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Abstract

In this thesis we consider a Higgs-Yukawa system consisting of a self-interacting
scalar field (Higgs field) that couples to a fermion (top quark) through a Yukawa
interaction term. We study this system in the framework of the functional renor-
malization group and we use the Wetterich equation in order to describe its flow.
The main goal is to directly derive Higgs mass bounds from the flow of this system.
The non-perturbative nature of the Wetterich equation allows us to test a wide
range of bare parameters and to investigate mechanisms that could decrease the
Higgs mass bound. We confirm the results of [13], [14], [11] where it was shown
that lower (and upper) Higgs mass bounds arise as a result from the flow of the
effective potential itself, without any additional assumptions. We also confirm the
fact that by taking deviations from the in perturbation theory commonly used ϕ4-
type UV potential into account, the Higgs mass can be further decreased. Similar
to this investigation we consider a generalized Yukawa coupling H(ϕ)ψ̄ψ in order
to test the influence of the higher Yukawa interactions hjϕ2j+1ψ̄ψ (j > 0) on the
Higgs mass. We find that it is indeed possible to generate flows that result in even
smaller Higgs masses. In the last chapter we extend the toy model by including
the strong sector in order to describe the flow of the Yukawa interaction more
accurately and we derive the corresponding new flow equations.
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1 Introduction

One of the biggest successes in the physics of the past century is the development of
the Standard Model. It describes all so far discovered elementary particles and three
of the four known fundamental interactions among them, the electromagnetic, the weak
and the strong interaction. Many experiments confirmed the predictions of the Standard
Model to high accuracy and also led to the discovery of many more particles. One central
problem in the development of the Standard Model was to explain how the gauge bosons
of the local gauge theories (or to be more precise, the gauge bosons of the weak interac-
tion) and the fermions acquire their masses, since the introduction of corresponding mass
terms violates the invariance under gauge transformations. A possible solution was pro-
posed by Higgs, Kibble, Guralnik, Hagen, Englert and Brout in 1964 and became famous
under the name Higgs mechanism ([1], [2], [3], [4]). By introducing a scalar field, the
so-called Higgs field, the fermions and the gauge bosons of the weak interaction obtain
their masses through spontaneous symmetry breaking within the newly introduced Higgs
sector. This idea accompanies with the emergence of a new particle, the Higgs boson. It
took further 50 years, until 2012, when the Higgs boson was finally verified at the LHC
[5] and thus confirmed the Higgs mechanism to be an appropriate way to describe the
mass generating within the Standard Model.
Despite its huge success, the Standard Model still exhibits some inconsistencies. First
of all it does not contain the fourth fundamental interaction, the gravitation. However,
at least at the Planck scale at around 1019 GeV, the effects of gravitation become of the
same order of magnitude as the other interactions and thus cannot be neglected. Further-
more, perturbative calculations hint at the existence of Landau poles of the electroweak
interaction and the scalar self-interaction at finite momenta. All these are arguments
for considering the Standard Model as an effective theory, emerging from a more funda-
mental theory. The natural question that arises now is up to which scale the Standard
Model is valid. At best, the Standard Model is valid up to the Planck scale, but there is
a possibility that new physics already appears at scales much closer to the IR. One way
to approach this question is to investigate the scalar effective potential, deriving mass
bounds for the Higgs boson. It turns out that the lower mass bound depends on the
chosen cut-off, i.e. the scale up to which one assumes the theory to be valid. As soon as
the measured Higgs mass falls below the derived lower Higgs mass bound, the theory is
no longer valid at the corresponding cut-off.
The first approach to deriving lower Higgs mass bounds was by assuming that the effec-
tive potential might become unstable.
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It was commonly believed that the one-loop contributions from the Higgs boson and the
top quark destabilize the effective potential in the sense that if the top Yukawa coupling
is much stronger than the ϕ4-coupling of the Higgs field, the effective potential might no
longer be bounded from below for large Higgs amplitudes. In other words, if the Higgs
mass is too small compared to the top quark mass, the effective potential has no longer
an absolute minimum. The Higgs mass bounds then were obtained by demanding the
potential to be at least meta-stable, imposing that the (unstable) vacuum is sufficiently
long-lived, with a lifetime comparable to the age of the universe. This way, by pertur-
bative calculations, stability criteria were derived and thus corresponding lower Higgs
mass bounds that were connected to the mass of the top quark ([6], [7], [8]). However,
depending on different parameters such as the mentioned top mass, the experimental
value of the Higgs mass is close to or even violates these mass bounds. Therefore, this
instability approach was put into question.
Correspondingly, lattice calculations [9] for example did not show any instabilities at all,
in [10] it was even shown that for a simplified model, the Higgs-Yukawa model, the insta-
bilities of the effective potential only occur when the renormalized perturbation theory
results are extended to areas where the approximation is no longer valid. Hence, new
investigations of Higgs mass bounds are desirable.
In this thesis we will consider the Higgs-Yukawa model1. For different bare couplings at
a given cut-off Λ we will compute the resulting Higgs masses, trying to find the combi-
nations which yield the lowest mass. At first sight, this seems to contradict the common
viewpoint that IR observables should be independent of details of the UV theory. How-
ever, the Higgs mass bound should not be regarded as a pure IR quantity. Usually it is
expressed in terms of the UV cut-off Λ. If we want to investigate this dependence, we
necessarily have to make some statements about the theory near the cut-off, for exam-
ple concerning the UV regularization. Hence, the scheme-dependence of the Higgs mass
bound becomes to some extend physical [11]. In the course of our analysis we also have
to cover the case of large bare couplings and thus we face a non-perturbative problem.
Accordingly, the framework of the functional renormalization group (FRG) delivers ap-
propriate tools. We will calculate the flow of the appearing couplings according to an
exact FRG equation, the Wetterich equation [12], and test the influence of different UV
bare actions on the Higgs mass bound. Similar investigations already have been done in
[13], [14]. In [13] it was shown that by allowing arbitrary bare couplings but demanding
to reproduce the correct IR physics2, the RG flow restricts the possible Higgs masses to
a finite window, providing us with upper and lower bounds for it, without any additional
restrictions or instability assumptions. In [14] these investigations have been extended by
considering deviations from the in perturbative calculations usually used quartic scalar
potential. The author showed that in this case the lower Higgs mass bound could be
further decreased. The main purpose of this thesis is to further extend the toy model
by taking additional operators into account, namely a generalized Yukawa interaction of
the form H(ϕ)ψ̄ψ instead of hϕψ̄ψ.

1Why this is an appropriate simplification of the Standard Model will be discussed in chapter 3.
2That is to reproduce the correct vacuum expectation value of the Higgs field and the top mass.
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In chapter 2 we recall some basic results of quantum field theory (QFT). Beside a general
introduction we will explain the Wilsonian approach to the FRG and present the impor-
tant steps of the derivation of the Wetterich equation, which will be the starting point
for all of our calculations. Finally we give a short introduction to the Higgs mechanism.
The content of this chapter is mostly standard text book knowledge.
Chapter 3 deals with the question why for our purposes the simple Higgs-Yukawa model
is an appropriate simplification of the Standard Model. This discussion has already been
held in e.g. [13], we will recall the important steps.
In chapter 4 we will derive the necessary flow equations of the effective potential, the
generalized Yukawa coupling H(ϕ) and the anomalous dimensions of the fields.
The approximate solution of the corresponding set of equations will be performed in
chapter 5. First they are rewritten in renormalized and dimensionless quantities and
afterwards we apply some further approximations. The simplified equations are solved
numerically with Wolfram Mathematica. Subsequently, we briefly discuss the results.
The last chapter is dedicated to a last extension of the toy model. We will take the
SU(NC) gauge symmetry of the Standard Model into account, because the strong cou-
pling g3 has a significant impact on the top Yukawa coupling, as we will see in
chapter 3. Hence, after introducing a Yang-Mills term as well as corresponding gauge
fixing and ghost terms, we will derive the new flow equations of the quantities mentioned
above.
We end with a summary and an outlook to possible future investigations.
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2 Theoretical foundations

The content of this chapter is standard textbook knowledge and thus inspired by for
example [15], [16], [17] or by reviews such as [18].

2.1 Quantum Field Theory

In QFT, all important physical quantities like cross sections can be calculated by so-
called n-point Green’s functions, where n denotes the number of involved particles or
fields. Formally, these functions are defined as the vacuum expectation value of the time
ordered product of these fields in the Heisenberg picture. In the path integral formalism,
this expectation value is equivalent to integrating over all possible field configurations,
weighted by the classical action,

〈ϕ(x1) · · · ϕ(xn)〉 ≡ 〈Ω|T
(
ϕ̂(x1) · · · ϕ̂(xn)

)
|Ω〉 = N

∫
Dϕ ϕ(x1) · · · ϕ(xn)eiS[ϕ].

(2.1.1)

Note that we have operators on the left hand side, but usual functions in the integrand
of the path integral. The normalization constant N is fixed by the condition 〈1〉 = 1.
The path integral measure can be considered as

∫
Dϕ =

∏
~x∈Rd−1,
t∈(−∞,∞)

dϕ(~x, t). (2.1.2)

To make the exponent in equation (2.1.1) real, we perform a so-called Wick rotation. By
transforming x0 7→ −ix0 and ~x 7→ ~x, we effectively change over to the Euclidean metric,
changing the exponent from iS[ϕ] to −S[ϕ]. Consequently, the Clifford Algebra reads
{γµ, γν} = 2 δµν .
Now the Green’s functions can be calculated with the help of the generating functional
Z[J ], given by

Z[J ] =

∫
Dϕ e−S+

∫
x Jϕ, (2.1.3)

where we have used the short hand notation
∫
x Jϕ =

∫
ddxJ(x)ϕ(x).
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2.1 Quantum Field Theory

Then we obtain the n-point functions just by taking the derivative of Z[J ] with respect
to the source J ,

〈ϕ(x1) · · · ϕ(xn)〉 =
1

Z[0]

δn

δJ(x1) · · · δJ(xn)
Z[J ]

∣∣∣∣
J=0

. (2.1.4)

However, there are more effective ways to store the physics than using the generating
functional Z, since it also produces unconnected terms like 〈ϕ(x1)〉 · · · 〈ϕ(xn)〉, which
do not contain any new physical information. Therefore, we consider the Schwinger
functional W [J ] = logZ[J ]. Now the derivatives only yield the connected terms,

〈ϕ(x1) · · · ϕ(xn)〉conn =
δn

δJ(x1) · · · δJ(xn)
W [J ]

∣∣∣∣
J=0

. (2.1.5)

To see how this works, let us consider the simple case of 2-point functions:

δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

=

(
δ

δJ(x1)

(
1

Z[J ]

∫
Dϕ ϕ(x2)e−S+

∫
x Jϕ

))∣∣∣∣
J=0

=

(
1

Z[J ]

∫
Dϕ ϕ(x1)ϕ(x2)e−S+

∫
x Jϕ

)∣∣∣∣
J=0

−
(

1

Z[J ]

∫
Dϕ ϕ(x2)e−S+

∫
x Jϕ

1

Z[J ]

∫
Dϕ ϕ(x1)e−S+

∫
x Jϕ

)∣∣∣∣
J=0

= 〈ϕ(x1)ϕ(x2)〉 − 〈ϕ(x1)〉〈ϕ(x2)〉
= 〈ϕ(x1)ϕ(x2)〉conn.

Similar calculations for all n ≥ 2 can be obtained.
If we are able to explicitly calculate Z[J ] or W [J ], we can regard our theory as solved,
because then we have access to all Green’s functions and therefore, as mentioned above,
to all other physical quantities.
But still, the Schwinger functional is not the most elegant way to store our information
of the theory. This would be the effective action Γ. First, we introduce the classical
field φ(x) as the (connected) vacuum expectation value of the field operator ϕ̂(x) in the
presence of a source J , hence

φ(x) := 〈ϕ(x)〉Jconn =
δW [J ]

δJ(x)
. (2.1.6)

The effective action is then defined as the Legendre transformed function of the Schwinger
functional with respect to the variables J and φ,

Γ[φ] = sup
J
{−W [J ] +

∫
x
Jφ}. (2.1.7)
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2.1 Quantum Field Theory

We will skip the supremum and just keep in mind that J = Jsup. Now the variation with
respect to the classical field yields

δΓ

δφ(x)
= −

∫
y

δW

δJ(y)︸ ︷︷ ︸
φ(y)

δJ(y)

δφ(x)
+

∫
y
φ(y)

J(y)

φ(x)
+

∫
y
δ(x− y)J(y)

= J(x).

(2.1.8)

Equation (2.1.8) can be viewed as the quantum equation of motion of the vacuum ex-
pectation value in presence of a source J .
It is also possible to derive an equation of the effective action. Starting from the gener-
ating functional Z[J] we obtain

Z[J ] =

∫
Dϕ e−S[ϕ]+

∫
x Jϕ = eW [J ] = e−Γ[φ]+

∫
x Jφ,

which is equivalent to

e−Γ[φ] =

∫
Dϕ e−S[ϕ]+

∫
x J(ϕ−φ).

By performing a shift of the variable ϕ 7→ ϕ + φ, which according to equation (2.1.2)
leaves the path integral measure invariant, we obtain

e−Γ[φ] =

∫
Dϕ e−S[ϕ+φ]+

∫
x Jϕ =

∫
Dϕ e

−S[ϕ+φ]+
∫
x
δΓ
δφ
ϕ
. (2.1.9)

Equation (2.1.9) represents a functional diffeo-integral equation for Γ, which is hard to
solve. The common perturbative approach is to expand the action S in the exponent of
the integrand, yielding a Gaussian integral.

S[ϕ+ φ] = S[φ] +

∫
x

δS

δϕ(x)
ϕ(x) +

1

2

∫
x

∫
y

δ2S

δϕ(x)δϕ(y)
ϕ(x)ϕ(y) +O(ϕ3)

≡ S + S(1)ϕ+
1

2
S(2)ϕϕ+O(ϕ3).

If we only consider the 1-loop approximation, we can neglect the term
(
δΓ
δφ −

δS
δϕ

)
ϕ as

well and find

e−Γ[φ] = e−S[φ]

∫
Dϕ e−

1
2
S(2)ϕϕ.

Now we can solve the Gaussian type integral, take the logarithm and after applying the
identity log det−

1
2 = −1

2 Tr log we finally get

Γ[φ] = S[φ] +
1

2
Tr logS(2). (2.1.10)

However, in this thesis we will take a different approach, namely by applying the ideas
of the renormalization group (RG) to QFT.
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2.2 Renormalization and Functional Renormalization Group

2.2 Renormalization and Functional Renormalization Group

2.2.1 Wilsonian approach

Whenever one starts to calculate the n-point Green’s functions of a given theory, one will
recognize that divergences can appear. The reason are high-energy quantum fluctuations,
i.e. fluctuations on high momentum scales. Therefore, we have to use a technique called
regularization to get rid of these infinities. A simple way to do so is to introduce a
UV cut-off Λ, which restricts us only to fluctuations with |p| ≤ Λ. At this point we
see another reason why it was important to perform the Wick rotation. In Minkowski
space, the condition above would also hold for momenta with both large timelike and
large spacelike components. In the Euclidean space however, |p| ≤ Λ really implies small
components of the momentum. We denote the regularization by writing the path integral
measure as follows: ∫

Λ
Dϕ =

∫ ∏
|p|≤Λ

dϕ(p).

Of course, our divergences are now encoded in the parameter Λ. Taking the limit Λ→∞,
they will appear again. In order to avoid this phenomenon one has to apply the technique
of renormalization. The goal is to introduce new parameters in such a way that the results
become independent of Λ and hence remain finite when sending Λ to infinity again. This
can be done for example by adding so-called counter terms to the original Lagrangian,
which compensate the occuring divergences1.
However, we will use a different point of view. Just from the beginning we claim that
our considered theory is just an effective theory in a sense that it is only valid up to the
scale Λ. Hence, if we try to construct the corresponding effective action, fluctuations on
a higher scale will not be taken into account.
Now Wilson introduced the idea to "integrate out" the fluctuations (momentum-) shell
by shell, unlike in perturbation theory, where the fluctuations are treated the same way
on all scales by the bare quantities [19], [20]. Let δΛ denote the thickness of such a shell
and let us decompose the field as follows

ϕ(p) = ϕ̄(p)Θ[(Λ− δΛ)2 − p2] + ϕ̃(p)
(
Θ[Λ2 − p2]−Θ[(Λ− δΛ)2 − p2]

)
.

While ϕ̄(p) carries the modes with small momenta and is often referred to as soft mode,
ϕ̃(p) carries the modes with larger momenta and is called hard mode.

1To be more accurate, the bare couplings are split into renormalized parts and counter term parts.
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2.2 Renormalization and Functional Renormalization Group

We can perform the shell integration, considering the regularized generating functional

Z[J ] =

∫
Λ
Dϕ e−S[ϕ]+

∫
Jϕ

=

∫
Λ−δΛ

Dϕ̄
∫

Λ−δΛ≤|p|≤Λ
Dϕ̃ e−S[ϕ̄+ϕ̃]+

∫
J(ϕ̄+ϕ̃)

=:

∫
Λ−δΛ

Dϕ̄ e−SWilson[ϕ̄]+
∫
JWilsonϕ̄.

Here SWilson corresponds to a theory that is valid up to the scale Λ− δΛ, containing all
the information of the high energy fluctuations of the hard modes. Therefore, the hard
modes affect the dynamics of the soft modes. In general, the new couplings in SWilson

will be different from those in the original action. It is even possible that the high
energy fluctuations will generate completely new interactions which did not even appear
before, as well as some other interactions might die out. One should think of all possible
interactions to be represented by their couplings and consider these to be coordinates of
an infinite dimensional coordinate system. Then each point in this coordinate system
would represent a different action, i.e. a different theory. In this sense, the space spanned
by the couplings could be referred to as theory space. The integration of the hard modes
with Λ − δΛ ≤ |p| ≤ Λ (= RG transformation step) corresponds to moving from one
point in theory space to another. If we let the thickness of each shell tend to be infinitely
small and iteratively perform these RG steps, we generate a smooth trajectory (= flow)
of the action in the theory space. An elegant mathematical equation that describes the
flow of the corresponding effective action Γ is given by the Wetterich equation and will
be derived in subsection 2.2.3.

2.2.2 Some further notation

Before we start with the actual derivation of the Wetterich equation let us first introduce
some notation and conventions. First we define the Fourier transformation:

ϕ(x) =

∫
ddp

(2π)d
ϕ(p)eipx ≡

∫
p
ϕ(p)eipx, ϕ(p) =

∫
ddx ϕ(x)e−ipx ≡

∫
x
ϕ(x)e−ipx.

Concerning the anti-spinors of fermionic fields be aware of the complex conjugation,

ψ̄(x) =

∫
p
ψ̄(p)e−ipx, ψ̄(p) =

∫
x
ψ̄(x)eipx.

14



2.2 Renormalization and Functional Renormalization Group

By these definitions we have

δϕ(x)

δϕ(y)
= δ(x− y),

δϕ(p)

δϕ(q)
= (2π)dδ(p− q) ≡ δp,q,

and the same rules for spinors.
No matter how many and what kind of fields the considered theory is made of, the
Wetterich equation always looks the same if one combines all fields in an adept way.
Since our toy model will contain one bosonic field and one fermionic field, as we will
discuss in chapter 3, we will restrict ourselves to this case in the following lines. First we
define a vector containing all the fields 2,

Φa(p) :=

 ϕ(p)
ψ(p)

ψ̄T (−p)

 ,

where a = 1, 2, 3 denotes the index in the field space. For the path integral measure we
use the short hand notation

∫
DΦ ≡

∫
DϕDψDψ̄.

The field vector Φ motivates the introduction of the source vector

Ja(p) =

 j(p)
η̄T (−p)
η(p)

 .

One should notice that since we operate in the path integral formalism, all fermionic
fields as well as the corresponding source fields are Grassmann valued fields. Therefore,
their components are anti-commutating numbers, according to their spin statistics. This
yields some subtleties when working with the quantities defined above. For example
consider the quantity ΦTJ , which clearly is a scalar. Therefore, we should be able to
transpose it, getting the same number again:

(ΦTJ)T = (ϕϕ+ ψT η̄T + ψ̄η)T

= (ϕϕ− η̄ψ − ηT ψ̄T )

6= JTΦ.

2The reason why we define the field this way is to write the source term in our effective action in a
convenient way, as we will see later.
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2.2 Renormalization and Functional Renormalization Group

To obtain the expression JTΦ, we have to change the sign of the second and third term,
i.e. the sign in the fermionic sectors. This is exactly due to spin statistics. To remind
ourselves of this fact we insert a factor (−1)s, with s = 0 in bosonic sectors and s = 1 in
fermionic sectors. Then we can write

(ΦTJ)T = (−1)sJTΦ.

Whenever we change the order of multiplying such objects (for example when transposing
a product), we have to insert this statistic factor.
Of course we can also define linear operators, acting on the field space as well as the
momentum space. Such objects carry two field indices as well as two momentum indices.
The multiplication is then defined as

(AΦ)a(p) =

∫
q
Aab(p, q)Φb(q),

or the product of two such operators

(AB)ab(p, q) =

∫
p′
Aac(p, p′)Bc

b(p′, q).

Finally, we introduce the so-called super trace. Its definition is to take the trace over
all existing types of indices. In our case this would be integrating over the continuous
momentum indices, taking the sum over the field indices (where we have to consider the
statistic factor as well) and finally taking the Dirac trace in the fermionic sectors, since
these objects live in the dγ-dimensional Dirac space3. Thus, in our specific case of one
bosonic sector and two fermionic sectors we have

STrA =

∫
p
A11(p, p)− Trγ

(
A22(p, p) +A33(p, p)

)
.

As mentioned above, more fields can be easily included by extending the field and source
vector, respectively.
After all these definitions we can now begin with the actual derivation of the Wetterich
equation.

3dγ = 2bd/2c is the dimension of the Clifford-Algebra in fundamental representation in a d-dimensional
space time.
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2.2 Renormalization and Functional Renormalization Group

2.2.3 The Wetterich equation

The derivation of the Wetterich equation is widely known and presented in many papers,
for example in the original work of Wetterich [12] or in various reviews such as [18], [21],
[22]. Inspired by these templates, we will recall the important steps of the derivation.
Let us first introduce a RG scale parameter k, denoting the momentum scale up to which
the high energy modes have been integrated out. Now we can specify the starting and
end point of the theory space trajectory. We demand

lim
k→Λ

Γk = S, lim
k→0

Γk = Γ,

where S is the microscopic action that has to be quantized and Γ is the full quantum
effective action, including all fluctuations. As a next step, we define the UV and IR
regularized functional

Zk[J ] =

∫
Λ
DΦe−S[Φ]+

∫
JTΦ−∆Sk[Φ], (2.2.1)

where we added a so-called regulator term to the exponent. It is given by

∆Sk[Φ] =
1

2

∫
q
ϕ(−q)RkB(q)ϕ(+q) +

∫
q
ψ̄(q)RkF (q)ψ(q)

=
1

2

∫
q

ΦT (−q)Rk(q)Φ(q), (2.2.2)

where4

Rk(q) =

RkB(q) 0 0
0 0 −RTkF (−q)
0 RkF (q) 0

 . (2.2.3)

The indices B and F denote the bosonic and fermionic regulator functions respectively.
Since the regulator term is quadratic in the fields, it can be viewed as a scale dependent
mass term of the fields. The regulator functions are required to satisfy the following
relations:

lim
q2

k2→0

Rk > 0

lim
k2

q2
→0

Rk = 0 (2.2.4)

lim
k2→Λ2→∞

Rk =∞.

4The regulator is diagonal in the momentum indices, Rk(p, q) = δp,qRk(p).

17



2.2 Renormalization and Functional Renormalization Group

The first condition implements the IR regularization. For example, if Rk is proportional
to k2 for q2 � k2, the regulator equips the IR modes with a mass proportional to k and
therefore suppresses them. The second condition ensures that we recover the standard
generating functional Z (respectively the full quantum effective action Γ) in the limit
k → 0. The last condition justifies the use of the saddle point approximation in the limit
k2 → Λ2 → ∞, which returns the microscopic action S5. Furthermore, it is convenient
to rewrite the regulator functions in the following form6

RkB(p) = Zϕ,kp
2 rkB

(
p2

k2

)
; RkF (p) = −Zψ,k/p rkF

(
p2

k2

)
,

with dimensionless shape functions ri(y) and the dimensionless argument y = p2

k2 .
Since we defined appropriate boundary conditions, we now consider the actual trajectory
of the effective average action Γk. First we determine the behaviour of the IR regularized
Schwinger functional Wk = logZk under changes of the scale k. But instead of using
derivatives with respect to k, we introduce the dimensionless RG time

t = log
k

Λ
, ∂t = k

d

dk
.

Let us see how this operates on the Schwinger functional if we keep the source J fixed:

∂tWk[J ]
∣∣∣
J

= − 1

Zk

∫
Λ
DΦ ∂t(∆Sk[Φ]) e−S[Φ]+

∫
JTΦ−∆Sk[Φ]

(2.2.2)
= −1

2

∫
q
(∂tRk)

ab(q)
1

Zk

∫
Λ
DΦ ΦT

a (−q)Φb(q)e
−S[Φ]+

∫
JTΦ−∆Sk[Φ]︸ ︷︷ ︸

〈ΦTa (−q)Φb(q)〉J

= −1

2

∫
q
∂tRkB(q)〈ϕ(−q)ϕ(q)〉J −

∫
q
∂tRkF (q)〈ψ̄(q)ψ(q)〉J .

By adding zeros

0 = 〈ϕ(−q)〉J〈ϕ(q)〉J − 〈ϕ(−q)〉J〈ϕ(q)〉J

0 = 〈ψ̄(q)〉J〈ψ(q)〉J − 〈ψ̄(q)〉J〈ψ(q)〉J

we can rewrite the expression above as following,

∂tWk[J ]
∣∣∣
J

=− 1

2

∫
q

Tr (∂tRk(q) Gk(q, q))

− 1

2

∫
q
∂tRkB(q)〈ϕ(−q)〉J〈ϕ(q)〉J −

∫
q
∂tRkF (q)〈ψ̄(q)〉J〈ψ(q)〉J , (2.2.5)

5For details see [21]
6In fact, this is already a special choice, see further comments at the end of this subsection or in section
5.2.
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2.2 Renormalization and Functional Renormalization Group

where we introduced the full connected propagator Gk

Gk,ab(p, p) := 〈ΦT
a (−p)Φb(p)〉J − 〈ΦT

a (−p)〉J〈Φb(p)〉J =

−→
δ

δJT,b(−p)
Wk

←−
δ

δJa(p)
.

The last two terms in the equation for ∂tWk[J ]
∣∣∣
J
just yield the scale derivative of the full

regulator term, where the argument is now the vacuum expectation value of the field,
1

2

∫
q
∂tRkB(q)〈ϕ(−q)〉J〈ϕ(q)〉J −

∫
q
∂tRkF (q)〈ψ̄(q)〉J〈ψ(q)〉J

=
1

2

∫
q
〈ΦT

a (−q)〉J (∂tRk)
ab (q)〈Φb(q)〉J

= ∂t∆Sk[〈Φ〉J ].

Thus, we finally find

∂tWk[J ]
∣∣∣
J

= −1

2

∫
q

Tr (∂tRk(q) Gk(q, q))− ∂t∆Sk[〈Φ〉J ]. (2.2.6)

Motivated by this, we define a macroscopic field7

φ(x) ≡

 ϕ(x)
ψ(x)
ψ̄T (x)

 := 〈Φ(x)〉Jconn =

−→
δ

δJT (x)
Wk[J ] (2.2.7)

and introduce a modified effective average action as the Legendre transformation modified
by the regulator term,

Γk[φ] = sup
J

{
−Wk[J ] +

∫
JTφ

}
−∆Sk[φ]. (2.2.8)

As before, for every given macroscopic configuration φ exists a source field J = Jsup
which maximizes the expression in the curly brackets. Because Wk depends on k, Jsup
will do so as well. From now on we skip the supremum and the subscript of Jsup again.
Since the first term in the definition of Γk is a Legendre transformation and thus convex,
any non-convexity results from the regulator term.
Let us consider the new equation of motion for the macroscopic field:

−→
δ

δφT (x)
Γk[φ] = −

∫
y

δJT (y)

δφT (x)

−→
δ

δJT (y)
Wk[J ]︸ ︷︷ ︸

φ(y)

+

∫
y

δJT (y)

δφT (x)
φ(y)

+ (−1)s
∫
y

δφT (y)

δφT (x)
J(y)−

−→
δ

δφT (x)
∆Sk[φ]

= (−1)sJ(x)−
−→
δ

δφT (x)
∆Sk[φ].

7Note that we now use the variables ϕ,ψ and ψ̄ for the macroscopic fields.
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2.2 Renormalization and Functional Renormalization Group

In position space, the functional derivative of ∆Sk reads

−→
δ

δφT (x)

1

2

∫
y,z
φT (y)Rk(z − y)φ(z) =

∫
z
Rk(z − x)φ(z)

≡ (Rkφ)(x).

Thus, the equation of motion is given by

−→
δ

δφT (x)
Γk[φ] = (−1)sJ(x)− (Rkφ)(x) (2.2.9)

and in momentum space

−→
δ

δφT (−p)
Γk[φ] = (−1)sJ(p)−Rk(p)φ(p). (2.2.10)

Our next goal is to compute the behaviour of the effective average action under a change
of the RG scale, while we keep the macroscopic field configuration fixed. It is necessary
to find a relation between the connected propagator and the effective average action to
be able to express the corresponding differential equation in terms of Γk itself. For this
purpose, let us introduce the so-called fluctuation matrix as the second variation of Γk,

Γ
(2)
k (p, q) :=

−→
δ

δφT (−p)
Γk[φ]

←−
δ

δφ(q)

=


−→
δ

δϕ(−p)−→
δ

δψT (−p)−→
δ

δψ̄(p)

Γk[φ]
( ←−

δ
δϕ(q)

←−
δ

δψ(q)

←−
δ

δψ̄T (−q)

)
. (2.2.11)

We refer to this matrix as a 3 × 3 matrix (according to what we call field indices), but
keep in mind that it has the following sub-structure,

Γ
(2)
k =

 ( 1×1
) (

1×dγ
) (

1×dγ
)(

dγ×1
) (

dγ×dγ
) (

dγ×dγ
)(

dγ×1
) (

dγ×dγ
) (

dγ×dγ
)
 .

Then from equation (2.2.10) we get

Γ
(2)
k (p, q) = (−1)sJ(p)

←−
δ

δφ(q)
−Rk(p)δp,q. (2.2.12)
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2.2 Renormalization and Functional Renormalization Group

It is now possible to derive the relation we are looking for:

δp,q = J(p)

←−
δ

δJ(q)
=

∫
q′

(
J(p)

←−
δ

δφ(q′)

)(
φ(q′)

←−
δ

δJ(q)

)
(2.2.12)

=

∫
q′

(−1)s
(

Γ
(2)
k (p, q′) +Rk(p)δp,q′

)(
φ(q′)

←−
δ

δJ(q)

)
(2.2.7)

=

∫
q′

(−1)s
(

Γ
(2)
k (p, q′) +Rk(p)δp,q′

)
Gk(q

′, q),

or in operator notation

1 = (−1)s(Γ
(2)
k +Rk)Gk. (2.2.13)

This enables us to write down the Wetterich equation:

∂tΓk[φ]
∣∣∣
φ

= −∂tWk

∣∣∣
φ

+

∫
y
∂tJ

T (y)φ(y)− ∂t∆Sk[φ]

= −∂tWk

∣∣∣
J
− ∂t∆Sk[φ]

(2.2.6)
=

1

2

∫
q

Tr (∂tRk(q) Gk(q, q))

(2.2.13)
=

(−1)s

2

∫
p,q

Tr

(
∂tRk(p)δp,q

(
Γ

(2)
k +Rk

)−1
(p, q)

)
=

1

2
STr

[
∂tRk

Γ
(2)
k +Rk

]
. (2.2.14)
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2.2 Renormalization and Functional Renormalization Group

The Wetterich equation (2.2.14) is a pure differential equation of the effective action, we
got rid of any functional integrals. Furthermore, it has a one-loop structure (compare
with equation (2.1.10)), but it is exact since the full propagator Γ

(2)
k appears in the

denominator. As mentioned above, the regulator term in the denominator guarantees the
IR regularization, since it behaves like a scale dependent mass term. Its scale derivative
in the numerator however expresses the Wilsonian idea of integrating out momentum
shell by momentum shell, because it is peaked around p2 ≈ k2, as shown in figure 2.1.

Figure 2.1: Typical shape of the regulator (red) and its scale derivative (purple). Quoted
from [18]

In this sense the UV regularization is implemented as well. The solution to the Wetterich
equation corresponds to the trajectory of the scale dependent effective action with fixed
starting point (ΓΛ = S) and fixed endpoint, i.e. the full quantum effective action. The
trajectory itself also depends on the choice of the regulator8. As already mentioned above,
all operators that satisfy the symmetries of the theory can be excited during the flow.
Hence, we will have to truncate the effective action when performing actual calculations,
taking only a finite number of operators into account. Due to this we might end up in
some distance to the actual quantum effective action. The quality of the convergence
depends on the truncation as well as on the regulator.

8See section 5.2 for further comments.

22



2.3 Spontaneous symmetry breaking

2.3 Spontaneous symmetry breaking

To understand the basic principle, let us consider a simple ϕ4-theory, where ϕ is a real
scalar field. Furthermore, the Lagrangian shall be invariant under Z2 transformations.
Thus, the Lagrangian in Euclidean spacetime reads

L =
1

2
∂µϕ∂

µϕ+
1

2
µ2ϕ2 +

λ

8
ϕ4 ≡ 1

2
∂µϕ∂

µϕ+ V (ϕ), (2.3.1)

where λ > 0 has to hold since we demand the potential to be bounded from below. The
shape of the potential is determined by the parameters µ and λ and thus the ground state
of the system, since it corresponds to the minimum of the potential. Let us consider
homogeneous field configurations. Then, in case of µ2 > 0, there only exists a single
minimum at ϕ0 ≡ v = 0. If µ2 < 0 holds we have two physically equivalent minima at

ϕ0 = ±v = ±
√
−2µ2

λ
,

The two phases are illustrated in figure 2.2.

φ

V
μ2> 0

φ

V
μ2< 0

Figure 2.2: (Left) System in symmetric phase. (Right) System in broken phase.

In the latter case the system will choose one of these two minima to be the ground
state. In case that the field configuration is ϕ = 0, i.e. the unstable extremum, small
fluctuations will drive the system into a stable field configuration at ϕ = ±v. However,
since v 6= 0 holds, the ground state violates the original Z2 symmetry of the Lagrangian.
We say the theory is spontaneously broken. To decide whether a system is in the broken
phase or not, we simply have to investigate if the vacuum expectation value v vanishes.
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2.3 Spontaneous symmetry breaking

As a next step, we introduce a priori massless fermions to our model. They shall interact
with the scalar field via a Yukawa interaction hϕψ̄ψ. But if we now decompose the scalar
field into its vacuum expectation value and fluctuations around it,

ϕ(x) = v + σ(x), 〈σ(x)〉 = 0,

the interaction term reads

hϕψ̄ψ = hvψ̄ψ + hσψ̄ψ.

If the system is in the spontaneously broken phase, i.e. v 6= 0, the left term can be
interpreted as a fermionic mass term with m = hv. Although we introduced a priori
massless fermions, they received a mass via spontaneous symmetry breaking. The mass
of the scalar field itself is given by the curvature of the scalar potential at the ground
state.

The Higgs mechanism in the Standard Model

The original purpose of introducing the Higgs sector within the Standard Model was dif-
ferent from the suggestions above. The interactions of the Standard Model are described
by gauge theories. As a consequence, fermionic mass terms are forbidden because they
would violate the gauge invariance of the Lagrangian. This is not a problem for the theo-
ries of quantum electrodynamics (QED) and quantum chromodynamics (QCD), because
their gauge bosons (photons and gluons) are known to be massless. In case of the weak
sector however, experiments showed that the three corresponding gauge bosons (W± and
Z bosons) do have a mass, which are in addition much larger than the masses of most of
the other elementary particles. To explain this circumstance, the Higgs mechanism was
proposed ([1], [2], [3], [4]). Furthermore, since the gauge group of the (electro)weak sec-
tor9 is SU(2)L ×U(1)Y [23], [24], the Higgs field was originally introduced as a complex
scalar doublet rather than a single scalar field. Hence, we have four physical degrees of
freedom. The breaking of this symmetry is different from the example above as well. The
consequences of spontaneous symmetry breaking depend on the nature of the symmetry
that becomes broken. If the symmetry is a global continuous symmetry, the Goldstone
theorem predicts the appearance of massless particles, the so-called Goldstone bosons.
In our example the Lagrangian was invariant under a discrete symmetry. Thus, no
Goldstone boson appeared. The more interesting case is the breaking of local gauge
symmetries like the ones of the Standard Model. However, the proof of the Goldstone
theorem only holds for global symmetries. Nevertheless there exist no Goldstone bosons
in the Standard Model due to the local gauge symmetries. In the Standard Model the
degrees of freedom of the Higgs doublet split into one massive scalar field, the Higgs
boson, and three so-called would-be Goldstone bosons. The latter ones are "eaten" by
the gauge bosons and provide them their masses. In general, the mechanism works as
follows. Let G be the gauge group. Then after symmetry breaking the ground state still
might be invariant under a subgroup of G, the so-called stability group H.

9In the Standard Model, the electromagnetic interaction and the weak interaction are combined to the
electroweak sector.
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2.3 Spontaneous symmetry breaking

Furthermore, let n be the number of involved (real) scalar fields.
Then n− (dimG− dimH) of these fields remain as massive Higgs fields. Consequently
(dimG− dimH) would-be Goldstone bosons appear, which are eaten by gauge bosons,
providing them with their masses. Hence, dimH gauge bosons remain massless. In the
case of the Standard Model we have the four-dimensional gauge group G = SU(2)L ×
U(1)Y that becomes spontaneously broken. After symmetry breaking the ground state
remains invariant under the one-dimensional electromagnetic gauge group H = U(1)e.m..
As mentioned above, we have n = 4 physical degrees of freedom. Thus, we end up with
one massive scalar field (the Higgs boson), three massive gauge bosons (W± and Z)
and one massless gauge boson (the photon). In a similar way the fermions receive their
masses via a Yukawa interaction with the Higgs doublet.
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3 Our toy model

In this chapter we want to introduce the toy model we are going to work with. Let us
first write down our ansatz for the effective effective action and discuss it afterwards:

Γk[φ] =

∫
x

[
Uk(ϕ

2) +
Zϕ,k

2
∂µϕ ∂µϕ+ Zψ,kψ̄i/∂ψ + iHk(ϕ)ψ̄ψ

]
, Hk(ϕ) = ϕ hk(ϕ

2)

(3.0.1)

The toy model consists of a real scalar field ϕ and a fermion, which represent the Higgs
field and the top quark respectively. We allow arbitrary self-interactions of the scalar
field, given by the effective potential Uk and we also introduce a generalized Yukawa
coupling Hk(ϕ) 1. Note that we impose a Z2 symmetry on Uk and hk. The discussion
why this is an appropriate simplification of the Standard Model has already been held
in [13], [25], we are going to recall the important steps.

The original Standard Model is of course much more complex than our toy model. For
example, as already mentioned, the Higgs field is a complex doublet in the Standard
Model. Beside self-interaction terms it couples with the gauge bosons of the electroweak
interaction through the couplings g(U(1)) and g′(SU(2)), implementing the masses of
W± and Z bosons via the Higgs mechanism. The same holds for the fermions, here the
couplings are of the Yukawa type hf . The main interest of this work focusses on calcu-
lating Higgs masses and therefore on the effective potential Uk. To justify the ansatz we
thus have to answer two questions: Why is the dominant influence of the other sectors
on the scalar sector only given by the top quark and why are we allowed to reduce the
complex Higgs doublet to a real scalar field with a Z2 symmetry?

To support our arguments we will use some results of perturbation theory. We are
conscious of the fact that the couplings of the strong interaction sector increase in the
IR, denying the application of perturbative methods.

1If we choose h(ϕ2) to be constant, we obtain the original Yukawa coupling.
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But indeed, this happens on a scale lower than the one of electroweak symmetry break-
ing, so that the IR flow should not have a significant impact on the flow of the effective
potential, since it should already have been frozen out. Because the SU(2) coupling g′

is smaller than the strong coupling g3(SU(3)) in the IR, the same argument holds, too.
Furthermore, the Yukawa couplings can be considered to be in the perturbative regime
as well, if we have a look at the experimental data2: In the IR the vacuum expectation
value of the Higgs field is given by 246 GeV and the top mass is measured to be 173 GeV.
Hence, the strongest Yukawa coupling, i.e. the coupling of the top quark, would have an
IR value of htop ≈ 173

246 = 0.70, which is still smaller than one. Only the scalar sector might
turn out to be non-perturbative, especially since we are going to test the parameter space
over a wide range, including strong bare couplings. This could influence the other sectors
as well, it might even be possible that they are all driven into a non-perturbative regime.
This again would render the neglection of their influence on the scalar sector unjustified.
Although, if such strong dynamics would play an important role in the Standard Model,
their qualitative effects should be observable within the scope of our toy model as well.

Let us start with the RG improved perturbation theory result for the effective potential
of the Standard Model up to one-loop-order ([27], [28], [29])

U = −1

2
m2(t)φ2(t) +

1

8
λ(t)φ4(t)

+

5∑
i=1

ni
64π2

Mi(φ)4

[
log

M2
i (φ)

µ2(t)
− ci

]
+ Ω(t), (3.0.2)

whereas

M2
i (φ) = κiφ

2(t)− κ′i

and

n1 = 6, κ1 =
1

4
g2(t), κ′1 = 0, c1 =

5

6

n2 = 3, κ2 =
1

4
[g2(t) + g′2(t)], κ′2 = 0, c2 =

5

6

n3 = −12, κ3 =
1

2
h2
top(t), κ′3 = 0, c3 =

3

2

n4 = 1, κ4 =
3

2
λ(t), κ′4 = m2(t), c4 =

3

2

n5 = 3, κ5 =
1

2
λ(t), κ′5 = m2(t), c5 =

3

2
.

2All experimental data are quoted from [26].
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Mi contains the masses of the particles, i.e. Mi = (mW ,mZ ,mtop,mHiggs,mGoldstone).
m2(t) and λ(t) are the couplings of the quartic Standard Model potential. Finally, Ω(t)
is the cosmological constant, which is irrelevant for our considerations, since we are
interested in the Higgs mass. The Higgs mass is related to the curvature of the potential
and thus independent of Ω(t). Among the fermions the top quark is by far the heaviest
and therefore the corresponding Yukawa coupling htop(t) the strongest. Hence, we already
neglected all the other fermions (quarks and leptons) in equation (3.0.2). Furthermore,
the couplings g and g′ of the electroweak interaction are known to be much smaller than
the top Yukawa coupling and the SU(3) coupling g3 in the IR. Although g is increasing
with momentum, both g and g′ are smaller than g3 and htop at least up to the GUT scale
at around 1016 GeV. Thus, we are able to disregard all terms with i = 1, 2 in equation
(3.0.2) as well as in the β-functions of the remaining couplings. Among the remaining
couplings, the β-function of htop contains contributions from the strong and electroweak
sector and thus would be the last connection to the sectors we neglected so far. Hence,
we have to investigate whether a neglect of these contributions to the β-function of htop
can be justified as well. From [27] we know that at one-loop level the β-function reads

∂thtop =
1

16π2

(
9

2
h3
top − 8g2

3htop −
9

4
g2htop −

17

12
g′2htop

)
. (3.0.3)

As discussed above, the electroweak contributions can be ignored. The problem is the
strong interaction term. Using htop ≈ 0.70 we get 9

2h
3
top ≈ 1.57. Comparing this to the

strong interaction term (with αs(mZ) =
g2
3

4π = 0.118 we obtain 8g2
3htop ≈ 8.30) we see

that its neglect is in fact a rough approximation. Because we are mainly interested in
the qualitative behaviour of the Higgs mass and the effective potential respectively, we
can nevertheless omit this term as well.

The last step is the reduction of the complex Higgs doublet to a single real scalar Higgs
field. Since we dropped the electroweak sector, we lost its corresponding local gauge in-
variance, including the gauge bosons. The spontaneous breaking of the remaining global
symmetry would lead to massless Goldstone bosons, which however cannot be "eaten"
by the (missing) gauge bosons. This problem has to be solved and at the same time we
have to imitate one key property of the Standard Model, that is we have to set up our
toy model in a way that mass terms for the fermions are forbidden. Motivated by the
Standard Model itself, where it is indeed possible to express the scalar potential just via
one single scalar field by making use of the gauge invariance, we approximate the scalar
sector by one real scalar field. This theory does not possess any continuous symmetries
and thus the problem of the Goldstone bosons vanishes.

28



To make sure that no fermionic mass terms are allowed, we demand our theory to be
invariant under chiral transformations,

ψ → eiγ5
π
2 ψ, ψ̄ → ψ̄eiγ5

π
2 .

Due to this transformation, a mass term would behave like ψ̄ψ → −ψ̄ψ and thus violate
the symmetry. However, this would also hold for Yukawa type interactions. To solve
this problem we additionally impose a discrete Z2-symmetry on the scalar field, which
then compensates the minus sign. For this reason, the scalar potential has to have the
form Uk = Uk(ϕ

2) and the generalized Yukawa coupling has to satisfy Hk(ϕ) = ϕhk(ϕ
2).

Hence, we find the proposed truncation (3.0.1).
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4 Flow equations

In this chapter we want to derive the flow equations corresponding to our toy model.

4.1 The fluctuation matrix

As a first ingredient of the Wetterich equation (2.2.14) we calculate the fluctuation matrix
of our model, that is

Γ
(2)
k (p, q) =


−→
δ

δϕ(−p)−→
δ

δψT (−p)−→
δ

δψ̄(p)

Γk[φ]
( ←−

δ
δϕ(q)

←−
δ

δψ(q)

←−
δ

δψ̄T (−q)

)
.

We consider the action in momentum space (at least kinetic terms)1,

Γk[φ] =

∫
x
Uk(ϕ) +

∫
q

Zϕ,k
2
q2ϕ(q)ϕ(−q)−

∫
q
Zψ,kψ̄(q)/qψ(q) + i

∫
x
Hk(ϕ)ψ̄(x)ψ(x),

and compute the (1, 3) element as an example:

−→
δ

δϕ(−p)
Γk

←−
δ

δψ̄T (−q)
= i

∫
x
H ′k(ϕ)

δϕ(x)

δϕ(−p)
ψ̄(x)ψ(x)

←−
δ

δψ̄T (−q)
.

To perform the derivative acting from the right, we have to transpose the product ψ̄ψ,
which yields a minus sign since both fields are Grassmann valued:

−→
δ

δϕ(−p)
Γk

←−
δ

δψ̄T (−q)
= −i

∫
x
H ′k(ϕ)

δϕ(x)

δϕ(−p)
ψT (x)

ψ̄T (x)

ψ̄T (−q)
.

Finally, by using our conventions concerning the Fourier transformation we get

−→
δ

δϕ(−p)
Γk

←−
δ

δψ̄T (−q)
= −i

∫
x
H ′k(ϕ)ψT (x)e−i(p−q).

1We will write Uk(ϕ) instead of Uk(ϕ2) again to not get confused with the derivatives with respect to
ϕ that are going to appear.
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4.1 The fluctuation matrix

The other entries can be calculated similarly, the final result becomes

Γ
(2)
k (p, q) =


Zϕ,k p

2 δp,q+
∫
x U
′′
k (ϕ) e−i(p−q)x+

i
∫
xH
′′
k (ϕ) e−i(p−q)xψ̄(x)ψ(x)

i
∫
xH
′
k(ϕ)ψ̄(x)e−i(p−q)x −i

∫
xH
′
k(ϕ)ψT (x)e−i(p−q)x

−i
∫
xH
′
k(ϕ)ψ̄T (x)e−i(p−q)x 0 −Zψ,k/pT δp,q − i

∫
xHk(ϕ)e−i(p−q)x

i
∫
xH
′
k(ϕ)ψ(x)e−i(p−q)x −Zψ,k/pδp,q + i

∫
xHk(ϕ)e−i(p−q)x 0

 ,

(4.1.1)

where primes denote derivatives with respect to ϕ. We will now add the regulator term
Rk. By defining the quantities 2

P (q) = q2(1 + rkB(q)), PF (q) = q2(1 + rkF (q))2

we thus get (
Γ

(2)
k +Rk

)
(p, q) =


Zϕ,k P (p) δp,q+

∫
x U
′′
k (ϕ) e−i(p−q)x+

i
∫
xH
′′
k (ϕ) e−i(p−q)xψ̄(x)ψ(x)

i
∫
xH
′
k(ϕ)ψ̄(x)e−i(p−q)x −i

∫
xH
′
k(ϕ)ψT (x)e−i(p−q)x

−i
∫
xH
′
k(ϕ)ψ̄T (x)e−i(p−q)x 0

−Zψ,k/pT (1+rkF )δp,q

−i
∫
xHk(ϕ)e−i(p−q)x

i
∫
xH
′
k(ϕ)ψ(x)e−i(p−q)x

−Zψ,k/p(1+rkF )δp,q

+i
∫
xHk(ϕ)e−i(p−q)x

0

 . (4.1.2)

Furthermore, we will see later that some of the projection rules include setting the fields
to constants. Thus, we also write down the expression above for this case 3:

(
Γ

(2)
k +Rk

)∣∣∣
φ=const

(p, q) = δp,q×


Zϕ,k P (p)+U ′′k (ϕ)

+iH′′k (ϕ) ψ̄ψ
iH ′k(ϕ)ψ̄ −iH ′k(ϕ)ψT

−iH ′k(ϕ)ψ̄T 0 −Zψ,k/pT (1 + rkF )− iHk(ϕ)

iH ′k(ϕ)ψ −Zψ,k/p(1 + rkF )δp,q + iHk(ϕ) 0

 .

(4.1.3)

2Actually, PF will appear later in the inverse expression.
3Setting the fields to constants means that we can perform the position space integrals, which together
with the exponential functions just yield factors δp,q.
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4.2 The generalized Yukawa coupling

4.2 The generalized Yukawa coupling

The flow of a field-dependent generalized Yukawa coupling has already been studied in
different physical contexts, e.g. linked to gravitation [31],[30] or to QCD [32]. In [33] the
authors investigated exactly the same system as in this thesis but with respect to the
search of Gaussian fixed points and critical behaviour. Nevertheless, the latter work will
be appropriate for comparing the derived flow equations.
The first step to compute the flow of any quantity is to find a projection rule which
extracts it from the effective average action. In the case of the generalized Yukawa
coupling we have

δ0Hk(ϕ0)1dγ =
1

i

−→
δ

δψ̄
Γk

←−
δ

δψ

∣∣∣∣∣ϕ = ϕ0 = const
ψ = ψ̄ = 0

,

where δ0 is an infinite volume factor, emerging from the integration over the full space-
time. Since the Wetterich equation (2.2.14) already describes how Γk evolves with the
RG time, we immediately get the flow equation of Hk,

δ0∂tHk(ϕ0)1dγ =
1

i

−→
δ

δψ̄

1

2
STr

[
∂tRk

Γ
(2)
k +Rk

] ←−
δ

δψ

∣∣∣∣∣ϕ = ϕ0 = const
ψ = ψ̄ = 0

. (4.2.1)

From now on we skip the subscript on ϕ0. Our task is to compute the right hand side of
equation (4.2.1). We will not do this straightforwardly but apply some technical tricks
that will simplify our calculations. We want to rewrite the argument of the super trace
by introducing an alternative scale derivative:

∂̃t :=
∑
i=ϕ,ψ

∫
x

∂t(Zi,k ri(x))

Zi,k

δ

δri(x)
(4.2.2)

Here we have rϕ ≡ rkB and rψ ≡ rkF . This derivative acts only on the regulator parts.
Thus, we immediately have

∂tRk

Γ
(2)
k +Rk

= ∂̃t log[Γ
(2)
k +Rk]. (4.2.3)

Now we want to use the fact that terms which do not contain any fermionic fluctuations
(that is ψ or ψ̄ fields) will vanish under the projection. Hence, we decompose

Γ
(2)
k +Rk = Γ

(2)
ϕ,k + ∆Γ

(2)
k +Rk,

where Γ
(2)
ϕ,k + Rk contains the terms that do not include any fermionic fluctuations and

the regulator, while ∆Γ
(2)
k includes the remaining terms that involve fermions.

32



4.2 The generalized Yukawa coupling

This enables us to rewrite the super trace as following

STr

[
∂tRk

Γ
(2)
k +Rk

]
= STr ∂̃t log[Γ

(2)
k +Rk]

= STr ∂̃t log[Γ
(2)
ϕ,k +Rk] + STr

∂̃t log

1 +
∆Γ

(2)
k

Γ
(2)
ϕ,k +Rk

 . (4.2.4)

The first summand will vanish due to the projection, because it is independent of
fermionic fields and thus vanishes when applying the field derivatives. Concerning the
remaining term, we can apply another trick: Since after the functional field derivatives

−→
δ
δψ

and
←−
δ
δψ̄

the fermionic fields are set to zero anyway, we can set ψ and ψ̄ to constants right
from the beginning, so that the functional derivatives actually become simple partial
derivatives. This also implies that we can use version (4.1.3) of the fluctuation matrix.
The quantities introduced above then read as following

∆Γ
(2)
k (p, q) = δp,q ×

 iH ′′k ψ̄ψ iH ′kψ̄ −iH ′kψT
−iH ′kψ̄T 0 0
iH ′kψ 0 0

 , (4.2.5)

(
Γ

(2)
ϕ,k +Rk

)
(p, q) = δp,q×

Zϕ,kP (p) + U ′′k 0 0
0 0 −Zψ,k/pT (1 + rkF )− iHk

0 −Zψ,k/p(1 + rkF ) + iHk 0

 . (4.2.6)

We now introduce the "full inverse propagators"

ξϕ(q) = Zϕ,kP (q) + U ′′k (ϕ), ξψ(q) = Z2
ψ,kPF (q) +H2

k(ϕ).

Then the inverse of the expression above can be written as

(
Γ

(2)
ϕ,k +Rk

)−1
(p, q) = δp,q ×


1

ξϕ(p) 0 0

0 0 −Zψ,k(1+rkF )
ξψ(p) /p− iHk

ξψ(p)

0 −Zψ,k(1+rkF )
ξψ(p) /pT + iHk

ξψ(p) 0


(4.2.7)
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4.2 The generalized Yukawa coupling

and we are able to perform the matrix multiplication

∆Γ
(2)
k

Γ
(2)
ϕ,k +Rk

(p, q) =

∫
p′

(
Γ

(2)
ϕ,k +Rk

)−1
(p, p′)∆Γ

(2)
k (p′, q)

= δp,q iH
′
k×
iH′′k ψ̄ψ
iH′kξϕ

ψ̄
ξϕ
−ψT

ξϕ
−Zψ,k(1+rkF )/p−iHk

ξψ
ψ 0 0

Zψ,k(1+rkF )/pT−iHk
ξψ

ψ̄T 0 0

 . (4.2.8)

As we have already discussed, we reduced the flow equation to

δ0∂tH(ϕ)1dγ =
1

i

−→
δ

δψ̄

1

2
STr

∂̃t log

1 +
∆Γ

(2)
k

Γ
(2)
ϕ,k +Rk

 ←−δ
δψ

∣∣∣∣∣ϕ = const
ψ = ψ̄ = 0

. (4.2.9)

Of course, we can change the order of accomplishing the different steps of calculation. We
will first compute the super trace, then perform the field derivatives and finally compute
the modified scale derivative. Setting the fermionic fields to zero also implies that the

only terms of log

(
1 +

∆Γ
(2)
k

Γ
(2)
ϕ,k+Rk

)
that will contribute according to the projection are

those containing exactly one ψ and one ψ̄ field. Therefore, we expand the logarithm into
a power series, log(1 + x) =

∑ (−1)k+1

k xk. Since we already know that each non-zero
entry of the matrix (4.2.8) contains at least one of the mentioned fields, the only orders
that contribute to the flow equation are the first and the second orders. Let us start with
the first order contributions. Performing the first part of taking the super trace (that is
summing over the diagonal field indices) yields

δp,q iH
′
k

iH ′′k ψ̄ψ

iH ′kξϕ
= δp,q

iH ′′k ψ̄ψ

ξϕ
.

The next step is to sum (=̂ integrate) over the diagonal momentum indices, which includes
setting p = q:

δ0

∫
p

iH ′′k ψ̄ψ

ξϕ
.

We see that the factor δ0 appears as well as on the left hand side of equation (4.2.9). As
mentioned before, it is formally infinite. But if one puts our theory in a box with finite
length L, this factor is nothing but the volume of this box and therefore finite as well.
Now we can cut the factor on both sides of the equation and take the limit L→∞ again.
Furthermore, the field derivatives cause the term ψ̄ψ to disappear,

−→
δ

δψ̄
ψ̄ψ

←−
δ

δψ
= 1dγ .

The Dirac identity means that we obtain dγ copies of the flow equation, just like we saw
on the left hand side of the projection rule. Thus, we can skip this factor.
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4.2 The generalized Yukawa coupling

Now we are only left with executing the modified scale derivative

∂̃tδ0

∫
p

iH ′′k
ξϕ

= δ0iH
′′
k

∫
p

∫
x

(−1)

ξ2
ϕ

p2Zϕ,k
δrkB(p)

δrkB(x)

∂t(Zϕ,krkB(x))

Zϕ,k

= −iδ0H
′′
k

∫
p
p2∂t(Zϕ,krkB(p))

ξ2
ϕ

. (4.2.10)

Up to coefficients resulting from the projection rule and the log-expansion, this is our
first contribution to the flow equation of Hk. Let us now consider the second order

contributions. First of all we have to compute the square of ∆Γ
(2)
k

Γ
(2)
ϕ,k+Rk

. Because the (1, 1)

entry already contains ψ as well as ψ̄, we can effectively set it to zero when calculating
the square. The interesting parts then read

 ∆Γ
(2)
k

Γ
(2)
ϕ,k +Rk

2

(p, q) ≈ −(H ′k)
2δp,q×


−
Zψ,k(1+rkF )

ξϕξψ
(ψ̄/pψ+ψT /pT ψ̄T )

− 2iHk
ξϕξψ

ψ̄ψ
0 0

0 −Zψ,k(1+rkF )/p+iHk
ξϕξψ

ψψ̄ 0

0 0 −Zψ,k(1+rkF )/pT−iHk
ξϕξψ

ψ̄TψT

 .

(4.2.11)

In the (1, 1) element the terms containing the slashed momenta will cancel each other,
because

ψ̄/pψ + ψT /p
T ψ̄T = ψ̄/pψ − ψ̄/pψ = 0,

where we used that transposing the second scalar yields a minus sign since we changed
the order between the fermionic fields. This leaves us only with the term −2iHk

ξϕξψ
ψ̄ψ in

the (1, 1) element, which makes the further calculations in this sector similar to the steps
above. We thus state only the final result (including the −1

2 from the log-expansion):

iδ0Hk(H
′
k)

2

∫
p

p2∂t(Zϕ,krkB)

ξ2
ϕξψ

+
2p2Zψ,k(1 + rkF )∂t(Zψ,krkF )

ξϕξ2
ψ

. (4.2.12)
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4.2 The generalized Yukawa coupling

Let us now consider the fermionic sectors. Note that we have to take a factor (−1) in
front of each term into account, according to our definition of the super trace, as well as
we have to take the trace over the Dirac indices. Still the terms with slashed momenta
cancel:

Trγ(/pψψ̄) + Trγ(/p
T ψ̄TψT ) = Trγ(/pψψ̄)− Trγ(ψψ̄/p)

= Trγ(/pψψ̄)− Trγ(/pψψ̄)

= 0.

In the second step we used the cyclicity of the trace, but because we did not change the
order between ψ and ψ̄ no extra minus occurs. Furthermore, since

Trγ(ψ̄TψT ) = −Trγ(ψψ̄),

the (2, 2) and (3, 3) entry yield the same contribution. By setting p = q and by integrating
over p we get (including the−1

2 from the log-expansion and the (−1) due to spin statistics)

(−1)

(
−1

2

)
δ0(−1)(H ′k)

2

∫
p

(
−2iHk

ξϕξψ

)
Trγ(ψψ̄). (4.2.13)

Performing the field derivatives as earlier gives

−iδ0dγHk(H
′
k)

2

∫
p

1

ξϕξψ
1dγ , (4.2.14)

where we can skip the factor 1dγ again. It is straightforward to compute the modified
scale derivative, which leads to

iδ0Hk(H
′
k)

2

∫
p

p2∂t(Zϕ,krkB)

ξ2
ϕξψ

+
2Zψ,kp

2(1 + rkF )∂t(Zψ,krkF )

ξϕξ2
ψ

. (4.2.15)
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4.2 The generalized Yukawa coupling

Now we can write down the full flow equation by collecting all these terms and by
including the missing coefficients. We finally find

∂tHk(ϕ) =− 1

2

∫
p

p2H ′′k (ϕ)∂t(Zϕ,krkB(p))

ξ2
ϕ(p)

+
1

2

∫
p
Hk(ϕ)H ′2k (ϕ)

{
2p2∂t(Zϕ,krkB(p))

ξ2
ϕ(p)ξψ(p)

+
4Zψ,kp

2(1 + rkF (p))∂t(Zψ,krkF (p))

ξϕ(p)ξ2
ψ(p)

}
.

(4.2.16)

It is convenient to express the result in terms of the so-called threshold functions. Their
definition is given in appendix A. In terms of these threshold functions the expression
above reads

∂tHk(ϕ) =− 2H ′′k (ϕ)Z−1
ϕ,kvdk

d−2ld1

[
Z−1
ϕ,kk

−2U ′′k (ϕ); ηϕ

]
+ 4vdk

d−4Z−1
ϕ,kZ

−2
ψ,kHk(ϕ)H ′2k (ϕ)l

(FB)d
1,1

[
Z−2
ψ,kk

−2H2
k(ϕ), Z−1

ϕ,kk
−2U ′′k (ϕ); ηψ, ηφ

]
,

(4.2.17)

where 1
vd

= 2d+1π
d
2 Γ(d2). This fully agrees with the flow equation derived in [33], where

the authors also considered the Z2-symmetric Higgs-Yukawa model at zero temperature.
However, they are discussing the system for a continuous number of fermion degrees
Xf = dγNf , where Nf is the number of fermions. In this thesis we so far considered
the Nf = 1 case. Comparing this result with former works on the Higgs-Yukawa system
including only the standard Yukawa interaction h0ϕψ̄ψ (see [13], [14] or the corresponding
joined work [11]) we find that especially the term ∼ H ′′k will be interesting because in
the former truncation H(ϕ) = h0ϕ it did not appear at all. In the same manner the
combination HkH

′2
k corresponds to the inclusion of new terms. By taking them into

account we hope that we can further decrease the lower Higgs mass bounds.
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4.3 The effective potential

4.3 The effective potential

A first consideration of the flow of the effective potential can for example be found in
[12]. To extract the of the potential from the flow of the full effective action we use the
projection according to [13]

δ0Uk(ϕ0) = Γk

∣∣∣∣∣ϕ = ϕ0 = const
ψ = ψ̄ = 0

and therefore the flow equation reads (we skip the subscript on ϕ as usual)

δ0∂tUk(ϕ) =
1

2
STr

[
∂tRk

Γ
(2)
k +Rk

] ∣∣∣∣∣ϕ = const
ψ = ψ̄ = 0

. (4.3.1)

This projection is much simpler than in the case of Hk, because we do not have to
apply any field derivatives. We are even allowed to set ψ and ψ̄ to zero right from the
beginning, which simplifies the fluctuation matrix (4.1.3) significantly. We do not have
to make use of the trick involving the modified scale derivative either, it is possible to
straightforwardly compute ∂tRk

Γ
(2)
k +Rk

and take the super trace. We find

∂tUk(ϕ) =
1

2

∫
p

p2∂t(Zϕ,krkB(p))

ξϕ(p)
− dγ

∫
p

p2Zψ,k(1 + rkF (p))∂t(Zψ,krkF (p))

ξψ(p)
, (4.3.2)

or again expressed in terms of threshold functions

∂tUk(ϕ) = 2vdk
dld0

[
Z−1
ϕ,kk

−2U ′′k (ϕ); ηϕ

]
− 2dγvdk

dl
(F )d
0

[
Z−2
ψ,kk

−2H2
k ; ηψ

]
. (4.3.3)

Again our result matches with the flow equation derived in [33]. If we compare it with
the former results corresponding to the standard Yukawa coupling [13], [14], [11] we
find that, as expected, no additional terms appear in the flow of the effective potential.
The only difference in the flow equation is that in the denominator of the fermionic
contribution (second term of equation (4.3.2)) we have ξψ(q) = Z2

ψ,kPF (q) + H2
k(ϕ)

instead of Z2
ψ,kPF (q) + ϕ2h2

0. Hence, our result is consistent with the old one because
we easily recover it by choosing H(ϕ) = h0ϕ. The fact that we only have to substitute
h2
kϕ

2 → H2
k goes hand in hand with the calculations essentially being the same in both

cases. Thus, we decided to only state the final result, the detailed calculations can be
found in [13], [14].
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4.4 The anomalous dimensions

4.4 The anomalous dimensions

In this section we deal with the flow of the field renormalizations Zψ,k and Zϕ,k. Let us
start with the scalar field renormalization. The projection rule is given by [13]

δ0Zϕ,k =
1

2d
ηρσ∂qρ∂qσ

δ

δσ(q)

δ

δσ(p′)
Γk

∣∣∣∣∣
σ = 0

ψ = ψ̄ = 0
p′ = −q

p′ = −q = 0

. (4.4.1)

We introduced the fluctuation of the scalar field around the vacuum expectation value,
σ = ϕ− v. The reason why we only set σ to zero instead of the entire field ϕ is that in
the spontaneously broken, regime we explicitly have a non-vanishing vacuum expectation
value (which itself will be a scale dependent quantity, too). Therefore, it is important
to take operators of the form vnk∂µσ∂

µσ into account when calculating the flow of Zϕ,k.
Furthermore, unlike the cases of Hk and Uk, we have to leave at least the fluctuation
around the vacuum expectation value with some momentum. After performing the field
derivatives we have to set p′ = −q and then we can take the momentum derivatives. As
a last step q (respectively −p′) is set to zero. Because it is somewhat more complicated,
let us quickly check the projection rule. The only term of the effective action we have to
consider is the kinetic term of the scalar field:

1

2d
ηρσ∂qρ∂qσ

δ

δσ(q)

δ

δσ(p′)

∫
p

1

2
Zϕ,kp

λpλϕ(p)ϕ(−p)

=
1

2d
ηρσ∂qρ∂qσ

∫
p

1

2
Zϕ,kp

λpλ
δ

δσ(q)

(
δp,p′ϕ(−p) + ϕ(p)δ−p,p′

)
=

1

2d
ηρσ∂qρ∂qσ

∫
p

1

2
Zϕ,kp

λpλ
(
δp,p′δ−p,q + δp,qδ−p,p′

)
=

1

2d
Zϕ,kη

ρσ∂qρ∂qσ(δ−q,p′qλq
λ)

Now we set p′ = −q and perform the momentum derivatives, which indeed yields δ0 Zϕ,k.
According to this we see that the derivation of the flow equation will be much more
technical, since one has to be very careful of how to treat the momenta. However, just like
in the case of Uk, the fluctuation matrix becomes simpler because the fermionic fields are
set to zero. We expect that no new terms will occur in comparison to the old truncation,
because any new fluctuation terms involving Hk vanish under the projection ψ̄ = ψ = 0.
Indeed we reproduce the old results up to natural substitutions like h2

kv
2
k → H2

k(vk) or
h2
k → H ′2k (vk). The reason why these functions are evaluated at the vacuum expectation

value is just due to setting σ to zero. Furthermore, there occurs a term containing
the third derivative of the scalar potential. It arises because during the calculations we
expand the effective potential into a power series about the vacuum expectation value in
order to properly perform the field derivatives with respect to σ.
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4.4 The anomalous dimensions

Furthermore, we have to apply the trick involving the expansion of the logarithm again
and finally make use of the fact that only terms containing exactly two fields σ will
contribute according to the projection rule. Because the fluctuation matrix already
includes second derivatives of the effective potential (see (4.1.1)) we end up with third
derivatives. For detailed calculations we refer to [13], [14], because again the result is the
same up to the substitutions mentioned in the case of Uk. Consequently, we just state
the final result

∂tZϕ,k =
1

d

∫
p
∂̃t

p2

(
∂p2

U
(3)
k (vk)

ξϕ(p)

)2


+
2dγ
d
H ′2k (vk)

∫
p
∂̃t

{
p4

(
∂p2

Zψ,k(1 + rkF (p))

ξψ(p)

)2
}

− 2dγ
d
H ′2k (vk)

∫
p
∂̃t

{
p2

(
∂p2

Hk(vk)

ξψ(p)

)2
}
. (4.4.2)

In case of the field renormalizations it is more convenient not to perform the modified
scale derivative right now, it will be done later when we start with the numerical analysis.
In terms of the threshold functions we obtain4

∂tZϕ,k =− 4

d
vdk

d−6
(
U

(3)
k

)2
Z−2
ϕ,km

d
2,2

[
Z−1
ϕ,kk

−2U ′′k (vk), Z
−1
ϕ,kk

−2U ′′k (vk); ηϕ

]
− 8

d
dγvdk

d−4H ′2k (vk)Z
−2
ψ,km

(F )d
4

[
Z−2
ψ,kk

−2H2
k(vk); ηϕ

]
+

8

d
dγvdk

d−6H ′2k (vk)H
2
k(vk)Z

−4
ψ,km

(F )d
2

[
Z−2
ψ,kk

−2H2
k(vk); ηψ

]
. (4.4.3)

The flow of Zϕ,k agrees with the result derived in [33]. As mentioned before, the flow
in the former truncation [13], [14] is reproduced for the choice Hk = h0ϕ. For a general
choice however, the combinations of Hk and H ′k will generate new contributions.
The discussion we held on Zϕ,k is also valid for Zψ,k. Hence, we consequently just state
the corresponding projection rule [13] and the final result for the flow equation. The
projection reads

δ0Zψ,k = − 1

ddγ
Trγ γ

µ∂p′µ

−→
δ

δψ̄(p′)
Γk

←−
δ

δψ(q)

∣∣∣∣∣
σ = 0

ψ = ψ̄ = 0
q = p′

q = p′ = 0

, (4.4.4)

4A short comment on why there suddenly appear derivatives with respect to p2: Actually, the functions
ξψ and ξφ are functions of p2 rather than p, because the functions P = p2

(
1 + rkB

(
p2

k2

))
and

PF = p2
(

1 + rkF
(
p2

k2

))2

depend on p2. During the calculations terms like pσ∂pσu(p2) appear,

which can be rewritten as 2p2∂p2u(p2).
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4.4 The anomalous dimensions

and for the flow equation we get

∂tZψ,k = −2

d
H ′2k (vk)∂̃t

∫
p

Zψ,k(1 + rkF (p))

ξψ(p)
p2∂p2

1

ξϕ(p)
. (4.4.5)

Expressed in terms of the threshold functions we finally obtain

∂tZψ,k = −8

d
H ′2k (vk)vdk

d−4Z−1
ψ,kZ

−1
ϕ,km

(FB)d
1,2

[
Z−2
ψ,kk

−2H2
k(vk), Z

−1
ϕ,kk

−2U ′′k (vk); ηψ, ηϕ

]
.

(4.4.6)

The result matches with [33] and the choice Hk = h0ϕ reproduces the former results of
[13], [14]. In general, the pre-factor H ′2k in front of the threshold function will generate
new terms.
There is one more interesting feature concerning these flow equations. In the next chapter
we will see that if we switch over to dimensionless quantities and after choosing our
specific regulator functions we can transform the coupled differential equations (4.4.2)
and (4.4.5) into an algebraic system by introducing the anomalous field dimensions
ηϕ,k = −∂t logZϕ,k and ηψ,k = −∂t logZψ,k.
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5 Numerical analysis

5.1 Rewriting the flow equations

Before we can start a proper numerical analysis of the flow equations, it is convenient
to rewrite them using dimensionless quantities. A simple power counting of the mass
dimension of the fields yields

[ϕ] =
d− 2

2
, [ψ] =

d− 1

2
.

We thus introduce the renormalized and dimensionless field variables

ϕ̃ = Z
1
2
ϕ,kk

2−d
2 ϕ, ψ̃ = Z

1
2
ψ,kk

1−d
2 ψ,

as well as the dimensionless effective potential and the dimensionless generalized Yukawa
coupling

Ũk = k−dUk, H̃k = Z−1
ψ,kk

−1Hk.

Before we move on we finally want to treat the effective potential as a function of ϕ2 or
more conveniently of ρ = 1

2ϕ
2. Thus, in the following all field derivatives of the effective

potential are defined with respect to ρ or its dimensionless counterpart. Furthermore,
we also caused a "dimensional" flow, because the pre-factors of the quantities are now
scale dependent, too. We obtain

∂tŨk(ρ̃) = −d Ũk + (d− 2 + ηϕ,k)ρ̃Ũ
′
k(ρ̃) + k−d∂tUk, ρ̃ =

1

2
ϕ̃2

∂tH̃k(ϕ̃) = (ηψ,k − 1)H̃k +

(
d

2
− 1 +

ηϕ,k
2

)
ϕ̃H̃ ′k(ϕ̃) + k−1Z−1

ψ,k∂tHk.

The expressions for ∂tUk and ∂tHk can be read off from equation (4.3.2) and from equa-
tion (4.2.16) respectively. We only have to rewrite them in our new variables as well.
For example, in equation (4.3.2) we have

ξϕ(p) = Zϕ,kP (p) +
d2

dϕ2
Uk(ϕ)

= Zϕ,kP (p) + Zϕ,kk
2
(

2ρ̃Ũ ′′k (ρ̃) + Ũ ′k(ρ̃)
)
.
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5.2 Choosing the regulator functions

Performing similar calculations for the other terms and introducing

D[Ũk](ρ̃) = ρ̃
(

3Ũ ′′k (ρ̃) + 2ρ̃Ũ ′′′k (ρ̃)
)2

ωu(ρ̃) = 2ρ̃Ũ ′′k (ρ̃) + Ũ ′k(ρ̃)

κ̃k =
1

2
ṽ2
k

we finally find

∂tŨk(ρ̃) = −d Ũk + (d− 2 + ηϕ,k)ρ̃Ũ
′
k(ρ̃) + 2vdl

d
0

[
ωu(ρ̃); ηϕ

]
− 2dγvdl

(F )d
0

[
H̃2
k(ϕ̃); ηψ

]
∂tH̃k(ϕ̃) = (ηψ,k − 1)H̃k +

(
d

2
− 1 +

ηϕ,k
2

)
ϕ̃H̃ ′k(ϕ̃)− 2H̃ ′′k (ϕ̃)vdl

d
1

[
ωu(ρ̃); ηϕ

]
+ 4vdH̃k(ϕ̃)H̃ ′2k (ϕ̃)l

(FB)d
1,1

[
H̃2
k(ϕ̃), ωu(ρ̃); ηψ, ηφ

]
∂tZψ,k = −8

d
H̃ ′2k (ṽk)vdZψ,km

(FB)d
1,2

[
H̃2
k(ṽk), ωu(κ̃k); ηψ, ηϕ

]
∂tZϕ,k = −4

d
vdZϕ,kD[Ũk](κ̃k)m

d
2,2

[
ωu(κ̃k), ωu(κ̃k); ηϕ

]
− 8

d
dγvdZϕ,kH̃

′2
k (ṽk)m

(F )d
4

[
H̃2
k(ṽk); ηϕ

]
+

8

d
dγvdZϕ,kH̃

′2
k (ṽk)H̃

2
k(ṽk)m

(F )d
2

[
H̃2
k(ṽk); ηψ

]
. (5.1.1)

The flow equations of the Zi can be multiplied by a factor −Z−1
i,k , which yields the

anomalous dimensions ηi,k on the left hand side of the equations. Remember the fact
that concerning Ũk primes denote derivatives with respect to ρ̃, whereas concerning H̃k,
primes still denote derivatives with respect to ϕ̃. Because we will only deal with the
dimensionless quantities in this chapter, we furthermore skip the tilde again, if nothing
else is stated.

5.2 Choosing the regulator functions

The next step is to choose specific regulator functions so that we can finally perform the
remaining momentum integrals encoded in the threshold functions. There are various
possibilities to choose regulator functions that satisfy the conditions (2.2.5). However,
since the choice of the regulator functions affects the flow of the effective action, one
should ensure that the flow remains as stable as possible and converges fast towards the
physical theory. The corresponding optimization of the regulator functions has already
been investigated a lot (see e.g. [22], [34], [35]). It turned out that choosing the following
"Litim regulator" is reasonable

RkB = Zϕ,kp
2rkB

choice
= Zϕ,k(k

2 − p2)Θ[k2 − p2]

RkF = −Zψ,k/prkF , (1 + rkF )2 choice
= 1 + rkB, (5.2.1)
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5.2 Choosing the regulator functions

where rkB =
(
k2

p2 − 1
)

Θ[k2 − p2] according to the first equation. Another advantage of
this regulator choice is the fact that the integrals can be performed analytically. Let us
consider the threshold function ld1

[
ωu(ρ); ηϕ

]
in the flow equation of Hk as an example.

It reads

ld1

[
ωu(ρ); ηϕ

]
=

1

4
v−1
d k2−d

∫
q

∂tRkB
Zϕ,k(P (p) + k2ωu(ρ))2

.

By using

P (p) = p2(1 + rkB) = p2

(
1 +

(
k2

p2
− 1

)
Θ[k2 − p2]

)
and

Z−1
ϕ,k∂tRkB = Z−1

ϕ,kp
2∂t(Zϕ,krkB)

= −ηϕ,k(k2 − p2)Θ[k2 − p2] + 2k2Θ[k2 − p2] + 2k2(k2 − p2)δ(k2 − p2)

we are left with1

1

4
v−1
d k2−d

∫
p

−ηϕ,k(k2 − p2)Θ[k2 − p2] + 2k2Θ[k2 − p2](
p2
(

1 +
(
k2

p2 − 1
)

Θ[k2 − p2]
)

+ k2ωu(ρ)
)2

=
1

4
v−1
d k2−d 1

(2π)d
Vol(Sd−1)

∫ k

0
dp pd−1−ηϕ,k(k2 − p2) + 2k2

k4(1 + ωu(ρ))2

=
1

4
v−1
d k2−dkd−2 2

d(2π)d
Vol(Sd−1)

1

(1 + ωu(ρ))2

(
1−

ηϕ,k
d+ 2

)
=

2

d

1

(1 + ωu(ρ))2

(
1−

ηϕ,k
d+ 2

)
,

where Vol(Sd−1) is the surface area of the (d − 1)-sphere. This result agrees with [36].
The computation of the other threshold functions works similarly and does match with
the threshold functions given in [36] as well.

1The term proportional to (k2 − p2)δ(k2 − p2) does not contribute when we integrate over the full
momentum space.
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5.2 Choosing the regulator functions

Appendix B shows all appearing threshold functions after the application of the regulator.
Eventually, the flow equations (5.1.1) read

∂tUk(ρ) = −dUk(ρ) + (d− 2 + ηϕ,k)ρU
′
k(ρ) +

4vd
d

[
1− ηϕ,k

d+2

1 + ωu(ρ)
− dγ

1− ηψ,k
d+1

1 +H2
k(ϕ)

]

∂tHk(ϕ) = (ηψ,k − 1)Hk(ϕ) +

(
d

2
− 1 +

ηϕ,k
2

)
ϕH ′k(ϕ)

− 4vd
d
H ′′k (ϕ)

1

(1 + ωu(ρ))2

[
1−

ηϕ,k
d+ 2

]
+

8vd
d
Hk(ϕ)H ′2k (ϕ)

1

1 +H2
k

1

(1 + ωu(ρ))2

[
1−

ηϕ,k
d+ 2

]
+

8vd
d
Hk(ϕ)H ′2k (ϕ)

1

(1 +H2
k)2

1

1 + ωu(ρ)

[
1−

ηψ,k
d+ 1

]
ηϕ,k =

4vd
d
D[Uk](κk)

1

(1 + ωu(κk))4

+
8vd
d
dγH

′2
k (vk)

{
1

(1 +H2
k(vk))4

+
1− ηψ,k
d− 2

1

(1 +H2
k(vk))3

−
(

1− ηψ,k
2d− 4

+
1

4

)
1

(1 +H2
k(vk))2

}

ηψ,k =
8vd
d
H ′2k (vk)

(
1−

ηϕ,k
d+ 1

)
1

(1 +H2
k(vk))2

1

(1 + ωu(κk))2
. (5.2.2)

Now the differential-algebraic nature of the equation system is obvious. The last two
equations of the anomalous dimensions are purely algebraic, the solutions can then be
inserted into the two remaining differential equations of Hk and Uk. However, there is
still a little inconvenience: We mixed between the variables ϕ and ρ. It is not difficult
to rewrite everything in terms of ρ. For example H2

k(ϕ) = ϕ2h2
k(ρ) = 2ρhk(ρ). In the

case of the flow equation of Hk there is a little subtlety: Here the rewriting causes the
appearance of a global factor ϕ, e.g.

H ′′k (ϕ) = ϕ(3∂ρhk + 2ρ∂2
ρhk).

This global ϕ on the right hand side of the flow equation cancels with the ϕ on the left
hand side, ∂tHk = ϕ∂thk, which leaves us with the flow equation of hk(ρ).
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5.2 Choosing the regulator functions

Hence, we finally find

∂tUk(ρ) = −dUk(ρ) + (d− 2 + ηϕ,k)ρU
′
k(ρ) +

4vd
d

[
1− ηϕ,k

d+2

1 + ωu(ρ)
− dγ

1− ηψ,k
d+1

1 + 2ρh2
k

]

∂thk(ρ) = (ηψ,k − 1)hk(ρ) +

(
d

2
− 1 +

ηϕ,k
2

)(
hk(ρ) + 2ρh′k(ρ)

)
− 4vd

d

(
3h′k(ρ) + 2ρh′′k(ρ)

) 1

(1 + ωu(ρ))2

[
1−

ηϕ,k
d+ 2

]
+

8vd
d
hk(ρ)

(
hk(ρ) + 2ρh′k(ρ)

)2 1

1 + 2ρh2
k(ρ)

1

(1 + ωu(ρ))2

[
1−

ηϕ,k
d+ 2

]
+

8vd
d
hk(ρ)

(
hk(ρ) + 2ρh′k(ρ)

)2 1

(1 + 2ρh2
k(ρ))2

1

1 + ωu(ρ)

[
1−

ηψ,k
d+ 1

]
ηϕ,k =

4vd
d
D[Uk](κk)

1

(1 + ωu(κk))4

+
8vd
d
dγ
(
hk(κk) + 2κkh

′
k(κk)

)2{ 1

(1 + 2κkh
2
k(κk))

4

+
1− ηψ,k
d− 2

1

(1 + 2κkh
2
k(κk))

3
−
(

1− ηψ,k
2d− 4

+
1

4

)
1

(1 + 2κkh
2
k(κk))

2

}

ηψ,k =
8vd
d

(
hk(κk) + 2κkh

′
k(κk)

)2(
1−

ηϕ,k
d+ 1

)
1

(1 + 2κkh
2
k(κk))

2

1

(1 + ωu(κk))2
.

(5.2.3)

Now primes only denote derivatives with respect to ρ.
Before we go further a short comment on why it suffices to consider only one specific
regulator, although we explained in subsection 2.2.3 that due to truncating our theory
the IR physics (and thus possibly the Higgs mass bound as well) becomes dependent of
the regulator. The point is that we fix our theory in the IR rather than the UV, because
the UV values of the couplings are experimentally not accessible. If we consider a specific
UV set-up that yields a corresponding Higgs mass, then of course, the usage of a different
regulator with the same UV set-up might yield a different mass. However, we could just
change the UV set-up in order to recover the original Higgs mass. In this sense, the Higgs
mass bounds do not depend on the choice of the regulator as long as we adjust the bare
couplings correctly. Since we are not interested in their actual value but only in the IR
physics we are fine with using only the Litim regulator for our analysis.
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5.3 Truncation of the effective potential and the generalized
Yukawa coupling

We will now perform one last approximation, because the full equations (5.2.3) are still
too complicated to be solved. Our ansatz will be to expand the effective potential and
the generalized Yukawa coupling about the vacuum expectation value. We thus have
to distinguish between the symmetric phase and the spontaneously broken phase. The
latter one will be slightly more complicated, because the vacuum expectation value itself
is scale dependent as well.

5.3.1 Symmetric phase

In the symmetric phase we expand about vk = 0. Thus, our expansions read

Uk(ρ) =
n∑
i=1

ui(t)

i!
ρi, hk(ρ) =

m∑
j=0

hj(t)

j!
ρj .

Here n and m are the orders of the truncations of Uk and hk, they correspond to the
amount of operators that are taken into account. We will choose finite n and m and
solve the flow of the couplings ui and hj . Their flow equations can be easily derived:

∂tui = ∂(i)
ρ (∂tUk)

∣∣∣
ρ=0

, i = 1, . . . , n

∂thj = ∂(j)
ρ ∂thk

∣∣∣
ρ=0

, j = 0, . . . ,m. (5.3.1)

Together with the algebraic equation system of the anomalous dimensions2 we obtain a
differential-algebraic system which we can solve numerically.
As discussed in section 2.3, the system can switch from the symmetric phase to the
spontaneously broken phase, which corresponds to the fact that the minimum of the
effective potential moves away from ρ = 0. This suggests to expand Uk and hk differently
in the spontaneously broken phase.

2See last two equations of (5.2.3).
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5.3 Truncation of the effective potential and the generalized Yukawa coupling

5.3.2 Spontaneously broken phase

In the spontaneously broken phase we expand about κk. Per construction Uk should
have a minimum at ρ = κk and thus u1 = 0. Therefore, our truncations read

Uk(ρ) =
n∑
i=2

ui(t)

i!
(ρ− κk)i, hk(ρ) =

m∑
j=0

hj(t)

j!
(ρ− κk)j .

Hence, the flow equations of the couplings become a bit more complicated

∂tui = ∂(i)
ρ (∂tUk)

∣∣∣
ρ=κk

+ ∂tκk ui+1, i = 2, . . . , n

∂thj = ∂(j)
ρ (∂thk)

∣∣∣
ρ=κk

+ ∂tκk hj+1, j = 0, . . . ,m, (5.3.2)

where hm+1 = un+1 = 0. Furthermore, we have to calculate the flow of the minimum.
By using the condition U ′k(κk) = 0, which implies ∂tU ′k(κk) = 0, we obtain

∂tκk = − 1

u2
∂ρ(∂tUk)

∣∣∣∣
ρ=κk

. (5.3.3)

From experiments we know that in the IR the system is situated within the spontaneously
broken phase with a non-vanishing vacuum expectation value of 246 GeV. The IR physics
corresponds to the limit t → −∞ (or equivalently k → 0), however, the solutions show
that the flows already freeze out at t = −20 . . . − 5. As described in section 2.3, the
Higgs mass is given by the curvature of the effective potential at the vacuum expectation
value,

mH = lim
k→0

√
d2

dϕ2
Uk(ϕ) = lim

k→0
vk
√
u2(k). (5.3.4)
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5.4 Our task

The main goal is to investigate the influence of the different couplings on the lower Higgs
mass bound. The first step is to choose the initial conditions of the flow equations, i.e.
the UV or bare values of the couplings. Then we start to integrate the flow equations
numerically. However, we cannot allow arbitrary flows. As mentioned above we know
from experiments that there is a non-vanishing vacuum expectation value of 246 GeV.
Consequently, the UV parameters have to be chosen in a way that the system will be
situated within the spontaneously broken phase in the limit k → 0. Furthermore, ac-
cording to section 2.3, the top mass is determined by mtop = v h0. It is measured to be
173 GeV, hence we also have to make sure that h0 freezes out at 173

246 . Basically, there
are two possibilities: We could start in the symmetric regime, using equations (5.3.1).
Then we have to define a criterion that specifies when to switch to the broken phase. For
example in the simplest possible truncation n = 2 and m = 0, assuming that we start
with positive u1 and u2, the switching criterion would be that u1 becomes zero. From
that point on the system is described by the equations (5.3.2) and (5.3.3)3. The values
at the switching scale define the new initial values in the spontaneously broken phase.
For this kind of flow the UV value of u1 is adjusted so that we generate the requested
vacuum expectation value, while the correct IR top mass is ensured by the adjustment
of the UV value of h0. This process is called fine-tuning and is realised by two nested
bisections. The UV values of the other couplings are free parameters in our investigation.
Note that as long as the system is situated within the symmetric regime, κk has to be
set to zero in the (algebraic) flow equations of ηϕ,k and ηψ,k.
The second possibility is to start directly in the broken phase. The role of u1 is then
replaced by κk. Thus, at all scales, the flow is described by the equations (5.3.2) and
(5.3.3). The correct IR values of the vacuum expectation value and the top mass are
then ensured by the fine-tuning of the initial values of κk and h0. The fine-tuning is
again realised by nested bisections of these parameters and the UV values of the other
couplings remain as free parameters.
Now we can test different truncations n and m to see which couplings affect the Higgs
mass significantly. Furthermore, we are interested in how the actual numerical values of
the UV parameters affect the Higgs mass. Beside this, the cut-off Λ also plays an im-
portant role. For a fixed UV set-up, the Higgs mass will differ between different cut-offs.
The argumentation is now as following: From experiments we know the Higgs mass to
be 125 GeV. If we observed that the lower Higgs mass bound at a specific cut-off Λcrit is
higher than the measured Higgs mass, this would mean that the Standard Model is no
longer valid at this scale. However, since our toy model is just an approximation of the
Standard Model, the results of this thesis are rather of qualitative then of quantitative
value. Nevertheless, the idea described above clearly shows why it is interesting to find
out how the different couplings might shift the lower Higgs mass bound.

3In principle, the flow could switch between the two phases several times. However, in case of the UV
conditions considered in this thesis this has not been observed. Once the flow reached the broken
phase (or if it started in the broken phase) it never switched back to the symmetric phase.
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5.5 Results and discussion

5.5.1 A simple truncation

To understand the basic behaviour of the couplings let us first consider the simplest
truncation n = 2 and m = 0. Furthermore, we assume a four-dimensional spacetime, i.e.
d = 4 and dγ = 4. The flow equations in the symmetric case then read

∂tu1 = u1(ηϕ,k − 2)−
h0

2(ηψ,k − 5)

20π2
+

u2(ηϕ,k − 6)

64π2 (u1 + 1) 2

∂tu2 = 2u2(ηϕ,k + 2)− 4u2 +
1

5π2
h0

4(ηψ,k − 5)− 3

32π2

u2
2(ηϕ,k − 6)

(u1 + 1) 3

∂th0 =
h0

2
(ηϕ,k + 2) + h0(ηψ,k − 1)−

h0
3(ηϕ,k − 6)

96π2 (u1 + 1) 2
−

h0
3(ηψ,k − 5)

80π2 (u1 + 1)

ηψ,k =
h0

2
(
1− 1

5ηϕ,k
)

16π2 (u1 + 1) 2

ηϕ,k =
h0

2

4π2

(
1

2
(1− ηψ,k) +

1

4
(ηψ,k − 1) +

3

4

)
(5.5.1)

and in the spontaneously broken phase

∂tu2 = 2u2(ηϕ,k + 2)− 4u2 +
h0

4(ηψ,k − 5)

5 (2h0
2κk + 1) 3

−
3u2

2(ηϕ,k − 6)

32 (2u2κk + 1) 3

∂th0 =
h0

2
(ηϕ,k + 2) + h0(ηψ,k − 1)

−
h0

3(ηϕ,k − 6)

96π2 (2h0
2κk + 1) (2u2κk + 1) 2

−
h0

3(ηψ,k − 5)

80π2 (2h0
2κk + 1) 2 (2u2κk + 1)

ηψ,k =
h0

2
(
1− 1

5ηϕ,k
)

16π2 (2h0
2κk + 1) (2u2κk + 1) 2

ηϕ,k =
h0

6κ2
k(ηψ,k − 2)

4π2 (2h0
2κk + 1) 4

−
h0

2(ηψ,k − 4)

16π2 (2h0
2κk + 1) 4

− 3h0
4κk

4π2 (2h0
2κk + 1) 4

+
9u2

2κk
16π2 (2u2κk + 1) 4

∂tκk = −κk(ηϕ,k + 2)− 1

u2

(
h0

2
(
1− 1

5ηψ,k
)

4π2 (2h0
2κk + 1) 2

−
3u2

(
1− 1

6ηϕ,k
)

32π2 (2u2κk + 1) 2

)
. (5.5.2)

In this truncation only positive u2(Λ) are allowed, since the UV potential has to be
bounded from below. This criterion has also been chosen in several lattice simulations
that included ϕ4-type potentials. In [9] it is shown that considering the Higgs-Yukawa
model with Nf = 8 fermions coupling to the scalar field no instabilities of the effective
potential occur. [37], [38] extended this model and took the doublet structure of the
Higgs field into account, interacting with the top-bottom doublet. In [39] the effect of a
potential fourth quark generation has been investigated. All these works have in common
that the lower Higgs mass bounds were determined by u2 = 0.
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In our current simple truncation n = 2 andm = 0 we will also show that the lowest Higgs
masses are achieved in the case of u2 = 0. However, we will see later that by considering
higher truncations the Higgs masses can be further decreased.
Since we restrict ourselves to u2 ≥ 0 for now, we also have to start with positive u1(Λ).
Otherwise UΛ would already possess a minimum at ρ 6= 0 and the system would not be
situated within the symmetric phase. In our analysis we observed two basic facts about
the different types of couplings: The couplings ui push the system towards the symmetric
phase. If their UV values are chosen too large, we cannot reach the broken phase, no
matter which UV values of hj are chosen. Consequently, the IR value of the vacuum
expectation value decreases with increasing UV values of the ui, because the longer (in
terms of the RG time t) the system flows within the symmetric phase the shorter it
flows within the broken phase before the quantities freeze out. However, the vacuum
expectation value (or better its corresponding quantity κk) is built up in the broken
phase. Hence, if the system does not flow sufficiently long within the spontaneously
broken phase, we end up with vacuum expectation values smaller than the required one.
The behaviour of the hj is the exact opposite: The larger their UV values are chosen,
the faster the system is pushed towards the broken phase and hence the larger becomes
the IR value of the vacuum expectation value. If their UV values are chosen too small,
the system never reaches the spontaneously broken phase.
We tested a cut-off range from 104 to 108 (in units of GeV) and bare parameter values
u2(Λ) from zero to 100. According to the explanations above there will be a critical value
ucrit2 , where the system remains in the symmetric phase or at least where we no longer
can manage to obtain the correct IR physics. In this case, as described in section 5.4, we
already have to start in the broken phase, using κk and h0 for the fine-tuning procedure.
For the current truncation, the critical value is ucrit2 = 1 . . . 2, depending on the cut-off.
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5.5 Results and discussion

The results of these first investigations are shown in figure 5.1 and figure 5.2.
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Figure 5.1: Higgs mass in dependency on the cut-off for different fixed bare couplings u2
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Figure 5.2: Higgs mass in dependency on the bare coupling u2 at different fixed cut-offs

The interpolating lines are drawn just to guide the eye. We can see that for fixed u2(Λ)
the Higgs mass increases with the cut-off. At the same time, when fixing the cut-off,
the Higgs mass increases with u2(Λ) 4. Because our main interest lies in manipulating
the lower Higgs mass bound, we should therefore concentrate on lowering u2(Λ) as far as
possible in our future analysis. The qualitative shape of the plots above agree with the
results of [13], [14], [11]. From figure 5.1 we see that for large cut-offs, the actual Higgs
mass varies less and less with the actual choice of the bare coupling u2(Λ). At the same
time, figure 5.2 shows us that for fixed cut-offs, the Higgs mass seems to approach a state
of saturation. The larger the cut-off the earlier the Higgs mass becomes saturated.

4This is no surprise since the Higgs mass is proportional to the IR value of
√
u2, see equation (5.3.4).
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This kind of reminds us on the Landau pole: If the cut-off lies in the vicinity of the
Landau pole, an "infinite change" of the bare value of u2 only translates into a finite
change of its IR value [11]. As we mentioned before, we also observed that the lowest
Higgs masses are achieved in the case of u2(Λ) = 0. Furthermore, the results do not only
match qualitatively but also quantitatively. If we compare the lower Higgs mass bounds
(u2 = 0) at Λ = 104 and Λ = 108 with [14] we find

Table 5.1: Comparison of lower Higgs mass bounds in GeV

Λ = 104 Λ = 108

mmin
H (our result) 74.50 149.56
mmin
H ([14]) 73.66 147.52

deviation 1.23% 1.36%

The small deviations can for example be explained by the fact that the fine-tuning preci-
sion for the vacuum expectation value and the top mass were different. An indication for
this might be that the deviation at the higher cut-off is bigger, since more digits become
significant when performing the numerics in dimensionless quantities (at the end, the
dimensionless quantities have to be multiplied with powers of the cut-off).
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5.5 Results and discussion

5.5.2 Higher truncations

In this subsection we want to analyse the influence of higher truncations. Because the
system becomes increasingly complicated when more and more operators are taken into
account, we have to state one more criterion to distinguish between physical and non-
physical flows. When we considered higher truncations m and n, we observed that
the effective potential Uk develops additional (local) minima for some bare parameter
combinations, although it is still described by the symmetric equations, see figure 5.3.

0.5 1.0 1.5
ρ

-1.0

-0.5

0.0

0.5

1.0

100 x U[ρ]

Figure 5.3: An inconvenient choice of the start parameters can cause the appearance
of additional minima in the symmetric phase. Here we have m = 1 and n = 4 with
(u2(Λ), u3(Λ), u4(Λ)) = (0.10, 0.00, 0.00) and h1(Λ) = 8 at Λ = 108

There are two issues in such a case. The first is that our truncation approach relies on
the fact that we expand about the vacuum expectation value. If an additional (local)
minimum appears, we are no longer able to decide which minimum the system is situated
in and thus we do not know where to expand. This problem can be addressed by solving
the full flow of Uk(ρ), but this is beyond the scope of this thesis. The second issue is
even more crucial: Actually, we are not able to decide whether the additional minima
are just artefacts of our truncation or not. It might turn out that if we were able to solve
the full equation of the effective potential Uk, we could observe no additional minima at
all. Indeed, according to [11], the radius of convergence of our expansion is typically too
small to resolve additional minima. Hence, such bare parameter combinations cannot be
used for further argumentations.
Speaking of artefacts of our truncation we should mention another fact. In general we
want the effective potential to be bounded from below, which means that the highest
order coupling un should remain positive at all scales.
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However, it is enough to choose a positive UV value, because if the UV potential is
bounded from below, the effective potential will remain bounded from below at all scales.
We can see this by considering the flow equation of Uk (see first equation in (5.2.2)):
Up to the dimensional flow caused by introducing dimensionless quantities, the flow is
suppressed by the factors 1

ωu(ρ) and 1
1+2ρh2

k(ρ)
, which both tend to zero for ρ → ∞.

In other words, for sufficiently large ρ, Uk does not change significantly and thus the
property of being bounded from below is preserved. Hence, the leading order coupling
un becoming negative during the flow does not cause any problems, it is just an artefact
of our truncation as well.
To finally analyse the influence of the different couplings we tested different combinations
of m and n and computed the Higgs mass. The UV parameters were all set to zero,
ui(Λ) = 0 and hj(Λ) = 0. The cut-off was chosen to be 104 and 108. The corresponding
results are shown in table 5.2 and table 5.3.

Table 5.2: Higgs mass in GeV for different truncations at Λ = 104

n
2 3 4 5 6

m

0 74.50 71.93 72.17 72.15 72.15
1 74.09 71.56 71.80 71.78 71.78
2 74.12 71.60 71.84 71.81 71.82
3 74.11 71.60 71.83 71.81 71.81
4 74.11 71.60 71.83 71.81 71.81
5 74.11 71.60 71.83 71.81 71.81

Table 5.3: Higgs mass in GeV for different truncations at Λ = 108

n
2 3 4 5 6

m

0 149.56 147.69 147.70 147.76 147.68
1 148.18 146.41 146.43 146.47 146.37
2 148.27 146.40 146.44 146.53 146.39
3 148.21 146.41 146.43 146.43 146.38
4 148.22 146.35 146.48 146.39 146.41
5 148.25 146.33 146.42 146.42 146.43

According to this it will be sufficient to choosem = 1 and n = 4 as our highest truncation.
We will use this combination for our further analysis.
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5.5 Results and discussion

5.5.3 Lower Higgs mass bound induced by u2

In this subsection we try to lower the Higgs mass bound by varying u2(Λ), while h1(Λ) = 0
is kept fixed. The difference to subsection 5.5.1 is that due to our new truncation we
are now free to allow even negative bare values of u2, which are stabilized by the new
higher order bosonic couplings u3 and u4. In other words, we investigate the influence of
deviations of the effective potential from the ϕ4-type bare potential. According to what
we have observed so far, this should yield smaller Higgs masses than the ones achieved
in the mentioned subsection. To make negative u2 possible, we have to match some con-
ditions. For example, we have to make sure that u2 is positive when reaching the broken
phase. Otherwise, if u2 remains negative, it would yield an imaginary Higgs mass (since
the vacuum expectation value must be positive). On the other hand, if it was negative
but became positive again, it would mean that u2 somewhere becomes zero, leading to a
singularity in our equations according to equation (5.3.3). Both cases imply that we do
not reproduce the correct IR physics and thus they are non-physical. The reason for this
behaviour is of course the fact that starting with negative u2 in the spontaneously broken
phase corresponds to expanding about a maximum which contradicts our approach to
always expand about the minimum of the effective potential. Since we start with positive
u4 (UV potential has to be bounded from below) the UV value of u3 needs to be positive
as well, because otherwise the UV potential would already possess additional minima.
To make sure that no additional minima appear during the flow, u3 has to change its
sign before getting to the switching scale determined by u1 becoming zero. These effects
lead to the fact that u2 cannot be chosen arbitrarily low.
Taking this into account, we can generate flows that reproduce the correct IR physics.
The results for the Higgs masses are shown in figure 5.4.
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Figure 5.4: Higgs mass for negative bare couplings u2(Λ)

We see that indeed a negative bare coupling u2(Λ) lowers the Higgs mass significantly.
The effect becomes less strong when increasing the cut-off. This behaviour has already
been observed in [14], [11]. The lowest Higgs masses we achieved are listed in table 5.4.

Table 5.4: Lowest achieved Higgs mass at different cut-offs
Λ = 104 Λ = 105 Λ = 106 Λ = 107 Λ = 108

mmin
H 29.49 70.44 92.50 114.74 132.22
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To compare these results qualitatively with the FRG studies in [14], [11] we have to
repeat these calculations for the case m = 0, since the authors did not include the flow of
the h1 operator into their equations. For a n = 3 truncation and a bare value of u3 = 3
we find for example

Table 5.5: Comparison of Higgs masses in GeV for negative bare values of u2
Λ = 104 Λ = 108

u2 = −0.05 u2 = −0.08 u2 = −0.05 u2 = −0.08

mH(our result) 61.29 45.73 144.91 141.69
mH([14]) 60.83 45.67 142.82 139.48

∆mH/m0
H (our result) 17.73% 37.92% 3.11% 5.26%

∆mH/m0
H ([14]) 17.42% 38.00% 3.19% 5.45%

Here, ∆mH
m0
H

=
m0
H−mH
m0
H

is the relative change of the Higgs mass normalized with the

former lower Higgs mass bound m0
H derived from the ϕ4-type bare potentials (see table

5.1). This is the interesting quantity because it characterizes how far we can shift down
the Higgs mass when considering deviations from the quartic UV potential. Our results
agree with those of [14].

5.5.4 Lower Higgs mass bound induced by h1

In the case of h1 we are a priori completely free to assume any bare values, positive or
negative. For a fixed cut-off Λ = 105 and fixed (u2(Λ), u3(Λ), u4(Λ)) = (0.50, 0.00, 0.00)
we thus tested a first set of bare values. The results are shown in table 5.6.

Table 5.6: Higgs mass for different bare parameters h1
h1 = 0 h1 = −5 h1 = 5 h1 = −10 h1 = 10

mH 175.32 194.65 152.31 211.38 123.47

Negative h1 seem to raise the Higgs mass whereas positive h1 lower it. Since we want to
find a lower bound, the latter case is the interesting one. Before we move on, however,
let us check whether different relative signs between the hj have an interesting effect. We
therefore temporarily set m = 2 and use different combinations of h1(Λ) and h2(Λ).
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5.5 Results and discussion

The results are listed in table 5.75.

Table 5.7: Higgs mass for different combinations of h1 and h2

(h1,h2)
(0,0) (5,0) (5,-5) (-5,5) (-5,-5) (5,5)

mH 175.34 152.34 152.44 194.66 194.79 152.24

There are no exceptional effects observable. In the case of fixed h1, positive h2 still lower
the Higgs mass and negative h2 increase it. The same holds the other way around. This
is another argument for studying only truncations with m = 1. The next step in our
analysis is to investigate in which ways the Higgs mass behaves if we steadily increase h1.
At the same time, different UV set-ups for the ui should be considered. As earlier, we
restrict ourselves to positive values of u2 at the beginning. To find out which set-ups of
u3 and u4 yield the smallest Higgs masses, we tested some combinations for fixed cut-off
and fixed u2. For Λ = 105 and u2 = 0.3 table 5.8 shows the outcome.

Table 5.8: Higgs mass for different combinations of u3 and u4
h1

0 4 8

(u3,u4)

(0.0,0.0) 150.36 127.01 94.69
(0.5,0.5) 150.89 127.68 95.67
(1.0,0.0) 151.41 128.34 96.62
(0.0,1.0) 150.36 127.01 94.70
(1.0,0.2) 151.41 128.35 96.62
(0.2,1.0) 150.58 127.28 95.09
(5.0,5.0) 155.54 133.53 103.94

The lowest Higgs masses are achieved when the UV values of u3 and u4 are set to zero
or in other words when considering a quartic UV potential. In our further analysis we
therefore keep them zero and consider different UV values u2 ≥ 0. For the cut-offs
Λ = 104 and Λ = 108, the outcome of this analysis is shown in figure 5.5.
The influence of h1 on the Higgs mass is significant. However, we observed an important
fact. Considering a fixed UV set-up of the ui, h1 cannot be arbitrarily increased. There
exists a critical value from which on the effective potential develops additional minima.
From figure 5.5 we see that these critical values are h1 = 4, 10, 14 for u2 = 0.1, 0.3, 0.5.
Furthermore, u2 cannot be chosen arbitrarily low.

5Note that even for a vanishing bare value of h2 the Higgs masses already differ from those of the m = 1
truncation. However, it changes by less than 0.1%.
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Figure 5.5: h1 dependency of the Higgs mass

If it becomes too small, the fermionic fluctuations heavily dominate, which yields either
too large top masses or u2 becomes negative in the spontaneously broken phase. This
can be seen from the flow equation of u2 in the symmetric phase6:

∂tu2 =
32h0

(
h0

3 − h1

)
(u1 + 1) 3

(
h0

4 + 80π2h0
2 − 6400π4 (u1 + 1) 2

)
160π2 (u1 + 1) 3 (1280π4 (u1 + 1) 2 − h0

4)

+
1600π2h0

2u2 (u1 + 1) 3(64π2(1 + u1)2 − h2
0)

160π2 (u1 + 1) 3 (1280π4 (u1 + 1) 2 − h0
4)

+
15u2

2
(
−320π2h0

2 (u1 + 1) 2 − h0
4 + 7680π4 (u1 + 1) 2

)
160π2 (u1 + 1) 3 (1280π4 (u1 + 1) 2 − h0

4)

In the symmetric phase u1 stays positive (its zero determines the switching scale to the
broken phase) while h0 remains positive and smaller than one. Hence the denominator
in the equation above is positive and the h1 contribution comes with a positive sign as
well as with a large coefficient in comparison to the other terms. Hence, it is lowering u2

when integrating out he flow equation (t ≤ 0).
If the effects mentioned above occur, the correct IR physics cannot be reproduced. In
order to make use of the fact that h1 lowers the Higgs mass we thus have to choose u2

sufficiently large, which however increases the Higgs mass again, according to subsection
5.5.3. It is of relevance to find out which effect dominates.

6For simplicity, we consider the n = 2 and m = 1 truncation.
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Figure 5.6 compares the lowest Higgs masses achieved by the variation of h1 (and keeping
u2 ≥ 0) as well as those achieved by variation of u2.
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Figure 5.6: Comparison between h1-induced and u2-induced lower Higgs mass bound

We find that the answer to the question above is that both effects keep the balance. In
the end, the lowest Higgs masses obtained by varying h1 (while keeping u2 ≥ 0) are of
the same magnitude as the ones obtained by varying u2. Most of the time the latter case
even yields the smaller Higgs masses.
Similar to the investigations on the u2-induced mass bounds we therefore want to allow
for negative bare couplings u2. This implies that we have to choose non-zero bare values
of u3 and/or u4 in order to establish a bounded from below UV effective potential.
According to what has been observed so far it is also clear that we will not be able to
extend the bare value of h1 as far as when considering bare potentials with u2 ≥ 0.
Indeed, we were not able to increase h1 further than 3 . . . 4, as shown in figure 5.7 for the
case of Λ = 105.
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Figure 5.7: h1 dependency of the Higgs mass for non-quartic UV potentials

However, we find that considering these deviations from the quartic UV potential allows
us to further decrease the Higgs mass, although we have to restrict ourselves to smaller
UV values of h1. Figure 5.8 compares the corresponding new lower Higgs mass bounds
with the former result.
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Figure 5.8: Comparison between u2-induced and h1-induced lower Higgs mass bound,
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u2

62



5.5 Results and discussion

Hence, we state that it is indeed possible to further decrease the lower Higgs mass bound
by considering higher order Yukawa interactions hjϕ

2j+1ψ̄ψ, j > 0, since we managed
to beat the bounds we obtained by only considering deviations from the quartic UV
potential while taking only the standard Yukawa coupling into account. Table 5.9 shows
the relative change of the Higgs mass, normalized with the former u2 induced lower
bound.

Table 5.9: h1 induced lower bounds with generalized UV potentials
Λ = 104 Λ = 105 Λ = 106 Λ = 108 Λ = 108

mmin
H 20.96 62.56 91.31 107.48 128.20

∆mH/m0
H 28.93% 11.19% 1.29% 6.33% 3.04%

The fact that the value for Λ = 106 is a bit odd is most likely a numerical issue rather
than a physical effect.
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6 Extending the toy model

In this chapter we want to extend our toy model. Hence, we return to dimensionful and
non-renormalized quantities. Our goal is to take the SU(NC) structure of the Standard
Model into account. We focus on the strong interaction part of the Standard Model
unlike [40] where the flow of the non-abelian part of the electroweak sector has been
studied. For a phenomenological investigation of lower Higgs mass bounds in a model
similar to our approach see [41]. In [32] two-flavour QCD at finite temperature and quark
density has been considered, also including a generalized Yukawa interaction.
We start with adding a Yang-Mills term to our effective average action,

ΓYM =

∫
x

1

2
Tr (FµνF

µν) , F Iµν = ∂µA
I
ν − ∂νAIµ + gf IJKAJµA

K
ν .

which requires a gauge fixing term, as usual. We choose

Γgf =

∫
x

ZA,k
ξ

Tr
(
(∂µA

µ)2
)
.

In this chapter we will use Roman small letters for the colour indices (a, b . . . = 1, . . . , NC)
and Roman capital letters to label the generators TI of the Lie algebra su(NC), i.e.
I, J, . . . = 1, . . . , NC

2 − 1. The generators shall be chosen such that Tr(TITJ) = 1
2δIJ .

The Yang-Mills term and the gauge fixing term then read

Γgf =

∫
x

ZA,k
2ξ

∂µA
µ
K∂νA

ν
K , ΓYM =

∫
x

ZA,k
4

F IµνF
µν
I

Furthermore, this yields a ghost term

Γghost = −
∫
x
Zc,kc

∗
a∂µD

µ
abcb,

with the covariant derivative

Dµ
ab = δab∂

µ − igAµI [TI ]ab,

where g is the SU(NC) coupling. Our new ansatz for the effective action eventually reads

Γk =

∫
x
Uk +

∫
p

Zϕ,k
2
p2ϕ(p)ϕ(−p)−

∫
p
Zψ,kψ̄

a(p)/pψ
a(p) +

∫
x

ZA,k
4

F IµνF
µν
I +

∫
p
Zc,kp

2c∗a(p)ca(p)

+

∫
p

ZA,k
2ξ

pµpνA
µ
I (p)AνI (−p) + i

∫
x
Hkψ̄

a(x)ψa(x) +

∫
p,q
gZψ,kψ̄

a(p)γµAIµ(p− q)[TI ]abψb(q)

+

∫
p,q
gZc,kc

∗
a(p)(p

µ − qµ)AIµ(p− q)[TI ]abcb(q). (6.0.1)

Note that the ghost fields are scalar Grassmann valued fields.
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6.1 Extended fluctuation matrix

6.1 Extended fluctuation matrix

Although we introduced more fields like the gauge field and the ghost fields, the derivation
of the flow equation is completely the same as in subsection 2.2.3. The Wetterich equation
is still valid, the only thing that changes is that now the super trace has to be taken over
the colour indices, the generator indices and the spacetime indices as well. Because the
ghost fields are Grassmann valued fields, the contribution from ghost sectors come with a
minus sign, just as in the case of the fermion fields. We introduce the new (macroscopic)
field vector

φ(p) =



ϕ(p)
ψa(p)
ψ̄Ta (−p)
AIµ(p)

ca(p)
c∗a(−p)

 ,

which will make the fluctuation matrix a 6× 6 matrix with respect to the field indices

Γ
(2)
k (p, q) =



−→
δ

δϕ(−p)−→
δ

δψTa (−p)−→
δ

δψ̄a(p)−→
δ

δAIµ(−p)
−→
δ

δca(−p)−→
δ

δc∗a(p)


Γk[φ]

( ←−
δ

δϕ(q)

←−
δ

δψ(q)

←−
δ

δψ̄T (−q)

←−
δ

δAJν (q)

←−
δ

δcb(q)

←−
δ

δc∗b (−q)

)
.

We will focus on the additional terms in the flow equations of the quantities Uk, Hk, Zψ,k
and Zϕ,k. Because their corresponding projection rules imply setting the gauge field to
zero it is sufficient to take only the quadratic part of the Yang-Mills term into account.
In momentum space it reads∫

p

ZA,k
2

(p2δµν − pµpν)AµI (p)AνI (−p).
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6.1 Extended fluctuation matrix

Together with the gauge fixing term this yields∫
p

ZA,k
2

p2

(
δµν −

pµpν
p2

+
1

ξ

pµpν
p2

)
AµI (p)AνI (−p)

=:

∫
p

ZA,k
2

p2

(
πTµν +

1

ξ
πLµν

)
AµI (p)AνI (−p),

where we introduced the transversal projector πTµν = δµν − pµpν
p2 and the longitudinal

projector πLµν =
pµpν
p2 . They satisfy the relations

πTµν + πLµν = δµν

πTµνπ
νσ
L = 0

πTµνπ
νσ
T = πTµ

σ

πLµνπ
νσ
L = πLµ

σ.

(6.1.1)

The structure of the new regulator is given by

Rk(p, q) = δp,q



Rϕ(p) 0 0 0 0 0
0 0 −RTψ(−p) 0 0 0

0 Rψ(p) 0 0 0 0
0 0 0 RA(p) 0 0
0 0 0 0 0 −Rc(−p)
0 0 0 0 Rc(p) 0

 ,

where we choose the following convenient form of the regulators

Rϕ = Zϕ,kp
2rϕ,k

Rψ = −δabZψ,k/prψ,k

RA = δIJZA,kp
2

(
rTA,kπ

T
µν +

1

ξ
rLA,kπ

L
µν

)
Rc = δabZc,kp

2rc,k.

This leads to the familiar abbreviations

Pϕ = p2(1 + rϕ,k)

Pψ = p2(1 + rψ,k)
2

P
T/L
A = p2

(
1 + r

T/L
k,A

)
Pc = p2(1 + rc,k)

and

ξϕ(q) = Zϕ,kPϕ(q) + U ′′k (ϕ2), ξψ(q) = Z2
ψ,kPψ(q) +H2

k(ϕ).
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6.1 Extended fluctuation matrix

Finally, we can write down Γ
(2)
k + Rk for our extended toy model. We will label the

entries of the matrix with the fields, so for example the (2, 4) entry will be denoted by
(ψ,A). Then the non-vanishing entries (the gauge field and the ghost fields have already
been set to zero, as mentioned above) read

(ϕ,ϕ) : Zϕ,k Pϕ δp,q +
∫
x U
′′
k (ϕ2) e−i(p−q)x + i

∫
xH

′′
k (ϕ) e−i(p−q)xψ̄l(x)ψl(x)

(ϕ,ψ) : i
∫
xH

′
k(ϕ)ψ̄b(x)e−i(p−q)x

(ϕ, ψ̄) : −i
∫
xH

′
k(ϕ)ψT,b(x)e−i(p−q)x

(ψ,ϕ) : −i
∫
xH

′
k(ϕ)ψ̄T,a(x)e−i(p−q)x

(ψ̄, ϕ) : i
∫
xH

′
k(ϕ)ψa(x)e−i(p−q)x

(ψ, ψ̄) : δabδp, q(−Zψ,k(1 + rψ,k)/p
T )− iδab

∫
xHke

−i(p−q)x

(ψ̄, ψ) : δabδp,qZψ,k(1 + rψ,k)/p+ iδab
∫
xHke

−i(p−q)x

(ψ,A) : −gZψ,kγTν ψ̄T,e(q − p)[TJ ]ea

(ψ̄, A) : gZψ,k[TJ ]aeγνψ
e(p− q)

(A,ψ) : gZψ,kψ̄
e(q − p)γµ[TI ]eb

(A, ψ̄) : −gZψ,k[TI ]beψT,e(p− q)γTµ
(A,A) : δIJδp,qZA,k

(
P TAπ

T
µν + 1

ξP
L
Aπ

L
µν

)
(c, c∗) : −δabZc,kPc
(c∗, c) : δabZc,kPc. (6.1.2)

The first six terms are the same as in our old truncation (4.1.2), up to the new colour
indices.
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6.2 Extended flow equations

6.2 Extended flow equations

6.2.1 Extended flow of the generalized Yukawa coupling

The modified projection rule reads

δ0∂tHk(ϕ)1dγ =
1

iNC

−→
δ

δψ̄f
1

2
STr

[
∂tRk

Γ
(2)
k +Rk

] ←−
δ

δψf

∣∣∣∣∣
ϕ = const
ψ = ψ̄ = 0
Aµ = 0

c = c∗ = 0

. (6.2.1)

In principle, we can perform exactly the same steps as in section 4.2. First, we can set
all fields to constants again, which yields factors δp,q as earlier. Then we decompose

Γ
(2)
k +Rk =

(
Γ

(2)
k,A,ϕ,c +Rk

)
+ ∆Γ

(2)
k ,

so that ∆Γ
(2)
k contains all fermionic fluctuations, i.e. the "old" entries (ϕ,ψ), (ϕ, ψ̄),

(ψ,ϕ), (ψ̄, ϕ) and the Yukawa part of the (ϕ,ϕ) entry, as well as the new terms (ψ,A),
(ψ̄, A), (A,ψ) and (A, ψ̄). The remaining matrix Γ

(2)
k,A,ϕ,c+Rk is block-diagonal. Accord-

ing to section 4.2, the rewritten flow equation reads

δ0∂tHk(ϕ)1dγ =
1

iNC

−→
δ

δψ̄f
1

2
STr

∂̃t log

1 +
∆Γ

(2)
k

Γ
(2)
k,ϕ,A,c +Rk

 ←−δ
δψf

∣∣∣∣∣
ϕ = const
ψ = ψ̄ = 0
Aµ = 0

c = c∗ = 0

. (6.2.2)

Hence, we have to compute the inverse of Γ
(2)
k,A,ϕ,c + Rk. As mentioned before, it is

block-diagonal, Γ
(2)
k,A,ϕ,c + Rk = A ⊕ B. The matrix A contains the same entries as in

our former truncation up to the new colour indices (see (4.2.6)). However, as we can see
from (6.1.2), these entries are diagonal in the colour indices. Thus, we can immediately
invert it, using the former results up to a factor δab. The inverse of B can be computed
easily as well, because the entries (c, c∗) and (c∗, c) are just scalars (and diagonal in the
colour indices) and to invert the (A,A) element we can make use of the properties (6.1.1)
of the projectors. The inverse of B is then given by

δp,q ×


δIJ

1
ZA,k

(
πTµν
PTA

+ ξ
πLµν
PLA

)
0 0

0 0 δab
Zc,kPc

0 − δab
Zc,kPc

0
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6.2 Extended flow equations

and we eventually have
(

Γ
(2)
k,A,ϕ,c +Rk

)−1
= A−1 ⊕ B−1. Consequently, the product

∆Γ
(2)
k

Γ
(2)
k,ϕ,A,c+Rk

has the following non-vanishing entries:

(ϕ,ϕ) : iδp,qH
′′
k ψ̄

lψl 1
ξϕ

(ϕ,ψ) : iδp,qH
′
kψ̄

b 1
ξϕ

(ϕ, ψ̄) : −iδp,qH ′kψT,b
1
ξϕ

(ψ,ϕ) : −iδp,qH ′k
Zψ,k(1+rψ,k)/p+iHk

ξψ
ψa

(ψ̄, ϕ) : iδp,qH
′
k
Zψ,k(1+rψ,k)/pT−iHk

ξψ
ψ̄T,a

(ψ,A) : −δp,qgZψ,k
Zψ,k(1+rψ,k)/p+iHk

ξψ
[TJ ]aeγνψ

e

(ψ̄, A) : −δp,qgZψ,k
−Zψ,k(1+rψ,k)/pT+iHk

ξψ
γTν ψ̄

T,e[TJ ]ea

(A,ψ) : δp,q
gZψ,k
ZA,k

(
πTµλ
PTA

+ ξ
πLµλ
PLA

)
ψ̄eγλ[TI ]eb

(A, ψ̄) : −δp,q
gZψ,k
ZA,k

(
πTµλ
PTA

+ ξ
πLµλ
PLA

)
[TI ]beψ

T,eγT,λ. (6.2.3)

Now it is time to perform the log-expansion again. From (6.2.3) we see that concerning
the first order, only the (ϕ,ϕ) entry is relevant. Indeed, it yields exactly the same
contribution as in our former truncation. The same way, the old contributions coming
from the second order are reproduced. However, there appear some new terms in the

entries (ψ,ψ), (ψ̄, ψ̄) and (A,A) of
(

∆Γ
(2)
k

Γ
(2)
k,ϕ,A,c+Rk

)2

. They read

(ψ,ψ) : −δp,q
g2Z2

ψ,k

ZA,k

Zψ,k(1+rψ,k)/p+iHk
ξψ

(
πTσλ
PTA

+ ξ
πLσλ
PLA

)
[TK ]aeγ

λψeψ̄fγσ[TK ]fb

(ψ̄, ψ̄) : δp,q
g2Z2

ψ,k

ZA,k

−Zψ,k(1+rψ,k)/pT+iHk
ξψ

(
πTσλ
PTA

+ ξ
πLσλ
PLA

)
γT,λψ̄T,f [TK ]fa[TK ]beψ

T,eγT,σ

(A,A) : −δp,q
g2Z2

ψ,k

ZA,k

(
πTµσ
PTA

+ ξ
πLµσ
PLA

)
ψ̄eγσ[TI ]ed

Zψ,k(1+rψ,k)/p+iHk
ξψ

[TJ ]dfγ
νψf

+
g2Z2

ψ,k

ZA,k

(
πTµσ
PTA

+ ξ
πLµσ
PLA

)
[TI ]deψ

T,eγT,σ
−Zψ,k(1+rψ,k)/pT+iHk

ξψ
γT,νψ̄T,f [TJ ]fd.

(6.2.4)

The next step is to analyse the super trace. We start with the analysis of the Dirac
structure. We explain the calculations in detail for the fermionic sectors, the calculations
for the (A,A) entry are similar.
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6.2 Extended flow equations

The first observation is that we can neglect the /p terms since the trace over the product
of an odd number of γ-matrices always vanishes. Because taking the super trace also
implies setting a = b and summing over a, the coefficients of (ψ̄, ψ̄) and (ψ,ψ) are the
same and we are left with

Trγ(−γλψeψ̄fγσ + γT,λψ̄T,fψT,eγT,σ) = Trγ(−γλψeψ̄fγσ − γσψeψ̄fγλ)

= ψ̄fγσγλψe + ψ̄fγλγσψe.

Note that both the terms are contracted with the projectors πλσ, which are symmetric
in the spacetime indices. Hence, both terms together yield the contribution

2 ψ̄fγσγλψe.

By performing the field derivatives of the projection rule (which yield a factor δef ) and
using

πλσ(γσγλ) =
1

2
πλσ(γσγλ + γλγσ) = πλσδ

σλ
1dγ

we finally get1

2iδp,q
g2Z2

ψ,k

ZA,k

Hk

ξψ

(
πTλ

λ

P TA
+ ξ

πLλ
λ

PLA

)
[TI ]ae[TJ ]ea.

Due to the super trace we also have to set I = J , which enables us to simplify the
expression above once more

[TI ]ae[TI ]ea = Tr(TITI) =
1

2
δII =

1

2
(NC

2 − 1).

Furthermore, we can use

πTλ
λ = (d− 1)

πLλ
λ = 1.

After taking the trace over the momentum indices and collecting all missing pre-factors
from the Wetterich equation, the projection rule and the log-expansion as well as a factor
(−1), since we operate in fermionic sectors, we finally end up with2

1

4
δ0Hk

NC
2 − 1

NC

g2Z2
ψ,k

ZA,k
∂̃t

∫
p

1

ξψ

(
d− 1

P TA
+ ξ

1

PLA

)
. (6.2.5)

Similar calculations for the (A,A) entry yield exactly the same term.
The factor δ0 cancels with the one on the left hand side of the flow equation as always.

1The 1dγ can be skipped, because it also appears on the left hand side of the flow equation.
2Note that in this chapter, the modified scale derivative ∂̃t =

∑
i

∫
x
Z−1
i,k ∂t(Zi,kri(x)) δ

δri(x)
includes

terms i = ϕ,ψ,AT , AL, c.
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6.2 Extended flow equations

Hence, the additional contribution to the flow equation of Hk reads

1

2
Hk

NC
2 − 1

NC

g2Z2
ψ,k

ZA,k
∂̃t

∫
p

1

ξψ

(
d− 1

P TA
+ ξ

1

PLA

)
(6.2.6)

and in terms of the threshold functions

−2g2Z−1
A,kHk

NC
2 − 1

NC
vdk

d−4
{

(d− 1) l
(FB)d
1,1

[
k−2Z−2

ψ,kH
2
k , 0; ηψ, η

T
A

]
+ ξ l

(FB)d
1,1

[
k−2Z−2

ψ,kH
2
k , 0; ηψ, η

L
A

]}
. (6.2.7)

6.2.2 Extended flow of the effective potential

The projection rule reads

δ0∂tUk(ϕ) =
1

2
STr

[
∂tRk

Γ
(2)
k +Rk

] ∣∣∣∣∣
ϕ = ϕ0 = const
ψ = ψ̄ = 0
Aµ = 0

c = c∗ = 0

. (6.2.8)

Due to the fact that except ϕ all fields are set to zero, the new fluctuation terms disappear.
Hence, it is clear that no additional terms emerge, but just like in case of the Yukawa
coupling, the former terms are reproduced. However, there will be two differences. The
first is the additional colour structure in the fermionic sector. Although it is diagonal
in the colour indices (see (ψ̄, ψ) and (ψ, ψ̄) entries in (6.1.2)), we will get an additional
factor NC when taking the super trace 3. This holds for all former terms with a dγ in
front. The second difference is the new structure of the regulator term Rk. It will lead to
additional terms in the (A,A), (c, c∗) and (c∗, c) entries of ∂tRk

Γ
(2)
k +Rk

. The corresponding

contributions to the flow equation of Uk read

1

2
(NC

2 − 1)

∫
p
p2

(
(d− 1)

∂t(ZA,kr
T
A,k)

ZA,kP
T
A

+ ξ
∂t(ZA,kr

L
A,k)

ZA,kP
L
A

)
and

NC

∫
p
p2∂t(Zc,krc,k)

Zc,kPc
.

However, we see that both contributions are independent of ϕ. Hence, they only result in
a scale dependent shift of the effective potential (and thus contribute to the cosmological
constant, see chapter 3). If we were interested in an analysis as performed in chapter 5,
we could neglect these terms. Then the flow equation reads

∂tUk(ϕ) = 2vdk
dld0

[
Z−1
ϕ,kk

−2U ′′k (ϕ); ηϕ

]
− 2dγNCvdk

dl
(F )d
0

[
Z−2
ψ,kk

−2H2
k ; ηψ

]
. (6.2.9)

3In the case of the Yukawa coupling it was cancelled due to the modified projection rule.
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6.2 Extended flow equations

6.2.3 Extended flow of the anomalous dimensions

We focus only on the anomalous dimensions of ϕ and ψ, respectively ψ̄.
Let us start with Zϕ,k. The projection rule reads

δ0Zϕ,k =
1

2d
ηρσ∂qρ∂qσ

δ

δσ(q)

δ

δσ(p′)
Γk

∣∣∣∣∣
σ = 0

ψ = ψ̄ = 0
Aµ = 0

c = c∗ = 0
p′ = −q

p′ = −q = 0

. (6.2.10)

We immediately see that all new fluctuation terms that appeared in the extended fluc-
tuation matrix (6.1.2) will vanish again, since we set the fermionic fields to zero. In
contrast to the case of the effective potential however, we have to apply the trick involv-
ing the rewriting of the super trace and using the log-expansion. It turns out that as a
consequence even the entries (A,A), (c, c∗) and (c∗, c) will yield no additional terms so
that we obtain the same result as in our former truncation. The only thing we have to
be aware of is the colour structure of the fermionic sector again, which simply yields a
factor NC in front of former terms that contained a factor dγ . Thus, the flow equation
reads

∂tZϕ,k =− 4

d
vdk

d−6
(
U

(3)
k

)2
Z−2
ϕ,km

d
2,2

[
Z−1
ϕ,kk

−2U ′′k (vk), Z
−1
ϕ,kk

−2U ′′k (vk); ηϕ

]
− 8

d
dγNCvdk

d−4H ′2k (vk)Z
−2
ψ,km

(F )d
4

[
Z−2
ψ,kk

−2H2
k(vk); ηϕ

]
+

8

d
dγNCvdk

d−6H ′2k (vk)H
2
k(vk)Z

−4
ψ,km

(F )d
2

[
Z−2
ψ,kk

−2H2
k(vk); ηψ

]
. (6.2.11)

The projection rule for Zψ,k is given by

δ0Zψ,k = − 1

ddγ

1

NC
Trγ γ

µ∂p′µ

−→
δ

δψ̄l(p′)
Γk

←−
δ

δψl(q)

∣∣∣∣∣
σ = 0

ψ = ψ̄ = 0
Aµ = 0

c = c∗ = 0
q = p′

q = p′ = 0

. (6.2.12)

It is clear that in this case we have to work a little more, because we cannot set the
fermionic fields to zero from the beginning. The calculations are similar to those in the
case of Hk. We perform the decomposition of Γk + Rk as well as the rewriting of the
super trace. However, we have to take into consideration that the fermionic fields carry
momentum.
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6.2 Extended flow equations

The usual calculation of ∆Γ
(2)
k

Γ
(2)
k,A,φ,c+Rk

and its square shows that all former terms of the flow

equation are reproduced, but there appear new terms in the (A,A), (ψ,ψ) and (ψ̄, ψ̄)

entry of
(

∆Γ
(2)
k

Γ
(2)
k,A,φ,c+Rk

)2

. Introducing the abbreviations4

Kµσ(q) =
πTµσ(q)

P TA (q)
+ ξ

πLµσ(q)

PLA (q)

R(q) =
Zψ,k(1 + rψ,k(q))/q + iHk

ξψ(q)

R̃(q) =
−Zψ,k(1 + rψ,k(q))/q

T + iHk

ξψ(q)

they read

(ψ,ψ) : −g2Z2
ψ,k

ZA,k

∫
p,sR(p)[TK ]aeγλψ

e(p− s)Kλσ(s)ψ̄f (p− s)γσ[TK ]fb

(ψ̄, ψ̄) :
g2Z2

ψ,k

ZA,k

∫
p,s R̃(p)Kλσ(s)γTλ ψ̄

T,f (s− p)[TK ]fa[TK ]beψ
T,e(s− p)γTσ

(A,A) : −g2Z2
ψ,k

ZA,k

∫
p,sK

µλ(p)ψ̄e(s− p)γλ[TI ]edR(s)[TJ ]dfγνψ
f (s− p)

+
g2Z2

ψ,k

ZA,k

∫
p,sK

µλ(p)[TI ]deψ
T,e(p− s)γTλ R̃(s)γTν ψ̄

T,f (p− s)[TJ ]fd,

(6.2.13)

where we already set p = q and integrated with respect to p, due to the super trace. We
are still left with two momentum integrals, because the fermionic fields carry momentum

and thus ∆Γ
(2)
k

Γ
(2)
k,A,φ,c+Rk

is not diagonal in the momentum indices. Therefore, we have

∫
p

 ∆Γ
(2)
k

Γ
(2)
k,A,φ,c +Rk

2

(p, p) =

∫
p,s

 ∆Γ
(2)
k

Γ
(2)
k,A,φ,c +Rk

 (p, s)

 ∆Γ
(2)
k

Γ
(2)
k,A,φ,c +Rk

 (s, p),

which corresponds to the two momentum integrals appearing in equation (6.2.13). The
next step is to perform the trace over the remaining index structures. We will explain
the calculations in detail for the fermionic contributions, the calculations for the (A,A)
entry are similar.

4Note that R(q) and R̃(q) are matrix-valued.
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6.2 Extended flow equations

Let us start with the Dirac trace. In the (ψ,ψ) entry we have

Trγ(−R(p)γλψ
e(p− s)ψ̄f (p− s)γσ) = Trγ(ψ̄f (p− s)γσR(p)γλψ

e(p− s))
= ψ̄f (p− s)γσR(p)γλψ

e(p− s).

Performing the field derivatives
−→
δ

δψ̄l(p′)
and

←−
δ

δψl(q)
creates factors δef , δp−s,p′ and δp−s,q.

Concerning the (ψ̄, ψ̄) entry we obtain

Trγ(R̃(p)γTλ ψ̄
T,f (s− p)ψT,e(s− p)γTσ ) = −Trγ(γσψ

e(s− p)ψ̄f (s− p)γλR̃T (p))

= Trγ(ψ̄f (s− p)γλR̃T (p)γσψ
e(s− p))

= ψ̄f (s− p)γλR̃T (p)γσψ
e(s− p).

In this case the field derivatives create factors δef , δs−p,p′ and δs−p,q. By setting a = b due
to the super trace and using the δef we obtain Tr(TITI) = 1

2(NC
2 − 1) in front of both

terms, just like in case of Hk. Carrying out the s-integration enables us to summarize
both terms, which yields

1

2
δp′,q

g2Z2
ψ,k

ZA,k
(NC

2 − 1)

∫
p

(
Kλσ(p− p′)γσR(p)γλ +Kλσ(p+ p′)γλR̃

T (p)γσ

)
.

According to the projection rule we have to set p′ = q, which yields a factor δ0. The last
part of the projection rule reads Trγ γ

ν∂p′ν . Hence, the iHk terms of R(q) and R̃T (q)
vanish, because the trace over an odd number of γ-matrices vanishes. By defining

f(p)/p =
Zψ,k(1 + rψ,k(p))

ξψ(p)
/p

we obtain

1

2
δ0 Trγ γ

ν∂p′ν
g2Z2

ψ,k

ZA,k
(NC

2 − 1)

∫
p

(
Kλσ(p− p′)γσf(p)/pγλ −Kλσ(p+ p′)γλf(p)/pγσ

)
.

Because Kλσ is symmetric and by writing /p = pµγ
µ we find

1

2
δ0

g2Z2
ψ,k

ZA,k
(NC

2 − 1)

∫
p

Trγ

(
γνγσγµγλ

)
f(p)pµ∂p′ν (Kλσ(p− p′)−Kλσ(p+ p′))

(6.2.14)

Accomplishing the p′-derivative and setting p′ = 0 due to the projection rule gives

∂p′νKλσ(p∓ p′)
∣∣
p′=0

=± 2ξ
pλpσpν

p4PLA (p)
∓ 2ξ

pλpσpν
p2

∂p2

1

PLA (p)
∓ ξ δλνpσ + δνσpλ

p2PLA (p)
∓ 2δλσpν∂p2

1

P TA (p)

∓ 2
pλpσpν

p4P TA (p)
± 2

pλpσpν
p2

∂p2

1

P TA (p)
± δλνpσ + δνσpλ

p2P TA (p)
.
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6.2 Extended flow equations

Eventually, the new contribution reads

2δ0

g2Z2
ψ,k

ZA,k
(NC

2 − 1)

∫
p

Trγ

(
γνγσγµγλ

)
f(p)pµ

×
(
ξ
pλpσpν

p4PLA (p)
− ξ pλpσpν

p2
∂p2

1

PLA (p)
+

1

2
ξ
δλνpσ + δνσpλ
p2PLA (p)

− δλσpν∂p2

1

P TA (p)

− pλpσpν

p4P TA (p)
+
pλpσpν
p2

∂p2

1

P TA (p)
+

1

2

δλνpσ + δνσpλ
p2P TA (p)

)
. (6.2.15)

After using the identity

Trγ

(
γνγσγµγλ

)
= dγ

(
δνσδµλ − δνµδσλ + δνλδσµ

)
and some index algebra we find

2δ0dγ
g2Z2

ψ,k

ZA,k
(NC

2 − 1)

∫
p
f(p)

{
p2∂p2

(
d− 1

P TA (p)
− ξ

PLA (p)

)
+
ξ(1− d)

PLA (p)
− (1− d)

P TA (p)

}
.

(6.2.16)

The final step is to collect all remaining pre-factors, i.e. from the Wetterich equation,
the projection rule and the log-expansion as well as a factor (−1), since we operate in
fermionic sectors. Therefore, we obtain

−1

d

g2Z2
ψ,k
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NC
2 − 1

2NC
∂̃t

∫
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− (1− d)

P TA (p)

}
.

The (A,A) entry yields exactly the same term, so the final result for the additional
contribution to the flow equation of Zψ,k reads
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,

(6.2.17)

and in terms of the threshold functions
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. (6.2.18)
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6.2 Extended flow equations

It is convenient to choose the same regulator for the transversal and longitudinal part,
PLA = P TA . Our new set of flow equations in dimensionless and renormalized quantities
then reads5

∂tŨk(ρ̃) = −d Ũk + (d− 2 + ηϕ,k)ρ̃Ũ
′
k(ρ̃) + 2vdl

d
0
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where D[Ũk](ρ̃) = ρ̃
(

3Ũ ′′k (ρ̃) + 2ρ̃Ũ ′′′k (ρ̃)
)2

and ωu(ρ̃) = 2ρ̃Ũ ′′k (ρ̃) + Ũ ′k(ρ̃).
By these equations we take the full impact of the strong sector on the flow of the gen-
eralized Yukawa coupling into account. This set of equations is to be completed by the
flow of g̃ and ηA. As a first simple approach we can use the perturbation theory one-loop
β-function to test the qualitative impact of the newly derived terms.

5For the strong coupling we have g̃2 = kd−4 g2

ZA
.
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7 Summary and Outlook

In this thesis we considered a simple Higgs-Yukawa system to investigate the impact
of certain operators on lower Higgs mass bounds, applying techniques of the functional
renormalization group. Therefore, the main focus lay on the flow of the effective potential
since the Higgs mass is determined by the curvature of the potential evaluated at the
ground state. After presenting some basics about the FRG including the derivation
of the central equation of this thesis, the Wetterich equation, we initially derived the
flow equations of the quantities appearing in our toy model. Unlike former works ([13],
[14]) that dealt with lower Higgs mass bounds in a Higgs-Yukawa system in the FRG
framework we included a generalized Yukawa coupling H(ϕ)ψ̄ψ and computed changes
in the old versions of the flow equations. While the equations of the effective potential
Uk and the field renormalizations Zϕ,k and Zψ,k were basically the same, up to some
natural substitutions, the flow equation of the generalized Yukawa coupling exhibited an
additional term. Our results matched with the flow equations of [33], who considered the
same model but under a different point of view.
Using the derived flow equations as a starting point, we subsequently solved the flow
of the couplings numerically. In the course of the numerical treatment we performed
a polynomial expansion of the effective potential and the generalized Yukawa coupling
about the vacuum expectation value in order to simplify the set of differential equations.
Solving the equation system we reproduced established results of [14], i.e. we showed that
deviations from the quartic UV effective potential indeed allows us to find bare coupling
combinations that decrease the lower Higgs mass bound. The next step was to investigate
the influence of the new operators encoded in the generalized Yukawa coupling H(ϕ). We
observed that the new operators affect the flow significantly, for a fixed UV potential the
Higgs mass could be lowered by several GeV, just by taking the simplest new interaction
term h1ϕ

3ψ̄ψ into account. Its impact on the Higgs mass was much bigger than the one
of other higher dimensional operators hjϕ2j+1ψ̄ψ with j > 1, thus we restricted ourselves
to the case j = 1 in our further analysis. It turned out that to guarantee the correct
IR physics, we have to choose a sufficiently large UV value of the quartic coupling of
the effective potential. At first we restricted ourselves to quartic UV potentials and thus
we were able to choose relatively large bare values of h1 since in the case of quartic UV
potentials u2 ≥ 0 has to hold anyway. However, to compensate the large h1 bare values
the bare value of u2 had to be increased as well and as a consequence the lowering of the
Higgs mass due to increasing h1 and the increasing of the Higgs mass due to increasing
u2 nearly compensated each other. The derived mass bounds were at the same order of
magnitude as those derived when considering deviations from the quartic UV potential
but taking only the standard Yukawa interaction into account.
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Thus, we extended our analysis to more general UV potentials up to ρ4, especially in-
vestigating the case u2 < 0 again. Although this restricted us to much smaller bare
values of h1 we were able to generate flows that yielded smaller Higgs masses. Hence,
the combination of negative u2 and comparatively small h1 lead to a notable lowering of
the former Higgs mass bound.
Nevertheless, as already mentioned in section 3, the Higgs-Yukawa Model in its current
version completely neglects contributions from the strong interaction sector of the Stan-
dard Model. However, since we know from perturbative calculations that the flow of the
top Yukawa coupling is influenced significantly by strong interaction terms, we decided
to further extend our toy model by introducing the SU(NC) structure of the Standard
Model. We derived the new flow equations of this system, at least the equations of the ef-
fective potential Uk, the generalized Yukawa coupling Hk and the field renormalizations
Zψ,k and Zϕ,k. The flow equations of Hk and the field renormalization Zψ,k acquired
qualitatively new terms. The new set of equations opens the door for a further numerical
analysis. The flow equations of the remaining quantities, e.g. the equation of the strong
coupling, can be adopted from perturbative results, since the location of the Landau pole
lies sufficiently far beyond the scale where the interesting quantities freeze out. Thus,
a future task is to investigate whether the new operators of the generalized Yukawa
coupling can achieve a further lowering of the Higgs mass bound in this more accurate
model (with reference to the Standard Model). The new terms in the flow equations
might enable this.
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Appendices
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A Threshold functions

The definition of the threshold functions is taken from [21]. Together with the introduced
abbreviations

PB(q) = q2(1 + rk,B(q))

PF (q) = q2(1 + rk,F (q))2

v−1
d = 2d+1π

d
2 Γ

(
d

2

)
the threshold functions read
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B Threshold functions for the Litim
regulator

After application of the regulator

rB,k(q) =

(
k2

q2
− 1

)
Θ(k2 − p2)

(1 + rF,k(q))
2 = (1 + rB,k(q))

the threshold functions defined in appendix A read
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These results match with those of [36] (apart from the newly introduced M (FB)d
n1,n2 ).
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