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1 Einleitung

In der Quantenfeldtheorie ist das erzeugende Funktional eine wichtige Grolke. In ihren Ent-
wicklungskoeffizienten, den Korrelationsfunktionen (auch n-Punkt-Funktionen genannt), ist
die gesamte physikalische Information gespeichert, vgl. [Zin08]. Beispielsweise kann man mit

ithnen Streuprozesse zwischen Teilchen, d. h. Wechselwirkungsprozesse, beschreiben.

Um an dieses erzeugende Funktional bzw. die Korrelationsfunktionen zu gelangen, bedient
man sich einer weiteren GroRe, der effektiven Wirkung, die zum erzeugenden Funktional in
Beziehung steht. Diese kann mithilfe des Konzepts der funktionalen Renormierungsgruppe
bestimmt werden, siehe bspw. [BTWO02; Bral2; Dup+21; Giel2; Wet93]. Hierzu wird nach
[Wet93] zur Wirkung, auf der das erzeugende Funktional basiert, ein sogenannter Regulator-
Term hinzugefiigt. Es resultiert eine neue Grofke, die effektive Mittelwert-Wirkung, die zwischen
der Wirkung und der effektiven Wirkung interpoliert. Der Regulator-Term steuert hierbei

diese Interpolation.

Fir die effektive Mittelwert-Wirkung gilt eine Differenzialgleichung, die Wetterich-Flussglei-
chung, welche 1993 von Christof Wetterich hergeleitet wurde, vgl. [Wet93]. Fiir eine Vielzahl
von Systemen gibt es Verfahren, wie diese naherungsweise gelost werden kann, vgl. bspw.
[BTWO02; Bral2; Dup+21]. Im Standard-Verfahren entwickelt man die Gleichung in eine
Reihe, erhalt somit unendlich viele, gekoppelte Differenzialgleichungen und nahert das System,
indem man nur die ersten Gleichungen betrachtet. Alle weiteren Entwicklungskoeffizienten
werden auf thren Anfangswert, d. h. oft auf null, gesetzt. In vielen Fallen funktioniert dieses

Verfahren gut.

Es gibt allerdings Falle, in denen mit dem oben beschriebenen Verfahren bestimmte Losun-
gen der Wetterich-Gleichung nicht gefunden werden konnen, die sich jedoch aus anderen
Losungsverfahren ergeben. Beispiele konnen in [GZ17; Gie+19] gefunden werden, wo ein
bestimmtes Skalenverhalten in nicht-abelschen Eichtheorien angenommen und daraus auf das
zu erwartende Verhalten der hoheren Kopplungen geschlossen wird. Auch in der nichtlinearen,
materiefreien Elektrodynamik wurde ein neuer Losungstyp fiir quantenskaleninvariante Theo-
rien basierend auf einer nicht-trivialen Annahme fiir die 2-Punkt-Funktion mit einer anderen
Methode entdeckt, vgl. [GS24]. Die vielen verschiedenen Losungszugange verdeutlichen, wie

reichhaltig die Theorie um die Wetterich-Flussgleichung ist.



1 Einleitung

In dieser Arbeit soll ein weiterer Ansatz untersucht werden, der in ahnlicher Form bereits in
[Zie21] vorgestellt wird. Hierbei wird zunachst eine Naherung fiir einen der Entwicklungskoef-
fizienten der effektiven Mittelwert-Wirkung auf allen Skalen vorgegeben. Aus dieser werden
dann tiber das Differenzialgleichungssystem, welches sich aus der Wetterich-Gleichung ergibt
und das in einer speziellen Struktur vorliegt, sukzessive die anderen Entwicklungskoeffizienten
berechnet.

Anstelle einer Quantenfeldtheorie, die tiber ein Funktionalintegral definiert ist, wird in dieser
Arbeit ein N-dimensionales Integral betrachtet. Dieses kann als nulldimensionales Analogon
eines O(N)-Modells angesehen werden. Im Zusammenhang mit der funktionalen Renor-
mierungsgruppe wurde dieses Modell erstmalig in [KB12] untersucht, um die Qualitat von
Standard-Naherungsverfahren zu testen. Das Modell ist niitzlich, da die exakte Losung des

Integrals bekannt ist.

Anhand des Beispiels im R" wird im Kapitel 2 in dieser Arbeit zunichst die Problemstellung
genauer erlautert. Ferner werden wichtige Begriffe eingefiihrt, Beziehungen zwischen den
Entwicklungskoeffizienten des erzeugenden Funktionals und der effektiven Wirkung hergeleitet
sowie die exakte Losung des Integrals berechnet. Im darauffolgenden Kapitel 3 wird die
Wetterich-Flussgleichung hergeleitet und das oben beschriebene Standard-Verfahren erlautert
und am Beispiel diskutiert. SchlieBlich fiihrt Kapitel 4 in das alternative Losungsverfahren ein.
Anhand zweier Klassen von Naherungen — Polynomen und speziellen rationalen Funktionen
— wird das Verfahren getestet. Den Abschluss der Arbeit bildet Kapitel 5, in dem ein Fazit

gezogen sowie ein Ausblick gegeben wird.



2 Problemstellung und wichtige GroRRen

In diesem Kapitel wird zunachst die grundsatzliche Problemstellung erlautert, auf der diese
Arbeit basiert. AnschlieBend werden die sogenannten Korrelationsfunktionen und eigentlichen
Vertizes eingefiihrt sowie einige ihrer Eigenschaften hergeleitet. Schliellich wird die exakte
Losung des Problems als Referenzlosung angegeben. Die Ausfiihrungen in diesem Kapitel
basieren auf [Giel2; KB12].

2.1 Erzeugendes Funktional und effektive Wirkung
Im Zentrum dieser Arbeit steht das N-dimensionale Integral
2= [ en(-Ste) +1-p)dy (2.1)
RN

fir J € RN, dessen Analogon in der Quantenfeldtheorie erzeugendes Funktional genannt
wird. Hierbel ist

S(p) = gtpz + 2—1 (%)’ (2.2)

als Wirkung gegeben. Das Integral konvergiert genau dann, wenn u positiv ist oder v = 0

zusammen mit r > 0 gilt. Fiir den zweiten Fall findet man

2= (Z) ool 2). 23

Im Folgenden wird immer r, u > 0 vorausgesetzt. Aus dem erzeugenden Funktional kann die

oo W(J) = In (ZLOJ()O)) ~In ((é)m Z(J)) (2.4)

abgeleitet werden.? |hre Legendre-Transformation heiRt effektive Wirkung und ist definiert als

/_((b) = sup (J : ¢ - W(J)) = Jsup(¢) : ¢ - W(Jsup(¢)) . (2'5)

JERN

1 In der Quantenfeldtheorie wird W in der Regel als In(Z[J]/Z[0]) definiert, damit gewiinschte Konvergenzei-
genschaften gelten. Hier ist allerdings die Definition aus [KB12, Formel (2.3)] zweckmaRig und ausreichend.
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2 Problemstellung und wichtige Grolsen

Der Einfachheit halber wird statt Jg,,(¢) immer J geschrieben. Aus der effektiven Wirkung
leitet sich das erzeugende Funktional ab. Daher wird es die Aufgabe sein, diese zu berechnen.

2.2 Korrelationsfunktionen und eigentliche Vertizes

2.2.1 Einfiihrung und Definition

Die Korrelationsfunktionen Gg”), auch n-Punkt-Funktionen genannt, sind definiert durch

1 0%Z

G®.=Z7z0) und GI":= 7(0) 20 :
J=0

(2.6)

wobei a € N}/ ein Multiindex der Lange |a| = n € N ist. In den Korrelationsfunktionen sind
nach [Giel2; Zin08] die Informationen Ulber die physikalischen Prozesse enthalten, die in der
Quantenfeldtheorie untersucht werden, wie z. B. Streuprozesse. Teilt man den Integranden in
Formel (2.1) durch Z(J) und wahlt dies als Dichtefunktion einer Wahrscheinlichkeitsverteilung,
so kann man die Korrelationsfunktion Gé”) fiir n > 1 auch als Erwartungswert von @< auffassen:

G = (9%, - (2.7)

Die Wirkung S ist rotationsinvariant. Nach [KB12] gilt dann dasselbe auch fiir das erzeugende
Funktional: Z(J) = Z(J?). Mit der Taylorreihenentwicklung von Z findet man

0 - 1 2m 2\m
Z(J) = G¢ )+Z(O);WG( ()7, (2.8)
wobel (2m)1 ¢ 5
@m) 1 (2m)!ld™m
Gem = 70) m | (2.9)

fiir m > 1 gesetzt wurde. Mit dem Multinomialtheorem erhalt man

= 1 ml m 12
Z(NH=G6D+z(0)> > aWG(2 ) J2 (2.10)
m=1 qeN) .
lal|=m

Dem gegeniiber steht die mehrdimensionale Reihenentwicklung von Z, welche mit Formel (2.6)
wie folgt lautet:

= 1
Z(NH=G6D+z(0)> > aGgfua. (2.11)
n=1 aeN(’)V '
la|=n



2.2 Korrelationsfunktionen und eigentliche Vertizes

Wegen Z(J) = Z(J?) sind alle Summanden null, die eine Komponente von J mit ungerader
Potenz enthalten. Die innere Summe reduziert sich also auf a € (2Ng)". Eine Neuindizierung
ergibt
- 1
_ (0 - ~@m) j2a
Z(NH=GD+z(0)> > Gayi O I (2.12)

m=1 aGNé\’
la|=m

Da die Formeln (2.10) und (2.12) aquivalent sind, folgt durch einen Koeffizientenvergleich,
dass
m (2a)!

(2m): (2m)
G = ol al © (2.13)

fur alle a € N(’)\’ gilt. Die G&") konnen also nur dann von null verschieden sein, wenn der
erzeugende Multiindex a nur gerade Komponenten hat; dies entspricht einer geraden Anzahl an
Ableitungen nach jeder Komponente von @ in Formel (2.6). Gleichzeitig zeigt Formel (2.13),
dass die verschiedenen G&") fur ein fest gewahltes n € N untereinander in Beziehung stehen.
Es geniigt, nur die GréBe G anzugeben, um die G((,”) zu bestimmen. Daher werden ab hier

nur noch die G@™ betrachtet, die ebenfalls als Korrelationsfunktionen bezeichnet werden.

Analoge Uberlegungen kénnen fiir W und I™ angestellt werden; der einzige Unterschied liegt
darin, dass der Vorfaktor 1/Z(0) nicht beriicksichtigt wird. Die Koeffizienten werden mit G&™
bzw. "™ bezeichnet. Letztere nennt man in der Quantenfeldtheorie eigentliche Vertizes.

2.2.2 Beziehungen zwischen den Korrelationsfunktionen und den

eigentlichen Vertizes

Die Beziehungen zwischen Z, W und I implizieren Beziehungen zwischen den Koeffizienten
Gem GP™ und ™. Fiir m = 0 folgt aus den Definitionen direkt

> \M? 1
O — _50) — r —
G. In(( p ) G(0)> . (2.14)

Fir m > 1 ist etwas Vorarbeit notig. Zunachst sollen Beziehungen zwischen den eigentlichen
Vertizes ™ und G™ hergeleitet werden. Uber die Beziehungen zwischen G&™ und G@™

wird spater die Briicke zu den Korrelationsfunktionen geschlagen.

An der Stelle, an der das Supremum in Formel (2.5) angenommen wird, muss die notwendige
Optimalitatsbedingung
VW(J)=¢ (2.15)

gelten. Hier wird die Bezeichnung ,¢" klar: Analog zur Begriindung fiir Formel (2.7) ist
die Ableitung OW/0J; gleich dem Erwartungswert (p;),, d.h. ¢ = V,W = (¢),. Durch

9



2 Problemstellung und wichtige Grolsen

Ableiten der Formel (2.5) nach ¢ folgt mit Ketten- und Produktregel sowie der obigen
Optimalitatsbedingung wiederum
Vol () =J. (2.16)

Mit den beiden Formeln (2.15) und (2.16) und dem Satz iiber die Ableitung der Umkehrfunktion
kann nun fir die Hesse-Matrizen Df,l' und D?W die folgende zentrale Beziehung bestimmt
werden:

—1

DiI" = DyJ = (Dy9) " = (D3 W) (2.17)

Im Folgenden wird angenommen, dass ¢ = 0 genau dann gilt, wenn J = 0O ist. Dies ist
im Allgemeinen nicht automatisch erfiillt, hier allerdings wegen der Rotationssymmetrie der
Wirkung (und damit von Z, W und ") eine sinnvolle Annahme. Mit Formel (2.13) ergibt
sich somit

@ = eek (2.18)
Um die Beziehungen fiir die hoheren Koeffizienten zu ermitteln, kann der Differenzialoperator
82m=2/9¢>m 2, der auf die Formel (2.17) angewendet werden muss, mit mehrfacher Anwen-
dung der mehrdimensionalen Kettenregel umgeschrieben werden. Ferner miissen Ableitungen
inverser Matrizen berechnet werden. Da dies insgesamt einen sehr hohen Rechenaufwand
bedeutet, der mit m stark anwachst, wird die Herleitung der Zusammenhange zwischen
den Koeffizienten hier tber Funktionalableitungen durchgefiihrt. Der Losungsweg ist damit

allgemeiner als notig, jedoch sind die resultierenden Aussagen auch fiir diese Arbeit giiltig.

Formel (2.17) lautet in der Form mit Funktionalableitungen nach [Giel2, Formeln (23)—(24)]
2r 44 - W\
0T _ O _ (09 _ (¢ . (2.19)
o>  0¢ 0J 0J?
Leitet man diese Gleichung ab, so erhalt man mit der Kettenregel
Or_ S [Rr] s 8 [8r] _(ew\ s [(ew\ ] | ewy T ew
0p3 0|69 | S¢S |6¢2 |  \ 62 0J |\ 0J° N 0J? 03
(2.20)
Fir die vierte Ableitung findet man mit dem gleichen Vorgehen
4 2 -5 3 2 2 —4 ¢4
(5_/':3 4% oW B %% 6W. (2.21)
Jou 0J? 0J3 0J° oJ*

Dies kann man beliebig fortfiihren. Analog zur Variante mit partiellen Ableitungen entsprechen
677 /6¢" und 6"W/8¢" den GréBen (™ bzw. G™. Fiir m = 2 erhilt man damit bspw.

r®—=_c® (@)™ . (2.22)

10



2.3 Exakte Losung

Um den Zusammenhang zwischen G&™ und G@™ zu bestimmen, wird die Formel (2.4)
mehrfach abgeleitet. Mit den obigen Ergebnissen erhalt man schliellich die Beziehungen
zwischen den eigentlichen Vertizes und den Korrelationsfunktionen fiir m > 1. Die ersten drei

Beziehungen lauten

1

2) _
@ = ok (2.23)
G@W 3
4) — _
r® = (GO + GOy (2.24)
G®)2 GO G®
r® = 10( ) + 00 (2.25)

(G@) ~ G@) ey Gy

Fiir die Herleitung der Beziehungen wurde ein Python-Programm entwickelt, vgl. Anhang A.1.

2.2.3 Eine niitzliche Eigenschaft

Man kann in der Definition des erzeugenden Funktionals, vgl. Formel (2.1), die Variablen-
transformation @ := \/re durchfiihren. Dann ergibt sich fiir die Korrelationsfunktionen mit

m>1
~2m 1, 1 u , 502 -
L exp(—ﬁ 2‘%?“’2))‘“"
Ggem — — JR . (2.26)

rm ]-~2 1 u ~2\2 ~
_ J d
/RNeXp( 2 24 r2 (‘P)) v

Hier wird deutlich, dass G@™ = rmG@m nyur vom Verhaltnis von u und r? abhingt. Der

Quotient u/r? wird (dimensionslose) Kopplung genannt.

Wie man in den Formeln (2.23)—(2.25) erkennt, gilt eine dhnliche Aussage auch fiir die
eigentlichen Vertizes 2™); die GroRen ™ = @M /rm fijr m £ 1 und 7@ =@ /r -1
sind ebenfalls nur von der Kopplung abhiangig.? Diese Skalierung wird an spaterer Stelle noch

nutzlich sein.

2.3 Exakte Losung

Das erzeugende Funktional lasst sich fiir das betrachtete Beispiel exakt berechnen. In diesem
Abschnitt wird die exakte Losung flir dessen Entwicklungskoeffizienten, die Korrelationsfunk-
tionen, bestimmt, welche fiir die spateren Betrachtungen als Referenzlosung dienen soll. Der

vorgestellte Losungsweg basiert auf [KB12, Abschnitt Il1], ist aber etwas allgemeiner gehalten.

2 |n Abschnitt 3.4.1 wird klar werden, wieso die Definition fir 7 (® von der Definition der anderen [ (2™
abweicht. Fiir die Betrachtungen hier ist der Unterschied jedoch irrelevant.

11



2 Problemstellung und wichtige Grolsen

Zunachst wird das Integral

Z(0) =G = /RN exp(—§<p — % (<p2)2) de (2.27)

betrachtet. Mit verallgemeinerten Kugelkoordinaten und der Abkiirzung

. < ro U4
n\l ) = —= d 2.2
Ro(ru) = [ " ew(~50" = 50°) do (2.28)
fur n € Ny ergibt sich
Z(0) =G = |wn|Ry-1(r, u) . (2.29)

Hierbei steht |wy| fiir den Flacheninhalt der N-dimensionalen Einheitssphare. R,(r, u) lasst
sich nach [KB12] durch

Ra(r, u) (25—3n3—1—nun+3)1/4

n+1 n+1 1 3r n+3 n+3 3 3r
\/_I'( ) Fl( 2 2,2u)—\/6r|_( 4 )1F1< Z ,5,2—U) (230)

explizit angeben, wobei ; F; Kummers konfluente hypergeometrische Funktion ist. Eine Defi-
nition fiir 1 F; ist zum Beispiel in [GRO7, Abschnitt 9.2] zu finden.

Der Erwartungswert ((¢2)™),_, ergibt sich mit Kugelkoordinaten und Formel (2.29) einerseits
zu

(©*)") 100 = 0 / ?)" exp(—S(e)) de Rz’”_”(ffj)“). (2.31)

Andererseits erhdlt man mit dem Multinomialtheorem und den Formeln (2.7) und (2.13)

(#*)") )0 = Z <<p2°‘> Gem y- ( ) % (2.32)

aENN aeNy
\a\:m ICII:m

Gleichsetzen der beiden Formeln fiihrt auf die exakte Losung fiir G©™:

G(Qm) 7:‘)f2m+N 1(/’ U Z ( |> (2a) . (233)

Rn_1(r, u)

Ial m

In der Definition von R, in Formel (2.28) kann wie in Abschnitt 2.2.3 eine Koordinatentrans-

formation durchgefiihrt werden. Mittels der Definition

s oquy 1 < 1 1l u,,
Rn<ﬁ> = r’\’/2+”/0 0 exp(—zp ~ o472 p)dp (2.34)

12



2.3 Exakte Losung

kann man die exakte Losung fiir die skalierten Korrelationsfunktionen G@™ durch

=(2m) _ Romin-1(u/r?) m\* (2a)!
: > (@)

R-1(u/r?) ) al ) 2m)!
\a\:J;
angeben. Insbesondere erhalt man

E@ _ i7:€/v+1(u/f2) |

NRy_1(u/r?)
2(4) _ 3 7§/N+3(U/r2)

NN +2) Ry_1(u/r?)’

15 Rss(u/r?)

GO _ . .
N(N +2)(N +4) Ry_1(u/r?)

(2.35)

(2.36)
(2.37)

(2.38)

Die exakten Losungen fiir die 7™ bzw. 7™ ergeben sich unmittelbar aus den Formeln (2.14)
und (2.23)—(2.25). Abbildung 2.1 zeigt beispielhaft die exakte Losung fiir ) und [®).

3
27
T |
N
1117
I o
(4)
07 | | | | | | I—\ ]
0 1 2 3 4 5 6
u/r?

Abb. 2.1: Exakte Lésung fiir die eigentlichen Vertizes 2 und [*) in Abhangigkeit von der Kopp-

lung u/r? bei N = 2.

Fiir die Berechnung konkreter Werte sollte man beachten, dass die Formel (2.30) bei kleinen

Werten von u/r? auf numerische Probleme fiihrt. Abhilfe schafft die Integraldarstellung in

Formel (2.28), die durch numerische Integration errechnet werden kann. Fiir groRere Werte

von u/r? ist die Variante mit Formel (2.30) ausreichend.

13



3 Losung mittels funktionaler

Renormierungsgruppe

In der Quantenfeldtheorie konnen das erzeugende Funktional und die Korrelationsfunktionen im
Allgemeinen nicht exakt ausgerechnet werden. Daher wurden Naherungsverfahren entwickelt.
Eine Moglichkeit ist die Losung mittels der funktionalen Renormierungsgruppe. In diesem
Kapitel wird dieses Losungsverfahren fiir das Beispiel aus Formel (2.1) erlautert und diskutiert.
Hierbei ist die sogenannte Wetterich-Flussgleichung von zentraler Bedeutung, fiir die eine

Herleitung angegeben wird.

Wie bereits in Abschnitt 2.1 erlautert wurde, genliigt es, fiir die Berechnung des erzeugenden
Funktionals die effektive Wirkung bzw. die eigentlichen Vertizes zu betrachten. Daher wird

sich hier darauf beschrankt.

3.1 Die effektive Mittelwert-Wirkung

Beim Losungsverfahren mittels der funktionalen Renormierungsgruppe wird nach [Giel2;
KB12; Wet93] die effektive Wirkung I~ bestimmt, indem zwischen der Wirkung S und der
effektiven Wirkung interpoliert wird. Der Interpolationsparameter wird im Folgenden mit k
bezeichnet, die Interpolation selbst ist die effektive Mittelwert-Wirkung I. Fiir k = kg soll
diese der Wirkung und flr k = k; der effektiven Wirkung entsprechen:

/—kOZS und /_/q:/—. (31)

Als Ansatz fiir [, wird zunachst zur Wirkung S der sogenannte Regulator-Term

1
ASk(p) = §Rk‘P2 (3.2)
addiert. Dabei soll der Regulator Ry nach [KB12] die Bedingungen
kll—?;o Rx = oo und kll_)n;1 Ry=0 (3.3)

14



3.2 Wetterich-Flussgleichung

sowie
im [,=S und lim =1 (3.4)

Ry—o0 Rx—0
erfiillen. Der Regulator steuert also die Interpolation von S nach I,

Die Addition des Regulator-Terms AS, zur Wirkung S bedeutet fiir das hier betrachtete
Funktional, dass r durch r 4+ Ry ersetzt wird, vgl. Formeln (2.1) und (2.2). Daher soll hier
noch r + Ry > 0 gefordert werden.® Ein Beispiel fiir einen Regulator ist

= ki . (3.5)

1 1
Re=——r fir k=0<k< -
k r

Mit dem zusatzlichen Regulator-Term lassen sich das erzeugende Funktional zu

Z,(J) = / exp(~S(p) —~ DSi(p) +J-0) do (3.6)

Wi(J) = In(%) —In ((r ;Rk)m Zk(J)> (3.7)

anpassen. Die effektive Mittelwert-Wirkung kann dann wie folgt definiert werden:

sowie W zu

Fe(¢) = JSURF?V(J = Wi(J)) — ASk(@) = Jksup(@) - & — Wi(Jksup(@P)) — ASk(d) . (3.8)
S
Im Vergleich zu Formel (2.5) wird von der Legendre-Transformation noch der Regulator-Term
subtrahiert. In [Wet93] wird gezeigt, dass diese Definition die Bedingung in Formel (3.4)
erfiillt. Im Folgenden wird wie in Abschnitt 2.2.1 statt Jx sp(¢) immer Ji geschrieben und
wie in Abschnitt 2.2.2 angenommen, dass J, = 0 genau dann gilt, wenn ¢ = 0 ist.

3.2 Wetterich-Flussgleichung

Fir die effektive Mittelwert-Wirkung [, gilt eine Flussgleichung, die auch Wetterich-Flussglei-
chung genannt wird. Sie wurde von Christof Wetterich in [Wet93] bewiesen und ist unabhangig
von der konkreten Wirkung. In diesem Abschnitt wird die Gleichung basierend auf [Giel2;
Wet93] fiir den RV hergeleitet. In analoger Form gilt sie auch in der Quantenfeldtheorie.

Wie der Name suggeriert, soll die Wetterich-Flussgleichung den Fluss von [, d. h.

di(¢) _ dde  dWi(d) 1dRx«
dk  dk dk 2 dk

¢’ (3.9)

3 Fiir einen monotonen (stetigen) Regulator Ry ist dies aufgrund der Bedingung in Formel (3.3) stets erfiillt.
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3 Losung mittels funktionaler Renormierungsgruppe

beschreiben, wobei hier die Definition von I, gemaRk Formel (3.8) eingesetzt wurde. Fiir den
zweiten Summanden der rechten Seite von Formel (3.9) gilt mit Formel (3.7)

dWi(J) 1 dZ(J)  NdRe 1
dk  Zk(Jh) dk 2 dk r+ Ry’

(3.10)

Wie in Abschnitt 2.2.1 kann auch mit Z,(Jx) ein Erwartungswert definiert werden, der mit
()4, bezeichnet wird. Dann kann man den Fluss von Z,(Jx) mit Formel (3.6) durch

1 de(Jk) - dJ, 1dR, ,
Z(J) dk dk @) = 5g5 (P )es, (3.11)

ausdriicken. Analog zu Formel (2.15) gilt wieder die Optimalitatsbedingung

<‘P>k,Jk = VW) =¢. (3.12)
Ferner ist
2 . 82VVk 2 2
Tr(DEWi(J)) = o )= (@), — @)%y, - (3.13)

i=1
Mit den Formeln (3.10)—(3.13) lasst sich Formel (3.9) nun als

dr(¢)  1dRy NdR, 1

—_—— 2 _———
dk 2 dk Tr(DJka(Jk)) 2 dk r + Ry (3.14)
schreiben. AuBerdem gilt analog zu Formel (2.16)
Vol k(@) = Ji — Rudp (3.15)
und somit
D2/ + Rl = DypJi = (Dy ) " = (DI W) " . (3.16)

Setzt man dies in Formel (3.14) ein, so erhalt man schlieRlich die Wetterich-Flussgleichung:

dri(@)  1dR,
dk 2 dk

N NdRe 1
Tr((Df,l‘k(qb) + Red) 1) - Ed_kkTRk . (3.17)

3.3 Differenzialgleichungssystem

Die Wetterich-Gleichung kann nun genutzt werden, um die effektive Mittelwert-Wirkung [
zu bestimmen. Hierzu werden beide Seiten der Gleichung in eine Reihe entwickelt. Fiir jeden

Koeffizienten der Reihe erhalt man eine Differenzialgleichung. Die Gleichungen sind gekoppelt
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3.3 Differenzialgleichungssystem

und werden ndherungsweise gelost. In diesem Abschnitt wird dieses Losungsverfahren (im
Folgenden Standard-Verfahren genannt) vorgestellt. Dieses Verfahren wird auch in den Reviews
[BTWO02; Bral2; Dup+21] mit weiteren Beispielen vertieft.

3.3.1 Reihenentwicklung der Wetterich-Flussgleichung und

Losungsprinzip

Die Wetterich-Gleichung in Formel (3.17) wird nun auf beiden Seiten nach ¢ in eine Taylor-
Reihe entwickelt, vgl. [KB12]. Die Koeffizienten ("

o der Reihe sind dabei analog zu den

eigentlichen Vertizes definiert, vgl. Abschnitt 2.2.1. Aufgrund der Rotationssymmetrie von [

sind die /',5’2 fur Multiindizes a mit ungeraden Eintragen gleich null. Ein Koeffizientenvergleich

liefert dann Flussgleichungen fiir die iibrigen Koeffizienten Ir”:
Aea” _ 1dR, 02 Tr((D2r )+ R 11)*) + N (3.18)
dk 2 dk o¢2e o “ r+Rilpo '

Auch die /_,flzam) stehen fiir festes m analog zu Formel (2.13) untereinander in Beziehung und
konnen durch I‘,fzm), die Koeffizienten der Reihe

(@) = ;ﬁrf’")(#)m, (3.19)

beschrieben werden. Ferner wird im Folgenden der Fall m = 0 separat betrachtet. Es ergibt

sich

-1 N
. ]1) fiir m =
dr®™  1dR, Tr(<D"’rk|¢=0 R ) TrvR, rm=0

dk 2 dk 52m » )
Tr(ad)lgm [(Dd%rk(d’) + Ri1) ]¢0) firm>1

(3.20)

Im Folgenden wird die Gleichung fiir ein gegebenes m die m-te Gleichung des Systems genannt.

Man erhalt also unendlich viele gekoppelte Differenzialgleichungen fiir die I‘,fzm). Die An-
fangsbedingungen fiir dieses Differenzialgleichungssystem sind durch Formel (3.1) bestimmt.

Durch einen Koeffizientenvergleich mit der Wirkung S, vgl. Formel (2.2), ergeben sie sich zu
/-;g))ZO, I_,ff):r, /-,ff):u und I’,EOZm):O fir m>3. (3.21)

Von diesen Anfangswerten an wird das Differenzialgleichungssystem bis zu k; integriert. Nach
Formel (3.1) erhalt man damit ein Ergebnis fiir 7™ woraus sich unmittelbar I~ ergibt.
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3 Losung mittels funktionaler Renormierungsgruppe

In [KB12] wird ein Verfahren fiir eine Naherungslosung des Systems vorgestellt. Hiernach
wird die Reihenentwicklung in Formel (3.19) bei m = m; abgebrochen, sodass nur die
Differenzialgleichungen fir m=20, ..., m; verbleiben. Ferner wird der Koeffizient /_,52””2), der
in der my-ten Gleichung vorkommt, konstant auf seinen Anfangswert gemaR Formel (3.21)
gesetzt. Das resultierende System mit my 4+ 1 Differenzialgleichungen und ebenso vielen

Unbekannten wird dann fiir einen gegebenen Regulator (i.d. R. numerisch) gelost.

3.3.2 Herleitung konkreter Formeln fiir die Differenzialgleichungen

Im vorigen Abschnitt wurde das Losungsprinzip vollstandig erklart. Nun soll die Ableitung
auf der rechten Seite der Formel (3.20) ausgefiihrt werden, sodass sich eine etwas andere
allgemeine Formel fur die Differenzialgleichungen ergibt. Da im Fall m = 0 in der genannten
Formel keine Ableitungen auftreten, wird hier nur m > 1 betrachtet. SchlieBlich werden die
Gleichungen fiir die ersten Koeffizienten explizit angegeben.

Es muss die partielle Ableitung einer Matrix-Inversen bestimmt werden. Hierflir kann allerdings
ein Trick verwendet werden, der die umstandliche Rechnung mit Matrix-Ableitungen verein-
facht. Zunachst wird die Abkiirzung U(@) := Dj k(@) + Ri1 eingefiihrt. Durch Umstellen

von

BIl 0 _ou, Ut
erhalt man die Relation aU-1 aU
= — _l— -1 . 2
5 U35 Y (3.23)

Fiir die hoheren Ableitungen muss dann die Produktregel angewendet werden. Es entsteht

eine Summe aus Termen der Form

u- H(aqbnj ) (3.24)

In der Formel (3.20) werden die Ableitungen an der Stelle ¢ = 0 ausgewertet. Dort entsprechen

sie den I',EQ:

oy o (n +2) >

oY j . 3.25

8¢7J ¢ 0 a(pnj |: k(¢):| ( k nj€,+6‘p+eq P,q:]- ,,,,, N ( )
Die 77*?) ... sind dabei null, wenn n; ungerade ist oder p # g gilt. Demnach verbleiben

nur die geraden Ableitungen, welche Diagonalmatrizen der Form

anj U
8d>,2m" $=0

(2m;+2) (2m;+2)
= diag </_k 2n4 ei+2e Iy 2nJ7Je,+2eN> (3.26)
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3.3 Differenzialgleichungssystem

sind. Auch U1 ist bei ¢ = 0 diagonal, denn es gilt

-1 _ 2
UH(0) = (D3], o + ReD) = oA

(3.27)

Da Diagonalmatrizen immer kommutieren, vereinfachen sich die Summanden, die durch
Formel (3.24) beschrieben sind. Die gesuchte Ableitung in Formel (3.20) kann dann mithilfe
der Produkt- und Kettenregel fiir skalare Funktionen berechnet werden; U wird hierbei mit
der Funktion f identifiziert, U~! entspricht 1/f. Es gilt

8" [1] A [2m+1\ (=1)"8*"f" X (2m+1) (~1)" (2m)| o f
6¢?m[?]_;(n+l)f”+1 ad)?m_;(nJrl)f”ﬂ anN ! Had;;xe'
lal= 2m

(3.28)
wobel fiir den ersten Schritt WolframAlpha bemiiht und im zweiten Schritt die Leibniz-Regel
fir mehrfache Produkte nach [Wall7] verwendet wurde. Beachtet man die Formeln (3.26)

und (3.27) sowie die Tatsache, dass Ableitungen ungerader Ordnung null sind, ergibt sich

8¢;"m [(Dd,/—k(d’) + Rel)” L)o _ nz (2;777-:-11) <l_/gz)(-l_l)" Z %T)); Zl;[l Da,

n+1 (
Rk> a€eNj

“ (3.29)
mit
diag(F, + R 12, + Ri) fiir ay =0
Dy, = | (3.30)
diag (rf%:ezlm ---- /—k(,zzogf;?lze,J fur oy > 1

Uber die Beziehung zwischen den I'sz) und /',fzm), vgl. Abschnitt 3.3.1, erhalt man

4 n n (2) . -
1 [, + Rk fira,=0

=1 fira, > 1

fur die Spur der auftretenden Diagonalmatrix-Produkte. Mit Formel (3.29) ergibt sich For-
mel (3.20) fiir m > 1 schlieBlich zu

dr™  1dRy <& (2m+1) (=1)"
dk 2dk &=\ n+1)r® 4R,

m)! (L N N fur oy =0
X E ' (20 +2) . (3.32
iy (20! (H 2ap+1 ) =1 r(2) fur a, > 1 332
o[ =m I + Ry
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3 Losung mittels funktionaler Renormierungsgruppe

Damit lassen sich die ersten Differenzialgleichungen wie folgt schreiben:
dri®”  NdR 1 1
el - , (3.33)
dk 2 dk M2 +Re '+ Ry
ar??  N+2dRe 7

_ - (3.34)
dk 6 dk <rk(2)+Rk>
(4) rY (6)
dr” _ N+8dRs <k )  N+4dRe I (3.35)
. 5. .
dk 3  dk (I—,fz)+Rk> 10 dk (ff)-i-Rk)
Fur den Fluss von l‘,f6) gilt
© @Y’
dr®  5(N+26)dRx ( p )
- 4
dk 3 dk <F£2)+Rk)
AR, [@[® N+6dR r®
PN+ T SO0k (3.35)
(rk(z) n Rk) (rk@) n Rk)
und fur I—,ES)
(®) r@y r@Y re®
dr 140(N + 80) dRy ( p ) dR, ( p ) p
d7< - 9 dk 5 — 14N +44)— z
(r,fz) + Rk> (/’ @ 4 Rk)
2
(6)
| AN +20) R o TN +24) R, (I—k ) N+8dR, MY
dk 3 dk 318 dk 2"
3 (rk@) + Rk> 5 (rk@) + F\’k> 8 (rk@) + Rk>
(3.37)

Im Anhang A.2 befindet sich ein Python-Programm, das die Gleichungen automatisch erzeugt.

3.4 Diskussion anhand eines speziellen Regulators

Die bisherigen allgemeinen Betrachtungen sollen nun konkretisiert werden, indem der spezielle
Regulator aus Formel (3.5) verwendet wird. Mit diesem Regulator wird das im Abschnitt 3.3.1
beschriebene Verfahren ahnlich wie in [KB12] fiir verschiedene Werte von m; durchgefiihrt
und mit der exakten Losung aus Abschnitt 2.3 verglichen.
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3.4 Diskussion anhand eines speziellen Regulators

Die Flussgleichungen in den Formeln (3.33)—(3.36) lauten mit dem Regulator aus Formel (3.5)

arl? N5,

dk — 2kZ,+1' (3.38)
ar®  dx, N+2 @
o ek N k , (3.39)
dk dk 6 (kX +1)2
(@) K (r®Y ()
dr,’  N+8 k +/\/+4 I (3.40)
dk 3 (kX +1)3 10 (kX +1)2" '
3
)
dr{®  5(N+26) K () (N4 ki N+ P (3.41)
dk 3 (kXk+ 1) (kXZk+1)3 14 (kXZ,+1)2" '
wobel 2, = r® gesetzt wurde. Fir r® gilt entsprechend Formel (3.37
k k
6 3 (roY 2 (Fr®Y F©
dr®  140(N + 80) (k ) 14(N +44) (k ) p
dk 9 (kX +1)° (kX +1)*
2
(6)
4N +20) kIIr®  7(N+24) K (Fk ) N (10

3 (kZi+1)3 5 (krq+1)3 18 (kZ,+1)2

3.4.1 Skalierung des Gleichungssystems

Im Abschnitt 2.2.3 wurde gezeigt, dass sich die Korrelationsfunktionen G@™ bzw. die
eigentlichen Vertizes 2™ auf die GroRen G2™ bzw. [ 2™ skalieren lassen, welche nur noch
von der Kopplung u/r? abhingen. Fiir G,((Qm), das uiber Z, analog zum Abschnitt 2.2.1 definiert
wird, lasst sich eine ahnliche Eigenschaft ableiten. Hierzu wird wieder dieselbe Transformation
wie im Abschnitt 2.2.3, d.h. ¢ = \/re, verwendet. Es ergibt sich

~ 1 . 1 u, 50 ~

2m 2 2

Y1 exXp|\ =59 — 55,5 ((p ) ) de

1 / ( Ok 2412

Gy = — 2 ! ! , (3.43)

rm 1 1 u, 52 N
B d
/RN exp( ok 242 (@) ) ¢

wonach rmG,Ezm) fiir ein fest gewahltes Produkt k := kr wieder nur von u/r? abhangt. Analoge
Aussagen gelten fir [*™ = I_,f2m)/rm fiir m # 1 sowie /2 = X, /r = I'k(Z)/r -1

Da man dariiber hinaus das System fiir den gegebenen Regulator immer von k = 0 bis k = 1/r
integriert, liegt es nahe, nicht k, sondern k als Variable zu verwenden. Das bietet den Vortell,
dass die Integrationsgrenzen kK = 0 und kK = 1 stets von r unabhangig sind. Formel (3.32)

lasst sich mit diesem Ansatz zu
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3 Losung mittels funktionaler Renormierungsgruppe

dfem 1 & 2m+1\ (=1)"
dk 2K poe

B n+1 )k 11

" it fur oy =0
(2"7)' —1 3
Z H oo 1L o F20t2) (3.44)
; )

n _ fur oy > 1
eNg =1 = (=
ﬁ;\ m ki 41

umformulieren. Formel (3.38) wird zu

dari? NP

= — . 3.45
dk 2 )l +1 ( )
Die Anfangswerte missen ebenfalls skaliert werden; es wird also
~ u ~
== und FP™ =0 firm#2 (3.46)

r2

gefordert. Auch hier ergibt sich die Abhangigkeit von der Kopplung u/r?.

Folglich ist die Skalierung des Differenzialgleichungssystems auf die I:,.§2’") bel Integration von
k = 0 bis k = 1 ein sinnvoller Ansatz, wenn man sich ein rein von u/r? abhangiges Bild
machen mochte. Die konkreten Differenzialgleichungen, die man aus der Formel (3.44) erhilt,
sind hierbei vollig analog zu jenen in den Formeln (3.39)—(3.42).

3.4.2 Diskussion

In diesem Abschnitt wird das in Abschnitt 3.3.1 beschriebene Losungsverfahren auf das skalierte
Gleichungssystem angewendet. Hierbei werden fiir m; die Werte 2, 3 und 4 untersucht. Am
Beispiel von N = 2 erhalt man die Abbildungen 3.1-3.3, in denen die Naherungslosungen
fur 7@, 7® und [©® mit den exakten Lésungen vergleichend dargestellt sind. In den
Abbildungen 3.4-3.6 sind Werte in Abhangigkeit von N dargestellt.

Um @™ sinnvoll berechnen zu konnen, muss allerdings m, > m gelten, da ansonsten das
Verfahren vorsieht, I~ 2™ konstant auf den Anfangswert zu setzen. Daher ist in Abbildungen 3.3

und 3.6 keine Naherung fur m; = 2 angegeben.

Wie die Abbildungen zeigen, fiihrt der Ansatz bereits fiir niedrige Werte des Reihenabbruch-
parameters m; zu sehr guten Ergebnissen. So sind die relativen Abweichungen fiir my = 3 fiir
@ und [ im Bereich 1072. Auch fiir [ erhalt man (je nach Kopplung) fiir m; = 3 bzw.
m; = 4 Abweichungen im Bereich 1072 bis 1071,

Ferner wird deutlich, dass das Verfahren flir verschiedene Werte von m; auf verschiedene
[m) fiir dasselbe m fiihrt. Im hier betrachteten Beispiel ergibt sich mit steigendem m; oft
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15F R
(o)}
- 1 510721 7
1- 15
0]
s { 3107 1
L. ----exakt <
051 —m =2 2 46| |
5 10
r mt:3 1 @
L —my =4 || 2
0 | | | | | ] | ] 1078’\ | | | | ] | ]
0 1 2 3 4 5 6 0 1 2 3 4 5 6
u/r? u/r?

Abb. 3.1: Vergleich der exakten Losung fiir /(2 mit den Naherungslésungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhangigkeit von der Kopplung u/r? fiir verschiedene
Werte des Reihenabbruchparameters m: und bei N = 2. Links sind die absoluten Werte, rechts der
relative Fehler der Naherungen aufgetragen. Nach [KB12, Abb. 3].

3 F 5
(@)] _
r 1 oy
=)
2 15
(O] _
S 1 3
. ----exakt <
Lr —m=2[| =
r my =3 |4 E
07 _mt:4 B 8 —|
| | | | | | | | | | | | | | | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
u/r? u/r?

Abb. 3.2: Vergleich der exakten Losung fiir I~ *) mit den Naherungslosungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhingigkeit von der Kopplung u/r? fiir verschiedene
Werte des Reihenabbruchparameters m; und bei N = 2. Links sind die absoluten Werte, rechts der
relative Fehler der Naherungen aufgetragen. Nach [KB12, Abb. 4].

21071 £ .
10 - 1 5 : ;
S oL ]
r 4 QO 10 E 3
° 2 - 1
= 5p 1< 1073 ¢ E
----exakt < E E
i me =3 |] %10_4% mt—3é
ol —my =4 2 g —my =4 |
| | | | | | | | C_l | | | | | | [
0 1 2 3 4 5 6 0 1 2 3 4 5 6
u/r? u/r?

Abb. 3.3: Vergleich der exakten Losung fiir 7 (®) mit den Naherungslosungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhingigkeit von der Kopplung u/r? fiir verschiedene
Werte des Reihenabbruchparameters my und bei N = 2. Links sind die absoluten Werte, rechts der
relative Fehler der Naherungen aufgetragen.
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3 Losung mittels funktionaler Renormierungsgruppe

l [ I I 1071 ;\ [ [ [ i
07 |© Oexakt || o EX x4 5 E
I x xm=2[] 5 f XX ox x|
m=3| §107°¢
(&) C |
@ 0,6 r o th:4 u E 10_3 ;X ;
L X R i g x X X X X_ xg
0,5 @ = 5 xmy =2 |4
@ Q _ E 1074 ; mt—3 é
o4l R @ Q| g i » xme =4 |1
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u/r? u/r?

Abb. 3.4: Vergleich der exakten Losung fiir I (® mit den Naherungslosungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhangigkeit von der Dimension N flir verschiedene Werte
des Reihenabbruchparameters my. Es wurde als Kopplung jeweils u/r? = 3/N gewahlt. Links sind die
absoluten Werte, rechts der relative Fehler der Naherungen aufgetragen. Nach [KB12, Abb. 10].

T T I I £ T T T 3
1.5 e Oexakt o X x ]
c -1 L X X _
th:2 > 10 E x X X3
my =3 S - ]
x t = = L ]
s I xme=4[] £1072 " 3
T e 200 z
C “ X X X X7
e S 107% ¢ XMy =2 |3
>0 R 18 0 el
(%) @ = 10—45 % xmy =4 E
| | | | | | | | E_| | | | | | | [l
1 2 3 4 5 §) 8 1 2 3 4 5 §) 7 8
u/r? u/r?

Abb. 3.5: Vergleich der exakten Losung fiir ) mit den Naherungslosungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhangigkeit von der Dimension N fiir verschiedene Werte
des Reihenabbruchparameters my. Es wurde als Kopplung jeweils u/r? = 3/N gewahlt. Links sind die
absoluten Werte, rechts der relative Fehler der Naherungen aufgetragen. Nach [KB12, Abb. 11].

I I T T F =
A 78 Oexakt | = + g
my = 3 > 1
xm=4|| G 107" Fx E
. g r x ]
©° 3B - ]
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0 | ® ® ® @ ®7 8 1072 ; x x XMy = 4 E
| | | | | | | | L | | | | | | | [

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

u/r? u/r?

Abb. 3.6: Vergleich der exakten Losung fiir /(®) mit den Naherungslsungen, die mittels des im Text
beschriebenen Ansatzes ermittelt wurden, in Abhangigkeit von der Dimension N fiir verschiedene
Werte des Reihenabbruchparameters m;. Es wurde als Kopplung jeweils u/r? = 3/N gewahlt. Links
sind die absoluten Werte, rechts der relative Fehler der Naherungen aufgetragen.
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3.4 Diskussion anhand eines speziellen Regulators

eine Verbesserung der Genauigkeit. In manchen Bereichen der Kopplung wird diese Ordnung
allerdings vertauscht.

Fur das Verfahren ist das Losen eines Differenzialgleichungssystems notig, das i.d. R. nu-
merisch gelost wird. Wenngleich das System nur eine Naherung ist, so liefert es fiir das
betrachtete Beispiel des erzeugenden Funktionals in Formel (2.1) sehr gute Ergebnisse.
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4 Alternatives Losungsverfahren

In diesem Kapitel wird ein alternatives Losungsverfahren untersucht. Motiviert wird dieses
durch die spezielle Struktur des Differenzialgleichungssystems, das sich aus der Wetterich-
Flussgleichung ergibt, vgl. Formel (3.44). Hierbei soll nur der Regulator aus Formel (3.5)
betrachtet werden. Schliellich werden einige konkrete Ansatze flir das zu untersuchende

Verfahren angegeben und diskutiert.

4.1 ldee und Kriterien

Die Flussgleichung fur 2™ in der Formel (3.44) hat fiir alle m > 1 die Form
dl’l(2m) . . - -
d“n = An(FP: k) FP™2D 4+ B, (FP, ..., Fem: k), (4.1)

~(2m+2)

wobei A,,, B, geeignete Funktionen sind; zwischen r,§ und dem Fluss von ﬁ?m) besteht

also ein affiner Zusammenhang. Durch Umstellen der Gleichung erhalt man eine Formel, mit

der fé2m+2) aus ﬁ?) ..... FE'") berechnet werden kann:
~(2m)
[@em+2) _ 1 dlie _B (/=(2) [ (2m). K) (4 2)
" Am</:,£2). K,> dk M\Tk o ko ' '

Startet man nun in der ersten Formel (m = 1) mit einem gegebenen [, so lasst sich damit

/:,54) berechnen:

?

~ (5 2
6 (;-er,ﬁ = 1) o)
) L (4.3)
" N+ 2 dk

Hieraus kann mit der darauffolgenden Formel I:,.§6) bestimmt werden:

27
dk?

- 3

60 (k7P +1) (4

©) = 22 + 4k

* (N+2)(N+4) " odk N+2\ dk

N

~ ~ 2
2 N+5 (dFi¥ -
- + (k[P +1)
(4.4)
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4.1 lIdee und Kriterien

Das Verfahren lasst sich beliebig fortfiihren, wobei in jedem Schritt lediglich ein entsprechender
Fluss, d. h. eine Ableitung, benotigt wird. Aus den f,§2'") lassen sich dann die eigentlich

interessanten Randwerte I ™ bestimmen.

Der hier betrachtete Fall des R" ermdglicht es, die einzelnen Gleichungen sehr einfach
nach (™2 umzustellen. Fiir komplexere Beispiele ist dies schwieriger. In [Zie21] wird
eine Rechtsinverse fiir den linearen Integraloperator, der im Allgemeinen vor [ 2m+2) steht,
angegeben. Damit wird dann das Verfahren in ahnlicher Weise durchgefiihrt und eine exakte
Losung fur die Wetterich-Gleichung konstruiert.

Im Allgemeinen ist /:,.52) nicht bekannt. Es muss daher eine geeignete Naherung gewahlt werden.
Damit das Ergebnis fiir I:,.§2) ..... /:,.Ezm) des oben vorgeschlagenen Verfahrens brauchbar ist,
scheint es zielfiihrend, a priori Kriterien fiir das Ergebnis aufzustellen. So sollten bspw. die
Anfangswerte mit Formel (3.46) lbereinstimmen; eventuell ist zusatzlich die Fixierung des
Anfangswerts von F2™2) oder weiterer héherer Koeffizienten sinnvoll. Andererseits kdnnte
zumindest 7@ bekannt sein und als Randwert fiir I:,£2) dienen; in der Quantenfeldtheorie
konnte zum Beispiel die physikalische Masse eines Teilchens experimentell gemessen worden
sein. Nicht zuletzt sollte die Naherung fiir einen moglichst grolen Bereich von Werten fiir die
Kopplung u/r? gut sein.

Zur Bewertung der Naherungen wird neben der exakten Losung fir 2™ auch die exakte
Losung fir die Interpolation /:’£2m) herangezogen. Die Herleitung ist dabei grundsatzlich
analog zu Abschnitt 2.3. Die Koeffizienten G,(fm) der Reihenentwicklung von Z, ergeben sich

zunachst zu

em) _ Romin-1(1/k, u) (2a)!
O = Rk Z( ) (49)

\a\ m

Der Verkniipfung zwischen den G,(fm) und den /',52'") liegt jedoch Formel (3.16) zugrunde, d. h.
es muss im Vergleich zum Abschnitt 2.2.2 der zusatzliche Regulatorterm AS, berlicksichtigt

werden. Damit gilt fir die Beziehung zwischen Gf) und I_k(z)

1

/-(2)
k G(2)

— Ry (4.6)
Fihrt man dann die Skalierung wie in Abschnitt 3.4.1 durch, ergibt sich
1
- —. 4.
- (4.7)

Die Beziehungen fiir die hoheren Koeffizienten sind vollig analog zu Abschnitt 2.2.2, da der
Regulator R, durch das Ableiten verschwindet.
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4 Alternatives Losungsverfahren

4.2 Polynomndherungen

Das im Abschnitt 4.1 vorgeschlagene Verfahren soll als erstes mit Polynomen getestet werden.

Der Polynomgrad M ist dabei zunachst nicht festgelegt; die Polynomkoeffizienten heilen a,,:

[~ Z amk™ . (4.8)

4.2.1 Betrachtung der Anfangswerte

Die Koeffizienten a,, des Polynoms werden im ersten Schritt aus den ersten M + 1 Anfangs-
bedingungen bestimmt, vgl Formel (3.46). Die Forderung IZSQ) = 0 liefert direkt ag = 0. In
der m-ten Gleichung gibt es nur Ableitungen von 2 bis zur (m — 1)-ten Ordnung; an der
Stelle k = 0 tauchen die Koeffizienten anyi1,..., ap dort nicht auf. Die Koeffizienten a,,
konnen demnach mittels der m-ten Gleichung sukzessive in Abhangigkeit von den Koeffizienten

ao, . ... am_1 bestimmt werden, die wiederum mit den vorigen Gleichungen bestimmt werden.

Es folgt, dass die Koeffizienten a,, fiir alle Polynomgrade M > m gleich sind. Fir die ersten

sieben Koeffizienten ergibt sich

_N+2u , __(N+2)(N+4)<£)2,

. a_(N+2)(N+4)(N—|—5) £>3
e o2t T 36 r2 -

> 108 r2
(4.9)

und a, = a4 = ag = 0. Hier ist zu erkennen, dass jede zweite Anfangsbedingung, d. h. jene fiir
/:,§6), I:FEIO), I:FSM), automatisch erfiillt ist und keine neue Information liefert. Ob sich dieses

Verhalten fortsetzt, soll an dieser Stelle nicht weiter untersucht werden.

Abbildung 4.1 zeigt beispielhaft die Naherungen fiir IZ,£2) und /:,£4) fur u/r?> = 0,2. Dabei
wurden die Polynomgrade 1, 3 und 5 untersucht; fiir die Grade 2, 4 und 6 ergibt sich
entsprechend der obigen Beobachtungen dasselbe Ergebnis wie fiir die Grade 1, 3 bzw. 5.
In den Abbildungen 4.2—4.4 ist dargestellt, wie stark die mit dieser Naherung berechneten
Koeffizienten /:,.52), I:,§4) und /:,ﬁ(” von der exakten Losung fiir N = 2 abweichen.

Es ist gut zu erkennen, dass der Ansatz zu grolen Fehlern fihrt. Lediglich fir kleine Werte
der Kopplung u/r? ergeben sich relative Abweichungen bis hochstens 1071, Fiir I:,.§2) liegt die
Grenze bei etwa 0,3, fur I:,§4) bei etwa 0,1 und fir /:,.56) werden derart kleine Abweichungen

nicht erreicht. Die relativen Fehler wachsen fiir grolBere Werte der Kopplung schnell tiber 1.

Die Naherungen sollen mit steigenden Werten des Polynomgrads M besser werden. Es ist
allerdings zu beobachten, dass diese Ordnung nur fiir kleine Werte der Kopplung auftritt.
Danach kehrt sich die Ordnung um und mit groBerem M steigt die Abweichung stark an.
Auch bei anderen Werten fiir N ergibt sich ein ahnliches Bild, wie die Abbildung 4.5 zeigt.
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4.2 Polynomnaherungen
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Abb. 4.1: Vergleich der exakten Losung fiir {2 (links) und F® (rechts) mit den Naherungslosungen,
die mittels des Polynomansatzes und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit vom
Interpolationsparameter k fiir verschiedene Werte des Polynomgrads M und bei N = 2. Die Kopplung
betragt u/r’ = 0,2.
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Abb. 4.2: Vergleich der exakten Losung fiir £ mit den Niherungslosungen, die mittels des Polyno-
mansatzes und den Anfangsbedingungen ermittelt wurden, in Abhingigkeit von der Kopplung u/r?
flir verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich eine vergrokerte
Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.3: Vergleich der exakten Lésung fiir ) mit den Naherungsldsungen, die mittels des Polyno-
mansatzes und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit von der Kopplung u/r?
flir verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich eine vergrolerte
Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.4: Vergleich der exakten Lésung fiir 7 (®) mit den Naherungslésungen, die mittels des Polyno-
mansatzes und den Anfangsbedingungen ermittelt wurden, in Abhingigkeit von der Kopplung u/r?
flir verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich eine vergrolerte
Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.5: Vergleich der exakten Losung fiir /() (links) und 7 (®) (rechts) mit den Niherungslosungen,
die mittels des Polynomansatzes und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit
von der Dimension N fiir verschiedene Werte des Polynomgrads M. Es wurde als Kopplung jeweils
u/r> =3/N gewshlt.

4.2.2 Betrachtung der Anfangswerte und einer Randbedingung

Wie in Abschnitt 4.1 bereits erwahnt wurde, konnte auch der Wert fiir @ bekannt sein. Im
Folgenden wird dieser Fall betrachtet und der Randwert fixiert. \Weiterhin werden die ersten
M Anfangsbedingungen gefordert. Mit diesen errechnet man analog zum vorigen Abschnitt die
Koeffizienten ag, ..., ap—1. Aus Formel (4.8) kann dann mit der Randbedingung unmittelbar
ay berechnet werden:

av =" am. (4.10)

Nun konnen auch gerade Polynomgrade auftreten, denn ay, ist fiir gerade M im Allgemeinen
nicht null. Daher wurden fiir M hier die Werte 1 bis 4 untersucht. Abbildung 4.6 zeigt die
Naherungen fiir £ und ©™ fijr u/r>=0,2.
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Abb. 4.6: Vergleich der exakten Losung fiir /:,£2) (links) und l:,§4) (rechts) mit den Naherungslosungen,
die mittels des Polynomansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhangigkeit vom Interpolationsparameter x fiir verschiedene Werte des Polynomgrads M und bei
N = 2. Die Kopplung betragt u/r’> = 0,2.

In den Abbildungen 4.7 und 4.8 ist dargestellt, wie stark die mit dieser Naherung berechneten
Koeffizienten I:,£4) und I:,£6) von der exakten Losung fiir N = 2 abweichen. Abbildung 4.9
zeigt wieder die Abhangigkeit von N. Wenngleich die Abweichungen durch das Fixieren
des Randwerts kleiner werden, ist der Fehler auch hier sehr groR. Auch die zu erwartende
Verbesserung beim Erhohen des Polynomgrads bleibt auf einen kleinen Bereich der Kopplung

beschrankt.
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Abb. 4.7: Vergleich der exakten Losung fiir /) mit den Naherungslosungen, die mittels des Polyno-
mansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden, in Abhangigkeit von
der Kopplung u/r2 fiir verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich
eine vergroBerte Darstellung fiir den Bereich u/r?> < 0,5.
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Abb. 4.8: Vergleich der exakten Lésung fiir 7 (®) mit den Ndherungslésungen, die mittels des Polyno-
mansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden, in Abhangigkeit von
der Kopplung u/r? fiir verschiedene Werte des Polynomgrads M und bei N = 2. Rechts befindet sich
eine vergroBerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.9: Vergleich der exakten Losung fiir /() (links) und 7 (®) (rechts) mit den Niherungslosungen,
die mittels des Polynomansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhangigkeit von der Dimension N fiir verschiedene Werte des Polynomgrads M. Es wurde als
Kopplung jeweils u/r?> = 3/N gewahlt.

4.2.3 Bewertung und Fehleranalyse

Der gewshlte Polynomansatz fiir /) ist als Naherung ungeeignet und dem Standard-Verfahren
aus Kapitel 3 mit Abstand unterlegen. Es gibt lediglich einen sehr kleinen Bereich, in dem die

Fehler in akzeptablen GroBenordnungen liegen, der jedoch mit zunehmendem m kleiner wird.

Das Erhohen des Polynomgrads M bietet nur fiir kleine Werte der Kopplung u/r? einen Mehr-
wert. Fiir grole Werte kehrt sich die erwartete Genauigkeitsordnung, d. h. eine Verringerung
des Fehlers bei Hinzunahme weiterer Terme zur Naherung, sogar um. Dies hat mindestens
die folgenden Griinde. Erstens wird die Abweichung ahnlich wie bei der Approximation mit
Taylor-Polynomen mit zunehmendem Abstand von der Entwicklungsstelle (hier k = 0) immer
groBer. Zweitens spielen in die Berechnung der F2™ die Ableitungen von {?) in verschiedenen
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4.3 Naherung mittels spezieller rationaler Funktionen

Potenzen hinein, wie bspw. in den Formeln (4.3) und (4.4) zu sehen ist. Dadurch konnen
selbst bei Fixierung des Randwerts groBe Fehler entstehen, wenn die Ableitungen von I:,§2) bei
k = 1 von der exakten Losung abweichen. Abbildung 4.10 zeigt dieses Problem eindriicklich
fir u/r? = 3; hier stimmt zwar der Randwert (berein, allerdings ist der Anstieg der Niherung
flir M = 4 bei kK = 1 deutlich zu groll und die Naherung ist sogar konvex statt konkav.
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Abb. 4.10: Vergleich der exakten Losung fiir F£2) (links) und 7" (rechts) mit den Niherungslsungen,
die mittels des Polynomansatzes, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhangigkeit vom Interpolationsparameter k fiir verschiedene Werte des Polynomgrads M und bei
N = 2. Die Kopplung betragt u/r® = 3.

Positiv ist dem Ansatz anzurechnen, dass die Koeffizienten a,, vom Polynomgrad unabhangig
sind und sich aus den Gleichungen sukzessive berechnen lassen. Dies konnte moglicherweise

als weiteres Kriterium fir eine Naherung sinnvoll sein.

4.3 Naherung mittels spezieller rationaler Funktionen

Ausgehend von der exakten Losung fur I:,EQ) in Abbildung 2.1 konnen auch weitere Ansatze
ausprobiert werden. Hier soll I:,§2) nun durch rationale Funktionen genahert werden. Konkret
wird der Ansatz

(4.11)

gewahlt. Dabel werden die konkreten Entwicklungspunkte b = —1 und b = —0,5 betrachtet.

4.3.1 Entwicklungspunkt b = —1

Zuerst soll der Fall b = —1 untersucht werden. Zur Bestimmung der Koeffizienten a,,
werden wieder die ersten M + 1 Anfangsbedingungen, vgl. Formel (3.46), herangezogen.
Die Koeffizienten nehmen hier anders als bei der Polynomnaherung fiir verschiedene M
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verschiedene Werte an. Die genauen Koeffizienten fir M =1, ..., 4 sind im Anhang B.1.1 zu
finden. Abbildung 4.11 zeigt die Naherungen fiir IZ,£2) und I:,£4) fir u/r> = 0,2. Neben den
Anfangsbedingungen kdnnte auch wieder der Randwert /@ gegeben sein. Die Koeffizienten,
die sich damit ergeben, sind im Anhang B.1.2 notiert. Abbildung 4.12 stellt die Naherungen
fiir 7% und 7Y fir u/r? = 0,2 dar.
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Abb. 4.11: Vergleich der exakten Losung fiir 72 (links) und %) (rechts) mit den Naherungsldsungen,
die mittels des Ansatzes rationaler Funktionen fiir b = —1 und den Anfangsbedingungen ermittelt
wurden, in Abhangigkeit vom Interpolationsparameter k fiir verschiedene Werte des Grads M der
Nzherung und bei N = 2. Die Kopplung betrigt u/r?> = 0,2.

r 1| -=---exakt
0,1+ B B ||—M=1
0.3 M=2
. i 1 - L 4—M=3
Q S

\ZG [~ N TQ& 0 2 | _ - M - 4

0 L 0.1 T R BT B R R

0 0,2 04 06 0,8 1 0 02 04 06 0,8 1

K K

Abb. 4.12: Vergleich der exakten Losung fiir 12 (links) und %) (rechts) mit den Naherungslosun-
gen, die mittels des Ansatzes rationaler Funktionen fiir b = —1, den Anfangsbedingungen und der
Randbedingung ermittelt wurden, in Abhangigkeit vom Interpolationsparameter k fiir verschiedene
Werte des Grads M der Niherung und bei N = 2. Die Kopplung betrigt u/r? = 0,2.

Die Abbildungen 4.13-4.16 zeigen wieder die Fehler der Naherungen bei Fixierung der
Anfangsbedingungen; in den Abbildungen 4.17-4.19 sind die Abweichungen bei der zusatzlichen
Fixierung der Randbedingung dargestellt. Im Vergleich zur Polynomnaherung mit fixierter
Randbedingung aus Abschnitt 4.2.2 sind die Abweichungen von der exakten Losung im ersten
Fall in ahnlicher GroBenordnung; im zweiten Fall ergibt sich eine Verbesserung um etwa eine
GroRenordnung. Aber auch hier gibt es nur einen kleinen Bereich um u/r?> =0, in dem die
erwartete Genauigkeitsordnung angenommen wird. Fiir groRBere Werte von u/r? dndert sich
diese sogar mehrfach und in unregelmaligen Abstanden.

34



4.3 Naherung mittels spezieller rationaler Funktionen

101 e 3 & T 1 T I 5|
s e
100 g E - R
Z -1k 107 E
N 1 :
<1072%F = i i
3 : 11072 ¢ E
B5107° ¢ 3 . :
o E E L ]
8 —4 [ B [ b

10 E | ! ! ! ! I . 3 1073 & ! ! =

0 1 2 3 4 5 §) 0 0,2 0,4
u/r? u/r?

Abb. 4.13: Vergleich der exakten Losung fiir /(2) mit den Naherungslésungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —1 und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit von
der Kopplung u/r? fiir verschiedene Werte des Grads M der Naherung und bei N = 2. Rechts befindet
sich eine vergroBerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.14: Vergleich der exakten Losung fiir /() mit den Naherungsldsungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —1 und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit von
der Kopplung u/r? fiir verschiedene Werte des Grads M der Naherung und bei N = 2. Rechts befindet
sich eine vergroRerte Darstellung fiir den Bereich u/r® < 0,5.
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Abb. 4.15: Vergleich der exakten Losung fiir /(®) mit den Naherungsldsungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —1 und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit von
der Kopplung u/r? fiir verschiedene Werte des Grads M der Naherung und bei N = 2. Rechts befindet
sich eine vergroRerte Darstellung fiir den Bereich u/r® < 0,5.
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Abb. 4.16: Vergleich der exakten Losung fiir /4 (links) und () (rechts) mit den Niherungslosungen,
die mittels des Ansatzes rationaler Funktionen fiir b = —1 und den Anfangsbedingungen ermittelt

wurden, in Abhangigkeit von der Dimension N und fiir verschiedene Werte des Grads M der Naherung.
Es wurde als Kopplung jeweils u/r?> = 3/N gewahlt.
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Abb. 4.17: Vergleich der exakten Losung fiir /() mit den Naherungslosungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —1, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhingigkeit von der Kopplung u/r? fiir verschiedene Werte des Grads M der Niherung und bei
N = 2. Rechts befindet sich eine vergroRerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.18: Vergleich der exakten Losung fiir /(®) mit den Naherungslosungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —1, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhingigkeit von der Kopplung u/r? fiir verschiedene Werte des Grads M der Niherung und bei
N = 2. Rechts befindet sich eine vergroRerte Darstellung fiir den Bereich u/r? < 0,5.
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4.3 Naherung mittels spezieller rationaler Funktionen
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Abb. 4.19: Vergleich der exakten Losung fiir ) (links) und (©) (rechts) mit den Naherungslosun-
gen, die mittels des Ansatzes rationaler Funktionen fiir b = —1, den Anfangsbedingungen und der

Randbedingung ermittelt wurden, in Abhangigkeit von der Dimension N und fir verschiedene Werte
des Grads M der Niherung. Es wurde als Kopplung jeweils u/r? = 3/N gewahlt.

4.3.2 Entwicklungspunkt b = —-0,5

Der Abschnitt 4.3.1 hat gezeigt, dass sich mit der rationalen Naherung eine Verbesserung
gegentiiber der Polynomnaherung erreichen lasst. Dennoch ist das Ergebnis nicht zufrieden-
stellend. Hier soll daher ein zweiter Entwicklungspunkt betrachtet werden, b = —0,5, um
zu untersuchen, ob die Wahl der Entwicklungsstelle einen Einfluss auf die Genauigkeit des
Verfahrens hat. Die Abbildungen 4.20 und 4.21 stellen die Naherungen mit M =1, ..., 4
sowohl bei Fixierung der Randbedingungen als auch ohne diese dar, wobei wieder u/r? = 0,2
gewahlt wurde. Die genauen Koeffizienten sind im Anhang B.2 zu finden.

Die Abbildungen 4.22—4.25 zeigen wieder die Fehler der Naherungen bei Fixierung der
Anfangsbedingungen; in den Abbildungen 4.26—4.28 sind die Abweichungen bei der Fixierung
der Randbedingung dargestellt. Die Ergebnisse sind denen mit b = —1 sehr ahnlich. Es zeigt
sich im Wesentlichen nur eine Skalierung der Abhangigkeit von u/r? um etwa den Faktor 3.
Die Veranderung der Entwicklungsstelle kann demnach die gewiinschte Genauigkeitsordnung
auf einen dreimal groleren Bereich ausweiten.
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4 Alternatives Losungsverfahren
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Abb. 4.20: Vergleich der exakten Losung fiir F,ﬁz) (links) und /:,24) (rechts) mit den Naherungslosungen,
die mittels des Ansatzes rationaler Funktionen fiir b = —0,5 und den Anfangsbedingungen ermittelt
wurden, in Abhangigkeit vom Interpolationsparameter k fiir verschiedene Werte des Grads M der
Naherung und bei N = 2. Die Kopplung betrigt u/r?> = 0,2.
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Abb. 4.21: Vergleich der exakten Lésung fiir /> (links) und Fi9 (rechts) mit den Naherungslosungen,
die mittels des Ansatzes rationaler Funktionen fiir b = —0,5, den Anfangsbedingungen und der
Randbedingung ermittelt wurden, in Abhangigkeit vom Interpolationsparameter k fiir verschiedene
Werte des Grads M der Niherung und bei N = 2. Die Kopplung betrigt u/r* = 0,2.
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Abb. 4.22: Vergleich der exakten Losung fiir /() mit den Naherungslsungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —0,5 und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit
von der Kopplung u/r? fiir verschiedene Werte des Grads M der Niherung und bei N = 2. Rechts
befindet sich eine vergroBerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.23: Vergleich der exakten Losung fiir /() mit den Naherungslésungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —0,5 und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit
von der Kopplung u/r? fiir verschiedene Werte des Grads M der Niherung und bei N = 2. Rechts
befindet sich eine vergroRerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.24: Vergleich der exakten Losung fiir /(®) mit den Naherungslosungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —0,5 und den Anfangsbedingungen ermittelt wurden, in Abhangigkeit
von der Kopplung u/r? fiir verschiedene Werte des Grads M der Niherung und bei N = 2. Rechts
befindet sich eine vergroRerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.25: Vergleich der exakten Losung fir /4 (links) und 7(® (rechts) mit den Naherungslosungen,
die mittels des Ansatzes rationaler Funktionen fiir b = —0,5 und den Anfangsbedingungen ermittelt
wurden, in Abhangigkeit von der Dimension N und fiir verschiedene Werte des Grads M der Naherung.
Es wurde als Kopplung jeweils u/r? = 3/N gewahlt.
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Abb. 4.26: Vergleich der exakten Losung fiir () mit den Naherungslosungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —0,5, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhingigkeit von der Kopplung u/r? fiir verschiedene Werte des Grads M der Naherung und bei
N = 2. Rechts befindet sich eine vergroRerte Darstellung fiir den Bereich u/r? < 0,5.
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Abb. 4.27: Vergleich der exakten Losung fiir /(6) mit den Niherungslésungen, die mittels des Ansatzes
rationaler Funktionen fiir b = —0,5, den Anfangsbedingungen und der Randbedingung ermittelt wurden,
in Abhingigkeit von der Kopplung u/r? fiir verschiedene Werte des Grads M der Niherung und bei
N = 2. Rechts befindet sich eine vergroBerte Darstellung fiir den Bereich u/r?> < 0,5.
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Abb. 4.28: Vergleich der exakten Losung fiir /() (links) und () (rechts) mit den Niherungslosungen,
die mittels des Ansatzes rationaler Funktionen fiir b = —0,5, den Anfangsbedingungen und der

Randbedingung ermittelt wurden, in Abhangigkeit von der Dimension N und fiir verschiedene Werte
des Grads M der Naherung. Es wurde als Kopplung jeweils u/r?> = 3/N gewahlt.
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4.3 Naherung mittels spezieller rationaler Funktionen

4.3.3 Bewertung und Fehleranalyse

Die Naherung fiir 7 durch eine rationale Funktion in der Form in Formel (4.11) bietet
gegeniiber dem Polynomansatz eine hohere Genauigkeit. Dennoch bleibt der Fehler deutlich
zu grols, weshalb auch diese Naherung dem Standard-Verfahren aus Kapitel 3 mit Abstand
unterlegen bleibt. Die Variation der Entwicklungsstelle b fiihrt zu einer Skalierung der Abwel-
chungen beziiglich der Kopplung u/r?, fiir die beiden betrachteten Stellen jedoch zu keiner

weiteren quantitativen oder qualitativen Veranderung.

Das Erhohen von M bietet nur fiir kleine Werte der Kopplung u/r? einen Mehrwert. Die
Genauigkeitsordnung scheint sich fiir groRBere Werte beliebig zu verandern. Ahnlich wie bei den
Polynomen ist der Abstand zwischen der Entwicklungsstelle b bzw. der Anfangsstelle k = 0 und
der interessanten Stelle k = 1 groB, sodass vor allem ohne die Fixierung des Randwerts [ (?)
hohe Abweichungen in den Naherungen auftreten konnen. Auch pflanzen sich die Fehler fort,
die bereits bei féz) auftreten, sodass die Abweichungen fiir /:,.§4), I:,§6) etc. besonders grold

werden.

Ferner ist auffallig, dass die Abweichungen im Gegensatz zum Polynomansatz und dem
Standard-Verfahren fiir u/r> — 0 nicht gegen null gehen. Dies konnte daran liegen, dass I:,£2)
fur sehr kleine Werte der Kopplung u/r? naherungsweise linear verlauft und die gewahlte

Naherung dies nicht gut abbilden kann.

Im Gegensatz zum Polynomansatz sind die Koeffizienten a,, nicht von M unabhangig. Da-
her kann das Gleichungssystem zu deren Bestimmung nicht sukzessive gelost werden, wie
es beim Polynomansatz der Fall ist. Dies gilt aufgrund der Struktur des Ansatzes fir alle
moglichen Entwicklungsstellen. Allerdings entsteht dadurch im Unterschied zu den Polynomen
die Moglichkeit, den Ansatz zu erweitern, ohne dass diese ohnehin nicht vorhandene Eigen-
schaft verloren geht, indem die Entwicklungsstellen fiir jeden Summanden in Formel (4.11)
verschieden gewahlt werden. Damit erhoht sich zwar die Parameteranzahl, moglicherweise
erhalt man damit aber bessere Ergebnisse. Diese Erweiterung des Ansatzes soll hier nicht

weiter untersucht werden.
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5 Fazit und Ausblick

In dieser Arbeit wurde mittels der Literatur zunachst ein grundlegendes Verstandnis liber den
Ansatz der funktionalen Renormierungsgruppe zur Bestimmung der effektiven Wirkung I
sowie des damit verbundenen erzeugenden Funktionals Z erworben. Hierzu diente ein Beispiel
fiir ein erzeugendes Funktional im RM, vgl. Formel (2.1), das ein gewdhnliches Integral darstellt
und fiir welches die exakte Losung bekannt ist. Im Zentrum der Bestimmung der Groken Z und
I" stehen ihre Entwicklungskoeffizienten, d. h. die sogenannten Korrelationsfunktionen G

sowie die eigentlichen Vertizes /™).

Zur Ermittlung der effektiven Wirkung wird zwischen der gegebenen Wirkung als Anfangswert
und der effektiven Wirkung mittels der effektiven Mittelwert-Wirkung [ interpoliert. Hierbei
wird ein sogenannter Regulator-Term eingefiihrt, der diese Interpolation genau beschreibt.
Fir [, ist ferner die Wetterich-Flussgleichung zentral. Mit ihr kann ein unendliches Diffe-
renzialgleichungssystem fuir die Entwicklungskoeffizienten /_,Ezm) der effektiven Mittelwert-
Wirkung aufgestellt werden, das im Standard-Losungsverfahren von der Wirkung zur effektiven

Wirkung naherungsweise integriert wird, vgl. Kapitel 3.

Es stellte sich flir den hier betrachteten Regulator heraus, dass das Gleichungssystem skaliert
werden kann. Damit wurde klar, dass statt der beiden gegebenen Parameter r und v nur das
Verhaltnis u/r?, die Kopplung, fiir das Ergebnis relevant ist, und man vom Interpolations-
parameter k und den GroRen /',52'") zu einem anderen Parameter k sowie /™ iibergehen

kann.

Im weiteren Verlauf der Arbeit wurde eine alternative Losungsstrategie untersucht. Das in
Kapitel 4 beschriebene Verfahren basiert auf der speziellen Struktur der Gleichungen im
Differenzialgleichungssystem, das sich aus der Wetterich-Flussgleichung ergibt. Mit einer
Naherung fir /:éz) startend werden hierbei die Koeffizienten /:,22””2) sukzessive aus den
einzelnen Gleichungen errechnet. Da diese Gleichungen im hier betrachteten Beispiel rein
skalar sind, ist es einfach, diese nach den l:,§2m+2) umzustellen. Im Allgemeinen ist dies aber

eine komplexere Aufgabe, die bspw. in [Zie21] angegangen wird.

Die Beobachtungen im Kapitel 4 verdeutlichen, dass das Verfahren sehr sensibel gegentiber
grolBen Abweichungen der Naherung fiir I:,.Ez) von der exakten Losung ist. Trotz des Fixierens
des Randwerts fiir 7\%) bei k = 1 kdnnen sehr grolBe Fehler entstehen, da in die Berechnung
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der 2™ neben [{? selbst auch die Ableitungen von 2 eingehen. Die Qualitat der
Naherung ist also besonders wichtig, um gute Resultate erzielen zu kénnen. Wenngleich die
Anfangsbedingungen flr I:,,E2) bei kK = 0 meist gegeben sind, ist die Angabe des Randwerts
oder der Ableitungen bei kK = 1 nicht immer maoglich. Das macht es schwierig, die Qualitat
der Naherung sicherzustellen.

Das Beispiel der Naherung mittels spezieller rationaler Funktionen aus Abschnitt 4.3 zeigt,
dass die Wahl des Entwicklungspunktes einen Einfluss auf die Grolke der Fehler hat. Im
Polynom-Beispiel in Abschnitt 4.2 sieht man, dass die Bestimmung der Koeffizienten mittels
der Anfangsbedingung auch nacheinander moglich ist, sofern bestimmte Koeffizienten in der
Ableitung von 2 an der Stelle k = 0 nicht auftreten. Das vereinfacht die Berechnungen
etwas. Es stellte sich allerdings auch heraus, dass einige der Flussgleichungen bei bestimmten
Formen von Ansatzen redundant sind, vgl. bspw. Abschnitt 4.2.1.

Die hier betrachteten Naherungen konnen dem Standard-Verfahren bislang nur fiir kleine Werte
der Kopplung u/r? Konkurrenz machen. Das Standard-Verfahren bietet den Vorteil, dass
bei der Integration des Differenzialgleichungssystems alle gekoppelten Gleichungen simultan
betrachtet werden und ﬁ?) somit erst beim Losen des Systems entsteht. Dem gegentiber wird
im hier untersuchten Verfahren erst die Naherung von I:,§2) festgelegt, woraus sich tiber das

m+2) ergeben. Dies unterstreicht noch einmal, dass fiir f,ﬁ” eine moglichst

System dann die I:,£2
gute Naherung gegeben sein muss, um mit dem Verfahren zufriedenstellende Ergebnisse

erhalten zu konnen.

In weiteren Untersuchungen konnte das Verfahren zunachst mit weiteren Ansatzen fiir
Naherungen durchgefiihrt werden. Man konnte nach Kriterien suchen, die eine hinreichende
Qualitat der Naherung fir /:E) sicherstellen. Auch ist es sinnvoll, das Verfahren fiir andere
Regulatoren und weitere Beispiele fiir erzeugende Funktionale zu testen. Sofern sich das
Verfahren dann als zielfiihrend herausstellt, kann es auf allgemeinere Problemstellungen fernab
des R" angewendet und daran untersucht werden.

Es muss allerdings angemerkt werden, dass in der Praxis die exakte Losung fiir ) nicht be-
kannt ist — sonst konnte man das Verfahren mit dieser Losung durchfiihren und erhielte exakte
Losungen fur die l:,£2m+2). Daher ist die Abschatzung des Fehlers, zu dem das Verfahren fiihrt,
im Allgemeinen schwierig. Nichtsdestotrotz wurden zu anderen konkreten Problemstellungen
exakte Losungen mit der Wetterich-Gleichung gefunden, vgl. [BW13; CDW16]. Diese kénnen

fur weitere Tests herangezogen werden
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Anhang A

Programme

Hier sind die Quellcodes fiir die automatische Herleitung der Beziehungen der Koeffizienten und
der Flussgleichungen dargestellt. In der PDF-Version dieser Arbeit sind die Codes mit farblicher
Hervorhebung zu finden. Die verwendete Software ist Python 3.12.3 mit SymPy 1.12.1.

A.1 Herleitung der Beziehungen zwischen den

Korrelationsfunktionen und den eigentlichen Vertizes

Nachfolgend ist das Programm zur Herleitung der Beziehungen zwischen den Korrelations-
funktionen und den eigentlichen Vertizes dargestellt, vgl. Abschnitt 2.2.2. Die Variable m_max
(hier mit Wert 5) bestimmt die hochste zu berechnende Beziehung.

import sympy as sp

def gc_to_gamma(m: int) -> sp.Eq:
"""yandelt Gec~(2m) in I'~(2m) um."""

ifm==1:
return sp.Eq(sp.Symbol("I'~(2)"), 1 / sp.Symbol("Gc~(2)"))
else:
j = sp.Symbol("J")
sp.Function("W") (j)
w_2_inv = 1 / w.diff(j, 2)

gamma_diff_2m = w_2_inv # gamma_diff_2
for i in range(2 * m - 2):

gamma_diff 2m = w_2_inv * gamma_diff_2m.diff(j)
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Anhang A Programme

# alle geraden
# alle ungerade

gamma_diff_ 2m =

for i in range(
gamma_diff_

gamma_diff_

return sp.Eq(sp

def g_to_gc(m: int) ->
"""Wandelt G~ (2m) 1

if m ==
return sp.Eq(sp
else:
gc_2m = sp.Symb
j = sp.Symbol("

z = sp.Function

w_diff_2m = sp.

# alle geraden
# alle ungerade
for i in range(
w_diff_2m =
w_diff_2m =

return sp.Eq(gc

if __name__ == "__main__

Sp.init_printing()

# hochste zu berech

m_max = 5

for m in range(l, m

eq = gc_to_gamm

Ableitungen ersetzen
n Ableitungen null
gamma_diff_2m.subs(w.diff(j, 2 * m),

sp. Symbol (£"Gc~ ({2 * m})"))
2%m-1, 1, -2):
2m = gamma_diff_2m.subs(w.diff(j, i), 0)
2m = gamma_diff_2m.subs(w.diff(j, i - 1),

sp.Symbol (f"Gec~({i - 1})"))

.Symbol (£"I' ({2 * m})"), gamma_diff_2m.expand())
sp.Eq:

n Gec~(2m) um."""

.Symbol ("Gc~(2)"), sp.Symbol("G~(2)"))
01(£f"Ge~ ({2 * m}H)")

Jll)

(IIZH) (J)

log(z) .diff(j, 2 * m)

Ableitungen ersetzen

n Ableitungen null

2 xm, 1, -2):

w_diff_2m.subs(z.diff(j, i), sp.Symbol(f"G~({i})") * z)

w_diff_2m.subs(z.diff(j, i - 1), 0)

_2m, w_diff_2m.expand())

nende Beziehung:

_max + 1):

a(m)

for i in range(m, 0, -1):

g_gc = g_to
eq = eq.sub
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A.2 Herleitung der Flussgleichungen

eq = eq.expand()
sp.pprint (eq)

A.2 Herleitung der Flussgleichungen

Nachfolgend ist das Programm zur Herleitung der Flussgleichungen dargestellt. Die Flussglei-
chungen werden in der allgemeinen Form aus Abschnitt 3.3.2 sowie in der konkreten Form
aus Abschnitt 3.4.1 ausgegeben. Die Variable m_max (hier mit Wert 4) bestimmt die hochste

zu berechnende Gleichung.

from math import factorial

from itertools import combinations_with_replacement

import sympy as sp

def double_list(alpha: list[int]) -> list[int]:
mnmnn
Doubles the list ~“alpha” " element-wise.
:param alpha: multi-index
:return: doubled multi-index

mnmnn

return [2 * a for a in alpha]

def multi_index_factorial(alpha) :
"""Calculates the factorial of the multi-index “alpha”."""
# Set the initial value for the partial product.
prod = 1
for k in range(len(alpha)):
prod = prod * factorial(alphalk])

return prod

def multi_index_sum(f, m_, n_, **kwargs):

non

Calculates the sum over “f(alpha, **kwargs)  for all multi-indices
‘alpha” of length "n” with sum "m’.

“xxkwargs™ could be, for example, r or u.
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def

48

nnn

# Set the initial value for the partial sum.

sum_ = O

# Iterate over all combinations of 0O, ..., n-1 of length m with

# replacement.

# Each tuple of the set of combinations stands for one multi-index.
# This is achieved by first creating a prototype multi-index and

# then successively adding 1 to the prototype multi-index's entries
# given by the combination tuple.

# After that, the summand is added to the partial sum variable.

# By iterating over the combinations this gives the sum.
for it in combinations_with_replacement(range(n_), m_):

# Create prototype multi-index.

alpha = n_ * [0]

# Add 1 to the entries indexed by “it"

for i_ in range(m_):

alphalit[i_]] = alphalit[i_]1] + 1
# Add the summand “f(alpha)” to the partial sum “sum_"

sum_ = sum_ + f(alpha, **kwargs)

return sum_

summand_diagonal _matrix_trace(alpha: list[int],
gamma_k_list: list[sp.Function],
regulator: sp.Function,
simplify: bool = True) -> sp.Expr:
i
Calculates the summand for the multi-indexed sum.
:param alpha: multi index
:param gamma_k_list: ordered list of ‘I'~(2)°, ‘I'~(4)°, ..., 'I'"(2m + 2)° as
— functions
:param regulator: regulator as a function
:param simplify: whether to simplify
:return: summand

nnn

product_1 = sp.Integer(1l)

product_2 = sp.Integer(1l)

for a in alpha:
product_1 = product_1 / (2 * sp.Integer(a) + 1)
if a == 0O:

product_2 = product_2 * (gamma_k_list[0] + regulator)

else:
product_2 = product_2 * gamma_k_list[a]



A.2 Herleitung der Flussgleichungen

product = (((n - 1) * product_1 + 1) * product_2
/ sp.Integer(multi_index_factorial (double_list(alpha))))

if simplify:
product = product.simplify()

return product

def flow_equation(m: int, simplify: bool = True) -> tuplelsp.Eq, sp.Eql:
mmnn
Calculates the "~"m” "-th flow equation.
:param m: number of flow equation, positive integer
:param simplify: whether to simplify the equation

:return: the " "m "-th flow equation

mnmnn

# Get Symbols.

r = sp.Symbol("r", positive = True)
regulator = sp.Function("R") (k)
gamma_k_list = generate_gamma_k_list(m)
sigma = sp.Function("X") (k)

k_sigma_1 = k * sigma + 1

x = sp.Symbol("x"

outer_sum = 0
for j in range(l, m2 + 1):
inner_sum = multi_index_sum(summand_diagonal_matrix_trace,
m,
Js
gamma_k_list = gamma_k_list,
regulator = regulator,
simplify = simplify)
if simplify:
inner_sum = inner_sum.simplify ()
factor = (sp.binomial(m2 + 1, j + 1)
* (gamma_k_1ist[0] + regulator) ** (m - j))
if j h 2 ==
factor = -factor

outer_sum = outer_sum + factor * inner_sum
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rhs_1 = sp.Rational(factorial(m2), 2) * outer_sum
if simplify:

rhs_1 = rhs_1.simplify()
rhs_1
rhs_1
if simplify:

rhs_1.subs(gamma_k_list[0] + regulator, 1 / x)

rhs_1 * x % (m + 1)

rhs_1 = rhs_1.expand(x)
for gamma_k in gamma_k_list:
rhs_1 = rhs_1.collect(gamma_k)
rhs_1 = rhs_1.collect(x)
rhs_1 = rhs_1.subs(l / x, gamma_k_list[0] + regulator)

rhs_2 = rhs_1.subs([(regulator, 1 / k - r),
(gamma_k_1ist[0], sigma + r)])
-rhs_2 / k *x 2

rhs_2
if simplify:

rhs_2 = rhs_2.simplify()
rhs_2 = rhs_2.subs(k_sigma_1, 1 / x)
if simplify:

rhs_2 = rhs_2.expand(x)

for gamma_k in gamma_k_list:

rhs_2 = rhs_2.collect(gamma_k)
rhs_2 = rhs_2.collect(x)
rhs_2 = rhs_2.collect (k)

rhs_2 = rhs_2.subs(x, 1 / k_sigma_1)
lhs_2 = gamma_k_list[-2].diff (k)
lhs_1 = 1lhs_2 / regulator.diff (k)

eq_1 = sp.Eq(lhs_1, rhs_1)

# Skalierung.
gamma_kappa_list = [gamma_2m_k.subs(k, kappa)

for gamma_2m_k in gamma_k_list]
rhs_3 = rhs_2 . subs([(gamma_k_list[i], gamma_kappa_list[i])
for i in range(l, len(gamma_k_list))])
rhs_3 = rhs_3.subs(sigma, gamma_kappa_list[0])
rhs_3 = rhs_3.subs(k, kappa)

lhs_3 = gamma_kappa_list[-2].diff (kappa)

eq_3 = sp.Eq(lhs_3, rhs_3)



A.2 Herleitung der Flussgleichungen

def

k =

return eq_1, eq_3

generate_gamma_k_list(m: int) -> list[sp.Function]:

mmn

Generates an ordered list of I'~(2)°, 'I'~(4)°, ..., 'I'"(2m + 2)° as functions of
- "k

:param m:

:param k: interpolation parameter, the ‘I'~(21)° are functions of
:return: list of I'~(2)°, I'~(4)°, ..., 'I'"(2m + 2)° as functions of “k°

mnmnn

gamma_k_list = (]
for i in range(2, 2 * m + 3, 2):

gamma_k_list.append(sp.Function(f"I'~({i})") (k))

return gamma_k_list

sp.Symbol ("k")

kappa = sp.Symbol("x")

n =

if

sp.Symbol ("N", integer = True, positive = True)

_name__ == "__main__

sp.init_printing()

# hochste zu berechnende Flussgleichung:

m_max = 4

for m in range(l, m_max + 1):

eq, eq_scal = flow_equation(m)

sp.pprint (eq)
sp.pprint (eq_scal)
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Anhang B

Koeffizienten fiir die Naherung mittels
spezieller rationaler Funktionen

In diesem Anhang werden die Koeffizienten aufgelistet, die sich mit der Naherung in Ab-
schnitt 4.3 ergeben.

B.1 Entwicklungspunkt b = —1

Hier werden die Koeffizienten flir den Fall b = —1 aufgefiihrt.

B.1.1 Betrachtung der Anfangswerte

Werden nur die Anfangswerte zur Bestimmung der Koeffizienten herangezogen, ergeben sich
die folgenden Koeffizienten. Fiir M = 1 findet man

B _N+2u
BETA= T
fur M =2
a a _  N+2u
2732 %
fur M =3

_ N+2u _(N+2)(N—l—4)(u 2
TR 36 2)

(N +2)(N+4) 21)2,
)

u
81——(/\/—"2)24’ 12 P

a__2(N—|—2)u_(N+2)(N—|—4 <u>2
> 3 2 12 r2)
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dz3 = —

N+2£+(N+2)(l\/—|—4) <£>2
6 r? 36 r?

und fir M =4

Co2N+2)u (N+2)(N+4) fuy?
=TT 9 (ﬁ)

5(N+2)u  5B(N+2)(N+4) /u\2
R 12 (=)
. _5(N+2)u T(N+2)(N+4) (3)2
s s o

S5(N+2)u  13(N+2)(N+4) ru\2
BT 2 36 (%)
a:N+2£_(N+2)(N+4)<£>2
N 6 r? 12 r2)

B.1.2 Betrachtung von Anfangswerten und einer Randbedingung

Wird neben den Anfangswerten auch die Randbedingung zur Bestimmung der Koeffizienten

herangezogen, ergeben sich die folgenden Koeffizienten. Fiir M = 1 findet man

fur M =
N+2u ~ (5 N+2u ~ (5 N+2u
dog = —Tﬁ + 4I—e(><a)kt' dp = Tﬁ — 8l—e(xa)kt und do = —TZ
fur M =
2(/\/ + 2) u ~(0
do = T3 2 + 8I_e(xa)kt'
5(N+2) u ~ (o
A= m T 2473
17T(N+2) u ~
a = —¥§ + 2473
u ~
as = (N + 2)5 — 8l
und M =4
~ IIIN+2) u (N+2)(N+4) ru\2
_ ()
i 36 (=)
- 25(N+2) u  5(N+2)(N+4) s u\2
_ (2
= et = e ()
~ AON+2)u  (N+2)(N+4) fu\2
_ (2)
32 — 96I_exakt - 3 ﬁ + 4 (Z) ’

+4r2)

exakt !
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. S5(N+2) u  T(N+2)(N+4) [ uy?
=64 gt = 36 (ﬁ) '
~ TIN+2)u (N+2)(N+4) su\?
_eF@ u u
e 18 () -

B.2 Entwicklungspunkt b = —-0,5

Hier werden die Koeffizienten fiir den Fall b = —0,5 aufgefiihrt.

B.2.1 Betrachtung der Anfangswerte

Werden nur die Anfangswerte zur Bestimmung der Koeffizienten herangezogen, ergeben sich

die folgenden Koeffizienten. Fiir M = 1 findet man

N+2u

S TR

fir M =2

fir M =3

a_N+2£_(N+2)(N+4)<£>2
°T 4 288 r2)
__N+2£+(N+2)(N+4)<£>2
4 r? 192 r2)
_N+2£_(N—|—2)(N—|—4)<i>2
12 r? 384 r?)
N+2u (N+2)(N+4)<£)2
96 r? 2304 r?

dz =

und fir M =4

. N+2u (N+2)(N+4) <£>2
° 3 r? 72 r2/
_5(N—|—2)£+5(N+2)(N+4) <£>2
12 r? 192 r?
5(N+2)u  7(N+2)(N+4) (i)Q
24 r? 384 r?)
a :_5(N+2)£+ 13(N+2)(N +4) (£>2
’ 96  r2 2304 r2)

d; =

dp =
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B.2 Entwicklungspunkt b = —0,5

N2

u (N+2)(N+4) ru

9= 92

r? 1536 ( r2 )2 '

B.2.2 Betrachtung von Anfangswerten und einer Randbedingung

Wird neben den Anfangswerten a

uch die Randbedingung zur Bestimmung der Koeffizienten

herangezogen, ergeben sich die folgenden Koeffizienten. Fiir M = 1 findet man

3=
g = —2a; = El_e(xa)kt
fur M =2
9~ N+2u 9~ N+2u 9 - N+2u
_ (2) ©) _ (2)
=gleae= 75 2 ="gleaxt 5z Wd @2=Tlcae 5 2
fur M =3
27 ~ 7T(N+2)u
_ @)
=gl "7 2
81 - 11(N +2) u
(2
a=-teleaet —35 2
8l AN+
2 30 ekt 192 2’
g 2pe  SINE2)u
64 ek T 128 2
und fir M =4
aOZEI:(Q) CLI(N+2)w  (N+2)(N+4) <£>2
16 ekt 32 576 r2)
a1:_8_1~(2) I5(N+2) u (N+2)(N+4) <£>2
g Kt 16 r? 192 r2)
82:%"'(2) C155(N+2) u  (N+2)(N+4) (E)Q
32 ek 192 r? 192 r2)
33:_§/=(2) 55(N+2)u  5(N+2)(N+4) (£>2
32 ek 192 r? 2304 r2)
34:ﬂ~(2) 19N +2)w  (N+2)(N+4) (i)Q'
256 ekt 512 r2 3072 r2
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