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1 Einleitung

Eine mögliche Vereinbarkeit von allgemeiner Relativitätstheorie mit der Quantenphysik
zu erreichen, ist ein zentrales Problem der modernen Physik. Um dieses anzugehen, gibt es
verschiedene Ansätze zur Erweiterung der allgemeinen Relativitätstheorie oder zur Entwicklung
einer neuen Gravitationstheorie.
In dieser Arbeit wird eine Erweiterung der allgemeinen Relativitätstheorie über einen Zu-
sammenhang betrachtet, der Torsion und Nichtmetrizität der Raumzeit nicht ausschließt.
Ziel ist es, die Raumzeit mit und ohne Materie unter klassischer Rechnung auf Torsion und
Nichtmetrizität zu untersuchen.
Dafür wird zunächst die Struktur der Raumzeit anhand ihrer Bestandteile erläutert, um im Ver-
lauf die konzeptionellen Möglichkeiten einer Erweiterung herauszuarbeiten und Unterschiede
zur allgemeinen Relativitätstheorie aufzuzeigen.
Ist die Struktur der Raumzeit festgelegt, ist der Ausgangspunkt zur Erweiterung der ein-
steinschen Gravitationstheorie die Einstein-Hilbert-Wirkung, deren Variation nach der Metrik
zu den einsteinschen Feldgleichungen führt. Diese stellen eine mathematische Verbindung
zwischen der Geometrie der Raumzeit und der durch den Energie-Impuls-Tensor ausgedrückten
möglichen Anwesenheit von Materie her.
Im Mittelpunkt der Erweiterung steht die Verwendung eines nicht näher spezifizierten a!-
nen Zusammenhangs im Unterschied zum ausgezeichneten Levi-Civita-Zusammenhang der
einsteinschen Theorie. Außerdem werden die durch die Feldgleichungen mit dem Energie-
Impuls-Tensor verknüpften geometrischen Phänomene Torsion, Nichtmetrizität und die durch
die Metrik bestimmte Krümmung eingeführt. Bei der allgemeinen Relativitätstheorie umfasst
die Geometrie hingegen lediglich den metrischen Teil der Krümmung.
Ferner wird die Herleitung der einsteinschen Feldgleichungen in der allgemeine Relativitätstheo-
rie kurz beschrieben, um später den verallgemeinerten Fall der metrisch-a!nen Gravitation
plausibel zu machen. Da auch durch Materie herbeigeführte E"ekte untersucht werden, reicht
es dabei nicht aus, nur die Vakuum-Feldgleichungen zu betrachten. Für Wechselwirkungen
mit Materie werden daher Beispiele einfachster Art diskutiert.
Mit Hilfe eines Di"erenzentensorfeldes kann die Wirkung in die bereits bekannte Einstein-
Hilbert-Wirkung der allgemeinen Relativitätstheorie und in vom Di"erenzentensorfeld ab-
hängige Zusatzterme aufgeteilt werden. Für dieses wird eine separate Bewegungsgleichung
gefunden, welche zu allgemeineren Feldgleichungen für die Metrik führt. Die Informationen
über Torsion und Nichtmetrizität werden zuletzt noch einmal in einer Rechnung mit Materie
untersucht.
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EINLEITUNG

Konventionen: In dieser Arbeit wird

(a) innerhalb von Produkten über doppelte Indizes, wobei ein Index oben und einer unten
steht, nach Einstein-Summen-Konvention summiert,

(b) ein Einheitensystem mit c = 1 angenommen,

(c) für metrische Tensorfelder g eine Lorentz-Signatur ω(gµω) = (→, +, +, +, ...) verwendet,

(d) zur Angabe von Koordinaten und Tensorfeldkomponenten zwischen lateinischen Indizes
in einer beliebigen Anzahl raumzeitlicher Dimensionen und griechischen Indizes speziell
in vier Dimensionen unterschieden,

(e) die Ableitung einer Funktion in einer Veränderlichen mit einem Strich markiert,

(f) bei bestimmten Integralen auf Integrationsgrenzen verzichtet, wenn über den gesamten
zugrundeliegenden Bereich integriert werden soll,

(g) für das Kronecker-Symbol die Definition εij = εi
j = εij mit εij = 1 für i = j und εij = 0

für i ↑= j verwendet, sowie das Dirac-Delta in d Dimensionen bei x ↓ Rd mit εd(x)
bezeichnet.
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2 Struktur der Raumzeit

In dieser Arbeit wird die Raumzeit als ein Kontinuum an Ereignissen angenommen. Ihre
Beschreibung erfolgt durch eine Menge an Punkten, lokal definiert durch reelle Zahlentupel (xi)
mit den Raumkoordinaten für i = 1, 2, ..., d → 1 und einer Zeitkoordinate x0. Darüberhinaus
besitzt diese Menge eine Stetigkeits- und Di"erenzierbarkeitsstruktur.

Im Rahmen der allgemeinen Relativitätstheorie wird die Krümmung der Raumzeit mit
Gravitation identifiziert. Um unphysikalische Krümmung, resultierend aus einer Einbettung
in ein von außen vorgegebenes Koordinatensystem, zu vermeiden, ist das Ziel eine intrinsische
und damit insbesondere koordinatenfreie Beschreibung von Krümmung, ausgedrückt in dazu
geeigneten mathematischen Objekten wie beispielsweise einem metrischen Tensorfeld. Für eine
solche intrinsische Beschreibung werden die Methoden der modernen Di"erentialgeometrie
verwendet, in deren Zentrum der Mannigfaltigkeitsbegri" steht.

2.1 Topologische Struktur

Ausgangspunkt für eine koordinatenunabhängige Beschreibung ist die Abstraktion metri-
scher Räume unter den Gesichtspunkten der Stetigkeit, der Konvergenz sowie der lokalen
Euklidizität. [1]

Mittels einer Familie o"ener Mengen – einer Topologie – lassen sich die oben genannten
Bestandteile definieren.

Für eine Menge M und ihrer Potenzmenge P(M) ist eine Familie T ↔ P(M) von Teilmengen
von M genau dann eine Topologie, wenn sie

(T 1) ↗, M ↓ T ,

(T 2) ↘ U, V :
(

U, V ↓ T ≃ U ⇐ V ↓ T
)
,

(T 3) ↘(Uε)ε→I :
(

(Uε)ε→I ↔ T ≃
⋃

ε→I Uε ↓ T
)

erfüllt, wobei mit (Uε)ε→I eine Folge von Mengen aus T , geordnet durch eine geeignete
Indexmenge I, bezeichnet wird. [1–3]

Zusammen mit der Grundmenge M ergibt das Paar (M, T ) einen topologischen Raum,
der auf grundlegendste Weise erlaubt, die Lage von Punkten zueinander durch einen Umge-
bungsbegri" zu charakterisieren, sowie Stetigkeit und Konvergenz zu untersuchen, ohne auf
externe Information zurückzugreifen. [1, 2, 4]

Der entscheidende Schritt, um aus einem topologischen Raum schließlich eine topologische
Mannigfaltigkeit zu erhalten, ist das Konzept von lokaler Euklidizität. Wenn es zu jedem
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STRUKTUR DER RAUMZEIT

Punkt p ↓ M einen Homöomorphismus ϑ von einer o"enen Umgebung um p, also einer
o"enen Menge die p enthält, in eine bezüglich der entsprechenden Standardtopologie o"enen
Teilmenge des Rd mit d ↓ N0 gibt, heißt der topologische Raum lokal euklidisch zum
Rd. Die Standardtopologie ist hierbei die Topologie der o"enen Bälle, gemessen durch die
euklidische Norm. Schließlich stellt ein zum Rd lokal euklidischer topologischer Raum eine
d-dimensionale topologische Mannigfaltigkeit M = (M, T ) dar. [2, 3]

Die homöomorphe Abbildung ϑ von einer o"enen Umgebung U in eine o"ene Teilmenge
des Rd wird Kartenabbildung genannt. Das Paar (U, ϑ) ist eine Karte. Im Rd können
wieder konventionelle Koordinatensysteme verwendet werden. Daher ist für Karten auch das
Synonym „Koordinatensystem“ verbreitet. Ist eine Basis {ei} für den Rd gewählt, kann für
alle q ↓ U die Auswertung ϑ(q) als Tupel ϑ(q) = xi(q) ei = (x0(q), . . . , xd↑1(q)) mit den
Komponenten xi(q) ↓ R geschrieben werden. Diese Koordinaten heißen lokale Koordinaten
(U, ϑ) = (U, xi). [2–4]

Alle Karten können in einer Familie {(Uε, ϑε) | ϖ ↓ I} zusammengefasst werden, welche
den Namen Atlas bekommt, wobei I eine geeignete Indexmenge darstellt. Die vereinigten
Kartengebiete {Uε} müssen dabei mindestens die gesamte Menge M der Mannigfaltigkeit
bezüglich Inklusion abdecken. [2, 3, 5]

2.2 Glatte Mannigfaltigkeiten

Glatte topologische Mannigfaltigkeiten sind für eine vollständige analytische und physikali-
sche Beschreibung über die Wahl einer geeigneten Topologie hinaus noch mit einer weiteren
Struktur versehen, welche das Di"erenzieren auf und zwischen Mannigfaltigkeiten ermöglicht.
Dies ist eine sogenannte glatte Struktur, deren wichtigstes Merkmal die Glattheit von Koordi-
natentransformationen ist. [3, 5]

Zunächst soll definiert werden, was unter einer Koordinatentransformation beziehungsweise
einem Kartenwechsel zu verstehen ist. Dafür seien (U, ϑU ) und (V, ϑV ) mit U ⇐ V ↑= ↗ zwei
sich überlappende Karten in M. Die Kartenwechsel bestimmen sich durch die Abbildungen

ϑV ⇒ ϑ↑1

U : Rd ⇑ ϑU (U ⇐ V ) ⇓ ϑV (U ⇐ V ) ↔ Rd, (2.1)

ϑU ⇒ ϑ↑1

V : Rd ⇑ ϑV (U ⇐ V ) ⇓ ϑU (U ⇐ V ) ↔ Rd. (2.2)

Die Karten heißen glatt verträglich, wenn die Kartenwechsel zwischen ihnen glatt, also
beliebig oft di"erenzierbar sind. Werden die glatt verträglichen Karten in einem Atlas zusam-
mengefasst, wird dieser zu einem glatten Atlas. Die bezüglich Inklusion eindeutig bestimmte
maximale Kollektion an glatt verträglichen Karten in diesem Atlas wird glatte Struktur A

genannt. [2, 3, 5, 6]
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Algebraische Strukturen auf Mannigfaltigkeiten

Das Tripel (M, T ,A) ist eine d-dimensionale glatte Mannigfaltigkeit. In den kommenden
Betrachtungen wird von dieser kollektiven Struktur grundsätzlich ausgegangen und eine solche
begri#ich als Mannigfaltigkeit M abgekürzt. [2]

Abschließend folgen wichtige Begri"serklärungen. Dafür sei f eine Abbildung f : M ⇓ N

zwischen einer m-dimensionalen topologischen Mannigfaltigkeit M = (M, TM ) und einer
n-dimensionalen topologischen Mannigfaltigkeit N = (N, TN ).

Die Koordinatendarstellung von f ergibt sich für zwei jeweils gewählte Karten (U, ϑU ) in
M und (V, ϑV ) in N mit f(U) ↔ V aus ϑV ⇒ f ⇒ ϑ↑1

U : Rm ⇑ ϑU (U) ⇓ ϑV (f(U)) ↔ Rn. Die
Abbildung f heißt di"erenzierbar, wenn sie in allen Koordinatendarstellungen di"erenzierbar
ist. Die Di"erenzierbarkeit von f ist unabhängig von der Wahl lokaler Koordinaten. [2, 3]

Sei f nun ein Homöomorphismus. Wenn das Inverse ϑU ⇒ f↑1 ⇒ ϑ↑1

V von ϑV ⇒ f ⇒ ϑ↑1

U existiert
und beide Abbildungen beliebig oft di"erenzierbar sind, dann wird f ein Di"eomorphismus
genannt. Die Mannigfaltigkeiten zwischen denen f abbildet, können in diesem Fall glatt inein-
ander umgeformt werden; sie sind zueinander di"eomorph. Wenn M eine d-dimensionale
Mannigfaltigkeit mit glatter Struktur A ist, so sind sämtliche Kartenabbildungen Di"eo-
morphismen. [3]

Als einfachster nicht-trivialer Fall ist beispielsweise der Rd selbst eine Mannigfaltigkeit, welche
durch eine einzige globale Karte (Rd, idRd) die sogenannte glatte Standardstruktur eindeutig
bestimmt. Darüber hinaus ist jeder auf diese Weise erzeugte Kartenwechsel per Konstruktion
ein Di"eomorphismus. [3, 5]

Glatte Funktionen sind beliebig oft di"erenzierbare Abbildungen der Form M ⇓ R. Der
lineare Raum aller glatten Funktionen auf M ist mit C↓(M) bezeichnet. Darüber hinaus
heißen glatte Abbildungen von einem Intervall I ↔ R nach M glatte Kurven. [2, 6]

2.3 Algebraische Strukturen auf Mannigfaltigkeiten

Zur Einführung vektorieller und tensorieller physikalischer Größen soll in diesem Abschnitt der
bereits diskutierte mathematische Rahmen um zusätzliche algebraische Strukturen erweitert
werden. Ihre Definitionen erfolgen zunächst nur punktuell, bevor sie im nächsten Abschnitt
global fortgesetzt werden.
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STRUKTUR DER RAUMZEIT

2.3.1 Vektoren

Auf Mannigfaltigkeiten werden Vektoren als Tangentialvektoren – oder kurz Tangenten – ver-
standen. Diese Tangentialvektoren sind Richtungsableitungen einer Funktion in Richtung
einer Kurve.

Sei I ⇔ R ein o"enes Intervall, p ↓ M ein Punkt und ϱ : I ⇓ M, ς ↖⇓ ϱ(ς) eine glatte Kurve
auf einer Mannigfaltigkeit M. Die Kurve sei so gewählt, dass sie durch den Punkt p verläuft,
es gibt also ein ςp ↓ I mit ϱ(ςp) = p. Die Richtungsableitung einer glatten Funktion
f ↓ C↓(M) in Richtung ϱ bei p ist definiert durch die lineare Abbildung

Vp,ϑ : C↓(M) ⇓ R, f ↖⇓ Vp,ϑ(f) := (f ⇒ ϱ)↔(ςp). (2.3)

Erfüllt die Abbildung Vp,ϑ die Leibnizregel, handelt es sich um eine sogenannte Derivation.
Da für jede Derivation in einem Punkt eine Kurve gefunden werden kann, für welche die
Derivation äquivalent zu einer Richtungsableitung ist, kann die Kurve auch weggelassen und
Vp statt Vp,ϑ geschrieben werden. [2, 3, 6]

Die Menge aller Derivationen an einem Punkt p kann auf kanonische Weise selbst zu einem
Vektorraum über R erhoben werden – dem mit TpM bezeichneten Tangentialraum. Dieser
hat die gleiche Dimension wie die Mannigfaltigkeit M selbst. Die Elemente von TpM sind die
Tangentialvektoren, die auch nur als Vektoren bezeichnet werden. [6, 7]

Durch einen Satz lokaler Koordinaten (U, xi) um p wird stets eine Koordinatenbasis von
TpM induziert, deren Basiselemente durch ei(p) = ϖ

ϖxi

∣∣
p

gegeben sind. Ein Vektor Vp kann
dann in der Form Vp = V i

p ei(p) durch seine Komponenten V i
p ↓ R ausgedrückt werden.

Zwischen Koordinaten kann mittels der Transformationsformel Ṽ i
p = ϖx̃i

ϖxj

∣∣
p

V j
p gewechselt

werden. Zu beachten ist hierbei, dass Vektoren an sich kartenfreie Objekte sind, das heißt
Vp = V i

p ei(p) = Ṽ i
p ẽi(p) = Ṽp. [3, 7]

2.3.2 Kovektoren

Der Kotangentialraum T ↗
p M ist der Dualraum des Tangentialraums und kann somit für eine

Mannigfaltigkeit M an jedem Punkt p definiert werden. Seine Elemente sind die Kovektoren,
also lineare Funktionen w : TpM ⇓ R, die jedem Vektor bei p eine Zahl zuordnen.

Jede Koordinatenbasis induziert auf eindeutige Weise eine duale Basis für T ↗
p M mit

Elementen ei(p) = dpxi definiert durch dpxi( ϖ
ϖxj

∣∣
p
) := εi

j . Daher lautet die Komponenten-
schreibweise für Kovektoren wp = wi(p) dpxi, wobei mittels w̃i(p) = ϖxj

ϖx̃i

∣∣
p

wj(p) zwischen
unterschiedlichen lokalen Koordinaten transformiert werden kann. [3, 7]
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Vektorbündel auf Mannigfaltigkeiten

2.3.3 Tensoren

Tensoren sind multilineare Abbildungen, die r Kopien des Kotangentialraums und s Kopien
des Tangentialraums auf eine Zahl abbilden:

Ap
(r,s) : (T ↗

p M)r ↙ (TpM)s ⇓ R mit r, s ↓ N0. (2.4)

Im Fall r = 0 = s reduziert sich Ap
(r,s) = Ap

(0,0) ↓ R auf eine Zahl.

Der R-Vektorraum aller (r, s)-Tensoren an einem Punkt p wird (r, s)-Tensorraum T r
s (TpM)

genannt. Eine Basis des Tensorraums ergibt sich aus dem Tensorprodukt einer Vektorraumbasis
{ei(p)} für TpM und der dazugehörigen dualen Basis {ei(p)} ↔ T ↗

p M . Mit den Komponenten
Ap

i1...ir
j1...js

kann jeder (r, s)-Tensor mit Hilfe des Tensorprodukts ∝ dargestellt werden:

Ap
(r,s) = Ap

i1...ir
j1...js

ei1
(p) ∝ · · · ∝ eir (p) ∝ ej1(p) ∝ · · · ∝ ejs(p). (2.5)

Die Transformationsregel der Tensorkomponenten bestimmt sich aus den Regeln für Kovektoren
und Vektoren zu [2, 7]:

Ãp
i1...ir

j1...js
= φx̃i1

φxm1

. . .
φx̃ir

φxmr

φxn1

φx̃j1

. . .
φxns

φx̃js
Ap

m1...mr
n1...ns

. (2.6)

2.4 Vektorbündel auf Mannigfaltigkeiten

Vektorbündel ermöglichen eine Verbindung zwischen Vektorräumen an unterschiedlichen
Punkten auf einer Mannigfaltigkeit. Diese Verbindung ist Ausgangspunkt für die Definition
eines Zusammenhangs.

Die Konzeption von Vektorbündeln setzt zunächst die kanonische Konstruktion eines Vek-
torraums Ep an jedem Punkt p einer Mannigfaltigkeit voraus. Die Grundmenge für ein
Vektorbündel auf einer Mannigfaltigkeit M ist dabei die disjunkte Vereinigung aller Vektor-
räume Ep über M. Mithilfe einer Projektionsabbildung ist es dabei stets möglich von den
einzelnen Vektorräumen Ep zurück auf die Mannigfaltigkeit M abzubilden. Das Konstrukt
aus Vektorräumen über M, Projektionsabbildung und Basismannigfaltigkeit M ist der Aus-
gangpunkt für die sogenannten Obermannigfaltigkeit E und ist überdies auf kanonische Weise
ausgestattet mit einer glatten Struktur. [2, 6]

Ein glattes Vektorbündel der Dimension d besteht aus einer Mannigfaltigkeit M, einer
Obermannigfaltigkeit E zur Grundmenge E, sowie einer glatten Abbildung ↼ : E ⇓ M

zwischen diesen. Diese Abbildung ist zumeist die Projektion auf die erste Komponente,
↼(p, vp) := p für p ↓ M und vp ↓ Ep, sofern E punktweise die Gestalt {p} ↙ Ep vorweist. In
Bezug auf eine Umgebung U um p sei zudem ↼U : U ↙Rd ⇓ U die lokale Projektion auf die
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STRUKTUR DER RAUMZEIT

erste Komponente. Erfüllt die Abbildung folgende Eigenschaften:

(↼ 1) für jeden Punkt p ↓ M ist das Urbild ↼↑1(p) = Ep ⇔ E von der Struktur eines
d-dimensionalen R-Vektorraums,

(↼ 2) für jeden Punkt p ↓ M existiert eine Umgebung U um p und ein Di"eomorphismus
! : ↼↑1(U) ⇓ U ↙Rd, sodass ↼U ⇒ ! = ↼ auf ↼↑1(U) gilt,

(↼ 3) für jedes q ↓ U wird der Di"eomorphismus ! zu einem linearen Isomorphismus
von Eq nach {q} ↙Rd ′= Rd,

so ist das Tripel (E , M, ↼) ein glattes Vektorbündel vom Rang d über M. Die Vektorräume
über jedem Punkt p ↓ M werden aus anschaulichen Gründen auch Fasern genannt und der
in (↼ 2) beschriebene Di"eomorphismus lokale Trivialisierung. [2, 6]

Die Projektionsabbildung ↼ parametrisiert die Vektorräume über M mit den Punkten aus M .
Da alle Vektoren einer Faser auf den Punkt, aus welchem sie entspringen, abgebildet werden,
ist ↼ surjektiv. Auf diese Weise entsteht eine Freiheit in der Zuordnung von Faserelementen zu
jedem Punkt in M . Das motiviert eine Abbildung s : M ⇓ E, die die Bedingung ↼ ⇒ s = idM

erfüllt, wobei idM die Identität auf M sei. Sie wird in Analogie zu der Faservorstellung
ein Schnitt genannt. Für eine glatte Abbildung s bekommt der Schnitt entsprechend die
Bezeichnung glatter Schnitt. Der Vektorraum aller glatten Schnitte in E wird mit ”(E)
notiert. Schnitte ordnen damit e"ektiv jedem Punkt p ↓ M ein Element aus Ep zu und
verallgemeinern auf diese Weise die in den vorherigen Abschnitten eingeführten Begri"e zu
Vektoren, Kovektoren und Tensoren auf ihre entsprechenden Feldvarianten. [2, 8]

Demnach sind Vektorfelder die glatten Schnitte im Vektorbündel über den Tangentialräumen.
Dieses Vektorbündel ist das Tangentialbündel TM über M, das wichtigste Bündel für die
folgenden Betrachtungen. Auf jeder Mannigfaltigkeit lässt sich das (Ko-)Tangentialbündel
als Vektorbündel der (Ko-)Tangentialräume definieren. Folglich können daraus gemäß des
Tensorprodukts die (r, s)-Tensorbündel konstruiert werden. [3, 6]

Der Ausgangspunkt für das Tangentialbündel ist die Grundmenge TM , gegeben durch die
disjunkte Vereinigung aller Tangentialräume über M:

TM :=
⋃

p→M

{p} ↙ TpM =
⋃

p→M

{(p, Vp) | Vp ↓ TpM} . (2.7)

Die Projektionsabbildung für das Tangentialbündel ist wie folgt definiert:

↼ : TM ⇓ M, (p, Vp) ↖⇓ ↼(p, Vp) := p. (2.8)
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Zusammenhänge auf Vektorbündeln

Die glatte Struktur auf der Basismannigfaltigkeit M induziert mithilfe von ↼ eine glatte
Struktur auf TM . Damit wird TM schließlich selbst zu einer glatten Mannigfaltigkeit. [6]

Die zugrundeliegenden Vektorräume sind nun im speziellen Tangentialräume und erfüllen
damit bereits (↼ 1). Die glatte Struktur von M induziert eine glatte Struktur auf der Menge
TM . Für lokale Koordinaten (U, xi) lässt sich jeder Punkt p ↓ U und Vektor Vp ↓ TpM durch
ihre Komponentenfunktionen, bestehend aus jeweils d reellen Zahlen erfassen. Kombiniert
ergibt sich für jeden Punkt in TM eine lokale Darstellung als 2d-Tupel der Form

(p, Vp) ↖⇓
(
x0(p), . . . , xd↑1(p), V 0

p , . . . , V d↑1

p

)
. (2.9)

Aus dem so induzierten Atlas ergibt sich schließlich die in (↼ 2) aufgeführte lokale Trivialisie-
rung für alle p ↓ M . Abschließend ist (↼ 3) o"enbar auch erfüllt, sodass das Tangentialbündel
(TM, M, ↼) tatsächlich ein glattes Vektorbündel der Dimension 2d beschreibt. [3, 6]

Aufgrund der besonderen Stellung wird die auf kanonische Weise zu einem R-linearen Raum
erweiterte Menge ”(TM) der glatten Schnitte im Tangentialbündel – auch glatte Vektorfel-
der genannt – üblicherweise durch X(M) gekennzeichnet. Analog ist X↗(M) als Raum der
glatten Kovektorfelder zu verstehen. [3, 6]

2.5 Zusammenhänge auf Vektorbündeln

Vektorbündel und deren Schnitte erlauben es nun einen Zusammenhang zu definieren. Dieser
liefert eine intrinsische Richtungsableitung von Vektorfeldern, die kovariante Ableitung. Die
kovariante Ableitung eines Vektorfeldes scha"t die Möglichkeit, Krümmung intrinsisch zu
beurteilen. Dieser spezielle Zusammenhang wird später genauer untersucht, aber soll hier als
Motivation für das Konzept des Zusammenhangs im Allgemeinen dienen.

Sei ↼ : E ⇓ M ein glattes Vektorbündel, ”(E) der Raum aller glatten Schnitte in E und X(M)
der Raum aller glatten Vektorfelder auf M . Elemente aus X(M) werden mit U, V, W bezeichnet,
während Elemente aus ”(E) mit X, Y, Z gekennzeichnet werden. Ein Zusammenhang in E

ist eine Abbildung

∞ : X(M) ↙ ”(E) ⇓ ”(E), (V, X) ↖⇓ ∞(V, X) ∈ ∞V X, (2.10)

mit den Eigenschaften [9]:

(∞ 1) R-Linearität im zweiten Argument:

∞V (a1X1 + a2X2) = a1∞V X1 + a2∞V X2 (2.11)

für a1, a2 ↓ R; X1, X2 ↓ ”(E) und V ↓ X(M),

9
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(∞ 2) C↓(M)-Linearität im ersten Argument:

∞f1V1+f2V2
X = f1∞V1

X + f2∞V2
X (2.12)

für f1, f2 ↓ C↓(M); V1, V2 ↓ X(M) und X ↓ ”(E),

(∞ 3) Produktregel für f ↓ C↓(M):

∞V (fX) = V (f)X + f ∞V X. (2.13)

Hierbei meint V (f) die glatte Funktion p ↖⇓ V (f)(p) := Vp(f).

Sei (U, xi) eine Karte auf M. Für die lokale Darstellung des Zusammenhangs ist die Anwendung
von ∞ auf die Basisvektorfelder ei = ϖ

ϖxi , welche in jedem Punkt p ↓ U eine Koordinatenbasis
des jeweiligen Tangentialraums TpM definieren, durch einen Satz von insgesamt d3 glatten
Funktionen U ⇓ R definiert:

∞iej ∈ ∞eiej = eϱC
ϱ
ij (2.14)

Dabei sind die Cϱ
ij die Zusammenhangskoe!zienten.

Die durch den Zusammenhang gegebene Ableitung ∞V X wird kovariante Ableitung von
X in Richtung V genannt. [3, 9]

2.6 Metrik

Zur Vollendung der Raumzeit wird die noch verbleibende Struktur auf Mannigfaltigkeiten
definiert; die Metrik, die in der einsteinschen Theorie das klassische Gravitationsfeld ersetzt.
Bisher wurde besonderes Augenmerk darauf gelegt, bei der Definition struktureller Objekte
auf extrinsische Information, wie Winkel und Längen, zu verzichten. Für eine vollständige
Beschreibung braucht es nun eine zusätzliche Struktur, um Abstände in der Raumzeit zu
charakterisieren.

Aus dieser Notwendigkeit ergibt sich eine Intuition, was genau von der Metrik erwartet wird:
Sie soll einen infinitesimalen, unter Koordinatentransformation invarianten, Quadratabstand
liefern. Genauer soll die Metrik ein Skalarprodukt ermöglichen. [7]

Eine infinitesimale Raumzeit-Verschiebung mündet in dem Konzept von Tangentialvektoren.
Dieser Gedanke, zusammen mit der Forderung nach einem Skalarprodukt, motiviert eine
lineare Abbildung TpM ↙ TpM ⇓ R und damit einen (0, 2)-Tensor. [7]
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Im Rd wird das Standardskalarprodukt ∋·, ·△Rd zweier Vektorfelder V, W definiert durch die
Summe der Produkte ihrer Komponenten:

∋V, W △Rd =
d∑

i=1

V iW i. (2.15)

Zur Verallgemeinerung auf eine Mannigfaltigkeit, wird für jeden Punkt das Skalarprodukt auf
dem jeweiligen Tangentialraum definiert. Die Metrik nimmt an jedem Punkt zwei Elemente
aus dem Tangentialraum und bildet sie bilinear auf eine Zahl ab. Lokal beschreibt die Metrik
damit einen (0, 2)-Tensor und global ein (0, 2)-Tensorfeld. In lokalen Koordinaten ergibt sich
die Darstellung:

g ∈ ds2 = gij dxi ∝ dxj . (2.16)

Die Schreibweise ds2 ist inspiriert durch den Bezug zum infinitesimalen Abstand. In der
physikalischen Literatur wird das Tensorprodukt der Basis üblicherweise nicht ausgeschrieben
und die Koe!zienten gij werden oft selbst als Metrik bezeichnet. Das Inverse der Metrik wird
als gij angegeben und meint die Komponenten der Inversen zur Matrix (gij). [3, 10]

Die Metrik ist symmetrisch, entsprechend gilt g(V, W ) = g(W, V ) für alle Vektorfelder
V, W ↓ X(M). Zudem ist sie nicht entartet: Gilt für festes W ↓ X(M) die Gleichung
g(V, W ) = 0 für alle Vektorfelder V ↓ X(M), dann folgt stets W = 0. [3]

In dieser Arbeit wird für die Beschreibung der Raumzeit eine Lorentzmetrik, ausgezeichnet
durch die Signatur (→, +, +, +, . . . ), verwendet. Eine positiv definite Metrik wird als Riemann-
metrik bezeichnet und es lassen sich mit ihr Längen im anschaulichen Sinne definieren. [10]

Für das Skalarprodukt zweier Vektorfelder V, W ↓ X(M) ergibt sich:

∋V, W △g := gij V iW j . (2.17)

Die Metrik erzeugt einen Isomorphismus zwischen TM und T ↗M , der Grundmenge des als
Dualraum des Tangentialbündels verstandenen Kotangentialbündels T ↗M, sodass gilt [3]:

gikgkj = ε j
i , gikgkj = εi

j , (2.18)

wi = gijwj , V i = gijVj . (2.19)

Diese Relationen beschreiben das sogenannte Indexziehen, das als abstrakte Operation einen
Übergang zwischen Vektor- und Kovektorfeldern und umgekehrt charakterisiert.
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3 Metrisch-A!ne Gravitationstheorie

Eine metrisch-a!ne Gravitationstheorie ist eine Beschreibung der Raumzeit, ausgestattet mit
einem beliebigen Zusammenhang im Tangentialbündel. Die allgemeine Relativitätstheorie
ist aufgebaut auf dem Spezialfall eines torsionsfreien und metrischen Zusammenhangs, dem
Levi-Civita-Zusammenhang. Eine Raumzeit, gegeben durch die bereits diskutierten Elemente
Menge, Topologie, glatte Struktur und Metrik, zusammen mit dem durch die Metrik eindeutig
festgelegtem Levi-Civita-Zusammenhang, lässt als einzige Variable die Metrik übrig – im
Gegensatz zur metrisch-a!nen Gravitationstheorie, in der die Metrik und der Zusammenhang
als unabhängige Veränderliche aufgefasst werden. Die Verwendung eines arbiträren Zusammen-
hangs erlaubt eine Untersuchung der Torsion sowie der Nichtmetrizität der Raumzeit. Es wird
die daraus notwendige Erweiterung der einsteinschen Feldgleichungen hergeleitet, indem die
metrisch-a!ne Version der Einstein-Hilbert-Wirkung eingeführt und nach der inversen Metrik
variiert wird. An drei Beispielen wird der E"ekt von Materiefreiheitsgraden nachvollzogen.
Dem vorangehend werden zunächst der a!ne Zusammenhang definiert sowie die damit ver-
knüpften natürlichen Größen Krümmung, Torsion und Nichtmetrizität auf Mannigfaltigkeiten
erläutert.

3.1 A!ner Zusammenhang

Ein a!ner Zusammenhang ist eine Abbildung ∞ : X(M) ↙ X(M) ⇓ X(M) mit folgenden
Eigenschaften [10]:

(∞ 1) ∞U (V + W ) = ∞U V + ∞U W, (3.1)

(∞ 2) ∞(U+V )W = ∞U W + ∞V W, (3.2)

(∞ 3) ∞(fU)V = f∞U V, (3.3)

(∞ 4) ∞U (fV ) = U(f)V + f∞U V. (3.4)

Dabei sind U, V, W ↓ X(M) und f ↓ C↓(M).

In Koordinatenschreibweise für eine Karte (U, xi) ergibt sich

∞iej = ek”k
ij (3.5)

mit der Koordinatenbasis ei = ϖ
ϖxi und den Zusammenhangskoe!zienten, die jetzt speziell für

Zusammenhänge im Tangentialbündel ”k
ij anstatt Ck

ij heißen. [10]

Die kovariante Ableitung bezüglich eines a!nen Zusammenhangs ist eine Ableitung von
Tangentialvektorfeldern, deren Ergebnis wieder Element des Raumes der glatten Vektorfelder
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ist. Für beliebige Vektorfelder V, W ↓ X(M) ergibt sich [3]:

∞V W = V i∞i(W jej) = V i

(
φW k

φxi
+ W j”k

ij

)

ek. (3.6)

Die kovariante Ableitung lässt sich wie folgt auf Tensorfelder erweitern [3]:

∞iT
k1...kr

j1...js
= φiT

k1...kr
j1...js

+ ”k1

ilT
l k2...kr

j1...js
+ . . . + ”kr

ilT
k1...kr→1 l

j1...js

→ ”l
ij1

T k1...kr
l j2...js

→ . . . → ”l
ijs

T k1...kr
j1...js→1 l .

(3.7)

Werden darüber hinaus die später genauer erläuterten Forderungen nach metrischer Kompati-
bilität ∞kgij = 0 und Torsionsfreiheit ”k

ij → ”k
ji = 0 erfüllt, so ist ∞ der durch g bestimmte

Levi-Civita-Zusammenhang ∞̊ und die abstrakten Zusammenhangskoe!zienten können lokal
konkret durch

”̊k
ij = 1

2gkl(φigjl + φjgil → φlgij) (3.8)

angegeben werden. Sie werden als Christo"el-Symbole bezeichnet. [3]

3.2 Krümmung

Die Krümmung einer Kurve quantifiziert, wie weit diese von einer Geraden abweicht. Im
euklidischen Raum zeichnen sich Geraden dadurch aus, dass der Paralleltransport eines Tan-
gentialvektors diesen unverändert lässt. Zudem kann eine Parametrisierung gefunden werden,
sodass die zweite Ableitung der Geraden verschwindet.

Da Kurven auf Mannigfaltigkeiten deren möglicher Krümmung folgen müssen, können Kurven
nicht mehr in Bezug auf Geraden beurteilt werden, sondern in Bezug auf Geodäten, die
verallgemeinerten Geraden in gekrümmten Räumen. Dadurch wird der Paralleltransport eines
Vektors zwischen zwei Punkten auf einer gekrümmten Mannigfaltigkeit abhängig von der
Wahl der Kurve.

Ein Vektorfeld V ↓ X(M) auf einer Mannigfaltigkeit M wird entlang einer glatten Kurve
ϱ : I ⇓ M, ς ↖⇓ ϱ(ς) parallel transportiert, wenn es keine Änderung in Bezug auf das
Tangentialvektorfeld ϱ̇ der Kurve aufweist, wobei für eine Karte (U, ϑ) und der Projektion
auf die i-te Komponente ↼i : Rd ⇓ R mit lokalen Koordinaten xi = ↼i ⇒ ϑ die Relation
ϱ̇(ς) := (xi ⇒ ϱ)↔(ς) ϖ

ϖxi

∣∣
ϑ(ς)

= ϱi ↔ ϖ
ϖxi

∣∣
ϑ(ς)

für alle ς ↓ I gilt. Mittels eines a!nen Zusammen-
hangs ∞ wird eine kovariante Ableitung formuliert, die durch die Bedingung

∞ϑ̇V = 0 (3.9)

einen Paralleltransport auf einer Mannigfaltigkeit definiert. [3]
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Sei (U, xi) eine Karte auf M, dann ist die Komponentenschreibweise für den Paralleltransport
eines glatten Vektorfelds V entlang einer Kurve [a, b] ▽ ς ↖⇓ ϱ(ς) gegeben durch

dV k

dς
+ ”k

ij
dϱi

dς
V j = 0 (3.10)

zur Anfangsbedingung V (a) = V0 ↓ Tϑ(a)M .

Wird für I = [a, b] der Tangentialvektor ϱ̇(a) ↓ Tϑ(a)M selbst entlang der Kurve ϱ parallel-
transportiert, also gilt

∞ϑ̇ ϱ̇ = 0, (3.11)

dann ist ϱ eine Geodäte. Da die erste Ableitung einer Kurve ϱ an einem Punkt p = ϱ(a)
durch den Tangentialvektor ϱ̇(a) ↓ TpM ausgedrückt wird, entspricht (3.11) auch der zweiten
Anschauung über verschwindende Krümmung: Die zweite Ableitung, hier durch die kovariante
Ableitung nach dem Tangentialfeld der Kurve gegeben, verschwindet. [2, 3]

Die gesamte Information über intrinsische Krümmung auf Mannigfaltigkeiten wird durch
einen sogenannten Krümmungsendomorphismus formalisiert:

R : X(M) ↙ X(M) ↙ X(M) ⇓ X(M);

R(U, V )W := ∞U (∞V W ) → ∞V (∞U W ) → ∞[U,V ]W,
(3.12)

wobei U, V, W ↓ X(M) und [U, V ] die Kommutator-Lie-Klammer darstellt. [2, 10]

Lokal ergibt sich ein (1,3)-Tensorfeld

R
(

φ

φxi
,

φ

φxj

)
φ

φxk
= Rl

ijk
φ

φxl
(3.13)

mit den Komponenten

Rl
ijk = φi”l

jk → φj”l
ik + ”q

jk”l
iq → ”q

ik”l
jq. (3.14)

Die Koe!zienten Rl
ijk definieren den Krümmungsendomorphismus vollständig. Er ist ein

(1,3)-Tensorfeld und transformiert sich gemäß (2.6). Er repräsentiert die globale Krümmung
der Mannigfaltigkeit. Wird ein Vektor auf einer geschlossenen Kurve parallel transportiert, so
ist die Änderung entlang dieser Kurve proportional zu den Komponenten des Krümmungs-
endomorphismus Rl

ijk. Die Spurbildung von Rl
ijk durch Kontraktion der Indizes,

Rik := Rl
ilk, (3.15)
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ergibt ein (0,2)-Tensorfeld, den Krümmungstensor, welcher die Informationen des kompli-
zierten Krümmungsendomorphismus auf wenige Komponenten kondensiert. [3, 9]

3.3 Torsion und Nichtmetrizität

Während Abweichungen im Paralleltransport die Krümmung der Mannigfaltigkeit beurteilen,
tri"t die Torsion, definiert durch den Kommutator der kovarianten Ableitung eines Gradienten-
feldes, eine Aussage über die Unebenheit einer von Tangentialvektoren Vp, Wp ↓ TpM auf-
gespannten Fläche. [2]

Sei ∞ ein a!ner Zusammenhang auf der Mannigfaltigkeit M. Wirken zwei kovariante Ablei-
tungen auf ein glattes Skalarfeld ↽, so misst der Torsionstensor mit Komponenten T k

ij , wie
stark die zweite kovariante Ableitung angewandt auf ↽ vom Kommutieren abweicht [11]:

∞i(φj↽) → ∞j(φi↽) = T k
ij(φk↽) . (3.16)

Für Vektorfelder ergibt sich das Torsionstensorfeld bezüglich ∞ für eine d-dimensionale
Mannigfaltigkeit M aus [3]

T : X(M) ↙ X(M) ⇓ X(M); (V, W ) ↖⇓ T (V, W ) := ∞V W → ∞W V → [V, W ] , (3.17)

mit den Torsionskoe!zienten T k
ij gegeben durch:

T k
ij

φ

φxk
= T

(
φ

φxi
,

φ

φxj

)
=

(
”k

ij → ”k
ji

) φ

φxk
. (3.18)

Der Ausdruck ∞V W → ∞W V charakterisiert den Unterschied der Änderung der Tangentialvek-
torfelder in Richtung des jeweilig anderen Vektorfeldes und damit die Änderung der von den
Tangentialvektoren aufgespannten Fläche. Da Vektorfelder im Allgemeinen nicht kommutieren,
kommt aus dem Kommutator der zweiten kovarianten Ableitung die Lie-Klammer [V, W ] der
ausgewählten Vektorfelder hinzu:

∞V W → ∞W V = V iW j(”k
ij → ”k

ji) +
(

V i φW j

φxi
→ W i φV j

φxi

)
φ

φxj

= V iW j(”k
ij → ”k

ji) + [V, W ].
(3.19)

Die Torsion soll, wie auch die Krümmung, ausschließlich das Erzeugnis der durch den a!nen
Zusammenhang induzierten Geometrie sein. Da die Lie-Klammer [V, W ] aus der Wahl der
Tangentialvektorfelder folgt, wird sie in (3.17) abgezogen. [2]

Die letzte Größe, um alle geometrischen Abweichungen von der flachen Raumzeit zu vervoll-
ständigen, ist das als Nichtmetrizität bezeichnete Tensorfeld Q(U, V, W ) := (∞U g)(V, W ) für
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U, V, W ↓ X(M) mit den Koe!zienten Qijk = Q
( ϖ

ϖxi , ϖ
ϖxj , ϖ

ϖxk

)
. Ein Zusammenhang ist genau

dann mit der Metrik kompatibel, wenn gilt:

Qijk ∈ ∞igjk = 0. (3.20)

Ist das nicht der Fall, spricht man von Nichtmetrizität. Dabei gibt Q(”, g) wieder, wie sich
die durch g ermittelte Länge eines parallel transportierten Vektors ändert. [12, 13]

3.4 Metrisch-A!ne Version der Einstein-Hilbert-Wirkung

Die Struktur der Raumzeit wurde in ihren Bestandteilen ausformuliert und die auf ihr
definierte Krümmung soll nun durch die einsteinschen Feldgleichungen mit der Gravitation in
Verbindung gesetzt werden.

Für eine Beschreibung der Raumzeit über die einsteinschen Feldgleichungen wird eine vier-
dimensionale Mannigfaltigkeit M mit Lorentzmetrik g und Levi-Civita-Zusammenhang ∞̊
vorausgesetzt. Lokal wird die Metrik g durch ihre Komponentenmatrix (gµω) und der Levi-
Civita-Zusammenhang durch die Christo"el-Symbole ”̊k

ij repräsentiert.

Zur Herleitung der einsteinschen Feldgleichungen wird die Einstein-Hilbert-Wirkung [10],

SEH[g] = 1
16↼G

ˆ (
R̊ → 2#

)̸
→g d4x, (3.21)

nach der inversen Metrik (gµω) variiert:

εg→1SEH = 1
16↼G

ˆ {
(εgµω)R̊µω

̸
→g + gµω(εg→1R̊µω)

̸
→g

+ (R̊ → 2#)(εg→1

̸
→g)

}
d4x.

(3.22)

Dabei ist das Integrationsmaß durch
̸

→g d4x, zusammengesetzt aus der Dichte
̸

→g und
dem di"erentiellen Lebesgue-Maß d4x auf dem R4, gegeben. Ferner ist G die Newtonsche
Gravitationskonstante, # die kosmologische Konstante, R̊ς

µςω = R̊µω der Ricci-Tensor und
gµωR̊µω = R̊ der Ricci-Skalar. [10, 14]

Unter Annahme einer Mannigfaltigkeit ohne topologischen Rand und zur Hilfenahme von [10]

εg→1R̊ς
µςω = ∞̊ςεg→1”̊ς

µω → ∞̊ωεg→1”̊ς
µς, (3.23)

εg→1

̸
→g = →1

2
̸

→ggµωεgµω (3.24)

folgt dann:
εg→1SEH = 1

16↼G

ˆ {
R̊µω → 1

2gµω(R̊ → 2#)
}̸

→g εgµω d4x. (3.25)
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Nach dem Prinzip der kleinsten Wirkung εg→1SEH = 0 ergeben sich die Vakuum-Feld-
gleichungen:

R̊µω → 1
2gµω(R̊ → 2#) = 0. (3.26)

In Anwesenheit von Materie wird die daraus folgende Quelle der Gravitation durch den
Energie-Impuls-Tensor mit den Komponenten Tµω ausgedrückt. Dieser ergibt sich aus der
Variation der Wirkung erweitert um eine Lagrangedichte, welche die Materie beschreibt. Für
die Feldgleichungen folgt

R̊µω → 1
2gµω(R̊ → 2#) = 8↼G Tµω , (3.27)

wobei für 8↼G auch die Bezeichnung ⇀ verwendet wird. [7, 14]

Im verallgemeinerten Fall metrisch-a!ner Gravitation werden die Metrik und der Zusammen-
hang als unabhängige Veränderliche verstanden. Die einfachste Erweiterung der metrischen
Einstein-Hilbert-Theorie folgt formal durch den Austausch des Ricci-Skalars in (3.21) mit
einer allein durch den a!nen Zusammenhang bestimmten Skalarkrümmung:

Sa!n[g, ”] := 1
2⇀

ˆ (
gµωRµω(”) → 2#

)̸
→g d4x. (3.28)

Die Wirkung kann nach Zusammenhang und Metrik unabhängig variiert werden und reduziert
sich unter Wahl des Levi-Civita-Zusammenhangs auf die bekannte Einstein-Hilbert-Wirkung.

3.5 Materie

Materie wird in der klassischen Feldtheorie durch Felder ! beschrieben. Mathematisch sind
diese durch Schnitte in den dazugehörigen Bündeln charakterisiert. Um Materiefelder zu
untersuchen, werden deren Wirkungen

SMaterie[!] =
ˆ

LM(!, φµ!) d4x (3.29)

eingeführt. Im Speziellen werden Standardbeispiele für Lagrangedichten von Skalarfeldern,
Spinorfeldern und Vektorfeldern betrachtet, die in dieser Reihenfolge ihren kinetischen Ter-
men nach keine, lineare und quadratische Kopplungen mit den Zusammenhangskoe!zienten
aufweisen. [15]

Feldtheorien werden nach Symmetrien klassifiziert. Die erste Symmetrie zur Konstruktion
der Lagrangedichten ist jene Symmetrie, die die freie Wahl von Koordinaten sichert. In der
flachen Raumzeit ist das die Lorentzsymmetrie, das heißt die Invarianz unter Lorentztransfor-
mationen. Übertragen in die gekrümmte Raumzeit soll Invarianz unter den di"eomorphen
Kartenwechseln erfüllt sein. Für den Übergang in eine gekrümmte Raumzeit wird zudem die
Minkowski-Metrik (⇁µω) durch die Lorentz-Metrik (gµω) sowie die partielle Ableitung durch
die aus einem Zusammenhang folgende kovariante Ableitung ersetzt. [15]
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Als Erstes werden Skalarfelder mit der Lagrangedichte

LM = LSkalar := 1
2

(
(∞µ↽) (∞µ↽) → m2↽2

)
= 1

2
(
(φµ↽) (φµ↽) → m2↽2

)
(3.30)

betrachtet, wobei ∞ ein a!ner Zusammenhang auf der Mannigfaltigkeit M ist, m die Masse
beschreibt und unter ↽ das Skalarpotential zu verstehen ist. Das Skalarpotential ist eine glatte
Funktion ↽ ↓ C↓(M), welche jedem Punkt p ↓ M der Raumzeit eine Zahl aus R zuordnet.
Es ist trivial invariant unter Koordinatentransformationen und insbesondere reduziert sich die
kovariante Ableitung ∞µ auf φµ. [15]

Die einfachste unter Kartenwechsel invariante Theorie, welche lediglich den kinetischen Teil
umfasst, lautet:

LSkalar, kin := 1
2 (φµ↽) (φµ↽) . (3.31)

Dabei ist anzumerken, dass es sich bei φµ um eine Schreibweise für gµωφω handelt.

Zudem sind Skalarfeldtheorien denkbar, die eine Verknüpfung mit den Zusammenhangs-
koe!zienten, beispielsweise durch höhere Ableitungsterme wie ∞(φ↽), aufweisen. Jedoch wird
in dieser Arbeit nur der einfachste, oben genannte Fall betrachtet.

Im Gegensatz zu Skalarfeldern transformieren sich die Komponenten von Vektorfeldern
nicht-trivial unter einem Kartenwechsel. Die einfachste unter Kartenwechsel invariante La-
grangedichte für ein Vektorfeld stammt aus der Elektrodynamik, die Lagrangedichte für die
Maxwellgleichungen [15]

LVektor := →1
4FµωF µω → JµAµ, (3.32)

mit dem Vektorpotential Aµ, dem Feldstärketensor Fµω := ∞µAω → ∞ωAµ und der Vierer-
stromdichte Jµ. Der kinetische Term lautet:

LVektor, kin := →1
4FµωF µω . (3.33)

Genau genommen bräuchte es hierbei Zusatzterme, denn Vektorfelder im metrisch-a!nen
Kontext brechen die Eichsymmetrie Aµ ↖⇓ Aµ + φµf , mit einer Eichfunktion f ↓ C↓(M),
explizit [16].

Als letztes werden Dirac-Spinorfelder betrachtet. Dirac-Spinorfelder sind als Felder ebenfalls
glatte Schnitte eines sogenannten Spinorbündels, auf dessen Details [17] hier aber verzichtet
wird. Ein wichtiges Beispiel für Dirac-Spinorfelder ist die Dirac-Lagrangedichte für N ↓ N
fermionische Spezies [15]

LDirac = ψ̄n
(
i /∞(s) → m

)
ψn, (3.34)
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wobei n von 1 bis N laufe, während i die imaginäre Einheit, ψ̄n das Dirac-adjungierte Dirac-
Spinorfeld und /∞(s) eine Abkürzung für ϱµ∞(s)

µ mit den Dirac-Matrizen ϱ0, . . . , ϱ3 bezeichnet.
Ohne an dieser Stelle auf die Details einzugehen, wird die kovariante Ableitung ∞(s)

µ hierbei
mittels des Spinorzusammenhangs ∞(s) erklärt, der durch den a!nen Zusammenhang ∞ auf
kanonische Weise induziert ist [17, 18].

Für die formale Formulierung von fermionischen Theorien, in flacher wie in gekrümmter
Raumzeit, braucht es eine algebraische Struktur, die auch als Dirac-Algebra bekannte Cli"ord-
Algebra Cl1,3(C), ausgezeichnet durch die Antikommutatorbedingung [19]

{ϱµ, ϱω} := ϱµϱω + ϱωϱµ = 2gµω 1, (3.35)

mit der Einheitsmatrix 1 in vier Dimensionen, der inversen Metrik (gµω) und den Dirac-
Matrizen {ϱµ}. Somit kann der kinetische Teil der Lagrangedichte geschrieben werden als:

LDirac, kin := ψ̄niϱµ∞(s)

µ ψn. (3.36)

Für ∞(s)

µ wird im Rahmen dieser Arbeit eine einfache Darstellung [20] verwendet, die eingesetzt
in (3.36) auf

LDirac, kin = ψ̄niϱµ
(

φµ → 1
8

[
∞µϱω , ϱω

)
ψn (3.37)

führt. Hierbei wird zur Auswertung von ∞µϱω die Dirac-Matrix ϱω wie die Komponente eines
Vektorfelds behandelt. Für Spinoren gilt wieder eine Invarianz unter Kartenwechsel. Zusätzlich
besteht die sogenannte Spinbasis-Invarianz, das heißt (3.37) ist invariant unter Ähnlichkeits-
transformationen der Dirac-Algebra und gleichzeitiger Transformation der Spinoren. Diese
Transformationen stammen hierbei aus der speziellen linearen Gruppe SL(4,C). [19, 20]
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4 Metrisch-A!ne Materiemodelle

Infolge der Einführung der Struktur der Raumzeit und möglicher Materie soll eine Erweiterung
der allgemeinen Relativitätstheorie betrachtet werden, welche Raumzeit und Materie ohne
Ausschluss von Torsion und Nichtmetrizität behandelt; die metrisch-a!ne Gravitationstheorie.
Die einsteinschen Feldgleichungen und damit der Levi-Civita-Zusammenhang bleiben dabei
als Spezialfall enthalten. Ziel ist es, unter Einführung eines Di"erenzentensorfeldes [21], die
strukturelle Erweiterung dieser Gleichungen in entsprechenden Zusatztermen auszudrücken.
Das Di"erenzentensorfeld spiegelt dabei den Vergleich eines allgemeinen a!nen Zusammen-
hangs mit dem Levi-Civita-Zusammenhang wider und enthält somit exklusiv Information
über Nichtmetrizität und Torsion. Durch die Variation der metrisch-a!nen Wirkung wird
eine Bewegungsgleichung für das Di"erenzentensorfeld gefunden und dadurch der E"ekt von
Nichtmetrizität und Torsion unter klassischen Rechnungen mit und ohne Materie untersucht.

4.1 Entkopplung des Levi-Civita-Zusammenhangs

Um auf der einsteinschen Gravitationstheorie aufzubauen, wird aus der in (3.28) verwendeten
metrisch-a!nen Formulierung der Wirkung ohne Betrachtung der kosmologischen Konstante,

Sa!n[g, ”] ∈ Sa!n[g, ”]
∣∣∣
”=0

= 1
2⇀

ˆ
gµωRµω(”)

̸
→g d4x, (4.1)

der Levi-Civita-Zusammenhang entkoppelt.

Sei ∞ ein beliebiger a!ner Zusammenhang im Tangentialbündel T M einer vierdimensionalen
Mannigfaltigkeit M und ∞̊ der Levi-Civita-Zusammenhang bezüglich einer auf M vorge-
gebenen Metrik (gµω). Ein (1,2)-Di"erenzentensorfeld D ist eine C↓(M)-bilineare Abbildung,
welche die punktweise definierte Di"erenz der Zusammenhänge klassifiziert:

D := ∞ → ∞̊ : X(M) ↙ X(M) ⇓ X(M). (4.2)

Die Komponenten des Tensorfeldes D ergeben sich aus den Zusammenhangskoe!zienten der
Zusammenhänge ∞ und ∞̊:

Dµ
ωφ = ”µ

ωφ → ”̊µ
ωφ. (4.3)

Die metrisch-a!ne Wirkung (4.1) ist abhängig von den Koe!zienten eines allgemeinen
metrisch-a!nen Zusammenhangs ” = {”µ

ωφ}. Die Menge der Komponenten des Levi-Civita-
Zusammenhangs wird mit ”̊ gekennzeichnet. So kann durch

”µ
ωφ = Dµ

ωφ + ”̊µ
ωφ (4.4)

der allgemeine Zusammenhang, repräsentiert durch ”, ersetzt werden. Als Resultat wird der
”̊-abhängige Teil als eigenständiger Term separiert. [21]
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Um dies nun in (4.1) umzusetzen, wird (4.4) in die Spur des Krümmungsendomorphismus aus
Gleichung (3.15) eingesetzt:

gµφRς
µςφ = gµφ

φµ(Dς
ςφ + ”̊ς

ςφ) → φς(Dς
µφ + ”̊ς

µφ)

+ (D↼
ςφ + ”̊↼

ςφ)(Dς
µ↼ + ”̊ς

µ↼)

→ (D↼
µφ + ”̊↼

µφ)(Dς
ς↼ + ”̊ς

ς↼)


= gµφ
φµDς

ςφ + φµ”̊ς
ςφ → φςDς

µφ → φς”̊ς
µφ

+ D↼
ςφDς

µ↼ + D↼
ςφ”̊ς

µ↼ + ”̊↼
ςφDς

µ↼ + ”̊↼
ςφ”̊ς

µ↼

→ D↼
µφDς

ς↼ → D↼
µφ”̊ς

ς↼ → ”̊↼
µφDς

ς↼ → ”̊↼
µφ”̊ς

ς↼


.

(4.5)

Über die kovariante Ableitung (3.7) ergeben sich:

∞µDς
ςφ = φµDς

ςφ → ”↼
µφDς

ς↼, (4.6)

∞ςDς
µφ = φςDς

µφ + ”ς
ς↼D↼

µφ → ”↼
ςµDς

↼φ → ”↼
ςφDς

µ↼. (4.7)

Wird für den Zusammenhang ∞ der Levi-Civita-Zusammenhang ∞̊ verwendet, so gilt die
Symmetrie der Christo"el-Symbole in den unteren Indizes. Die resultierende Di"erenz

∞̊µDς
ςφ →∞̊ςDς

µφ = φµDς
ςφ +”̊ς

µ↼D↼
ςφ →”̊↼

µφDς
ς↼ →φςDς

µφ →”̊ς
ς↼D↼

µφ +”̊↼
ςφDς

µ↼ (4.8)

dient der Vereinfachung von (4.5):

R = gµφ
φµ”̊ς

ςφ → φς”̊ς
µφ + ”̊↼

ςφ”̊ς
µ↼ → ”̊↼

µφ”̊ς
ς↼ + ∞̊µDς

ςφ → ∞̊ςDς
µφ

+ D↼
ςφDς

µ↼ → D↼
µφDς

ς↼



= gµφ
R̊ς

µςφ + ∞̊µDς
ςφ → ∞̊ςDς

µφ + D↼
ςφDς

µ↼ → D↼
µφDς

ς↼


.

(4.9)

Daraus kann eine Wirkung gewonnen werden, die abhängig von der Metrik sowie von dem
Di"erenzentensorfeld ist. Sie setzt sich aus der Einstein-Hilbert-Wirkung und von D abhängigen
Zusatztermen zusammen:

Sa!n[g, D] ∈ Sa!n[g, ”]
∣∣∣
#=D+#̊

= 1
2⇀

ˆ
gµφ

{
R̊ς

µςφ + ∞̊µDς
ςφ → ∞̊ςDς

µφ

+ D↼
ςφDς

µ↼ → D↼
µφDς

ς↼

}̸
→g d4x.

(4.10)
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4.2 Bewegungsgleichung des Di"erenzentensorfeldes

Um eine Bewegungsgleichung für D zu erhalten, wird die allgemeine metrisch-a!ne Wirkung,
wie in Gleichung (4.10) in Abhängigkeit von D ausgedrückt, nach D variiert:

εDSa!n = εD

(
1

2⇀

ˆ
gµφ

{
R̊ς

µςφ + ∞̊µDς
ςφ → ∞̊ςDς

µφ

+ D↼
ςφDς

µ↼ → D↼
µφDς

ς↼

}̸
→g d4x

)

.

(4.11)

Dabei gilt für die Variation von D:

εDµ
ωφ(x)

εDε
↽ϑ(y) = εµ

εε↽
ωεϑ

φ ε4(x → y). (4.12)

Aus der Annahme einer Mannigfaltigkeit ohne topologischen Rand verschwindet, nach Anwen-
dung des Gaußschen Satzes, das Integral über gµφ

(
∞̊µDς

ςφ → ∞̊ςDς
µφ

)
, sodass dieser Term im

Folgenden nicht weiter berücksichtigt wird. Die Ableitung nach D betre"end verschwindet der
Integrand R̊ aufgrund seiner Unabhängigkeit von D, sodass lediglich die D2-Terme betrachtet
werden. Mit εD =

´
εDε

↽ϑ (x) ⇀
⇀Dω

εϑ (x)

̸
→g d4x folgt für die Ableitung:

εSa!n

εDε
↽ϑ

= 1
2⇀

ˆ
gµφ


εD↼

ςφ

εDε
↽ϑ

Dς
µ↼ +

εDς
µ↼

εDε
↽ϑ

D↼
ςφ

→
εD↼

µφ

εDε
↽ϑ

Dς
ς↼ → εDς

ς↼

εDε
↽ϑ

D↼
µφ


̸

→g d4x.

(4.13)

Nach dem Prinzip der kleinsten Wirkung gilt auf dem Level der klassischen Bewegungs-
gleichungen εSa!n/εDε

↽ϑ = 0 und es folgt:

0 =
εD↼

ςφ

εDa
bc

Dς
µ↼ +

εDς
µ↼

εDa
bc

D↼
ςφ →

εD↼
µφ

εDa
bc

Dς
ς↼ → εDς

ς↼

εDa
bc

D↼
µφ. (4.14)

Aus (4.12) ergibt sich dann:

0 = gµφ
(
ε↼

εε↽
ςεϑ

φDς
µ↼ + ες

εε↽
µεϑ

↼D↼
ςφ → ε↼

εε↽
µεϑ

φDς
ς↼ → ες

εε↽
ςεϑ

↼D↼
µφ

)

= g↽φDϑ
εφ + gµϑD↽

µε → g↽ϑDς
ςε → ε ↽

ε Dϑφ
φ.

(4.15)

Die Gleichung (4.15) wird nun mit gω↽ und gφϑ multipliziert und ϖ in µ umbenannt, daraus
resultiert:

0 = Dφµω + Dωφµ → gωφD↼
↼µ → gωµD ↼

φ ↼. (4.16)

Dies ist die klassische Bewegungsgleichung des Di"erenzentensorfeldes, die das dynamische
Verhalten der metrisch-a!nen Freiheitsgrade steuert.
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Da sich Gleichung (4.16) als rein algebraisch entpuppt, lässt sich mit elementaren Mani-
pulationen eine Lösung konstruieren, die im Folgenden erläutert werden sollen. Zuerst wird
dazu die Indexreihenfolge in Gleichung (4.16) zyklisch permutiert und die daraus resultierenden
Gleichungen werden anschließend derart addiert, dass Dε↽ϑ isoliert wird. Die erste Permutation
ist gegeben durch:

0 = Dµωφ + Dφµω → gφµD↼
↼ω → gφωD ↼

µ ↼. (4.17)

Die zweite Permutation lautet:

0 = Dωφµ + Dµωφ → gµωD↼
↼φ → gµφD ↼

ω ↼. (4.18)

Von der Summe aus den Permutationen (4.17) und (4.18) wird nun die Ausgangsgleichung
(4.16) abgezogen und es folgt

0 = g↽ϑD↼
↼ε + g↽εD ↼

ϑ ↼ → gϑεD↼
↼↽ → gϑ↽D ↼

ε ↼ → gϑεD↼
↼↽ → gϑ↽D ↼

ε ↼ + 2Dε↽ϑ , (4.19)

sodass nur noch eine Komponente Dε↽ϑ des Di"erenzentensorfeldes neben zwei seiner Spuren
übrig bleibt. Für weitere Vereinfachungen werden metrische Spuren über die Ausgangsgleichung
(4.16) gezogen. Die erste Spur berechnet sich wie folgt:

0 = gµφ
(

εSa!n

εDµ
ωφ

)
= gφµ

{
Dφµω + Dωφµ → gωφD↼

↼µ → gωµD ↼
φ ↼

}

= Dµ
µω + D µ

ω µ → εµ
ωD↼

↼µ → εφ
ωD ↼

φ ↼

= D↼
↼ω + D ↼

ω ↼ → D↼
↼ω → D ↼

ω ↼

= 0.

(4.20)

Die zweite Spur ist gegeben durch:

0 = gµω
(

εSa!n

εDµ
ωφ

)
= gµω

{
Dφµω + Dωφµ → gωφD↼

↼µ → gωµD ↼
φ ↼

}

= D ω
φ ω + Dµ

φµ → εµ
φD↼

↼µ → εµ
µD ↼

φ ↼

= D ↼
φ ↼ + D↼

φ↼ → D↼
↼φ → 4D ↼

φ ↼.

(4.21)

Die dritte Spur lautet:

0 = gωφ
(

εSa!n

εDµ
ωφ

)
= gωφ

{
Dφµω + Dωφµ → gωφD↼

↼µ → gωµD ↼
φ ↼

}

= Dω
µω + Dφ

φµ → εω
ωD↼

↼µ → εφ
µD ↼

φ ↼

= D↼
µ↼ + D↼

↼µ → 4D↼
↼µ → D ↼

µ ↼.

(4.22)

23



METRISCH-AFFINE MATERIEMODELLE

Die erste Spur (4.20) liefert eine triviale Lösung und damit keine weiteren Informationen. Aus
der Gleichsetzung der Spuren zwei (4.21) und drei (4.22) folgt

D↼
↼φ = D ↼

φ ↼, (4.23)

für alle ρ = 0, . . . , 3. Die Information aus dem Gleichsetzen der Spuren (4.23) wird in die
aus den Permutationen folgende Gleichung (4.19) eingesetzt. Das wiederum resultiert in der
gesuchten Lösung

Dµωφ = gφµD↼
↼ω , (4.24)

beziehungsweise für die vollen Zusammenhangskoe!zienten:

”µ
ωφ = ”̊µ

ωφ + εµ
φD↼

↼ω . (4.25)

Der Zusammenhang ∞ ist damit also lokal über D eindeutig bis auf eine Spur von D bestimmt.
Auf diese Weise wird eine auf R vierparametrige Klasse von Lösungszusammenhängen etabliert,
welche durch Translationen der Christo"el-Symbole mit Komponenten der Form εµ

φAω für
beliebige Kovektorfelder A ↓ X↗(M) charakterisiert sind. Dies stimmt mit dem aufgeführten
Resultat in [21] überein.

Nun soll dieses Ergebnis noch überprüft werden. Dafür wird die Bewegungsgleichung für D

(4.24) in die permutierte Ausgangsgleichung (4.17) eingesetzt:

0 = gφµD↼
↼ω + gωφD↼

↼µ → gφµD↼
↼ω → gφµD ↼

µ ↼. (4.26)

Durch Verwendung von (4.23) ergibt sich:

0 = gφµD↼
↼ω + gωφD↼

↼µ → gφµD↼
↼ω → gωφD↼

↼µ = 0. (4.27)

Damit ist gezeigt, dass der in (4.25) gefundene Audruck die Bewegungsgleichung (4.16) tat-
sächlich löst.

Nun soll die a!ne Wirkung (4.10) nach der inversen Metrik variiert werden, um die gewonnene
Lösung der Bewegungsgleichung (4.24) einzusetzen und daraus die gesuchten, aus der a!nen
Erweiterung folgenden, Zusatzterme für die einsteinschen Feldgleichungen zu bestimmen. Die
∞D-Terme verschwinden unter Annahme einer Mannigfaltigkeit ohne Rand erneut:

Sa!n[g, D] = 1
2⇀

ˆ
R̊

̸
→g d4x + 1

2⇀

ˆ
gµφ

(
D↼

ςφDς
µ↼ → D↼

µφDς
ς↼

)

  
=: $µφ

̸
→g d4x. (4.28)
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Die Variation des ersten Integrals liefert die bekannten einsteinschen Feldgleichungen. Für
das zweite Integral, abgekürzt durch SD, ergibt sich:

εSD

εgε↽
= ε

εgε↽

( 1
2⇀

ˆ
gµφ$µφ

̸
→g d4x

)

= 1
2⇀

ˆ (
$µφεµ

εεφ
↽ → gµφ$µφ

1
2gµωεµ

εεω
↽

) ̸
→g d4x



= 1
2⇀

ˆ (
$ε↽ → gµφ$µφ

1
2gε↽

) ̸
→g d4x


.

(4.29)

Aus εg→1Sa!n = 0 folgen, sofern die Metrik die einsteinsche Feldgleichung erfüllt, Zusatzterme
für die Vakuum-Feldgleichung:

0 = $ε↽ → 1
2gµφ$µφgε↽. (4.30)

Aus dem Vergleich mit (3.27) lassen sich die durch Torsion und Nichtmetrizität induzierten
Zusatzterme als Energie-Impuls-Tensor au"assen:

Tε↽ = → 1
⇀

(
$ε↽ → 1

2gµφ$µφ gε↽

)
. (4.31)

Die Lösung für D (4.24) eingesetzt in Tε↽ (4.31) liefert allerdings:

Tε↽ = → 1
⇀

{
(D⇁

ς↽Dς
ε⇁ → D⇁

ε↽Dς
ς⇁) → 1

2gµφ(D⇁
ςφDς

µ⇁ → D⇁
µφDς

ς⇁)gε↽

}

= → 1
⇀

{
ε⇁

↽D↼
↼ςες

⇁D↼
↼ε → ε⇁

↽D↼
↼εες

⇁D↼
↼ς

→ 1
2gµφ(ε⇁

φD↼
↼ςες

⇁D↼
↼µ → ε⇁

φD↼
↼µες

⇁D↼
↼ς)gε↽

}

= → 1
⇀

{
(ες

↽D↼
↼ςD↼

↼ε → ες
↽D↼

↼ςD↼
↼ε)

→ 1
2gµφ(ες

φD↼
↼ςD↼

↼µ → ες
φD↼

↼ςD↼
↼µ)gε↽

}

= 0.

(4.32)

Die Zusatzterme und damit der induzierte Energie-Impuls-Tensor verschwinden also nach
Einsetzen dieser Lösung. Dies war für die Vakuum-Feldgleichungen gewissermaßen zu erwarten,
denn wenn die Raumzeit ohne Materie schon auf makroskopischen Skalen E"ekte der Torsion
und Nichtmetrizität aufzeigen würde, stünde die damit verbundene Theorie in direktem
Vergleich mit der immerhin sehr erfolgreichen einsteinschen Gravitationstheorie, die ohne
die zusätzlichen Freiheitsgrade auskommt. Folglich wird davon ausgegangen, dass es sich bei
den Phänomenen der Torsion und Nichtmetrizität, sofern sie existieren, um Quantene"ekte
handelt, die unter der klassisch durchgeführten Rechnung verschwinden.
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Im Fall von anwesender Materie gibt es jedoch auch Theorien und Untersuchungen, die
beispielsweise Torsion nicht nur auf den mikroskopischen E"ekt des Spins zurückführen,
sondern auch auf den Drehimpuls makroskopischer Körper [22]. Im nächsten Schritt sollen die
bereits eingeführten Beispiele, repräsentativ für Materie, zur Analyse des Nicht-Vakuum-Falls
dienen. Dabei wird untersucht, inwiefern sich dieses Ergebnis ändert. Ähnliche Diskussionen
finden sich in [23].

4.3 Materiemodelle

Die in Kapitel 3.5 eingeführten Materiefelder weisen eine Abhängigkeit bis zur zweiten Ordnung
von ” auf. Dies wird zum Anlass genommen, die allgemeine Lagrangedichte LM (g, ”, ▷) für
Materie ▷ um ”̊ bezüglich ” bis zur zweiten Ordnung zu entwickeln:

LM (g, ”, ▷) ≈ LM (g, ”̊, ▷) + φLM

φ”ς
µω

∣∣∣∣∣
#=#̊

Dς
µω + 1

2
φ2LM

φ”ς
µωφ”ϕ

φσ

∣∣∣∣
#=#̊

Dς
µωDϕ

φσ

=: LM (g, ”̊, ▷) +
(1)

M µω
ς (g, ▷) Dς

µω +
(2)

M µω φσ
ς ϕ (g, ▷) Dς

µωDϕ
φσ,

(4.33)

wobei ausgenutzt wurde, dass D = ” → ”̊. Für die Materieterme aus Kapitel 3.5 werden

repräsentativ
(1)

M und
(2)

M verwendet. Die sich daraus ergebende Wirkung kann in einen Materie-
und einen Korrekturterm getrennt werden: SMaterie[g, ”, ▷] = SM[g, ”̊, ▷] + SKorr[g, D, ▷]. Mit
der Taylorentwicklung (4.33) lässt sich die gesamte metrisch-a!ne Wirkung mit Materie dann
symbolisch aufspalten in:

S[g, D, ▷] = Sa!n[g, D] + SKorr[g, D, ▷] + SM[g, ”̊, ▷]

= 1
2⇀

ˆ (
R̊ + ∞̊D + D2

)̸
→g d4x

+
ˆ ((1)

MD +
(2)

MD2
)̸

→g d4x +
ˆ

LM (g, ”̊, ▷)
̸

→g d4x.

(4.34)

Die D-Variation von Sa!n ist bekannt und SM[g, ”̊, ▷] ist unabhängig von D. Um also für den
Materiefall erneut eine Lösung für D zu bekommen, wird zunächst nur SKorr nach D variiert:

εSKorr

εDε
↽ϑ

= ε

εDε
↽ϑ

ˆ (
(1)

M µω
ς Dς

µω +
(2)

M µω
ς

φσ
▷ D▷

φσDς
µω

)̸
→g d4x

=
ˆ (

(1)

M µω
ς ες

εε↽
µεϑ

ω +
(2)

M µω φσ
ς ▷ ες

εε↽
µεϑ

ωD▷
φσ

+
(2)

M µω φσ
ς ▷ ε▷

εε↽
φεϑ

σDς
µω

)̸
→g d4x

=
ˆ (

(1)

M ↽ϑ
ε +

(2)

M ↽ϑ
ε

φσ
▷ D▷

φσ +
(2)

M µω ↽ϑ
ς ε Dς

µω

)̸
→g d4x.

(4.35)
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Unter der Verwendung der Symmetrie M µω φσ
ς ▷ = M φσ µω

▷ ς können die
(2)

M nach Umbenennung
der Indizes zusammengefasst werden. Für die aus (4.15) bekannte Variation von Sa!n ergibt
sich schließlich:

εSa!n

εDε
↽ϑ

= 1
2⇀

ε

εDε
↽ϑ

ˆ
gµω

(
R̊↼

µ↼ω + ∞̊↼D↼
µω → ∞̊ωD↼

µ↼

+ D⇁
µωD↼

↼⇁ → D⇁
µ↼D↼

⇁ω

) ̸
→g d4x

= 1
2⇀

ˆ (
g↽⇁Dϑ

ε⇁ + g↼ϑD↽
↼ε → g↽ϑD↼

↼ε → ε↽
↼ Dϑ⇁

⇁

) ̸
→g d4x.

(4.36)

Die gesamte D-Variation setzt sich damit zusammen aus:

εS

εDε
↽ϑ

= 2⇀
((1)

M ↽ϑ
ε + 2

(2)

M ↽ϑ
ε

φσ
▷ D▷

φσ

)

+
(
g↽⇁Dϑ

ε⇁ + g↼ϑD↽
↼ε → g↽ϑD↼

↼ε → ε↽
↼ Dϑ⇁

⇁

)
.

(4.37)

Über die Metrik kann man zu einer Schreibweise mit ausschließlich unteren Indizes gelangen:

0 = 2⇀
((1)

Mε↽ϑ + 2
(2)

Mε↽ϑ
φσ

▷ D▷
φσ

)
→ g↽ϑD↼

↼ε → g↽εD ↼
ϑ ↼ + Dϑε↽ + D↽ϑε. (4.38)

Wie im Vakuum-Fall wird die Ausgangsgleichung (4.38) permutiert, um daraufhin Dε↽ϑ zu
isolieren. Die erste Permutation ergibt

0 = 2⇀
((1)

M↽ϑε + 2
(2)

M↽ϑε
φσ

▷ D▷
φσ

)
→ gϑεD↼

↼↽ → gϑ↽D ↼
ε ↼ + Dε↽ϑ + Dϑε↽ (4.39)

und die zweite Permutation

0 = 2⇀
((1)

Mϑε↽ + 2
(2)

Mϑε↽
φσ

▷ D▷
φσ

)
→ gε↽D↼

↼ϑ → gεϑD ↼
↽ ↼ + D↽ϑε + Dε↽ϑ . (4.40)

Von der aus (4.39) und (4.40) gebildete Summe, wird (4.38) abgezogen. Dies führt zu:

0 = → 2⇀
((1)

Mε↽ϑ →
(1)

M↽ϑε →
(1)

Mϑε↽ + 2
(2)

Mε↽ϑ
φσ

▷ D▷
φσ

→ 2
(2)

M↽ϑε
φσ

▷ D▷
φσ → 2

(2)

Mϑε↽
φσ

▷ D▷
φσ

)

+ g↽ϑD↼
↼ε → gϑ↽D ↼

ε ↼ + g↽εD ↼
ϑ ↼ → gε↽D↼

↼ϑ → gϑεD↼
↼↽ → gεϑD ↼

↽ ↼ + 2Dε↽ϑ .

(4.41)
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Für Vereinfachungen werden wieder Spuren über die Ausgangsgleichung (4.38) gebildet. Die
Spur gεϑ( ⇀S

⇀Dω
εϑ

) lieferte ohne zusätzliche Materieterme eine triviale Lösung (4.20), was mit
der Umbenennung ◁ ⇓ 0 für die hier übrig bleibenden Materieterme bedeutet:

(1)

M ↼
↼◁ = →2

(2)

M ↼
↼◁

φσ
▷ D▷

φσ (4.42)

oder auch
(1)

M↼
◁↼ = →2

(2)

M↼
◁↼

φσ
▷ D▷

φσ. (4.43)

Die zweite Spur liefert

gε↽

(
εS

εDε
↽ϑ

)
ϑ↘◁= 0 = 2⇀(

(1)

M↼
↼0 + 2

(2)

M↼
↼0

φσ
▷ D▷

φσ) → D↼
↼0 → 3D ↼

0 ↼ + D↼
0↼ (4.44)

und die dritte Spur

g↽ϑ

(
εS

εDε
↽ϑ

)
ε↘◁= 0 = 2⇀(

(1)

M ↼
0 ↼ + 2

(2)

M ↼
0 ↼

φσ
▷ D▷

φσ) → 3D↼
↼0 → D ↼

0 ↼ + D↼
0↼. (4.45)

Das Abziehen der dritten Spur (4.45) von der zweiten Spur (4.44) resultiert in:

D↼
↼0 → D ↼

0 ↼ = ⇀
((1)

M ↼
0 ↼ →

(1)

M↼
↼0

)
  

=:
(1)

M≃◁

+2⇀
((2)

M ↼
0 ↼

φσ
▷ D▷

φσ →
(2)

M↼
↼0

φσ
▷ D▷

φσ

)

  

=: (
(2)

M≃◁) φσ
▷ D▷

φσ

. (4.46)

Damit kann
D ↼

0 ↼ = →⇀
(1)

M≃◁ → 2⇀(
(2)

M≃◁) φσ
▷ D▷

φσ + D↼
↼0 (4.47)

in Gleichung (4.41) eingesetzt werden:

0 = → 2⇀(
(1)

Mε↽ϑ →
(1)

M↽ϑε →
(1)

Mϑε↽ + 2
(2)

Mε↽ϑ
φσ

▷ D▷
φσ

→ 2
(2)

M↽ϑε
φσ

▷ D▷
φσ → 2

(2)

Mϑε↽
φσ

▷ D▷
φσ)

+ g↽ϑ(D↼
↼ε → (→⇀

(1)

M≃ε → 2⇀
(2)

M≃ε
φσ

▷ D▷
φσ + D↼

↼ε))

+ g↽ε(→D↼
↼ϑ + (→⇀

(1)

M≃ϑ → 2⇀
(2)

M≃ϑ
φσ

▷ D▷
φσ + D↼

↼ϑ))

→ gϑε(D↼
↼↽ + (→⇀

(1)

M≃↽ → 2⇀
(2)

M≃↽
φσ

▷ D▷
φσ + D↼

↼↽)) + 2Dε↽ϑ .

(4.48)
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Durch Ausmultiplizieren folgt:

0 = → 2⇀(
(1)

Mε↽ϑ →
(1)

M↽ϑε →
(1)

Mϑε↽ + 2
(2)

Mε↽ϑ
φσ

▷ D▷
φσ

→ 2
(2)

M↽ϑε
φσ

▷ D▷
φσ → 2

(2)

Mϑε↽
φσ

▷ D▷
φσ)

+ g↽ϑ(D↼
↼ε + ⇀

(1)

M≃ε + 2⇀
(2)

M≃ε
φσ

▷ D▷
φσ → D↼

↼ε)

+ g↽ε(→⇀
(1)

M≃ϑ → 2⇀
(2)

M≃ϑ
φσ

▷ D▷
φσ + D↼

↼ϑ → D↼
↼ϑ)

→ gϑε(D↼
↼↽ → ⇀

(1)

M≃↽ → 2⇀
(2)

M≃↽
φσ

▷ D▷
φσ + D↼

↼↽) + 2Dε↽ϑ .

(4.49)

Infolge dessen lässt sich nach Dε↽ϑ umstellen:

Dε↽ϑ = ⇀(
(1)

Mε↽ϑ →
(1)

M↽ϑε →
(1)

Mϑε↽ + 2
(2)

Mε↽ϑ
φσ

▷ D▷
φσ

→ 2
(2)

M↽ϑε
φσ

▷ D▷
φσ → 2

(2)

Mϑε↽
φσ

▷ D▷
φσ)

→ g↽ϑ(1
2⇀

(1)

M≃ε + ⇀
(2)

M≃ε
φσ

▷ D▷
φσ)

→ g↽ε(→1
2⇀

(1)

M≃ϑ → ⇀
(2)

M≃ϑ
φσ

▷ D▷
φσ)

+ gϑε(D↼
↼↽ → 1

2⇀
(1)

M≃↽ → ⇀
(2)

M≃↽
φσ

▷ D▷
φσ).

(4.50)

Es wird ersichtlich, dass durch die Anwesenheit der Komponenten D▷
φσ auf der rechten Seite

von (4.50) ein kompliziertes, wenn auch lineares, Gleichungssystem übrig bleibt. Um eine
explizite Lösung zu erlangen, wird in der folgenden Betrachtung der Fokus auf Materietheorien

gelegt, die
(2)

M = 0 erfüllen, wie das in Kapitel 3.5 eingeführte Beispiel der Dirac-Spinoren. Mit
dieser Bedingung folgt für die Lösung von D:

Dε↽ϑ = ⇀(
(1)

Mε↽ϑ→
(1)

M↽ϑε→
(1)

Mϑε↽)→g↽ϑ
1
2⇀

(1)

M≃ε+g↽ε
1
2⇀

(1)

M≃ϑ+gϑεD↼
↼↽→gϑε

1
2⇀

(1)

M≃↽. (4.51)

Für die Probe dieser Lösung wird die Lösung selbst und die permutierte Variante

D↽ϑε = ⇀(
(1)

M↽ϑε→
(1)

Mϑε↽ →
(1)

Mε↽ϑ)→gϑε
1
2⇀

(1)

M≃↽ +gϑ↽
1
2⇀

(1)

M≃ε+gε↽D↼
↼ϑ →gε↽

1
2⇀

(1)

M≃ϑ (4.52)

sowie die Spur D ↼
↽ ↼ in die passende Permutation der Ausgangsgleichung (4.40) eingesetzt.

Die Spur wird ermittelt, indem gε↽ mit Dε↽ϑ multipliziert wird. Hieraus ergibt sich:

D ↼
↽ ↼ = ⇀(

(1)

M ↼
↽ ↼ →

(1)

M↼
↼↽ →

(1)

M↼
↽↼) → 2⇀

(1)

M≃◁ + 1
2⇀

(1)

M≃↽ → 1
2⇀

(1)

M≃↽ + D↼
↼↽

= ⇀(→
(1)

M≃↽ →
(1)

M↼
↽↼) + D↼

↼↽.

(4.53)
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Einsetzen von (4.53) in (4.40) führt zu:

0 = 2⇀Mϑε↽ → gε↽D↼
↼ϑ → gεϑ(⇀(→

(1)

M≃↽ →
(1)

M↼
↽↼) + D↼

↼↽)

+ ⇀(
(1)

M↽ϑε →
(1)

Mϑε↽ →
(1)

Mε↽ϑ) → gϑε
1
2⇀

(1)

M≃↽ + gϑ↽
1
2⇀

(1)

M≃ε + gε↽D↼
↼ϑ → gε↽

1
2⇀

(1)

M≃ϑ

+ ⇀(
(1)

Mε↽ϑ →
(1)

M↽ϑε →
(1)

Mϑε↽) → g↽ϑ
1
2⇀

(1)

M≃ε + g↽ε
1
2⇀

(1)

M≃ϑ + gϑεD↼
↼↽ → gϑε

1
2⇀

(1)

M≃↽

= 2⇀Mϑε↽ + ⇀(M↽ϑε → Mϑε↽ → Mε↽ϑ) + ⇀(
(1)

Mε↽ϑ →
(1)

M↽ϑε →
(1)

Mϑε↽)

→ gε↽D↼
↼ϑ + gε↽D↼

↼ϑ

→ gϑε
1
2⇀

(1)

M≃↽ → gϑε
1
2⇀

(1)

M≃↽

+ gϑ↽
1
2⇀

(1)

M≃ε → g↽ϑ
1
2⇀

(1)

M≃ε

→ gε↽
1
2⇀

(1)

M≃ϑ + g↽ε
1
2⇀

(1)

M≃ϑ

→ gεϑ(⇀(→
(1)

M≃↽ →
(1)

M↼
↽↼) + D↼

↼↽) + gϑεD↼
↼↽

= →gϑε⇀
(1)

M≃↽ + gεϑ⇀(
(1)

M≃↽ → M↼
↽↼) → gϑεD↼

↼↽ + gϑεD↼
↼↽. (4.54)

Nach (4.43) entfällt
(1)

M↼
↽↼ unter der Annahme

(2)

M↼
◁↼

φσ
▷ D▷

φσ = 0, sodass (4.54) eine wahre
Aussage liefert und die Lösung (4.51) die Probe erfüllt.

Damit für diese Lösung konkrete Materiefelder eingesetzt werden können, werden die in
Kapitel 3.5 genannten Beispiele nach ” entwickelt. Die skalare Feldtheorie weist in ihrer
eingeführten, einfachsten Variante keine Abhängig von ” auf:

LSkalar(g, ↽) = 1
2(φµ↽)(φµ↽) +φLSkalar

φ”ε
↽ϑ

∣∣∣∣
#=#̊  

= 0

. (4.55)

Die Materieterme
(1)

M und
(2)

M verschwinden demnach für diese Variante der Skalarfelder. Auf
der anderen Seite ist die betrachtete Vektorfeldtheorie (3.33) bis zur zweiten Ordnung von ”

abhängig, sodass erst überprüft werden müsste, ob der gewählte Fall
(2)

M = 0 erfüllt ist.
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Für die Spinorfelder lassen sich die gewünschten Korrekturterme ermitteln:

LDirac(g, ”, ψn, ψ̄n) = ψ̄niϱµ
(

φµ → 1
8

[
φµϱω +”̊ω

µς, ϱω
)

ψn + φLDirac

φ”ε
↽ϑ

∣∣∣∣∣
#=#̊

(”ε
↽ϑ →”̊ε

↽ϑ). (4.56)

Die Ableitung φLDirac/φ”ε
↽ϑ berechnet sich gemäß:

φL
φ”ε

↽ϑ

∣∣∣∣∣
#=#̊

= ψ̄niϱµ φ

φ”ε
↽ϑ

(
→ 1

8”ω
µς[ϱς, ϱω ]

)
ψn(”ε

↽ϑ → ”̊ε
↽ϑ)

= ψ̄niϱµ
(

→ 1
8εω

εε↽
µεϑ

ς[ϱς, ϱω ]
)

ψnDε
↽ϑ

= →ψ̄ni18ϱ↽[ϱϑ , ϱε]ψnDε
↽ϑ .

(4.57)

Daraus kann
(1)

M abgelesen werden:

(1)

M µω
ς = →ψ̄ni18ϱµ[ϱω , ϱς]ψn . (4.58)

Insgesamt resultiert die konkrete Rechnung der Taylorentwicklung (4.33) für den Spinorfall in
den Werten:

LM = ψ̄niϱµ
(

φµ → 1
8

[
φµϱω + ”̊ω

µς, ϱω
)

ψn (4.59)

LKorr = →ψ̄ni18ϱµ[ϱω , ϱς]ψnDς
µω . (4.60)

Das Ergebnis für
(1)

M kann durch die Umformungen

(1)

M ↼
ε ↼ = gϑ↽

(1)

M ↽ϑ
ε = →gϑ↽

(
ψ̄ni18ϱ↽[ϱϑ , ϱε]ψn

)

= →ψ̄ni18ϱ↼[ϱ↼, ϱε]ψn, (4.61)

(1)

Mε↽ϑ = g↽1gϑ2

(1)

M 12
ε = →g↽1gϑ2

(
ψ̄ni18ϱ1 [ϱ2, ϱε]ψn

)

= →ψ̄ni18ϱ↽[ϱϑ , ϱε]ψn, (4.62)

(1)

M↼
↼ϑ = g↽ε

(1)

Mε↽ϑ = →g↽ε
(

ψ̄ni18ϱ↽[ϱϑ , ϱε]ψn

)

= →ψ̄ni18ϱ↼[ϱϑ , ϱ↼]ψn (4.63)

in die Lösung für D (4.51) eingesetzt werden. Dafür wird in (4.63) ϱ zu ϖ umbenannt. Es
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entsteht folgender Ausdruck:

Dε↽ϑ = → ⇀
1
8(ψ̄ni(ϱ↽[ϱϑ , ϱε])ψn → ψ̄ni(ϱϑ [ϱε, ϱ↽])ψn → ψ̄niϱε[ϱ↽, ϱϑ ]ψn)

+ 1
16⇀g↽ϑ(ψ̄niϱ↼[ϱ↼, ϱε]ψn → ψ̄niϱ↼[ϱε, ϱ↼]ψn)

→ 1
16⇀g↽ε(ψ̄niϱ↼[ϱ↼, ϱϑ ]ψn → ψ̄niϱ↼[ϱϑ , ϱ↼])ψn)

+ 1
16⇀gϑε(ψ̄iϱ↼[ϱ↼, ϱ↽])ψn → ψ̄niϱ↼[ϱ↽, ϱ↼]ψn)

+ gϑεD↼
↼↽

(4.64)

Mit

ϱ↼ϱ↼ = 4 und ϱφ[ϱσ, ϱ3 ] = →ϱφ[ϱ3 , ϱσ] sowie ϱφϱσ = 2 εφ
σ I → ϱσϱφ (4.65)

ergibt sich ferner

ϱ↼[ϱ↼, ϱ◁] = ϱ↼ϱ↼ϱ◁ → ϱ↼ϱ◁ϱ↼ = 4ϱ◁ → (2 ε↼
◁ I → ϱ◁ϱ↼)ϱ↼ = 6ϱ◁. (4.66)

Eingesetzt in (4.64) führt dies zu folgender Vereinfachung:

Dε↽ϑ = → 1
8⇀ψ̄ni(ϱ↽[ϱϑ , ϱε]) → ϱϑ [ϱε, ϱ↽] → ϱε[ϱ↽, ϱϑ ])ψn

+ 3
8⇀ψ̄ni(g↽ϑϱε → g↽εϱϑ + gϑεϱ↽)ψn + gϑεD↼

↼↽ . (4.67)

Um das Ergebnis weiter zu untersuchen, müsste als Nächstes die erneute Variation der Wir-
kung der Spinor-Materieterme nach der inversen Metrik erfolgen, um die neue Lösung für
das Di"erenzentensorfeld (4.67) einzusetzen und mit den einsteinschen Feldgleichungen zu
vergleichen. Erste Schritte dieser Rechnung befinden sich im Anhang.

Im Vergleich zur Vakuumlösung (4.24) kann allerdings schon jetzt erwartet werden, dass die
Dirac-Spinoren zur Anpassung der einsteinschen Feldgleichungen in Form von Zusatztermen auf
der rechten Seite führen. Wie genau diese Änderung aussieht, müsste noch untersucht werden.
Eine Abweichung würde bedeuten, dass Dirac-Spinoren unter klassischer Rechnung mögliche
Beiträge von Nichtmetrizität und/oder Torsion hervorrufen und damit in der metrisch-a!nen
Theorie eine Quelle für das Di"erenzentensorfeld darstellen.
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5 Fazit

Durch die Verwendung eines metrisch-a!nen Zusammenhangs anstelle des Levi-Civita-
Zusammenhangs konnten für die Einsteinschen Feldgleichungen Zusatzterme gefunden werden,
die es erlauben, Torsion und Nichtmetrizität zu untersuchen. Um das zu erreichen, wurde
ein Di"erenzentensorfeld eingeführt und eine Bewegungsgleichung für dieses gefunden. Das
Einsetzen der gefundenen Lösung für den Vakuum-Fall in die variierte metrisch-a!ne Wirkung
resultiert im Verschwinden jener Zusatzterme und die Gleichungen vereinfachen sich zu den
einsteinschen Feldgleichungen.
Für die Bewegungsgleichung des Di"erenzentensorfeldes für Materie musste der Einschränkung
getro"en werden, dass Materieterme, die in zweiter Ordnung an die Zusammenhangskoe!zien-
ten gekoppelt sind, verschwinden. Für eine weitergehende Betrachtung von Vektorfeldtheorien
könnten konkrete Fälle eingesetzt werden, um zu untersuchen, ob für bestimmte Materieterme
eine Lösung gefunden werden kann.
Dirac-Spinoren erfüllen diese Einschränkung trivialerweise. Für sie konnte eine erneute Lösung
für das Di"erenzentensorfeld gefunden werden, die darauf schließen lässt, dass die Anwesenheit
der Dirac-Spinoren in der metrisch-a!nen Theorie zu nicht verschwindenden Beiträgen
abhängig vom Di"erenzentensorfeld führen. Dieses Ergebnis weist bereits explizit auf eine
nicht-trivial erweiterte Dynamik metrisch-a!ner Gravitationstheorien unter Einbezug von
Materiefreiheitsgraden gegenüber der rein metrischen Gravitation hin.
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ANHANG

A Anhang

Die Variation der metrisch-a!nen Wirkung mit Materie teilt sich schematisch auf in:

εS

εg
= εR̊

SEH

+ ε(∞̊D + D2)
  

SD  
Sa!n

+ ε(
(1)

MD +
(2)

MD2

  
SKorr

) + ε(LM )
  

SM  
SMaterie

. (A.1)

Aus Kapitel 4 ist Sa!n bekannt, daher werden die Bestandteile von SMaterie nach der inversen

Metrik variiert. Für Dirac-Spinoren wird bei SKorr lediglich
(1)

M benötigt. Mit dem bereits
berechneten LKorr (4.60) folgt dann

εSKorr = 2⇀ ε

ˆ (
→↽̄ni18ϱµ[ϱω , ϱς]↽nDς

µω

) ̸
→g d4x (A.2)

und mit LM (4.59) noch

εSM = 2⇀ ε

ˆ (
↽̄niϱµ(φµ → 1

8
[
φµϱω + ”̊ω

µς, ϱω

)↽n

) ̸
→g d4x. (A.3)

Die Variation der Gamma-Matrizen ist gegeben [20] durch

εϱµ = 1
2(εgµ◁)ϱ◁ + [εSϑ , ϱµ], (A.4)

wobei S ↓ SL(dϑ ,C) die Darstellung einer Spinbasistransformation ist.

Mit Hilfe von Gleichung (A.4) lässt sich die Variation von SKorr berechnen:

εSKorr = 2⇀ ε

ˆ (
→↽̄ni18ϱµ[ϱω , ϱς]↽nDς

µω

) ̸
→g d4x

= 2⇀

ˆ (
→↽̄ni18{εϱµ[ϱω , ϱς] + ϱµ[εϱω , ϱς] + ϱµ[ϱω , εϱς]}↽nDς

µω

) ̸
→g d4x

= 2⇀

ˆ (

→ ↽̄ni18

(1
2(εgµ◁ϱ◁) + [εSϑ , ϱµ]

)
[ϱω , ϱς]

+ ϱµ


1
2(εgω◁)ϱ◁ + [εSϑ , ϱω ], ϱς



+ ϱµ



ϱω , ϱφς

(1
2(εgφ◁)ϱ◁ + [εSϑ , ϱφ]

)

↽nDς
µω

)
̸

→g d4x. (A.5)
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Die Variation von SM ergibt:

εSM = 2⇀ ε

ˆ (

↽̄niϱµ
(
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8
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