsverfahren für das Beispiel aus Formel (2.1) erläutert und diskutiert.

Hierbei ist die sogenannte Wetterich-Flussgleichung von zentraler Bedeutung, für die eine

Herleitung angegeben wird.

Wie bereits in Abschnitt 2.1 erläutert wurde, genügt es, für die Berechnung des erzeugenden

Funktionals die effektive Wirkung bzw. die eigentlichen Vertizes zu betrachten. Daher wird

sich hier darauf beschränkt.

3.1 Die effektive Mittelwert-Wirkung

Beim Lösungsverfahren mittels der funktionalen Renormierungsgruppe wird nach [Gie12;

KB12; Wet93] die effektive Wirkung Γ bestimmt, indem zwischen der Wirkung S und der

effektiven Wirkung interpoliert wird. Der Interpolationsparameter wird im Folgenden mit k

bezeichnet, die Interpolation selbst ist die effektive Mittelwert-Wirkung Γk . Für k = k0 soll

diese der Wirkung und für k = k1 der effektiven Wirkung entsprechen:

Γk0 = S und Γk1 = Γ . (3.1)

Als Ansatz für Γk wird zunächst zur Wirkung S der sogenannte Regulator-Term

∆Sk(ϕ) =
1

2
Rkϕ

2 (3.2)

addiert. Dabei soll der Regulator Rk nach [KB12] die Bedingungen

lim
k→k0
Rk =∞ und lim

k→k1
Rk = 0 (3.3)
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3.2 Wetterich-Flussgleichung

sowie

lim
Rk→∞

Γk = S und lim
Rk→0

Γk = Γ (3.4)

erfüllen. Der Regulator steuert also die Interpolation von S nach Γ .

Die Addition des Regulator-Terms ∆Sk zur Wirkung S bedeutet für das hier betrachtete

Funktional, dass r durch r + Rk ersetzt wird, vgl. Formeln (2.1) und (2.2). Daher soll hier

noch r + Rk > 0 gefordert werden.3 Ein Beispiel für einen Regulator ist

Rk =
1

k
− r für k0 := 0 < k ≤

1

r
=: k1 . (3.5)

Mit dem zusätzlichen Regulator-Term lassen sich das erzeugende Funktional zu

Zk(J) :=

∫
RN
exp(−S(ϕ)− ∆Sk(ϕ) + J · ϕ) dϕ (3.6)

sowie W zu

Wk(J) := ln

(
Zk(J)

Zk,u=0(0)

)
= ln

((
r + Rk
2π

)N/2
Zk(J)

)
(3.7)

anpassen. Die effektive Mittelwert-Wirkung kann dann wie folgt definiert werden:

Γk(φ) := sup
J∈RN
(J · φ−Wk(J))− ∆Sk(φ) = Jk,sup(φ) · φ−Wk(Jk,sup(φ))− ∆Sk(φ) . (3.8)

Im Vergleich zu Formel (2.5) wird von der Legendre-Transformation noch der Regulator-Term

subtrahiert. In [Wet93] wird gezeigt, dass diese Definition die Bedingung in Formel (3.4)

erfüllt. Im Folgenden wird wie in Abschnitt 2.2.1 statt Jk,sup(φ) immer Jk geschrieben und

wie in Abschnitt 2.2.2 angenommen, dass Jk = 0 genau dann gilt, wenn φ = 0 ist.

3.2 Wetterich-Flussgleichung

Für die effektive Mittelwert-Wirkung Γk gilt eine Flussgleichung, die auch Wetterich-Flussglei-

chung genannt wird. Sie wurde von Christof Wetterich in [Wet93] bewiesen und ist unabhängig

von der konkreten Wirkung. In diesem Abschnitt wird die Gleichung basierend auf [Gie12;

Wet93] für den RN hergeleitet. In analoger Form gilt sie auch in der Quantenfeldtheorie.

Wie der Name suggeriert, soll die Wetterich-Flussgleichung den Fluss von Γk , d. h.

dΓk(φ)

dk
=
dJk
dk
· φ−

dWk(Jk)

dk
−
1

2

dRk
dk
φ2 , (3.9)

3 Für einen monotonen (stetigen) Regulator Rk ist dies aufgrund der Bedingung in Formel (3.3) stets erfüllt.
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3 Lösung mittels funktionaler Renormierungsgruppe

beschreiben, wobei hier die Definition von Γk gemäß Formel (3.8) eingesetzt wurde. Für den

zweiten Summanden der rechten Seite von Formel (3.9) gilt mit Formel (3.7)

dWk(Jk)

dk
=

1

Zk(Jk)

dZk(Jk)

dk
+
N

2

dRk
dk

1

r + Rk
. (3.10)

Wie in Abschnitt 2.2.1 kann auch mit Zk(Jk) ein Erwartungswert definiert werden, der mit

⟨·⟩k,Jk bezeichnet wird. Dann kann man den Fluss von Zk(Jk) mit Formel (3.6) durch

1

Zk(Jk)

dZk(Jk)

dk
=
dJk
dk
· ⟨ϕ⟩k,Jk −

1

2

dRk
dk

〈
ϕ2
〉
k,Jk

(3.11)

ausdrücken. Analog zu Formel (2.15) gilt wieder die Optimalitätsbedingung

⟨ϕ⟩k,Jk = ∇JkWk(Jk) = φ . (3.12)

Ferner ist

Tr
(
D2JkWk(Jk)

)
=

n∑
i=1

∂2Wk
∂J2k

(Jk) =
〈
ϕ2
〉
k,Jk
− ⟨ϕ⟩2k,Jk . (3.13)

Mit den Formeln (3.10)–(3.13) lässt sich Formel (3.9) nun als

dΓk(φ)

dk
=
1

2

dRk
dk
Tr
(
D2JkWk(Jk)

)
−
N

2

dRk
dk

1

r + Rk
(3.14)

schreiben. Außerdem gilt analog zu Formel (2.16)

∇φΓk(φ) = Jk − Rkφ (3.15)

und somit

D2φΓk + Rk1 = DφJk = (DJkφ)
−1 =

(
D2JkWk

)−1
. (3.16)

Setzt man dies in Formel (3.14) ein, so erhält man schließlich die Wetterich-Flussgleichung:

dΓk(φ)

dk
=
1

2

dRk
dk
Tr
((

D2φΓk(φ) + Rk1
)−1)− N

2

dRk
dk

1

r + Rk
. (3.17)

3.3 Differenzialgleichungssystem

Die Wetterich-Gleichung kann nun genutzt werden, um die effektive Mittelwert-Wirkung Γk
zu bestimmen. Hierzu werden beide Seiten der Gleichung in eine Reihe entwickelt. Für jeden

Koeffizienten der Reihe erhält man eine Differenzialgleichung. Die Gleichungen sind gekoppelt
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3.3 Differenzialgleichungssystem

und werden näherungsweise gelöst. In diesem Abschnitt wird dieses Lösungsverfahren (im

Folgenden Standard-Verfahren genannt) vorgestellt. Dieses Verfahren wird auch in den Reviews

[BTW02; Bra12; Dup+21] mit weiteren Beispielen vertieft.

3.3.1 Reihenentwicklung der Wetterich-Flussgleichung und
Lösungsprinzip

Die Wetterich-Gleichung in Formel (3.17) wird nun auf beiden Seiten nach φ in eine Taylor-

Reihe entwickelt, vgl. [KB12]. Die Koeffizienten Γ (n)k,α der Reihe sind dabei analog zu den

eigentlichen Vertizes definiert, vgl. Abschnitt 2.2.1. Aufgrund der Rotationssymmetrie von Γk
sind die Γ (n)k,α für Multiindizes α mit ungeraden Einträgen gleich null. Ein Koeffizientenvergleich

liefert dann Flussgleichungen für die übrigen Koeffizienten Γ (2m)k,α :

dΓ
(2m)
k,α

dk
=
1

2

dRk
dk

∂2α

∂φ2α

[
Tr
((

D2φΓk(φ) + Rk1
)−1)

+
N

r + Rk

]
φ=0

. (3.18)

Auch die Γ (2m)k,α stehen für festes m analog zu Formel (2.13) untereinander in Beziehung und

können durch Γ (2m)k , die Koeffizienten der Reihe

Γk(φ) =

∞∑
m=0

1

(2m)!
Γ
(2m)
k (φ2)m , (3.19)

beschrieben werden. Ferner wird im Folgenden der Fall m = 0 separat betrachtet. Es ergibt

sich

dΓ
(2m)
k

dk
=
1

2

dRk
dk


Tr

((
D2φΓk

∣∣
φ=0
+ Rk1

)−1)
+

N

r + Rk
für m = 0

Tr

(
∂2m

∂φ2mi

[(
D2φΓk(φ) + Rk1

)−1]
φ=0

)
für m ≥ 1

. (3.20)

Im Folgenden wird die Gleichung für ein gegebenes m die m-te Gleichung des Systems genannt.

Man erhält also unendlich viele gekoppelte Differenzialgleichungen für die Γ (2m)k . Die An-

fangsbedingungen für dieses Differenzialgleichungssystem sind durch Formel (3.1) bestimmt.

Durch einen Koeffizientenvergleich mit der Wirkung S, vgl. Formel (2.2), ergeben sie sich zu

Γ
(0)
k0
= 0 , Γ

(2)
k0
= r , Γ

(4)
k0
= u und Γ

(2m)
k0

= 0 für m ≥ 3 . (3.21)

Von diesen Anfangswerten an wird das Differenzialgleichungssystem bis zu k1 integriert. Nach

Formel (3.1) erhält man damit ein Ergebnis für Γ (2m), woraus sich unmittelbar Γ ergibt.
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3 Lösung mittels funktionaler Renormierungsgruppe

In [KB12] wird ein Verfahren für eine Näherungslösung des Systems vorgestellt. Hiernach

wird die Reihenentwicklung in Formel (3.19) bei m = mt abgebrochen, sodass nur die

Differenzialgleichungen für m = 0, . . . , mt verbleiben. Ferner wird der Koeffizient Γ (2mt+2)
k , der

in der mt-ten Gleichung vorkommt, konstant auf seinen Anfangswert gemäß Formel (3.21)

gesetzt. Das resultierende System mit mt + 1 Differenzialgleichungen und ebenso vielen

Unbekannten wird dann für einen gegebenen Regulator (i. d. R. numerisch) gelöst.

3.3.2 Herleitung konkreter Formeln für die Differenzialgleichungen

Im vorigen Abschnitt wurde das Lösungsprinzip vollständig erklärt. Nun soll die Ableitung

auf der rechten Seite der Formel (3.20) ausgeführt werden, sodass sich eine etwas andere

allgemeine Formel für die Differenzialgleichungen ergibt. Da im Fall m = 0 in der genannten

Formel keine Ableitungen auftreten, wird hier nur m ≥ 1 betrachtet. Schließlich werden die

Gleichungen für die ersten Koeffizienten explizit angegeben.

Es muss die partielle Ableitung einer Matrix-Inversen bestimmt werden. Hierfür kann allerdings

ein Trick verwendet werden, der die umständliche Rechnung mit Matrix-Ableitungen verein-

facht. Zunächst wird die Abkürzung U(φ) := D2φΓk(φ) + Rk1 eingeführt. Durch Umstellen

von

0 =
∂1

∂φi
=
∂

∂φi

[
UU−1

]
=
∂U

∂φi
U−1 + U

∂U−1

∂φi
. (3.22)

erhält man die Relation
∂U−1

∂φi
= −U−1

∂U

∂φi
U−1 . (3.23)

Für die höheren Ableitungen muss dann die Produktregel angewendet werden. Es entsteht

eine Summe aus Termen der Form

U−1
∏
j

(
∂njU

∂φ
nj
i

U−1
)

. (3.24)

In der Formel (3.20) werden die Ableitungen an der Stelle φ = 0 ausgewertet. Dort entsprechen

sie den Γ (n)k,α:

∂njU

∂φ
nj
i

∣∣∣∣
φ=0

=
∂nj

∂φ
nj
i

[
D2φΓk(φ)

]
φ=0
=
(
Γ
(nj+2)

k,njei+ep+eq

)
p,q=1,...,N

. (3.25)

Die Γ (nj+2)k,njei+ep+eq
sind dabei null, wenn nj ungerade ist oder p ̸= q gilt. Demnach verbleiben

nur die geraden Ableitungen, welche Diagonalmatrizen der Form

∂2mjU

∂φ
2mj
i

∣∣∣∣
φ=0

= diag
(
Γ
(2mj+2)

k,2mjei+2e1
, . . . , Γ

(2mj+2)

k,2mjei+2eN

)
(3.26)
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3.3 Differenzialgleichungssystem

sind. Auch U−1 ist bei φ = 0 diagonal, denn es gilt

U−1(0) =
(
D2φΓk

∣∣
φ=0
+ Rk1

)−1
=

1

Γ
(2)
k + Rk

1 . (3.27)

Da Diagonalmatrizen immer kommutieren, vereinfachen sich die Summanden, die durch

Formel (3.24) beschrieben sind. Die gesuchte Ableitung in Formel (3.20) kann dann mithilfe

der Produkt- und Kettenregel für skalare Funktionen berechnet werden; U wird hierbei mit

der Funktion f identifiziert, U−1 entspricht 1/f . Es gilt

∂2m

∂φ2mi

[
1

f

]
=

2m∑
n=1

(
2m + 1

n + 1

)
(−1)n

f n+1
∂2mf n

∂φ2mi
=

2m∑
n=1

(
2m + 1

n + 1

)
(−1)n

f n+1

∑
α∈Nn0
|α|=2m

(2m)!

α!

n∏
ℓ=1

∂αℓf

∂φαℓi
,

(3.28)

wobei für den ersten Schritt WolframAlpha bemüht und im zweiten Schritt die Leibniz-Regel

für mehrfache Produkte nach [Wal17] verwendet wurde. Beachtet man die Formeln (3.26)

und (3.27) sowie die Tatsache, dass Ableitungen ungerader Ordnung null sind, ergibt sich

∂2m

∂φ2mi

[(
D2φΓk(φ) + Rk1

)−1]
φ=0
=

2m∑
n=1

(
2m + 1

n + 1

)
(−1)n(

Γ
(2)
k + Rk

)n+1 ∑
α∈Nn0
|α|=m

(2m)!

(2α)!

n∏
ℓ=1

Dαℓ

(3.29)

mit

Dαℓ :=

diag
(
Γ
(2)
k,2e1
+ Rk , . . . , Γ

(2)
k,2eN

+ Rk

)
für αℓ = 0

diag
(
Γ
(2αℓ+2)
k,2αℓei+2e1

, . . . , Γ
(2αℓ+2)
k,2αℓei+2eN

)
für αℓ ≥ 1

. (3.30)

Über die Beziehung zwischen den Γ (2m)k,α und Γ (2m)k , vgl. Abschnitt 3.3.1, erhält man

Tr

(
n∏
ℓ=1

Dαℓ

)
=

(
(N − 1)

n∏
ℓ=1

1

2αℓ + 1
+ 1

)
n∏
ℓ=1

{
Γ
(2)
k + Rk für αℓ = 0

Γ
(2αℓ+2)
k für αℓ ≥ 1

(3.31)

für die Spur der auftretenden Diagonalmatrix-Produkte. Mit Formel (3.29) ergibt sich For-

mel (3.20) für m ≥ 1 schließlich zu

dΓ
(2m)
k

dk
=
1

2

dRk
dk

2m∑
n=1

(
2m + 1

n + 1

)
(−1)n

Γ
(2)
k + Rk

×
∑
α∈Nn0
|α|=m

(2m)!

(2α)!

(
n∏
ℓ=1

N − 1
2αℓ + 1

+ 1

)
n∏
ℓ=1


1 für αℓ = 0

Γ
(2αℓ+2)
k

Γ
(2)
k + Rk

für αℓ ≥ 1
. (3.32)
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3 Lösung mittels funktionaler Renormierungsgruppe

Damit lassen sich die ersten Differenzialgleichungen wie folgt schreiben:

dΓ
(0)
k

dk
=
N

2

dRk
dk

(
1

Γ
(2)
k + Rk

−
1

r + Rk

)
, (3.33)

dΓ
(2)
k

dk
= −
N + 2

6

dRk
dk

Γ
(4)
k(

Γ
(2)
k + Rk

)2 , (3.34)

dΓ
(4)
k

dk
=
N + 8

3

dRk
dk

(
Γ
(4)
k

)2
(
Γ
(2)
k + Rk

)3 − N + 410 dRkdk Γ
(6)
k(

Γ
(2)
k + Rk

)2 . (3.35)

Für den Fluss von Γ (6)k gilt

dΓ
(6)
k

dk
= −
5(N + 26)

3

dRk
dk

(
Γ
(4)
k

)3
(
Γ
(2)
k + Rk

)4
+ (N + 14)

dRk
dk

Γ
(4)
k Γ

(6)
k(

Γ
(2)
k + Rk

)3 − N + 614 dRkdk Γ
(8)
k(

Γ
(2)
k + Rk

)2 (3.36)

und für Γ (8)k

dΓ
(8)
k

dk
=
140(N + 80)

9

dRk
dk

(
Γ
(4)
k

)4
(
Γ
(2)
k + Rk

)5 − 14(N + 44)dRkdk
(
Γ
(4)
k

)2
Γ
(6)
k(

Γ
(2)
k + Rk

)4
+
4(N + 20)

3

dRk
dk

Γ
(4)
k Γ

(8)
k(

Γ
(2)
k + Rk

)3+7(N + 24)5

dRk
dk

(
Γ
(6)
k

)2
(
Γ
(2)
k + Rk

)3−N + 818 dRkdk Γ
(10)
k(

Γ
(2)
k + Rk

)2 .

(3.37)

Im Anhang A.2 befindet sich ein Python-Programm, das die Gleichungen automatisch erzeugt.

3.4 Diskussion anhand eines speziellen Regulators

Die bisherigen allgemeinen Betrachtungen sollen nun konkretisiert werden, indem der spezielle

Regulator aus Formel (3.5) verwendet wird. Mit diesem Regulator wird das im Abschnitt 3.3.1

beschriebene Verfahren ähnlich wie in [KB12] für verschiedene Werte von mt durchgeführt

und mit der exakten Lösung aus Abschnitt 2.3 verglichen.
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3.4 Diskussion anhand eines speziellen Regulators

Die Flussgleichungen in den Formeln (3.33)–(3.36) lauten mit dem Regulator aus Formel (3.5)

dΓ
(0)
k

dk
=
N

2

Σk
kΣk + 1

, (3.38)

dΓ
(2)
k

dk
=
dΣk
dk
=
N + 2

6

Γ
(4)
k

(kΣk + 1)2
, (3.39)

dΓ
(4)
k

dk
= −
N + 8

3

k
(
Γ
(4)
k

)2
(kΣk + 1)3

+
N + 4

10

Γ
(6)
k

(kΣk + 1)2
, (3.40)

dΓ
(6)
k

dk
=
5(N + 26)

3

k2
(
Γ
(4)
k

)3
(kΣk + 1)4

− (N + 14)
kΓ
(4)
k Γ

(6)
k

(kΣk + 1)3
+
N + 6

14

Γ
(8)
k

(kΣk + 1)2
, (3.41)

wobei Σk := Γ
(2)
k − r gesetzt wurde. Für Γ (8)k gilt entsprechend Formel (3.37)

dΓ
(8)
k

dk
= −
140(N + 80)

9

k3
(
Γ
(4)
k

)4
(kΣk + 1)5

+ 14(N + 44)
k2
(
Γ
(4)
k

)2
Γ
(6)
k

(kΣk + 1)4

−
4(N + 20)

3

kΓ
(4)
k Γ

(8)
k

(kΣk + 1)3
−
7(N + 24)

5

k
(
Γ
(6)
k

)2
(kΣk + 1)3

+
N + 8

18

Γ
(10)
k

(kΣk + 1)2
. (3.42)

3.4.1 Skalierung des Gleichungssystems

Im Abschnitt 2.2.3 wurde gezeigt, dass sich die Korrelationsfunktionen G(2m) bzw. die

eigentlichen Vertizes Γ (2m) auf die Größen G̃(2m) bzw. Γ̃ (2m) skalieren lassen, welche nur noch

von der Kopplung u/r 2 abhängen. Für G(2m)k , das über Zk analog zum Abschnitt 2.2.1 definiert

wird, lässt sich eine ähnliche Eigenschaft ableiten. Hierzu wird wieder dieselbe Transformation

wie im Abschnitt 2.2.3, d. h. ϕ̃ =
√
rϕ, verwendet. Es ergibt sich

G
(2m)
k =

1

rm

∫
RN
ϕ̃2m1 exp

(
−
1

2kr
ϕ̃2 −

1

24

u

r 2
(
ϕ̃2
)2)
dϕ̃∫

RN
exp

(
−
1

2kr
ϕ̃2 −

1

24

u

r 2
(
ϕ̃2
)2)
dϕ̃

, (3.43)

wonach rmG(2m)k für ein fest gewähltes Produkt κ := kr wieder nur von u/r 2 abhängt. Analoge

Aussagen gelten für Γ̃ (2m)κ := Γ
(2m)
k /rm für m ̸= 1 sowie Γ̃ (2)κ := Σk/r = Γ

(2)
k /r − 1.

Da man darüber hinaus das System für den gegebenen Regulator immer von k = 0 bis k = 1/r

integriert, liegt es nahe, nicht k , sondern κ als Variable zu verwenden. Das bietet den Vorteil,

dass die Integrationsgrenzen κ = 0 und κ = 1 stets von r unabhängig sind. Formel (3.32)

lässt sich mit diesem Ansatz zu
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dΓ̃
(2m)
κ

dκ
= −

1

2κ

2m∑
n=1

(
2m + 1

n + 1

)
(−1)n

κΓ̃
(2)
κ + 1

×
∑
α∈Nn0
|α|=m

(2m)!

(2α)!

(
n∏
ℓ=1

N − 1
2αℓ + 1

+ 1

)
n∏
ℓ=1


1 für αℓ = 0

κΓ̃
(2αℓ+2)
κ

κΓ̃
(2)
κ + 1

für αℓ ≥ 1
(3.44)

umformulieren. Formel (3.38) wird zu

dΓ̃
(0)
κ

dκ
=
N

2

Γ̃
(2)
κ

κΓ̃
(2)
κ + 1

. (3.45)

Die Anfangswerte müssen ebenfalls skaliert werden; es wird also

Γ̃
(4)
0 =

u

r 2
und Γ̃

(2m)
0 = 0 für m ̸= 2 (3.46)

gefordert. Auch hier ergibt sich die Abhängigkeit von der Kopplung u/r 2.

Folglich ist die Skalierung des Differenzialgleichungssystems auf die Γ̃ (2m)κ bei Integration von

κ = 0 bis κ = 1 ein sinnvoller Ansatz, wenn man sich ein rein von u/r 2 abhängiges Bild

machen möchte. Die konkreten Differenzialgleichungen, die man aus der Formel (3.44) erhält,

sind hierbei völlig analog zu jenen in den Formeln (3.39)–(3.42).

3.4.2 Diskussion

In diesem Abschnitt wird das in Abschnitt 3.3.1 beschriebene Lösungsverfahren auf das skalierte

Gleichungssystem angewendet. Hierbei werden für mt die Werte 2, 3 und 4 untersucht. Am

Beispiel von N = 2 erhält man die Abbildungen 3.1–3.3, in denen die Näherungslösungen

für Γ̃ (2), Γ̃ (4) und Γ̃ (6) mit den exakten Lösungen vergleichend dargestellt sind. In den

Abbildungen 3.4–3.6 sind Werte in Abhängigkeit von N dargestellt.

Um Γ̃ (2m) sinnvoll berechnen zu können, muss allerdings mt ≥ m gelten, da ansonsten das

Verfahren vorsieht, Γ̃ (2m) konstant auf den Anfangswert zu setzen. Daher ist in Abbildungen 3.3

und 3.6 keine Näherung für mt = 2 angegeben.

Wie die Abbildungen zeigen, führt der Ansatz bereits für niedrige Werte des Reihenabbruch-

parameters mt zu sehr guten Ergebnissen. So sind die relativen Abweichungen für mt = 3 für

Γ̃ (2) und Γ̃ (4) im Bereich 10−2. Auch für Γ̃ (6) erhält man (je nach Kopplung) für mt = 3 bzw.

mt = 4 Abweichungen im Bereich 10−2 bis 10−1.

Ferner wird deutlich, dass das Verfahren für verschiedene Werte von mt auf verschiedene

Γ̃ (2m) für dasselbe m führt. Im hier betrachteten Beispiel ergibt sich mit steigendem mt oft
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Abb. 3.1: Vergleich der exakten Lösung für Γ̃ (2) mit den Näherungslösungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhängigkeit von der Kopplung u/r2 für verschiedene
Werte des Reihenabbruchparameters mt und bei N = 2. Links sind die absoluten Werte, rechts der
relative Fehler der Näherungen aufgetragen. Nach [KB12, Abb. 3].
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Abb. 3.2: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhängigkeit von der Kopplung u/r2 für verschiedene
Werte des Reihenabbruchparameters mt und bei N = 2. Links sind die absoluten Werte, rechts der
relative Fehler der Näherungen aufgetragen. Nach [KB12, Abb. 4].
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Abb. 3.3: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhängigkeit von der Kopplung u/r2 für verschiedene
Werte des Reihenabbruchparameters mt und bei N = 2. Links sind die absoluten Werte, rechts der
relative Fehler der Näherungen aufgetragen.
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Abb. 3.4: Vergleich der exakten Lösung für Γ̃ (2) mit den Näherungslösungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhängigkeit von der Dimension N für verschiedene Werte
des Reihenabbruchparameters mt. Es wurde als Kopplung jeweils u/r2 = 3/N gewählt. Links sind die
absoluten Werte, rechts der relative Fehler der Näherungen aufgetragen. Nach [KB12, Abb. 10].
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Abb. 3.5: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhängigkeit von der Dimension N für verschiedene Werte
des Reihenabbruchparameters mt. Es wurde als Kopplung jeweils u/r2 = 3/N gewählt. Links sind die
absoluten Werte, rechts der relative Fehler der Näherungen aufgetragen. Nach [KB12, Abb. 11].
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Abb. 3.6: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhängigkeit von der Dimension N für verschiedene
Werte des Reihenabbruchparameters mt. Es wurde als Kopplung jeweils u/r2 = 3/N gewählt. Links
sind die absoluten Werte, rechts der relative Fehler der Näherungen aufgetragen.
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3.4 Diskussion anhand eines speziellen Regulators

eine Verbesserung der Genauigkeit. In manchen Bereichen der Kopplung wird diese Ordnung

allerdings vertauscht.

Für das Verfahren ist das Lösen eines Differenzialgleichungssystems nötig, das i. d. R. nu-

merisch gelöst wird. Wenngleich das System nur eine Näherung ist, so liefert es für das

betrachtete Beispiel des erzeugenden Funktionals in Formel (2.1) sehr gute Ergebnisse.
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4 Alternatives Lösungsverfahren

In diesem Kapitel wird ein alternatives Lösungsverfahren untersucht. Motiviert wird dieses

durch die spezielle Struktur des Differenzialgleichungssystems, das sich aus der Wetterich-

Flussgleichung ergibt, vgl. Formel (3.44). Hierbei soll nur der Regulator aus Formel (3.5)

betrachtet werden. Schließlich werden einige konkrete Ansätze für das zu untersuchende

Verfahren angegeben und diskutiert.

4.1 Idee und Kriterien

Die Flussgleichung für Γ̃ (2m)κ in der Formel (3.44) hat für alle m ≥ 1 die Form

dΓ̃
(2m)
κ

dκ
= Am

(
Γ̃ (2)κ ;κ

)
Γ̃ (2m+2)κ + Bm

(
Γ̃ (2)κ , . . . , Γ̃

(2m)
κ ;κ

)
, (4.1)

wobei Am, Bm geeignete Funktionen sind; zwischen Γ̃ (2m+2)κ und dem Fluss von Γ̃ (2m)κ besteht

also ein affiner Zusammenhang. Durch Umstellen der Gleichung erhält man eine Formel, mit

der Γ̃ (2m+2)κ aus Γ̃ (2)κ , . . . , Γ̃
(2m)
κ berechnet werden kann:

Γ̃ (2m+2)κ =
1

Am

(
Γ̃
(2)
κ ;κ

) (dΓ̃ (2m)κ

dκ
− Bm

(
Γ̃ (2)κ , . . . , Γ̃

(2m)
κ ;κ

))
. (4.2)

Startet man nun in der ersten Formel (m = 1) mit einem gegebenen Γ̃ (2)κ , so lässt sich damit

Γ̃
(4)
κ berechnen:

Γ̃ (4)κ =
6
(
κΓ̃
(2)
κ + 1

)2
N + 2

dΓ̃
(2)
κ

dκ
. (4.3)

Hieraus kann mit der darauffolgenden Formel Γ̃ (6)κ bestimmt werden:

Γ̃ (6)κ =
60
(
κΓ̃
(2)
κ + 1

)3
(N + 2)(N + 4)

2Γ̃ (2)κ dΓ̃ (2)κdκ + 4κN + 5N + 2

(
dΓ̃
(2)
κ

dκ

)2
+
(
κΓ̃ (2)κ + 1

) d2Γ̃ (2)κ
dκ2

 .

(4.4)
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4.1 Idee und Kriterien

Das Verfahren lässt sich beliebig fortführen, wobei in jedem Schritt lediglich ein entsprechender

Fluss, d. h. eine Ableitung, benötigt wird. Aus den Γ̃ (2m)κ lassen sich dann die eigentlich

interessanten Randwerte Γ̃ (2m) bestimmen.

Der hier betrachtete Fall des RN ermöglicht es, die einzelnen Gleichungen sehr einfach

nach Γ̃ (2m+2) umzustellen. Für komplexere Beispiele ist dies schwieriger. In [Zie21] wird

eine Rechtsinverse für den linearen Integraloperator, der im Allgemeinen vor Γ̃ (2m+2) steht,

angegeben. Damit wird dann das Verfahren in ähnlicher Weise durchgeführt und eine exakte

Lösung für die Wetterich-Gleichung konstruiert.

Im Allgemeinen ist Γ̃ (2)κ nicht bekannt. Es muss daher eine geeignete Näherung gewählt werden.

Damit das Ergebnis für Γ̃ (2)κ , . . . , Γ̃
(2m)
κ des oben vorgeschlagenen Verfahrens brauchbar ist,

scheint es zielführend, a priori Kriterien für das Ergebnis aufzustellen. So sollten bspw. die

Anfangswerte mit Formel (3.46) übereinstimmen; eventuell ist zusätzlich die Fixierung des

Anfangswerts von Γ̃ (2m+2)κ oder weiterer höherer Koeffizienten sinnvoll. Andererseits könnte

zumindest Γ̃ (2) bekannt sein und als Randwert für Γ̃ (2)κ dienen; in der Quantenfeldtheorie

könnte zum Beispiel die physikalische Masse eines Teilchens experimentell gemessen worden

sein. Nicht zuletzt sollte die Näherung für einen möglichst großen Bereich von Werten für die

Kopplung u/r 2 gut sein.

Zur Bewertung der Näherungen wird neben der exakten Lösung für Γ̃ (2m) auch die exakte

Lösung für die Interpolation Γ̃ (2m)κ herangezogen. Die Herleitung ist dabei grundsätzlich

analog zu Abschnitt 2.3. Die Koeffizienten G(2m)k der Reihenentwicklung von Zk ergeben sich

zunächst zu

G
(2m)
k =

R2m+N−1(1/k, u)
RN−1(1/k, u)

/∑
α∈NN0
|α|=m

(
m!

α!

)2
(2α)!

(2m)!
. (4.5)

Der Verknüpfung zwischen den G(2m)k und den Γ (2m)k liegt jedoch Formel (3.16) zugrunde, d. h.

es muss im Vergleich zum Abschnitt 2.2.2 der zusätzliche Regulatorterm ∆Sk berücksichtigt

werden. Damit gilt für die Beziehung zwischen G(2)k und Γ (2)k

Γ
(2)
k =

1

G
(2)
k

− Rk . (4.6)

Führt man dann die Skalierung wie in Abschnitt 3.4.1 durch, ergibt sich

Γ̃ (2)κ =
Γ
(2)
k

r
− 1 =

1

G
(2)
k r
−
1

kr
=
1

G̃
(2)
κ

−
1

κ
. (4.7)

Die Beziehungen für die höheren Koeffizienten sind völlig analog zu Abschnitt 2.2.2, da der

Regulator Rk durch das Ableiten verschwindet.
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4.2 Polynomnäherungen

Das im Abschnitt 4.1 vorgeschlagene Verfahren soll als erstes mit Polynomen getestet werden.

Der Polynomgrad M ist dabei zunächst nicht festgelegt; die Polynomkoeffizienten heißen am:

Γ̃ (2)κ ≈
M∑
m=0

amκ
m . (4.8)

4.2.1 Betrachtung der Anfangswerte

Die Koeffizienten am des Polynoms werden im ersten Schritt aus den ersten M + 1 Anfangs-

bedingungen bestimmt, vgl Formel (3.46). Die Forderung Γ̃ (2)0 = 0 liefert direkt a0 = 0. In

der m-ten Gleichung gibt es nur Ableitungen von Γ̃ (2)κ bis zur (m − 1)-ten Ordnung; an der

Stelle κ = 0 tauchen die Koeffizienten am+1, . . . , aM dort nicht auf. Die Koeffizienten am
können demnach mittels der m-ten Gleichung sukzessive in Abhängigkeit von den Koeffizienten

a0, . . . , am−1 bestimmt werden, die wiederum mit den vorigen Gleichungen bestimmt werden.

Es folgt, dass die Koeffizienten am für alle Polynomgrade M ≥ m gleich sind. Für die ersten

sieben Koeffizienten ergibt sich

a1 =
N + 2

6

u

r 2
, a3 = −

(N + 2)(N + 4)

36

( u
r 2

)2
, a5 =

(N + 2)(N + 4)(N + 5)

108

( u
r 2

)3
(4.9)

und a2 = a4 = a6 = 0. Hier ist zu erkennen, dass jede zweite Anfangsbedingung, d. h. jene für

Γ̃
(6)
κ , Γ̃ (10)κ , Γ̃ (14)κ , automatisch erfüllt ist und keine neue Information liefert. Ob sich dieses

Verhalten fortsetzt, soll an dieser Stelle nicht weiter untersucht werden.

Abbildung 4.1 zeigt beispielhaft die Näherungen für Γ̃ (2)κ und Γ̃ (4)κ für u/r 2 = 0,2. Dabei

wurden die Polynomgrade 1, 3 und 5 untersucht; für die Grade 2, 4 und 6 ergibt sich

entsprechend der obigen Beobachtungen dasselbe Ergebnis wie für die Grade 1, 3 bzw. 5.

In den Abbildungen 4.2–4.4 ist dargestellt, wie stark die mit dieser Näherung berechneten

Koeffizienten Γ̃ (2)κ , Γ̃ (4)κ und Γ̃ (6)κ von der exakten Lösung für N = 2 abweichen.

Es ist gut zu erkennen, dass der Ansatz zu großen Fehlern führt. Lediglich für kleine Werte

der Kopplung u/r 2 ergeben sich relative Abweichungen bis höchstens 10−1. Für Γ̃ (2)κ liegt die

Grenze bei etwa 0,3, für Γ̃ (4)κ bei etwa 0,1 und für Γ̃ (6)κ werden derart kleine Abweichungen

nicht erreicht. Die relativen Fehler wachsen für größere Werte der Kopplung schnell über 1.

Die Näherungen sollen mit steigenden Werten des Polynomgrads M besser werden. Es ist

allerdings zu beobachten, dass diese Ordnung nur für kleine Werte der Kopplung auftritt.

Danach kehrt sich die Ordnung um und mit größerem M steigt die Abweichung stark an.

Auch bei anderen Werten für N ergibt sich ein ähnliches Bild, wie die Abbildung 4.5 zeigt.
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Abb. 4.1: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösungen,
die mittels des Polynomansatzes und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit vom
Interpolationsparameter κ für verschiedene Werte des Polynomgrads M und bei N = 2. Die Kopplung
beträgt u/r2 = 0,2.
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Abb. 4.2: Vergleich der exakten Lösung für Γ̃ (2) mit den Näherungslösungen, die mittels des Polyno-
mansatzes und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit von der Kopplung u/r2

für verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich eine vergrößerte
Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.3: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des Polyno-
mansatzes und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit von der Kopplung u/r2

für verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich eine vergrößerte
Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.4: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des Polyno-
mansatzes und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit von der Kopplung u/r2

für verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich eine vergrößerte
Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.5: Vergleich der exakten Lösung für Γ̃ (4) (links) und Γ̃ (6) (rechts) mit den Näherungslösungen,
die mittels des Polynomansatzes und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit
von der Dimension N für verschiedene Werte des Polynomgrads M. Es wurde als Kopplung jeweils
u/r2 = 3/N gewählt.

4.2.2 Betrachtung der Anfangswerte und einer Randbedingung

Wie in Abschnitt 4.1 bereits erwähnt wurde, könnte auch der Wert für Γ̃ (2) bekannt sein. Im

Folgenden wird dieser Fall betrachtet und der Randwert fixiert. Weiterhin werden die ersten

M Anfangsbedingungen gefordert. Mit diesen errechnet man analog zum vorigen Abschnitt die

Koeffizienten a0, . . . , aM−1. Aus Formel (4.8) kann dann mit der Randbedingung unmittelbar

aM berechnet werden:

aM = Γ̃
(2)
exakt −

M−1∑
m=0

am . (4.10)

Nun können auch gerade Polynomgrade auftreten, denn aM ist für gerade M im Allgemeinen

nicht null. Daher wurden für M hier die Werte 1 bis 4 untersucht. Abbildung 4.6 zeigt die

Näherungen für Γ̃ (2)κ und Γ̃ (4)κ für u/r 2 = 0,2.
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Abb. 4.6: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösungen,
die mittels des Polynomansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit vom Interpolationsparameter κ für verschiedene Werte des Polynomgrads M und bei
N = 2. Die Kopplung beträgt u/r2 = 0,2.

In den Abbildungen 4.7 und 4.8 ist dargestellt, wie stark die mit dieser Näherung berechneten

Koeffizienten Γ̃ (4)κ und Γ̃ (6)κ von der exakten Lösung für N = 2 abweichen. Abbildung 4.9

zeigt wieder die Abhängigkeit von N. Wenngleich die Abweichungen durch das Fixieren

des Randwerts kleiner werden, ist der Fehler auch hier sehr groß. Auch die zu erwartende

Verbesserung beim Erhöhen des Polynomgrads bleibt auf einen kleinen Bereich der Kopplung

beschränkt.

0 1 2 3 4 5 6
10−4

10−2

100

102

u/r2

re
la

ti
ve

A
bw

.
fü

r
Γ̃
(4
)

M = 1

M = 2

M = 3

M = 4

0 0,2 0,4
10−4

10−3

10−2

10−1

100

u/r2

Abb. 4.7: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des Polyno-
mansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden, in Abhängigkeit von
der Kopplung u/r2 für verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich
eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.

31



4 Alternatives Lösungsverfahren

0 1 2 3 4 5 6
10−3

10−1

101

103

u/r2

re
la

ti
ve

A
bw

.
fü

r
Γ̃
(6
)

M = 1

M = 2

M = 3

M = 4

0 0,2 0,4

10−2

10−1

100

101

102

u/r2

Abb. 4.8: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des Polyno-
mansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden, in Abhängigkeit von
der Kopplung u/r2 für verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich
eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.9: Vergleich der exakten Lösung für Γ̃ (4) (links) und Γ̃ (6) (rechts) mit den Näherungslösungen,
die mittels des Polynomansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit von der Dimension N für verschiedene Werte des Polynomgrads M. Es wurde als
Kopplung jeweils u/r2 = 3/N gewählt.

4.2.3 Bewertung und Fehleranalyse

Der gewählte Polynomansatz für Γ̃ (2) ist als Näherung ungeeignet und dem Standard-Verfahren

aus Kapitel 3 mit Abstand unterlegen. Es gibt lediglich einen sehr kleinen Bereich, in dem die

Fehler in akzeptablen Größenordnungen liegen, der jedoch mit zunehmendem m kleiner wird.

Das Erhöhen des Polynomgrads M bietet nur für kleine Werte der Kopplung u/r 2 einen Mehr-

wert. Für große Werte kehrt sich die erwartete Genauigkeitsordnung, d. h. eine Verringerung

des Fehlers bei Hinzunahme weiterer Terme zur Näherung, sogar um. Dies hat mindestens

die folgenden Gründe. Erstens wird die Abweichung ähnlich wie bei der Approximation mit

Taylor-Polynomen mit zunehmendem Abstand von der Entwicklungsstelle (hier κ = 0) immer

größer. Zweitens spielen in die Berechnung der Γ̃ (2m)κ die Ableitungen von Γ̃ (2)κ in verschiedenen
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4.3 Näherung mittels spezieller rationaler Funktionen

Potenzen hinein, wie bspw. in den Formeln (4.3) und (4.4) zu sehen ist. Dadurch können

selbst bei Fixierung des Randwerts große Fehler entstehen, wenn die Ableitungen von Γ̃ (2)κ bei

κ = 1 von der exakten Lösung abweichen. Abbildung 4.10 zeigt dieses Problem eindrücklich

für u/r 2 = 3; hier stimmt zwar der Randwert überein, allerdings ist der Anstieg der Näherung

für M = 4 bei κ = 1 deutlich zu groß und die Näherung ist sogar konvex statt konkav.
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Abb. 4.10: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösungen,
die mittels des Polynomansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit vom Interpolationsparameter κ für verschiedene Werte des Polynomgrads M und bei
N = 2. Die Kopplung beträgt u/r2 = 3.

Positiv ist dem Ansatz anzurechnen, dass die Koeffizienten am vom Polynomgrad unabhängig

sind und sich aus den Gleichungen sukzessive berechnen lassen. Dies könnte möglicherweise

als weiteres Kriterium für eine Näherung sinnvoll sein.

4.3 Näherung mittels spezieller rationaler Funktionen

Ausgehend von der exakten Lösung für Γ̃ (2)κ in Abbildung 2.1 können auch weitere Ansätze

ausprobiert werden. Hier soll Γ̃ (2)κ nun durch rationale Funktionen genähert werden. Konkret

wird der Ansatz

Γ̃ (2)κ =

M∑
m=0

am
(κ− b)m (4.11)

gewählt. Dabei werden die konkreten Entwicklungspunkte b = −1 und b = −0,5 betrachtet.

4.3.1 Entwicklungspunkt b = −1

Zuerst soll der Fall b = −1 untersucht werden. Zur Bestimmung der Koeffizienten am
werden wieder die ersten M + 1 Anfangsbedingungen, vgl. Formel (3.46), herangezogen.

Die Koeffizienten nehmen hier anders als bei der Polynomnäherung für verschiedene M
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verschiedene Werte an. Die genauen Koeffizienten für M = 1, . . . , 4 sind im Anhang B.1.1 zu

finden. Abbildung 4.11 zeigt die Näherungen für Γ̃ (2)κ und Γ̃ (4)κ für u/r 2 = 0,2. Neben den

Anfangsbedingungen könnte auch wieder der Randwert Γ̃ (2) gegeben sein. Die Koeffizienten,

die sich damit ergeben, sind im Anhang B.1.2 notiert. Abbildung 4.12 stellt die Näherungen

für Γ̃ (2)κ und Γ̃ (4)κ für u/r 2 = 0,2 dar.
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Abb. 4.11: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösungen,
die mittels des Ansatzes rationaler Funktionen für b = −1 und den Anfangsbedingungen ermittelt
wurden, in Abhängigkeit vom Interpolationsparameter κ für verschiedene Werte des Grads M der
Näherung und bei N = 2. Die Kopplung beträgt u/r2 = 0,2.
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Abb. 4.12: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösun-
gen, die mittels des Ansatzes rationaler Funktionen für b = −1, den Anfangsbedingungen und der
Randbedingung ermittelt wurden, in Abhängigkeit vom Interpolationsparameter κ für verschiedene
Werte des Grads M der Näherung und bei N = 2. Die Kopplung beträgt u/r2 = 0,2.

Die Abbildungen 4.13–4.16 zeigen wieder die Fehler der Näherungen bei Fixierung der

Anfangsbedingungen; in den Abbildungen 4.17–4.19 sind die Abweichungen bei der zusätzlichen

Fixierung der Randbedingung dargestellt. Im Vergleich zur Polynomnäherung mit fixierter

Randbedingung aus Abschnitt 4.2.2 sind die Abweichungen von der exakten Lösung im ersten

Fall in ähnlicher Größenordnung; im zweiten Fall ergibt sich eine Verbesserung um etwa eine

Größenordnung. Aber auch hier gibt es nur einen kleinen Bereich um u/r 2 = 0, in dem die

erwartete Genauigkeitsordnung angenommen wird. Für größere Werte von u/r 2 ändert sich

diese sogar mehrfach und in unregelmäßigen Abständen.
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Abb. 4.13: Vergleich der exakten Lösung für Γ̃ (2) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −1 und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit von
der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei N = 2. Rechts befindet
sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.14: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −1 und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit von
der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei N = 2. Rechts befindet
sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.15: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −1 und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit von
der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei N = 2. Rechts befindet
sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.16: Vergleich der exakten Lösung für Γ̃ (4) (links) und Γ̃ (6) (rechts) mit den Näherungslösungen,
die mittels des Ansatzes rationaler Funktionen für b = −1 und den Anfangsbedingungen ermittelt
wurden, in Abhängigkeit von der Dimension N und für verschiedene Werte des Grads M der Näherung.
Es wurde als Kopplung jeweils u/r2 = 3/N gewählt.
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Abb. 4.17: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −1, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei
N = 2. Rechts befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.18: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −1, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei
N = 2. Rechts befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.19: Vergleich der exakten Lösung für Γ̃ (4) (links) und Γ̃ (6) (rechts) mit den Näherungslösun-
gen, die mittels des Ansatzes rationaler Funktionen für b = −1, den Anfangsbedingungen und der
Randbedingung ermittelt wurden, in Abhängigkeit von der Dimension N und für verschiedene Werte
des Grads M der Näherung. Es wurde als Kopplung jeweils u/r2 = 3/N gewählt.

4.3.2 Entwicklungspunkt b = −0,5

Der Abschnitt 4.3.1 hat gezeigt, dass sich mit der rationalen Näherung eine Verbesserung

gegenüber der Polynomnäherung erreichen lässt. Dennoch ist das Ergebnis nicht zufrieden-

stellend. Hier soll daher ein zweiter Entwicklungspunkt betrachtet werden, b = −0,5, um

zu untersuchen, ob die Wahl der Entwicklungsstelle einen Einfluss auf die Genauigkeit des

Verfahrens hat. Die Abbildungen 4.20 und 4.21 stellen die Näherungen mit M = 1, . . . , 4

sowohl bei Fixierung der Randbedingungen als auch ohne diese dar, wobei wieder u/r 2 = 0,2

gewählt wurde. Die genauen Koeffizienten sind im Anhang B.2 zu finden.

Die Abbildungen 4.22–4.25 zeigen wieder die Fehler der Näherungen bei Fixierung der

Anfangsbedingungen; in den Abbildungen 4.26–4.28 sind die Abweichungen bei der Fixierung

der Randbedingung dargestellt. Die Ergebnisse sind denen mit b = −1 sehr ähnlich. Es zeigt

sich im Wesentlichen nur eine Skalierung der Abhängigkeit von u/r 2 um etwa den Faktor 3.

Die Veränderung der Entwicklungsstelle kann demnach die gewünschte Genauigkeitsordnung

auf einen dreimal größeren Bereich ausweiten.
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Abb. 4.20: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösungen,
die mittels des Ansatzes rationaler Funktionen für b = −0,5 und den Anfangsbedingungen ermittelt
wurden, in Abhängigkeit vom Interpolationsparameter κ für verschiedene Werte des Grads M der
Näherung und bei N = 2. Die Kopplung beträgt u/r2 = 0,2.
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Abb. 4.21: Vergleich der exakten Lösung für Γ̃ (2)κ (links) und Γ̃ (4)κ (rechts) mit den Näherungslösungen,
die mittels des Ansatzes rationaler Funktionen für b = −0,5, den Anfangsbedingungen und der
Randbedingung ermittelt wurden, in Abhängigkeit vom Interpolationsparameter κ für verschiedene
Werte des Grads M der Näherung und bei N = 2. Die Kopplung beträgt u/r2 = 0,2.
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Abb. 4.22: Vergleich der exakten Lösung für Γ̃ (2) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −0,5 und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit
von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei N = 2. Rechts
befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.23: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −0,5 und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit
von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei N = 2. Rechts
befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.24: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −0,5 und den Anfangsbedingungen ermittelt wurden, in Abhängigkeit
von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei N = 2. Rechts
befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.25: Vergleich der exakten Lösung für Γ̃ (4) (links) und Γ̃ (6) (rechts) mit den Näherungslösungen,
die mittels des Ansatzes rationaler Funktionen für b = −0,5 und den Anfangsbedingungen ermittelt
wurden, in Abhängigkeit von der Dimension N und für verschiedene Werte des Grads M der Näherung.
Es wurde als Kopplung jeweils u/r2 = 3/N gewählt.
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Abb. 4.26: Vergleich der exakten Lösung für Γ̃ (4) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −0,5, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei
N = 2. Rechts befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.27: Vergleich der exakten Lösung für Γ̃ (6) mit den Näherungslösungen, die mittels des Ansatzes
rationaler Funktionen für b = −0,5, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhängigkeit von der Kopplung u/r2 für verschiedene Werte des Grads M der Näherung und bei
N = 2. Rechts befindet sich eine vergrößerte Darstellung für den Bereich u/r2 ≤ 0,5.
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Abb. 4.28: Vergleich der exakten Lösung für Γ̃ (4) (links) und Γ̃ (6) (rechts) mit den Näherungslösungen,
die mittels des Ansatzes rationaler Funktionen für b = −0,5, den Anfangsbedingungen und der
Randbedingung ermittelt wurden, in Abhängigkeit von der Dimension N und für verschiedene Werte
des Grads M der Näherung. Es wurde als Kopplung jeweils u/r2 = 3/N gewählt.
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4.3 Näherung mittels spezieller rationaler Funktionen

4.3.3 Bewertung und Fehleranalyse

Die Näherung für Γ̃ (2) durch eine rationale Funktion in der Form in Formel (4.11) bietet

gegenüber dem Polynomansatz eine höhere Genauigkeit. Dennoch bleibt der Fehler deutlich

zu groß, weshalb auch diese Näherung dem Standard-Verfahren aus Kapitel 3 mit Abstand

unterlegen bleibt. Die Variation der Entwicklungsstelle b führt zu einer Skalierung der Abwei-

chungen bezüglich der Kopplung u/r 2, für die beiden betrachteten Stellen jedoch zu keiner

weiteren quantitativen oder qualitativen Veränderung.

Das Erhöhen von M bietet nur für kleine Werte der Kopplung u/r 2 einen Mehrwert. Die

Genauigkeitsordnung scheint sich für größere Werte beliebig zu verändern. Ähnlich wie bei den

Polynomen ist der Abstand zwischen der Entwicklungsstelle b bzw. der Anfangsstelle κ = 0 und

der interessanten Stelle κ = 1 groß, sodass vor allem ohne die Fixierung des Randwerts Γ̃ (2)

hohe Abweichungen in den Näherungen auftreten können. Auch pflanzen sich die Fehler fort,

die bereits bei Γ̃ (2)κ auftreten, sodass die Abweichungen für Γ̃ (4)κ , Γ̃ (6)κ etc. besonders groß

werden.

Ferner ist auffällig, dass die Abweichungen im Gegensatz zum Polynomansatz und dem

Standard-Verfahren für u/r 2 → 0 nicht gegen null gehen. Dies könnte daran liegen, dass Γ̃ (2)κ
für sehr kleine Werte der Kopplung u/r 2 näherungsweise linear verläuft und die gewählte

Näherung dies nicht gut abbilden kann.

Im Gegensatz zum Polynomansatz sind die Koeffizienten am nicht von M unabhängig. Da-

her kann das Gleichungssystem zu deren Bestimmung nicht sukzessive gelöst werden, wie

es beim Polynomansatz der Fall ist. Dies gilt aufgrund der Struktur des Ansatzes für alle

möglichen Entwicklungsstellen. Allerdings entsteht dadurch im Unterschied zu den Polynomen

die Möglichkeit, den Ansatz zu erweitern, ohne dass diese ohnehin nicht vorhandene Eigen-

schaft verloren geht, indem die Entwicklungsstellen für jeden Summanden in Formel (4.11)

verschieden gewählt werden. Damit erhöht sich zwar die Parameteranzahl, möglicherweise

erhält man damit aber bessere Ergebnisse. Diese Erweiterung des Ansatzes soll hier nicht

weiter untersucht werden.
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5 Fazit und Ausblick

In dieser Arbeit wurde mittels der Literatur zunächst ein grundlegendes Verständnis über den

Ansatz der funktionalen Renormierungsgruppe zur Bestimmung der effektiven Wirkung Γ

sowie des damit verbundenen erzeugenden Funktionals Z erworben. Hierzu diente ein Beispiel

für ein erzeugendes Funktional im RN , vgl. Formel (2.1), das ein gewöhnliches Integral darstellt

und für welches die exakte Lösung bekannt ist. Im Zentrum der Bestimmung der Größen Z und

Γ stehen ihre Entwicklungskoeffizienten, d. h. die sogenannten Korrelationsfunktionen G(2m)

sowie die eigentlichen Vertizes Γ (2m).

Zur Ermittlung der effektiven Wirkung wird zwischen der gegebenen Wirkung als Anfangswert

und der effektiven Wirkung mittels der effektiven Mittelwert-Wirkung Γk interpoliert. Hierbei

wird ein sogenannter Regulator-Term eingeführt, der diese Interpolation genau beschreibt.

Für Γk ist ferner die Wetterich-Flussgleichung zentral. Mit ihr kann ein unendliches Diffe-

renzialgleichungssystem für die Entwicklungskoeffizienten Γ (2m)k der effektiven Mittelwert-

Wirkung aufgestellt werden, das im Standard-Lösungsverfahren von der Wirkung zur effektiven

Wirkung näherungsweise integriert wird, vgl. Kapitel 3.

Es stellte sich für den hier betrachteten Regulator heraus, dass das Gleichungssystem skaliert

werden kann. Damit wurde klar, dass statt der beiden gegebenen Parameter r und u nur das

Verhältnis u/r 2, die Kopplung, für das Ergebnis relevant ist, und man vom Interpolations-

parameter k und den Größen Γ (2m)k zu einem anderen Parameter κ sowie Γ̃ (2m)κ übergehen

kann.

Im weiteren Verlauf der Arbeit wurde eine alternative Lösungsstrategie untersucht. Das in

Kapitel 4 beschriebene Verfahren basiert auf der speziellen Struktur der Gleichungen im

Differenzialgleichungssystem, das sich aus der Wetterich-Flussgleichung ergibt. Mit einer

Näherung für Γ̃ (2)κ startend werden hierbei die Koeffizienten Γ̃ (2m+2)κ sukzessive aus den

einzelnen Gleichungen errechnet. Da diese Gleichungen im hier betrachteten Beispiel rein

skalar sind, ist es einfach, diese nach den Γ̃ (2m+2)κ umzustellen. Im Allgemeinen ist dies aber

eine komplexere Aufgabe, die bspw. in [Zie21] angegangen wird.

Die Beobachtungen im Kapitel 4 verdeutlichen, dass das Verfahren sehr sensibel gegenüber

großen Abweichungen der Näherung für Γ̃ (2)κ von der exakten Lösung ist. Trotz des Fixierens

des Randwerts für Γ̃ (2)κ bei κ = 1 können sehr große Fehler entstehen, da in die Berechnung
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der Γ̃ (2m+2)κ neben Γ̃ (2)κ selbst auch die Ableitungen von Γ̃ (2)κ eingehen. Die Qualität der

Näherung ist also besonders wichtig, um gute Resultate erzielen zu können. Wenngleich die

Anfangsbedingungen für Γ̃ (2)κ bei κ = 0 meist gegeben sind, ist die Angabe des Randwerts

oder der Ableitungen bei κ = 1 nicht immer möglich. Das macht es schwierig, die Qualität

der Näherung sicherzustellen.

Das Beispiel der Näherung mittels spezieller rationaler Funktionen aus Abschnitt 4.3 zeigt,

dass die Wahl des Entwicklungspunktes einen Einfluss auf die Größe der Fehler hat. Im

Polynom-Beispiel in Abschnitt 4.2 sieht man, dass die Bestimmung der Koeffizienten mittels

der Anfangsbedingung auch nacheinander möglich ist, sofern bestimmte Koeffizienten in der

Ableitung von Γ̃ (2)κ an der Stelle κ = 0 nicht auftreten. Das vereinfacht die Berechnungen

etwas. Es stellte sich allerdings auch heraus, dass einige der Flussgleichungen bei bestimmten

Formen von Ansätzen redundant sind, vgl. bspw. Abschnitt 4.2.1.

Die hier betrachteten Näherungen können dem Standard-Verfahren bislang nur für kleine Werte

der Kopplung u/r 2 Konkurrenz machen. Das Standard-Verfahren bietet den Vorteil, dass

bei der Integration des Differenzialgleichungssystems alle gekoppelten Gleichungen simultan

betrachtet werden und Γ̃ (2)κ somit erst beim Lösen des Systems entsteht. Dem gegenüber wird

im hier untersuchten Verfahren erst die Näherung von Γ̃ (2)κ festgelegt, woraus sich über das

System dann die Γ̃ (2m+2)κ ergeben. Dies unterstreicht noch einmal, dass für Γ̃ (2)κ eine möglichst

gute Näherung gegeben sein muss, um mit dem Verfahren zufriedenstellende Ergebnisse

erhalten zu können.

In weiteren Untersuchungen könnte das Verfahren zunächst mit weiteren Ansätzen für

Näherungen durchgeführt werden. Man könnte nach Kriterien suchen, die eine hinreichende

Qualität der Näherung für Γ̃ (2)κ sicherstellen. Auch ist es sinnvoll, das Verfahren für andere

Regulatoren und weitere Beispiele für erzeugende Funktionale zu testen. Sofern sich das

Verfahren dann als zielführend herausstellt, kann es auf allgemeinere Problemstellungen fernab

des RN angewendet und daran untersucht werden.

Es muss allerdings angemerkt werden, dass in der Praxis die exakte Lösung für Γ̃ (2)κ nicht be-

kannt ist – sonst könnte man das Verfahren mit dieser Lösung durchführen und erhielte exakte

Lösungen für die Γ̃ (2m+2)κ . Daher ist die Abschätzung des Fehlers, zu dem das Verfahren führt,

im Allgemeinen schwierig. Nichtsdestotrotz wurden zu anderen konkreten Problemstellungen

exakte Lösungen mit der Wetterich-Gleichung gefunden, vgl. [BW13; CDW16]. Diese können

für weitere Tests herangezogen werden
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Anhang A

Programme

Hier sind die Quellcodes für die automatische Herleitung der Beziehungen der Koeffizienten und

der Flussgleichungen dargestellt. In der PDF-Version dieser Arbeit sind die Codes mit farblicher

Hervorhebung zu finden. Die verwendete Software ist Python 3.12.3 mit SymPy 1.12.1.

A.1 Herleitung der Beziehungen zwischen den
Korrelationsfunktionen und den eigentlichen Vertizes

Nachfolgend ist das Programm zur Herleitung der Beziehungen zwischen den Korrelations-

funktionen und den eigentlichen Vertizes dargestellt, vgl. Abschnitt 2.2.2. Die Variable m_max

(hier mit Wert 5) bestimmt die höchste zu berechnende Beziehung.

import sympy as sp

def gc_to_gamma(m: int) -> sp.Eq:

"""Wandelt Gc^(2m) in Γ^(2m) um."""

if m == 1:

return sp.Eq(sp.Symbol("Γ^(2)"), 1 / sp.Symbol("Gc^(2)"))

else:

j = sp.Symbol("J")

w = sp.Function("W")(j)

w_2_inv = 1 / w.diff(j, 2)

gamma_diff_2m = w_2_inv # gamma_diff_2

for i in range(2 * m - 2):

gamma_diff_2m = w_2_inv * gamma_diff_2m.diff(j)
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Anhang A Programme

# alle geraden Ableitungen ersetzen

# alle ungeraden Ableitungen null

gamma_diff_2m = gamma_diff_2m.subs(w.diff(j, 2 * m),

sp.Symbol(f"Gc^({2 * m})"))

for i in range(2 * m - 1, 1, -2):

gamma_diff_2m = gamma_diff_2m.subs(w.diff(j, i), 0)

gamma_diff_2m = gamma_diff_2m.subs(w.diff(j, i - 1),

sp.Symbol(f"Gc^({i - 1})"))

return sp.Eq(sp.Symbol(f"Γ^({2 * m})"), gamma_diff_2m.expand())

def g_to_gc(m: int) -> sp.Eq:

"""Wandelt G^(2m) in Gc^(2m) um."""

if m == 1:

return sp.Eq(sp.Symbol("Gc^(2)"), sp.Symbol("G^(2)"))

else:

gc_2m = sp.Symbol(f"Gc^({2 * m})")

j = sp.Symbol("J")

z = sp.Function("Z")(j)

w_diff_2m = sp.log(z).diff(j, 2 * m)

# alle geraden Ableitungen ersetzen

# alle ungeraden Ableitungen null

for i in range(2 * m, 1, -2):

w_diff_2m = w_diff_2m.subs(z.diff(j, i), sp.Symbol(f"G^({i})") * z)

w_diff_2m = w_diff_2m.subs(z.diff(j, i - 1), 0)

return sp.Eq(gc_2m, w_diff_2m.expand())

if __name__ == "__main__":

sp.init_printing()

# höchste zu berechnende Beziehung:

m_max = 5

for m in range(1, m_max + 1):

eq = gc_to_gamma(m)

for i in range(m, 0, -1):

g_gc = g_to_gc(i)

eq = eq.subs(g_gc.lhs, g_gc.rhs)
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A.2 Herleitung der Flussgleichungen

eq = eq.expand()

sp.pprint(eq)

A.2 Herleitung der Flussgleichungen

Nachfolgend ist das Programm zur Herleitung der Flussgleichungen dargestellt. Die Flussglei-

chungen werden in der allgemeinen Form aus Abschnitt 3.3.2 sowie in der konkreten Form

aus Abschnitt 3.4.1 ausgegeben. Die Variable m_max (hier mit Wert 4) bestimmt die höchste

zu berechnende Gleichung.

from math import factorial

from itertools import combinations_with_replacement

import sympy as sp

def double_list(alpha: list[int]) -> list[int]:

"""

Doubles the list ``alpha`` element-wise.

:param alpha: multi-index

:return: doubled multi-index

"""

return [2 * a for a in alpha]

def multi_index_factorial(alpha):

"""Calculates the factorial of the multi-index `alpha`."""

# Set the initial value for the partial product.

prod = 1

for k in range(len(alpha)):

prod = prod * factorial(alpha[k])

return prod

def multi_index_sum(f, m_, n_, **kwargs):

"""

Calculates the sum over `f(alpha, **kwargs)` for all multi-indices

`alpha` of length `n` with sum `m`.

`**kwargs` could be, for example, r or u.
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Anhang A Programme

"""

# Set the initial value for the partial sum.

sum_ = 0

# Iterate over all combinations of 0, ..., n-1 of length m with

# replacement.

# Each tuple of the set of combinations stands for one multi-index.

# This is achieved by first creating a prototype multi-index and

# then successively adding 1 to the prototype multi-index's entries

# given by the combination tuple.

# After that, the summand is added to the partial sum variable.

# By iterating over the combinations this gives the sum.

for it in combinations_with_replacement(range(n_), m_):

# Create prototype multi-index.

alpha = n_ * [0]

# Add 1 to the entries indexed by `it`.

for i_ in range(m_):

alpha[it[i_]] = alpha[it[i_]] + 1

# Add the summand `f(alpha)` to the partial sum `sum_`

sum_ = sum_ + f(alpha, **kwargs)

return sum_

def summand_diagonal_matrix_trace(alpha: list[int],

gamma_k_list: list[sp.Function],

regulator: sp.Function,

simplify: bool = True) -> sp.Expr:

"""

Calculates the summand for the multi-indexed sum.

:param alpha: multi index

:param gamma_k_list: ordered list of `Γ^(2)`, `Γ^(4)`, ..., `Γ^(2m + 2)` as

functions↪→

:param regulator: regulator as a function

:param simplify: whether to simplify

:return: summand

"""

product_1 = sp.Integer(1)

product_2 = sp.Integer(1)

for a in alpha:

product_1 = product_1 / (2 * sp.Integer(a) + 1)

if a == 0:

product_2 = product_2 * (gamma_k_list[0] + regulator)

else:

product_2 = product_2 * gamma_k_list[a]

48



A.2 Herleitung der Flussgleichungen

product = (((n - 1) * product_1 + 1) * product_2

/ sp.Integer(multi_index_factorial(double_list(alpha))))

if simplify:

product = product.simplify()

return product

def flow_equation(m: int, simplify: bool = True) -> tuple[sp.Eq, sp.Eq]:

"""

Calculates the ``m``-th flow equation.

:param m: number of flow equation, positive integer

:param simplify: whether to simplify the equation

:return: the ``m``-th flow equation

"""

m2 = 2 * m

# Get Symbols.

r = sp.Symbol("r", positive = True)

regulator = sp.Function("R")(k)

gamma_k_list = generate_gamma_k_list(m)

sigma = sp.Function("Σ")(k)

k_sigma_1 = k * sigma + 1

x = sp.Symbol("x")

outer_sum = 0

for j in range(1, m2 + 1):

inner_sum = multi_index_sum(summand_diagonal_matrix_trace,

m,

j,

gamma_k_list = gamma_k_list,

regulator = regulator,

simplify = simplify)

if simplify:

inner_sum = inner_sum.simplify()

factor = (sp.binomial(m2 + 1, j + 1)

* (gamma_k_list[0] + regulator) ** (m - j))

if j % 2 == 1:

factor = -factor

outer_sum = outer_sum + factor * inner_sum
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rhs_1 = sp.Rational(factorial(m2), 2) * outer_sum

if simplify:

rhs_1 = rhs_1.simplify()

rhs_1 = rhs_1.subs(gamma_k_list[0] + regulator, 1 / x)

rhs_1 = rhs_1 * x ** (m + 1)

if simplify:

rhs_1 = rhs_1.expand(x)

for gamma_k in gamma_k_list:

rhs_1 = rhs_1.collect(gamma_k)

rhs_1 = rhs_1.collect(x)

rhs_1 = rhs_1.subs(1 / x, gamma_k_list[0] + regulator)

rhs_2 = rhs_1.subs([(regulator, 1 / k - r),

(gamma_k_list[0], sigma + r)])

rhs_2 = -rhs_2 / k ** 2

if simplify:

rhs_2 = rhs_2.simplify()

rhs_2 = rhs_2.subs(k_sigma_1, 1 / x)

if simplify:

rhs_2 = rhs_2.expand(x)

for gamma_k in gamma_k_list:

rhs_2 = rhs_2.collect(gamma_k)

rhs_2 = rhs_2.collect(x)

rhs_2 = rhs_2.collect(k)

rhs_2 = rhs_2.subs(x, 1 / k_sigma_1)

lhs_2 = gamma_k_list[-2].diff(k)

lhs_1 = lhs_2 / regulator.diff(k)

eq_1 = sp.Eq(lhs_1, rhs_1)

# Skalierung.

gamma_kappa_list = [gamma_2m_k.subs(k, kappa)

for gamma_2m_k in gamma_k_list]

rhs_3 = rhs_2.subs([(gamma_k_list[i], gamma_kappa_list[i])

for i in range(1, len(gamma_k_list))])

rhs_3 = rhs_3.subs(sigma, gamma_kappa_list[0])

rhs_3 = rhs_3.subs(k, kappa)

lhs_3 = gamma_kappa_list[-2].diff(kappa)

eq_3 = sp.Eq(lhs_3, rhs_3)
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A.2 Herleitung der Flussgleichungen

return eq_1, eq_3

def generate_gamma_k_list(m: int) -> list[sp.Function]:

"""

Generates an ordered list of `Γ^(2)`, `Γ^(4)`, ..., `Γ^(2m + 2)` as functions of

``k``↪→

:param m:

:param k: interpolation parameter, the `Γ^(2l)` are functions of

:return: list of `Γ^(2)`, `Γ^(4)`, ..., `Γ^(2m + 2)` as functions of ``k``

"""

gamma_k_list = []

for i in range(2, 2 * m + 3, 2):

gamma_k_list.append(sp.Function(f"Γ^({i})")(k))

return gamma_k_list

k = sp.Symbol("k")

kappa = sp.Symbol("κ")

n = sp.Symbol("N", integer = True, positive = True)

if __name__ == "__main__":

sp.init_printing()

# höchste zu berechnende Flussgleichung:

m_max = 4

for m in range(1, m_max + 1):

eq, eq_scal = flow_equation(m)

sp.pprint(eq)

sp.pprint(eq_scal)
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Anhang B

Koeffizienten für die Näherung mittels
spezieller rationaler Funktionen

In diesem Anhang werden die Koeffizienten aufgelistet, die sich mit der Näherung in Ab-

schnitt 4.3 ergeben.

B.1 Entwicklungspunkt b = −1

Hier werden die Koeffizienten für den Fall b = −1 aufgeführt.

B.1.1 Betrachtung der Anfangswerte

Werden nur die Anfangswerte zur Bestimmung der Koeffizienten herangezogen, ergeben sich

die folgenden Koeffizienten. Für M = 1 findet man
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B.1 Entwicklungspunkt b = −1

a3 = −
N + 2
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und für M = 4
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B.1.2 Betrachtung von Anfangswerten und einer Randbedingung

Wird neben den Anfangswerten auch die Randbedingung zur Bestimmung der Koeffizienten

herangezogen, ergeben sich die folgenden Koeffizienten. Für M = 1 findet man

a0 = −a1 = 2Γ̃ (2)exakt ,

für M = 2
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B.2 Entwicklungspunkt b = −0,5

Hier werden die Koeffizienten für den Fall b = −0,5 aufgeführt.

B.2.1 Betrachtung der Anfangswerte

Werden nur die Anfangswerte zur Bestimmung der Koeffizienten herangezogen, ergeben sich

die folgenden Koeffizienten. Für M = 1 findet man
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B.2 Entwicklungspunkt b = −0,5

a4 =
N + 2
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−
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1536
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)2
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B.2.2 Betrachtung von Anfangswerten und einer Randbedingung

Wird neben den Anfangswerten auch die Randbedingung zur Bestimmung der Koeffizienten

herangezogen, ergeben sich die folgenden Koeffizienten. Für M = 1 findet man
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