UNIVERSITAT JENA PHYSIKALISCH- ASTRONOMISCHE FAKULTAT

FRIEDRICH-SCHILLER-

UNIVERSITAT

Bachelorarbeit

Klassisch-orientierte Behandlung
metrisch-affiner Gravitationstheorien

mit Materie

Minou Luger

Erstgutachter: Prof. Dr. Holger Gies Eingereicht am 31. Méarz 2025

Zweitgutachter: M.Sc. Julian Schirrmeister






Inhaltsverzeichnis

1 Einleitung

2 Struktur der Raumzeit
2.1 Topologische Struktur . . . .. . ... ..
2.2 Glatte Mannigfaltigkeiten . . . . . . . .. ... 0 0o oo
2.3 Algebraische Strukturen auf Mannigfaltigkeiten . . . . . . .. ... ... ...

2.3.1 Vektoren

2.3.2 Kovektoren . . . . . . ..

2.3.3 Tensoren

2.4 Vektorbiindel auf Mannigfaltigkeiten . . . . . . . .. .. ... 0.

2.5 Zusammenhédnge auf Vektorbiindeln . . . . .. ... ... ... ... ... ..

2.6 Metrik . . ...

3 Metrisch-Affine Gravitationstheorie

3.1 Affiner Zusammenhang . . . . . . . ... L Lo Lo

3.2 Krimmung . .

3.3 Torsion und Nichtmetrizitat . . . . . . ... ... ..o o000
3.4 Metrisch-Affine Version der Einstein-Hilbert-Wirkung . . . . . . . ... ...

3.5 Materie . . ..

4 Metrisch-Affine Materiemodelle
4.1 Entkopplung des Levi-Civita-Zusammenhangs . . . . . .. .. ... ... ...

4.2 Bewegungsgleichung des Differenzentensorfeldes . . . . . . . .. ... ... ..

4.3 Materiemodelle
5 Fazit

A Anhang

© 9 O O Ot W W

10

12
12
13
15
16
17

20
20
22
26

33

34






1 Einleitung

FEine mogliche Vereinbarkeit von allgemeiner Relativitatstheorie mit der Quantenphysik
zu erreichen, ist ein zentrales Problem der modernen Physik. Um dieses anzugehen, gibt es
verschiedene Ansétze zur Erweiterung der allgemeinen Relativitédtstheorie oder zur Entwicklung
einer neuen Gravitationstheorie.

In dieser Arbeit wird eine Erweiterung der allgemeinen Relativitédtstheorie iiber einen Zu-
sammenhang betrachtet, der Torsion und Nichtmetrizitdt der Raumzeit nicht ausschlief3t.
Ziel ist es, die Raumzeit mit und ohne Materie unter klassischer Rechnung auf Torsion und
Nichtmetrizitdt zu untersuchen.

Dafiir wird zunéchst die Struktur der Raumzeit anhand ihrer Bestandteile erldutert, um im Ver-
lauf die konzeptionellen Moglichkeiten einer Erweiterung herauszuarbeiten und Unterschiede
zur allgemeinen Relativitdtstheorie aufzuzeigen.

Ist die Struktur der Raumzeit festgelegt, ist der Ausgangspunkt zur Erweiterung der ein-
steinschen Gravitationstheorie die Einstein-Hilbert-Wirkung, deren Variation nach der Metrik
zu den einsteinschen Feldgleichungen fiihrt. Diese stellen eine mathematische Verbindung
zwischen der Geometrie der Raumzeit und der durch den Energie-Impuls-Tensor ausgedriickten
moglichen Anwesenheit von Materie her.

Im Mittelpunkt der Erweiterung steht die Verwendung eines nicht néher spezifizierten affi-
nen Zusammenhangs im Unterschied zum ausgezeichneten Levi-Civita-Zusammenhang der
einsteinschen Theorie. Aulerdem werden die durch die Feldgleichungen mit dem Energie-
Impuls-Tensor verkniipften geometrischen Phénomene Torsion, Nichtmetrizitdt und die durch
die Metrik bestimmte Kriimmung eingefiihrt. Bei der allgemeinen Relativitatstheorie umfasst
die Geometrie hingegen lediglich den metrischen Teil der Kriimmung.

Ferner wird die Herleitung der einsteinschen Feldgleichungen in der allgemeine Relativitatstheo-
rie kurz beschrieben, um spéter den verallgemeinerten Fall der metrisch-affinen Gravitation
plausibel zu machen. Da auch durch Materie herbeigefithrte Effekte untersucht werden, reicht
es dabei nicht aus, nur die Vakuum-Feldgleichungen zu betrachten. Fiir Wechselwirkungen
mit Materie werden daher Beispiele einfachster Art diskutiert.

Mit Hilfe eines Differenzentensorfeldes kann die Wirkung in die bereits bekannte Einstein-
Hilbert-Wirkung der allgemeinen Relativitdtstheorie und in vom Differenzentensorfeld ab-
héngige Zusatzterme aufgeteilt werden. Fiir dieses wird eine separate Bewegungsgleichung
gefunden, welche zu allgemeineren Feldgleichungen fiir die Metrik fiithrt. Die Informationen
iiber Torsion und Nichtmetrizitdt werden zuletzt noch einmal in einer Rechnung mit Materie

untersucht.



EINLEITUNG

Konventionen: In dieser Arbeit wird

innerhalb von Produkten iiber doppelte Indizes, wobei ein Index oben und einer unten

steht, nach Einstein-Summen-Konvention summiert,
ein Einheitensystem mit ¢ = 1 angenommen,
fir metrische Tensorfelder g eine Lorentz-Signatur o(g,u,) = (—, +,+,+, ...) verwendet,

zur Angabe von Koordinaten und Tensorfeldkomponenten zwischen lateinischen Indizes
in einer beliebigen Anzahl raumzeitlicher Dimensionen und griechischen Indizes speziell

in vier Dimensionen unterschieden,
die Ableitung einer Funktion in einer Verédnderlichen mit einem Strich markiert,

bei bestimmten Integralen auf Integrationsgrenzen verzichtet, wenn iiber den gesamten

zugrundeliegenden Bereich integriert werden soll,

fiir das Kronecker-Symbol die Definition 6% = 6ij = 0;; mit d;; = 1 fiir ¢ = j und 6;; = 0
fiir i # j verwendet, sowie das Dirac-Delta in d Dimensionen bei z € R? mit §%(x)

bezeichnet.



2 Struktur der Raumzeit

In dieser Arbeit wird die Raumzeit als ein Kontinuum an Ereignissen angenommen. Thre
Beschreibung erfolgt durch eine Menge an Punkten, lokal definiert durch reelle Zahlentupel (z¢)
mit den Raumkoordinaten fiir 4 = 1,2, ...,d — 1 und einer Zeitkoordinate x°. Dariiberhinaus

besitzt diese Menge eine Stetigkeits- und Differenzierbarkeitsstruktur.

Im Rahmen der allgemeinen Relativitatstheorie wird die Krimmung der Raumzeit mit
Gravitation identifiziert. Um unphysikalische Kriimmung, resultierend aus einer Einbettung
in ein von auflen vorgegebenes Koordinatensystem, zu vermeiden, ist das Ziel eine intrinsische
und damit insbesondere koordinatenfreie Beschreibung von Kriimmung, ausgedriickt in dazu
geeigneten mathematischen Objekten wie beispielsweise einem metrischen Tensorfeld. Fiir eine
solche intrinsische Beschreibung werden die Methoden der modernen Differentialgeometrie

verwendet, in deren Zentrum der Mannigfaltigkeitsbegriff steht.

2.1 Topologische Struktur

Ausgangspunkt fiir eine koordinatenunabhéngige Beschreibung ist die Abstraktion metri-
scher Rdume unter den Gesichtspunkten der Stetigkeit, der Konvergenz sowie der lokalen
Euklidizitat. [1]

Mittels einer Familie offener Mengen — einer Topologie — lassen sich die oben genannten

Bestandteile definieren.
Fiir eine Menge M und ihrer Potenzmenge P (M) ist eine Familie 7 C P(M) von Teilmengen
von M genau dann eine Topologie, wenn sie
(T1) O,MeT,
(T2) YUV:(UVeT = UNVeT),
(T3) Y(Ua)acr: ((Ua)act €T = UaerUa €T)
erfullt, wobei mit (Uy)aer eine Folge von Mengen aus 7T, geordnet durch eine geeignete

Indexmenge I, bezeichnet wird. [1-3]

Zusammen mit der Grundmenge M ergibt das Paar (M,7) einen topologischen Raum,
der auf grundlegendste Weise erlaubt, die Lage von Punkten zueinander durch einen Umge-
bungsbegriff zu charakterisieren, sowie Stetigkeit und Konvergenz zu untersuchen, ohne auf

externe Information zuriickzugreifen. [1, 2, 4]

Der entscheidende Schritt, um aus einem topologischen Raum schliefilich eine topologische

Mannigfaltigkeit zu erhalten, ist das Konzept von lokaler Euklidizitdt. Wenn es zu jedem
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Punkt p € M einen Hom6omorphismus ¢ von einer offenen Umgebung um p, also einer
offenen Menge die p enthélt, in eine beziiglich der entsprechenden Standardtopologie offenen
Teilmenge des R? mit d € Ny gibt, heifit der topologische Raum lokal euklidisch zum
R¢. Die Standardtopologie ist hierbei die Topologie der offenen Bille, gemessen durch die
euklidische Norm. SchlieBlich stellt ein zum R lokal euklidischer topologischer Raum eine
d-dimensionale topologische Mannigfaltigkeit M = (M, T) dar. [2, 3]

Die homéomorphe Abbildung ¢ von einer offenen Umgebung U in eine offene Teilmenge
des R? wird Kartenabbildung genannt. Das Paar (U, ¢) ist eine Karte. Im R¢ kénnen
wieder konventionelle Koordinatensysteme verwendet werden. Daher ist fiir Karten auch das
Synonym , Koordinatensystem*“ verbreitet. Ist eine Basis {e;} fiir den R? gewihlt, kann fiir
alle ¢ € U die Auswertung ¢(q) als Tupel ¢(q) = 2'(q) e; = (2°(q),..., 2% (¢)) mit den
Komponenten 7¢(q) € R geschrieben werden. Diese Koordinaten heifen lokale Koordinaten
(U, ) = (U,a). [2-4]

Alle Karten konnen in einer Familie {(U,, ¢a) | € I} zusammengefasst werden, welche
den Namen Atlas bekommt, wobei I eine geeignete Indexmenge darstellt. Die vereinigten
Kartengebiete {U,} miissen dabei mindestens die gesamte Menge M der Mannigfaltigkeit
beztiglich Inklusion abdecken. [2, 3, 5]

2.2 Glatte Mannigfaltigkeiten

Glatte topologische Mannigfaltigkeiten sind fiir eine vollstdndige analytische und physikali-
sche Beschreibung iiber die Wahl einer geeigneten Topologie hinaus noch mit einer weiteren
Struktur versehen, welche das Differenzieren auf und zwischen Mannigfaltigkeiten ermoglicht.
Dies ist eine sogenannte glatte Struktur, deren wichtigstes Merkmal die Glattheit von Koordi-

natentransformationen ist. [3, 5]

Zunéchst soll definiert werden, was unter einer Koordinatentransformation beziehungsweise
einem Kartenwechsel zu verstehen ist. Dafiir seien (U, py) und (V, oy) mit U NV # 0 zwei
sich iiberlappende Karten in M. Die Kartenwechsel bestimmen sich durch die Abbildungen

pvopr': RIDpp(UNV) — oy (UNV)CRY, (2.1)

propy: RYD ey (UNV) = op(UNV)C R (2.2)

Die Karten heiflen glatt vertriglich, wenn die Kartenwechsel zwischen ihnen glatt, also
beliebig oft differenzierbar sind. Werden die glatt vertriglichen Karten in einem Atlas zusam-
mengefasst, wird dieser zu einem glatten Atlas. Die beziiglich Inklusion eindeutig bestimmte
maximale Kollektion an glatt vertrdglichen Karten in diesem Atlas wird glatte Struktur 2A

genannt. [2, 3, 5, 6]



Algebraische Strukturen auf Mannigfaltigkeiten

Das Tripel (M, T,2l) ist eine d-dimensionale glatte Mannigfaltigkeit. In den kommenden
Betrachtungen wird von dieser kollektiven Struktur grundsétzlich ausgegangen und eine solche
begrifflich als Mannigfaltigkeit M abgekiirzt. [2]

Abschlieflend folgen wichtige Begriffserkldrungen. Dafiir sei f eine Abbildung f: M — N
zwischen einer m-dimensionalen topologischen Mannigfaltigkeit M = (M, Tys) und einer

n-dimensionalen topologischen Mannigfaltigkeit N' = (N, Ty).

Die Koordinatendarstellung von f ergibt sich fiir zwei jeweils gewéhlte Karten (U, prr) in
Mund (V,y) in N mit f(U) CV aus gy o foey' : R™ D op(U) — ¢y (f(U)) C R™ Die
Abbildung f heifit differenzierbar, wenn sie in allen Koordinatendarstellungen differenzierbar

ist. Die Differenzierbarkeit von f ist unabhéngig von der Wahl lokaler Koordinaten. [2, 3]

Sei f nun ein Homdomorphismus. Wenn das Inverse ¢ o f~1 o <p‘_,1 von gy o fo gpl_]l existiert
und beide Abbildungen beliebig oft differenzierbar sind, dann wird f ein Diffeomorphismus
genannt. Die Mannigfaltigkeiten zwischen denen f abbildet, konnen in diesem Fall glatt inein-
ander umgeformt werden; sie sind zueinander diffeomorph. Wenn M eine d-dimensionale
Mannigfaltigkeit mit glatter Struktur 2 ist, so sind sdmtliche Kartenabbildungen Diffeo-

morphismen. [3]

Als einfachster nicht-trivialer Fall ist beispielsweise der R? selbst eine Mannigfaltigkeit, welche
durch eine einzige globale Karte (R%,idg4) die sogenannte glatte Standardstruktur eindeutig
bestimmt. Dariiber hinaus ist jeder auf diese Weise erzeugte Kartenwechsel per Konstruktion

ein Diffeomorphismus. [3, 5]

Glatte Funktionen sind beliebig oft differenzierbare Abbildungen der Form M — R. Der
lineare Raum aller glatten Funktionen auf M ist mit C°°(M) bezeichnet. Dariiber hinaus
heiflen glatte Abbildungen von einem Intervall I C R nach M glatte Kurven. [2, (]

2.3 Algebraische Strukturen auf Mannigfaltigkeiten

Zur Einfithrung vektorieller und tensorieller physikalischer Grofien soll in diesem Abschnitt der
bereits diskutierte mathematische Rahmen um zusétzliche algebraische Strukturen erweitert
werden. Thre Definitionen erfolgen zunéchst nur punktuell, bevor sie im néchsten Abschnitt

global fortgesetzt werden.
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2.3.1 Vektoren

Auf Mannigfaltigkeiten werden Vektoren als Tangentialvektoren — oder kurz Tangenten — ver-
standen. Diese Tangentialvektoren sind Richtungsableitungen einer Funktion in Richtung

einer Kurve.

Sei I C R ein offenes Intervall, p € M ein Punkt und v : I — M, A — () eine glatte Kurve
auf einer Mannigfaltigkeit M. Die Kurve sei so gewéhlt, dass sie durch den Punkt p verlauft,
es gibt also ein A\, € I mit y(\,) = p. Die Richtungsableitung einer glatten Funktion
f € C®(M) in Richtung « bei p ist definiert durch die lineare Abbildung

Voy : C(M) = R, f = Vor(f) :i=(For)(Ap) (2.3)

Erfiillt die Abbildung V,, , die Leibnizregel, handelt es sich um eine sogenannte Derivation.
Da fiir jede Derivation in einem Punkt eine Kurve gefunden werden kann, fir welche die
Derivation dquivalent zu einer Richtungsableitung ist, kann die Kurve auch weggelassen und
Vp statt V), geschrieben werden. [2, 3, 6]

Die Menge aller Derivationen an einem Punkt p kann auf kanonische Weise selbst zu einem
Vektorraum iiber R erhoben werden — dem mit 7, M bezeichneten Tangentialraum. Dieser
hat die gleiche Dimension wie die Mannigfaltigkeit M selbst. Die Elemente von T),M sind die

Tangentialvektoren, die auch nur als Vektoren bezeichnet werden. [6, 7]

Durch einen Satz lokaler Koordinaten (U, ') um p wird stets eine Koordinatenbasis von
_ 0
Ozt

dann in der Form V,, = VZ ei(p) durch seine Komponenten VZ € R ausgedriickt werden.

T,M induziert, deren Basiselemente durch e;(p)

» gegeben sind. Ein Vektor V}, kann

Zwischen Koordinaten kann mittels der Transformationsformel f/pi = g—g|p%j gewechselt
werden. Zu beachten ist hierbei, dass Vektoren an sich kartenfreie Objekte sind, das heifit

V, = Viei(p) = Vigi(p) = Vp. [3, 7]

2.3.2 Kovektoren

Der Kotangentialraum 77 M ist der Dualraum des Tangentialraums und kann somit fiir eine
Mannigfaltigkeit M an jedem Punkt p definiert werden. Seine Elemente sind die Kovektoren,

also lineare Funktionen w : T, M — IR, die jedem Vektor bei p eine Zahl zuordnen.

Jede Koordinatenbasis induziert auf eindeutige Weise eine duale Basis fiir T;M mit
o)

Elementen e(p) = dpa’ definiert durch dpz’(3%; p) = 5%. Daher lautet die Komponenten-
oz7

O

schreibweise fiir Kovektoren w, = w;(p) dpz’, wobei mittels w;(p) = W (p) zwischen

unterschiedlichen lokalen Koordinaten transformiert werden kann. [3, 7]



Vektorbiindel auf Mannigfaltigkeiten

2.3.3 Tensoren

Tensoren sind multilineare Abbildungen, die » Kopien des Kotangentialraums und s Kopien

des Tangentialraums auf eine Zahl abbilden:
A (T M) x (T,M)* - R mit 7,5 € No. (2.4)

Im Fall » = 0 = s reduziert sich Ap(r’s) = Ap(O’D) € R auf eine Zahl.

Der R-Vektorraum aller (7, s)-Tensoren an einem Punkt p wird (r, s)-Tensorraum T} (T,M)
genannt. Eine Basis des Tensorraums ergibt sich aus dem Tensorprodukt einer Vektorraumbasis
{ei(p)} fiir T,M und der dazugehérigen dualen Basis {e’(p)} € T M. Mit den Komponenten

Apil'“"rjl._.js kann jeder (r, s)-Tensor mit Hilfe des Tensorprodukts ® dargestellt werden:

A = Ay ei(p)® - ®ei(p) @ (p) @ ® el (p). (2.5)

Ji---Js
Die Transformationsregel der Tensorkomponenten bestimmt sich aus den Regeln fiir Kovektoren
und Vektoren zu [2, 7]:

~11 Sy ni Ns
0T oz' Oz Ox A (2.6)

fI U1 enlp
P Jveds g T ggme 93 T g T ERRCS

2.4 Vektorbiindel auf Mannigfaltigkeiten

Vektorbiindel ermoéglichen eine Verbindung zwischen Vektorrdumen an unterschiedlichen
Punkten auf einer Mannigfaltigkeit. Diese Verbindung ist Ausgangspunkt fiir die Definition

eines Zusammenhangs.

Die Konzeption von Vektorbiindeln setzt zunichst die kanonische Konstruktion eines Vek-
torraums F, an jedem Punkt p einer Mannigfaltigkeit voraus. Die Grundmenge fiir ein
Vektorbiindel auf einer Mannigfaltigkeit M ist dabei die disjunkte Vereinigung aller Vektor-
raume F), iiber M. Mithilfe einer Projektionsabbildung ist es dabei stets moglich von den
einzelnen Vektorraumen F, zuriick auf die Mannigfaltigkeit M abzubilden. Das Konstrukt
aus Vektorrdumen iiber M, Projektionsabbildung und Basismannigfaltigkeit M ist der Aus-
gangpunkt fiir die sogenannten Obermannigfaltigkeit £ und ist tiberdies auf kanonische Weise

ausgestattet mit einer glatten Struktur. [2, 6]

Ein glattes Vektorbiindel der Dimension d besteht aus einer Mannigfaltigkeit M, einer
Obermannigfaltigkeit £ zur Grundmenge F, sowie einer glatten Abbildung 7 : £ — M
zwischen diesen. Diese Abbildung ist zumeist die Projektion auf die erste Komponente,
7(p,vp) := p fiir p € M und v, € Ep, sofern E punktweise die Gestalt {p} x E, vorweist. In
Bezug auf eine Umgebung U um p sei zudem 7y : U x R4 — U die lokale Projektion auf die
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erste Komponente. Erfiillt die Abbildung folgende Eigenschaften:

(r 1) fiir jeden Punkt p € M ist das Urbild 7~ !(p) = E, C E von der Struktur eines

d-dimensionalen R~Vektorraums,

(w 2)  fiir jeden Punkt p € M existiert eine Umgebung U um p und ein Diffeomorphismus
7Y U) = U x RY, sodass 7y o & = 7 auf 7~ 1(U) gilt,

(w 3)  fiir jedes ¢ € U wird der Diffeomorphismus ® zu einem linearen Isomorphismus
von E, nach {¢} x RY =~ RY,

so ist das Tripel (€, M, ) ein glattes Vektorbiindel vom Rang d iiber M. Die Vektorraume
iiber jedem Punkt p € M werden aus anschaulichen Griinden auch Fasern genannt und der

in (7 2) beschriebene Diffeomorphismus lokale Trivialisierung. [2, 6]

Die Projektionsabbildung 7 parametrisiert die Vektorrdume iiber M mit den Punkten aus M.
Da alle Vektoren einer Faser auf den Punkt, aus welchem sie entspringen, abgebildet werden,
ist m surjektiv. Auf diese Weise entsteht eine Freiheit in der Zuordnung von Faserelementen zu
jedem Punkt in M. Das motiviert eine Abbildung s : M — FE, die die Bedingung 7 o s = idjs
erfiillt, wobei idy; die Identitdt auf M sei. Sie wird in Analogie zu der Faservorstellung
ein Schnitt genannt. Fiir eine glatte Abbildung s bekommt der Schnitt entsprechend die
Bezeichnung glatter Schnitt. Der Vektorraum aller glatten Schnitte in E wird mit T'(E)
notiert. Schnitte ordnen damit effektiv jedem Punkt p € M ein Element aus E, zu und
verallgemeinern auf diese Weise die in den vorherigen Abschnitten eingefithrten Begriffe zu

Vektoren, Kovektoren und Tensoren auf ihre entsprechenden Feldvarianten. [2, §]

Demnach sind Vektorfelder die glatten Schnitte im Vektorbiindel iiber den Tangentialrdumen.
Dieses Vektorbiindel ist das Tangentialbiindel 7'M {iber M, das wichtigste Biindel fiir die
folgenden Betrachtungen. Auf jeder Mannigfaltigkeit lasst sich das (Ko-)Tangentialbiindel
als Vektorbiindel der (Ko-)Tangentialraume definieren. Folglich konnen daraus geméf des

Tensorprodukts die (r, s)-Tensorbiindel konstruiert werden. [3, 6]

Der Ausgangspunkt fiir das Tangentialbiindel ist die Grundmenge T'M, gegeben durch die

disjunkte Vereinigung aller Tangentialrdume tiber M:

TM = U {p} x T,M = U {0, Vo) | Vp € T,M} . (2.7)
peEM peM

Die Projektionsabbildung fir das Tangentialbiindel ist wie folgt definiert:

7:TM — M, (p,Vp) — w(p,Vp) :==p. (2.8)



Zusammenhénge auf Vektorbiindeln

Die glatte Struktur auf der Basismannigfaltigkeit M induziert mithilfe von 7 eine glatte
Struktur auf 7M. Damit wird T'M schliellich selbst zu einer glatten Mannigfaltigkeit. [6]

Die zugrundeliegenden Vektorrdume sind nun im speziellen Tangentialrdume und erfiillen
damit bereits (7 1). Die glatte Struktur von M induziert eine glatte Struktur auf der Menge
T M. Fiir lokale Koordinaten (U, z?) lisst sich jeder Punkt p € U und Vektor V,, € T,M durch
ihre Komponentenfunktionen, bestehend aus jeweils d reellen Zahlen erfassen. Kombiniert
ergibt sich fiir jeden Punkt in T'M eine lokale Darstellung als 2d-Tupel der Form

(p,V,) > (mo(p), e (R A .,v;l—l) . (2.9)

Aus dem so induzierten Atlas ergibt sich schlieBlich die in (7 2) aufgefiihrte lokale Trivialisie-
rung fir alle p € M. Abschlieflend ist (7 3) offenbar auch erfiillt, sodass das Tangentialbiindel
(TM, M, ) tatséchlich ein glattes Vektorbiindel der Dimension 2d beschreibt. [3, 6]

Aufgrund der besonderen Stellung wird die auf kanonische Weise zu einem R-linearen Raum
erweiterte Menge I'(T'M) der glatten Schnitte im Tangentialbiindel — auch glatte Vektorfel-
der genannt — iiblicherweise durch X(M) gekennzeichnet. Analog ist X* (M) als Raum der
glatten Kovektorfelder zu verstehen. [3, 6]

2.5 Zusammenhange auf Vektorbiindeln

Vektorbiindel und deren Schnitte erlauben es nun einen Zusammenhang zu definieren. Dieser
liefert eine intrinsische Richtungsableitung von Vektorfeldern, die kovariante Ableitung. Die
kovariante Ableitung eines Vektorfeldes schafft die Moglichkeit, Kriimmung intrinsisch zu
beurteilen. Dieser spezielle Zusammenhang wird spéater genauer untersucht, aber soll hier als

Motivation fiir das Konzept des Zusammenhangs im Allgemeinen dienen.

Sei m: E — M ein glattes Vektorbiindel, I'(E) der Raum aller glatten Schnitte in £ und X(M)
der Raum aller glatten Vektorfelder auf M. Elemente aus X(M) werden mit U, V, W bezeichnet,
wéahrend Elemente aus I'(F) mit X, Y, Z gekennzeichnet werden. Ein Zusammenhang in F
ist eine Abbildung

V:X(M)xT'(E) - T(E), (V,X)—V(V,X)=VyX, (2.10)
mit den Eigenschaften [9]:
(V1)  R-Linearitit im zweiten Argument:
V(a1 X1+ axXs) = a1Vy X1 + a2Vy Xo (2.11)

fir aj,a0 € R; X7, X0 € T(E) und V € X(M),
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(V 2) C°°(M)-Linearitdat im ersten Argument:
VivitneX = iVu X + 2V, X (2.12)

fiir f1, f» € C°(M); Vi, Vy € X(M) und X € T'(E),

(V 3)  Produktregel fiir f € C*°(M):

Vv(fX)=V(f) X+ fVyX. (2.13)
Hierbei meint V'(f) die glatte Funktion p — V(f)(p) := V,(f).

Sei (U, 2%) eine Karte auf M. Fiir die lokale Darstellung des Zusammenhangs ist die Anwendung
von V auf die Basisvektorfelder e; = %, welche in jedem Punkt p € U eine Koordinatenbasis
des jeweiligen Tangentialraums T, M definieren, durch einen Satz von insgesamt d® glatten
Funktionen U — R definiert:

Viej = Ve,ej = egCgij (2.14)

Dabei sind die Czij die Zusammenhangskoeffizienten.

Die durch den Zusammenhang gegebene Ableitung Vi X wird kovariante Ableitung von
X in Richtung V genannt. [3, 9]

2.6 Metrik

Zur Vollendung der Raumzeit wird die noch verbleibende Struktur auf Mannigfaltigkeiten
definiert; die Metrik, die in der einsteinschen Theorie das klassische Gravitationsfeld ersetzt.
Bisher wurde besonderes Augenmerk darauf gelegt, bei der Definition struktureller Objekte
auf extrinsische Information, wie Winkel und Léngen, zu verzichten. Fiir eine vollstdandige
Beschreibung braucht es nun eine zusétzliche Struktur, um Absténde in der Raumzeit zu

charakterisieren.

Aus dieser Notwendigkeit ergibt sich eine Intuition, was genau von der Metrik erwartet wird:
Sie soll einen infinitesimalen, unter Koordinatentransformation invarianten, Quadratabstand

liefern. Genauer soll die Metrik ein Skalarprodukt erméglichen. [7]
Eine infinitesimale Raumzeit-Verschiebung miindet in dem Konzept von Tangentialvektoren.

Dieser Gedanke, zusammen mit der Forderung nach einem Skalarprodukt, motiviert eine
lineare Abbildung T, M x T,,M — R und damit einen (0, 2)-Tensor. [7]
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Im R? wird das Standardskalarprodukt (-, -)ge zweier Vektorfelder V, W definiert durch die

Summe der Produkte ihrer Komponenten:
d . .
(V,W)ga =Y _ V'W* (2.15)
i=1

Zur Verallgemeinerung auf eine Mannigfaltigkeit, wird fiir jeden Punkt das Skalarprodukt auf
dem jeweiligen Tangentialraum definiert. Die Metrik nimmt an jedem Punkt zwei Elemente
aus dem Tangentialraum und bildet sie bilinear auf eine Zahl ab. Lokal beschreibt die Metrik
damit einen (0, 2)-Tensor und global ein (0, 2)-Tensorfeld. In lokalen Koordinaten ergibt sich
die Darstellung:

g=ds* = g;;do’ @ da?. (2.16)

Die Schreibweise ds? ist inspiriert durch den Bezug zum infinitesimalen Abstand. In der
physikalischen Literatur wird das Tensorprodukt der Basis tiblicherweise nicht ausgeschrieben
und die Koeffizienten g;; werden oft selbst als Metrik bezeichnet. Das Inverse der Metrik wird

als g/ angegeben und meint die Komponenten der Inversen zur Matrix (g;;). [3, 10]

Die Metrik ist symmetrisch, entsprechend gilt g(V,W) = ¢g(W,V) fir alle Vektorfelder
V,W € X(M). Zudem ist sie nicht entartet: Gilt fiir festes W € X(M) die Gleichung
g(V,W) = 0 fiir alle Vektorfelder V' € X(M ), dann folgt stets W = 0. [3]

In dieser Arbeit wird fiir die Beschreibung der Raumzeit eine Lorentzmetrik, ausgezeichnet
durch die Signatur (—, 4+, +,+, ... ), verwendet. Eine positiv definite Metrik wird als Riemann-

metrik bezeichnet und es lassen sich mit ihr Lédngen im anschaulichen Sinne definieren. [10]

Fiir das Skalarprodukt zweier Vektorfelder V, W € X(M) ergibt sich:
(V, W)y = gij VWY, (2.17)

Die Metrik erzeugt einen Isomorphismus zwischen T'M und T* M, der Grundmenge des als

Dualraum des Tangentialbiindels verstandenen Kotangentialbiindels 7% M, sodass gilt [3]:
gig® =067, g%*gr; =0, (2.18)

w; = gijwj, Vi= gijVj. (2.19)

Diese Relationen beschreiben das sogenannte Indexziehen, das als abstrakte Operation einen

Ubergang zwischen Vektor- und Kovektorfeldern und umgekehrt charakterisiert.
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3 Metrisch-Affine Gravitationstheorie

Eine metrisch-affine Gravitationstheorie ist eine Beschreibung der Raumzeit, ausgestattet mit
einem beliebigen Zusammenhang im Tangentialbiindel. Die allgemeine Relativitatstheorie
ist aufgebaut auf dem Spezialfall eines torsionsfreien und metrischen Zusammenhangs, dem
Levi-Civita-Zusammenhang. Eine Raumzeit, gegeben durch die bereits diskutierten Elemente
Menge, Topologie, glatte Struktur und Metrik, zusammen mit dem durch die Metrik eindeutig
festgelegtem Levi-Civita-Zusammenhang, ldsst als einzige Variable die Metrik iibrig — im
Gegensatz zur metrisch-affinen Gravitationstheorie, in der die Metrik und der Zusammenhang
als unabhéngige Verdnderliche aufgefasst werden. Die Verwendung eines arbitrdren Zusammen-
hangs erlaubt eine Untersuchung der Torsion sowie der Nichtmetrizitdt der Raumzeit. Es wird
die daraus notwendige Erweiterung der einsteinschen Feldgleichungen hergeleitet, indem die
metrisch-affine Version der Einstein-Hilbert-Wirkung eingefiihrt und nach der inversen Metrik
variiert wird. An drei Beispielen wird der Effekt von Materiefreiheitsgraden nachvollzogen.
Dem vorangehend werden zunéchst der affine Zusammenhang definiert sowie die damit ver-
kniipften natiirlichen Gréflen Kriimmung, Torsion und Nichtmetrizitat auf Mannigfaltigkeiten

erlautert.

3.1 Affiner Zusammenhang

Ein affiner Zusammenhang ist eine Abbildung V : X(M) x X(M) — X(M) mit folgenden
Eigenschaften [10]:

(V1)  Vu(V+W)=VeV+VW, (3.1)
(V2) VoW =VeW + VW, (3.2)
(V3)  VynyV=rVuV, (3.3)
(V4)  Vu(fV)=U)V+ fVuV. (3.4)

Dabei sind U, V,W € X(M) und f € C*(M).

In Koordinatenschreibweise fiir eine Karte (U, ') ergibt sich
Vie; = exl'"; (3.5)

mit der Koordinatenbasis e; = % und den Zusammenhangskoeffizienten, die jetzt speziell fiir

Zusammenhéange im Tangentialbiindel I‘kij anstatt Ckij heiflen. [10]

Die kovariante Ableitung beziiglich eines affinen Zusammenhangs ist eine Ableitung von

Tangentialvektorfeldern, deren Ergebnis wieder Element des Raumes der glatten Vektorfelder
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ist. Fiir beliebige Vektorfelder V,W € X(M) ergibt sich [3]:

. , [ OWE ,

Die kovariante Ableitung lésst sich wie folgt auf Tensorfelder erweitern [3]:

. k‘lu.k‘r kl kr
Vil JiJs =0T J1---Js
k1 lko.. . ky k- ki...kr_11
AT g e R T F1onds (3.7)
_ k;l kr _ kl kr
F T lj2...js F T JieJs—11°

Werden dariiber hinaus die spéter genauer erlauterten Forderungen nach metrischer Kompati-
bilitdt Vg;; = 0 und Torsionsfreiheit Fkij — iji = 0 erfllt, so ist V der durch g bestimmte
Levi-Civita-Zusammenhang V und die abstrakten Zusammenhangskoeffizienten kénnen lokal

konkret durch

. 1
I = igkl(aigjl + 0j9a — 019ij) (3.8)

angegeben werden. Sie werden als Christoffel-Symbole bezeichnet. [3]

3.2 Kriimmung

Die Kriimmung einer Kurve quantifiziert, wie weit diese von einer Geraden abweicht. Im
euklidischen Raum zeichnen sich Geraden dadurch aus, dass der Paralleltransport eines Tan-
gentialvektors diesen unverdndert ldsst. Zudem kann eine Parametrisierung gefunden werden,

sodass die zweite Ableitung der Geraden verschwindet.

Da Kurven auf Mannigfaltigkeiten deren moéglicher Kriimmung folgen miissen, konnen Kurven
nicht mehr in Bezug auf Geraden beurteilt werden, sondern in Bezug auf Geodéten, die
verallgemeinerten Geraden in gekriimmten Rdumen. Dadurch wird der Paralleltransport eines
Vektors zwischen zwei Punkten auf einer gekriimmten Mannigfaltigkeit abhéngig von der

Wahl der Kurve.

Ein Vektorfeld V' € X(M) auf einer Mannigfaltigkeit M wird entlang einer glatten Kurve
v: I — M, X — v()\) parallel transportiert, wenn es keine Anderung in Bezug auf das
Tangentialvektorfeld 4 der Kurve aufweist, wobei fiir eine Karte (U, ¢) und der Projektion
auf die i-te Komponente * : R? — R mit lokalen Koordinaten 2* = 7’ o ¢ die Relation
F(A) == (z¥ 0 y)'(N) 8(3:’ Yy = ’V“axw‘ fiir alle A € I gilt. Mittels eines affinen Zusammen-
hangs V wird eine kovariante Ableltung formuliert, die durch die Bedingung

ViV =0 (3.9)

einen Paralleltransport auf einer Mannigfaltigkeit definiert. [3]
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Sei (U, x%) eine Karte auf M, dann ist die Komponentenschreibweise fiir den Paralleltransport
eines glatten Vektorfelds V' entlang einer Kurve [a,b] 3 A — ~(\) gegeben durch
dvk e A

N L
dA + Ud

Vi=0 (3.10)

zur Anfangsbedingung V(a) = Vo € Ty o) M.

Wird fiir I = [a,b] der Tangentialvektor §(a) € T, )M selbst entlang der Kurve v parallel-
transportiert, also gilt
Viy =0, (3.11)

dann ist 7 eine Geodéate. Da die erste Ableitung einer Kurve v an einem Punkt p = ~(a)
durch den Tangentialvektor ¥(a) € T, M ausgedriickt wird, entspricht (3.11) auch der zweiten
Anschauung tiber verschwindende Kriimmung: Die zweite Ableitung, hier durch die kovariante

Ableitung nach dem Tangentialfeld der Kurve gegeben, verschwindet. [2, 3]

Die gesamte Information tber intrinsische Kriimmung auf Mannigfaltigkeiten wird durch

einen sogenannten Kriimmungsendomorphismus formalisiert:

R: X(M) x X(M) x X(M) — X(M);

(3.12)
RU, V)W :=Vy(VvW) = Vy(VuW) = Vi)W,
wobei U, V,W € X(M) und [U, V] die Kommutator-Lie-Klammer darstellt. [2, 10]
Lokal ergibt sich ein (1,3)-Tensorfeld
0 0 0 e,
9 0N 9 _p 9 1

r (Bx“ 8x3> ozk R ik §al (3.13)

mit den Komponenten
l l l l l

Die Koeffizienten Rlijk definieren den Kriimmungsendomorphismus vollstdndig. Er ist ein
(1,3)-Tensorfeld und transformiert sich geméf (2.6). Er reprasentiert die globale Kriimmung
der Mannigfaltigkeit. Wird ein Vektor auf einer geschlossenen Kurve parallel transportiert, so
ist die Anderung entlang dieser Kurve proportional zu den Komponenten des Kriitmmungs-

endomorphismus Rlijk. Die Spurbildung von Rlijk, durch Kontraktion der Indizes,

Rik = Rlilk? (315)
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ergibt ein (0,2)-Tensorfeld, den Kriimmungstensor, welcher die Informationen des kompli-

zierten Krimmungsendomorphismus auf wenige Komponenten kondensiert. [3, 9]

3.3 Torsion und Nichtmetrizitat

Wihrend Abweichungen im Paralleltransport die Kriimmung der Mannigfaltigkeit beurteilen,
trifft die Torsion, definiert durch den Kommutator der kovarianten Ableitung eines Gradienten-
feldes, eine Aussage iiber die Unebenheit einer von Tangentialvektoren V,,, W, € T,M auf-

gespannten Flache. [2]

Sei V ein affiner Zusammenhang auf der Mannigfaltigkeit M. Wirken zwei kovariante Ablei-
tungen auf ein glattes Skalarfeld ¢, so misst der Torsionstensor mit Komponenten Tki > wie
stark die zweite kovariante Ableitung angewandt auf ¢ vom Kommutieren abweicht [11]:

Vi(0;6) — Vi (0id) = T%;(0k0) - (3.16)

Fiir Vektorfelder ergibt sich das Torsionstensorfeld beziiglich V fiir eine d-dimensionale
Mannigfaltigkeit M aus [3]

T : X(M) x X(M) = X(M);  (V,W) > T(V,W):=VyW — ViV — [V,W], (3.17)

mit den Torsionskoeffizienten Tkl-j gegeben durch:

d o 9
k _ _ k k
Pager =1 (axi ’ aw) = (% = 50 g (3.18)

Der Ausdruck Vi W — V'V charakterisiert den Unterschied der Anderung der Tangentialvek-
torfelder in Richtung des jeweilig anderen Vektorfeldes und damit die Anderung der von den
Tangentialvektoren aufgespannten Fliche. Da Vektorfelder im Allgemeinen nicht kommutieren,
kommt aus dem Kommutator der zweiten kovarianten Ableitung die Lie-Klammer [V, W] der

ausgewahlten Vektorfelder hinzu:

o oW Vi
VyW — V'V = VIWd(TF, %) + <V’ W2 iV ) 0

ozt dxt | Bxd (3.19)
_ 1/t i Tk k
=V'WI(T%,; —T%,) + [V, W].
Die Torsion soll, wie auch die Kriimmung, ausschliellich das Erzeugnis der durch den affinen

Zusammenhang induzierten Geometrie sein. Da die Lie-Klammer [V, W] aus der Wahl der

Tangentialvektorfelder folgt, wird sie in (3.17) abgezogen. [2]

Die letzte Grofle, um alle geometrischen Abweichungen von der flachen Raumzeit zu vervoll-
standigen, ist das als Nichtmetrizitét bezeichnete Tensorfeld Q(U,V, W) := (Vyg)(V, W) fir
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U, V,W € X(M) mit den Koeffizienten Q1. = Q(:%;, 2%, -2 ). Bin Zusammenhang ist genau

0z 9z’ dxk

dann mit der Metrik kompatibel, wenn gilt:

Ist das nicht der Fall, spricht man von Nichtmetrizitdt. Dabei gibt Q(T', g) wieder, wie sich

die durch g ermittelte Lange eines parallel transportierten Vektors dandert. [12, 13]

3.4 Metrisch-Affine Version der Einstein-Hilbert-Wirkung

Die Struktur der Raumzeit wurde in ihren Bestandteilen ausformuliert und die auf ihr
definierte Kriimmung soll nun durch die einsteinschen Feldgleichungen mit der Gravitation in

Verbindung gesetzt werden.

Fiir eine Beschreibung der Raumzeit iiber die einsteinschen Feldgleichungen wird eine vier-
dimensionale Mannigfaltigkeit M mit Lorentzmetrik g und Levi-Civita-Zusammenhang v
vorausgesetzt. Lokal wird die Metrik g durch ihre Komponentenmatrix (g,,) und der Levi-

Civita-Zusammenhang durch die Christoffel-Symbole f‘kij reprasentiert.

Zur Herleitung der einsteinschen Feldgleichungen wird die Einstein-Hilbert-Wirkung [10],

1

Senls) = 15 [ (R~ 20)v=gds (3.21)

nach der inversen Metrik (¢g"") variiert:

0g-1.SEH = ﬁ /{(@W)RW\/TQJF 9”'/(59*11%#”)\/?9 (3.22)
+ (R = 28)(3,-1v/=g) } d'z.

Dabei ist das Integrationsma8 durch \/—¢ dz, zusammengesetzt aus der Dichte \/—¢ und
dem differentiellen Lebesgue-MaB d*z auf dem R*, gegeben. Ferner ist G die Newtonsche

Gravitationskonstante, A die kosmologische Konstante, I?L’)‘MV = Io%m, der Ricci-Tensor und
g“”]%m, = R der Ricci-Skalar. [10, 14]

Unter Annahme einer Mannigfaltigkeit ohne topologischen Rand und zur Hilfenahme von [10]
g1 B* 5, = Vady1 T, — V6,1 (3.23)

1 v
dg-1v/—9g = —5\/—ggw,5g“ (3.24)

folgt dann:
1 o 1 .
- - . o — v 14
Jg1Sm = 167rG/{RW S (R = 20) fv/=g 69" d'a. (3.25)
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Nach dem Prinzip der kleinsten Wirkung 6,-1.5gn = 0 ergeben sich die Vakuum-Feld-
gleichungen:

o 1 o

Ry — 59u(R = 28) = 0. (3.26)

In Anwesenheit von Materie wird die daraus folgende Quelle der Gravitation durch den
Energie-Impuls-Tensor mit den Komponenten 7}, ausgedriickt. Dieser ergibt sich aus der
Variation der Wirkung erweitert um eine Lagrangedichte, welche die Materie beschreibt. Fiir
die Feldgleichungen folgt

o o

R = 59u(R = 28) = 87G Ty, (3.27)

wobei fiir 87G auch die Bezeichnung x verwendet wird. [7, 14]

Im verallgemeinerten Fall metrisch-affiner Gravitation werden die Metrik und der Zusammen-
hang als unabhéngige Verénderliche verstanden. Die einfachste Erweiterung der metrischen
Einstein-Hilbert-Theorie folgt formal durch den Austausch des Ricci-Skalars in (3.21) mit

einer allein durch den affinen Zusammenhang bestimmten Skalarkriimmung:

Satinlg, T := i / (g‘“’RW(F) - 2A>\/jg dz. (3.28)

Die Wirkung kann nach Zusammenhang und Metrik unabhangig variiert werden und reduziert

sich unter Wahl des Levi-Civita-Zusammenhangs auf die bekannte Einstein-Hilbert-Wirkung.

3.5 DMaterie

Materie wird in der klassischen Feldtheorie durch Felder ® beschrieben. Mathematisch sind
diese durch Schnitte in den dazugehorigen Biindeln charakterisiert. Um Materiefelder zu

untersuchen, werden deren Wirkungen

SMaterie[P] = / Ly(®,0,0)d*r (3.29)

eingefiihrt. Im Speziellen werden Standardbeispiele fiir Lagrangedichten von Skalarfeldern,
Spinorfeldern und Vektorfeldern betrachtet, die in dieser Reihenfolge ihren kinetischen Ter-
men nach keine, lineare und quadratische Kopplungen mit den Zusammenhangskoeffizienten

aufweisen. [15]

Feldtheorien werden nach Symmetrien klassifiziert. Die erste Symmetrie zur Konstruktion
der Lagrangedichten ist jene Symmetrie, die die freie Wahl von Koordinaten sichert. In der
flachen Raumzeit ist das die Lorentzsymmetrie, das heifit die Invarianz unter Lorentztransfor-
mationen. Ubertragen in die gekriimmte Raumzeit soll Invarianz unter den diffeomorphen
Kartenwechseln erfiillt sein. Fiir den Ubergang in eine gekriimmte Raumzeit wird zudem die
Minkowski-Metrik (7,,) durch die Lorentz-Metrik (g,, ) sowie die partielle Ableitung durch

die aus einem Zusammenhang folgende kovariante Ableitung ersetzt. [15]
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Als Erstes werden Skalarfelder mit der Lagrangedichte

L1 = Lsiator = 5 ((V96) (V,0) = m26%) = 2 ((0"9) (00) — m6?)  (330)

betrachtet, wobei V ein affiner Zusammenhang auf der Mannigfaltigkeit M ist, m die Masse
beschreibt und unter ¢ das Skalarpotential zu verstehen ist. Das Skalarpotential ist eine glatte
Funktion ¢ € C°°(M), welche jedem Punkt p € M der Raumzeit eine Zahl aus R zuordnet.
Es ist trivial invariant unter Koordinatentransformationen und insbesondere reduziert sich die
kovariante Ableitung V,, auf d,,. [15]

Die einfachste unter Kartenwechsel invariante Theorie, welche lediglich den kinetischen Teil

umfasst, lautet:

Lskalar, kin := % (0"9) (0.9) - (3.31)

Dabei ist anzumerken, dass es sich bei 9" um eine Schreibweise fiir g"*d, handelt.

Zudem sind Skalarfeldtheorien denkbar, die eine Verkniipfung mit den Zusammenhangs-
koeffizienten, beispielsweise durch héhere Ableitungsterme wie V(0¢), aufweisen. Jedoch wird

in dieser Arbeit nur der einfachste, oben genannte Fall betrachtet.

Im Gegensatz zu Skalarfeldern transformieren sich die Komponenten von Vektorfeldern
nicht-trivial unter einem Kartenwechsel. Die einfachste unter Kartenwechsel invariante La-
grangedichte fiir ein Vektorfeld stammt aus der Elektrodynamik, die Lagrangedichte fiir die

Maxwellgleichungen [15]
1
Lvektor = _ZF,LWFMV - J“A“, (332)

mit dem Vektorpotential A,, dem Feldstarketensor F), := V,A, — V, A, und der Vierer-

stromdichte J*. Der kinetische Term lautet:

1
ﬁVektor, kin ‘= _EFMVFHV~ (333)

Genau genommen brauchte es hierbei Zusatzterme, denn Vektorfelder im metrisch-affinen
Kontext brechen die Eichsymmetrie A, — A, + 0, f, mit einer Eichfunktion f € C*°(M),
explizit [16].

Als letztes werden Dirac-Spinorfelder betrachtet. Dirac-Spinorfelder sind als Felder ebenfalls
glatte Schnitte eines sogenannten Spinorbiindels, auf dessen Details [17] hier aber verzichtet
wird. Ein wichtiges Beispiel fiir Dirac-Spinorfelder ist die Dirac-Lagrangedichte fiir V € IN

fermionische Spezies [15]

LDirac = ,(Ln (IW(S) - m) Un, (334)

18



Materie

wobei n von 1 bis N laufe, wihrend i die imaginire Einheit, ¢" das Dirac-adjungierte Dirac-
Spinorfeld und W(s) eine Abkiirzung fiir 7“fo) mit den Dirac-Matrizen ~°, ..., bezeichnet.
Ohne an dieser Stelle auf die Details einzugehen, wird die kovariante Ableitung V,(f) hierbei
mittels des Spinorzusammenhangs V) erklirt, der durch den affinen Zusammenhang V auf

kanonische Weise induziert ist [17, 18].

Fiir die formale Formulierung von fermionischen Theorien, in flacher wie in gekriimmter
Raumzeit, braucht es eine algebraische Struktur, die auch als Dirac-Algebra bekannte Clifford-

Algebra Cl; 3(C), ausgezeichnet durch die Antikommutatorbedingung [19]

{A* A"} =AY A =261 1, (3.35)

mit der Einheitsmatrix 1 in vier Dimensionen, der inversen Metrik (¢") und den Dirac-

Matrizen {7*}. Somit kann der kinetische Teil der Lagrangedichte geschrieben werden als:
£Dirac,kin = anlﬂ)’uv,(f)wn (336)

Fiir VELS) wird im Rahmen dieser Arbeit eine einfache Darstellung [20] verwendet, die eingesetzt
in (3.36) auf

- 1 y
£Dirac, kin = wnlfyu (au - g [vp7 :7u]> wn (3'37)

fiihrt. Hierbei wird zur Auswertung von V,+" die Dirac-Matrix 7 wie die Komponente eines
Vektorfelds behandelt. Fiir Spinoren gilt wieder eine Invarianz unter Kartenwechsel. Zusétzlich
besteht die sogenannte Spinbasis-Invarianz, das heifit (3.37) ist invariant unter Ahnlichkeits-
transformationen der Dirac-Algebra und gleichzeitiger Transformation der Spinoren. Diese

Transformationen stammen hierbei aus der speziellen linearen Gruppe SL(4, C). [19, 20]
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4 Metrisch-Affine Materiemodelle

Infolge der Einfithrung der Struktur der Raumzeit und moglicher Materie soll eine Erweiterung
der allgemeinen Relativitdtstheorie betrachtet werden, welche Raumzeit und Materie ohne
Ausschluss von Torsion und Nichtmetrizitat behandelt; die metrisch-affine Gravitationstheorie.
Die einsteinschen Feldgleichungen und damit der Levi-Civita-Zusammenhang bleiben dabei
als Spezialfall enthalten. Ziel ist es, unter Einfithrung eines Differenzentensorfeldes [21], die
strukturelle Erweiterung dieser Gleichungen in entsprechenden Zusatztermen auszudriicken.
Das Differenzentensorfeld spiegelt dabei den Vergleich eines allgemeinen affinen Zusammen-
hangs mit dem Levi-Civita-Zusammenhang wider und enthélt somit exklusiv Information
iiber Nichtmetrizitdt und Torsion. Durch die Variation der metrisch-affinen Wirkung wird
eine Bewegungsgleichung fiir das Differenzentensorfeld gefunden und dadurch der Effekt von

Nichtmetrizitdt und Torsion unter klassischen Rechnungen mit und ohne Materie untersucht.

4.1 Entkopplung des Levi-Civita-Zusammenhangs
Um auf der einsteinschen Gravitationstheorie aufzubauen, wird aus der in (3.28) verwendeten
metrisch-affinen Formulierung der Wirkung ohne Betrachtung der kosmologischen Konstante,

Safinlg: T] = Sasinlg, T 9" Ry (D) V=g d'z, (4.1)

A=0 2k

der Levi-Civita-Zusammenhang entkoppelt.

Sei V ein beliebiger affiner Zusammenhang im Tangentialbiindel 7 M einer vierdimensionalen
Mannigfaltigkeit M und V der Levi-Civita-Zusammenhang beziiglich einer auf M vorge-
gebenen Metrik (g, ). Ein (1,2)-Differenzentensorfeld D ist eine C°°(M)-bilineare Abbildung,

welche die punktweise definierte Differenz der Zusammenhénge klassifiziert:
D:=V -V :X(M)xX(M)— X(M). (4.2)

Die Komponenten des Tensorfeldes D ergeben sich aus den Zusammenhangskoeffizienten der
Zusammenhéinge V und V:

Dr, =T", — fﬂyp. (4.3)

Die metrisch-affine Wirkung (4.1) ist abhéngig von den Koeffizienten eines allgemeinen
metrisch-affinen Zusammenhangs I' = {I'¥, ) }. Die Menge der Komponenten des Levi-Civita-

Zusammenhangs wird mit I gekennzeichnet. So kann durch

re,, =Dt  +1",, (4.4)

der allgemeine Zusammenhang, repréisentiert durch I'; ersetzt werden. Als Resultat wird der

I-abhingige Teil als eigenstindiger Term separiert. [21]
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Entkopplung des Levi-Civita-Zusammenhangs

Um dies nun in (4.1) umzusetzen, wird (4.4) in die Spur des Kriimmungsendomorphismus aus

Gleichung (3.15) eingesetzt:
A A A A A
gMPR uip — gﬂl’{a“(D Ap + I )\p) - a)\(D 177 +T up)

+ (Dﬁ)\p + fﬂg)\p)(D)\uﬁ + f‘)\uﬂ)
- (Dﬁ,up + Fﬁpp)(D/\)\ﬁ + P/\)\ﬁ)}

\ . \ . (4.5)
= g“p{aHD Ap + 8MF Ap T a,\D wp 6AF )
+ DY\, DX 5+ D7\ Ty + 17, DAy + 17, T
— D’ Dy — D, Ty —T7,, Dy —T7, Ty}
Uber die kovariante Ableitung (3.7) ergeben sich:
9
A A A v v A 9 A
V)\D p = (9)\D ,up+F )\19D o - F /\,UD 19/3 —F )\PD /“9' (47)

Wird fiir den Zusammenhang V der Levi-Civita-Zusammenhang v verwendet, so gilt die

Symmetrie der Christoffel-Symbole in den unteren Indizes. Die resultierende Differenz

v A v A A nA 9 A A A nA 9 A4 A

VND )\p—V)\D o - OMD )\p—l—l—‘ ,u19D )\p—F NPD >\19—8/\D MP_I_‘ )\,ﬁD 'u(p—‘-r )\pD o (48)
dient der Vereinfachung von (4.5):

o\ ° \ °9 B LIV RN - A = A
R = g"{0u1, = OA17,, + 15,10 = 19,00 + VD%, = VaD?,
9 A 9 A
+ D%, D,y — D’ DX} (4.9)
= g {1

S A S A I A 9 A
o T VuD 5 = VaD"y, + D%\, D%y — D%, D xo )

Daraus kann eine Wirkung gewonnen werden, die abhingig von der Metrik sowie von dem
Differenzentensorfeld ist. Sie setzt sich aus der Einstein-Hilbert-Wirkung und von D abhingigen
Zusatztermen zusammen:

1 o o o
= — [g"{ R\, + VDY, — VoD
r=D+I" 2k g { prp TVl A (4.10)

+ DYy, DY,y = D, Do b/ =g d'a.

Safﬁn[gyD] = Safﬁn[g7r]‘
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4.2 Bewegungsgleichung des Differenzentensorfeldes

Um eine Bewegungsgleichung fiir D zu erhalten, wird die allgemeine metrisch-affine Wirkung,

wie in Gleichung (4.10) in Abhéngigkeit von D ausgedriickt, nach D variiert:

1 o o .
OpSaffin = 0p (% /gup{R)\y)\p + VDY, — VaDY,,

(4.11)
+ Dﬁ)\pD)\/Mg - DﬁupD)\)ﬂg}\/ —g d4.’13> .
Dabei gilt fiir die Variation von D:
0D*, (x)
L g 6P 67 64 — ). 412
Dy = P =y (412)

Aus der Annahme einer Mannigfaltigkeit ohne topologischen Rand verschwindet, nach Anwen-
dung des GauBlschen Satzes, das Integral iiber g"? (ﬁuD)‘/\ o v AD)‘M p), sodass dieser Term im
Folgenden nicht weiter beriicksichtigt wird. Die Ableitung nach D betreffend verschwindet der
Integrand R aufgrund seiner Unabhéngigkeit von D, sodass lediglich die D?-Terme betrachtet

werden. Mit dp = féDaﬁv () m /—gd*z folgt fiir die Ableitung:

8Suffin 1 sD? §D*
fiin _ gup{ M pho pd Dﬁ)\p

« 9. a D 0 «
6D By 2K oD Gy H oD Gy (4.13)
o .
OD", 5D

— =2 Pw a
oD By oD By

D’gup}\/—g d*z.

Nach dem Prinzip der kleinsten Wirkung gilt auf dem Level der klassischen Bewegungs-

gleichungen 6S,mn/ 0D%, = 0 und es folgt:
§D?

A
wd e BP A 0Dy o
6DabcD Ap 5DabCD 0 5DabcD 1 (4.14)

sD? 5D
= a)\p DAlW +
§D9,,

0

Aus (4.12) ergibt sich dann:

0= g (87,0°\87, D5 + 807,67, D%, = 6°,07,67,D% 5 = 6°,67,67,D",,) ws)
= gﬂppvap + ngﬂw —¢"' DN, —6,° D" )

Die Gleichung (4.15) wird nun mit g,3 und g,, multipliziert und « in x umbenannt, daraus

resultiert:
¥
0= Do + Dupy = 9upD’g, — guuD,"y. (4.16)

Dies ist die klassische Bewegungsgleichung des Differenzentensorfeldes, die das dynamische

Verhalten der metrisch-affinen Freiheitsgrade steuert.
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Bewegungsgleichung des Differenzentensorfeldes

Da sich Gleichung (4.16) als rein algebraisch entpuppt, ldsst sich mit elementaren Mani-
pulationen eine Losung konstruieren, die im Folgenden erldutert werden sollen. Zuerst wird
dazu die Indexreihenfolge in Gleichung (4.16) zyklisch permutiert und die daraus resultierenden
Gleichungen werden anschlieend derart addiert, dass D,g. isoliert wird. Die erste Permutation
ist gegeben durch:

0= Dywp + Dy — gpu D5, — 9D, (4.17)

Die zweite Permutation lautet:
0= Dz/p,u + D,uup - g,uVDﬂﬁp - gupDuﬂﬂ' (418)

Von der Summe aus den Permutationen (4.17) und (4.18) wird nun die Ausgangsgleichung

(4.16) abgezogen und es folgt
9
0= gﬁ'yDﬁﬂa + gBozD7 9 g'ychﬂﬂﬁ - g’yﬁDaﬁﬂ - g'yaDﬁﬁﬁ - g'y,BDaﬁﬁ +2Dap-, (4.19)

sodass nur noch eine Komponente D,g- des Differenzentensorfeldes neben zwei seiner Spuren
iibrig bleibt. Fiir weitere Vereinfachungen werden metrische Spuren tiber die Ausgangsgleichung

(4.16) gezogen. Die erste Spur berechnet sich wie folgt:

6S i 9 9
0= gh* (M) — grm {DW + Dupp = 9o D9, — gD, 19}

_ 9 9
_Du;w_{_DVHH_(SMVD ﬂu_épqu 9

(4.20)
= Dﬁﬁr/ + Duﬁﬁ - Dﬁﬂu - Duﬁﬁ
=0.
Die zweite Spur ist gegeben durch:
o [ 0Sam y 9
0=g" ((maun> =g" {Dpw/ + Dypy — QVPD%M — gD, 19}
vp
_ ) 9 4.21
= DY, + Dty — 6%, D% — 5" D7 (4.21)
=D,%+D" ;- D%, —4D,".
Die dritte Spur lautet:
vy [ 0Safs y 9
_ 0 0 4.22
= D", + D?,, — &",D%, — 5D, (4.22)

=D’y + D%, —4D%, — D"
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Die erste Spur (4.20) liefert eine triviale Losung und damit keine weiteren Informationen. Aus
der Gleichsetzung der Spuren zwei (4.21) und drei (4.22) folgt

Y
D%, =D,%, (4.23)

fir alle p = 0,...,3. Die Information aus dem Gleichsetzen der Spuren (4.23) wird in die
aus den Permutationen folgende Gleichung (4.19) eingesetzt. Das wiederum resultiert in der
gesuchten Losung

Dy = gpuDﬁﬁm (4.24)

bezichungsweise fiir die vollen Zusammenhangskoeffizienten:

e, =1", +" D%, (4.25)

Der Zusammenhang V ist damit also lokal {iber D eindeutig bis auf eine Spur von D bestimmt.
Auf diese Weise wird eine auf R vierparametrige Klasse von Losungszusammenhéngen etabliert,
welche durch Translationen der Christoffel-Symbole mit Komponenten der Form ¢#,A, fiir
beliebige Kovektorfelder A € X*(M) charakterisiert sind. Dies stimmt mit dem aufgefiihrten

Resultat in [21] iiberein.

Nun soll dieses Ergebnis noch iiberpriift werden. Dafiir wird die Bewegungsgleichung fiir D

(4.24) in die permutierte Ausgangsgleichung (4.17) eingesetzt:
0= 9,uD", + 90p D", — 9puD’ 9, — 9puD,"s. (4.26)
Durch Verwendung von (4.23) ergibt sich:
0= gouD"9, + 9pD"9, — 9puD"9,, — GupD’g, = 0. (4.27)

Damit ist gezeigt, dass der in (4.25) gefundene Audruck die Bewegungsgleichung (4.16) tat-

séchlich 16st.

Nun soll die affine Wirkung (4.10) nach der inversen Metrik variiert werden, um die gewonnene
Losung der Bewegungsgleichung (4.24) einzusetzen und daraus die gesuchten, aus der affinen
Erweiterung folgenden, Zusatzterme fiir die einsteinschen Feldgleichungen zu bestimmen. Die

V D-Terme verschwinden unter Annahme einer Mannigfaltigkeit ohne Rand erneut:

1 o 1
Safin[g9, D] = % / Ry/—g d'z + W% /gup (DﬁApD)\m? - DﬁupD/\M9> Vg dz. (4.28)

=:App
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Bewegungsgleichung des Differenzentensorfeldes

Die Variation des ersten Integrals liefert die bekannten einsteinschen Feldgleichungen. Fiir

das zweite Integral, abgekiirzt durch Sp, ergibt sich:

6Sp 4 <1
5goP  §goB \ 2k

1 1
{ / (Aupaﬂaaﬂﬂ _ gﬂpA%gWaga;) N d%} (4.29)

T2

1 1
=— Ao — g"P N,y V—gdiz .
il [ (30 = 0 ) '}

/g“pAup\/—g d4x)

Aus 6,150 = 0 folgen, sofern die Metrik die einsteinsche Feldgleichung erfiillt, Zusatzterme

fiir die Vakuum-Feldgleichung;:
L
0=A.3— 59 AupGas- (4.30)

Aus dem Vergleich mit (3.27) lassen sich die durch Torsion und Nichtmetrizitat induzierten

Zusatzterme als Energie-Impuls-Tensor auffassen:

1 1
Top = . (Aaﬁ - §Q”pAup 9015) : (4.31)

Die Losung fiir D (4.24) eingesetzt in T,z (4.31) liefert allerdings:

1 A A 1 A A
Taﬁ = _;{(anﬁD an DnaﬁD )\n) - ig'up(DnApD un DnupD /\n)gaﬁ}

1
- _E{(snﬁD%/\‘s)\nD%a - 5nﬁDﬁ0a5/\nDﬂm

1
— —g""(8",D%536%, D%, — 6",D"; 6% D)) gas
9 p nt op p 90 n o } (4.32)

1
= _E{((SABDﬂﬁ)\Dﬁﬂa - 5>\BD1919)\D19190¢)

1 Ao P "
- 59’“’(5 oD D%, — 07, D 5\ D ﬂp)gaﬁ}

=0.

Die Zusatzterme und damit der induzierte Energie-Impuls-Tensor verschwinden also nach
Einsetzen dieser Losung. Dies war fiir die Vakuum-Feldgleichungen gewissermaflen zu erwarten,
denn wenn die Raumzeit ohne Materie schon auf makroskopischen Skalen Effekte der Torsion
und Nichtmetrizitdat aufzeigen wiirde, stiinde die damit verbundene Theorie in direktem
Vergleich mit der immerhin sehr erfolgreichen einsteinschen Gravitationstheorie, die ohne
die zusétzlichen Freiheitsgrade auskommt. Folglich wird davon ausgegangen, dass es sich bei
den Phidnomenen der Torsion und Nichtmetrizitit, sofern sie existieren, um Quanteneffekte

handelt, die unter der klassisch durchgefithrten Rechnung verschwinden.
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METRISCH-AFFINE MATERIEMODELLE

Im Fall von anwesender Materie gibt es jedoch auch Theorien und Untersuchungen, die
beispielsweise Torsion nicht nur auf den mikroskopischen Effekt des Spins zuriickfiihren,
sondern auch auf den Drehimpuls makroskopischer Kérper [22]. Im néchsten Schritt sollen die
bereits eingefithrten Beispiele, repréisentativ fiir Materie, zur Analyse des Nicht-Vakuum-Falls
dienen. Dabei wird untersucht, inwiefern sich dieses Ergebnis dndert. Ahnliche Diskussionen
finden sich in [23].

4.3 Materiemodelle

Die in Kapitel 3.5 eingefiihrten Materiefelder weisen eine Abhéngigkeit bis zur zweiten Ordnung
von I' auf. Dies wird zum Anlass genommen, die allgemeine Lagrangedichte L/(g, T, x) fiir

Materie xy um I beziiglich I" bis zur zweiten Ordnung zu entwickeln:

oL 1 0%C
+omh S+ §>\7M<P :

o, | TR P
° (1) v by (2) nv  po A 2
= EM(97F>X>+M)\ (97X)DMV+M)\ 7 (g7X)DuVD pos

EM(97F7X) ~ EM(g7f7X) DAMVDcppU

(4.33)

wobei ausgenutzt wurde, dass D = T" — . Fiir die Materieterme aus Kapitel 3.5 werden
(1) (2)
reprasentativ M und M verwendet. Die sich daraus ergebende Wirkung kann in einen Materie-

und einen Korrekturterm getrennt werden: Syaterie[d, L', X] = Smlg, Io‘, x| + Skorrlg, D, x]. Mit
der Taylorentwicklung (4.33) ldsst sich die gesamte metrisch-affine Wirkung mit Materie dann

symbolisch aufspalten in:
S[Q? D7 X] = Saﬂ?m[ga D] + SKorr[g; D; X] + SM[g7 fa X]

B 1 o 5 2 4
_%/(R+VD+D)Jjgdx (4.34)
) @ 4 ° 4
+/(MD+MD )\/—gd x+/ﬁM(g,F,x)\/—gd z.

Die D-Variation von S,y ist bekannt und Sylg, I , x| ist unabhéngig von D. Um also fur den

Materiefall erneut eine Losung fiir D zu bekommen, wird zunéchst nur Skqr nach D variiert:

65K0rr o / <(1) VA (2) v po o A 4
0 = M/\“ D Z,+M/\“ 7D D V>\/—gda:
5D, 6D% p ¢ poT H

o @
_ / (M/\“ 8,07 1, + M P75 6% 59,D°
(4.35)
(2) wy posd o sy A 4
+ M, 707,07 ,07. D%, |V —gd e

1) (2) (2)
M o v A
= / ( aﬂ’y a57¢p D¢p0 + MA'u aB’YD ,uz/) vV —g d4IE.
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2)
Unter der Verwendung der Symmetrie M, " A 7= M p P ' konnen die M nach Umbenennung

der Indizes zusammengefasst werden. Fiir die aus (4.15) bekannte Variation von S,y ergibt
sich schlieBlich:

5Safﬁn o i 0

[ (g + 90D, = 0,07,

+ D", D%, — D"wDﬂm,> V—gdiz (4.36)

1

= ﬂ (gﬁnD,yom + gﬁ’yDﬂﬁa - gﬁ’yDﬁﬂa - 5B19 D’Wln) \/jgd4x

Die gesamte D-Variation setzt sich damit zusammen aus:

0S8 (1) (2)
_ B By PO b
5Dam _2/1(Ma T+ 2M,, 7¢ D pa)

(4.37)
+ (gﬁnD’yom + gﬁvDﬁﬁa - gﬁ’yDﬂﬁa - 5519 D’Ynn)'
Uber die Metrik kann man zu einer Schreibweise mit ausschlieBlich unteren Indizes gelangen:

) @ s
0= 26(Magy +2Map " D? ) = 957 D”50, — gaD."y + Dyap + Dy (4.38)

Wie im Vakuum-Fall wird die Ausgangsgleichung (4.38) permutiert, um daraufhin D,g., zu

isolieren. Die erste Permutation ergibt

(1) (2)

0= 26(Mpya +2Mgya," " D?,) = 930 D95 — 9+8Ds"y + Dagy + Drag (4.39)
und die zweite Permutation
(1) (2) I o 9
0= 2“(Mva/3 + QMW% D pg) — gapD’y, — gMDﬁ 9+ Dpya + Dapy- (4.40)

Von der aus (4.39) und (4.40) gebildete Summe, wird (4.38) abgezogen. Dies fiihrt zu:

(1) (1) (1) (2) o
0=—2r(Magy — Mpya — Myap + 2Moapyy D7)y

(2) (2)
_ 2M5701¢paD¢ .= 2M'ya6¢paD¢pg) (4'41)

p
9 9
+ gﬁvDﬁﬁa - QWﬁDaﬁﬂ + 98D,y — gaﬁDﬁM - gvaDﬁﬂ,B = 9ayDg g + 2Dapy -
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Fiir Vereinfachungen werden wieder Spuren iiber die Ausgangsgleichung (4.38) gebildet. Die

Spur g%7(5 [‘)556 ) lieferte ohne zusétzliche Materieterme eine triviale Losung (4.20), was mit

der Umbenennung § — ¢ fiir die hier {ibrig bleibenden Materieterme bedeutet:

G @) s
Mﬁe’;‘ :_2M198 ¢ D po (442)

oder auch
(1) o (2) 9 po o
MY g =—2M D D (4.43)

5 po’

Die zweite Spur liefert
1) 2)

0
gaﬁ ( S > 725 0 — 2:‘€(ng196 + 2M19795 ,OO'D¢
5D, ¢ T

) — D%, —3D"y 4+ D’ (4.44)
und die dritte Spur

5S (1) (2)
967 (51)066> = 0= 2K(M€ﬂ19 + 2M61919¢>pUD¢p0) B 3D19196 o Deﬂﬁ + Dﬂeﬂ' (4'45)
Y

Das Abziehen der dritten Spur (4.45) von der zweiten Spur (4.44) resultiert in:

9 9 (1)19 (1)19 (2)19 po o (2)19 po o
D 19€_D€ ,Lc}:I{(Me ﬂ—M 196)+2’{(Me 'L9¢ D pO'_M ﬂed) D pa’)' (446)

1) (2) S
= M(_}s =: (M(_)E)d)p D o

Damit kann
o (1) (2) 00 o
D'y =—KkM e — 2/@(MHE)¢5 D oo+ D%, (4.47)

in Gleichung (4.41) eingesetzt werden:
) (1) (1) 2

0=—26(Magy — Mpgya — Myap + 2M o3, D°

(2) . (2) .
— 2Mgyay” D¢p0 —2M a4 D¢p0)
(1) 2)
+ 957(D%p0 = (—6M 0 — 26M 50,7 D, + D%y,,) (4.48)

(1) (2)
+ gﬁa(*Dﬁﬁw + (7’QM<—>7 - 25M<—>fy¢pgD¢pg + Dﬁﬁ'y))

— g (D? —5\14) —2%2 rPp? 4 pY 2D
Gya(D95 + (=M ep — 26M 18, oo T D%p)) +2Dag,.

po
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Durch Ausmultiplizieren folgt:

(1) (1) (1) @
0=~ 25(Magy — Mgya — Myap +2Map.,77 D

(2) (2)
—2M g0 D%, — 2M 05,7 D% )

(1) (2)
+ 989(D%g0 + 5M 0 + 26M 07 D — D7,) (4.49)

) @ o "

— go(D? —5\14) —2% Pp® 4 pY 2D
Gya(D g — kMg — 26M 5,7 D7, 4+ D) + 2Dy

po

Infolge dessen lésst sich nach D,g, umstellen:
@) @) @ (2) I
Daopy = 6(Magy = Mgya — Myap + 2Mapy gy D

po
(2) (2)
M o M o ¢
-2 ,B'yaqu D¢p0 -2 'Yaﬁ¢>p D po)

1o @

1o @
_gﬂa(_iﬁMH’Y_HMHAY¢ D pO')

1 @)
Mo — kM op,7D? ).

+ g'ya(D 19196 -
Es wird ersichtlich, dass durch die Anwesenheit der Komponenten D? P auf der rechten Seite
von (4.50) ein kompliziertes, wenn auch lineares, Gleichungssystem iibrig bleibt. Um eine

explizite Losung zu erlangen, wird in der folgenden Betrachtung der Fokus auf Materietheorien
(2)

gelegt, die M = 0 erfiillen, wie das in Kapitel 3.5 eingefiihrte Beispiel der Dirac-Spinoren. Mit

dieser Bedingung folgt fiir die Losung von D:

(1) (1) (1) 1 1 @ 1

Dapy = K(Magy =M gra—Msap) =95y 55M ca+5055M oyt ya D’ g5 —gramiM op. (4.51)

Fiir die Probe dieser Losung wird die Losung selbst und die permutierte Variante

(1) (1) (1) 1 @ 1 @ 9 1 @
Dgyo = /{(MBW—M7a3—Mam)—gva§nM<_>5+gA/5§mMHa+ga5D ﬁw_gaﬁi’iMHV (4.52)

sowie die Spur Dﬂﬁﬂ in die passende Permutation der Ausgangsgleichung (4.40) eingesetzt.

Die Spur wird ermittelt, indem ¢g®? mit D3~ multipliziert wird. Hieraus ergibt sich:

) o, o, o m 1 1 9
Dygy = r(Mg"y = M5 — M"gp) = 26Mes 8+ SkM 5 — ShM 5+ DV
2 2
(4.53)
OIERON 9
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Einsetzen von (4.53) in (4.40) fithrt zu:
9 ) W, "
0= 2HM7aB — gapD 9y ga’Y(K(_MHﬁ -M ,819) +D 19,8)

(1) (1) (1) 1 Q 1 Q 5 1O
+8(Mpya = Maas = Mapy) = gragtMes + 9y556Mea + gapD%y — gasghiMoy

) ) ) 1 Q 1 Q ) 1 Q
+#6(Magy = Mpya = Maap) = 9p155Mea + gpagiMey + 9vaD g = grageM e

(1) (1) (1)
= 26Myap + K(Mpya = Myap = Magy) + £(Magy = Mpgya — Map)

- gaBDﬁﬁry + gaﬂDﬂﬁy

1 @ 1 @
- 97a§l‘6M<—>ﬁ - 97a§"0M<—>ﬁ
1 M 1 @

+ g’yB§RM<—>o¢ - gﬁ'y§"iMHa

1 1 W
- gaﬁiﬁMHy + gﬁaiﬁMH'y

oo, ; ;
— Yoy (K(=M g — M7gy) + D%3) + gyaD" g

) )
= —gyakM s + gay k(M s — Mﬁﬁﬁ) - g'yaDﬂﬁﬁ + gﬁ/aDﬁﬂﬁ' (4.54)

(1) 2)
Nach (4.43) entfillt MV, unter der Annahme Mﬁwd)p(’—Dqﬁpa = 0, sodass (4.54) eine wahre
Aussage liefert und die Losung (4.51) die Probe erfiillt.

Damit fiir diese Losung konkrete Materiefelder eingesetzt werden koénnen, werden die in
Kapitel 3.5 genannten Beispiele nach I' entwickelt. Die skalare Feldtheorie weist in ihrer

eingefithrten, einfachsten Variante keine Abhéngig von I' auf:

OLskalar
31—10‘[37 r—pf

=0

Lsiain(9,9) = 5(0,:6)(00) + (4.55)

1) (2)
Die Materieterme M und M verschwinden demnach fur diese Variante der Skalarfelder. Auf

der anderen Seite ist die betrachtete Vektorfeldtheorie (3.33) bis zur zweiten Ordnung von T

@)
abhéngig, sodass erst iiberprift werden miisste, ob der gewéhlte Fall M = 0 erfillt ist.
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Materiemodelle

Fiir die Spinorfelder lassen sich die gewiinschten Korrekturterme ermitteln:

8ﬁDiraC
araﬁv

(T, —T3.). (4.56)

_ - 1 L o
EDirac<g7F7'¢na ¢n) = ¢n17u (aﬂ_[aﬂ7 +I MA77V]>w”+
r=r

8

Die Ableitung 0Lpirac/ 81“0‘/87 berechnet sich gemés:

- . 0 1 v o e
= Y iyt ( — T HA["Y)\fYV])wn(F By — r 5’7)
=I

Jns 1 v « 4.57
— 3t (= 587,87 ) 6a D% (437)
_n~1 B~y a
= =gy [, Yal¥n D%y,
1)
Daraus kann M abgelesen werden:
(1) v .1 5
M = =™ [y, ] n - (4.58)

8

Insgesamt resultiert die konkrete Rechnung der Taylorentwicklung (4.33) fiir den Spinorfall in
den Werten:

TN 1 v 24
Ly = 0177 (8= £[0)0” + %,n2] ) (4.59)
-1 »
Lxorr = _d)nlgryuh/ a’)/)\]'@an)\;w : (460)

(1)
Das Ergebnis fiir M kann durch die Umformungen

W . () 1
My = gypM)7 = —gyp (@!) i [VW,Va]@bn)

= —@Z”iévﬂm,%]%, (4.61)

(1) (O ol
Mapy = 98c9veM o> = —9pc e <¢ i [y ,'ya]wn)

1
= —@b”ig%@[%ma]@bn, (4.62)

(1)19 ,Ba(l) Ba _n-l
M ., =9""Mapy = —g (w 1875[%,7&]1#71)

1
= —¢”i§'yﬁ [y Y91 m (4.63)

in die Losung fiir D (4.51) eingesetzt werden. Dafiir wird in (4.63) v zu « umbenannt. Es
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entsteht folgender Ausdruck:

1 - _ _
Dopy =— ”§(¢ni(76 [’Y’ya Ya))¥n — ¢ni(77['7aa 'Y,B])wn — YP"iva ['767 'Y’y]wn)

1 _ .
+ Eﬂgﬁw(d}”ivﬂ (Y95 Yaltn — U™’ [Ya, Vo) ¥n)

- %ﬂgﬁa(ﬁ”i’vﬁ [, W]tn — "7’ I3, v9))¥on)

-+ %Egvoz (&i'}/ﬁ ['7797 ’Yﬁ])wn - &ni’)ﬁ [’Vﬁ? 719]1/}71)

+ g'yaDﬁﬁﬁ
Mit
Y9 =4 und V[, 7] = =y, 7] sowie Py, =267, 1 —v57”
ergibt sich ferner
4!

VY lvs el =V 9% — Y vevs = 47e — (26°. T — 77" )y = 6.

Eingesetzt in (4.64) fiihrt dies zu folgender Vereinfachung:

1 -
Dagy = = g™ %al) = 1 [Vas 78] = Yalvs: 1) von

3 .
+ é"'ﬁ/}nl(gﬁ'yf)/a — 95aYy + gwa’)/ﬁ)wn -+ ng%ﬁ .

(4.64)

(4.65)

(4.66)

(4.67)

Um das Ergebnis weiter zu untersuchen, miisste als Néchstes die erneute Variation der Wir-

kung der Spinor-Materieterme nach der inversen Metrik erfolgen, um die neue Losung fiir

das Differenzentensorfeld (4.67) einzusetzen und mit den einsteinschen Feldgleichungen zu

vergleichen. Erste Schritte dieser Rechnung befinden sich im Anhang.

Im Vergleich zur Vakuumlosung (4.24) kann allerdings schon jetzt erwartet werden, dass die

Dirac-Spinoren zur Anpassung der einsteinschen Feldgleichungen in Form von Zusatztermen auf

der rechten Seite fiihren. Wie genau diese Anderung aussieht, miisste noch untersucht werden.

Eine Abweichung wiirde bedeuten, dass Dirac-Spinoren unter klassischer Rechnung mogliche

Beitrédge von Nichtmetrizitat und/oder Torsion hervorrufen und damit in der metrisch-affinen

Theorie eine Quelle fiir das Differenzentensorfeld darstellen.
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5 Fazit

Durch die Verwendung eines metrisch-affinen Zusammenhangs anstelle des Levi-Civita-
Zusammenhangs konnten fiir die Einsteinschen Feldgleichungen Zusatzterme gefunden werden,
die es erlauben, Torsion und Nichtmetrizitidt zu untersuchen. Um das zu erreichen, wurde
ein Differenzentensorfeld eingefiihrt und eine Bewegungsgleichung fiir dieses gefunden. Das
Einsetzen der gefundenen Losung fiir den Vakuum-Fall in die variierte metrisch-affine Wirkung
resultiert im Verschwinden jener Zusatzterme und die Gleichungen vereinfachen sich zu den
einsteinschen Feldgleichungen.

Fir die Bewegungsgleichung des Differenzentensorfeldes fiir Materie musste der Einschrénkung
getroffen werden, dass Materieterme, die in zweiter Ordnung an die Zusammenhangskoeffizien-
ten gekoppelt sind, verschwinden. Fiir eine weitergehende Betrachtung von Vektorfeldtheorien
koénnten konkrete Fille eingesetzt werden, um zu untersuchen, ob fiir bestimmte Materieterme
eine Losung gefunden werden kann.

Dirac-Spinoren erfiillen diese Einschrankung trivialerweise. Fiir sie konnte eine erneute Losung
fiir das Differenzentensorfeld gefunden werden, die darauf schliefen ldsst, dass die Anwesenheit
der Dirac-Spinoren in der metrisch-affinen Theorie zu nicht verschwindenden Beitrdgen
abhéngig vom Differenzentensorfeld fithren. Dieses Ergebnis weist bereits explizit auf eine
nicht-trivial erweiterte Dynamik metrisch-affiner Gravitationstheorien unter Einbezug von

Materiefreiheitsgraden gegeniiber der rein metrischen Gravitation hin.
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ANHANG

A Anhang

Die Variation der metrisch-affinen Wirkung mit Materie teilt sich schematisch auf in:

) o . (1) (2)
5 _ sk +8(VD + D?)+6(MD + MD?) 4+ 6(Ly) - (A1)
5g ~~ ——
SeH Sp SKorr Sm
Saﬂ?m Sl\/laterie

Aus Kapitel 4 ist Symn bekannt, daher werden die Bestandteile von Syfaterie nach der inversen

(1)
Metrik variiert. Fir Dirac-Spinoren wird bei Sk lediglich M bendétigt. Mit dem bereits
berechneten Loy (4.60) folgt dann

SSkore =265 [ (=859 W6 DY ) V=G (A2)
und mit Ly (4.59) noch
dSv = 2/16/ <<§”i*y’“‘(8“ — %[8“71’ + f”u)\,'yy])én> V—gdiz. (A.3)
Die Variation der Gamma-Matrizen ist gegeben [20] durch

1
oyt = 5(59’”)% + (655,41, (A4)

wobei S € SL(d,,C) die Darstellung einer Spinbasistransformation ist.
Mit Hilfe von Gleichung (A.4) ldsst sich die Variation von Skerr berechnen:
1 .
SSkone =265 [ (=059, 6D ) V=g d's
s 1 v v v
=26 [ (=G lor b ] 257 )+ ElonDY ) Vg dle
n: 1 1 HE ) v
=2k | | = 9"gq(5(09" ) + (05,71 | [V

1
+9%1 5097 )7 + [65y,7"],

+ A#

7 (5097 + 185, w])] }%Dﬁw) V=gl (4.5)
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Die Variation von Sy ergibt:

_ 1
0Sm = 2%(5/ <¢ni7u (8# 3 [8#7” + 1—\1/“)\,})\7 7u]>¢n> V=g d'z
Tn-. _n-]‘ v 14
=2k / <¢”1(5W)8ﬂ¢n —¢ 18{57’*[(8“7 + 7,077 ]
+*0u(67") + TV ,007, W
/1
=2K / <¢n1(2(59p5)% + [55777M]7N> aﬂ¢n
{ (2(59"5)% + [0S, v“])v“[ﬁw” +TV a7, %]}%
. 1 m 1 ve v v 1 e A
= arig {0 (@0 e + 188,97) + T (560 + 18857 ) 2]

= arig {0 + 1 g (5607 + 165,071 }¢>> vgdle. (A%)
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