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Using functional renormalization group methods, we investigate (2+1)-dimensional
relativistic fermion systems with momentum-dependent couplings, which serve as ef-
fective theories in condensed matter or as toy models in high-energy physics. While
derivative expansions of such models with pointlike interactions have been studied
extensively in the literature, little is known about the vertex functions’ momentum
dependence. After a general analysis of momentum-dependent flow equations, we work
out dominant interaction channels and determine renormalization group fixed points
and critical exponents of Gross-Neveu- and Thirring-type models using pseudospectral
methods. In the limit of infinite flavor number, we can even derive an analytic solution.
The observed fixed point structure is qualitatively similar to the pointlike limit, but
shows clear indications for the importance of momentum dependence for small flavor
numbers. We also compare our findings quantitatively to previous results obtained by
different approaches.
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Introduction

If you will, this thesis is a study of elementary particle billiards. The game of billiards is a classical
example of a momentum-dependent four-body interaction: Its fundamental process involves two
incoming balls or particles with momenta p1 and p2 that collide and separate again with momenta
p′1 and p′2 as illustrated in Fig. 1a. Besides the balls’ momenta, the interaction generally depends on
other internal degrees of freedom such as the types of balls colliding or their angular momenta. To
model the game mathematically, we can parametrize the intensity of the interaction as a function
of the configuration of balls in much the same way as we will do in the case of more fundamental
particles later in this work.

The billiards picture can serve to illustrate other aspects of the intended analysis, too, namely
the influence of fluctuations and the separation of scales. In order to make predictions about the
behavior of a physical system such as our billiard balls, it usually suffices to consider fluctuations on
the order of the typical scales of its constituents, say millimeters to meters in our example. Neither
do we need to take care of all the individual atoms and molecules that make up the balls and keep
track of their complicated interactions, nor do the location of our pool table on the surface of the
earth or the earth’s relative position in the solar system matter to describe the game’s dynamics.
Then again, a strong gust of wind or bumps in the table’s surface will change these dynamics
significantly.

The idea of the renormalization group (RG), the underlying toolkit of our investigation, is to study
the effect of fluctuations scale by scale and to systematically coarsen the description by averaging
them out. This allows one to keep track of the relevant degrees of freedom in a natural way, in
principle connecting, e.g., molecules to billiard balls, although there are practical limitations. The
generality of this framework renders it useful in a variety of contexts with applications found in
quantum field theory, statistical physics, fluid dynamics, and more [1–3]. Of great theoretical im-
portance is the explanation the RG offers for the phenomenon of universality, the observation that
very distinct physical systems may exhibit similar macroscopic properties irrespective of their mi-
croscopic structure and dynamics. A prominent example are phase transitions in thermodynamics
and quantum physics [2].

The functional RG (FRG) in particular additionally provides a refreshing view on the historically
awkward renormalization procedure in quantum field theories. In this regard, it naturally explains
emerging divergences and ways to deal with them, and also clarifies why physical theories are
usually described by a relatively small number of important parameters. Not least, it extends our
understanding of renormalizability and enables new, nonperturbative ways of renormalization by
means of the asymptotic safety scenario [4], potentially permitting, e.g., to renormalize quantum
gravity [5], a long-standing problem on the way towards a joint description of fundamental forces.

This brings us to the multifarious world of elementary particles, whose typical scales are more
than 15 orders of magnitude smaller than those of classical billiards. The to date most precise
description of those fundamental constituents of matter and their interactions is provided by the
Standard Model [1, 6, 7], which at the lowest level distinguishes two types of particles, bosons
and fermions. Both of these are classified into further subgroups, but for the time being we shall
be content with the observation that fermions are the elementary building blocks of matter and

a.

p1

p2 = 0

p′1

p′2

b.

−→

Figure 1: (a) Illustration of a four-body interaction; (b) four-fermion scattering mediated by an exchange
particle and the corresponding effective vertex, where the dynamics of the exchange particle are neglected.
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bosons mediate the interactions between them or, in case of the Higgs, generate masses for other
elementary particles.

While the Standard Model itself does not know any direct four-fermion interactions, such models
are used as effective theories in various fields whenever the dynamics of the exchange particle
can be neglected, sketched in Fig 1b. Examples include many condensed matter systems such as
conventional superconductors [8] and trapped atomic gases [9], precursors of the weak interaction
[10, 11], or low-energy models of quantum chromodynamics (QCD), the theory of strong interactions
[12–14]. In this work, we will be mostly dealing with relativistic fermion systems in (2+1) spacetime
dimensions, which describe, e.g., electrons in graphene [15–20] or cuprates [21–23], or provide toy
models for asymptotic safety scenarios and spontaneous chiral symmetry breaking in high-energy
physics [24–33].

Regarding graphene, for instance, a tight-binding approximation with one mobile electron per
carbon atom leads to a linear dispersion relation for low-energy excitations at two independent
Dirac points [16, 34, 35] where the electrons are effectively massless and relativistic even though
the Fermi velocity vF ≈ c/300 is two orders of magnitude smaller than the speed of light [16].
The latter fact implies that the electron–electron interaction mediated by photons is essentially
instantaneous. Moreover, and despite the relatively small fine-structure constant α ' 1/137 that
governs the strength of the electronic interactions, it means that the effective coupling αeff = αc/vF
is of order one, reinforcing the need for a nonperturbative computation scheme. Besides such
concrete applications, models of four-fermion interactions are also intrinsically interesting due to
a surprisingly rich phenomenology despite their (superficial) theoretical simplicity. One aspect
concerns the already mentioned spontaneous symmetry breaking and the dynamical generation of
fermion masses in originally massless theories.

In the main part of this thesis, we will be investigating two specific, popular models of four-
fermion interactions, the Gross-Neveu [14] and Thirring [36] models. Both have been the subject
of numerous studies before, using various approaches such as perturbation theory [37–44], Dyson-
Schwinger equations [24, 45, 46], lattice simulations [25, 28, 29, 33, 47–55], conformal bootstrap
[56–59], and the FRG [26, 27, 30–32, 60, 61]. Nevertheless, and in particular for small flavor
numbers, i.e. systems with only few types of different fermions, no consensus has yet been reached
about some of their properties like critical exponents or the formation of fermion condensates.
These questions will be part of our investigation.

The principle purpose of this work, however, is to gain a deeper insight into the momentum depen-
dence of interactions in these models. Most studies, especially the FRG approaches examined so
far, employed momentum-independent, pointlike interactions between the participating particles.
Some of the momentum dependence can then be restored by derivative expansions or bosonization
techniques, but it is not a priori clear whether these truncations cover all essential effects. As the
momentum dependence is expected to become increasingly important for small flavor numbers,
we will take a different approach here and incorporate the momenta of the interacting particles
directly in the coupling functions characterizing the interaction strength. This strategy has been
employed for related nonrelativistic condensed matter systems [62–65], but for relativistic fermions,
although first steps in this direction can be found in the literature [66], the present work is the first
extensive study of vertex expansions for these models. Comparing to previous results will allow
us to work out the strengths and weaknesses of this approach and to extend the understanding of
four-fermion theories.

* * *

The thesis is organized as follows. In Section 1 we will begin with a compilation of general notions
and concepts about quantum field theories and the functional renormalization group that are
relevant for the ensuing analysis. Section 2 will then kick off the study of momentum-dependent
four-fermion interactions from a rather abstract perspective. In particular, we will present a
general derivation of renormalization group flow equations for arbitrary momentum-dependent
four-fermion vertices and identify occurring interaction channels. Thereafter, we will turn to the
two aforementioned and related models, namely the Gross-Neveu model in Section 3 and the
Thirring model in Section 4. In both cases, we will analyze the RG flow of these systems in a
momentum-dependent setting. Finally, we will summarize and assess our findings in Section 5.
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1 Renormalization group flow

Generally speaking, the renormalization group (RG) is a concept to explore fluctuations in the
parameters of physical systems at various length or energy scales. The functional renormalization
group (FRG) offers a toolkit to systematically conduct this analysis for systems described by field
theories. In the context of quantum field theory, it allows us to study the influence of quantum
fluctuations on the interactions between fundamental particles. The aim of this section is to
collect the essential results that the subsequent sections of this thesis are based upon. Details and
derivations can be found in numerous reviews and books on the topic [3, 63, 67–72].

1.1 Quantum field theory

To motivate the key quantities of the FRG formalism, let us begin by introducing some basic
notions of field theory.

Particles and interactions. As far as we know today, quantum field theories provide the most
fundamental description of the dynamics and interactions of elementary and composite particles.
These basic degrees of freedom are encoded in fields, which link spacetime to an abstract math-
ematical space or, more colloquially, a set of numbers, and whose excitations describe the actual
particles. There are two types of fields to be distinguished at the fundamental level. Bosons, on
the one hand, take real or complex values, have integer spin, and satisfy Bose-Einstein statistics
[73–75]. Fermions, on the other hand, are anticommuting in character, reflecting Fermi-Dirac
statistics and half-integer spin [73–75]. In d = (2+1) spacetime dimensions, anyons with arbitrary
nonnegative spin quantum number generalize this classification in principle [76, 77], but will not
be of concern for our investigations.

At high energy scales, on the level of elementary particles as described by the Standard Model,
the constituents of matter are all fermions whereas their interactions are mediated by bosons.
However, this differentiation becomes blurry as soon as one considers lower energies and effective
theories, where an even number of fermions may form a bosonic bound state (or a rigid billiard
ball) and interactions need not necessarily involve an exchange of bosons. In particular, this is the
typical case in condensed matter systems where energies are naturally much lower than in particle
physics.

Let us consider a generic quantum field Φ = Φ(x) that may contain both bosonic and fermionic
degrees of freedom. A field-theoretic model of these is specified by an action S[Φ] which details
the dynamics of the individual constituents as well as the allowed interaction processes between
them. An example is the Gross-Neveu-Yukawa model, which we will re-encounter in Section 3.2.
It features a scalar bosonic field φ and two fermionic fields ψ and ψ̄, i.e. Φ = (φ, ψT, ψ̄)T. The
action reads

S[Φ] =
∫

ddx
[

1
2∂µφ(x)∂µφ(x) + 1

2m̄
2φ(x)2 + ψ̄(x)i/∂ψ(x) + ih̄ φ(x)ψ̄(x)ψ(x)

]
. (1.1)

The first two terms describe the dynamics of the boson, the third term covers the fermion dynamics.
The last term describes an interaction between the boson and the two fermions, for instance
allowing a boson to decay into a fermion and an antifermion. Note also that we will be working
in natural units with h̄ = c = 1 throughout this thesis, so that actions are dimensionless and the
dimensions of mass, energy, or momentum are reciprocal to those of time and length.

Correlation functions and effective action. Eventually, a physical theory is supposed to make
predictions about actual phenomena and processes in nature. Examples of such predictions are
cross sections of scattering experiments, decay rates of certain particles to others, or phase diagrams
and classifications of phase transitions. All this information is naturally encoded in the correlation
functions [1, 2, 68, 75], which can be computed as a (regularized) path integral over all possible
configurations of the fields,

〈Φα1(x1) · · ·Φαn(xn)〉 =
∫
DΦ Φα1(x1) · · ·Φαn(xn) e−S[Φ]∫

DΦ e−S[Φ] . (1.2)
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The index α here labels the individual constituents of the collective field variable Φ. We remark
that we will be working exclusively in the Euclidean formalism as indicated by the real exponen-
tial weight factor above. The spacetime metric is thus δµν , which has an all-positive signature as
opposed to the metric of real-world spacetime. The components of Euclidean spacetime points,
vectors, etc. are labeled by Greek indices µ, ν, . . . ∈ {1, . . . , d}. Analytic continuation from Eu-
clidean to Minkowski space is in principle possible by a Wick rotation mapping the Minkowski
time t ≡ x0 onto Euclidean time τ ≡ xd = −it [78]. We will assume that this is also practically
possible in the cases studied throughout this thesis. The generating functional

Z[J ] :=
∫
DΦ e−S[Φ]+

∫
ddx J(x)TΦ(x) (1.3)

can be used to compute correlation functions by functional differentiation with respect to the
source field J . Directly related to Z is the Schwinger functionalW[J ] := lnZ[J ], whose derivatives
generate the connected correlation functions [1].

A more efficient storage of physical information, however, is the effective action, defined as the
Legendre transform of the Schwinger functional,

Γ [Φcl] := sup
J

(∫
ddx J(x)TΦcl(x)−W[J ]

)
. (1.4)

The relevance of the effective action stems from its direct connection to experimentally accessible
quantities because its derivatives include all quantum fluctuations: The first functional derivative
yields the equations of motion for the vacuum expectation values, which also explains the label
Φcl standing for the classical field. The second derivative gives the full inverse propagators of the
constituent fields, and higher order derivatives generate the full one-particle irreducible vertices,
which are precisely the matrix elements entering the computation of scattering amplitudes and
the like [1]. Unfortunately, a direct calculation of the generating functional (1.3) and its Legendre
transform (1.4) is virtually impossible in all but very special cases (e.g. free theories where Γ = S).
In practice, we thus have to find other approaches or approximations to access the effective action.
The historically first and to date most precise calculations of, e.g., scattering cross sections are
based on perturbation theory. Here the idea is to expand the effective action around the free theory
by assuming interaction terms to be sufficiently small [1, 75]. Unfortunately, this formalism is
doomed to break down for strongly interacting systems. A different approach is offered by the
FRG, which provides a systematic way to interpolate between a bare, microscopic action like (1.1)
and the associated effective action.

1.2 Functional renormalization group

The bare action S describes a classical theory we wish to quantize. It is related to some fundamental
high energy scale Λ up to which fluctuations are to be included, e.g. the Planck energy in particle
physics or the inverse lattice spacing in condensed matter. The underlying idea of the RG as first
systematically developed by Kadanoff [79] and Wilson [80] is to integrate out these fluctuations
step-by-step and establish a continuous transformation from the microscopic level to the effective
theory.

Effective average action. To this end, we introduce a momentum scale k that keeps track of our
progress in integrating out fluctuations. Our aim is to define an effective average action Γk[Φavg]
that includes fluctuations with p2 & k2 [81, 82], such that it interpolates between the bare action
S at k = Λ and the full effective action Γ at k = 0. Hence its argument, the field Φavg, is a
classical field for momenta p2 & k2. In the following, we will drop the label ‘avg’ on the argument
of Γk again. The idea to achieve this effect is to supplement the action with a momentum- and
scale-dependent term quadratic in the fields,

∆Sk[Φ] := 1
2

∫ ddp
(2π)dΦ(−p)TRk(p)Φ(p) , (1.5)
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in the definition of the Schwinger functional. Pictorially speaking, the regulator Rk is to add a
mass of order k to the low-energy modes with p2 . k2 to decouple them from the high-energy
modes. The additional term renders the Schwinger functional scale-dependent, too:

eWk[J] :=
∫
DΦ e−S[Φ]−∆Sk[Φ]+

∫
p
J(−p)TΦ(p)

. (1.6)

Note that we changed to momentum space in the above expression for convenience. Our conventions
for Fourier transformations can be found in Appendix A. The shorthand

∫
p
≡
∫ ddp

(2π)d is understood.
Regarding the momentum dependence of collective fields containing Hermitian or Grassmann con-
jugates, we follow the conventions of Ref. [72], namely Φ(p) := (φ(p), ψ(p)T, ψ̄(−p))T. The effective
average action is then defined as a modified Legendre transform of Wk [68, 72, 82],

Γk[Φ] := sup
J

(∫
p

J(−p)TΦ(p)−Wk[J ]
)
−∆Sk[Φ] . (1.7)

Regulators. To ensure that Γk has the desired properties, the regulator must satisfy three con-
ditions [67, 68, 72],

lim
p2/k2→0

Rk(p) > 0 , lim
k2/p2→0

Rk(p) = 0 , and lim
k→Λ
Rk(p) =∞ . (1.8)

Note that Rk receives an extra minus sign for fermions in order to comply with the kinetic term
in our chiral conventions, as will become clear from the explicit form below. The first condition
implements the screening of low-energy modes, regularizing the functional integral in the infrared
(IR). The second condition ensures the correct IR limit, Γk→0 = Γ , while the third condition
takes care of the ultraviolet (UV) limit, Γk→Λ = S. We remark that for most common choices
of Rk, the latter condition is only achieved as Λ → ∞. In general, it is also desirable that the
regulator preserve the symmetries of the theory because this is expected to improve convergence
of approximation schemes [68]. Due to the fact that mass terms take different forms for boson and
fermion fields, we also have to use different forms of regulators for the two. Quite generally, we
may choose

Rφk(p) = p2Zφk (p2) r(B)
k (p2) and RΨk (p) = −

(
0 /p

T

/p 0

)
ZΨk (p2) r(F )

k (p2) (1.9)

for a (scalar) bosonic field φ and a fermionic field Ψ = (ψ, ψ̄T)T, respectively. Notice that we
introduced and included a momentum-dependent wave function renormalization Zk for both types
of fields. We also remark that this form of the fermionic regulator preserves chiral symmetry. As
for the dimensionless regulator shape functions r(B)

k and r(F )
k , there exist plenty of popular choices

in the literature. In this thesis, we will be using three different types depending on the particular
problem. The linear regulator advocated by Litim [83, 84] is defined by

r
(B)
k (x) =

(
k2

x
− 1
)
Θ(k2 − x) , r

(F )
k (x) =

(
k√
x
− 1
)
Θ(k2 − x) . (1.10)

Its advantage is that it allows to compute occurring integrals symbolically in many cases, thus
giving access to analytic solutions. However, since it is not a smooth function of its argument, it is
inconvenient in series expansions or numerical studies of momentum-dependent quantities. In these
cases, we will usually implement the exponential regulator of Ref. [67] (cf. Eq. (7.22) therein),

r
(B)
k (x) = 1

ex/k2 − 1
, r

(F )
k (x) = 1√

1− e−x/k2
− 1. (1.11)

For our purposes, it proved to have sufficiently stable numerics and offered decent convergence
properties. To cross-check results and estimate their regulator dependence, we also used the family
of exponential regulators put forward in Ref. [61],

r
(B)
k (x) =

(
k2

x

)
1

2 exp
[(

x
k2

)α]− 1
, r

(F )
k (x) =

(
k√
x

)
1

2 exp
[(

x
k2

)α]− 1
, (1.12)

where α > 0 is a free parameter. In the following, we will usually omit the superscripts B or F for
bosonic or fermionic regulators if there is no danger of confusion.
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FRG flow equation. With all relevant quantities at hand, we can finally flesh out the interpolation
that Γk is to provide between the microscopic and effective actions. By the very definition, every
action functional is the mathematical expression of a physical system or theory. A successful theory
should describe the relevant degrees of freedom of a system as well as their interactions. However,
both the degrees of freedom and the strength of interactions may and will change as we lower the
scale k from the microscopic level to experimentally accessible regimes. As an example, consider
QCD. At very high energies, the dynamical fields are quarks and gluons, and their interaction
becomes ever weaker with increasing energy, a phenomenon known as asymptotic freedom [85, 86].
Nevertheless, when going to lower energies, we will only observe bound states of the microscopic
constituents like protons, neutrons, and pions, indicating that the relevant degrees of freedom have
indeed changed. Hence the behavior at different scales will be described by different theories or,
equivalently, action functionals. By continuously lowering the scale k, we thus expect the effective
average action Γk to follow a trajectory in the space of all theories admissible by the symmetries
of the system.

To explore the dynamics of this flow in theory space, one usually defines a renormalization group
time t := ln(k/Λ). Differentiating the definition (1.7) with respect to t and re-expressing the
right-hand side in terms of Γk, one can derive the Wetterich equation [82, 87–89], a flow equation
for the effective average action,

∂tΓk = 1
2 STr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
. (1.13)

This relation is the cornerstone of the FRG in the effective average action formulation. It is a one-
loop exact functional integro-differential equation governing the transition from the microscopic
action to the full effective action. By Γ (2)

k we denote the second functional derivative of Γk, or
more precisely

Γ
(2)
k [Φ](q, q′) =

−→
δ

δΦT(−q)Γk[Φ]
←−
δ

δΦ(q′) (1.14)

in momentum space, with one derivative acting from the left and one from the right [72]. The
supertrace on the right-hand side of (1.13) includes the contraction of all internal field indices (i.e.
color, flavor, Dirac, ...) as well as an operator trace, which in momentum space is a simple integral
over the loop momentum. In addition, it assigns a minus sign to all anticommuting, fermionic field
components.

Truncations. Although Eq. (1.13) is in principle an exact equation relating the microscopic to the
effective action, it is unfortunately not exactly solvable in full generality. Nevertheless, the huge
benefit of the FRG formalism is that it allows for nonperturbative approximation schemes, opening
up whole new regions of theory space. The most common approaches to reduce complexity are
the derivative and vertex expansions, both of which restrict the analysis to a subset of theories by
omitting certain interaction terms.

The idea of the derivative expansion is to expand the effective average action in powers of external
momenta (or derivatives in position space). For a scalar field, a typical ansatz would be

Γk[φ] =
∫

ddx
[
Vk(φ) + 1

2Zk(φ)(∂µφ)2 +O
(
∂4)] , (1.15)

where the effective potential Vk, the wave function renormalization Zk, and potential higher-order
coefficients depend on the homogeneous field. Consequently, all interactions are local and pointlike.
Concerning the fermionic systems we will be investigating in this thesis, numerous studies have
constantly increased the order of derivative expansions over the past few years [26, 27, 30, 60, 61].
On the contrary, complementary vertex expansions of fermionic theories have only been investigated
very little and predominantly for nonrelativistic condensed matter systems [62–65]. The application
to relativistic fermions in (2 + 1) Euclidean dimensions will be the focus of this work. In a vertex
expansion, the effective average action is expanded in powers of the fields, e.g.

Γk[φ] = 1
2

∫
p

Γ
(2)
k (p)φ(−p)φ(p) + 1

6

∫
p1,p2

Γ
(3)
k (p1, p2)φ(−p1−p2)φ(p1)φ(p2) +O

(
φ4) , (1.16)
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but the inverse propagator Γ (2) as well as the vertex functions Γ (n≥3)
k retain their full momentum

dependence. This scheme is closely related to the method of Dyson-Schwinger equations, which
essentially follow from a vertex expansion of the full effective action [90].

In practice, further approximations within either derivative or vertex expansions are common. In
the derivative expansions, the coefficient functions Vk, Zk, . . . are often truncated at some order
of the fields, whereas in the vertex expansion a restriction of the vertices’ momentum dependence
may be employed. One problem is to find a consistent closing scheme for the infinite hierarchy
of coupled integro-differential equations for the vertex functions. Ideas have been developed for
bosonic systems [91–93], but are largely missing for systems with fermions, so that one usually
relies on simple truncations [63].

For actual calculations using vertex expansions, it will be advantageous to decompose Γ (2)
k +Rk into

a field-independent part Pk (“propagator”) and a field-dependent part Fk, such that Γ (2)
k +Rk =

Pk + Fk. We can then expand the right-hand side of Eq. (1.13) in powers of the field:

∂tΓk = 1
2 STr

[
∂̃t ln

(
1 + P−1

k Fk
)]

= −1
2 ∂̃t

∞∑
n=1

(−1)n

n
STr

[(
P−1
k Fk

)n]
. (1.17)

Here the derivative ∂̃t acts only on the k-dependence of the regulator Rk, i.e.

∂̃t :=
∑
χ in Φ

∫
dy

∂t [Zχk (y) rχk (y)]
Zχk (y)

δ

δrχk (y) , (1.18)

with χ cycling through the various fields contained in Φ. Note that we omitted an unimportant,
field-independent constant 1

2 ∂̃t STr lnPk in Eq. (1.17). In an explicit calculation, the right-hand
side of this equation can then be truncated at the maximum power of the field considered in the
ansatz for Γk.

1.3 Fixed points, universality, and asymptotic safety

A particular model of a physical system is characterized by its degrees of freedom (the fields)
and a set of symmetries that interactions between the fields have to obey. All action functionals
consistent with the required symmetries form the theory space of the model, which defines the
dynamical environment for the renormalization group flow. In practice, one usually parametrizes
the theory space by couplings g1, g2, . . . that multiply the admissible interaction vertices.∗ The
example (1.1), for instance, features two couplings, m̄2 and h̄, parametrizing a mass term and a
Yukawa interaction, respectively. Hence the vertices define coordinate axes in theory space, and
the values of the associated couplings are the coordinates of a particular action in this space. Given
a complete set of vertices, the Wetterich equation (1.13) then translates into a system of coupled
differential equations for the couplings,

∂tgA = βA[g1, g2, . . .] , (A = 1, 2, . . .) . (1.19)

Notice that we do not denote the scale dependence of the couplings explicitly in order to keep the
notation slim. Provided with some initial values for the couplings at t = 0 (k = Λ), i.e. a bare
action, we can then in principle integrate these flow equations down to t = −∞ (k = 0) and obtain
the corresponding effective action.

Fixed points and critical exponents. The practical use of this view on renormalization, however,
is not so much the computation of flows for a particular microscopic model, but rather the ability
to classify regimes in theory space by their IR or UV behavior and to extract universal properties.
In particular, the functional renormalization group allows us to probe regions of theory space that
are inaccessible to perturbative quantum field theory due to large coupling values.
∗We will employ a rather general understanding of the term coupling in the discussion of this section and include

masses, wave function renormalizations, etc. in the definition. Basically any scalar multiplying a product of fields
in the action will be referred to as a coupling.
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g1

g2

O
A

B

C

Figure 2: Example theory space with two couplings g1 and g2 and four fixed points. Red arrows indicate the
eigendirections at each fixed point. The Gaussian fixed point at the origin has two irrelevant directions,
the fixed points A and C have one relevant and one irrelevant, and the fixed point B has two relevant
directions. For the fixed points A and C, separatrices of IR (red) and UV (blue) regimes are plotted as
dashed lines.

The key to analyzing the topology of the renormalization group flow are its fixed points, cor-
responding to RG-invariant theories. This is equivalent to the condition βA[g1, . . .] = 0 for all
A if we choose the couplings to be dimensionless and renormalized, which we can always do by
rescaling with appropriate powers of the RG scale k and the wave function renormalizations Zk.
Consequently, if we start with a fixed point action at the microscopic scale, we will be left with
the same action after all fluctuations have been integrated out, meaning that bare and effective
actions coincide. The free theory with just kinetic terms is always scale-invariant and is known as
the Gaussian fixed point.

As with any dynamical system, RG fixed points may either be attractive or repulsive along a
particular direction in theory space. If we start within the domain of attraction of a certain fixed
point, all couplings corresponding to attractive directions will approach the fixed point values as
the renormalization scale is lowered. Such couplings are called irrelevant because their values in
the effective action do not depend on the precise initial conditions, but are entirely determined
by the closest fixed point in theory space. On the contrary, couplings associated with repulsive
directions are called relevant, and their initial values will in general affect the resulting effective
theory.

A theory space with two couplings and four fixed points is depicted in Fig. 2 along with some
example flows. Fixed points with at least one relevant direction are of particular interest because
they potentially describe critical points of second order phase transitions if the number of relevant
operators matches the number of order parameters. The flow lines emanating from (or rather
pouring into) the associated irrelevant eigendirections, indicated in the plot by red dashed lines for
the fixed points A and C, are called separatrices and form the IR-critical hypersurface because they
separate different regimes of IR physics and mark phase transitions. Consider, for example, the fixed
point C: If we start above the separatrix, we will flow towards the Gaussian fixed point and obtain
an asymptotically free effective theory, whereas starting below the separatrix takes us towards
infinity and an interacting effective theory. To predict the IR behavior, we thus need to measure
only one parameter because the controlling fixed point has only one relevant direction. Within the
asymptotic safety scenario to be discussed below, a theory is (nonperturbatively) renormalizable
and predictive if it involves only a finite number of relevant couplings, corresponding to a finite
number of parameters that have to be determined by experiment.

In the vicinity of a fixed point g∗ = (g1∗, g2∗, . . .), we can compute the relevant and irrelevant
directions by linearizing the flow equations (1.19) for a small perturbation g = g∗ + ε around the

12



fixed point, i.e.

∂tεA =
∑
B

∂βA[g]
∂gB

∣∣∣∣
g=g∗

εB +O
(
ε2) . (1.20)

The solutions of this differential equation can be written in the form ε =
∑
i e−θitcivi, where θi are

the eigenvalues of the (negative) stability matrix (−∂βA/∂gB |∗), and vi are the corresponding right
eigenvectors. The latter are indicated by red arrows in the example of Fig. 2. The eigenvalues are
commonly called critical exponents because of their relation to thermodynamical critical exponents
characterizing continuous phase transitions. We immediately infer that eigenvectors vi with Re θi >
0 define relevant directions whereas those with Re θi < 0 define irrelevant directions in theory space.
Those with Re θi = 0 are calledmarginal directions, and higher-order terms in Eq. (1.20) are needed
to determine whether they are attractive or repulsive.

Universality. A major reason for the importance of the RG in statistical physics is the explanation
it offers for the principle of universality. This idea is based on the observation that distinct
physical systems can show similar macroscopic behavior regardless of their precise microscopic
dynamics [1, 2, 70]. For instance, both the ferromagnetic–paramagnetic transition in magnets with
a preferred axis and the liquid–gas transition in certain fluids fall into the so-called Ising universality
class, ascribing them the same set of critical exponents for the corresponding thermodynamic
quantities.

The reason for this phenomenon lies in the above stated insight that the macroscopic properties of a
theory are essentially controlled by the closest fixed point in theory space and its relevant directions.
As an example, consider Fig. 2 once again. Here a theory starting microscopically with a pure g1
interaction left from the separatrix of the fixed point A is macroscopically indistinguishable from
a theory starting with a pure g2 interaction above the separatrix of C: In both cases, we end up
with a free, noninteracting theory in the low-energy limit. By contrast, if we start on the other
side of the separatrices, respectively, we end up in different IR regimes as noted above, such that
the interacting fixed points with (at least) one relevant direction are linked to phase transitions.

In the models we are considering here, fixed points with exactly one relevant direction mark critical
points of a continuous second-order phase transition. In this case, the inverse of the relevant
eigenvalue θ1 is just the corresponding thermodynamic correlation length exponent ν = 1/θ1
[2, 69]: Approaching such a critical point, the system loses separation of scales and becomes
increasingly scale invariant. Precisely at the critical point, the system does not have an intrinsic
scale anymore and fluctuations at all scales matter equally, meaning that the correlation length ξ
of the order parameter two-point function diverges as ξ ∼ |c1|−ν , where c1 is the coefficient of the
relevant perturbation, a generalized reduced temperature. Consequently, the two-point function
decays only power-law-like with the spatial separation, and the corresponding exponent may receive
corrections to the expected canonical scaling, parametrized by the anomalous dimension η [69, 70],
which is obtained from the wave function renormalization Z via η = −∂t lnZ. Under quite general
assumptions, so-called scaling relations link ν and η to the other thermodynamic critical exponents
associated with the behavior of order parameters, susceptibility, source field, etc. [2, 69, 70]. Hence
the macroscopic properties of the phase transition are essentially determined by computing two of
the critical exponents, e.g. ν and η.

Asymptotic safety. Functional renormalization group studies are not only useful to derive macro-
scopic from microscopic properties. Instead, we can also ask the opposite question about the un-
derlying fundamental theory of a model and investigate the RG flow for increasing energies. This
is especially interesting for models that are not perturbatively renormalizable because the number
of required counterterms to cancel divergences as k → Λ → ∞ is infinite, as it is the case, e.g.,
in quantum gravity. For such models, salvation may be found in the asymptotic safety scenario
[5, 71] first proposed by Weinberg in 1976 [4].

The idea is a generalization of asymptotic freedom [85, 86], which describes theories such as QCD
that become noninteracting at high energies, meaning that the UV limit is governed by the Gaussian
fixed point. Asymptotic safety assumes that the microscopic model is controlled by an interacting
fixed point instead. Let us take yet another look at Fig. 2, this time thinking of the flow lines as
being reversed such that they describe the evolution towards higher energies. This way, IR-relevant
directions become attractive to the RG flow towards the UV, whereas IR-irrelevant directions
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become repulsive. Different UV scenarios are now separated by the IR-relevant directions, which
form the UV-critical hypersurface of a fixed point, shown as blue dashed lines in the figure.

We observe that if the flow starts on a UV-critical hypersurface, we will eventually flow into the
associated fixed point as k → Λ → ∞, meaning that the fixed point describes the microscopic
theory in the continuum limit. More importantly, all couplings will then take the fixed point
values and hence remain finite, so that the theory is free of divergences and asymptotically safe.

These thoughts reveal a generalized view on renormalization and renormalizability. Renormaliza-
tion of a theory merely means a projection onto the UV-critical hypersurface, so that all couplings
take finite values in the continuum limit. The projection constrains the IR-irrelevant vertices, but
their values do not matter anyway as far as the effective, low-energy theory is concerned. To
determine the position of a renormalized theory, we thus have to measure as many parameters
as there are relevant directions to the controlling fixed point. Consequently, a theory is nonper-
turbatively renormalizable if the number of relevant couplings of the corresponding fixed point is
finite. Incidentally, this projection also happens when perturbatively renormalizing an asymptot-
ically free theory via the introduction of counterterms [5]. In general, however, perturbative and
nonperturbative renormalizability as introduced here describe different concepts, where neither is
a subset of the other [5, 69].

* * *

This completes our short introduction to the functional renormalization group framework and
its applications. In what follows, we will explore the theory space of relativistic four-fermion
interactions along the lines established in this section. In the next section, we will study general
aspects of the RG flow of such models, before we will turn to concrete examples in the subsequent
sections. There, finding and characterizing fixed points within these particular settings will be our
main objective.
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2 Momentum-dependent four-fermion vertices

We begin with a rather general discussion of abstract four-fermion interactions, which includes
the specific models we are going to study in Sections 3 and 4. We will investigate properties of
their renormalization group flow, analyze the structure of the underlying theory space and report
the effect of symmetries constraining the choice of admissible vertices. In the remainder of this
section, our aim will then be to derive the flow equations for the associated momentum-dependent
coupling functions.

Let us consider Nf flavors of fermions described by the Grassmann-valued spinor fields ψi, ψ̄i,
i = 1, . . . , Nf. To fix the spinor space, we have to choose a representation of gamma matrices
γ1, . . . , γd ∈ Cdγ×dγ satisfying the anticommutation relations

{γµ, γν} = 2δµν , (2.1)

which generate the associated Clifford algebra. The spinors are then vectors in the dγ-dimensional
Dirac space. In this setting, a rather general four-fermion vertex takes the form∫

ddx ḡ ψ̄i(x)O1ψ
i(x) ψ̄j(x)O2ψ

j(x) ,

where O1 and O2 are (dγ×dγ)-dimensional matrices in Dirac space and summation over repeated
flavor indices is understood. We do not consider flavor-mixing even though this is possible along
the same lines in principle. The coupling ḡ parametrizes the strength of the interaction and will
in general depend on the renormalization scale k. We notice that this vertex includes each of
the fields ψ and ψ̄ exactly twice, a consequence of the conservation of particle number, as can be
seen from the fact that, roughly speaking, ψ annihilates and ψ̄ creates a particle, or vice versa
for antiparticles. Furthermore, the above vertex has a flavor-singlet structure, where one could
in principle also define flavor nonsinglets such as ψ̄iO1ψ

j ψ̄jO2ψ
i. However, these can always be

transformed into flavor singlets via so-called Fierz transformations as we will see below. By means
of a Fourier transformation, we can equally express the above vertex in momentum space,∫

p1,p2,p3,p4

(2π)dδ(p1+p2+p3+p4) ḡ ψ̄i(−p1)O1ψ
i(p2) ψ̄j(−p3)O2ψ

j(p4) , (2.2)

as depicted in Fig. 3. Our convention is that all momenta are measured as flowing into the vertex.
Eventually, we will allow the coupling ḡ to depend on the momenta of the involved particles,
rendering the interaction nonlocal.

p2

p1

p3

p4

g

Figure 3: Feynman diagram for a generic four-fermion interaction with coupling g. In our convention, all
momenta are measured as flowing into the vertex.

2.1 Symmetries and Fierz transformations

Symmetries. A symmetry of a theory is a transformation ψ, ψ̄ 7→ ψ′, ψ̄′ of the fields that leaves
the action of the theory invariant, i.e. S[ψ′, ψ̄′] = S[ψ, ψ̄]. In particular, the interaction vertices
have to be invariant under this transformation. As a first example, we introduce unitary rotations
in flavor space, ψi 7→ U ijψj and ψ̄i 7→ ψ̄j(U†)ji with U ∈ U(Nf). These already form a symmetry
of the general vertex (2.2) because the matrices Oi as introduced above are trivial in flavor space.
However, requiring additional symmetries that transform the Dirac space structure of the fields can
restrict the admissible choices for the matrices O1 and O2. Since the symmetry transformations
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will involve similar matrices themselves, it is convenient to define a basis of the Dirac space and
discuss the implications of symmetries for the basis elements.

In a dγ-dimensional representation of the Dirac algebra, a basis of the space of Dirac matrices
consists of d2

γ linearly independent matrices. Besides the d matrices {γµ} = {γ1, . . . , γd} generating
the Clifford algebra, there are thus always d2

γ − d additional matrices to complete a basis set of
Cdγ×dγ . Let us denote a particular example of such a basis by {γA}. The most general matrix O
entering a fermion bilinear in (2.2) can then be written as a linear combination of basis matrices,
O ∈ span{γA}.

In this thesis, we are especially interested in (2+1)-dimensional relativistic fermions in the reducible
representation of the Clifford algebra. For the remainder of this paragraph, we will therefore assume
d = 3 and dγ = 4. An exhaustive discussion of the symmetries of such systems and compatible
four-fermion vertices can be found in Refs. [17, 24, 32, 60, 94, 95]. The analysis there is restricted
to pointlike, momentum-independent interactions, but the additional assumption of momentum-
dependent couplings does not affect the general result. Therefore, we will only state the main
implications relevant for our analysis and point to these references for details.

A reducible representation of the γ matrices in d = 3 can be derived from an irreducible represen-
tation in d = 4, but we only need, e.g., γ1, γ2, and γ3 to generate the Clifford algebra (2.1). Hence
there are now two additional Dirac matrices, γ4 and γ5, that anticommute with the three γµ and
with each other. In addition to these five matrices, we will assume that our basis {γA} contains the
elements γµν := i

2 [γµ, γν ] (µ < ν), which generate Lorentz transformations, as well as the product
γ45 := iγ4γ5, which generates a continuous transformation ψ 7→ eiαγ45ψ, ψ̄ 7→ ψ̄e−iαγ45 . The com-
bination of flavor rotations and these continuous transformations leads to the group U(Nf)×U(Nf)
because each of the generators of the U(Nf) flavor transformations may be joined with either the
identity 1γ or the generator γ45.

There is also one independent discrete chiral transformation that may be modeled by multiplying
ψ by either γ4 or γ5 and ψ̄ by its Hermitian conjugate. Multiplication with the other of these two
matrices can then be composed from the continuous γ45 transformations above and multiplications
with the first one. Further discrete symmetries, in particular parity, time reversal, and charge
conjugation, are implemented in a similar fashion [31].

The defining vertex of the Gross-Neveu model [14], which will be our subject of study in Section 3,
is a scalar flavor singlet (ψ̄iψi)2. All of the transformations mentioned so far leave this vertex
invariant, so that they are symmetries of the model. One can show that there is no (non-derivative)
two-fermion term consistent with all these symmetries; in particular, a mass term is ruled out by
the discrete chiral symmetry [95]. On the level of four-fermion vertices, however, there are, up
to Fierz transformations, three additional terms that share all the symmetries of the Gross-Neveu
vertex. A complete set of four-fermion interaction terms for the Gross-Neveu model consists, for
instance, of [95]

(ψ̄iψi)2 , (ψ̄iγ45ψ
i)2 , (ψ̄iγµψi)2 , (ψ̄iγµνψi)2. (2.3)

The vector-type interaction (ψ̄iγµψi)2 is also the defining vertex of the Thirring model [36] to
be studied in Section 4. Contrary to the Gross-Neveu vertex, it is additionally invariant under
continuous chiral transformations generated by γ4 and γ5, ψ 7→ eiαγ4,5ψ, ψ̄ 7→ ψ̄eiαγ4,5 . This leads
to the larger symmetry group U(2Nf) of combined flavor and chiral transformations [31]. Of the
vertices (2.3), the pseudoscalar term also satisfies this symmetry, hence the vertices compatible
with the Thirring model are [32]

(ψ̄iγ45ψ
i)2 and (ψ̄iγµψi)2. (2.4)

Fierz transformations. In the introduction to this section, we claimed that it was sufficient to
study four-fermion vertices with a flavor-singlet structure. The reason for this is that we can use
Fierz transformations to rewrite nonsinglet vertices in terms of singlet terms. Without loss of
generality, we can choose our Dirac space basis matrices γA to be orthogonal with respect to the
inner product γA · γB := tr(γAγB), i.e.

tr(γAγB) = dγ δAB . (2.5)

16



Using this orthogonality relation and the fact that the γA form a basis, we can expand any matrix
O ∈ Cdγ×dγ as

O = 1
dγ

d2
γ∑

A=1
tr(OγA)γA . (2.6)

The most general two-spinor vertex thus takes the form
∑
AmA ψ̄

iγAψ
i. For four-fermion vertices,

we can in principle combine any of the two-spinor terms. Moreover, we can implement them in a
flavor-singlet or flavor-nonsinglet form, namely

singlet: ψ̄iγAψ
i ψ̄jγBψ

j , nonsinglet: ψ̄iγAψ
j ψ̄jγBψ

i . (2.7)

These two forms are, however, related via Fierz transformations: Using the completeness property
(2.6), we can expand the Dirac matrix ψjψ̄j appearing in the nonsinglet term and obtain a flavor-
singlet structure:

ψ̄iγAψ
j ψ̄jγBψ

i = 1
dγ

∑
C

ψ̄iγA tr(ψjψ̄jγC) γCγBψi = − 1
dγ

∑
C

ψ̄iγAγCγBψ
i ψ̄jγCψ

j . (2.8)

Hence it suffices to consider, for example, only the singlet terms. Together with the symmetry
considerations from the previous paragraph, this constrains the types of vertices generated by the
RG flow for a specific model.

Momentum dependence. As the aim of this work is a study of four-fermion interactions in a
vertex expansion, we need to consider the momentum dependence of the couplings parametrizing
the vertices of our models. To this end, we promote the couplings like ḡ in Eq. (2.2) to functions of
the external momenta, ḡ = ḡ(p1, p2, p3, p4). Consequently, the interaction becomes nonlocal. Due
to momentum conservation, only three of those vectors are independent. Moreover, the requirement
of Lorentz invariance restricts the possible dependences further. In general, N vectors allow for
N(N+1)

2 linearly independent invariants, e.g., the N squared norms and N(N−1)
2 dot products of

two different vectors. Consequently, the coupling functions here can effectively only depend on up
to six real, linearly independent Lorentz invariants that can be constructed from three independent
momentum vectors.

Additional symmetries of the coupling function may be implied by the symmetries of the associated
vertex. For instance, a vertex with O1 = O2 requires the coupling to satisfy ḡ(p1, p2, p3, p4) =
ḡ(p3, p4, p1, p2). This will hold for all models considered in this thesis and will also be assumed in
our study of rather general properties of the flow of momentum-dependent couplings coming up
next.

2.2 Flow equations for the coupling functions

In this section we develop a scheme to compute flow equations for an arbitrary number of momentum-
dependent four-fermion interactions. To this end, let

Γk[ψ, ψ̄] = −
∫
p

Z(p2)ψ̄(p)/pψ(p) +
∑
A

∫
p2,p3,p4

ḡA(p1, p2, p3, p4)
2Ñ

ψ̄(−p1)OAψ(p2) ψ̄(−p3)OAψ(p4)

(2.9)
be a generic model effective action featuring multiple interaction vertices with coupling functions
gA and Dirac space matrices OA. Here and in the following, p1 ≡ −p2 − p3 − p4, and Ñ := Nfdγ .
As explained above, momentum conservation and Lorentz invariance imply that this function can
effectively depend only on six real, Lorentz invariant parameters. However, we will stick to the
redundant notation of Eq. (2.9) because it allows us to keep track of the flow of loop momenta in
the Wetterich equation (1.13) and sorts well with the pictorial language of Feynman diagrams.

We also included a momentum-dependent wave function renormalization Z(p2), whose scale de-
pendence is likewise suppressed. By analogy with the pointlike limit, we define a generalized
anomalous dimension function

η(p2) := −∂t lnZ(p2) . (2.10)
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The general form (2.9) of the effective average action includes a large class of physically interesting
cases [95]. In particular, the Gross-Neveu and Thirring models to be investigated in detail in
Sections 3 and 4 are recovered for O0 = 1, g0 = gGN and Oµ = γµ, gµ = gTh (µ = 1, 2, 3).
Note that we restrict the analysis to flavor singlet structures because any flavor nonsinglet can be
re-expressed in terms of flavor singlets via Fierz transformations as shown in the previous section.

Dimensionless couplings and momenta. A key step in the classification of the considered theory
space are fixed point actions corresponding to theories that are invariant under the renormalization
group (cf. Section 1.3). In order to find such scale-invariant theories, we need to parametrize our
theory space in terms of dimensionless quantities. In particular, we need to switch to dimensionless
momenta and coupling functions by measuring all quantities with respect to the renormalization
scale k. This transformation will produce additional scaling terms that supplement the fluctuation-
induced contributions.

To keep track of the various origins of scale dependences, let us be very explicit regarding the
arguments of the coupling functions in this paragraph. A general coupling function of a four-
fermion vertex depends on the renormalization scale and the four momenta, ḡ = ḡ(k; p1, p2, p3, p4).
Its canonical (mass) dimension is [ḡ] = 2 − d, as can be read off from the effective action (2.9)
because [Γk] = 0. We renormalize the fields, ψR(p) := Z

1/2
k (p2)ψ(p) and ψ̄R(p) := Z

1/2
k (p2)ψ̄(p),

and rescale the couplings according to

g(k; pi) := kd−2
[
Z(4)(p2

1, p
2
2, p

2
3, p

2
4)
]−2

ḡ(k; pi) with Z(n)(p2
i ) =

[∏n

j=1
Z(p2

j )
]1/n

. (2.11)

This renders g dimensionless and absorbs the wave function renormalization into the coupling.
Moreover, we need to introduce dimensionless momenta p̃ = p/k, etc., such that g̃(k; p̃i) := g(k; p̃ik)
is the coupling function of interest. Taking the logarithmic derivative with respect to the scale at
fixed p̃i, we then obtain

∂tg̃(k; p̃i) = ∂t

{
kd−2

[
Z(4)(p2

i )
]−2

ḡ(k; p̃ik)
}

=
[
d− 2 + 2 η̃(4)(p̃2

i )
]
g̃(k; p̃i) +

4∑
j=1

p̃j · ∇p̃j g̃(k; p̃i) + kd−2
[
Z(4)(p2

i )
]−2

∂tḡ(k; pi)
∣∣∣∣
pi=p̃ik

(2.12)
with the definition

η̃(4)(p̃2
1, p̃

2
2, p̃

2
3, p̃

2
4) := 1

4

4∑
j=1

η(p̃2
jk

2) . (2.13)

In the following, we will drop all tildes denoting dimensionless quantities again and only distin-
guish dimensionful coupling functions by an overbar from their dimensionless counterparts. The
momentum arguments entering either of the two are silently assumed to be either dimensionful or
dimensionless, respectively. Furthermore, we will suppress the dependence on the renormalization
scale k again. To summarize, the general flow equation of any dimensionless four-fermion coupling
function thus takes the form

∂tg(pi) =
[
d− 2 + 2η(4)(p2

i )
]
g(pi) +

4∑
j=1

pj · ∇pjg(pi) + (quantum fluctuations), (2.14)

where the quantum fluctuations correspond to the last term in Eq. (2.27) and are obtained from
the flow of the dimensionful quantities according to the Wetterich equation (1.13).

P-F decomposition. To derive these quantum contributions, we proceed according to the algo-
rithm suggested in Section 1.2 by decomposing the regularized inverse propagator Γ (2)

k +Rk into
field-independent and -dependent components Pk and Fk, respectively. For the field-independent
part, we find

Pk(q, q′) = −F (q2)
q2

(
0 /q

T

/q 0

)
(2π)dδ(q − q′) , F (q2) = Z(q2)q2 [1 + rk(q2)

]
, (2.15)
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where rk is the fermionic regulator shape function. The field-dependent part is given by

Fk(q, q′) =
(
Fψψ Fψψ̄
Fψ̄ψ Fψ̄ψ̄

)
(2.16)

with components

Fψψ(q, q′) = − 1
Ñ

∑
A

∫
p

ḡA(q−q′−p,−q, p, q′)OT
Aψ̄

T(−q+q′+p)ψ̄(−p)OA (2.17a)

Fψψ̄(q, q′) = 1
Ñ

∑
A

∫
p

[
−ḡA(q−q′−p, p, q′,−q)ψ̄(−q+q′+p)OAψ(p)OT

A

+ḡA(q−q′−p,−q, q′, p)OT
Aψ̄

T(−q+q′+p)ψT(p)OT
A

]
(2.17b)

Fψ̄ψ(q, q′) = 1
Ñ

∑
A

∫
p

[
ḡA(q−q′−p, p,−q, q′)ψ̄(−q+q′+p)OAψ(p)OA

+ḡA(q−q′−p, q′,−q, p)OAψ(p)ψ̄(−q+q′+p)OA
]

(2.17c)

Fψ̄ψ̄(q, q′) = − 1
Ñ

∑
A

∫
p

ḡA(−q, q−q′−p, q′, p)OAψ(q−q′−p)ψT(p)OT
A . (2.17d)

Note that we have indicated already contracted pairs of spinors to guide the eye. Such contractions
behave like a c-number, i.e. they commute with any other objects in the above formulae. The
building block of the field expansion (1.17) is the product P−1

k Fk, whose components in our case
are

(
P−1
k Fk

)
ψψ

(q, q′) = 1
ÑF (q2)

∑
A

∫
p

[
−ḡA(q−q′−p, p,−q, q′)ψ̄(−q+q′+p)OAψ(p)/qOA

−ḡA(q−q′−p, q′,−q, p)/qOAψ(p)ψ̄(−q+q′+p)OA
]

(2.18a)

(
P−1
k Fk

)
ψψ̄

(q, q′) = 1
ÑF (q2)

∑
A

∫
p

ḡA(−q, q−q′−p, q′, p)/qOAψ(q−q′−p)ψT(p)OT
A (2.18b)

(
P−1
k Fk

)
ψ̄ψ

(q, q′) = 1
ÑF (q2)

∑
A

∫
p

ḡA(q−q′−p,−q, p, q′)/qTOT
Aψ̄

T(−q+q′+p)ψ̄(−p)OA (2.18c)

(
P−1
k Fk

)
ψ̄ψ̄

(q, q′) = 1
ÑF (q2)

∑
A

∫
p

[
ḡA(q−q′−p, p, q′,−q)ψ̄(−q+q′+p)OAψ(p)/qTOT

A

−ḡA(q−q′−p,−q, q′, p)/qTOT
Aψ̄

T(−q+q′+p)ψT(p)OT
A

]
.

(2.18d)

To extract the flow equations of the couplings ḡA, we have to evaluate the diagonal elements of
the square of this expression and add them (with the additional fermionic minus sign) to obtain
the supertrace of (P−1

k Fk)2. After some algebra as well as relabeling and shifting of momenta, we

19



a.

p2

p1

p3

p4
q

q+p3+p4

b.

p2

p1

p3

p4

q
q+p2+p3

c.

p2

p1

p4

p3

q
q+p2+p4

Figure 4: Feynman diagrams for the three channels of regularized one-loop processes contributing to the
RG flow of a generic four-fermion interaction vertex. The shaded boxes denote the regulator insertions.
By convention, the three channels are parametrized in terms of the Mandelstam variables, which encode
the momenta transferred across the loops. Diagram (a) corresponds to the s-channel, diagram (b) to the
t-channel, and diagram (c) to the u-channel.

find

STr
[
(P−1

k Fk)2]
= − 2

Ñ2

∫
q,p2,p3,p4

[
F (q2)

]−1∑
A,B

[ [
F (q′2)

]−1
ḡA(p1, p2, q

′,−q)ḡB(q,−q′, p3, p4)

×Nf tr(/q′OA/qOB) ψ̄(−p1)OAψ(p2) ψ̄(−p3)OBψ(p4)
∣∣∣
q′=q+p3+p4

−
[
F (q′2)

]−1
ḡA(p1, p2, q

′,−q)ḡB(p3,−q′, q, p4)

×ψ̄(−p1)OAψ(p2) ψ̄(−p3)OB/q′OA/qOBψ(p4)
∣∣∣
q′=q+p3+p4

−
[
F (q′2)

]−1
ḡB(p1, p2, q

′,−q)ḡA(p3,−q′, q, p4)

×ψ̄(−p1)OBψ(p2) ψ̄(−p3)OA/q′OB/qOAψ(p4)
∣∣∣
q′=q+p3+p4

−
[
F (q′2)

]−1
ḡA(p1, q

′,−q, p4)ḡB(−q′, p2, p3, q)

×ψ̄(−p1)OA/q′OBψ(p2) ψ̄(−p3)OB/qOAψ(p4)
∣∣∣
q′=q+p2+p3

+
[
F (q′2)

]−1
ḡA(p1, q′, p3,−q)ḡB(−q′, p2, q, p4)

×ψ̄(−p1)OB/q′OAψ(p2) ψ̄(−p3)OB/qOAψ(p4)
∣∣∣
q′=q+p2+p4

]
.

(2.19)
This result discloses the general one-loop structure of the Wetterich equation for the considered
diagrams. There are four interacting fermions with momenta p1 through p4. The one-loop process
features two interactions, each of which pairs up two external and two loop fermions as can be
seen from the arguments entering the coupling functions. Between these two interactions, the loop
fermions are propagated by the /p/F (p2) factors for p = q, q′, which are just the regularized fermion
propagators.

Interaction channels and diagram functionals. Eq. (2.19) reveals that there are in principle four
types of diagrams or channels contributing to the flow of the four-fermion vertices. They are
characterized by the momentum transferred across the loop and can be parametrized conveniently
in terms of the Mandelstam variables [96]

s := (p1 + p2)2 = (p3 + p4)2 , t := (p1 + p4)2 = (p2 + p3)2 , u := (p1 + p3)2 = (p2 + p4)2 . (2.20)

These interaction channels are depicted in Fig. 4. Note that our definition (2.20) of the Mandelstam
variables differs from the standard (see, e.g., Ref. [1]) due to the fact that we defined all momenta
as incoming whereas the classical definition assumes two incoming and two outgoing particles.
Equality is achieved by letting p3 −→ −p3, p4 −→ −p4.

By convention, we associate the s-channel with those interactions that involve at least one fully con-
tracted pair of spinors ψ̄ψ entering the vertex, i.e. either (or both) of ψ̄(p1)ψ(p2) and ψ̄(p3)ψ(p4).

20



In fact the s-channel process in Fig. 4a can happen in two ways, depending on whether or not the
incoming particles form composite states (i.e. a contracted pair of Dirac spinors). In the first vari-
ant, corresponding to the first term of the integral in Eq. (2.19), there are two incoming composite
states, whereas in the second variant, given by the second and third terms in Eq. (2.19), there
are one composite state and two individual fermions interacting. The fourth term in Eq. (2.19)
corresponds to a t-channel interaction as shown in Fig. 4b, and the last term describes a u-channel
process, depicted in Fig. 4c.

In order to formalize these observations, we introduce diagram functionals that parametrize the
processes mathematically. These will be defined in terms of the dimensionless quantities introduced
above, hence we switch to dimensionless momenta and couplings as well as renormalized fields.
Taking the ∂̃t derivative of the supertrace in Eq. (2.19) then leads to

∂̃t STr
[
(P−1

k Fk)2](−1
4

)
k2(d+1)

= 1
2Ñ

∫
q,p2,3,4

∑
A,B

[
−bs2[gA, gB ](pi, q)Nf tr(/q′OA/qOB) ψ̄(−p1)OAψ(p2) ψ̄(−p3)OBψ(p4)

∣∣∣
q′=q+p3+p4

+ bs1[gA, gB ](pi, q) ψ̄(−p1)OAψ(p2) ψ̄(−p3)OB/q′OA/qOBψ(p4)
∣∣∣
q′=q+p3+p4

+ bs1[gB , gA](pi, q) ψ̄(−p1)OBψ(p2) ψ̄(−p3)OA/q′OB/qOAψ(p4)
∣∣∣
q′=q+p3+p4

+ bt[gA, gB ](pi, q) ψ̄(−p1)OA/q′OBψ(p2) ψ̄(−p3)OB/qOAψ(p4)
∣∣∣
q′=q+p2+p3

− bu[gA, gB ](pi, q) ψ̄(−p1)OB/q′OAψ(p2) ψ̄(−p3)OB/qOAψ(p4)
∣∣∣
q′=q+p2+p4

]
.

(2.21)
The diagram functional integrands bm are a precursor of the desired diagram functionals. To specify
their definition, we need to introduce the threshold kernel, which encodes the propagation of loop
fermions and is given by
a1
a2
K

(F )
1 (p, q; η)

:=

 (a1 + a2)q2 + a1(q · p)− a2
(q·p)2

p2

q2(q + p)2

 ∂tr1(q2)− η(q2)r1(q2)
[1 + r1(q2)]2 [1 + r1([q + p]2)]

∼

q

q + p

,
(2.22)

where p is the momentum transfer and q the loop momentum. The precise meaning of the parame-
ters a1 and a2 will become clear later when we derive the flow equations of specific models. Roughly
speaking, they correspond to different momentum modes in the propagation of loop fermions. The
threshold kernel is a momentum-dependent generalization of the threshold function `

(F )
1 familiar

from the pointlike limit (see, e.g., Ref. [32]). The connection is established by the relation∫
q

a1
a2
K

(F )
1 (0, q; η) = 2vd

(
a1 + d− 1

d
a2

)
`
(F )
1 (0; η) , (2.23)

which is verified straightforwardly using relation (B.9) for integrals of spherically symmetric func-
tions. The diagram functional integrands occurring in Eq. (2.21) are then defined by

bs2[g1, g2; η](pi, q) := 1
Ñ

0
0K

(F )
1 (p3+p4, q; η)

[
g1(p1, p2, q

′,−q)g2(q,−q′, p3, p4)

+ (q ←→ −q′)
]
q′=q+p3+p4

, (2.24a)

bs1[g1, g2; η](pi, q) := 1
Ñ

0
0K

(F )
1 (p3+p4, q; η)

[
g1(p1, p2, q

′,−q)g2(p3,−q′, q, p4)

+ (q ←→ −q′)
]
q′=q+p3+p4

, (2.24b)

bt[g1, g2; η](pi, q) := 1
Ñ

0
0K

(F )
1 (p2+p3, q; η)

[
g1(p1, q

′,−q, p4)g2(−q′, p2, p3, q)

+ (q ←→ −q′)
]
q′=q+p2+p3

, (2.24c)
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bu[g1, g2; η](pi, q) := 1
Ñ

0
0K

(F )
1 (p2+p4, q; η)

[
g1(p1, q

′, p3,−q)g2(−q′, p2, q, p4)

+ (q ←→ −q′)
]
q′=q+p2+p4

. (2.24d)

The notation “+ (q ←→ −q′)” here means that all previous terms on the same bracket level have
to be added with q and −q′ interchanged. The link to the diagrams of Fig. 4 is evident if we
associate g1 with the left or top vertex and g2 with the right or bottom vertex. The definitions
(2.24) merely follow the flow of momenta through the vertices g1 and g2, propagating the loop
momenta via the threshold kernel.

The remaining step in the derivation of flow equations is now to project the four-fermion vertices
in Eq. (2.21) onto the ones present in the ansatz (2.9) for the effective average action that describes
the desired model. Seeing as this requires knowledge of the precise form of the Dirac matrices OA
and is thus model-specific, we cannot advance much further within the general setting proposed for
this section. Nevertheless, at least for the models studied in this thesis, the individual processes
contributing can all be expressed in terms of the diagram functionals

a1
a2
Bm[g1, g2; η](pi) :=

∫
q

[
(a1 + a2)q2 + a1(q · pm)− a2

(q · pm)2

(pm)2

]
bm[g1, g2; η](pi, q) , (2.25)

where m stands for any of the interaction channels s2, s1, t, u, and pm is the momentum transfer
vector of the m-channel, i.e. ps = p3+p4, pt = p2+p3, pu = p2+p4. Note that the additional factor
in front of the bm integrands is just the mode-selecting term of the threshold kernel (2.22), and the
values of a1 and a2 are determined from the products and traces of Dirac matrices in Eq. (2.21).
We can therefore rewrite the diagram functionals without reference to the bm as

a1
a2
Bs2[g1, g2; η](pi) = 1

Ñ

∫
q

a1
a2
K

(F )
1 (p3+p4, q; η)

[
g1(p1, p2, q

′,−q)g2(q,−q′, p3, p4)

+ (q ←→ −q′)
]
q′=q+p3+p4

, (2.26a)

a1
a2
Bs1[g1, g2; η](pi) = 1

Ñ

∫
q

a1
a2
K

(F )
1 (p3+p4, q; η)

[
g1(p1, p2, q

′,−q)g2(p3,−q′, q, p4)

+ (q ←→ −q′)
]
q′=q+p3+p4

, (2.26b)

a1
a2
Bt[g1, g2; η](pi) = 1

Ñ

∫
q

a1
a2
K

(F )
1 (p2+p3, q; η)

[
g1(p1, q

′,−q, p4)g2(−q′, p2, p3, q)

+ (q ←→ −q′)
]
q′=q+p2+p3

, (2.26c)

a1
a2
Bu[g1, g2; η](pi) = 1

Ñ

∫
q

a1
a2
K

(F )
1 (p2+p4, q; η)

[
g1(p1, q

′, p3,−q)g2(−q′, p2, q, p4)

+ (q ←→ −q′)
]
q′=q+p2+p4

. (2.26d)

Having established these definitions, the quantum fluctuations contributing to the flow equation
(2.14) can be written as a linear combination of diagram functionals, so that the overall general
form of the four-fermion coupling flow equation is

∂tgC(pi) =
[
d− 2 + 2η(4)(p2

i )
]
gC(pi) +

4∑
j=1

pj ·∇pjgC(pi) +
∑
A,B

∑
m

aCABm,1

aCABm,2
Bm[gA, gB ; η](pi) . (2.27)

For the theories considered in Sections 3 and 4, the factors aCABm,1/2 are worked out in detail in
Appendix B.3.

Pointlike limit. An important special case known as the pointlike limit is the one of constant
coupling, for which diverse models of this type have already been studied in an FRG context.
Setting pi ≡ 0 and using the relation (2.23), we conclude that all diagram functionals reduce to
the same limit,

a1
a2
Bm[g1, g2; η](0) = 4vd

Ñ

(
a1 + d− 1

d
a2

)
`
(F )
1 (0; η) g1g2 . (2.28)
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Hence the flow equation (2.27) becomes

∂tgC = (d− 2) gC + 4vd
Ñ
`
(F )
1 (0; 0)

∑
A,B

∑
m

(
aCABm,1 + d− 1

d
aCABm,2

)
gAgB , (2.29)

where we used that the anomalous dimension vanishes for pointlike, purely fermionic interactions
at this level of the truncation, as will become clear in the next section.

2.3 Anomalous dimension function

The anomalous dimension function expresses deviations from the canonical scaling of the propa-
gator. By its definition (2.10), it describes the flow of the wave function renormalization, and we
can use the Wetterich equation to relate it to the coupling functions.

Projection of the flow equation at second order in the fields. From the left-hand side of
Eq. (1.17), we find

∂tΓk[ψ, ψ̄] = −
∫
p

[
∂tZ(p2)

]
ψ̄(p)/pψ(p) +O

(
[ψ̄ψ]2

)
=
∫
p

η(p2)Z(p2)ψ̄(p)/pψ(p) +O
(
[ψ̄ψ]2

)
(2.30)

While the renormalization of four-fermion vertices required the evaluation of the supertrace on the
right-hand side of Eq. (1.17) at fourth order in the fields, the anomalous dimension is governed by
diagrams of second order in the fields. We thus take the supertrace of Eq. (2.18) and obtain

STr
[
P−1
k Fk

]
= 2
Ñ

∫
p,q

1
F (q2)

∑
A

[
ḡA(−p, p,−q, q)Nf tr(/qOA)ψ̄(p)OAψ(p)

+ḡA(−p,−q, q, p) ψ̄(p)OA/qOAψ(p)
]
.

(2.31)

Next we evaluate the ∂̃t-derivative and switch to dimensionless momenta and couplings as well as
renormalized fields again, such that

1
2 ∂̃t STr

[
P−1
k Fk

]
= −k

d+1

Ñ

∫
p,q

∂tr1(q2)− η(q2)r1(q2)
Z(p2)−1q2 [1 + r1(q2)]2

∑
A

[
gA(−p, p,−q, q)Nf tr(/qOA)ψ̄(p)OAψ(p)

+gA(−p,−q, q, p) ψ̄(p)OA/qOAψ(p)
]
.

(2.32)
To extract a relation for η, we have to compare this to the left-hand side of Eq. (2.30), which
becomes

∂tΓk[ψ, ψ̄] = kd+1
∫
p

Z(p2)η(p2)ψ̄(p)/pψ(p) +O
(
[ψ̄ψ]2

)
(2.33)

after rescaling of fields and momenta. To project out the relevant contributions, we take the second
functional derivative and multiply by the momentum argument /P , leading to

k−d−1

Z(P 2)
/P

−→
δ

δψ̄(P )
∂tΓk[ψ, ψ̄]

←−
δ

δψ(P ′)

∣∣∣∣∣
ψ,ψ̄=0

= (2π)dδ(P − P ′) η(P 2)P 21γ , (2.34)

where 1γ denotes the identity matrix in Dirac space. Let us perform the same transformation steps
on Eq. (2.32). Here we obtain

k−d−1

Z(P 2)
/P

−→
δ

δψ̄(P )
1
2 ∂̃t STr

[
P−1
k Fk

] ←−
δ

δψ(P ′)

∣∣∣∣∣
ψ,ψ̄=0

= − (2π)dδ(P − P ′)
Ñ

∫
q

∂tr1(q2)− η(q2)r1(q2)
q2 [1 + r1(q2)]2

∑
A

[
gA(−P, P,−q, q)Nf tr(/qOA)/POA

+gA(−P,−q, q, P ) /POA/qOA
]
.

(2.35)
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pp
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Figure 5: Self-energy diagram encoding the contributions from the four-fermion coupling that enter the
anomalous dimension function.

Using the orthogonality property (2.5), we can pick out the contribution proportional to the iden-
tity, so that a comparison of (2.34) and (2.35) yields

η(p2) = − 1
Ñ

∫
q

∂tr1(q2)− η(q2)r1(q2)
p2q2 [1 + r1(q2)]2

∑
A

[
Nf tr(/qOA)

tr(/pOA)
dγ

gA(−p, p,−q, q)

+
tr(/pOA/qOA)

dγ
gA(−p,−q, q, p)

]
.

(2.36)

The remaining Dirac-space traces on the right-hand side must then be evaluated for the particular
model under study.

Self-energy diagram functionals. We can compactify the notation similarly to the case of the
coupling functions by introducing diagram functionals for the two processes in Eq. (2.36). A
pictorial representation is shown in Fig. 5. Due to Lorentz invariance, the Dirac traces in Eq. (2.36)
will reduce to terms proportional to p · q. The self-energy diagram functionals are given by

Σ1[g; η](p2) := − 1
Ñ

∫
q

(
q · p
q2p2

)
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
g(−p,−q, q, p) , (2.37a)

Σ2[g; η](p2) := − 1
Ñ

∫
q

(
q · p
q2p2

)
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
g(−p, p,−q, q) . (2.37b)

Observe that due to Lorentz invariance, these can only depend on p2 even though the vector
quantities enter on the right-hand side. With this definition, the anomalous dimension function in
its general form can be written as

η(p2) =
∑
A

{
aA1 Σ

1[gA; η](p2) + aA2 Σ
2[gA; η](p2)

}
, (2.38)

where the coefficients aA1 and aA2 are obtained from the Dirac traces in Eq. (2.36). In the pointlike
limit, where g does not depend on the external momenta, the integrand is odd in q so that both
diagram functionals vanish and consequently η = 0.

* * *

Our abstract analysis of momentum-dependent four-fermion interactions in this section revealed
that there are in general four different types of processes or diagrams in terms of which the four-
fermion vertices mutually contribute to their RG flows. We characterized them by the associated
momentum transfer across the β function fermion loop and labeled them by the corresponding
Mandelstam variables s, t, and u. As for the s-channel, we found in fact two distinct diagrams
involving either one or two composite states of fermions, respectively. Regarding the general-
ized anomalous dimension, we observed that there exist in principle two different diagrams by
which the four-fermion vertices contribute, involving either contracted or uncontracted propagat-
ing fermions.

In the following, we will apply these general findings to the Gross-Neveu and Thirring models,
which were already briefly touched during the discussion of symmetries in the beginning of this
section. We will begin with the Gross-Neveu model in the next section, which is the simplest type
of four-fermion models and can serve as a testbed for the explicit analysis of momentum-dependent
interactions.
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3 Gross-Neveu model

The Gross-Neveu model [14] is a massless fermion system with a scalar four-fermion interaction,
described by the microscopic action

S[ψ, ψ̄] =
∫

ddx
[
ψ̄(x)i/∂ψ(x) + ḡ

2Nfdγ

(
ψ̄(x)ψ(x)

)2] (3.1)

= −
∫
p

ψ̄(p)/pψ(p) +
∫
pi

ḡ

2Nfdγ
ψ̄(−p1)ψ(p2)ψ̄(−p3)ψ(p4) (2π)dδ(p1+p2+p3+p4). (3.2)

Originally introduced in its (1+1)-dimensional form as a toy model for QCD [14], it has since
been studied in a variety of contexts. Here we will be mostly interested in the (2+1)-dimensional
version, which has been used to examine, e.g., models of graphene [15, 17–20] and high-temperature
superconducting cuprates [21] in condensed matter physics, or asymptotic safety scenarios [30] and
spontaneous chiral symmetry breaking [26, 27] in high-energy physics. Despite being the simplest
model of four-fermion interactions, it has some intriguing properties and most notably a nontrivial,
critical RG fixed point. In the following, we will mainly investigate its UV physics as sketched in
the previous sections.

3.1 Flow of the four-point function

Effective action. We promote the couplings to functions of the external momenta, thus estab-
lishing a vertex expansion of the effective action. Moreover, we assume a momentum-dependent
wave function renormalization again. Our ansatz for the effective average action in this section
then reads

Γk[ψ, ψ̄] = −
∫
p

Z(p2)ψ̄(p)/pψ(p) +
∫
p2,p3,p4

ḡ(p1, p2, p3, p4)
2Ñ

ψ̄(−p1)ψ(p2)ψ̄(−p3)ψ(p4) . (3.3)

In principle, all the other vertices (2.3) compliant with the symmetries of the Gross-Neveu model
will also be generated by the RG flow. In the pointlike approximation, it is a peculiarity of the
Gross-Neveu vertex that this does in fact not happen when starting from a pure Gross-Neveu
action like (3.3), i.e. the Gross-Neveu vertex forms an invariant subspace [31, 32, 95]. Although
this changes for momentum-dependent interactions, the corrections are very small and will be
explored in more detail in Section 4. For the time being, we stick with the reduced ansatz (3.3).

Flow equation. Plugging our ansatz (3.3) into the Wetterich equation (1.13), we can extract a
flow equation for the dimensionless coupling function g according to the procedure described in
Section 2.2. A detailed derivation is presented in Appendix B.3. We obtain

∂tg(pi) =
[
d− 2 + 2η(4)(p2

i ) +
∑

j
pj · ∇pj

]
g(pi)− Ñ

0B
s2[g, g; η](pi) + 2

0B
s1[g, g; η](pi) . (3.4)

At this point, we already notice that only the s-channel contributes to the flow of the Gross-
Neveu coupling, although this is another peculiarity of the truncation and will change when we
incorporate other interaction vertices (cf. Section 4). In a similar fashion, the Wetterich equation
implies a relation between the generalized anomalous dimension and the coupling function as shown
in Section 2.3. The computational details are collected in Appendix B.4, and we find that

η(p2) = − 1
Ñ

∫
q

p · q
p2q2

∂tr1(q2)− η(q2)r1(q2)
[1 + r1(q2)]2

g(−p,−q, q, p) = Σ1[g; η](p2) . (3.5)

Eqs. (3.4) and (3.5) form a system of coupled integro-differential equations, whose general solution
is unfortunately not known to us. Nevertheless, reducing its complexity by assuming certain
dominant interaction channels will allow us to compute fixed point solutions and critical exponents
of the momentum-dependent model.
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g*

b.

Figure 6: (a) Sketch of the β function of the Gross-Neveu coupling in the pointlike limit with arrows
indicating the flow towards the infrared. Besides the Gaussian, there is one more nontrivial fixed point
at some finite value g∗ > 0; (b) effective four-fermion coupling at the Gross-Neveu fixed point in the
bosonized formulation with d = 3, Ñ = 8 as a function of the Mandelstam variable s.

Pointlike limit. The simplest approximation possible is of course the one of constant coupling,
meaning that g does not depend on the external momenta. As shown in Eq. (2.29), this leaves us
with the so-called pointlike limit, where η = 0 and

∂tg = (d− 2)g − 4vd`(F )d
1 (0; 0)Ñ − 2

Ñ
g2 . (3.6)

This β function is plotted in Fig. 6a. To extract fixed points of the model, we set the left-hand
side to zero. Besides the trivial Gaussian fixed point, we find another, nontrivial fixed point where
the coupling takes the value

g∗ = d− 2
4vd`(F )d

1 (0; 0)
Ñ

Ñ − 2
. (3.7)

Solving the linearized flow equation as described in Section 1.3, we find the associated critical
exponent θ = d− 2. Hence the fixed point is IR-relevant in d > 2, as already apparent from the β
function in Fig. 6a. On the other hand, the critical exponent of the Gaussian fixed point is 2− d.
Thus the nontrivial fixed point separates two different IR regimes, namely a weakly interacting one
for theories starting at g < g∗ and a strongly interacting one for g > g∗, where in particular the
chiral symmetry may be broken dynamically.

Let us point out once again that within the present truncation, only s-channel processes contribute
to the flow of the Gross-Neveu coupling. In the next section, we will show that the s-channel is also
the type of momentum dependence restored in a partially bosonized formulation of the pointlike
model. Hence we will investigate the reduction of Eq. (3.4) to a pure s-channel dependence in great
detail in the ensuing sections. Within this approximation, we will be able to solve the associated
fixed point equation numerically and compute the corresponding spectra. In the limit of large Nf,
we will even be able to derive the nontrivial fixed point solution and its spectrum analytically.

3.2 Partial bosonization

Before we study the momentum-dependent, purely fermionic model further, let us quickly sum-
marize some literature results [19, 26, 27, 30, 61, 72] from derivative expansions in a partially
bosonized version of the action (3.2). As we will see, this procedure allows one to partially recover
the momentum dependence of the four-fermion vertex. Moreover, it gives direct access to the
chiral condensate 〈ψ̄ψ〉, making it particularly useful to address questions of dynamical symmetry
breaking.
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Hubbard-Stratonovich transformation. Correlation functions of the purely fermionic Gross-Neveu
model (3.1) take the form

〈A〉 =
∫
DψDψ̄ A exp

{
−
∫

ddx
[
ψ̄i/∂ψ + ḡ

2Ñ
(
ψ̄ψ
)2]}

, (3.8)

where A is an arbitrary operator of the fields ψ, ψ̄. Here and in the following, we assume the
integration measure to be properly normalized, such that 〈1〉 = 1. Introducing a scalar, real-
valued auxiliary field φ, we can equivalently express the correlator as

〈A〉 =
∫
DφDψDψ̄ A exp

{
−
∫

ddx
[
ψ̄i/∂ψ + 1

2m̄
2φ2 + ih̄ψ̄φψ

]}
. (3.9)

Indeed, we can formally perform the Gaussian integral over φ in this equation and get back (3.8)
upon identifying ḡ = Ñ h̄2/m̄2. The step from Eq. (3.8) to Eq. (3.9) is known as a Hubbard-
Stratonovich transformation [97, 98]. On the microscopic level, our model can thus be described
equivalently by a mixed fermionic and bosonic theory characterized by the action

S[φ, ψ, ψ̄] =
∫

ddx
[
ψ̄(x)i/∂ψ(x) + 1

2m̄
2φ(x)2 + ih̄ ψ̄(x)φ(x)ψ(x)

]
(3.10)

=
∫
p

[
1
2m̄

2φ(−p)φ(p)− ψ̄(p)/pψ(p)
]

+
∫
p,p′

ih̄ψ̄(−p)φ(−p− p′)ψ(p) . (3.11)

Effective average action and flow equations. In the action (3.11), the field φ does not come with
a kinetic term and is purely static. However, such a term will be created by the renormalization
group flow as the scale k is lowered, and the auxiliary field φ will exhibit its own dynamics. As a
matter of fact, it will eventually become the relevant degree of freedom in the IR regime, where
it becomes the above mentioned order parameter for chiral symmetry breaking. Regarding our
current interest in studying the momentum-dependent Gross-Neveu interaction, promoting φ to
a dynamical field in the effective average action will allow it to carry momentum between pairs
of ψ̄ψ. This induces a momentum dependence of the resulting effective four-fermion interaction
whose precise form we will investigate below. Therefore, our truncation of the effective average
action for the partially bosonized model takes the form

Γk[φ, ψ, ψ̄] =
∫
p

[
1
2φ(−p)

(
Zφp

2 + m̄2)φ(p)− Zψψ̄(p)/pψ(p)
]

+
∫
p,p′

ih̄ψ̄(−p)φ(−p− p′)ψ(p′) .

(3.12)

This corresponds to the Gross-Neveu-Yukawa model in the improved local potential approximation
(LPA’), where we only keep the very lowest order of the effective potential, namely the mass term
m̄2φ2/2. Of course, in order to increase precision, one would have to include higher truncations
of the effective potential [30] or higher-order derivatives [61], but the present form suffices for the
argument we are going to make.

Substituting the ansatz (3.12) into the Wetterich equation (1.13) leads to the β functions for the
dimensionless coupling constants m2 := k−2Z−1

φ m̄2 and h := k
d−4

2 Z
−1/2
φ Z−1

ψ h̄ [30, 72],

∂tm
2 = (−2 + ηφ)m2 + 4vd`(F )d

1 (0; ηψ) Ñ h2 , (3.13a)

∂th
2 = (d− 4 + ηφ + 2ηψ)h2 + 8vd`(FB)d

1,1 (0, m̃2; ηψ,k, ηφ,k)h4 . (3.13b)

We also find the following relations for the anomalous dimensions of the boson and fermion fields:

ηφ := −∂t lnZφ = 8vd
d
Ñ m

(F )d
4 (0, ηψ)h2 , (3.14)

ηψ := −∂t lnZψ = 8vd
d
m

(FB)d
1,2 (0,m2; ηψ, ηφ)h2 . (3.15)

For the threshold functions `(FB···)n1n2··· and m
(FB···)
n1n2··· , which encode the regularized propagation of

virtual loop particles, we use the definitions and conventions of Ref. [32] again.
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Fixed points. In order to find fixed points of the renormalization group flow, we set the left-hand
sides of Eqs. (3.13a) and (3.13b) to zero and solve them together with Eqs. (3.14) and (3.15) for
the anomalous dimensions. Besides the trivial Gaussian fixed point, we find a second, nontrivial
fixed point with positive mass and Yukawa coupling. For instance, in d = 3 with Nf = 2 and
dγ = 4 using the linear regulator (1.10) we obtain

m2
∗ = 0.5168 , h2

∗ = 2.344 , ηφ,∗ = 0.7829 , ηψ,∗ = 0.0277 . (3.16)

Connection to the purely fermionic formulation. On the level of bare actions (3.2) and (3.11),
we observed above that the connection between the fermionic and partially bosonized descriptions
is made by identifying ḡ = Ñ h̄2/m̄2. This relation is expected to receive modifications due to
the boson dynamics. To quantify them, we compute the equations of motion of the boson field,
δΓk/δφ(q) = 0, and find

φ(−q) = − ih̄k
Zφ,kq2 + m̄2

k

∫
p

ψ̄(q + p)ψ(p). (3.17)

Plugging this back into the Gross-Neveu-Yukawa action (3.12), we obtain a mean field approxima-
tion of the same structure as the fermionic Gross-Neveu action:

Γk[ • , ψ, ψ̄] ' −
∫
p

Zψψ̄(p)/pψ(p)

+ 1
2

∫
p2,p3,p4

h̄2

Zφ(p3 + p4)2 + m̄2 ψ̄(p2+p3+p4)ψ(p2)ψ̄(−p3)ψ(p4) .
(3.18)

Comparing to the purely fermionic description, we see that we need to identify

ˆ̄g = Ñ h̄2

Zφ(p3 + p4)2 + m̄2 or, in dimensionless quantities, ĝ(s) = Ñh2

s +m2 , (3.19)

in order to reach equality. Thus the bosonized formulation indeed enhances the pointlike interaction
by a transfer of momentum across the s-channel. For the fixed point parameters (3.16), the resulting
coupling function is plotted in Fig. 6b.

3.3 s-Channel approximation

In its most general form, the coupling g will be a function of up to six linearly independent Lorentz
invariants. However, of all possible choices, the Mandelstam variable s = (p1 + p2)2 = (p3 + p4)2

stands out for two reasons. On the one hand, we saw in Section 3.1 that it is the only contribution
from the external momenta entering the loops in (3.4). In our present truncation, the t- and u-
channels are suppressed. On the other hand, it is the natural encoding of momentum dependence
in the bosonized model featuring a Gross-Neveu-Yukawa coupling [72], as we showed in Section 3.2.
In the remainder of this section, we will therefore consider a coupling function g = g(s).

Diagram functionals and momentum configurations. First, let us have a look at the diagram
functionals (2.26) again and work out what they become in the s-channel approximation. We
choose the coordinate system for the loop integrals such that pm points along the z-axis and switch
to spherical coordinates. The threshold kernel a1

a2
K

(F )
1 defined in Eq. (2.22) then only depends on

the square of the momentum transfer and the angle between q and p, which we parametrize as
u := cos^(p, q). Absorbing an additional factor of 1/(2π)d, we define the abbreviation

a1
a2
K(m, q, u; η) := 1

(2π)d

[
(a1+a2)q2 + a1q

√
mu− a2q

2u2

q2(q2+m+2q
√
mu)

]
× ∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
[
1 + r1(q2+m+2q

√
mu)

] (3.20)

for the threshold kernel. In an abuse of notation, we use the same symbol q for both the loop
momentum vector and its magnitude, but the meaning should be clear from the context and can
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a. b. c. d.

Figure 7: Example momentum configurations used in the computation of loop integrals in the s-channel
approximation. All momenta have equal magnitude. In the parallel configuration (a), the momenta are
aligned along the same direction. In the two orthogonal configurations (b) and (c), all momenta lie in
one plane (the x-z plane), and one of the Mandelstam variables t or u vanishes. We refer to (b), where
u = 0, as the t-favored, and to (c) with t = 0 as the u-favored orthogonal configuration. In the symmetric
configuration (d), the angle between any two momentum vectors is the same, known as the tetrahedral
angle arccos(− 1

3 ) ≈ 109.47◦.

be read off the measure of the associated loop integral. If the coupling functions depend solely on
s, the diagram functionals become

a1
a2
Bs2[g1, g2; η](pi) = 2

Ñ
g1(s)g2(s)σd−2

∫
d(q, u) a1

a2
K(s, q, u; η) , (3.21a)

a1
a2
Bs1[g1, g2; η](pi) = 1

Ñ
g1(s)

∫
d(q, u,Ω) a1

a2
K(s, q, u; η)

[
g2
(
[q + p3]2

)
+ g2

(
[q + p4]2

)]
, (3.21b)

a1
a2
Bt[g1, g2; η](pi) = 1

Ñ

∫
d(q, u,Ω) a1

a2
K(t, q, u; η)

×
[
g1
(
[q − p1]2

)
g2
(
[q + p2]2

)
+ g1

(
[q − p4]2

)
g2
(
[q + p3]2

)]
, (3.21c)

a1
a2
Bu[g1, g2; η](pi) = 1

Ñ

∫
d(q, u,Ω) a1

a2
K(u, q, u; η)

×
[
g1
(
[q − p1]2

)
g2
(
[q + p2]2

)
+ g1

(
[q − p3]2

)
g2
(
[q + p4]2

)]
. (3.21d)

For the measure of integration, we introduced the shorthand∫
d(q, u,Ω) ≡

∫ ∞
0

dq qd−1
∫ 1

−1
du (1− u2)

d−3
2

∫
Sd−2

dΩ (3.22)

with Ω being the solid angle of the (d − 2)-dimensional unit sphere. We also defined σd :=
2π(d+1)/2/Γ (d+1

2 ) as the surface of the d-dimensional unit sphere.

We observe that the s1, t, and u diagram functionals are not closed under the reduction to pure
s-channel dependence. Via the arguments entering g under the integral sign, there remains a
dependence on other Lorentz invariant combinations of the external momenta, which we fix by
choosing a particular configuration for them. To ensure meaningfulness of the approximation,
results should of course be stable upon variation of the configuration. We will address this issue
again in Section 3.5. In particular, we will use the four configurations depicted in Fig. 7, which
are chosen in order to work out the influences of the different channels as clearly as possible. The
magnitude of all momenta is the same in any of them, p2

i = p2 = s
2+2 cos^(p3,p4) . In the parallel

configuration in Panel (a), t = u = 0, leading to the “purest” s-dependence. The orthogonal
configurations in Panels (b) and (c) accentuate either of the t- or u-channels against the other: In
the t-favored configuration (b), we have t = s and u = 0, whereas in the u-favored one (c), t = 0
and u = s. In the symmetric configuration in Panel (d), the angle between any two momentum
vectors is the same, i.e. cos^(pi, pj) = − 1

3 (i 6= j), so that s = t = u.

As far as the self-energy diagram functionals (2.37b) are concerned, we notice that Σ2 ≡ 0 in the
s-channel approximation. For the other diagram we obtain

Σ1[g; η](p2) = 1
Ñ

∫
q

M(p2, q, u; η)g
(
q2 + p2 + 2q

√
p2u
)

(3.23)
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with kernel

M(p2, q, u; η) := − σd−2

(2π)d

(
u√
p2q

)
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
. (3.24)

We remark that there is no ambiguity regarding the momentum configuration here because the self-
energy depends on one parameter p2 only and is therefore closed under the s-channel reduction.

Flow equations. Plugging in the diagram functionals in the s-channel approximation, the flow
equation (3.4) for the Gross-Neveu coupling reads

∂tg(s) =
[
d− 2 + 2η(4)(p2

i )
]
g(s) + 2sg′(s)

− 2
Ñ
g(s)

∫
d(q, u,Ω) 1

0K(s, q, u; η)
[
Ñ g(s)− g([q+p3]2)− g([q+p4]2)

]
.

(3.25)

Similarly, we apply the s-channel reduction of g to Eq. (3.5) for the anomalous dimension function
and obtain

η(p2) = 1
Ñ

∫
d(q, u)M(p2, q, u; η) g

(
q2 + p2 + 2q

√
p2u
)
. (3.26)

Finding and characterizing renormalization group fixed points of the system defined by these two
coupled integro-differential equations will be our aim in the next two sections. In the limit of
infinite flavor number Nf, we will derive the exact analytic solution in Section 3.4. For finite Nf,
unfortunately, we will not be able to solve the associated fixed point equations analytically, but
will compute numerical solutions using pseudospectral methods in Section 3.5. Before we turn to
finding such solutions, we would like to add a few remarks regarding their asymptotic behavior.

Asymptotics of the fixed point solution. Fixed points of the renormalization group flow are
characterized by invariant coupling functions, i.e. ∂tg∗ = 0. As usual, we are interested in nontrivial
fixed point solutions of Eqs. (3.25) and (3.26). To investigate their asymptotics, we first take a
look at the g-kernel (3.20). As s→∞,

a1
a2
K(s, q, u; η) ∼ 1

(2π)d
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
[
1 + r1(q2+s+2q

√
su)
]

×
[
a1u

q
s−1/2 +

(
a1(1− 2u2) + a2(1− u2)

)
s−1

−
(
a1(3− 4u2) + 2a2(1− u2)

)
uqs−3/2

+
(
a1(1− 8u2 + 8u4) + a2(1− 5u2 + 4u4)

)
q2s−2 + . . .

]
(3.27)

Although this relation still depends on the precise form of the regulator shape function rk, we have
rk(x → ∞) = 0 in any case, so that the leading order of the kernel will decay as s−1/2, and in
general all subsequent powers of s−1/2 will occur.

Let us assume that the fixed point coupling g∗ is a bounded function of the Mandelstam variable
s, which is suggested by partial bosonization as well as the large-Nf behavior to be studied in the
next section, and also hinted at by general considerations regarding the large-momentum behavior
of vertex functions [99–102]. For bounded g∗, the above expansion of the kernel implies that the
fluctuation term in (3.25) is suppressed by at least s−1/2 compared to the scaling term. In addition,
the η-kernel M(p2, q, u; η) ∼ (p2)−1/2, cf. Eq. (3.24). Relation (3.26) then tells us that η(p2) → 0
in the limit p2 →∞. All in all, we obtain an asymptotic relation for fixed point solutions g∗,

2sg′∗(s) ∼ (2− d)g∗(s) (s→∞) , (3.28)

which immediately leads to
g∗(s) ∼ s

2−d
2 (s→∞) . (3.29)

This is in contrast to the mean-field result in the partially bosonized formulation, where we found
ĝ∗(s) ∼ s−1 regardless of the dimension, and which only agrees with the above result in d = 4. In
d = 3, which is the case of most interest to us, we get g∗(s) ∼ s−1/2.
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Regarding the anomalous dimension function (3.26), its asymptotic behavior follows from the
asymptotics of the kernel M and the coupling function, implying

η∗(p2) ∼
(
p2) 1−d

2 . (3.30)

In d = 3, we thus have η∗(p2) ∼ p−2.

Connection to the bosonized formulation. Let us quickly come back to the partially bosonized
model and explore how the flow equations (3.13a) and (3.13b) for the boson mass and Yukawa
coupling connect to the purely fermionic flow (3.25) in the s-channel approximation. We already
observed in the previous section that the bosonized formulation studied there encodes some of the
s-channel dependence of the coupling, cf. Eq. (3.19). We can compute the inherited flow of this
effective g-coupling by taking the ∂t-derivative and substituting the β functions (3.13) of m2 and
h2, leading to

∂tĝ(s) = Ñ

[
∂th

2

s +m2 −
h2 ∂tm

2

(s +m2)2

]

=
[
d− 4 + ηφ + 2ηψ + 2− ηφ

1 + s
m2

]
ĝ(s) + 1

Ñ
∂̃t

∫
q

Ñ ĝ(s)2 − 2ĝ(s)ĝ
(
q2[1 + r

(B)
1 (q2)]

)
q2
[
1 + r

(F )
1 (q2)

]2 .

(3.31)
The ∂̃t-derivative here acts on both r

(F )
k and r

(B)
k . In order to reach the purely fermionic limit,

we need to decouple the boson from the theory by letting m2 → ∞ while keeping ĝ fixed. This
leads back to the static Hubbard-Stratonovich transformation (3.11). At the same time, we let
r

(B)
k → 0 because there is no dynamical boson to be regularized any longer. Consequently, we are
left with

∂tĝ(s) = (d− 2 + 2ηψ) ĝ(s) + 1
Ñ
∂̃t

∫
q

1

q2
[
1 + r

(F )
1 (q2)

]2 [Ñ ĝ(s)2 − 2ĝ(s)ĝ(q2)
]
, (3.32)

where the ∂̃t-derivative now acts on r
(F )
k exclusively. Comparing to (3.25), we see that this is

indeed the s-channel flow equation of the purely fermionic model in the limit s � 1. In a similar
fashion, we can re-express relation (3.15) for the fermion anomalous dimension in the bosonized
model in terms of the effective coupling ĝ:

ηψ = 2
Ñ
∂̃t

∫
q

(p · q)2

p2q2

ĝ′
(
q2[1 + r

(B)
1 (q2)]

)
1 + r

(F )
1 (q2)

. (3.33)

At the same time, we can evaluate the anomalous dimension (3.26) in the purely fermionic model
as p2 → 0 and find

η(0) = 2
Ñ
∂̃t

∫
d(q, u) σd−2

(2π)du
2 g′(q2)

1 + r
(F )
1 (q2)

. (3.34)

Letting r
(B)
k → 0 in (3.33) yields a match of both equations, thus establishing the connection

between the purely fermionic and the partially bosonized description also for the anomalous di-
mension function.

3.4 Large-N f limit

Fixed point solution. The limit of infinite flavor number, Nf → ∞ (and hence Ñ → ∞), is a
convenient starting point for the computation of fixed point solutions because it simplifies Eq. (3.25)
dramatically. Considering the flow of g, we observe that only the s2-diagram survives as Ñ →∞.
Moreover, we immediately infer from Eq. (3.26) that η(p2) = 0 in this limit. The flow equation
(3.25) becomes

∂tg(s) = (d− 2)g(s) + 2s g′(s)− 2 a1
a2
K(s) g(s)2 , (3.35)
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where we introduced yet another reduction of the threshold kernel by integrating over the loop
momentum, i.e.

a1
a2
K(s) := σd−2

∫
d(q, u) a1

a2
K(s, q, u; 0) . (3.36)

In the present case, a1 = 1 and a2 = 0 in Eq. (3.35). Nevertheless, we consider the more general
situation with arbitrary (real) a1 and a2 as it will turn out useful later when studying the large-Nf
limit of the Gross-Neveu-Thirring model. The associated fixed point equation is

2s g′∗(s) + (d− 2)g∗(s)− 2 a1
a2
K(s) g∗(s)2 = 0 . (3.37)

The solution of this nonlinear differential equation is

g∗(s) = s−
d−2

2

g∞ +
∫∞
s

dx x−d/2 a1
a2
K(x)

, (3.38)

as can be verified straightforwardly by plugging it back into Eq. (3.37). For the current model,
g∞ > 0 is an a priori arbitrary constant, meaning that we obtain a one-parameter family of
potential fixed-point solutions. In fact, even the value g∞ = 0 leads to a well-defined coupling
function for all s ≥ 0, but its asymptotic behavior changes qualitatively because g∗(s) ∼ s if
g∞ = 0 whereas g∗(s) ∼ s−

d−2
2 if g∞ > 0. For g∞ < 0, due to positivity of the integral, the

expression would develop a pole. At s = 0, we obtain

g∗(0) = d− 2
2 a1
a2
K(0) = d− 2

4vd
(
a1 + d−1

d a2
)
`
(F )
1 (0; 0)

, (3.39)

making use of (2.23) in the second equality. This coincides with the fixed point position for Nf =∞
in the pointlike limit (cf. Eq. (3.7)). For the linear regulator (1.10), the remaining integral in (3.37)
can be evaluated analytically; we will give the solution in d = 3 and for a1 = 1, a2 = 0 here. The
Heaviside function inside the regulator requires us to split the domain into three regions. For
0 ≤ s < 1, we find

g∗(s) = 144π2√s

3(π2(48g∞−3)+1)s−36sLi2(−√s)+4s3/2+6(4s3/2+3s+1) ln(√s+1)−18s2+42
√
s

; (3.40a)

for 1 ≤ s < 4,

g∗(s) = 144π2√s

3(π2(48g∞−3)+1)s−36sLi2(−√s)−4s3/2+24s3/2 ln
(

1√
s

+ 1
s

)
+6s2+18

√
s+6(3s+1) ln(√s+1)+8

; (3.40b)

and for s ≥ 4,

g∗(s) = 24π2√s

2
(

12π2g∞s−6sLi2
(

1√
s

)
+4s3/2 arccoth(1−2s)+5

√
s+(3s+1) arccoth(√s)

)
+3sLi2( 1

s ) . (3.40c)

Arguably, this is not very enlightening at first glance. The symbol Li2 denotes the polylogarithm
of order 2. Example plots of the solution for different choices of g∞ are shown in Fig. 8. An
important observation is that the solution (3.40) is not analytic in s. In particular, expanding
around s = 0, we find

g∗(s) = 3π2 + 9π4

16 (1− 16g∞)s1/2 + 3π2

256
[
9π4(1− 16g∞)− 320

]
s

+ 9π2

4096
[
384− π2(1− 16g∞)

(
640 + 9π4(1− 16g∞)2)] s3/2 +O

(
s2) . (3.41)

Crucially, this is not a peculiarity caused by the non-analyticity of the regulator as one might
think at first sight. Instead, the kernel (3.20) produces half-integer powers of s regardless of the
regulator shape function. The decisive part is the square bracket in the first line of this equation.
We can expand this term around m = s = 0 and obtain

(a1 + a2)q2 + a1q
√
su− a2q

2u2

q2
(
q2 + s + 2q

√
su
) ∼

[
a1 + (1− u2)a2

] 1
q2 −

[
a1 + 2(1− u2)a2

]
u

√
s

q3

−
[
(1− 2u2)a1 + (1− 5u2 + 4u4)a2

] s

q4

+
[
(3− 4u2)a1 + (4− 12u2 + 8u4)a2

]
u
s3/2

q5 +O
(
s2) .

(3.42)
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Figure 8: Large-Nf solutions for the nontrivial fixed point in the Gross-Neveu model for three different
choices of the parameter g∞. The value g∞ = 1

16 stands out because it renders g∗ maximally regular at
s = 0 and defines the pointwise largest solution that does not develop a local maximum for s > 0.

Hence the expansion necessarily involves half-integer powers of the Mandelstam variable s. We
observe that these half-integer powers always come with odd powers of the angular cosine u.
Nevertheless, this does not imply that the terms vanish upon integration because the series (3.42)
is not integrable term-by-term. Rather every additional power of

√
s in the numerator implies a

complementary power of q in the denominator, so that the loop integrals of the individual terms
diverge beyond linear order.

Up to linear order, on the contrary, the integrals are saved by the regulator terms in the second
line of Eq. (3.20). Generically, the fermionic regulator shape function goes like r1(q2) ∼ 1/q for
q2 � 1. The overall contribution of the regulator terms is thus of order q2 for small loop momenta.
Along with the dimensional q2 term from the integration measure, this removes the divergences up
to the order s term in Eq. (3.42). This also explains the maximum regularity property satisfied by
the numerical finite-Nf solutions to be computed below and enforced in the large-Nf limit because
the term of order

√
s then indeed vanishes due to the corresponding integrand being odd in u.

The non-analyticity of g∗ at s = 0 may seem a bit inconvenient because we intuitively connect it
to the pointlike limit. However, we remember that the momentum-dependent couplings render the
interaction nonlocal. Moreover, the variable s itself becomes rather singular as it approaches 0. In
fact, even if s = 0, the external momenta may be arbitrarily large if p3 and p4 (and likewise p1 and
p2) are aligned antiparallel. Due to the angular dependence, there is no direct connection between
the Mandelstam variable s and the magnitude of the external momenta p2

i . In other words, p2
i → 0

for all i implies s→ 0 and s→∞ implies p2
i →∞ for at least one i, but not vice versa.

Nevertheless, it is reasonable to demand a maximum regularity condition for the fixed point so-
lutions by requiring as many derivatives to exist in s = 0 as possible. On the one hand, we will
observe in the next section that this property is automatically satisfied by the numerical solutions
for finite Nf. On the other hand, the integrals over the expanded kernel (3.20) with the expan-
sion (3.42) do converge up to the power s1. In the present case, maximum regularity in this sense
is obtained for g∞ = 1

16 such that the
√
s term vanishes. This is also the smallest value for g∞

such that the fixed point function does not exhibit a local maximum at some finite value s > 0.
The corresponding fixed point function is highlighted in Fig. 8.

Critical exponents. The great importance of renormalization group fixed points stems from the
fact that they constitute the topology of the theory space and separate the different regimes of IR
physics from each other. As we saw in Section 1.3 this is achieved by the relevant and irrelevant
directions associated with the fixed point. To find the critical exponents, we perturb around the
fixed point solution with an ansatz g(s) = g∗(s) + e−θtε(s). Linearizing the flow equation (3.35) in
ε yields the eigenvalue equation

−θε(s) = (d− 2)ε(s) + 2s ε′(s)− 4 a1
a2
K(s) g∗(s)ε(s) , (3.43)
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whose solution is readily obtained as

ε(s) = C g∗(s)2 s
d−2−θ

2 , C = const . (3.44)

Requiring the solution to be finite in s = 0 restricts the spectrum to Re θ ≤ d−2. If we additionally
demand for maximum regularity, the critical exponents become quantized with spacing 2, i.e.
θ = 1,−1,−3,−5, . . ., which is the same spectrum as found in the large-Nf limit of the bosonized
theory except that there the eigenvalue −1 occurs twice [30]. The situation that quantization of the
spectrum is only achieved after an additional analyticity requirement is also found for derivative
expansions of scalar field theories [103, 104]. Linearized flow equations of the form (3.43) generically
admit solutions for continuous values of θ because they are linear. Put differently, the seeming
emergence of a continuous spectrum is an artifact of the linearization. In the field-dependent
setting of Ref. [104] it is shown that the eigenperturbations must be polynomial in the field or,
more generally, uniformly convergent over the entire domain for the continuum limit to be well-
defined. Therefore, maximum regularity is a natural requirement for the eigenperturbations in
our momentum-dependent description. We will come back to the implications of non-analytic
perturbations when studying the spectra for finite flavor numbers in Section 3.6.

3.5 Fixed points for finite flavor numbers

After this digression on the limit of infinite flavor number, let us resume with the finite-Nf case
described by Eqs. (3.25) and (3.26). In particular, the corresponding fixed point equation for the
coupling function is

0 =
[
d− 2 + 2η(4)(p2

i )
]
g(s) + 2sg′(s)

− 2
Ñ
g(s)

∫
d(q, u,Ω) 1

0K(s, q, u; η)
[
Ñ g(s)− g([q+p3]2)− g([q+p4]2)

]
,

(3.45)

which has to be solved along with Eq. (3.26) for the anomalous dimension function. Owing to the
nonvanishing anomalous dimension and the extra integrals involving the coupling, the situation is a
bit more involved and we cannot provide a general analytic solution. Our aim in this section is thus
to compute approximate numerical solutions. The integro-differential structure of the equation and
the non-analyticity of the integral kernels constitute quite challenging premises for any numerical
calculation. Notwithstanding, the pseudospectral method using Chebyshev rational functions [105,
106] turned out to be a versatile and robust tool to obtain solutions to arbitrary accuracy, at least
in principle. As an example from the FRG context, it has been used successfully to obtain high-
accuracy solutions of effective potentials for various model systems [61, 107–112]. Here we will
focus our numerical analysis on systems in d = 3 spacetime dimensions. The solutions presented
in this section all use the exponential-type regulator (1.11) because it showed faster decrease of
the residuals with the expansion order than the regulator (1.12). The linear regulator (1.10) is
not suited for the numerical studies carried out here because it implies non-smooth integrands in
Eqs. (3.45).

Expansion in Chebyshev rational functions. The basic idea of our approach is to expand the
coupling and anomalous dimension functions in terms of a complete set of basis functions and
truncate the resulting series at some finite order. To be precise, we will use the Chebyshev rational
functions Rn as our basis set on [0,∞), which are obtained from the Chebyshev polynomials of
the first kind Tn by a compactification of the semi-infinite interval,

Rn(x) := Tn

(
x− L
x+ L

)
. (3.46)

The parameter L is arbitrary, but fixed; it should typically be on the order of the length scales of
the function to be modeled [105]. The first few of the Rn are plotted in Fig. 9a. By definition,
the Chebyshev rational functions inherit some pleasant and neat properties from their polynomial
parents, such as analyticity, boundedness, and orthogonality. Most importantly, the Chebyshev
series is guaranteed to converge on the entire domain if the expanded function is square-integrable
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Figure 9: (a) Chebyshev rational functions Rn up to order 4; (b) compactified collocation grid points for
expansion orders nmax = 10 and nmax = 40. The relation to the grid points for the Chebyshev rational
functions is given by the compactification x = L(1 + xcomp)/(1− xcomp).

[105, 113], in contrast to, for instance, Taylor series, which converge only in a disc up to the closest
singularity in the complex plane. We collected an overview of relevant properties and relations in
Appendix C. Following the sketched idea, we expect to be able to write the coupling and anomalous
dimension functions in the form

g∗(s) =
ngmax∑
n=0

gnPn(s) , η∗(p2) =
nηmax∑
n=0

ηnPn(p2) (3.47)

with coefficients gn and ηn to be determined. Here the Pn may either be the Chebyshev rational
functions themselves, Pn(x) = Rn(x), which we will refer to as the identity (id) parametrization, or
a square-root (sqrt) parametrized variant Pn(x) = Rn(

√
x) allowing for half-integer powers of the

argument. This sqrt parametrization is obviously motivated by the large-Nf limit (3.41) and the
asymptotic relation (3.29), both of which suggest that the coupling function will generally be only
analytic in

√
s rather than s, especially in d = 3. Technically, this also holds for the anomalous

dimension function (3.26), but here the non-analyticity is “milder” in a sense that will become
clear below. One reason is that the asymptotic behavior as p2 → ∞ is η∗(p2) ∼ 1/p2 as found in
Eq. (3.30). We will come back to the issue of choosing a parametrization later.

Computation of expansion coefficients. The remaining task is to determine the coefficient vec-
tors g = (g0, . . . , gngmax) and η = (η0, . . . , ηnηmax) of the truncated series (3.47) such that Eqs. (3.45)
and (3.26) are satisfied “as well as possible.” In technical terms, we need to minimize the residual
functions corresponding to these equations,

ρg(g,η; s) :=
[
d− 2 + 2η(4)

∗ (p2
i )
]
g∗(s) + 2sg′∗(s)

− 2
Ñ
g∗(s)

∫
d(q, u,Ω) 1

0K(s, q, u; η∗)
[
Ñ g∗(s)− g∗([q+p3]2)− g∗([q+p4]2)

]
,

(3.48a)

ρη(g,η; p2) := η∗(p2)− 1
Ñ

∫
d(q, u)M(p2, q, u; η∗) g∗

(
q2 + p2 + 2q

√
p2u
)
, (3.48b)

where we substitute the ansatz (3.47) for g∗ and η∗. Certainly, we cannot expect to obtain the
exact solution with only a finite number of terms, but we can estimate the error from the decay of
coefficients with increasing n [105] or by plugging the solutions back into the equations. This and
the fact that we can at least in principle achieve better precision by including more terms gives us
good control of the approximation error.

As minimization strategies, two approaches are commonly employed. The Galerkin method makes
direct use of the orthogonality property of the Chebyshev rational functions (cf. Eq. (C.15) of
Appendix C) and requires that the inner products between residuals and expansion functions
vanish, i.e. ∫ ∞

0
dx
√
L

x

ρ(g,η;x)Rm(x)
x+ L

!= 0 , m = 0, . . . , nmax. (3.49)
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While some terms will simplify straightforwardly due to orthogonality, this procedure is computa-
tionally quite demanding because of the extra integration that has to be performed in addition to
the integrals within the residual functions. Moreover, these integrals will become highly oscillatory
with increasing m, posing further numerical challenges. The pseudospectral or collocation method,
on the contrary, requires that the residual functions be satisfied on a discrete set of collocation
grid points {x0, . . . , xnmax} only, i.e.

ρ(g,η;xm) != 0 , m = 0, . . . , nmax. (3.50)

By an educated choice of these grid points, one can achieve that this method coincides with the
spectral method if the integral in (3.49) is evaluated by an optimized quadrature rule [105]. One
such optimal grid, which we will use throughout this work, consists of the roots of the Chebyshev
rational function Pn of order nmax + 1, visualized in Fig. 9b. For more details on this method
as used here or pseudospectral methods in general, we refer to Appendix C and the literature
[105, 114], respectively.

After choosing parametrizations and expansion orders in Eq. (3.47), we substitute the associated
collocation grids {sm} and {p2

m} into the residual functions (3.48), defining a system of ngmax +
nηmax + 2 algebraic equations

ρgm(g,η) := ρg(g,η; sm) = 0 , ρηm(g,η) := ρη(g,η; p2
m) = 0 (3.51)

for the same number of unknowns gn and ηn. To obtain a solution of these, we set up a Newton-
Raphson iteration as detailed in Appendix D. To this end, we need to provide an initial guess for
the coefficients gn and ηn, which requires some intuition about the expected solution in order to
achieve convergence of the algorithm.

For the actual computations, we implemented the described procedure in a C++ program. It
turned out to be very useful to code the diagram functionals (3.21) in a functional form because
this allows to adjust the program to other models by just a few minor modifications. The multidi-
mensional numerical integrations were carried out using the Cuhre algorithm of the CUBA library
by Thomas Hahn [115–118], which is a deterministic, high-precision integration scheme featuring
globally adaptive subdivisions. As for the regularization scheme, we mostly used the exponential
regulator (1.11) for our numerical studies; we will comment on the regulator dependence in more
detail in Section 3.6. More information regarding the implementation of the Gross-Neveu model
can also be found in Appendices B.5 and E.

Solutions. Having settled the computational approach, we are ready to discuss solutions of the
fixed point problem. The principle observation is that we obtain exactly one additional bounded,
nontrivial solution besides the Gaussian, which we will refer to henceforth as the Gross-Neveu
fixed point. A first example is shown in Fig. 10, where both g∗ and η∗ were expanded to order
ngmax = nηmax = 47. Here the number of flavors is Nf = 2, describing, for instance, the example of
graphene [16, 34]. While the ansatz for g∗ is in the sqrt parametrization with Pn(s) = Rn(

√
s),

the ordinary id parametrization with Pn(p2) = Rn(p2) is used for η∗. This will be our standard
setup throughout the rest of this work; we will comment on the different parametrizations in the
next paragraph.

It is reassuring to notice that there is only very little variation among the different momentum con-
figurations. At the scale of the plot, the deviations are hardly visible and the lines corresponding
to the different configurations of Fig. 7 coincide.† We conclude that the s-channel approxima-
tion parametrizes the momentum dependence quite satisfactorily. In particular, the fact that the
reduction is not closed appears to be negligible.

Qualitatively, the finite-Nf solution for g∗ looks very similar to the bosonized one (Fig. 6b) and
the large-Nf one (Fig. 8). It acquires a finite maximum value at s = 0 and decays monotonically
as s is increased. The same behavior is found for the anomalous dimension function. We point out
again, however, that the asymptotic behavior g∗(s) ∼ 1/

√
s is different from what we observe in

the bosonized formulation, where ĝ(s) ∼ 1/s.
†Note that the two orthogonal configurations, Fig. 7b and c, are identical in the present truncation.
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a. b.

Figure 10: Fixed point solutions and corresponding Chebyshev coefficients for Ñ = 8 (Nf = 2 in the
reducible representation) with the coupling function g∗ in (a) and the anomalous dimension function η∗
in (b). The expansion order is nmax = 47 for both. For g∗, the sqrt parametrization was used, whereas for
η∗, the id parametrization was adopted. The top panels show the solutions functions for three different
momentum configurations, even though the deviation is barely visible at the scale of the plot. The lower
panels depict the absolute values of the associated Chebyshev coefficients (for the parallel configuration),
blue dots corresponding to positive, red dots to negative ones.

Regarding the accuracy of the solutions, we first remark that the Chebyshev coefficients, plotted
in the lower panels of Fig. 10, show geometric convergence for g∗ as indicated by the roughly linear
decay in the log-plot. Moreover we notice that the coefficients fall off more rapidly for g∗ than for
η∗, which is due to the fact that sqrt parametrization used for the former is better adapted to the
asymptotic behavior and integral kernels than the id parametrization. Again, we will discuss these
issues in detail in the next paragraph.

Seeing as we have geometric convergence for g∗, we can roughly estimate the approximation error
as the magnitude of the last coefficient [105], giving an absolute error of about 10−11. For η∗,
the series appears to converge subgeometrically (or even algebraically only), so that we should
multiply the last coefficient by the expansion order to get 10−10 as an estimate of the error’s order
of magnitude.

A more conservative way to assess the approximation error is to plug the obtained solutions back
into the equations and evaluate the residuals (3.48). For our current example, these are plotted
in Fig. 11. This estimates the absolute error of the coupling function to be about 10−10. Also the
relative error, i.e. the residual divided by the function value, is of the same order for moderate
values of s. Its growth as s→∞ can be ascribed to the fact that g∗(s)→ 0 in this limit, so that the
evaluation of the relative residuals becomes numerically unstable. For the anomalous dimension
function, the absolute error is about 10−9, and the relative error can become as big as 10−3 for
large values of p2. Contrary to the case of g∗, the absolute error is not homogeneous across the
domain, but grows as p2 is increased. The reason for this and the generally worse convergence is
that the id parametrization is not adapted to the asymptotics of η∗; using a sqrt parametrization,
we can improve it as we are going to show next. However, there are physical reasons to avoid
parametrizing η∗ as a function of

√
p2 rather than p2, most importantly the analyticity of the

propagator for small momenta.
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Figure 11: Absolute (top) and relative (bottom) residuals of (a) the coupling function and (b) the anomalous
dimension function for Nf = 2. Expansions orders are nmax = 47 for both, parametrizations are sqrt
for g∗ and id for η∗. The orange dots mark the collocation grid points. The s-axes in (a) have been
compactified by a rational transformation scmp = s/(s + L), and similarly for the p2-axes in (b).

Dependence on the parametrization. After all that excessive foreshadowing, let us finally inves-
tigate how different parametrizations for g∗ and η∗ affect convergence of the solutions. We select
the parallel momentum configuration for this and begin with the anomalous dimension function,
where we saw in the previous paragraph that convergence was much slower than for the coupling
function. To understand that this is indeed caused by poor adaption of the parametrization to
the asymptotic behavior, we also computed fixed-point solutions with both g∗ and η∗ in the sqrt
parametrization, plotted in Fig. 12. Panel (a) shows both the id- and the sqrt-parametrized anoma-
lous dimension function in one figure, where both functions overlap perfectly at the scale of the
plot. Considering the coefficients of the sqrt-parametrized solution in (b), however, we see that
convergence is improved dramatically compared to the id parametrization, and we obtain geometric
convergence of the coefficients ηn now, too. This is also reflected in the absolute residuals in (c),
which are reduced by more than three orders of magnitude.

A similar trend is observed for the coupling function g∗, but here the deviations are in fact much
more severe in the id parametrization as can be seen in Fig. 13. In the plot of the coupling function
in (a), we already encounter a visible deviation between the id and sqrt parametrizations. Looking
at the coefficients in (b) then, we see that they fall off extremely slowly. Moreover, there is a
distinct behavior for even and odd coefficients, where the even ones are predominantly positive
and decay faster then odd ones, which in turn are all negative. This already hints at the fact that
the id-parametrized guess does not pass for a solution of the fixed point equations. This is indeed
confirmed by the absolute residual of about 0.04 in Panel (c). Although the collocation method
ensures that the residuals vanish at the grid points, the interpolation is desperately poor between
them.

To highlight the fact that this is caused by insufficient support of the asymptotic behavior, we
re-expanded the sqrt-parametrized solution (Fig. 10a) in the id parametrization. Comparing the
functions directly in Fig. 14a, they appear to match quite well. If we look at the coefficients
of the re-expansion in Fig. 14b, however, we observe slow convergence, very similar to those of
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Figure 12: Solution for the anomalous dimension function in the sqrt parametrization for Nf = 2 and
nηmax = 47. In the simultaneous plot (a) of both the id- and the sqrt-parametrized solution, no difference
is visible to the naked eye. The coefficients in (b), however, now show geometric convergence, too, and
decay much more rapidly than in the id-parametrization. Similarly, the absolute residual in (c) decreases
by more than three orders of magnitude and is now distributed homogeneously.
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Figure 13: Attempted solution of the coupling function using the id parametrization for Nf = 2 and
ngmax = 47. The comparison to the sqrt-parametrized solution in (a) shows that the id-parametrized
function deviates significantly. As for the coefficients (b), the decay is extremely slow, and appears to
happen at different rates for even and odd coefficients. The absolute residual in (c) reveals that the
id-parametrized function cannot be considered a solution of the fixed point equation.

the anomalous dimension function in the id parametrization (Fig. 10b). The absolute residual,
Fig. 14c, starts off better for small s than in a direct id-parametrized calculation (Fig. 13), but
eventually reaches the same, large order of magnitude as s → ∞, which shows that it is indeed
the large-s asymptotics where the id parametrization fails to work. The differences between the
direct id-parametrized calculation (Fig. 13) and the re-expansion (Fig. 14) arise because the direct
calculation tries to minimize the residuals uniformly across the domain, thereby failing to achieve
better precision even for smaller values of s.

In hindsight, this justifies our “standard approach” using the sqrt parametrization for g∗ and
the id parametrization for η∗. From a physical point of view, the id parametrization is to be
favored because we want solution functions that are analytic in the momenta of the interacting
particles. Mathematically, though, the structure of the equations calls for a sqrt parametrization,

a. b. c.
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Figure 14: Re-expansion of the sqrt-parametrized solution for the coupling function in the id parametriza-
tion for Nf = 2 and ngmax = 47. While there is no obvious difference in a direct comparison in (a), the
coefficients in (b) decay slower and comparable to the id-parametrized anomalous dimension function.
The absolute residual in (c) grows as s → ∞, reinforcing the notion that the asymptotic behavior is
insufficiently covered. The collocation points plotted belong to the sqrt parametrization of the basis
solution.
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Figure 15: Maximum absolute residual of the coupling function g∗ as a function of the compactification
scale L for fixed expansion order ngmax = 47 and Nf = 2.

Table 1: Taylor expansions around s = 0 of numerically computed finite-Nf coupling functions.

Nf g∗(s)

1 31.82 + 2.75×10−6√s− 38.59 s + 5.25 s3/2 + 54.43 s2 + . . .

2 26.61 + 5.71×10−7√s− 25.14 s + 4.90 s3/2 + 25.99 s2 + . . .

4 24.31− 9.11×10−9√s− 20.97 s + 4.55 s3/2 + 19.09 s2 + . . .

12 22.92− 8.05×10−7√s− 18.79 s + 4.31 s3/2 + 15.87 s2 + . . .

24 22.59− 1.87×10−6√s− 18.30 s + 4.25 s3/2 + 15.19 s2 + . . .

and choosing the id parametrization instead leads to a loss of precision. While this loss is moderate
and tolerable in the case of the anomalous dimension function, it leads to failure of convergence in
the case of the coupling function, so that we are required to use the sqrt parametrization here in
order to obtain fixed point solutions at all.

Another aspect of the parametrization dependence concerns choosing the compactification scale
L (cf. Eq. (3.46)). This choice is not crucial, but for fixed expansion order, the accuracy of the
solution may vary quite a bit depending on L. This is shown in Fig. 15, where we plot the
maximum absolute residual sups∈[0,∞)|ρg| for various values of L. Since we computed the suprema
empirically, the data points in the figure will probably underestimate the true values, but the
general trend should be unaffected. The plot suggests that the optimum choice of L lies around
L = 5. Of course, this may change for other models with different couplings, flavors, fixed points,
etc., but in fact we do not expect strong deviations because the structure of equations and integrals
remains the same. In the remainder of this work, we will therefore use L = 5 for our expansion
functions. Incidentally, this was also the value used for all solutions shown above.

Dependence on the flavor number. All solutions presented so far were obtained for Nf = 2
flavors in the reducible representation (i.e. Ñ = 8). In Fig. 16 we now compare the nontrivial fixed
point solutions for various flavor numbers. The coupling functions in Panel (a) do not show much
variation, but generally the coupling value tends to increase for smaller values of Nf. The plot also
suggests convergence to some nontrivial function in the large-Nf limit as was found in Section 3.4.
However, we point out that it is meaningless to compare the large-Nf solution in Fig. 8 to the ones
presented here on a quantitative level, because the two were obtained for different regularization
schemes.

Nevertheless, we would like to comment on the maximum regularity of the finite-Nf solutions.
Remember that the large-Nf limit in principle allowed a family of solutions parametrized by the
constant g∞ in Eq. (3.38). We fixed this constant by requiring that the order

√
s coefficient of a

Taylor expansion around s = 0 should vanish, so that the solution becomes maximally regular. If
we similarly expand the finite-Nf solutions as shown in Tab. 1, we observe that they indeed attain
this property automatically as argued in the previous section.

For the anomalous dimension functions in Fig. 16b, there is a broader variation with the flavor
number and the values again increase for smaller Nf. Here as well, convergence to the large-Nf
limit, where η∗(p2) = 0, is visible.
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a. b.

Figure 16: Fixed point solutions for various flavor numbers Nf in the reducible representation (dγ = 4);
(a) coupling functions, (b) anomalous dimension functions. All solutions were obtained for parallel
momentum configuration and have expansion orders ngmax = nηmax = 47.

Another source of variation is the regularization scheme. As far as the fixed point solutions are
concerned, however, quantitative deviations between different choices of regulators are expected
because the precise position of the fixed points is nonuniversal. The existence of fixed point solu-
tions as well as their qualitative behavior should of course still be independent of the regularization,
and this is indeed the case as was tested for the regulators (1.10) through (1.12). A more careful
analysis of the regulator dependence will be part of the next section because the critical exponents
computed there are universal quantities and should thus not vary much for different regulators.

3.6 Spectrum of the nontrivial fixed point

In the spirit of the general discussion in Section 1.3, we would like to characterize the fixed points
of the Gross-Neveu model by determining their eigendirections in theory space and the associated
critical exponents. To this end, we perturb around the fixed point, g(s) = g∗(s) + e−θtε(s), and
expand the flow equation (3.4) to first order in ε. The resulting linearized flow equation is

− θ ε =
[
d− 2 + 2η(4) + 2s ∂s

]
ε− Ñ

0B
s2
↔[g∗, ε] + 2

0B
s1
↔[g∗, ε] , (3.52)

where a1
a2
Bm
↔[g1, g2] := a1

a2
Bm[g1, g2] + a1

a2
Bm[g2, g1] denotes symmetrized diagram functionals. Ex-

panding the latter, we find the more explicit form

−θ ε(s) =
[
d− 2 + 2η(4)

∗ (p2
i )
]
ε(s) + 2s ε′(s)− 4 g∗(s) ε(s)

∫
d(q, u,Ω) 1

0K(s, q, u; η)

+ 2
Ñ
ε(s)

∫
d(q, u,Ω) 1

0K(s, q, u; η)
[
g∗([q+p3]2) + g∗([q+p4]2)

]
+ 2
Ñ
g∗(s)

∫
d(q, u,Ω) 1

0K(s, q, u; η)
[
ε([q+p3]2) + ε([q+p4]2)

]
.

(3.53)

To solve this eigenvalue problem and determine the eigenvalues θ and perturbations ε, we will use
expansions in terms of Chebyshev rational functions again.

Asymptotic scaling relation. Before doing so, however, we will investigate the asymptotics of the
linearized flow equation (3.53). As before, the quantum terms are suppressed as s → ∞ because
1
0K

(F )
1 ∼ 1/

√
s and also g∗(s) ∼ s

2−d
2 . Solving the remaining asymptotic equation, we thus find

that ε(s) ∼ sa, where the exponent a is related to the critical exponent θ via the asymptotic scaling
relation

Re θ + 2a = 2− d . (3.54)

Consequently, the asymptotic power a and the critical exponent θ balance each other: The more
irrelevant the perturbation ε, the faster it grows as s→∞. Hence, in order to probe the irrelevant
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part of the spectrum beyond Re θ = 2− d, we have to allow for asymptotically growing eigenper-
turbations. Since the Chebyshev rational functions are bounded, we multiply by a polynomial in
s, leading to the ansatz

ε(s) = (s + L)amax

nεmax∑
n=0

εnPn(s) . (3.55)

Regarding the value of amax, we follow two different approaches. For the first one, we set amax
to a constant numerical value, thus keeping a fixed maximum growth. In contrast, the second
approach uses a running asymptotics scheme where amax = 2−d−Re θ

2 is chosen according to the
scaling relation (3.54).

En passant, we remark that this scaling relation determines the exact perturbations around the
Gaussian fixed point g∗ = 0 because in this case the fluctuation terms in the linearized flow equation
vanish identically for all s. Therefore, the perturbations are ε(s) = Cs

2−d−θ
2 with normalization

constant C. Requiring that they be well-defined in s = 0 then implies that all perturbations around
the Gaussian fixed point are irrelevant with Re θ ≤ 2− d.

Fixed maximum asymptotic growth. To investigate the critical behavior of the nontrivial fixed
point in the fixed maximum growth scheme, we substitute the ansatz (3.55) into the linearized
flow equation (3.52). Choosing a collocation grid {sm} like we did for the fixed point solutions, we
obtain an algebraic eigenvalue equation

− θPε = Jggε , (3.56)

where ε = (εn) is the Chebyshev coefficient vector, P = (Pmn) with

Pmn = (sm + L)amaxPn(sm) , (3.57)

and Jgg = (Jggmn) is the Jacobian of the residual function ρg (3.48a) that is also needed in the
Newton-Raphson procedure for computing fixed point solutions (cf. Appendix B.5),

Jggmn =
∫ ∞

0
ds′ δρ

g[g, η](sm)
δg(s′)

∣∣∣∣
g=g∗
η=η∗

(s′ + L)amaxPn(s′)

=
{[

1 + 2 η(4)(p2
i )
∣∣∣
sm

+ 2amaxsm
sm + L

]
Pn(sm) + 2sP ′n(sm)

}
(sm + L)amax

− Ñ
0B

s2
↔ [g∗, ( • + L)amaxPn( • )] (sm) + 2

0B
s1
↔ [g∗, ( • + L)amaxPn( • )] (sm) .

(3.58)

The ‘ • ’ in the last line stands for the argument of the function entering the diagram functional. This
way we reduced the task to the algebraic eigenvalue problem (3.56): In the current approximation,
the critical exponents are just the eigenvalues of the matrix (−P−1Jgg), which we determined
numerically using the GNU Scientific Library [119] and/or the Eigen3 Library [120].

We restrict to d = 3 and begin with the case Nf = 2 again, for which the resulting spectra
for different values of amax are plotted in Fig. 17. Note that we only show the real part of the
eigenvalues, which is the decisive information to classify a perturbation as relevant or irrelevant,
and distinguish purely real from complex eigenvalues by color. Here we used the id parametrization
for the perturbations.

Our first observation is a numerical confirmation of the asymptotic scaling relation (3.54): The
real parts of the spectrum are indeed bounded by Re θ ≥ −1− 2amax. They appear to be bounded
from above as well, with the most relevant eigenvalue being approximately 1. All eigenvalues with
real parts exceeding the lower bound set by the asymptotics are crammed into the interval marked
out by the most relevant perturbation and the asymptotic bound.

Sorted by relevance, the first four eigenvalues are found to be real. Only one of them is positive,
meaning that the fixed point has one relevant direction, in accordance with the large-Nf and par-
tially bosonized results [30, 60, 61]. As with the fixed point solution, the variation of these first
critical exponents for different momentum configurations is small as we observe from the fact that
the three dots for each value of amax in Fig. 17 are well aligned. Nevertheless, the fluctuations
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Figure 17: Spectrum of the Gross-Neveu fixed point for Nf = 2 as obtained for various values of constant
amax. Blue dots mark real eigenvalues, orange dots mark the real part of eigenvalues with nonvanishing
imaginary part. For each value of amax, there are three dots corresponding to the parallel, orthogonal,
and symmetric momentum configurations (from left to right). The perturbations are id-parametrized
and have expansion order nεmax = 20.
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Figure 18: First four relevant critical exponents for different values of constant amax (data points) and
running asymptotics (parallel momenta, green lines) for (a) id and (b) sqrt parametrization of the
perturbation. Parameters: Nf = 2, nεmax = 20 in (a), nεmax = 34 in (b).

increase towards the irrelevant part of the spectrum as well as for larger values of amax. Decreas-
ing accuracy for more irrelevant exponents is expected because the effective action (3.3) is very
restrictive in terms of considered operators. The deviations for amax & 18 are likewise reasonable:
Consider, for instance, the case with amax = 18 and θ ≈ 1. On the one hand, the prefactor in the
ansatz (3.55) grows as s18 for large s. On the other hand, we know from the asymptotic scaling
relation (3.54) that a perturbation with θ ≈ 1 should decay as s−1. Consequently, the Chebyshev
series in (3.55) needs to fall off as s−19. Since the maximum order considered here was nεmax = 20,
it can maximally decay as s−20. Therefore, there really remains only one order to fine-tune the
perturbation. To conclude, the fixed maximum growth scheme demands for a careful balance of
the asymptotic power amax and the expansion order nεmax of the perturbations in order to capture
the interesting part of the spectrum reliably.

A more precise view on the first four critical exponents is given by the close-up of the region between
amax = 6 and 15 in Fig. 18a. There again, no variation between the momentum configurations
is visible for the first three eigenvalues, whose numerical values are listed in Tab. 2 below, while
the fourth one shows small differences. The green lines correspond to the eigenvalues found in the
running asymptotics scheme we are going to describe next.
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Running asymptotics. Instead of prescribing a fixed value for the power amax of the prefactor in
the ansatz (3.55), we can adjust it better to the perturbation associated with some eigenvalue θ by
using our knowledge about the asymptotic behavior (3.54) and setting amax = − 1+θ

2 . Note that
we focus on real eigenvalues in this paragraph.

Since the eigenvalue θ now also appears in the exponent on the right-hand side of Eq. (3.53), we
cannot reduce it to an algebraic eigenvalue problem. Instead we use a Newton-Raphson iteration
again to numerically solve for the Chebyshev coefficients ε and the eigenvalue θ simultaneously,
which amount to a total of nεmax + 2 variables. As usual we obtain nεmax + 1 equations by requir-
ing (3.53) to hold on the collocation grid {sm}. In addition, we have to normalize the perturbations
in some way since any multiple of a solution ε(s) still solves the equation. The condition we chose
here, provided that ε(0) 6= 0, is enforced on the Chebyshev part of the ansatz (3.55),

nεmax∑
n=0

εnPn(0) =
nεmax∑
n=0

(−1)nεn
!= 1 . (3.59)

This provides the necessary extra equation to match the number of variables. In practice it turned
out advantageous to begin with a few iterations for fixed θ in order to lock the solver in the vicinity
of that value. Only then would we release θ and solve the full system. Otherwise the impact of
the single variable θ compared to the nεmax + 1 variables εn was too small and the solver jumped
wildly between different eigenvalues.

We already pointed to the resulting eigenvalues marked by the green lines in Fig. 18a. As can be
seen, the first three are in excellent agreement with the exponents found for constant asymptotics,
whereas the fourth one is estimated slightly larger from running asymptotics. These four were
all eigenvalues found for initial values for θ between 10 and −12. Comparing to the constant
asymptotics calculation, this is explained by the onset of complex eigenvalues after the fourth
exponent (cf. Fig. 17). Since we only probe for real eigenvalues in the running asymptotics scheme,
these are not visible to the solver.

Dependence on the parametrization. So far we have only used the id parametrization of the
Chebyshev series for the eigenperturbations ε(s). Remembering the implications of the previous
section, where we were in fact forced to use the sqrt parametrization for the fixed point cou-
pling function in order to find a solution at all, the question of what the situation is like for the
eigenperturbations arises naturally.

To convince ourselves that the id parametrization produces solutions of the linearized flow equa-
tion (3.53), we compute the relative residual of the eigenperturbations with running asymptotics,
displayed graphically in Fig. 19. For small values of s, the relative error is of order 10−4, which
is reasonable given the comparatively small expansion order. Moreover, it decreases significantly
with increasing s, reflecting the fact that the asymptotic behavior is perfectly tailored to the re-
spective eigenvalue. We remark that we also computed perturbations of higher expansion order,
which further decreased the error. However, this did not change the value of the corresponding
eigenvalues significantly; in particular, the variations were smaller than those from choosing other
regularization schemes, as we will explore in the next paragraph.

Despite the reassuring error estimates, it is still informative to look at sqrt-parametrized eigen-
perturbations. The leading part of the resulting spectrum is shown in Fig. 18b. To compensate
for the slower suppression of the asymptotic prefactor in (3.55), we used higher order expansions
with nεmax = 34 in the constant asymptotics scheme. The resulting picture is much less clear than
in the id-parametrized case. The leading eigenvalue is still the same, but we obtain another rele-
vant perturbation with θ ≈ 0.2. Furthermore, there are no consistent irrelevant exponents across
several values of amax in the constant asymptotics scheme. Instead, the influence of complex eigen-
values begins for larger values and seemingly interferes with the irrelevant part as found in the id
parametrization.

Using running asymptotics elucidates the situation to some extent: In addition to the eigenval-
ues detected in the id parametrization, the sqrt parametrization yields new perturbations with
eigenvalues roughly half way between the ones found previously. This is in accordance with the
spectra obtained in the large-Nf limit and around the Gaussian fixed point. There we could likewise
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Figure 19: Relative residuals of the eigenperturbations obtained in the running asymptotics scheme using
the id parametrization. Parameters: Nf = 2, nεmax = 20.

Table 2: Critical exponents for different regulators and flavor numbers. The label ‘sqrt exp.’ refers
to the exponential regulator (1.11), while different α values label regulators of the type (1.12). The
eigenperturbations were obtained in the id parametrization with expansion order nεmax = 20.

Nf = 1 Nf = 2 Nf = 4
regulator θ1 θ2 θ3 ηψ θ1 θ2 θ3 ηψ θ1 θ2 θ3 ηψ

sqrt exp. 1.23 −0.73 −2.51 0.028 1.09 −0.86 −2.79 0.012 1.04 −0.93 −2.91 0.005
α = 2.0 1.26 −0.70 −2.55 0.034 1.10 −0.83 −2.79 0.014 1.04 −0.92 −2.92 0.006
α = 2.5 1.26 −0.70 −2.56 0.035 1.10 −0.83 −2.80 0.014 1.04 −0.92 −2.92 0.006

observe that allowing half-integer powers of s in the perturbations resulted in extra eigenvalues
lying in between. All these observations substantiate the claim that the spectra are preferably
computed using id-parametrized Chebyshev series for the perturbations. Allowing instead for non-
analytic eigenperturbations leads to spurious additional solutions that are prone to lack uniform
convergence [104].

Dependence on the regulator. In principle and contrary to the fixed point locations, the critical
exponents are universal quantities and should thus be independent of the regularization scheme
[69, 70]. On a general basis, though, this only holds if the effective action includes all interactions
compatible with the symmetry group of the considered model. Since practical calculations usually
demand for truncations of the theory space, a spurious regulator dependence is introduced. As
a rough estimate of the truncation error, we can therefore compute universal quantities using
different regulators and analyze the deviations. Nevertheless, this always sets a lower bound for
the truncation error only; the actual deviation may be arbitrarily larger if the truncation misses
essential operators in the effective action.

In Tab. 2 we collect the critical exponents obtained for different regulators and flavor numbers.
Besides the first three scaling exponents θ1, θ2, and θ3, we also compare the anomalous dimension
ηψ = η∗(0). The first line, labeled ‘sqrt exp.’, corresponds to the regulator (1.11), whereas the
other two lines belong to regulators of the form (1.12), labeled by their values for the parameter α.
We point out that all these regulators suppress low-energy modes exponentially. Using other, non-
analytic shape functions, especially the linear type (1.10), turned out to be unfeasible numerically
because of resulting nonsmooth loop integrands, so that we were unable to achieve satisfactory
precision of the solutions.

The qualitative picture remains the same for other flavor numbers (also beyond Nf = 4) and
regulators, meaning that there is always one relevant perturbation and a spacing of approximately
2 between the leading eigenvalues in the id parametrization.
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a. b.

Figure 20: Comparison of (a) leading exponents and (b) anomalous dimensions for different flavor numbers.

The observed variation among the different regulators is largest for the anomalous dimension.
Moreover, we note that the differences seemingly decrease as Nf is increased, which is understood
because the fluctuations become more homogeneous for larger Nf, approaching the limit Nf → ∞
where only the s2-diagram contributes. Since the latter does not involve an integration of the
coupling function in the s-channel approximation, the regulator dependence is expected to reduce.
Quite generally, the differences are greater between the two types of shape functions than between
the different choices of α for the second type (1.12).

Comparison to previous results. We briefly come back to the behavior of leading exponents and
anomalous dimensions for different flavor numbers, plotted in Fig. 20. Empirically, we observe a
monotonic decay of both quantities to their large-Nf values as the flavor number grows. For the
leading exponent, this means that it approaches the value 1 from above. Unfortunately, this does
not comply with predictions of 1/Nf-expansions [39, 57], where it was found that

θ1 ' 1− 0.270
Nf

+ 1.366
Nf2

+ . . . , (3.60)

stating that θ1 should approach 1 from below as Nf → ∞. Critical exponents for the Gross-
Neveu model have also been computed using numerous other approaches, e.g. bosonized FRG
[26, 27, 30, 60, 61], perturbation theory [37–40, 43, 44], conformal bootstrap (CBS) [56, 57, 59],
and Monte Carlo (MC) simulations [47, 48, 51–55]. We compare a selection of these findings in
Tab. 3. As values for this work, we take the exponents obtained from the regulator (1.11) (first
line in Tab. 2) because this regulator generally showed the smallest residuals for fixed expansion
order of the Chebyshev series, and estimate the error from the variation for other choices of
regularization.

Especially for these small flavor numbers, the differences between the results from the various
methods are quite large and the overall picture is rather inconclusive. Nevertheless, and even
though the convergence to the large-Nf limit occurs from the wrong direction, our results generally
fit within the variational bounds set by the other approaches. Compared with the bosonized FRG
results, whose methodology is closest to ours, we observe quantitative deviations of 10 . . . 15% for
θ1 and of about 50% for ηψ. A weakness of our approach is that we do not explicitly model the
dynamics of the order parameter 〈ψ̄ψ〉 of the phase transition described by the Gross-Neveu fixed
point. Since the contributions of these order parameter fluctuations are assumed to be dominant
particularly for the leading exponent θ1, we cannot actually expect to find high-precision estimates
of the critical quantities. This may also explain the asymptotic convergence of θ1 to its limiting
value from above as Nf →∞.

* * *

Studying the pure Gross-Neveu model with momentum-dependent interactions qualitatively con-
firmed many previously obtained results. In particular, we verified the existence of a nontrivial,
critical fixed point with a relevant exponent of order 1. On a general level, we worked out that the

46



Table 3: Critical exponents of the Nf = 1 and Nf = 2 Gross-Neveu models as found by various methods.
Abbreviations: CBS (conformal bootstrap), exp. (expansion), FRG/bos. (functional renormalization
group, bosonization), MC (Monte Carlo).

Nf = 1
method θ1 ηψ

FRG (here) 1.23(3) 0.028(7)
FRG/bos. [61] 1.075(4) 0.0645
1/Nf [19, 39, 40] 1.361 0.105
4−ε exp. [38] 1.160 0.110
MC [52] 1.25(3) –
MC [53] 1.30(5) –
CBS [59] 0.76 0.084

Nf = 2
method θ1 ηψ

FRG (here) 1.09(1) 0.012(2)
FRG/bos. [30] 0.9821 0.0320
FRG/bos. [61] 0.994(2) 0.0276
1/Nf [19, 39, 40] 0.962 0.044
2+ε exp. [43] 0.931 0.082
4−ε exp. [38] 1.055 0.0065
MC [48] 1.00(4) –
MC [51] 1.22(3) 0.37(1)
CBS [59] 0.88 0.044

flow of the Gross-Neveu coupling is dominated by interactions in the Mandelstam s-channel, which
formed the basis of our subsequent analysis implementing reduced momentum dependence. In this
approximation, we derived an exact solution for the large-Nf limit and computed fixed points and
critical exponents using pseudospectral expansions in terms of Chebyshev rational functions for
finite Nf. Although the reduction to a pure s-channel dependence is to some extent ambiguous, the
resulting fixed point solutions and critical exponents turned out to be very stable upon variations
of the external momentum configuration, indicating that the s-channel parametrizes the important
features of the interaction. Furthermore, our investigations revealed a certain non-analyticity of
the coupling functions in the variable s, which is presumably of mathematical nature or caused by
the incomplete momentum dependence and the nonlocality of the interaction.

We will now set about enlarging the theory space and consider the flow of all non-derivative four-
fermion vertices consistent with the symmetries of the Thirring model. Thereby we will encounter
the Gross-Neveu fixed point again and will also shed some more light on the questions of closedness
of the truncation for the effective action studied in the current section.

47



4 Thirring model

The Gross-Neveu model discussed in the previous section features one type of four-fermion interac-
tions, namely a scalar, flavor-singlet vertex. We will now turn to the different but related Thirring
model [36], whose defining microscopic action involves a vector-type interaction and reads

S[ψ, ψ̄] =
∫

ddx
[
ψ̄(x)i/∂ψ(x) + ḡTh

2Nfdγ

(
ψ̄(x)γµψ(x)

)2]
. (4.1)

As described in Section 2.1, the Thirring model in the reducible representation of the Clifford
algebra shares all the symmetries of the reducible Gross-Neveu model, but actually has a larger
U(2Nf) symmetry. It was originally introduced as an example for an exactly solvable quantum
field theory in d = 2 spacetime dimensions [36]. In the following, we will instead work with its
three-dimensional variant, i.e. d = 3.

Due to its close relation [16, 42, 45, 121, 122] to quantum electrodynamics in three dimensions
(QED3) [123], the Thirring model describes aspects of (2+1)-dimensional condensed matter systems
like, once again, graphene [17, 124] or high-Tc superconducting cuprates [22, 23]. Moreover, it is
interesting on its own because of open questions regarding, e.g., the critical flavor number for
spontaneous chiral symmetry breaking mentioned in the Introduction. While the formation of a
chiral condensate is prohibited for infinite Nf [24, 42], various studies using different methods report
different values for the critical flavor number Nf,crit below which the symmetry is dynamically
broken: Dyson-Schwinger equations for the fermion propagator [24, 45], 1/Nf expansions [121],
FRG calculations [31, 32], and lattice Monte Carlo simulations [25, 29] have yielded values between
Nf,crit = 2 . . . 7. Other Dyson-Schwinger studies [41] find chiral symmetry breaking for all finite
Nf, whereas recent lattice calculations [33, 54] suggest that there is no symmetry breaking for any
integer flavor number in the reducible representation at all. While we will not be able to definitely
settle this question, we will reinforce the observation of an increasing influence of the Nambu–
Jona-Lasinio (NJL) interaction compared to the Thirring interaction for small Nf, providing one
possible explanation for the occurrence of a critical Nf [31, 32].

4.1 Flow of the coupling functions

Weyl decomposition and effective action. We already observed in Section 2.1 that there is
one additional, non-derivative four-fermion vertex sharing the symmetries of the Thirring model,
namely the pseudoscalar (ψ̄γ45ψ)2. To obtain a more complete picture and seeing as this pseu-
doscalar vertex influences the Thirring vertex significantly, we will add that interaction to our
effective action below.

In addition we found that the Nf-flavor Thirring model has an overall U(2Nf) flavor and chiral
symmetry. From a computational point of view it is therefore beneficial to decompose the Nf
four-component Dirac spinors ψ, ψ̄ in the reducible representation into 2Nf two-component Weyl
spinors χ, χ̄ transforming according to the irreducible representation [32, 94]. This is achieved by
means of the chiral projectors P± = 1

2 (1± γ45) and is particularly convenient in a representation
where γ45 is diagonal. After the decomposition, the vertices become [32, 94]

ψ̄γ45ψ ≡ χ̄χ and ψ̄γµψ ≡ χ̄σµχ (4.2)

with σµ denoting the Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.3)

The pseudoscalar vertex has thus been transformed into a scalar Gross-Neveu vertex. Hence
the irreducible Gross-Neveu-Thirring model defines the same symmetry class as the reducible
Thirring model. A basis of the Dirac/Weyl space in the irreducible representation is then given
by {1, σ1, σ2, σ3}. Our ansatz for the effective average action is obtained by combining these two
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interactions and parametrizing each of them by a momentum-dependent coupling function. We
thus let

Γk[χ, χ̄] = −
∫
p

Z(p2)χ̄(p)/pχ(p) +
∫
p2,p3,p4

ḡGN(p1, p2, p3, p4)
2Ñ

χ̄(−p1)χ(p2)χ̄(−p3)χ(p4)

+
∫
p2,p3,p4

ḡTh(p1, p2, p3, p4)
2Ñ

χ̄(−p1)σµχ(p2)χ̄(−p3)σµχ(p4) .
(4.4)

As before, we do not denote the k-dependence of the wave function renormalization Z and the
coupling functions ḡGN and ḡTh explicitly. Similar to the Gross-Neveu case, the Thirring coupling
must also satisfy the symmetry ḡTh(p1, p2, p3, p4) = ḡTh(p3, p4, p1, p2). Although we expressed our
model in the irreducible representation now, we will still think of the underlying reducible Thirring
model when speaking of flavor numbers, etc., in order to conform with the literature. In other
words, Nf denotes the number of reducible flavors, and Ñ = 4Nf as in Section 3.

Flow equations. Using the effective average action (4.4), we can derive the flow equations for gGN

and gTh as described in Section 2.2. By a calculation similar to the Gross-Neveu case, details of
which can be found in Appendix B.3, we find that

∂tgGN =
[
1 + 2η(4) +

∑
j
pj · ∇pj

]
gGN − Ñ

0B
s2[gGN, gGN] + 2

0B
s1[gGN, gGN] + 3

0B
s1
↔[gGN, gTh]

+ 1
0B

t
↔[gGN, gTh] + 2

0B
t[gTh, gTh]− 1

0B
u
↔[gGN, gTh] + 2

0B
u[gTh, gTh] , (4.5a)

∂tgTh =
[
1 + 2η(4) +

∑
j
pj · ∇pj

]
gTh + Ñ

−ÑB
s2[gTh, gTh]− 1

−1B
s1
↔[gGN, gTh] + 2

−2B
s1[gTh, gTh]

+ 0
1/2B

t[gGN, gGN] + 1
−1/2B

t
↔[gGN, gTh] + 2

1/2B
t[gTh, gTh]

− 0
1/2B

u[gGN, gGN] + 1
−1/2B

u
↔[gGN, gTh]− 2

1/2B
u[gTh, gTh] , (4.5b)

where we suppressed the η-dependence of the diagram functionals for brevity. As a first observation
we remark that all four types of diagrams worked out in the general analysis of Section 2.2 enter the
flow equations now, i.e. there are also t- and u-channel processes contributing. Nevertheless, the
s-channel is still dominating: For the flow of gGN, there are more s-channel diagrams than t- or u-
channel ones, and the functionals 1

0B
t
↔[gGN, gTh] and 1

0B
u
↔[gGN, gTh] come with opposite signs, such

that they are expected to cancel partly. For the flow of gTh, this is the case for the t- and u-channel
diagrams both of order (gGN)2 and of order (gTh)2. Yet we can anticipate a richer momentum
structure of fixed points and perturbations compared to the pure Gross-Neveu model.

The anomalous dimension function receives contributions from both couplings, too. Evaluating
the traces in Eq. (2.36) (cf. Appendix B.4 for details), we obtain

η = Σ1[gGN; η]−Σ1[gTh; η] + ÑΣ2[gTh; η]. (4.6)

In particular, the Thirring coupling also contributes a term via the Σ2 diagram which persists
even in the large-Nf limit. As a sanity check, observe that Eqs. (4.5a) and (4.6) reduce to the pure
Gross-Neveu relations (3.4) and (3.5) if gTh ≡ 0.

4.2 Limiting cases

Pointlike limit. As the simplest limit case, we first consider constant couplings, i.e. pointlike in-
teractions [31, 32, 94]. Using the reduction formula (2.29) for the diagram functionals, we conclude
that the anomalous dimension vanishes and the flow equations for the coupling constants are given
by

∂tgGN = gGN + 4vd
Ñ
`
(F )
1 (0; 0)

[
(−Ñ + 2)g2

GN + 6gGNgTh + 4g2
Th

]
, (4.7a)

∂tgTh = gTh + 4vd
Ñ
`
(F )
1 (0; 0)

[
Ñ + 2

3 g2
Th + 2gGNgTh

]
, (4.7b)

in agreement with Refs. [94, 95]. We see that the pure Gross-Neveu model forms an invariant
subspace in this limit: Setting gTh ≡ 0, the equations remain consistent and Eq. (4.7a) reduces
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Figure 21: Fixed points, eigenperturbations, and example flows in the pointlike Gross-Neveu-Thirring space
for (a) Nf = 4 and (b) Nf = 12. The GN fixed point always lies on the Gross-Neveu axis, the Th fixed
point approaches the Thirring axes only as Nf →∞.

to Eq. (3.6). Hence the Gross-Neveu fixed point (GN) still exists and lies at the same position
in theory space as in the pointlike pure Gross-Neveu model. In addition, we now find two more
nontrivial fixed points at

Th : gGN,∗ = Ñ2 −
√
Ñ2 + 112Ñ + 256 (Ñ + 2)− 14Ñ + 112

2c(F ) Ñ−2
Ñ

(Ñ2 + 4Ñ + 40)
,

gTh,∗ = − 3Ñ2

c(F )
(
Ñ2 +

√
Ñ2 + 112Ñ + 256 + Ñ + 16

) , (4.8a)

B : gGN,∗ = Ñ2 +
√
Ñ2 + 112Ñ + 256(Ñ + 2)− 14Ñ + 112

2c(F ) Ñ−2
Ñ

(Ñ2 + 4Ñ + 40)
,

gTh,∗ = 3Ñ2

c(F )
(
−Ñ2 +

√
Ñ2 + 112Ñ + 256− Ñ − 16

) , (4.8b)

which we will refer to as the Thirring (Th) and B fixed points, respectively [17, 31, 32]. Here
c(F ) = 4vd`(F )

1 (0; 0). The resulting theory space topology is plotted in Fig. 21 for Nf = 4 (Ñ = 16)
and Nf = 12 (Ñ = 48). In fact, Fig. 2 already showed the same theory space for Nf = 2 (Ñ = 8).
The Th fixed point lies on the Thirring axis gGN = 0 for Nf =∞, but wanders off toward negative
values of gGN asNf is decreased. Both GN and Th are critical fixed points in the sense that they have
one relevant direction, and the B fixed point has two relevant directions. The Gaussian fixed point
remains irrelevant. A detailed discussion of the pointlike purely fermionic Gross-Neveu-Thirring
model may be found in Ref. [31].

s-Channel approximation. We argued above that the s-channel still dominates the flows of gGN

and gTh. Seeing as we need to reduce the complexity of Eqs. (4.5), we will employ an s-channel
approximation once more and assume gGN = gGN(s), gTh = gTh(s). Again, we must fix a momentum
configuration, which will generally be one of those from Fig. 7, to close the flow equations for this
reduced dependence. Of course, we will have to check stability of the results under variation of the
configuration again, too. The flow equations become

∂tgGN =
[
1 + 2η(4)

]
gGN + 2s g′GN −

Ñ
0B

s2[gGN, gGN] + 2
0B

s1[gGN, gGN] + 3
0B

s1
↔[gGN, gTh]

+ 1
0B

t
↔[gGN, gTh] + 2

0B
t[gTh, gTh]− 1

0B
u
↔[gGN, gTh] + 2

0B
u[gTh, gTh] , (4.9a)
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Figure 22: Large-Nf fixed points of the Gross-Neveu-Thirring model in the s-channel approximation. The
points mark the positions of the fixed points in the pointlike limit, which match the function values at
s = 0 as they should for Nf =∞.

∂tgTh =
[
1 + 2η(4)

]
gTh + 2s g′Th + Ñ

−ÑB
s2[gTh, gTh]− 1

−1B
s1
↔[gGN, gTh] + 2

−2B
s1[gTh, gTh]

+ 0
1/2B

t[gGN, gGN] + 1
−1/2B

t
↔[gGN, gTh] + 2

1/2B
t[gTh, gTh]

− 0
1/2B

u[gGN, gGN] + 1
−1/2B

u
↔[gGN, gTh]− 2

1/2B
u[gTh, gTh] . (4.9b)

It is instructive to take another look at the diagram functionals (3.21) in the s-channel approxi-
mation. The s2-diagram is obviously independent of the choice of momentum configuration. For
the s1-diagram, the Ω integration is trivial in the parallel configuration, and the t- and u-favored
orthogonal configurations yield the same value up to variations in η, as already noted in Section 3.5.
Regarding the t- and u-diagrams, we first remark that their contributions agree (neglecting η) in
the parallel and symmetric configurations because t = u in both, and both are invariant under
p3 ←→ p4. Those contributions to the flow equations that come with opposite signs in the t-
and u-channels will therefore approximately cancel in these configurations. On the contrary, we
have the two orthogonal configurations, where either t = s, u = 0 (t-favored) or t = 0, u = s
(u-favored). Consequently, either of the two channels is set off against the other. Together, those
four momentum configurations should therefore give a good impression of the overall variation and
uncertainty of the s-channel approximation.

Regarding the anomalous dimension function, we notice that the self-energy diagram functional
Σ2 vanishes in the s-channel approximation because the integrand is odd in the loop momentum.
Hence we are left with

η = Σ1[gGN; η]−Σ1[gTh; η] . (4.10)

For the remainder of Section 4, we will be concerned with solving these s-channel approximated
Eqs. (4.9) and (4.10).

Large-N f limit. In the limit Nf → ∞, we are still in the pleasing situation of being able to
compute the fixed point coupling functions exactly. As in the pure Gross-Neveu case, the anomalous
dimension function vanishes and only the s2-diagrams remain in the flow equations. Consequently,
the equations decouple and both take the form (3.35) with a1 = 1, a2 = 0 for gGN and a1 = −1,
a2 = 1 for gTh. Thus the formal solution (3.38) can be carried over immediately. For the GN fixed
point, gTh = 0 and using the linear regulator (1.10), the explicit solution (3.40) still holds for gGN.
For the Th fixed point, gGN = 0 and the explicit form of gTh is a modified version of (3.40) due
to different values of a1 and a2. Since the expressions are even lengthier than the ones for the
Gross-Neveu coupling, we do not spell them out explicitly here. We merely note that maximum
regularity requires g∞ = −1/32 for gTh. Finally, the B fixed point is obtained by combining the
nontrivial solutions for gGN and gTh. A plot of all four fixed points of the Gross-Neveu-Thirring
model in the large-Nf limit is shown in Fig. 22.

As Eq. (3.44) is still valid as a solution of the linearized flow equation for both gGN and gTh, the
spectra can be adopted similarly. Since we can perturb in the GN and Th directions independently,
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the spectrum is the union of eigenvalues in both directions. Assuming maximum regularity as
before, the GN and Th fixed points thus have one relevant exponent θ1 = 1 each, whereas the B
fixed point has two relevant exponents, θ1 = θ2 = 1.

4.3 Finite-N f fixed points and spectra

Having explored these limiting cases, we come back to the momentum-dependent model for finite
flavor number in the s-channel approximation, characterized by Eqs. (4.9) and (4.10). Compared
to the large-Nf limit, the situation is considerably more complex because all four types of dia-
gram functionals contribute to the flow equations of the couplings, and all involve integrals of the
unknown functions gGN, gTh, and η.

Overview of the fixed point structure. To compute fixed point functions, we proceed in the same
way as for the pure Gross-Neveu model and expand the unknown functions as series of Chebyshev
rational functions (3.47). By the pseudospectral method, we reduce the integro-differential equa-
tions to a system of nonlinear algebraic equations for the Chebyshev coefficients gGN,n, gTh,n, and
ηn. As before, we then solve this system numerically using a Newton-Raphson iteration. Details
of this procedure for the enhanced model can be found in Appendix B.6. For all subsequently
presented solutions, we employed the exponential regulator (1.11) again. The expansion orders
were at least ngmax = 40, nηmax = 12. For small flavor numbers, we increased them up to ngmax = 45,
nηmax = 20 when necessary to achieve acceptable accuracy.

We show a selection of fixed point coupling functions for different flavor numbers in Fig. 23.
The actual solutions for the four momentum configurations of Fig. 7 are plotted as solid lines. To
visualize the deviation among them, we additionally display elliptic tubes around the mean of these
configurations with principle axes given by the standard deviations. The overall picture satisfies
our expectation from the limiting cases and the pure Gross-Neveu model: We can distinguish four
different regions of fixed point solutions which approximately coincide with the positions in the
pointlike limit, and the coupling functions decay as s→∞.

For relatively large flavor numbers, e.g. Nf = 12 in Fig. 23a, the variation with momentum con-
figuration is very small for all fixed points and the solutions are close to the infinite-Nf solution
(cf. Fig. 22). This is a manifestation of the fact that the s-channel approximation is closed in this
limit. For smaller values of Nf, the GN fixed point remains stable when varying the momentum
configuration, similarly to the situation observed in Section 3.5. However, the deviations between
configurations increase significantly for the Th and B fixed points. In fact we cannot even assure the
existence of the B fixed point in the current approximation since we were unable to find solutions
for all configurations when Nf < 2.

The general picture is very similar for the anomalous dimension functions plotted in Fig. 24. The
variation increases again for smaller values of Nf. Interestingly, it is largest for the Th fixed point
and rather small for the B fixed point. We will analyze all three nontrivial fixed points in more
detail below after having established the corresponding spectra.

Computation of critical exponents. In order to compute spectra of the fixed points, we will use
the same methods as for the pure Gross-Neveu model again. Perturbing around a fixed point
solution with gGN(s) = gGN,∗(s) + e−θtεGN(s) and gTh(s) = gTh,∗(s) + e−θtεTh(s) and expanding the
flow equations (4.9) to first order in ε, we arrive at the eigenvalue equations

−θεGN =
[
1 + 2η(4) + 2s ∂s

]
εGN − Ñ

0B
s2
↔[gGN,∗, εGN]

+ 2
0B

s1
↔[gGN,∗, εGN] + 3

0B
s1
↔[gGN,∗, εTh] + 3

0B
s1
↔[εGN, gTh,∗]

+ 1
0B

t
↔[gGN,∗, εTh] + 1

0B
t
↔[εGN, gTh,∗] + 2

0B
t
↔[gTh,∗, εTh]

− 1
0B

u
↔[gGN,∗, εTh]− 1

0B
u
↔[εGN, gTh,∗] + 2

0B
u
↔[gTh,∗, εTh] ,

(4.11a)
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a. Nf = 12

b. Nf = 3

c. Nf = 2

Figure 23: Fixed point coupling functions of the Gross-Neveu-Thirring model for various flavor numbers.
The solid lines correspond to the four different momentum configurations while the semi-transparent
tubes visualize the mean plus one standard deviation between these configurations. The points mark
the fixed point positions in the pointlike limit.
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Figure 24: Fixed point anomalous dimension functions of the Gross-Neveu-Thirring model for various
flavor numbers and the four different momentum configurations.

a. b. c.

Figure 25: Leading eigenvalues of the (a) GN, (b) Th, and (c) B fixed points. The shaded area corresponds
to the range spanned by the minimum and maximum value obtained for different momentum configu-
rations. The additional red shading at Nf = 1 . . . 2 in (c) is to indicate that these results are disputable
due to diminished or even missing convergence of fixed point solutions.

−θεTh =
[
1 + 2η(4) + 2s ∂s

]
εTh + Ñ

−ÑB
s2
↔[gTh,∗, εTh]

− 1
−1B

s1
↔[gGN,∗, εTh]− 1

−1B
s1
↔[εGN, gTh,∗] + 2

−2B
s1
↔[gTh,∗, εTh]

+ 0
1/2B

t
↔[gGN,∗, εGN] + 1

−1/2B
t
↔[gGN,∗, εTh] + 1

−1/2B
t
↔[εGN, gTh,∗] + 2

1/2B
t
↔[gTh,∗, εTh]

− 0
1/2B

u
↔[gGN,∗, εGN] + 1

−1/2B
u
↔[gGN,∗, εTh] + 1

−1/2B
u
↔[εGN, gTh,∗]− 2

1/2B
u
↔[gTh,∗, εTh] .

(4.11b)

Contrary to the large-Nf case, we cannot consider perturbations in the gGN and gTh directions
independently because the equations do not decouple. To extract the eigenvalues, we then expand
the eigenperturbations as a series of Chebyshev rational functions with a scaling prefactor (3.55)
as before. However, we restrict to the fixed maximum growth scheme with amax = const because
it is computationally more efficient and the extracted exponents proved to match with the running
asymptotics scheme for the Gross-Neveu model studied in the previous section. Evaluating the
linearized flow equations (4.11) on the collocation grid {sm}, we obtain an algebraic eigenvalue
equation of the form (3.56) again, but now with components for both gGN and gTh, schematically

− θ
(
P 0
0 P

)(
εGN

εTh

)
=
(
JGN,GN JGN,Th

JTh,GN JTh,Th

)(
εGN

εTh

)
. (4.12)

For explicit expressions of the Jacobians, we refer to Appendix B.6. By calculating the eigenvalues
for different values of amax and checking consistency, we can extract the spectra of the fixed
points.

A plot of the leading eigenvalues of the three nontrivial fixed points is presented in Fig. 25. For
each eigenvalue, we show its minimum and maximum value for different momentum configurations.
Again, the values essentially coincide for the GN fixed point, and they vary only moderately at
the Th fixed point for small Nf. Both of them have one relevant exponent as in the pointlike and
large-Nf limits. The B fixed point shows stronger variations and seemingly also a qualitative change
of behavior seeing as a third relevant exponent turns up in some configuration below Nf . 3. In
any case, the large-Nf limit is reflected nicely as the eigenvalues approach the values found in
Section 4.2. Let us now have a closer look at the three interacting fixed points individually.
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Figure 26: Violation of the invariance subspace property of the Gross-Neveu model; (a) Thirring coupling
at the Gross-Neveu fixed point in the orthogonal configurations for Nf = 2. Note that gTh ≡ 0 in the
parallel and symmetric configurations; (b) ratio of Thirring and Gross-Neveu couplings at the maximum
of the Thirring coupling as a function of Nf (log-log plot).

Gross-Neveu fixed point. We recall that, in the pointlike approximation, the Gross-Neveu vertex
forms an invariant subspace of theory space, meaning that the coupling gGN does not contribute
alone to the flow of any of the other symmetry-compatible vertices [95] and in particular not to the
flow of gTh in Eq. (4.7). The flow equations of the fully momentum-dependent model (4.5) tell us
that this does not hold in general: There are t- and u-channel processes of order g2

GN entering the
flow of gTh, which happen to cancel in the pointlike limit. Consequently, the Gross-Neveu coupling
does not parametrize an invariant subspace any longer because setting gTh ≡ 0 in Eqs. (4.7), we
cannot find a consistent general fixed point solution gGN,∗. This should serve as a word of caution
when restricting the theory space to pure Gross-Neveu interactions as it was done in many previous
studies and also in Section 3 of this work.

Nevertheless, the violation of this invariance is reassuringly mild, at least in the s-channel approx-
imation. On the level of the plots in Fig. 23, there is no visible difference. To illustrate how far the
fixed point solutions actually leave the Gross-Neveu subspace, we characterize the Thirring cou-
pling at the Gross-Neveu fixed point in Fig. 26. The example for Nf = 2 in Panel (a) shows gTh,∗
for the orthogonal configurations, where its value is about two orders of magnitude smaller than
gGN,∗. For the parallel and symmetric configurations, where t = u, the corresponding diagrams of
order g2

GN in Eq. (4.5b) cancel such that gTh,∗ ≡ 0 at the Gross-Neveu fixed point. Panel (b) shows
the ratio of the Thirring and Gross-Neveu couplings at the maximum of the Thirring coupling, i.e.∣∣∣ gTh,∗(smax)
gGN,∗(smax)

∣∣∣ with smax such that |gTh,∗(s)| ≤ |gTh,∗(smax)| for all s. This coupling ratio reaches up
to 4% for Nf = 1 and decays like 1/Nf with the flavor number. Hence the restriction to gGN alone
remains a good approximation.

Regarding the spectrum, the resulting picture is basically unaffected compared to the pure Gross-
Neveu calculation in Section 3.6, apart from the extra eigenvalues in the irrelevant part of the
spectrum due to the additional Thirring degree of freedom in the perturbations. For the relevant
exponent, we obtain the same numerical values.

With hindsight, the Gross-Neveu fixed point remains largely independent of the Thirring vertex
even in the momentum-dependent model within the considered precision. Hence a reduction to
the pure Gross-Neveu model is justified if one is interested in the Gross-Neveu universality class,
at least in the irreducible representation of γ matrices. In the reducible representation, the two
additional vertices in (2.3) may in principle lead to more invariance-violating terms, although we
expect these terms to be of similar order as the Thirring corrections.

Thirring fixed point. As for the Th fixed point solution, the variation with momentum config-
uration is much larger and becomes significant for small flavor numbers. Fig. 23 shows that the
s-channel approximation is rather crude and cannot capture all essential dependencies. As ex-
pected, the outermost Th solutions correspond to the two orthogonal configurations where the
influence of either of the remaining two Mandelstam channels is maximally exposed against the
other, and the parallel and symmetric configurations lie in between. The same holds true for
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Table 4: Characteristics of the Thirring model for various flavor numbers and compared to results from
other methods.
a. Critical exponents with error bounds given by the
variation with the external momentum configuration.
This provides a lower bound of the error only and does
not include deviations between different regularization
schemes. In addition, the differences between the dis-
tances to the NJL and Thirring subspaces at s = 0 and
s =∞ are given.
Nf θ1 ηψ ∆ 0

NJL−Th ∆∞NJL−Th

1 0.84(10) 0.004(9) −0.59(11) −0.67(4)
2 0.91(2) 0.014(6) −0.13(24) −0.54(16)
3 0.95(2) 0.013(2) 0.19(12) −0.36(32)
4 0.97(1) 0.012(1) 0.34(7) −0.28(42)
5 0.983(4) 0.010(1) 0.42(4) −0.16(42)
6 0.989(3) 0.0088(4) 0.47(3) −0.06(39)

12 0.9967(3) 0.0047(1) 0.59(1) 0.27(25)

b. Comparison between exponents ob-
tained by different methods for Nf =
2. Regarding the comparability of FRG
and MC results, also note the remarks
in the main text. Abbreviations: FRG/-
bos. (functional renormalization group,
bosonization), MC (Monte Carlo).
method θ1 ηψ

FRG (here) 0.91(2) 0.014(6)
FRG/bos. [32] 0.4 −
MC, staggered [49] 1.41(8) −
MC, staggered [50] 1.18(1) 0.37(1)

the anomalous dimensions (Fig. 24), where we observe considerable variation between the con-
figurations for small momenta. From top to bottom, the curves in both figures belong to the
t-favored orthogonal, symmetric, parallel, and u-favored orthogonal configurations, respectively.
We conclude that momentum dependence becomes increasingly important as Nf becomes smaller,
and that it does not suffice to consider just the s-channel, let alone the pointlike limit, to re-
solve all features. Nevertheless, the qualitative picture is consistent and the additional momentum
dependence does not change the theory space topologically.

This notion is reinforced by looking at the critical exponents in Fig. 25b. Deviations between
the momentum configurations become visible only for small Nf and are stronger in the subleading
exponents, whose accuracy is naturally lower. The leading exponent, however, varies only little
down to Nf = 2, where the differences affect the second decimal place and are presumably still
smaller than those from regulator variations for fixed momentum configuration. Exponents for
various flavor numbers are listed in Tab. 4a with error ranges corresponding to the configurational
variation bands in Figs. 24 and 25b. For the anomalous dimension ηψ = η(0), the differences
between the momentum configurations are larger. The general trend is again a decreasing value
with increasing Nf, eventually converging to ηψ = 0 as Nf →∞. The value for Nf = 1, however, is
out of line since ηψ becomes smaller here and actually turns negative in some configurations, namely
the parallel and u-favored orthogonal ones. Seeing as this does not occur in all configurations, we
cannot certify it to be a physical effect and a finer resolution of momentum dependence will be
needed to settle this question.

Comparing to Monte Carlo simulations is less straightforward than one might think. Early studies
usually used staggered fermions [25, 28, 49, 50, 125, 126], and some of the reported results are listed
in Tab. 4b. However, it is unclear whether the symmetries of the lattice models coincide with the
continuum Thirring model or rather fall into the Gross-Neveu universality class, i.e. whether or
not the Thirring fixed point governs the IR behavior of the lattice models [31, 51]. In particular
certain popular lattice actions for Gross-Neveu and Thirring models were shown to have the same
symmetries and critical exponents [51, 127]. Moreover, the U(2Nf) symmetry is not manifest in the
formulation with staggered fermions and only emerges in the continuum limit. Recent studies using
domain-wall [54] or SLAC [33] fermions, where U(2Nf)-invariance is built into the lattice action,
do not find a Thirring fixed point for integer Nf at all. On the contrary, chiral symmetry breaking
is observed for odd numbers of Weyl spinors in the irreducible representation, corresponding to
half-integer Nf in the reducible formulation [33]. Then again, the lattice studies usually work with
a pure Thirring model where no further interaction vertex is considered. Since we know that the
Th fixed point does not lie directly in the Thirring subspace for finite Nf, small distortions between
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Figure 27: Comparison of the distance of the Th fixed point solution from the NJL and Thirring subspaces
for various flavor numbers. The shaded areas depict the variation among momentum configurations.
Note that the kinks in the boundary are caused by the absolute value in the definition of dNJL and the
fact that the configuration with minimum/maximum value for ∆NJL−Th changes with s. The dashed
lines indicate the values found in the pointlike limit.

the methods are expected and the Monte Carlo simulations may, for instance, feel a stronger
influence of the B fixed point. Nevertheless, by projecting onto the Thirring subspace in the FRG
computation, we still expect to find a fixed point.

Critical flavor number. Another observation already made in the pointlike limit [31, 32] is that
the Th fixed point wanders away from the Thirring subspace and towards an NJL-type subspace
as Nf decreases. In the irreducible representation, the NJL vertex is given by the scalar flavor
nonsinglet [32]

gNJL(p1, p2, p3, p4) χ̄i(−p1)χj(p4)χ̄j(−p3)χi(p2) .

By a Fierz transformation (2.6), we can relate it to the Gross-Neveu and Thirring couplings and
obtain

gNJL(p1, p2, p3, p4) = −1
2 [gGN(p1, p2, p3, p4) + gTh(p1, p2, p3, p4)] (4.13)

with the above specified convention for the external momenta. Put differently, the NJL subspace is
characterized by gGN = gTh. In the pointlike limit, this condition is achieved for Nf = 1.75 [32] as
can be seen by equating gGN,∗ and gTh,∗ in Eq. (4.8a). The distance of a point (gGN, gTh) in theory
space to the NJL subspace is thus given by

dNJL := |gTh − gGN|√
2

, (4.14)

which is a function of the external momenta or, in our case, the Mandelstam variable s. In a
similar fashion, we can define the distance from the Thirring subspace as dTh := |gGN|. In Ref. [32]
it was argued that the presence or absence of chiral symmetry breaking is caused by a competition
between the NJL and Thirring interactions, where the former supports the formation of a chiral
condensate, but the latter does not. To assess this trade-off, we compare the distances of the Th
fixed point solution from the NJL and Thirring subspaces in Fig. 27. More precisely, we plot the
difference dNJL − dTh and divide it by the location of the fixed point as a function of s:

∆NJL−Th := dNJL − dTh√
g2

GN + g2
Th

. (4.15)

As before, we indicate the variation between the different momentum configurations by a shaded
area. Negative values mean that the solution is closer to the NJL subspace, whereas for positive
values it is closer to the Thirring subspace. The dashed lines in the figure show the values of this
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Figure 28: Absolute residuals of the B fixed point solutions for different flavor numbers and momentum
configurations. The solid lines correspond to the gGN components, the dashed ones to the gTh components.

difference as found in the pointlike limit. We emphasize that the value Nf = 5.01 where dNJL = dTh

lies very close to the critical value Nf,crit = 5.1(7) reported in Ref. [32] and obtained by keeping
track of the chiral order parameter 〈ψ̄ψ〉 directly. In the momentum-dependent model using the
s-channel approximation, we observe that the fixed point solutions tend to be closer to the Thirring
subspace for small values of s. This suggests Nf,crit to be slightly smaller than the pointlike value,
but extracting a precise number is difficult due to the significant configurational variations and
the fact that our approach does not give direct access to the order parameter. In particular, since
the variations of ∆NJL−Th with momentum configuration increase tremendously as s → ∞, there
are values of s for which the pointlike difference lies within the bounds set by the momentum
configurations for all flavor numbers. Since ∆NJL−Th is a relative measure, this increase is to be
attributed in parts to the fact that gGN, gTh → 0 as s → ∞. Explicit estimates and variations for
∆NJL−Th at s = 0 and s =∞ are listed in Tab. 4a.

In any case, an indicator for chiral symmetry breaking to occur is dNJL . dTh. Requiring this
condition for some s and all momentum configurations leads to 3 < Nf,crit < 4. If we require that
it hold at s = 0 for some momentum configuration, we find 2 < Nf,crit < 3. Requiring it for all s
and all momentum configurations gives 6 < Nf,crit < 12. Qualitatively, these observations and the
mere presence of the Th fixed point thus reinforce the existence of a critical flavor number.

B fixed point. Let us finally discuss the B fixed point, which is to some extent more mysterious
than the other two nontrivial fixed points. As with the Th fixed point, the variation between the
couplings (Fig. 23) for different momentum configurations increases significantly when Nf becomes
smaller. The anomalous dimensions (Fig. 24), by contrast, exhibit much less deviations even for
small flavor numbers. However, most disconcerting about the B fixed point is the loss of precision
for the fixed point solutions as illustrated in Fig. 28.

The plot shows the maximum absolute residual of the B fixed point solutions for our four standard
momentum configurations and one to six flavors, where the expansion orders are fixed at ngmax =
40, nηmax = 12. Apparently, the residuals increase for all configurations as Nf is lowered, and
they do so particularly dramatically for the u-favored orthogonal configuration. This should be
contrasted with the behavior at the Th fixed point, where no such increase of the approximation
error is observed and the absolute residuals stay below 10−7 for all Nf at the same expansion
order. Moreover, and especially for Nf = 1, 2, it became much harder to find solutions in the
suspected region of the B fixed point at all and more fine-tuning of the initial guesses was required
compared to the other fixed points or larger flavor numbers. In fact, we were even unable to reach
a converging solution for Nf = 1 in the symmetric configuration.

From the plots in Figs. 23b and c, the B fixed point solutions appear to merge into the Th solution
as s → ∞. Indeed, some of the configurations cross over from gGN > 0 to gGN < 0 at these small
flavor numbers, experiencing a root in the gGN coupling. Nevertheless, there is no clear pattern
regarding the positions of these roots. From asymptotic considerations (cf. Section 3.3) we know
that all four fixed points eventually converge to gGN = gTh = 0 as s → ∞. The observations here
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suggest that there may be a prior amalgamation of the Th and B fixed points. With the increase
of residuals for small Nf in mind, however, this merger could also be an artifact indicating that the
solver gets stuck at two different fixed points for small and large values of s.

Likewise, the spectrum at the B fixed point (Fig. 25c) shows greater uncertainties compared to
the Th (let alone the GN) fixed point. The red shading for Nf = 1...2 is to indicate that the large
residuals and the lack of convergence in the symmetric configuration cast doubts on whether the
obtained functions are actual solutions. In any case, the fixed point has two relevant directions for
large Nf as in the pointlike limit and the bosonized formulation [32]. At Nf = 2, 3, an additional
third relevant exponent occurs in the u-favored orthogonal configuration. Since this is also the
regime where the residuals of the corresponding fixed-point solutions begin to increase, it remains
again unclear whether this extra relevant direction is physical.

4.4 Connection to the bosonized formulation

We already compared our results of the previous section with those obtained in earlier studies using
a dynamically bosonized version of the Gross-Neveu-Thirring model [32, 94]. Here we would like
to clarify the relation between the two formulations by considering a mean-field approximation of
the bosonized model, similar to the presentation in Section 3.2 for the pure Gross-Neveu model.

Effective average action. The Hubbard-Stratonovich transformation for the Thirring vertex
works analogously to the Gross-Neveu case, only that we need a vector boson V = (Vµ) to couple
to the fermionic Thirring current. In the lowest order LPA’, the effective average action for the
bosonized version of Eq. (4.4) then takes the form

Γk[φ, V, χ, χ̄] =
∫
p

[
−Zχχ̄(p)/pχ(p) + 1

2φ(−p)
(
Zφp

2 + m̄2
φ

)
φ(p)

+1
2
(
ZV p

2 + m̄2
V

)
Vµ(−p)Vµ(p) + 1

2
(
ĀV − ZV

)
pµpνVµ(−p)Vν(p)

]
+
∫
p,p′

[
ih̄φφ(−p− p′)χ̄(−p)χ(p′)− h̄V Vµ(−p− p′)χ̄(−p)σµχ(p′)

]
,

(4.16)

where ZV and ĀV parametrize the transversal and longitudinal components of the kinetic term,
similar to the conventions of Ref. [32]. This bosonized effective action illustrates the connection
between the Thirring model and QED3. The vector boson Vµ here couples to the fermion fields in a
similar way as the photon there. However, the vector mass term as well as the longitudinal kinetic
term proportional to ĀV (“gauge-fixing term”) in the action (4.16) explicitly break the U(1) gauge
symmetry.

At this order, the scalar and vector bosons do not couple directly, so that the mean field result (3.17)
for the scalar φ still holds. To obtain the corresponding relation for the vector boson, we again
solve the equations of motion, δΓk/δVµ(q) = 0, leading to

Vµ(−q) = h̄V
ZV q2 + m̄2

V

∫
p

[
χ̄(q + p)σµχ(p) + ZV − ĀV

ĀV q2 + m̄2
V

qµ χ̄(q + p)/qχ(p)
]
. (4.17)

This links the vector boson Vµ to the fermion vector-current condensates proportional to χ̄σµχ.

Effective four-fermion interactions. Substituting this mean-field relation for the vector boson
and the previously obtained result for the scalar boson into the effective action (4.16), we get back
a purely fermionic action of the form

Γk[ • , • , χ, χ̄] = −
∫
p

Zχχ̄(p)/pχ(p) + 1
2

∫
p2,p3,p4

h̄2
φ

Zφ(ps)2 + m̄2
φ

χ̄(−p1)χ(p2)χ̄(−p3)χ(p4)

− 1
2

∫
p2,p3,p4

h̄2
V

ZV (ps)2 + m̄2
V

χ̄(−p1)σµχ(p2)χ̄(−p3)σµχ(p4)

+ 1
2

∫
p2,p3,p4

h̄2
V (ĀV − ZV )(1 + ĀV − ZV )[

ĀV (ps)2 + m̄2
V

]2 χ̄(−p1)/psχ(p2)χ̄(−p3)/psχ(p4) ,

(4.18)
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where ps = p3 + p4. Hence the bosonized model encodes an s-channel momentum dependence in
the Thirring vertex, too. The effective coupling function takes the same form as in the Gross-Neveu
case, cf. Eq. (3.19), apart from a minus sign due to different sign conventions. In addition, the vector
boson parametrizes a further interaction vertex resembling the square of the kinetic term, (χ̄/psχ)2.
This type of interaction is present if ĀV 6= ZV and is not resolved in our momentum-dependent
Gross-Neveu-Thirring model (4.4). Its appearance here provides one possible explanation for the
increased deviations between the various momentum configurations in the s-channel approximation
observed in the previous section. Hence the vertex should be a primary candidate to be included
in advanced investigations of the momentum-dependent setting.

* * *

Investigating the Thirring model with momentum-dependent couplings in a truncation that is
complete at the level of non-derivative four-fermion interactions confirmed many previously found
properties of the model’s theory space. As in the pointlike and bosonized formulations, we find
three interacting fixed points, two of which have a single relevant direction and control the IR
behavior of the Gross-Neveu and Thirring models, respectively. The third fixed point has two
relevant directions at large flavor numbers as in the pointlike limit, but may pick up additional
relevant operators as the flavor number reaches Nf ≈ 3. Nevertheless, since convergence of fixed
point solutions worsens for small Nf, we cannot definitely establish the existence of this fixed point
for all flavor numbers and momenta.

Contrary to the pointlike or bosonized formulations, the Gross-Neveu vertex does not define an
invariant subspace in a fully momentum-dependent treatment. The violations of this invariance
property are, however, minute, and can safely be neglected at least at the current order of trun-
cation, where the momentum dependence is well-covered by the s-channel approximation. By
contrast, additional interaction channels contribute significantly to the flow in the vicinity of the
Thirring fixed point. This effect increases as Nf becomes smaller, corroborating the importance
of momentum fluctuations in this limit. Stronger variations with momentum configuration sug-
gest that the dependence is not reliably parametrized in the s-channel approximation, pointing to
missing contributions from other channels or vertices. By analogy with the bosonized model, one
such important vertex may be given by a kinetic term squared.

Regarding the question of a critical flavor number for chiral symmetry breaking, our findings
support results from previous FRG studies that discerned competing NJL- and Thirring-type in-
teractions as a reason for the transition. Due to limitations of the purely fermionic formalism in
the employed truncation, in particular the inaccessibility of the chiral order parameter, we cannot
provide precise estimates for the critical Nf, but the results suggest values of the same order as in
previous studies.
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5 Conclusions

In this thesis, we examined the renormalization group flow of fermionic quantum field theories in
a vertex expansion of the effective average action. In particular, we investigated the momentum-
dependent coupling functions of the Gross-Neveu and Thirring models, two popular and widely
applied theories with a quartic fermionic self-interaction, in (2+1) spacetime dimensions. These
models are frequently used to describe electronic properties of condensed matter systems such
as graphene and high-temperature cuprate superconductors, to approximate low-energy regimes
of fundamental interactions, or to exemplify asymptotic safety and chiral symmetry breaking in
high-energy physics.

To our knowledge, this work is the first extensive study of these relativistic fermion systems with
momentum-dependent interaction couplings. In this regard we were able to extend the charac-
terization of the momentum dependence compared to previous FRG examinations using pointlike
interactions and bosonization techniques. Connecting to these earlier works helped to clarify in
what way momentum dependence of the interactions is encoded there. While many of the findings
in the pointlike setting could be confirmed, we observed a few modifications or complications in the
momentum-dependent formulation that we will comment on below in more detail again. Similarly,
a comparison with results obtained by different methods yielded qualitative agreement in many
aspects, but some differences remained.

According to the Wetterich equation, the foundation of the FRG formalism used here, the Feynman
diagrams contributing to the flow of vertex functions have a one-loop structure. Under rather
general assumptions, we showed that the renormalization flow of four-fermion interactions is driven
by four different processes, which we labeled by the Mandelstam variables s, t, and u characterizing
the momentum transfer across the loop. Thereby, the s-channel, associated with the propagation
of flavor-contracted composite states, turned out to be dominating in many respects. First of all,
there are two s-channel diagrams as against just one t- and u-channel diagram, respectively. As a
consequence, s-channel processes contribute the majority of terms to the flow of the Gross-Neveu
and Thirring coupling functions. In addition, these happen to be the only diagrams remaining in
the limit of large flavor number Nf. Moreover, the partially bosonized formulations investigated in
the literature effectively resolve an s-channel momentum dependence, too.

In a similar fashion we worked out the contributions of four-fermion vertices to the flow of the
momentum-dependent fermionic wave function renormalization, i.e. a generalized anomalous di-
mension. Here we found two different processes occurring, both of which vanish in the pointlike
limit, so that the inclusion of momentum dependence leads to a nontrivial extension in the purely
fermionic formulation.

Due to momentum-dependent anomalous dimension and couplings, the RG flows are given by a set
of multidimensional, nonlinear, integro-differential equations, which to solve in generality would
require a tremendous computational effort. To reduce complexity and inspired by the dominance
of the s-channel, we thus employed a restriction of the coupling functions’ momentum dependence
to the Mandelstam variable s. With the exception of the infinite-Nf limit, the flow equations of the
considered models are not closed under this reduction, so that we additionally needed to choose
a particular configuration of the external momenta to fix the equations unambiguously. Varying
this configuration allowed us to assess the influence of other interaction channels and the quality
of the s-channel approximation.

The infinite-Nf limit, however, does not show this ambiguity, and here we were indeed able to
solve the associated fixed point equations exactly and provide closed analytic expressions for the
Gross-Neveu and Thirring coupling functions. In the theory space spanned by these two couplings,
we found a total of four fixed points as in the pointlike limit. These are the trivial Gaussian
fixed point, one interacting fixed point in both the Gross-Neveu and Thirring subspaces, labeled
GN and Th, respectively, and the combination of these two, labeled B. The solutions are bounded
functions that decay to zero as s is increased. Nevertheless, they are not analytic in s, with
series expansions involving half-integer powers of the variable both as s → 0 and s → ∞, a fact
that may be ascribed to the singular character of the Mandelstam variable s as a function of
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the constituting momenta and to the nonlocality of the interaction in the momentum-dependent
setting. The latter observation underlines the nonperturbative character of our FRG approach. The
resulting critical exponents corresponding to the fixed point solutions are bounded from above, but
quantization of the spectrum as in the bosonized language is only achieved by enforcing a maximum
regularity condition for the fixed point coupling and perturbations. Then again, this condition is
automatically fulfilled for finite flavor numbers, so that this extra requirement is a peculiarity of the
infinite-Nf limit. Eventually, we find one relevant direction for both the GN and Th fixed points,
and consequently two relevant directions for the B fixed point, in qualitative and quantitative
agreement with previous investigations using different approaches.

For finite Nf, the flow equations become more involved and we needed to switch to numerical meth-
ods to extract fixed point solutions and their critical properties. Our main tool were pseudospectral
expansions of couplings and anomalous dimensions in terms of Chebyshev rational functions, which
allowed us to obtain high-precision solutions of the fixed point and linearized flow equations. We
found that the overall fixed point structure resembles the infinite-Nf and pointlike limits in the
sense there are four fixed points, with the GN and Th fixed points remaining critical, i.e. they
retain their single relevant direction. The coupling and anomalous dimension functions decay to
zero as s→∞, hence all fixed points merge into the Gaussian one in this limit.

The GN fixed point is the controlling interacting fixed point of the Gross-Neveu model. Before
we examined it in an extended theory space with additional Thirring coupling, we investigated
the pure Gross-Neveu model with just a scalar four-fermion vertex in some detail. This way we
were able to test the approximation scheme and to assess the quality of solutions depending on
various parameters such as expansion orders, compactification scale, momentum parametrization
and configuration, etc. In any case, i.e. in both the pure Gross-Neveu and the Gross-Neveu-
Thirring models, the fixed point proved to be largely insensitive to variations of the momentum
configuration, indicating that the s-channel approximation captures the essential features of the
momentum dependence. Besides the above mentioned reasons, this stability of solutions backs
up the s-channel approximation a posteriori. In the pure Gross-Neveu model, there are in fact
no contributions from the t- and u-channels to the flow of the coupling function, reinforcing the
dominance of the s-channel. While this changes when including the Thirring vertex, the modifi-
cations are only minute. Consequently, the pointlike and bosonized approximations appear to be
well justified.

There is, however, a conceptionally important observation from the momentum-dependent analysis
affecting pointlike approximations. In the latter, it is found that the Gross-Neveu vertex forms
an invariant subspace with respect to other four-fermion interactions such as the Thirring vertex,
which has been used to warrant the omission of other vertices in studies of the Gross-Neveu model
in the past. Crucially, this invariant subspace property does not survive once the full momentum
dependence of coupling functions is considered because, for instance, the Thirring flow receives
contributions from pure Gross-Neveu interactions. These happen to cancel in the pointlike limit,
but not in the general case nor in the s-channel approximation. Notwithstanding, the violations
of the invariance are very minor and decrease with increasing flavor number. Even for Nf = 1,
the relative departure from the Gross-Neveu subspace in the Thirring direction amounts to 4 %
maximum. Furthermore, these modifications do not affect the resulting critical exponents. As for
the physics of the Gross-Neveu model, the restriction to the single defining vertex thus remains a
legitimate approximation.

Regarding critical exponents, our calculations show deviations from previous results. The most
striking one concerns the convergence of the leading eigenvalue θ1 to its large-Nf limit. From 1/Nf
expansions, it is known that the limiting value should be approached from below, whereas we find
a monotonic decay as a function of the flavor number. Apart from that, quantitative deviations
compared to results obtained by other methods arise for small flavor numbers. These range between
10 . . . 15 % for θ1 and reach up to 50 % for the anomalous dimension ηψ. It should be mentioned,
though, that the other methods studied so far do not provide an entirely consistent picture in this
regard either. The anomalous dimension remains positive for all Nf and converges to its limiting
value ηψ = 0 as Nf →∞, too. We point out that limited precision of our numerical estimates is to
be attributed in parts to the missing direct modeling of the fermion condensate 〈ψ̄ψ〉. Being the
order parameter of the chiral phase transition described by the GN fixed point, it is expected to
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contribute crucially to the correlation function exponents θ1 and ηψ. Here bosonized formulations
of the theory have an advantage.

In the Thirring model, by contrast, processes other than s-channel ones play a more important
part. For finite Nf, the Th fixed point wanders off the Thirring axis, but it continues to be the
controlling fixed point of the Thirring model. The variation of fixed point solutions among different
momentum configurations increases significantly for small Nf and leads to numerical deviations for
technically universal quantities such as critical exponents. This supports the general notion that
the momentum dependence becomes increasingly important for small flavor numbers. Hence one
reason for the increased deviations is the greater significance of t- and u-channels. In the s-channel
approximation, these are insufficiently incorporated, which is emphasized by the observation that
the difference is largest between the two orthogonal momentum configurations that exclusively
single out the dependence on either t or u against the other. Therefore, ideally, one would want
to include both variables as arguments of the coupling functions, but currently this seems to be
too ambitious from a computational point of view. A compromise could be to include one of
the two or a weighted average. Another reason for the variations with momentum configuration is
suggested by the bosonized formulation of the Thirring model. Here we noticed that the mean-field
approximation encodes a second four-fermion vertex besides the Thirring interaction. This extra
vertex, having the structure of a kinetic term squared, potentially carries important information
about the momentum dependence in the Thirring model. Adding it to the considered theory space
could therefore be another reasonable extension of this work.

As mentioned above, the Th fixed point exists as a critical point with one relevant direction for
all Nf in our analysis. The relevant eigenvalue θ1 ≈ 1 exhibits surprisingly little variation upon
changing the external momentum configuration. Except for Nf = 1, the differences are in fact
smaller than the anticipated regularization dependence. As Nf is increased, the infinite-Nf limit
is now approached from below and the variation between momentum configurations reduces as
expected. Likewise, the subleading eigenvalues converge to their limiting values with diminished
variations. For the anomalous dimensions ηψ, these variations are generally larger and the overall
trend is again that ηψ decreases with growing Nf as in the Gross-Neveu model. However, the case
of one fermion flavor stands out here, too, because ηψ turns negative in some configurations, a
phenomenon whose origin is not yet fully understood. In any case, Nf = 1 is a puzzling limit also
at the third interacting fixed point B.

Seeing as the Th fixed point departs from the Thirring axis, our findings suggest that chiral
symmetry breaking is in principle possible for all finite values of Nf. However, a competition
between the inhibiting Thirring subspace and the encouraging NJL subspace as found in Ref. [32]
appears reasonable from our findings. Based on similar arguments, the critical flavor number
below which spontaneous symmetry breaking occurs should lie between Nf,crit = 2 . . . 12, which is
admittedly a rather crude estimate and does not help to settle this question on a quantitative level.
Anyhow, this observation complies with Dyson-Schwinger and perturbative calculations [24, 45]
as well as early lattice simulations [25, 28, 49, 50]. Nevertheless, it disagrees with recent Monte
Carlo studies [33, 54, 55] that do not observe chiral symmetry breaking at integer flavor numbers,
which is unfortunate because these recent lattice simulations were the first ones to use fermion
implementations that manifestly obey the symmetries of the continuum Thirring model.

From a physical point of view, the B fixed point is less interesting because it does not directly
govern the IR behavior of a particular model or describe a known second-order phase transition.
Notwithstanding, it is important for the overall topology of the theory space in our truncation and
may remotely affect theories defined in the Thirring subspace. Similar to the Th fixed point, the
B fixed point exhibits growing variations with momentum configuration for small flavor numbers.
These are actually considerably stronger because they also affect the leading eigenvalues signifi-
cantly: The number of relevant directions of the fixed point for Nf . 3, where a third one emerges
in some configurations, is inconclusive. Such a third relevant direction could hint at further fixed
points since the corresponding eigenflows must eventually approach an IR limit; however, the extra
fixed point might also lie at infinity.

Another issue with the B fixed point concerns the increasingly poor convergence of our solution
method for small flavor numbers. First, the residuals of the fixed point solutions for fixed expansion
order increase dramatically for all configurations and most noticeably the u-favored orthogonal one,
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which is a development absent at the GN or Th fixed points. Second, we needed to fine-tune the
initial guesses provided to the solver much more thoroughly to find solutions at all and even failed
to do so in the symmetric configuration for Nf = 1. Third, we observed a sign change of fixed
point solutions in the Gross-Neveu coupling for larger values of s, meaning that the B fixed point
appeared to merge into the Th fixed point. These findings could either mean that the B fixed
point vanishes for small flavor numbers in certain configurations of the external momenta or that
it diversifies, potentially developing a continuum, such that the solver jumps between two or more
solutions in subsequent iterations. Either way, a more sophisticated answer to this questions will
require an advanced resolution of the coupling functions’ momentum dependence.

All in all, our momentum-dependent analysis agrees with previous FRG studies in many aspects
and confirms the validity of derivative expansions and bosonization techniques to parametrize
momentum dependences. The obtained theory space is topologically similar, showing the same
number of fixed points and separatrices. Regarding the computation of critical exponents, the
bosonized language is in fact superior because it gives direct access to the order parameters of the
phase transitions associated with critical fixed points. On the other hand, the fully momentum de-
pendent treatment of four-fermion interactions revealed some caveats of pointlike approximations,
most notably the occurrence of additional terms in the flow equations and the resulting breakdown
of invariance symmetries in theory space.

Immediate generalizations of our studies could extend the momentum dependence of coupling
functions or include other four-fermion vertices such as the extra one entailed in the bosonized
formulation of the Thirring model. Both extensions are expected to locate the Th and B fixed
points more precisely. To address the question of dynamical mass generation, it could also be
intriguing to compute momentum-dependent wave function renormalizations in the vicinity of the
Th fixed point. This would provide access to the fermion propagator, whose pole structure encodes
the fermion mass.
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A Abbreviations and conventions

Serving as a quick reference, we collect various abbreviations and conventions used throughout the
thesis in this appendix. They are sorted alphabetically by key word.

Diagram functionals. The diagrams for the self-renormalization of a four-fermion interaction can
occur in four different variants. These can be characterized by the Mandelstam variables s, t,
and u, where the s-channel has two realizations. They are depicted in Fig. 4. The mathematical
expressions for these Feynman diagrams are

a1
a2
Bs2[g1, g2; η](pi) := 1

Ñ

∫
q

a1
a2
K

(F )
1 (p3+p4, q; η)

[
g1(p1, p2, q

′,−q)g2(q,−q′, p3, p4)

+ (q ←→ −q′)
]
q′=q+p3+p4

, (A.1a)

a1
a2
Bs1[g1, g2; η](pi) := 1

Ñ

∫
q

a1
a2
K

(F )
1 (p3+p4, q; η)

[
g1(p1, p2, q

′,−q)g2(p3,−q′, q, p4)

+ (q ←→ −q′)
]
q′=q+p3+p4

, (A.1b)

a1
a2
Bt[g1, g2; η](pi) := 1

Ñ

∫
q

a1
a2
K

(F )
1 (p2+p3, q; η)

[
g1(p1, q

′,−q, p4)g2(−q′, p2, p3, q)

+ (q ←→ −q′)
]
q′=q+p2+p3

, (A.1c)

a1
a2
Bu[g1, g2; η](pi) := 1

Ñ

∫
q

a1
a2
K

(F )
1 (p2+p4, q; η)

[
g1(p1, q

′, p3,−q)g2(−q′, p2, q, p4)

+ (q ←→ −q′)
]
q′=q+p2+p4

. (A.1d)

with Ñ = Nfdγ . Here the left/top and right/bottom vertices are denoted by g1 and g2, respectively,
and the symbol “+(q ←→ −q′)” means that all previous terms on the same bracket level have to
be added with q and −q′ interchanged. The self-energy contributions from four-fermion vertices,
sketched in Fig. 5, are parametrized by the diagram functionals

Σ1[g; η](p2) := − 1
Ñ

∫
q

(
q · p
q2p2

)
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
g(−p,−q, q, p) , (A.2a)

Σ2[g; η](p2) := − 1
Ñ

∫
q

(
q · p
q2p2

)
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
g(−p, p,−q, q) . (A.2b)

In the s-channel approximation, the diagram functionals reduce to

a1
a2
Bs2[g1, g2; η](pi) = 2

Ñ
g1(s)g2(s)σd−2

∫
d(q, u) a1

a2
K(s, q, u; η) , (A.3a)

a1
a2
Bs1[g1, g2; η](pi) = 1

Ñ
g1(s)

∫
d(q, u,Ω) a1

a2
K(s, q, u; η)

[
g2
(
[q + p3]2

)
+ g2

(
[q + p4]2

)]
, (A.3b)

a1
a2
Bt[g1, g2; η](pi) = 1

Ñ

∫
d(q, u,Ω) a1

a2
K(t, q, u; η)

×
[
g1
(
[q − p1]2

)
g2
(
[q + p2]2

)
+ g1

(
[q − p4]2

)
g2
(
[q + p3]2

)]
, (A.3c)

a1
a2
Bu[g1, g2; η](pi) = 1

Ñ

∫
d(q, u,Ω) a1

a2
K(u, q, u; η)

×
[
g1
(
[q − p1]2

)
g2
(
[q + p2]2

)
+ g1

(
[q − p3]2

)
g2
(
[q + p4]2

)]
, (A.3d)

where the coordinate system for the loop integrals is chosen such that the z-component points
along the momentum transfer vector pm. Note that one has to fix a momentum configuration in
order to resolve the arguments entering the coupling functions in the integrands. The self-energy
diagram Σ2 vanishes in this approximation. For Σ1, we obtain

Σ1[g; η](p2) = −
∫

d(q, u) σd−2

Ñ(2π)d

(
u√
p2q

)
∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
g(q2 + p2 + 2q

√
p2u) . (A.4)
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Fourier transformation. Our conventions for the Fourier transformation and its inverse are:

ψ(x) =
∫ ddp

(2π)dψ(p) eip·x ⇔ ψ(p) =
∫

ddx ψ(x) e−ip·x , (A.5a)

ψ̄(x) =
∫ ddp

(2π)d ψ̄(p) e−ip·x ⇔ ψ̄(p) =
∫

ddx ψ̄(x) eip·x. (A.5b)

Gamma matrices. Please refer to Appendix B.1.

Indices. Spacetime indices are denoted by Greek letters µ, ν, ρ, σ, α, β, . . . = 1, . . . , d. Flavor
indices use Latin letters i, j, . . . = 1, . . . , Nf and are usually suppressed. Both follow Einstein
summation, i.e. indices appearing twice in a product are to be summed over. Dirac indices are
suppressed throughout this work. Chebyshev coefficients are usually labeled by Latin indices
m,n, . . ., and no summation convention is assumed.

Integrals. For momentum integrals, we use the following abbreviations:∫
q

≡
∫ ddq

(2π)d , (A.6)∫
d(q, u,Ω) ≡

∫ ∞
0

dq qd−1
∫ 1

−1
du
(
1− u2) d−3

2

∫
Sd−2

dΩ , (A.7)∫
d(q, u) ≡

∫ ∞
0

dq qd−1
∫ 1

−1
du
(
1− u2) d−3

2 . (A.8)

Moreover, we define the following related constants:

• surface of the d-dimensional unit sphere (in Rd+1):

σd := 2π(d+1)/2

Γ
(
d+1

2
) ; (A.9)

• angular contributions of the d-dimensional momentum integral:

vd := 1
4
σd−1

(2π)d = 1
2d+1πd/2Γ

(
d
2
) . (A.10)

Mandelstam variables. The Mandelstam variables are defined as

s = (p1 + p2)2 = (p3 + p4)2 , t = (p1 + p4)2 = (p2 + p3)2 , u = (p1 + p3)2 = (p2 + p4)2 . (A.11)

Metric. We work exclusively in Euclidean space with metric (δµν) = diag(1, . . . , 1).

Momentum vectors and configurations. External momenta of propagators and four-fermion
interactions are usually denoted by p and p1, . . . , p4, respectively. In general, p1 ≡ −p2 − p3 − p4,
and all momenta are measured as flowing into the vertex. Loop momenta are usually labeled q.

We use four standard momentum configurations to close the definition of diagram functionals in
the s-channel approximation. In all of them, p2

1 = . . . = p2
4 = s

2+2 cos^(p3,p4) . Apart from this, they
are characterized by

• parallel: t = 0, u = 0, i.e. p1, p2 ↑↓ p3, p4;

• t-favored orthogonal: t = s, u = 0, i.e. p1 · p2 = p3 · p4 = p1 · p4 = p2 · p3 = 0 and p1 = −p3,
p2 = −p4;

• u-favored orthogonal: t = 0, u = s, i.e. p1 · p2 = p3 · p4 = p1 · p3 = p2 · p4 = 0 and p1 = −p4,
p2 = −p3;

• symmetric: s = t = u, i.e. pi · pj = − 1
3

√
p2
i p

2
j = − s

4 .

These configurations are depicted in Fig. 7.
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Pauli matrices. The Pauli matrices are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.12)

Propagators. For the regularized inverse bosonic propagator, we define

B(p2) := p2Z(p2)
[
1 + r

(B)
k (p2)

]
+ m̄2 . (A.13)

Similarly, we define the denominator of the regularized (massless) fermionic propagator,

F (p2) := p2Z(p2)
[
1 + r

(F )
k (p2)

]
. (A.14)

Note that the regularized fermionic propagator is then /p/F (p2).

Threshold functions. For the threshold functions, i.e. the regularized loop integrals in the point-
like limit, we follow the conventions of Refs. [32, 94].

Threshold kernel. The fermionic one-loop threshold kernel, which is the momentum dependent
generalization of the threshold function `(F )

1 (0; η), is defined by

a1
a2
K

(F )
1 (p, q; η) := 1

Ñ

 (a1 + a2)q2 + a1(q · p)− a2
(q·p)2

p2

q2(q + p)2

 ∂tr1(q2)− η(q2)r1(q2)
[1 + r1(q2)]2 [1 + r1([q + p]2)]

(A.15)

The relation to the threshold function is
∫
q

1
0K

(F )
1 (0, q; η) = 2vd

Ñ
`
(F )
1 (0; η). In the single-channel

approximations, we define the kernel as

a1
a2
K(m, q, u; η) := 2

Ñ(2π)d
(a1+a2)q2 + a1q

√
mu− a2a

2u

q2(q2+m+2q
√
mu)

∂tr1(q2)− η(q2)r1(q2)
[1 + r1(q2)]2

[
1 + r1(q2+m+2q

√
mu)

] ,
(A.16)

with the z-component of the loop momentum q pointing along the momentum transfer vector p
and absorbing an additional factor of 2/(2π)d compared to K(F )

1 . In this expression, m stands for
any of the Mandelstam variables s, t, u. The integrated threshold kernel is given by

a1
a2
K(m) := σd−2

∫
d(q, u) a1

a2
K(m, q, u; 0) . (A.17)

Units. We choose natural units with h̄ = c = 1. All quantities are measured in dimensions of
mass/energy/momentum.
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B Computational details

In this appendix, we will gather technical details of the calculations of flow equations and spectra
carried out in Sections 3 and 4. Section B.1 is a collection of some required properties of the
gamma matrices, Section B.2 contains integral identities used to project out those components
from the right-hand side of the Wetterich equation which are present in the chosen truncations.
In Sections B.3 and B.4 we will close the gaps in the derivation of flow equations and anomalous
dimension functions between the general considerations of Section 2 and the specific models of the
subsequent sections. Details of the computation of fixed points and spectra in the Gross-Neveu
model (Section 3) and the Gross-Neveu-Thirring model (Section 4) will be given in Sections B.5
and B.6.

B.1 Gamma matrices

Clifford algebra. The defining relation for the Dirac space matrices γµ ∈ Cdγ×dγ (µ = 1, . . . , d)
is

{γµ, γν} = 2δµν , (B.1)
ensuring that they generate a Clifford algebra. Since this requires the existence of d linearly inde-
pendent, mutually anticommuting matrices, the minimum dimension dγ of the γ matrices depends
on the dimension of spacetime. Of course, there may be physical reasons to use a representation
with dγ larger than the minimum value as for the case of graphene and cuprate superconductors
discussed in the main text. We call such representations reducible as opposed to the irreducible
representations with minimal dγ .

In d = 3 dimensions, we need dγ ≥ 2. An irreducible representation, which we also use in
Section 4, is given by the Pauli matrices (4.3). Four-dimensional reducible representations are
straightforwardly obtained from irreducible representations in d = 4 by simply omitting one of the
corresponding γ matrices. In the following, we will collect a few identities that proved useful when
deriving flow equations and simplifying the products of Dirac space matrices in Eq. (2.21). A more
comprehensive list of properties of γ matrices may be found in Appendix E of Ref. [128].

Arbitrary representation. The following relations follow directly from the Clifford algebra (B.1)
and are therefore independent of the representation. We begin with the trace identities:

tr(γµγν) = dγδµν , (B.2a)
tr(γµγνγργσ) = dγ (δµνδρσ − δµρδνσ + δµσδνρ) . (B.2b)

In even spacetime dimensions, the trace of any odd number of γ matrices vanishes. However, this
does not hold in odd dimensions. We will provide explicit expressions for required traces in the
irreducible representation in d = 3 in the next paragraph. For products involving a contraction of
a certain index, we find

γαγµγα = −(d− 2)γµ , (B.3a)
γαγµγνγα = 4δµν + (d− 4)γµγν , (B.3b)

γαγµγνγργα = 4 (−δµνγρ + δµργν − δνργµ)− (d− 6)γµγνγρ . (B.3c)

Irreducible representation in d=3. In the irreducible representation in d = 3 dimensions in terms
of the Pauli matrices (i.e. dγ = 2), any product of γµ = σµ matrices can be reduced to first order
in σµ by means of

σµσν = δµν + iεµνρσρ . (B.4)
For instance, we have

σµσνσρ = iεµνρ + σµδνρ − σνδρµ + σρδµν (B.5a)

For the trace of three Pauli matrices, we thus obtain

tr(σµσνσρ) = 2iεµνρ . (B.6)
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B.2 Loop integrals with spherical symmetry

In order to arrive at the flow equations for the couplings, we have to project the field operators
on the right-hand side of Eq. (2.19) onto the vertices present in our ansatz (2.9) and subsequently
match the left- and right-hand sides of the Wetterich equation (1.17). Thereby we will frequently
encounter integrals of the form ∫

q

f(q2, q · p) qµ(q + p)ν ,

where p is a momentum vector and f an arbitrary function depending on the norm of the loop
momentum as well as the angle between q and p. Speaking in terms of the diagrams in Fig. 4, the
vectors q and p will correspond to the loop momentum and the momentum transfer, respectively.
Let us define the transversal and longitudinal projectors of the vector p,

πLµν = pµpν
p2 and πTµν = δµν −

pµpν
p2 . (B.7)

We can then decompose any vector into parallel and orthogonal components with respect to p. For
the first type of integrals, we obtain∫

q

f(q2, q · p) qµ =
∫
q

f(q2, q · p) (πLµν + πTµν)qν = pµ
p2

∫
q

f(q2, q · p) (q · p) , (B.8)

where the transversal component drops out because the integral needs to be invariant under Lorentz
transformations that leave the external momentum unaffected, i.e. rotations around p. In partic-
ular, ∫

q

f(q2)(q · p)qµ = pµ
p2

∫
q

f(q2)(q · p)2 = σd−1

d
pµ

∫ ∞
0

dq qd+1f(q2) . (B.9)

For the second type of integrals needed, we make an ansatz of the form∫
q

f(q2, q · p) qµqν = πLµν

∫
q

f(q2, q · p) aL(q2, p2, q · p) + πTµν

∫
q

f(q2, q · p) aT (q2, p2, q · p) ,

which is justified by the requirement of Lorentz invariance again, whereby the result must be a
rank-2 tensor parametrized by the external momentum vector p. Acting with the longitudinal and
transversal projectors on this equation gives us consistency equations that determine the coefficient
functions aL and aT , leading to∫

q

f(q2, q · p) qµqν = πLµν

∫
q

f(q2, q · p) (q · p)2

p2 + πTµν
1

d− 1

∫
q

f(q2, q · p)
[
q2 − (q · p)2

p2

]
. (B.10)

Collecting these two integral relations, we arrive at the useful result∫
q

f(q2, q · p) qµ(q + p)ν = δµν
d− 1

∫
q

f(q2, q · p)
[
q2 − (q · p)2

p2

]
+ pµpν

p2

∫
q

f(q2, q · p)
[

d

d− 1
(q · p)2

p2 + q · p− 1
d− 1q

2
]
.

(B.11)

B.3 Flow equations

Let us now take a closer look at the flow equations for the Gross-Neveu and Thirring vertices.
Our effective action thus comprises the couplings gGN and gTh as in Eq. (4.4), but we do not
restrict to a particular representation of the Clifford algebra yet. According to the general analysis
of Section 2.2, the diagrams to be considered include either two Gross-Neveu vertices, or two
Thirring vertices, or one Gross-Neveu and one Thirring vertex.
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Gross-Neveu vertices. We begin with diagrams featuring two Gross-Neveu interactions, i.e. gA =
gB = gGN and OA = OB = 1 in (2.21). In the s2-channel, we obtain a vertex of the Gross-Neveu
type with a weight of

−Nf tr(/q′/q) = −(q · q′)Nfdγ . (B.12)

According to relation (2.25), this prompts the a1-parametrized type of the s2-diagram and thus
contributes a term − Ñ

0B
s2[gGN, gGN] to the flow of gGN. Notice that we do not denote the η

dependence of the diagram functional explicitly. The fermion bilinears in the s1-channel are

ψ̄ψ ψ̄/q
′
/qψ = q · q′ψ̄ψ ψ̄ψ + q′µqνψ̄ψ ψ̄γµνψ (B.13)

with γµν = i
2 [γµ, γν ]. Here we omitted the momentum dependence of the spinor fields, too, to

keep the notation slim; their order is understood as given in Eq. (2.21). A vertex of the second
type is not considered in our ansatz (2.9), but the first one will contribute to the flow of gGN with
an overall 2

0B
s1[gGN, gGN] diagram. The t-channel bilinear structure is

ψ̄/q
′ψ ψ̄/qψ = (q+p2+p3)µqν ψ̄γµψ ψ̄γνψ . (B.14)

These do not contribute to the flow of gGN, but give potential contributions to the Thirring vertex.
To find them, we need to pick out those terms for which the loop integral is proportional to δµν .
Consulting Eq. (B.11) and comparing with Eq. (2.25), we see that this gives an a2-parametrized
contribution of the t-diagram with a weight of d̃ = 1

d−1 , i.e. the flow of gTh receives a term
0
d̃
Bt[gGN, gGN]. The structure in the u-channel is identical except for an extra minus sign, such that
there is a term − 0

d̃
Bu[gGN, gGN] added to the flow of gTh.

In the case of the pure Gross-Neveu model as studied in Section 3, this already completes the
analysis for the one coupling present. Including the appropriate scaling term, the corresponding
flow equation is

∂tgGN =
[
d− 2 + 2η(4)

]
gGN +

4∑
j=1

pj · ∇pjgGN − Ñ
0B

s2[gGN, gGN] + 2
0B

s1[gGN, gGN] . (B.15)

For the remaining analysis, we restrict our computations to d = 3 dimensions and the irreducible
representation of the Clifford algebra in terms of Pauli matrices.

Mixed vertices. Let us next turn to diagrams involving one Gross-Neveu and one Thirring inter-
action. We immediately see that the s2-channel is not called by mixed diagrams because it would
lead to mixed vertices, which are not incorporated in the ansatz (2.9). We begin our study of the
other channels with gA = gGN, OA = 1 and gB = gTh, OB = γµ. The first s1-type, line 2 of the
integral in (2.21), features bilinears of the form

ψ̄ψ ψ̄σα/q
′
/qσαψ = q′µqν ψ̄ψ ψ̄σα

[
δµν + iq′µqνεµνβσβ

]
σαψ = q′µqν ψ̄ψ ψ̄ [3δµν − iεµνρσρ]ψ. (B.16)

Disallowing mixed vertices once again, we thus end up with a contribution 3
0B

s1[gGN, gTh] to the
flow of gGN. In the second s1-type, line 3 of the integral in (2.21), the bilinear structure is

ψ̄σαψ ψ̄/q
′σα/qψ = q′µqν ψ̄σαψ ψ̄ [σµδαν + σνδµα − σαδµν + iεµαν ]ψ . (B.17)

There is no input to the flow of gGN, but the Thirring coupling receives contributions of the form
a1
a2
Bs1[gTh, gGN] in two ways: The term proportional to δµν gives a1 = −1, whereas the remaining

to δ-terms lead to a2 = 2
d−1 = 1. Hence it follows a term − 1

−1B
s1[gTh, gGN] for the flow of gTh. In

the t-channel, the situation of bilinears is

ψ̄/q
′σαψ ψ̄σα/qψ = q′µqν ψ̄σµσαψ ψ̄σασνψ = q′µqν ψ̄ [δµα + iεµαβσβ ]ψ ψ̄ [δαν + iεανγσγ ]ψ .

(B.18)
Contributions to the flow of gGN arise from the term proportional to δδ, namely 1

0B
t[gGN, gTh].

Furthermore, the term proportional to εε will contribute to the flow of gTh by means of a1
a2
Bt

diagrams. To quantify it, we use that

εµαβεανγ = −δµνδβγ + δµγδβν . (B.19)
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The first term leads to a1 = 1, while the second term gives a2 = − 1
d−1 = − 1

2 , with the extra minus
sign originating from the factor i2. The overall contribution is thus 1

−1/2B
t[gGN, gTh]. Finally, the

bilinears in the u-channel are again very similar to the t-channel ones, namely

ψ̄/q
′σαψ ψ̄σα/qψ = q′µqν ψ̄σασµψ ψ̄σασνψψ . (B.20)

Apparently, we have to interchange µ ↔ α in the Kronecker and Levi-Civita symbols of the first
bilinear in (B.18), which does not affect the gGN-flow term, but gives a negative sign for the gTh-flow
term. Together with the additional minus for the u-channel contributions from (2.21), we obtain
a term − 1

0B
u[gGN, gTh] for the flow of gGN and a term 1

−1/2B
u[gGN, gTh] for the flow of gTh.

There remain the terms with the indices A and B and thus the roles of the Gross-Neveu and
Thirring couplings interchanged, i.e. gA = gTh, OA = γµ and gB = gGN, OB = 1. The effect is that
we obtain the same diagrams as above with gGN ←→ gTh. For the s1-channel, this is immediately
clear because the terms are obviously symmetric under the exchange of couplings. In the t- and
u-channels, we have to swap the indices µ↔ α in the first and ν ↔ α in the second fermion bilinear
in Eqs. (B.18) and (B.20). As this leaves the products δδ and εε invariant, we receive indeed the
same weights for the diagrams as before with gGN ←→ gTh.

Thirring vertices. Finally, we will address the diagrams involving two Thirring vertices such that
gA = gTh, OA = γµ and gB = gTh, OB = γν . The s2-channel contributes a term to the flow of gTh

with weight
−Nf tr(/q′σα/qσβ) = −q′µqν Nfdγ (δµαδνβ − δµνδαβ + δµβδνα) . (B.21)

The term proportional to δµνδαβ leads to a1 = Ñ , while the other two terms give a2 = −Ñ 2
d−1 =

−Ñ . Together, the flow of gTh receives a contribution Ñ
−ÑB

s2[gTh, gTh]. In the s1-channel, we
encounter bilinears of the form

ψ̄σαψ ψ̄σβ/q
′σα/qσβψ = q′µqν ψ̄σαψ ψ̄σβσµσασνσβψ

= q′µqν ψ̄σαψ ψ̄ [σαδµν − σµδαν − σνδαµ + 3iεµαν ]ψ .
(B.22)

The term proportional to δµν gives a1 = 1, the other two δ terms yield a2 = − 2
d−1 = −1, and

the ε term does not contribute. Consequently, we obtain a diagram 2
−2B

s1[gTh, gTh] for the flow of
gTh, the factor of 2 arising from the fact that there are two s1-channel terms in Eq. (2.21). In the
t-channel, the spinor bilinears are

ψ̄σα/q
′σβψ ψ̄σβ/qσαψ = q′µqν ψ̄σασµσβψ ψ̄σβσνσαψ

= q′µqν ψ̄ [σαδµβ + σβδµα − σµδαβ + iεαµβ ]ψ ψ̄ [σβδνα + σαδνβ − σνδαβ + iεβνα]ψ.
(B.23)

Let us refer to the terms in the left and right square brackets by L1 through L4 and R1 through
R4, respectively, and analyze the 16 possible products. Our first observation is that the terms
where either L4 or R4 is multiplied with any of the first three terms on the opposite side will not
contribute because they lead to mixed vertices. Of the remaining ten terms, the only one entering
the flow of the Gross-Neveu coupling is the L4R4 term. Since εαµβεβνα = (1− d)δµν , the resulting
diagram is 2

0B
t[gTh, gTh]. The nine terms left all contribute to the flow of the Thirring coupling.

The ones with an a1-parametrized contribution are L1R2 and L2R1, i.e. a1 = 2. The terms L1R1
and L2R2 have a positive sign while L1R3, L2R3, L3R1, and L3R2 are negative. The term L3R3
is special because it carries a relative weight of d = 3 with respect to the other six due to the trace
of the Kronecker delta. All in all, the relevant prefactor a2 = 2−4+d

d−1 = 1
2 . Hence the contribution

to the flow of gTh is 2
1/2B

t[gTh, gTh].

In the u-channel, the structure is again very similar to the t-channel. The fermion bilinears are

ψ̄σβ/q
′σαψ ψ̄σβ/qσαψ = q′µqν ψ̄σβσµσαψ ψ̄σβσνσαψ . (B.24)

Comparing to (B.23), we see that we have to exchange α↔ β in the left bracket. This leaves the
δδ contributions unchanged and introduces a negative sign for the εε contribution. Together with
the extra minus from Eq. (2.21), we therefore obtain a term 2

0B
u[gTh, gTh] for the flow of gGN and

a term − 2
1/2B

t[gTh, gTh] for the flow of gTh.

This completes the analysis of the flow equations for the Gross-Neveu-Thirring model. Collecting
all contributions, we arrive precisely at the results (4.5a) and (4.5b).
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B.4 Anomalous dimension function

A general derivation of the FRG relation for the anomalous dimension of fermion interacting via
four-particle vertices was presented in Section 2.3, culminating in Eq. (2.36). Here we will calculate
the precise contributions from the interaction vertices considered in Sections 3 and 4.

Gross-Neveu vertex. For the Gross-Neveu interaction, we have OA = 1 in Eq. (2.36). Hence
the first term, proportional to Nf and corresponding to the second diagram in (2.37b), does not
contribute because both traces vanish. The prefactor of the second term reduces to

tr(/p/q) = dγ(p · q) , (B.25)

such that the Gross-Neveu interaction contributes to the anomalous dimension function with the
diagram Σ1[gGN] as stated in Eq. (3.5).

Thirring vertex. For the Thirring vertex, we set OA = γα in Eq. (2.36). The traces appearing in
the first term are of the form

tr(γµγα) = dγδµα . (B.26)
Thus the contribution here is ÑΣ2[gTh](p). For the second term, we simplify

tr(γµγαγνγα) = (2− d)dγδµν . (B.27)

Therefore, the anomalous dimension receives another contribution from the Thirring vertex given
by (2− d)Σ1[gTh]. In d = 3, the anomalous dimension then satisfies the relation (4.6).

B.5 Gross-Neveu model

Diagram functionals. The diagram functionals were already defined in Sections 3 and 4. For
convenience, we will introduce a slightly more general notation here, beginning with the threshold
kernel (3.20). We add a factor α in front of the regulator derivative, allowing us to switch this
term on and off deliberately:

a1
a2
Kα(s, q, u; η) := 1

(2π)d

[
(a1+a2)q2 + a1q

√
su− a2q

2u2

q2(q2+s+2q
√
su)

]
α∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
[
1 + r1(q2+s+2q

√
su)
] .

(B.28)
The original definition is thus given by α = 1. Regarding the diagram functionals, we substitute
this generalized kernel. In the s-channel approximation, we then define the following diagram
functionals:

a1
a2
Bs2[g1, g2; η, α](s) := 2

Ñ
g1(s)g2(s)σd−2

∫
d(q, u) a1

a2
Kα(s, q, u; η) , (B.29a)

a1
a2
Bs1[g1, g2; η, α](s) := 1

Ñ
g1(s)

∫
d(q, u,Ω) a1

a2
Kα(s, q, u; η)

[
g2
(
[q + p3]2

)
+ g2

(
[q + p4]2

)]
,

(B.29b)
a1
a2
Bt[g1, g2; η, α](s) := 1

Ñ

∫
d(q, u,Ω) a1

a2
Kα(t, q, u; η)

×
[
g1
(
[q − p1]2

)
g2
(
[q + p2]2

)
+ g1

(
[q − p4]2

)
g2
(
[q + p3]2

)]
,

(B.29c)
a1
a2
Bu[g1, g2; η, α](s) := 1

Ñ

∫
d(q, u,Ω) a1

a2
Kα(u, q, u; η)

×
[
g1
(
[q − p1]2

)
g2
(
[q + p2]2

)
+ g1

(
[q − p3]2

)
g2
(
[q + p4]2

)]
,

(B.29d)

where a fixed momentum configuration is understood. For the relevant self-energy diagram, we
denote

Σ1[g; η, α](p2) := −
∫

d(q, u) σd−2

Ñ(2π)d

(
u√
p2q

)
α∂tr1(q2)− η(q2)r1(q2)

[1 + r1(q2)]2
g(q2 + p2 + 2q

√
p2u)

(B.30)
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in a similar way. Implementing the diagram functionals in this form for arbitrary g- and η-
arguments is a convenient starting point for calculations of fixed point equations and spectra. In
fact, all loop integrals encountered in the models of this thesis can be expressed in terms of these
five functionals.

Fixed point. The defining equations for the coupling and anomalous dimension functions are
(3.25) and (3.26). These lead to the residual functionals

ρg[g, η](s) :=
[
1 + 2η

(
s

2 + 2c34

)]
g(s) + 2s g′(s)− ÑBs2[g, g; η, 1](s) + 2Bs1[g, g; η, 1](s) ,

(B.31a)
ρη[g, η](p2) := η(p2)−Σ1[g; η, 1](p2) , (B.31b)

where c34 = cos^(p3, p4) and a1 = 1, a2 = 0 are suppressed. By plugging in the Chebyshev ansatz
(3.47) and evaluating on the collocation grids {sm} and {p2

m}, we obtain the residual vector (3.51),
ρ(g,η) = (ρg1, . . . , ρ

g
ngmax

, ρη1 , . . . , ρ
η
nηmax

) with

ρgm(g,η) := ρg
[∑

gnPn,
∑

ηnPn

]
(sm) , (B.32a)

ρηm(g,η) := ρη
[∑

gnPn,
∑

ηnPn

]
(p2
m) (B.32b)

for the Chebyshev coefficients g = (gn), η = (ηn). To compute the corresponding Jacobian, we
first evaluate derivatives of the diagram functionals. Denoting δy(x) := δ(x− y), we obtain

δBm[g1, g2; η, α](s)
δg1(s′) = Bm[δs′ , g2; η, α](s) , (B.33)

δBm[g1, g2; η, α](s)
δg2(s′) = Bm[g1, δs′ ; η, α](s) , δBm[g1, g2; η, α](s)

δη(p′2) = Bm[g1, g2; δp′2 , 0](s) , (B.34)

δΣ1[g; η, α](p2)
δg(s′) = Σ1[δs′ ; η, α](p2) , δΣ1[g; η, α](p2)

δη(p′2) = Σ1[g; δp′2 , 0](p2) , (B.35)

where m = s2, s1, t, u stands for any of the Mandelstam channels. The Jacobian

J =
(
Jgg Jgη

Jηg Jηη

)
(B.36)

thus becomes

Jggmn = ∂ρgm
∂gn

=
[
1 + 2η

(
sm

2 + 2c34

)]
Pn(sm) + 2sm P ′n(sm)− 2ÑBs2[g, Pn; η, 1](sm)

+ 2Bs1
↔[g, Pn; η, 1](sm) , (B.37a)

Jgηmn = ∂ρgm
∂ηn

= 2Pn
(

sm
2 + 2c34

)
g(s)− ÑBs2[g, g;Pn, 0](sm) + 2Bs1[g, g;Pn, 0](sm) , (B.37b)

Jηgmn = ∂ρηm
∂gn

= −Σ1[Pn; η, 1](p2
m) , (B.37c)

Jηηmn = ∂ρηm
∂ηn

= Pn(p2
m)−Σ1[g;Pn, 0](p2

m) . (B.37d)

Regarding the computational effort, the Jgg component of the Jacobian is clearly the most ex-
pensive part of the calculation. First, the Chebyshev functions Pn become increasingly oscillatory
with growing n, and we generally need higher precision, i.e. higher orders, for the coupling g than
for the anomalous dimension η. Second, the diagram functionals Bm will involve 3-dimensional
integrals for all except the parallel momentum configuration, whereas the self-energy integrals Σ
are always 2-dimensional. It can therefore be advantageous to compute the Jacobian numerically
(cf. Appendix D), thereby avoiding oscillatory integrands. However, the achievable precision will in
general be lower this way. In practice, a combination of both turned out to be a good compromise,
where we use the numerical Jacobian for the first few iterations to reach moderate accuracy, and
switch to the analytical Jacobian to fine-tune the result.
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Spectrum. For the fixed maximum growth scheme, our computational method was already
sketched quite detailed in Section 3.6. We simply calculate the eigenvalues of the matrix (−P−1Jgg)
with P and Jgg given in Eqs. (3.57) and (3.58), where Jgg is a generalization of (B.37a) with ad-
ditional scaling prefactor.

In the running asymptotics scheme, amax is no longer constant but replaced by 2−d−θ
2 , depending

on the eigenvalue θ. This renders the eigenvalue equation (3.53) nonlinear, so that we cannot use
standard methods to compute spectrum and perturbations. Instead, we will use a Newton-Raphson
iteration again to solve for the joint variables (θ; ε0, . . . , εnεmax

). The residual function for ε corre-
sponding to Eq. (3.53) is obtained from the linearized version of the fixed point residual (B.31a),

ρε(θ; ε; s) := θε(s) +
∫ ∞

0
ds′ δρ

g[g, η](s)
δg(s′)

∣∣∣∣
g=g∗
η=η∗

ε(s′) . (B.38)

Plugging in the ansatz (3.55) for ε and evaluating it on a collocation grid gives us (nεmax + 1) equa-
tions ρεm(θ; ε) := ρε(θ; ε; sm) = 0. These are supplemented by the normalization condition (3.59)
for the perturbations,

ρθ(ε) := 1−
nεmax∑
n=0

(−1)nεn , (B.39)

such that the total residual vector is ρ = (ρθ;ρε). The Jacobian of the system (ρθ;ρε) needed for
the Newton-Raphson procedure takes the form

J =
(

0 Jθε

Jεθ Jεε

)
. (B.40)

Here Jεεmn = θ (L+ sm)
2−d−θ

2 Pn(sm) + Jggmn, where as before Jgg is given by (3.58) with amax =
2−d−θ

2 . Furthermore,

Jθρn = ∂ρθ(ε)
∂εn

= −(−1)n , (B.41)

and
Jεθm = ∂ρε[g∗, η∗; ε](sm)

∂θ
. (B.42)

As described in Section 3.6, we usually performed an additional “burn-in” step for the solver by
iterating a few times with fixed θ. In this case, we omitted the first collocation point s0 in favor
of the normalization condition, so that the reduced system is given by

ρred = (ρθ; ρε1, . . . , ρεnεmax
) , J =

(
Jθε

Jεεred

)
(θ fixed) . (B.43)

Once the residual is reasonably small such that the fluctuations in the eigenvalue are expected to
be small, too, we release θ and solve the full system given above.

B.6 Gross-Neveu-Thirring model

Fixed points. The fixed point residuals following from Eqs. (4.5) and (4.6) and expressed in terms
of the extended diagram functionals (B.29) and (B.30) read

ρgGN [gGN, gTh, η](s) :=
[
1 + 2η

(
s

2 + 2c34

)]
gGN(s) + 2s g′GN(s)

− Ñ
0B

s2[gGN, gGN; η, 1](s) + 2
0B

s1[gGN, gGN; η, 1](s) + 3
0B

s1
↔[gGN, gTh; η, 1](s)

+ 1
0B

t
↔[gGN, gTh; η, 1](s) + 2

0B
t[gTh, gTh; η, 1](s)

− 1
0B

u
↔[gGN, gTh; η, 1](s) + 2

0B
u[gTh, gTh; η, 1](s) , (B.44a)
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ρgTh [gGN, gTh, η](s) :=
[
1 + 2η

(
s

2 + 2c34

)]
gTh(s) + 2s g′Th(s) + Ñ

−ÑB
s2[gTh, gTh; η, 1](s)

− 1
−1B

s1
↔[gGN, gTh; η, 1](s) + 2

−2B
s1[gTh, gTh; η, 1](s)

+ 0
1/2B

t[gGN, gGN; η, 1](s) + 1
−1/2B

t
↔[gGN, gTh; η, 1](s) + 2

1/2B
t[gTh, gTh; η, 1](s)

− 0
1/2B

u[gGN, gGN; η, 1](s) + 1
−1/2B

u
↔[gGN, gTh; η, 1](s)− 2

1/2B
u[gTh, gTh; η, 1](s) , (B.44b)

ρη[g, η](p2) := η(p2)−Σ1[gGN; η, 1](p2) +Σ1[gTh; η, 1](p2) . (B.44c)

Substituting truncated series of Chebyshev rational functions of the form (3.47) for all three
unknown functions and evaluating on the associated collocation grids, we obtain the residual vec-
tors ρgGN(gGN, gTh,η), ρgTh(gGN, gTh,η), and ρη(gGN, gTh,η) for the Chebyshev coefficient vector
(gGN, gTh,η). We point out that some diagrams, e.g. ∗0Bs1

↔[gGN, gTh; η, 1], enter both ρgGN and ρgTh ,
so that it is beneficial to compute these residuals simultaneously for a given collocation point. To
exploit this fact, the expansion orders of gGN and gTh need to agree, which we will always assume
here. The Jacobian corresponding to the residual vector ρ = (ρgGN ,ρgTh ,ρη),

J =

JgGNgGN JgGNgTh JgGNη

JgThgGN JgThgTh JgThη

JηgGN JηgTh Jηη

 , (B.45)

has components

JgGNgGN
mn =

[
1 + 2η

(
sm

2 + 2c34

)]
Pn(sm) + 2sP ′n(sm)− Ñ

0B
s2
↔[gGN, Pn; η, 1](sm)

+ 2
0B

s1
↔[gGN, Pn; η, 1](sm) + 3

0B
s1
↔[Pn, gTh; η, 1](sm)

+ 1
0B

t
↔[Pn, gTh; η, 1](sm)− 1

0B
u
↔[Pn, gTh; η, 1](sm) , (B.46a)

JgGNgTh
mn = 3

0B
s1
↔[gGN, Pn; η, 1](sm) + 1

0B
t
↔[gGN, Pn; η, 1](sm) + 2

0B
t
↔[gTh, Pn; η, 1](sm)

− 1
0B

u
↔[gGN, Pn; η, 1](sm) + 2

0B
u
↔[gTh, Pn; η, 1](sm) (B.46b)

JgGNη
mn = 2Pn

(
sm

2 + 2c34

)
gGN(sm)− Ñ

0B
s2[gGN, gGN;Pn, 0](sm)

+ 2
0B

s1[gGN, gGN;Pn, 0](sm) + 3
0B

s1
↔[gGN, gTh;Pn, 0](sm)

+ 1
0B

t
↔[gGN, gTh;Pn, 0](sm) + 2

0B
t[gTh, gTh;Pn, 0](sm)

− 1
0B

u
↔[gGN, gTh;Pn, 0](sm) + 2

0B
u[gTh, gTh;Pn, 0](sm) (B.46c)

JgThgGN
mn = − 1

−1B
s1
↔[Pn, gTh; η, 1](sm) + 0

1/2B
t
↔[gGN, Pn; η, 1](sm) + 1

−1/2B
t
↔[Pn, gTh; η, 1](sm)

− 0
1/2B

u
↔[gGN, Pn; η, 1](sm) + 1

−1/2B
u
↔[Pn, gTh; η, 1](sm) (B.46d)

JgThgTh
mn =

[
1 + 2η

(
sm

2 + 2c34

)]
Pn(sm) + 2sm P ′n(sm) + Ñ

−ÑB
s2
↔[gTh, Pn; η, 1](sm)

− 1
−1B

s1
↔[gGN, Pn; η, 1](sm) + 2

−2B
s1
↔[gTh, Pn; η, 1](sm) + 1

−1/2B
t
↔[gGN, Pn; η, 1](sm)

+ 2
1/2B

t
↔[gTh, Pn; η, 1](sm) + 1

−1/2B
u
↔[gGN, Pn; η, 1](sm)− 2

1/2B
u
↔[gTh, Pn; η, 1](sm)

(B.46e)

JgThη
mn = 2Pn

(
sm

2 + 2c34

)
gTh(sm) + Ñ

−ÑB
s2[gTh, gTh;Pn, 0](sm)

− 1
−1B

s1
↔[gGN, gTh;Pn, 0](sm) + 2

−2B
s1[gTh, gTh;Pn, 0](sm)

+ 0
1/2B

t[gGN, gGN;Pn, 0](sm) + 1
−1/2B

t
↔[gGN, gTh;Pn, 0](sm) + 2

1/2B
t[gTh, gTh;Pn, 0](sm)

− 0
1/2B

u[gGN, gGN;Pn, 0](sm) + 1
−1/2B

u
↔[gGN, gTh;Pn, 0](sm)− 2

1/2B
u[gTh, gTh;Pn, 0](sm)

(B.46f)
JηgGN
mn = −Σ1[Pn; η, 1](p2

m) (B.46g)
JηgTh
mn = Σ1[Pn; η, 1](p2

m) (B.46h)
Jηηmn = Pn(p2

m)−Σ1[gGN;Pn, 0](p2
m) +Σ1[gTh;Pn, 0](p2

m) . (B.46i)

Here again, some diagrams occur in both gGN and gTh components, so that these should be
computed at one go.
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Critical exponents. To extract the spectrum of a fixed point solution, we solve the algebraic
eigenvalue equation (4.12). The Jacobians JA,B are obtained from JgAgB in (B.46) by replacing
Pn(s) −→ (s + L)amaxPn(s). The matrix P was given in (3.57).
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C Chebyshev functions and the pseudospectral method

The Chebyshev polynomials and their relatives provide orthogonal basis sets for specific L2 spaces
and are powerful and versatile tools in approximation theory. Here we will collect the main prop-
erties relevant for the expansions and methods used in this thesis. Comprehensive overviews of
Chebyshev functions and their use in approximation theory can be found, e.g., in Refs. [105, 113].

C.1 Chebyshev polynomials of the first kind

Definition. The Chebyshev polynomials of the first kind are denoted by Tn, n = 0, 1, . . ., and
defined on the interval [−1, 1] by the recurrence relation

T0(x) = 1 , (C.1a)
T1(x) = x , (C.1b)

Tn+1(x) = 2xTn(x)− Tn−1(x) . (C.1c)

Expansions in terms of the Tn are closely related to Fourier cosine series owing to the relation

Tn(cos θ) = cos(nθ) . (C.2)

However, contrary to the cosine series, the use of Chebyshev polynomials as an expansion basis is
not restricted to even and/or periodic functions.

Orthogonality and completeness. The expansion of arbitrary functions in terms of Chebyshev
polynomials of the first kind is based on the completeness property in the space L2([−1, 1]) with
measure dx/

√
1− x2, i.e. the space of functions f : [−1, 1] → R that are square-integrable with

respect to that measure [113]. Indeed, any such function can be expanded as a series

f(x) =
∞∑
n=0

fnTn(x) (C.3)

that converges with respect to the norm

‖f‖2 =
∫ 1

−1

dx√
1− x2

|f(x)|2 . (C.4)

Such an expansion is particularly convenient due to the orthogonality property∫ 1

−1

dx√
1− x2

Tm(x)Tn(x) = π

cm
δmn , (C.5)

where c0 = 1 and c≥1 = 2. Taking the inner product of Tn with the ansatz (C.3) then allows us to
extract the coefficients,

fn = cn
π

∫ 1

−1

dx√
1− x2

Tn(x)f(x) . (C.6)

Clenshaw algorithm. A fast and stable way to compute the value of a Chebyshev series (C.3)
truncated at some order nmax is the Clenshaw algorithm [129]. We recursively define the auxiliary
coefficients

bnmax+1 := bnmax+2 := 0 (C.7)
bn := fn + 2x bn+1(x)− bn+2 (n = nmax, ..., 1) (C.8)

using the Chebyshev coefficients fn and the evaluation point x. The value of the truncated series
at x is then given by

nmax∑
n=0

fnTn(x) = f0 + b1x− b2 . (C.9)
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Approximation theory and the Galerkin method. A standard problem of approximation theory
is to find a function f , w.l.o.g. defined on [−1, 1], that satisfies the equation ρ[f ] = 0 for a given
residual functional ρ. In general, this functional may involve algebraic as well as differential and/or
integral operations of the argument function. If the solution function f is in L2([−1, 1]), we should
be able to expand it as a series (C.3). Using this ansatz for f and truncating the series at some
maximum order nmax reduces the functional equation ρ[f ] = 0 to an approximated form

ρ(f0, . . . , fnmax ;x) := ρ

[
nmax∑
n=0

fnTn

]
(x) != 0 , x ∈ [−1, 1] . (C.10)

The idea of the Galerkin method is to expand the residual function ρ(f ;x) itself as a (truncated)
Chebyshev series. Since the residual is to vanish on the whole interval, all its expansion coefficients
need to vanish. Using Eq. (C.6) for the coefficients of ρ leads to the defining relation of the Galerkin
method, ∫ 1

−1

dx√
1− x2

Tn(x)ρ(f ;x) != 0 , n = 0, . . . , nmax . (C.11)

This algebraic system of (nmax + 1) equations for the (nmax + 1) unknown coefficients f0, . . . , fnmax

can then be solved by an appropriate method depending on the type of equations.

Pseudospectral method and collocation grids. For the pseudospectral method, the expansion
coefficients fn are approximated by enforcing the residual of f to vanish on a set of discrete points
x0, x1, . . . , xnmax , where nmax is again the maximum order of the truncated series (C.3). The
resulting approximating series thus interpolates the function f between these so-called collocation
points and converges to the true function on the entire domain as nmax →∞ [105]. Popular choices
for the collocation points are the roots of Tnmax+1,

xm = − cos
(

(2m+ 1)π
2(nmax + 1)

)
, (C.12a)

or its extrema supplemented by the interval end points (Gauss-Lobatto grid),

xm = − cos
(
mπ

nmax

)
. (C.12b)

Both options can be shown to satisfy an optimum convergence property because they correspond
to the Galerkin method for numerical integration of the inner products (C.11) using an optimum
Gauss quadrature rule [105].

C.2 Chebyshev polynomials of the second kind

Definition. For completeness, we note that there exists a second set of orthogonal polynomials on
[−1, 1], denoted by Un, n = 0, 1, . . ., called the Chebyshev polynomials of the second kind. These
are defined by the recurrence relation

U0(x) = 1 , (C.13a)
U1(x) = 2x , (C.13b)

Un+1(x) = 2xUn(x)− Un−1(x) . (C.13c)
They are, however, very rarely used as an expansion basis to approximate arbitrary functions.

C.3 Chebyshev rational functions

Definition. In order to expand functions in L2 on the semi-infinite interval [0,∞), we can com-
pactify the domain to [−1, 1] and use the Chebyshev polynomials of the first kind. This leads to
the definition of the Chebyshev rational functions

Rn(x) = Tn

(
x− L
x+ L

)
, n = 0, 1, . . . (C.14)

Here L is a free real parameter that should roughly reflect the typical length scale of the function
to be expanded. The corresponding L2 measure is transformed to dx

√
L/x/(x+ L).
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Orthogonality. The orthogonality relation for the Chebyshev rational functions follows from the
relation (C.5) for the polynomials of the first kind:∫ ∞

0
dx
√
L

x

Rm(x)Rn(x)
x+ L

= π

cm
δmn . (C.15)

Likewise, the orthogonality property can be used to compute the expansion coefficients of a function
f ∈ L2 ([0,∞)) as

fn = cn
π

∫ ∞
0

dx
√
L

x

Rn(x)f(x)
x+ L

. (C.16)

Finding approximate solutions to equations on [0,∞) by means of the Galerkin or pseudospec-
tral methods then works completely analogously to the case of Chebyshev polynomials described
above.

Collocation grids. Optimal collocation grids are derived from (C.12) by reversing the domain
compactification, i.e.

xm = L
1 + x̂m
1− x̂m

, (C.17)

where the x̂m are given by either (C.12a) or (C.12b). Since the latter involves xnmax = ∞ as an
expansion point, the roots grid (C.12a) is a far more common choice. If we use the square-root
parametrization (cf. Section 3.5) for our expansion series, i.e. f(y) =

∑
n fnRn(√y), the collocation

grid has to be adapted, namely ym = x2
m.
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D Newton-Raphson iteration

The Newton-Raphson procedure is a standard algorithm to iteratively find a solution of an arbitrary
system of algebraic equations [130, 131]. Starting from an initial guess, it uses linear approximations
to the system’s residual function to gradually improve the solution.

Definitions. Consider a system of n variables xi, collectively denoted by x = (x1, . . . , xn). We
are looking for a solution x∗ that satisfies the n equations

ρi(x∗) = 0 (i = 1, . . . , n) . (D.1)

The functions ρi are called residuals, and we also define the residual vector ρ = (ρ1, . . . , ρn).
Assuming that the residual functions are analytic in a neighborhood of the solution, we can expand
for x sufficiently close to x∗ and obtain

0 = ρ(x∗) = ρ(x) + J(x)(x∗ − x) +O
(
(x∗ − x)2) , (D.2)

where the Jacobian J = (Jmn) is given by

Jij(x) = ∂ρi
∂xj

(x) . (D.3)

Multiplying by its inverse and rearranging terms, we find

x∗ = x− J(x)−1ρ(x) +O
(
(x∗ − x)2) . (D.4)

This relation forms the basis of the Newton-Raphson iteration. If the initial guess is close to the
true solution, the remainder is small. Neglecting it thus leads to a new and hopefully improved
guess.

Iteration procedure. The introductory considerations may be formalized as an algorithm that
systematically tries to decrease the residual vector ρ:

1. let k := 0 and define an initial guess x(0);

2. compute the residual and Jacobian of the current guess:

ρ(k) := ρ(x(k)) , (D.5)
J (k) := J(x(k)) ; (D.6)

3. compute a new guess
x(k+1) := x(k) −

[
J (k)

]−1
ρ(k) ; (D.7)

4. check for convergence: if the increment ∆x = x(k+1) − x(k) and/or the residual ρ(k+1) lie
below a certain threshold, return x(k+1); otherwise, let k := k + 1 and resume with step 2.

Possible exit conditions involve a threshold for the absolute and/or relative errors of the step size,

|x(k+1)
i − x(k)

i | < ∆abs +∆rel |x(k)
i | for all i = 1, . . . , n , (D.8)

or of the residual vector,

|ρ(k+1)
i − ρ(k)

i | < ∆abs +∆rel |ρ(k)
i | for all i = 1, . . . , n . (D.9)

The latter should only be used when it is sufficient to obtain an approximate solution of equations
(D.1). In case that the Jacobian is not accessible analytically or its evaluation is computationally
demanding, it can be calculated numerically from the residual function:

Jij(x) ' ρi(x1, . . . , xj−1, (1 + ε)xj , xj+1, . . . , xn)− ρi(x)
εxj

, (D.10)

where ε is some small number, for instance the square root of the machine precision [119].
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Convergence. Of course, the Newton-Raphson algorithm can only find one solution at a time
even though the original system (D.1) may have multiple solutions. Moreover, since the algorithm
essentially uses a linear approximation of the residual function in every step, the initial guess
needs to be sufficiently close to a solution in order for the iteration to converge. If this is the
case, we usually have quadratic convergence [131], every additional iteration doubles the accuracy
of the solution (i.e. the number of correct decimal places). Of course, natural limitations are set
by the precision of the applied floating point type. Consequently, if the computation of residual
and Jacobian involves many and/or complicated operations, such that rounding errors accumulate,
convergence will generally become worse.

In practice, it may be computationally advantageous to compute the Jacobian numerically using,
e.g., finite differences (cf. Appendix B.5). Then again, this will usually slow down convergence
and limit the achievable precision. Another approach to circumvent these problems is automatic
differentiation [132], whereby residuals and Jacobian are computed simultaneously in each iteration
step.
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E Remarks on the source code

For the solution of fixed point equations and critical exponents for finite flavor numbers, we wrote a
C++ program, whose source code is included in the digital submission of this thesis. This appendix
serves as a quick introduction to the implementation.

The program is called GNPFCheb (Gross-Neveu, Purely Fermionic, Chebyshev expansions) and
all source files are located in the GNPFCheb folder. It uses two auxiliary libraries dwmisc and dwamf
written by the author, whose source files are also provided in the respective folders. Moreover,
it requires the GNU Scientific Library (including BLAS) [119], the Eigen3 library [120], and the
CUBA library [115–118] (cf. Section E.2).

E.1 Compiling and running the program

Compiling. Before compiling the program, the following paths in the Makefiles of dwamf and
GNPFCheb should be set:

CUBA_DIR: points to the root directory of the CUBA library;

DWAMF_DIR: points to the root directory of the dwamf library (only in the Makefile for
GNPFCheb);

DWMISC_DIR: points to the root directory of the dwmisc library.

To compile the program, change to the GNPFCheb directory and use make. This will subsequently
call make for the dwmisc and dwamf libraries, too. Upon success, it will create an executable file
GNPFCheb in the current directory.

Running. To run the program after compilation, open a terminal, change to the GNPFCheb di-
rectory and type ./GNPFCheb. This will start the program with the built-in configuration values
unless there is a configuration file default.cfg in the same directory. You can also specify a
different configuration file as a command-line argument, e.g. ./GNPFCheb myconfig.cfg or read
and write configuration values from the command prompt using the get and set commands. For
a list of configuration values, see the next paragraph.

After successfully loading the modules, the program will present you with a command prompt,
indicated by the ‘>’ symbol. From here, the various input/output routines, fixed point and eigen-
value solvers, etc. can be called using the interactive computing script interface (ICSI) of the dwamf
library (see Section E.2). For a list of commands, see Section E.4.

Configuration values. The following configuration values may be set:

AbsoluteErrorGoal: target absolute error for numerical integrations;

ChebEx-eta-L: compactification scale L for Chebyshev rational function expansions of the anoma-
lous dimension functions (cf. Eq. (3.46));

ChebEx-eta-order: order nmax of the Chebyshev rational function expansions of the anomalous
dimension functions (cf. Eq. (3.47));

ChebEx-g-L: compactification scale L for Chebyshev rational function expansions of the coupling
functions (cf. Eq. (3.46));

ChebEx-g-order: order nmax of the Chebyshev rational function expansions of the coupling func-
tions (cf. Eq. (3.47));

ChebEx-g-orderL: order nLmax of the Chebyshev polynomial expansions of the coupling functions
on the left-hand patch of the domain (not used in this thesis);

ChebEx-g-orderR: order nRmax of the Chebyshev rational function expansions of the coupling func-
tions on the right-hand patch of the domain (not used in this thesis);
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ChebEx-g-param: default parametrization for Chebyshev rational function expansions of the cou-
pling functions (options: id, sqrt, 4rt);

ChebEx-g-sLink: patch link ŝ of the Chebyshev expansions of the coupling functions in a two-
patch split of the domain (not used in this thesis);

DataDirectory: default directory for input/output of data;

DimGamma: dimension dγ of the Clifford algebra representation, should be either 2 or 4;

gFPPert-Asymptotic-Exponent: asymptotic scaling exponent amax in the constant asymptotics
scheme (cf. Eq. (3.55));

MaxEvaluations: maximum number of sample points for numerical integrations;

Model: the default model to use for computations (see Section E.3 for a list of available models);

MomentumConfiguration-beta: angle between the xy-plane projections of p3 and p4 of the chosen
momentum configuration;

MomentumConfiguration-c34: cosine of the angle between p3 and p4 of the chosen momentum
configuration;

NumFlavors: flavor number Nf;

PlotMaxV: maximum p2 value for plots of coupling and anomalous dimension functions;

PrecisionGoal: target relative error for numerical integrations;

Root-AbsoluteErrorGoal: target absolute error for algebraic numerical solvers;

Root-MaxIterations: maximum number of iterations for iterative algebraic numerical solvers;

Root-MaxNoResidualDecrease: maximum number of iterations without a decrease of the maxi-
mum residual for iterative algebraic numerical solvers;

Root-RelativeErrorGoal: target relative error for algebraic numerical solvers;

Root-Solver: numerical solver type for algebraic equations (standard: newton).

E.2 Auxiliary libraries

The GNPFCheb program uses five external auxiliary libraries, three of which are publicly available:
the GNU Scientific Library (including BLAS) [119], the Eigen3 library [120], and the CUBA library
[115–118]. Usage was indicated in the main text already. The GSL library is used for the solution
of algebraic eigensystems and by some routines of the dwmisc and dwamf libraries. The Eigen3
library is likewise used for solving algebraic eigenvalue problems and for certain data containers.
The CUBA library provides the Cuhre algorithm which is used for multidimensional numerical
integrations. For details on these software packages, we refer to the official documentations cited
above.

dwmisc. The dwmisc library is a small C library, whose source files may be found in the corre-
sponding dwmisc folder. It provides basic input/output routines (dataio.*), a gnuplot [133] inter-
face (plot.*), wrappers for random number generators (random*.*), basic statistics (statistics.*),
and some other utilities. It is mostly used by some of the dwamf components and not explicitly
referenced from within GNPFCheb.
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dwamf. The dwamf library is a collection of C++ auxiliary structures and routines for standard
mathematical problems such as integration, numerical solution of equations, special functions,
plotting, etc. Its aim is mostly to provide a unified framework to standard tools found in other
software packages. The source files are located in the dwamf directory.

In the following, we shortly describe the various submodules, but do not go into details of the
implementation:

conf/
manages configuration files to be loaded from and saved to disk, implemented internally as
a key-value hash map.

data/
provides routines for data input/output and manipulation.

func/
provides an abstract mathematical function framework (Function.*pp and derived classes,
Domain.*pp and derived classes) as well as special functions (in particular Chebyshev series,
functions.*pp).

icsi/
contains the interactive computing script interface (ICSI, cf. Section E.4).

nint/
provides various numerical integration schemes and an abstract framework (Integrator.*pp).

nint/
provides various numerical solvers for systems of algebraic equations and an abstract frame-
work (AlgebraicSolver.*pp).

plot/
contains an object-oriented plotting interface to gnuplot [133].

util/
contains other auxiliary functions and classes.

E.3 File structure

Here we will give an overview of the source file structure in the GNPFCheb directory and shortly
explain the components defined in the respective files. For more details, please refer to the source
code directly.

GNPFCheb.cpp
is the program’s main file containing the entry point main. The program is organized in
several modules corresponding to the various models and approximations, all of which may
be loaded independently in the main file GNPFCheb.cpp. The individual model constituents
are stored in folders model-* and all contain a file main.cpp that is to be #included by
GNPFCheb.cpp in order to load the model.

Apart from that, the main file loads a few other definitions shared by all models, namely
definitions of the diagram functionals, coupling and anomalous dimension function containers,
regulators, and other utilities.

diagram-functions/
contains definitions of the diagram functionals for different approximations.

dgrf_s.cpp
s-channel approximation

dgrf_sAtu.cpp
s- and averaged t/u-channel approximation
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dgrf_sAtx.cpp
s- and averaged t/u-channel approximation with neglected φ dependence in the loop
integrals

kernel.cpp
definition of the threshold kernel

flow-functions/
defines containers for Chebyshev rational series of coupling functions (GCouplingFunction*.*pp)
and anomalous dimension functions (AnomalousDimensionFunction*.*pp). Additionally
defines wrappers of single Chebyshev rational functions (GChebyshevR*.*pp and
AnomalousDimensionChebyshevR*.*pp). Finally it also defines classes to specify momentum
configurations (MomentumConfiguration*.*pp).

model-*/
contains residual functionals, fixed point solvers, and eigenvalue solvers for a particular model
and approximation.

Available models:

gn-s
Gross-Neveu model, s-channel approximation (old implementation), id: gn/s

gn-s-rev
Gross-Neveu model, s-channel approximation (diagram function implementation),
id: gn/s,rev

gn-sAtu
Gross-Neveu model, s- and averaged t/u-channel approximation, id: gn/s,tu

gn-sAtx
Gross-Neveu model, s- and averaged t/u-channel approximation with neglected φ
dependence in the loop integrals, id: gn/s,tx

gnth-s
Gross-Neveu-Thirring model, s-channel approximation, id: gnth/s

gnth-sAtu
Gross-Neveu-Thirring model, s- and averaged t/u-channel approximation, id: gnth/s,tu

fixedpoint.cpp
defines residual and Jacobian functions for the fixed point solver.

linflow.cpp
defines routines to compute eigenvalues and -perturbations of the linearized flow equa-
tion.

main.cpp
organizes the module, imports the various components.

residuals.cpp
defines residual functionals for fixed point solutions and/or eigenperturbations.

regulators/
contains definitions of various regulator functions.

exponential.cpp
regulator type (1.11)

exponential_a.cpp
regulator type (1.12)

linear.cpp
regulator type (1.10)
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util/
contains various auxiliary routines.

globals.hpp
defines global constants.

headers.hpp
collects the default header files.

io.*pp
defines methods for data input/output.

params.hpp
defines data structs to be passed to nonspecifying methods taking void* arguments.

plot.*pp
defines plotting routines. Requires gnuplot [133].

terminal.cpp
connects the program to the dwamf scripting interface by defining additional commands
that link to program routines.

test.cpp
contains test routines.

types.hpp
defines general data structs used in other classes.

util.*pp
defines further auxiliary routines.

E.4 Interactive computing script interface

To access the various modules and routines of the program, we use an interactive computing script
interface (ICSI) that allows to control the program flow and connects to the different models and
routines of the software. The basic framework is part of the dwamf library. Syntax and standard
commands are explained in the following paragraphs. Additionally, the GNPFCheb program offers
extra commands that link to the fixed point and eigenvalue solvers, data I/O, etc. These are also
listed below.

ICSI interpreter. In this paragraph, we will provide a very short introduction to the ICSI syntax.
The basic entity of the language are strings. The ICSI interpreter knows four different parsing
modes, command (CMD), string (STR), math (MAT), and raw (RAW). Depending on the current
mode, the input source is interpreted differently. Comments begin with the # symbol and end at
the end of the line, e.g.

# This is a comment .

The default mode is CMD. In this mode, the interpreter expects a command and an optional list
of arguments, separated from each other by white spaces:

<command > <argument1 > <argument2 > ...

The following example calls the command print with the arguments Hello and World!, which will
print both arguments to the standard output, separated by a new line:

> print Hello World!
Hello
World!
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Here and in the following, the ‘>’ symbol at the beginning of a line denotes the command prompt,
followed by the user’s input. A list of standard commands as well as GNPFCheb-specific commands
can be found in the next two paragraphs. To enter the CMD mode explicitly from within another
mode or to evaluate an argument of another command, enclose the corresponding expression in
square brackets [. . .], e.g.

> print [equal a a]
(true)

Here the command print is called with one argument, which is the result of the evaluation of the
command equal for the arguments a and a. If you only type a single identifier (without arguments)
which does not represent a command, this is interpreted as a string literal/identifier and returned
as a value. The following examples illustrates this:

> print [break]

> print [ break2 ]
break2

In both inputs, the result of the evaluation of the square bracket is printed to the screen. However,
in the first input, break is a command that returns an empty string, whereas in the second input,
break2 does not name a command and is thus interpreted as an identifier.

The STR mode is invoked by enclosing the expression to be parsed as a string in single quotation
marks (apostrophe), ’. . .’. In particular, this allows you to define string literals containing white
spaces. For instance,

> print ’Hello World!’
Hello World!

You can include the result of a command evaluation in a string by switching to the CMD mode
within the string literal:

> print ’The result of 3 + 5 is [plus 3 5].’
The result of 3 + 5 is 8.

If you want to type a square bracket or an apostrophe within a string literal, use the escape
character \, which adds the character following after it without interpreting its meaning,

> print ’A \’ string \’ and \[ square brackets \] need to be
escaped by \\.’

A ’string ’ and [ square brackets ] need to be escaped by \.

An important ingredient of any scripting language are variables. The ICSI command for defining
a variable is

define <identifier > <expression >

This links the given expression to the variable named by the identifier. Note that the command
evaluates to the expression itself, allowing to process the value if desired:

> print [ define a 2]
2

To access a variables value in the CMD mode, use the anchor $ followed by the identifier, e.g.

> print $a
2
> print [plus $a 2]
4
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Note that in order to redefine the variable, you just use the define command with the identifier,
without the anchor:

> define a ’house ’
> print $a
house

If you dereference a variable using the anchor instead, the variable value will be interpreted as the
identifier for another variable, i.e.

> define $a ’tree ’
> print $a
house
> print $house
tree

In order to insert a variables value inside a string literal, you need to switch to the CMD mode
within a string to dereference the variable:

> print ’$a evaluates to [$a].’
$a evaluates to house.

You can also assign a block of source code to a variable for later evaluation, commonly called a
function or method in programming languages. For example, we can define

> define b 10
> define f ’plus $b 5’

As of now, this simply assigns the string plus $b 5 to the variable f. To use a string as input to
the ICSI interpreter and evaluate it, use the command

evaluate <string >

In the above example,

> print [ evaluate $f]
15

If you change the value of the variable b, the evaluation value of f will change accordingly:

> define b 3
> print [ evaluate $f]
8

Quite often, you may want to have delayed evaluations within the function body. For instance, we
could try to rewrite the above definition of f so that it automatically prints out the result,

> define f ’print [plus $b 5]’
> evaluate $f
8

However, if we now change the value of b, this change will not be reflected in f :

> define b 10
> evaluate $f
8

The reason is that the expression in square brackets in the definition of f above was evaluated
before assigning the value to the identifier f, thus the argument given to the print command is
stuck at 8. To achieve the desired effect, we have to define the value given to f as a raw string,
bringing the RAW mode into play.
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To enter the RAW mode, enclose the expression in braces {. . .}. In the raw mode, no subexpres-
sions will be evaluated and the contents will just be parsed as a single string literal. Nevertheless,
the parser does keep track of delimiting characters, i.e. if you have CMD or STR mode code denoted
by ’. . .’ or [. . .] inside, these will be treated as a single subentity. Four our example above, the
function f is thus better defined as

> define f {print [plus $b 5]}

because now

> evaluate $f
15
> define b 20
> evaluate $f
25

Similarly to the built-in commands, you can pass arguments to your self-defined methods. The
syntax is

evaluate <string > <argument0 > <argument1 > ...

The provided arguments will be available within the body of your function as the variables .0, .1,
etc. Note that the numbering starts at 0. Consider the following example:

> define printDoubleDifference {
(...) print [times 2 [minus $.0 $.1]]
(...) }
> evaluate $printDoubleDifference 10 4
12

The notation (...) here merely indicates that the command extends beyond the line break until
the closing right brace is encountered. The function printDoubleDifference takes two numbers and
prints twice their difference to the screen. In this example, we already silently introduced the
concept of local variables. While variables defined in the outermost scope are global and can be
accessed from anywhere within the program, you may define local variables within a block that
are only valid within the scope of the corresponding evaluate environment. To define a variable
as local, its identifier must start with a dot ., and similarly for dereferencing, i.e. $.local refers
a local variable, whereas $global inserts the value of a global variable. For instance, we could
then add an intermediate step in the definition of the function printDoubleDifference and store the
difference of the two arguments in a temporary variable,

> define printDoubleDifference {
(...) define .diff [minus $.0 $.1]
(...) print [times 2 $.diff]
(...) }

with the same effect. Note that the variable .diff is not accessible from outside the function
printDoubleDifference, i.e.

> print $.diff
ERROR ( runtime ) Illegal access : Cannot resolve local variable

in global scope.

produces a runtime error. Often times it is convenient to label the arguments passed to a function
by more explicit identifiers than just their index. Of course, you could simply define local variables
one after another, but there exists a shorthand offered by the command

of <identifier0 > <identifier1 > ...

which assigns the value of .0 to identifier0, .1 to identifier1, and so on. Our printDoubleDifference
function above could thus be written as
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> define printDoubleDifference {
(...) of . minuend . subtrahend
(...) define .diff [minus $. minuend $. subtrahend ]
(...) print [times 2 $.diff]
(...) }

Moreover, expressing arithmetic operations in CMD mode is quite clumsy because the strict “com-
mand+arguments” syntax is rather unnatural in this case. This is where the MAT mode comes in
handy.

To enter the MAT mode, enclose the expression in parentheses (. . .). The MAT mode syntax
is very similar to standard calculator/programming conventions and uses predefined precedence
rules such as “multiplication before addition” for evaluation. All commands with a mathematical
meaning have an operator equivalent, such as equal (=), plus (+), times (*), etc.; cf. the list of
commands below for an overview. Using the MAT mode, we can simplify the expression for the
printDoubleDifference function further:

> define printDoubleDifference {
(...) of . minuend . subtrahend
(...) define .diff ($. minuend - $. subtrahend )
(...) print (2 * $.diff)
(...) }

Note that in order to enter the MAT mode in a string literal (i.e. from the STR mode), you have
to switch to the CMD mode first. Hence the above example could be compactified to

> print ’The result of 3 + 5 is [(3+5) ].’
The result of 3 + 5 is 8.

whereas

> print ’The result of 3 + 5 is (3+5).’
The result of 3 + 5 is (3+5).

Finally, we mention a shorthand notation to evaluate user-defined functions. Instead of the $-
anchor, which returns the value of a variable, you can use the @-anchor, which returns the evaluated
value of a variable. More precisely, @variable expands to evaluate $variable, e.g.

> @printDoubleDifference 10 4
12

This completes our introduction to the ICSI interpreter. For more examples, please refer to
the example scripts in Appendix E.5 for the computation of fixed point solutions and spectra
in GNPFCheb.

Standard commands. The following commands are available in the default dwamf runtime en-
vironment. You can get additional information on commands by typing ‘help <command>’ in the
ICSI prompt.

break
Leave the currently executing loop.

define <identifier> <value>
Assign the value to the variable labeled by the identifier.

Alias: def

equal <value1> <value2> /<value>/*
Compare the values for equality. Returns (true) if all values are equal, or an empty string
otherwise.

Alias: eq
Math mode: <value1> = <value2> /= <value>/*
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evaluate <block> /<argument>/*
Evaluate the block for the provided arguments.

Alias: @

foreach <identifier> <list> <block>
For each value in the list, set the variable characterized by the identifier to that value and
evaluate the block.

Alias: for

help <command>
Display a help message for the specified command.

Alias: ?

if <condition> <expression> /elif <condition> <expression>/* /else <expression>/?

Evaluation of the expression associated with the first matching condition. If none of the
conditions apply, the else expression is evaluated if provided, otherwise the result is an
empty string.

import /<file>/+
Read in one or more script files and execute their instructions.

integer? /<expression>/+
Check for each of the provided expressions if it represents an integer number and returns the
list with non-integer expressions replaced by an empty string.

loop <expression>
Evaluate the expression iteratively until a break statement occurs.

minus <number1> <number2> /<number>/*
Take the first number and subtract all subsequent numbers from it.

Alias: subtract
Math mode: <number1> - <number2> /- <number>/*

number? /<expression>/+
Check for each of the provided expressions if it represents a number and returns the list with
non-number expressions replaced by an empty string.

of /<identifier>/+
Assign the arguments passed to the current block to the variables specified by the identifiers.

Alias: label-arguments

plus <number1> <number2> /<number>/*
Add up the provided numbers.

Alias: sum
Math mode: <number1> + <number2> /+ <number>/*

print /<expression>/+
Print all provided expressions separated by line breaks.

quit
Exit the script.

Alias: q

range <number1> <number2> /<number(increment)>/*
Generate a list of numbers from number1 to number2 by cycling through the list of increments
or using the default increment 1 if no list is provided.
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times <number1> <number2> /<number>/*
Multiply the provided numbers.

Alias: product
Math mode: <number1> * <number2> /* <number>/*

undefine /<identifier>/+
Clear the definition of one or more variables and return a list of the previously associated
values.

Alias: clear, undef

unequal <value1> <value2>
Compare the values and return (true) if they differ, or an empty string if they are equal.

Alias: neq
Math mode: <value1> != <value2>

GNPFCheb-specific commands. The following commands link the ICSI to the GNPFCheb rou-
tines for computing and managing fixed point solutions and spectra. They are defined in
util/terminal.cpp.

clfeig /model:<model>/? /type:<parametrization>/?
Compute eigenperturbations and eigenvalues for the specified or default model in the fixed
maximum asymptotics scheme with the specified or default parametrization. Requires the
computation of the corresponding linearized flow matrix (stability matrix) via clfmat be-
forehand.

Alias: compute-linearized_flow_eigensystem

clfmat /model:<model>/? /type:<parametrization>/? /asymptotics:<asymptotics>/?
Compute the linearized flow matrix in the fixed maximum asymptotics scheme for the spec-
ified or default model from the currently loaded fixed point solution. For the eigenpertur-
bations, the specified or default parametrization is used. The asymptotic prefactor may be
chosen constant (const), power-law-like (pow, exclusively used in this thesis), or exponential
(exp).

Alias: compute-linearized_flow_matrix

clfueigpairg /type:<parametrization>/? /from:lambda <number>/?
/from:eps <perturb>/? /using:precc/?+
Compute an eigenpair (θ, ε) in the running asymptotics scheme, starting from the provided
initial guesses. The perturbation may be empty (default guess), provided as an index refering
to a fixed maximum growth scheme solution, or an explicit list of Chebyshev coefficients. If
the precc option is set, an initial iteration with fixed eigenvalue is performed.

Alias: compute-linearized_flow_unbounded_eigenpair_g

clrlfueigpertg
Clear the list of eigenperturbations found in the running asymptotics scheme.

Alias: clear-linearized_flow_unbounded_eigenperturbations_g

coeffs <function>
List the Chebyshev coefficients of a fixed point solution function (g*, v*, or eta*). Al-
ternatively, list the Chebyshev coefficients of an eigenperturbation (ueps:<index>) or all
eigenvalues (uspecg) found in the running asymptotics scheme.

Alias: list-coefficients

config
Print the current configuration.

Alias: print-configuration
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evalsln <function> <value>
Evaluate a solution function at the specified value.

Alias: evaluate-solution

get <key>
Get the configuration value associated with the provided key

load /<type>/? <file> /as <alias>/?
Loads a file according to the specified type. For fixed point solutions, the available types are
g*, g*/s,tu, v*, g*/s,tu, eta*. If an alias is given, this will become the identifier for the
solution function. To load eigensystems, the types are uspecg for spectra and ueigpertg for
eigenperturbations.

If no type is given, the interpreter tries to guess the file type from the extension. In particular,
it supports script files (*.cmd) and configuration files (*.cfg).

Alias: l

plfeigvalg
Print eigenvalues obtained in the fixed maximum growth scheme.

plfeigvecg
Print coefficients of the eigenperturbations obtained in the fixed maximum growth scheme.

plfmatg
Print the current linearized flow matrix.

plot /<function>/*
Plot the specified functions. Fixed point solutions are identified as g*, g*/s,tu, v*, g*/s,tu,
eta*. Eigenperturbations are identified as ueps:<index>. Residual functions are obtained
by a R (absolute) or r (relative) prefix for the above identifiers. Compactification of the
domain [0,∞) is achieved by a postfix c (currently only supported for residuals).

redirect-output <file>
Direct the standard output (stdout) to the provided file. Setting the file to * restores the
default output.

reexpand /type:<parametrization>/? /from:g* <identifier>/?
/from:v* <identifier>/? /from:eta* <identifier>/?
Re-expand a given solution function in terms of the provided parametrization.

Alias: reex

reset
Discard all computations and reload the program.

save <type> /<file>/?
Save the result of a computation to the specified file. If no file is provided, the result will be
stored to the current data directory with a file name reflecting the type and properties.

Types for fixed point solution functions are g*, g*/s,tu, v*, g*/s,tu, eta*. Spectra and
eigenperturbations in the fixed maximum growth scheme are addressed by specg, specv,
specgv and eigvecg, eigvecgv, respectively. Spectra and eigenperturbations in the running
asymptotics scheme are addressed by uspecg and ueigvecg, respectively.

scale <function> <factor>
Scale the specified solution function by the provided factor.

set <key> <value>
Set the configuration entry with the given key to the specified value.

Alias: set-configuration-value
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solve /model:<model>/? /type-g:<parametrization/? /type-eta:<parametrization>/?

/from:g* <file>/? /from:v* <file>/? /from:eta* <file>/?
Compute a fixed point solution for the specified value in the provided parametrizations and
using the specified initial guesses.

If no model or parametrizations are provided, the values of the current configuration are
used. If no initial guesses are provided, the currently loaded solutions are used.

Upon success, the newly computed solutions become the current working functions.

E.5 Example scripts

Computation of fixed point solutions. The following script computes a fixed point solution of
the Gross-Neveu-Thirring model, starting from an initial guess provided as a source file.

1 # Compute fixed point solution
2 # Model: Gross -Neveu - Thirring
3
4 # load initial guesses from files
5 # (file names relative to the current data directory )
6 load g* ’init -guess -gGN.gcf ’ # gGN*
7 load v* ’init -guess -gTh.gcf ’ # gTh*
8 load eta* ’init -guess -eta.adf ’ # eta*
9

10 # define orders of the Chebyshev series
11 # and set their configuration values
12 def orderG 40
13 def orderEta 12
14 set ChebEx -g-order $orderG # coupling functions
15 set ChebEx -eta -order $orderEta # anomalous dimension

function
16
17 # call Newton - Raphson solver :
18 # - Gross -Neveu - Thirring model , s- channel approximation
19 # - parametrizations : sqrt for couplings , id for anomalous

dimensions
20 solve model:gnth/s type -g:sqrt type -eta:id
21
22 # save solutions functions to the current data directory
23 save g* ’[get DataDirectory ]/gGN -nG[ $orderG ]-nH[ $orderEta ].

gcf ’
24 save v* ’[get DataDirectory ]/gTh -nG[ $orderG ]-nH[ $orderEta ].

gcf ’
25 save eta* ’[get DataDirectory ]/eta -nG[ $orderG ]-nH[ $orderEta

].adf ’

Computation of spectra for fixed maximum asymptotic growth. Given a fixed point solution
of the Gross-Neveu-Thirring model, the following script automates the computation of spectra in
the fixed maximum growth scheme for a series of amax values.

1 # Compute spectra of a fixed point solution
2 # for a series of aMax values
3 # Model: Gross -Neveu - Thirring
4
5 # define parameters of the fixed point solution
6 def fpOrderG 40 # expansion order of couplings
7 def fpOrderEta 12 # expansion order of anomalous dimension
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8 def fpSeries ’recpi ’ # series identifier
9

10 # define parameters of the perturbation
11 def pertOrder 20 # expansion order of the perturbations
12 def pertParam ’id ’ # parametrization of the perturbations
13 def aMaxValues ’[range 0 20]’ # aMax values
14
15 # import fixed point solution
16 # (file names relative to the current data directory )
17 load g* ’gGN -nG[ $fpOrderG ]-nH[ $fpOrderEta ]-[ $fpSeries ].gcf ’
18 load v* ’gTh -nG[ $fpOrderG ]-nH[ $fpOrderEta ]-[ $fpSeries ].gcf ’
19 load eta* ’eta -nG[ $fpOrderG ]-nH[ $fpOrderEta ]-[ $fpSeries ].adf

’
20
21 # set expansion orders for perturbation
22 set ChebEx -g-order $pertOrder
23
24 # walk through list of aMax values and compute and save

spectra
25 for aMax $aMaxValues {
26 # set current aMax value
27 set gFPPert -Asymptotic - Exponent $aMax
28
29 # compute matrix P^( -1) J
30 clfmat model:gnth/s ’type :[ $pertParam ]’ asymptotics :pow
31 # compute eigensystem
32 clfeig model:gnth/s ’type :[ $pertParam ]’
33
34 # save spectrum and eigenvectors in current data

directory
35 save specgv ’[get DataDirectory ]/ spectrum -gv -aMax[$aMax

]-nG[ $fpOrderG ]fp[ $pertOrder ]pert -nH[ $fpOrderEta ]-[
$pertParam ]-[ $fpSeries ].dat ’

36 save eigvecgv ’[get DataDirectory ]/ eigenvectors -gv -aMax[
$aMax]-nG[ $fpOrderG ]fp[ $pertOrder ]pert -nH[ $fpOrderEta
]-[ $pertParam ]-[ $fpSeries ].dat ’

37 }
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