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Abstract

We investigate the fixed point equation for the effective average action of the functional
renormalization group in the local potential approximation. First, we derive approximate
analytic solutions to the average potential in the Z2 model in d = 3 Euclidean dimensions
in terms of series expansions and rational functions. Thereafter, we perturb the potential
around the fixed point and determine critical properties of theories built around it.
After a quick review of the origin of the flow equation, we compute Taylor-like series up to
order 2000 in the limits of vanishing and infinite values of the Z2 invariant classical field. For
the small field case, we uncover a peculiar regularity of the signs of its coefficients and, by
the use of Padé approximants, find evidence that suggests a relation to branch points of the
potential in the complex plane.
The large field series shows excellent convergence, and we are able to join both series in
a connecting interval. We then compute Padé approximants to the large field series, which
allows us to specify a finite approximation on the whole physical domain and reproduces
features of the small field series. A slightly modified branch point structure is noted.
We refine the global approximation by incorporating information from both series into a
single rational function. This way, we are able to specify the fixed point potential up to
a total (integrated) deviation of less than 2× 10−8. We also monitor the transition of the
branch point structure as suggested by the two limiting cases.
Finally, we compute critical exponents from the various approximation schemes. This is first
done by determinating the eigenvalues of the stability matrix of the series expansions. For
the small field series, our results agree well with literature values. For the large field series,
the stability matrix is degenerated and the method fails. By means of the Padé-Hankel
method, we are able to obtain a spectrum, but it appears to be distorted. In addition, we
provide a method to calculate critical exponents from Padé coupling constants by virtue of
a transformation of β functions and show that the information of the composing parts is
retained.
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Introduction

As of today, the most precise theories linking microscopic and macroscopic physics are quantum field
theories. Despite their tremendous success, actual calculations within this framework turn out to
be rather tedious and cumbersome, and several difficulties have to be overcome. The most prevail-
ing of these subtleties, which also deferred the acceptance of quantum electrodynamics as the first
experimentally confirmed quantum field theory, is the understanding of how to deal with apparent
divergencies emerging from the formulae.

Historically, this problem was attacked by means of perturbative renormalization developed by Feyn-
man, Schwinger, and Tomonaga in order to obtain finite predictions from the theory of quantum
electrodynamics [1–4]. This idea is based upon a perturbative expansion of the correlation functions
in the coupling constants, leading to the notion of Feynman diagrams and loop expansions. Diver-
gencies in the couplings like masses and charges are canceled by so-called counterterms which are
defined such that the theory is left with the experimentally determined values of these couplings. The
renormalization group as introduced by Wilson [5] and comprehensively extended to the formalism
employed here by Polchinski, Wetterich, Morris, and others [6–8] generalizes the concept of renor-
malized field theories in a nonperturbative way. It thereby naturally bridges between quantum and
statistical field theory.

The basic and rather simple idea is that physics is generically scale-dependent: We use different models
to describe phenomena at different scales. For example, the concept of spin is used to describe magnetic
interactions at the atomic scale, whereas the macroscopic magnetization is the relevant quantity for
statistical ensembles. Of course, a fundamental task of theoretical physics is to link the microscopic
concepts such as the spin to their effective counterparts at a scale accessible to experiment, e.g. the
magnetization.

The renormalization group transfers this principle to field theory. Starting from a microscopic, “bare”
action defined at some small-distance/high-energy scale, we wish to find an effective theory described
by an effective action, valid at some low-energy scale. Within the framework of the exact or func-
tional renormalization group, this is achieved by continuously lowering the scale and averaging over
fluctuations at higher energies.

The mathematical space in which this process is carried out is the space of all possible theories (with
some restrictions to dimensionality and degrees of freedom). The aim of our analysis is then to single
out the physically realized theories among them. To do so, fixed points are particularly interesting
because they represent points of attraction along certain directions in theory space. As the scale is
lowered and the effective action “flows” through the space of all theories, it inevitably approaches a
fixed point along these directions. However, the fixed point may be repulsive in some other direction,
and the theory will thus drift away from it, unless the corresponding parameter of the trajectory is
fine-tuned to its fixed point value. In this way, theories align along these repulsive directions, and the
number of such directions is related to the system’s degrees of freedom.

In this thesis, we shall study a rather specific class of quantum field theories, namely the O(1) or
Z2 symmetric real scalar field in three dimensions, which is related to the Ising model known from
statistical physics. It is a remarkable result confirmed both theoretically and experimentally that quite
distinct physical systems show the same behavior in the low-energy limit. This can be understood
by noting that the field theoretic structure of these systems is similar, and hence their macroscopic
properties are controlled by the same fixed points. The principle of universality states that the number
of critical points and the associated critical exponents are essentially determined by the number of
space-time dimensions and the symmetry group of the order parameter, though other criteria may be
added [9, p. 22].

Besides the trivial Gaussian fixed point corresponding to a non-interacting theory, the model studied
here possesses one more fixed point called the Wilson-Fisher fixed point. Our goal is to derive a
global analytic approximation to the effective potential as part of the effective action at the fixed
point. While this is merely a theoretical construct, generally depending on the averaging procedure,
we shall thereafter extract physical information in the form of critical exponents that can in principle
be measured by experiment.
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Our roadmap is as follows: First, we shall quickly derive the differential equation characterizing the
flow of the effective potential. A first attempt to solve the associated fixed point equation will be made
in terms of series expansions in the limit of small and large field, respectively. We shall extensively
study the converging behavior and peculiarities of these series. A prominent tool will be the method
of Padé approximants. These will also be used thereafter to combine the asymptotic information from
both series into a single approximative expression of the potential in its entire domain. Finally, we
shall investigate how much of the critical information is stored in the respective series expansions and
preserved by our global approximations.

Throughout this work, we shall focus on an analytic approach to the Wilson-Fisher fixed point.
Although the topic is most commonly studied by numerical methods, some analytic approximations
have been discussed, e.g. [10–13]. Aspects of the use of the Padé method in the context of critical
phenomena and renormalization group equations have been covered in [14,15]. Nevertheless, we hope
to provide at least a very few new insights into the problem.
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1 Renormalization Group Flow for Scalar Fields

As a start, we would like to give a quick derivation of the simple renormalization group equations
needed here. It will basically follow along the lines of [16–20]. We restrict our discussion to a single
real-valued scalar field χ = χ(x). Also, we are working in d-dimensional Euclidean space where we
shall eventually set d = 3, and natural units (h̄ = c = 1) are understood.

1.1 Basic Quantum Field Theory

Let us collect some basics of quantum field theory in order to clarify notation and to set the stage for
the subsequent derivation. In general, all physical information of a system described by an action S
is encoded in the n-point correlation functions [17]. In the path integral formalism, these read

〈χ(x1) · · ·χ(xn)〉 =
∫
Dχχ(x1) · · ·χ(xn) e−S[χ]∫

Dχ e−S[χ] , (1.1)

where 〈· · ·〉 denotes the vacuum expectation value. Introducing a source J(x) as an auxiliary function,
all correlation functions can be obtained from the generating functional

Z[J ] :=
∫
Dχ e−S[χ]+

∫
ddx J(x)χ(x) (1.2)

by functional differentiation:

〈χ(x1) · · ·χ(xn)〉 = 1
Z[0]

δnZ[J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (1.3)

In classical field theory, the phase space trajectory of the system’s configuration is determined by
the requirement that the action be stationary, and the field expectation value may be computed as
the configuration that minimizes the potential energy. Unfortunately, quantum fluctuations resulting
from perturbative loop diagrams generally demolish this classical picture [16, p. 364]. Nevertheless,
there is still a potential called the effective action Γ which is minimized by the vacuum expectation
value 〈χ〉.

In order to find this quantity, we introduce the Schwinger functional W [J ] := lnZ[J ] comparable to
the free energy in statistical physics. It can be shown that W generates the connected correlation
functions [17]. In particular,

δW [J ]
δJ(x) = 1

Z[J ]

∫
Dχχ(x)e−S[χ]+

∫
ddx′ J(x′)χ(x′) = 〈χ〉J . (1.4)

For J = 0, this is the vacuum expectation value and thus the variable to minimize our new potential.
Therefore, we define φ := 〈χ〉J , also called the classical field [16, p. 366]. In a sense, this is a more
physical variable because any measurement we can carry out on a system has averaging character.
The change of the independent variable is mediated by a Legendre transformation, leading precisely
to the definition of the effective action:

Γ [φ] :=
∫

ddxJ(x)φ(x)−W [J ] , (1.5)

where J is considered to be a function of φ obtained by inverting (1.4). If W is not strictly convex,
the supremum over J is understood. As a general property, the Legendre transform is its own inverse
and we have

δΓ [φ]
δφ(x) = J(x) , (1.6)
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so that the vacuum configuration φ0 = 〈χ〉 obtained at J = 0 is indeed a minimum (or at least a
stationary point) of Γ . Furthermore, it is found that the effective action Γ is the generating functional
of the one-particle irreducible correlation functions [16, p. 383]. It is the potential where all quantum
fluctuations have been integrated out, such that we are left with an effective theory.

Unfortunately, the direct calculation of Γ is not easier at all than calculating the generating functional
Z in the first place, so there is no immediate advantage from a practical point of view. Nevertheless, the
renormalization group (RG) provides step-by-step instructions to interpolate between the microscopic
action and the effective theory.

1.2 Functional Renormalization Group and Flow Equation

The idea of the functional or exact renormalization group is to continuously transform from the bare
action S to the effective action Γ by successively integrating-out quantum fluctuations at intermediate
energy scales. In other words, one starts with the bare (classical) action S defined at some microscopic
length scale Λ−1 (e.g. the Planck scale, lattice spacing) corresponding to the high-energy limit. This
energy or momentum scale is then lowered in infinitesimal steps such that all high-energy fluctuations
are averaged over.

For this, we introduce a new generating functional depending on some momentum scale k. Namely,
we shall define the (effective) average action Γk[φ] in such a way that it is an effective action which
only includes fluctuations with momenta p & k [18]. The scale-dependence of Γk is then bounded by
the conditions Γk→Λ = S (all fluctuations present) and Γk→0 = Γ (all fluctuations integrated-out,
the full effective theory). Consequently, Γk depends on the modes of the field that have already been
integrated out [19], i.e. φ is to be the average value of the field χ at momenta p & k. To implement
the screening of low-energy modes, we add an infrared cut-off to the generating functional:

Zk[J ] :=
∫
Dχ e−S[χ]−∆Sk[χ]+

∫
ddx J(x)χ(x) (1.7)

with

∆Sk[χ] :=
∫ ddp

(2π)dχ(−p)Rk(p2)χ(p) (1.8)

being a momentum dependent mass term which effectively suppresses the modes with p . k [19]. We
may also express it as a position space integral,

∆Sk[χ] =
∫

ddx ddy χ(x)Rk(x, y)χ(y) , (1.9)

where Rk(x, y) = Rk(−∂2) δ(x − y) denotes the Fourier transform of the momentum space regulator
Rk(p, p′) = 2πδ(p + p′)Rk(p2). The interpolating Schwinger functional is obtained straightforwardly
as Wk = lnZk, and we define the classical field φ := δWk/δJ as before. The regulator Rk is required
to have the following properties in order to mediate the above mentioned interpolation [17]:

lim
p2/k2→0

Rk(p2) = 0+ and lim
k→Λ

Rk(p2)→∞ . (1.10)

The first condition ensures Zk→0 = Z and thus Γk→0 = Γ as we shall see from the following definition.
The second condition takes care of the high-energy limit, but in order to arrive at the correct boundary
value, we define Γk by a slightly modified Legendre transform [17,19]:

Γk[φ] :=
∫

ddxJ(x)φ(x)−W [J ]−∆Sk[φ] . (1.11)

Computing an integral representation of Γk, it can be shown that this definition indeed satisfies
the condition Γk→Λ → S, at least in the case of a sharp high-energy cut-off Λ [17, 18]. Apart from
conditions (1.10), the choice of a regulator function Rk is rather free. The precise form of the regulator

4



has a significant impact on the average action Γk, but at least in theory it cannot alter any physical
quantities in general and the effective action Γ in particular. However, due to the fact that we will
eventually have to make approximations, certain regulator functions have shown to be more suitable
than others [21].

Note that due to the modified definiton of Γk, the source J is now obtained from the average action
as

J(x) = δΓk[J ]
δφ(x) +

∫
ddy Rk(x, y)φ(y) , (1.12)

and as a funtional of each other, both J and φ are now scale-dependent.

Our aim is to find the dependence of the average action Γk on the scale k. It is common and convenient
to introduce a dimensionless scale parameter t := ln(k/Λ), the so-called renormalization group time,
which runs “backwards” from the bare scale at t = 0 to the effective scale at t = −∞. We now
investigate how the average action changes with the scale by taking the partial derivative ∂t ≡ k ∂k
of (1.11):

∂tΓk[φ] =
∫

ddx∂J(x)
∂t

φ(x)− ∂Wk

∂t
[J ]−

∫
ddxδWk[J ]

δJ(x)
∂J(x)
∂t

− ∂∆Sk
∂t

[φ] .

The dependece of Wk upon k is two-fold: On the one hand, there is the parametric dependence via
the regulator term in (1.7), which is meant by ∂Wk/∂t. On the other hand, there is the implicit
dependence via J according to (1.12). Since δWk/δJ = φ, the first and third term cancel, leading
to

∂tΓk[φ] = −∂Wk

∂t
[J ]− 1

2

∫
ddx ddy φ(x)∂Rk

∂t
(x, y)φ(y) . (1.13)

The flow of the Schwinger functional is given by

∂tWk[J ] = − 1
Zk[J ]

∫
Dχ ∂∆Sk

∂t
[χ] e−S[χ]+

∫
Jχ−∆Sk[χ]

= − 1
Zk[J ]

∫
Dχ 1

2

∫
ddxddy ∂Rk

∂t
χ(x)χ(y) e−S[χ]+

∫
Jχ−∆Sk[χ]

= − 1
2Zk[J ]

∫
ddx ddy ∂Rk

∂t

δ2

δJ(x)δJ(y)

∫
Dχ e−S[χ]+

∫
Jχ−∆Sk[χ]

= −1
2

∫
ddx ddy ∂Rk

∂t
〈χ(x)χ(y)〉k .

Using

〈χ(x)χ(y)〉k = δ2Wk[J ]
δJ(x)δJ(y) + δWk[J ]

δJ(x)
δWk[J ]
δJ(y) = δ2Wk[J ]

δJ(x)δJ(y) + φ(x)φ(y)

and plugging everything into (1.13), we obtain

∂tΓk[φ] = 1
2

∫
ddx ddy ∂Rk

∂t

δ2Wk[J ]
δJ(x)δJ(y) . (1.14)

In order to express this in terms of Γk only, we write

δ2Wk[J ]
δJ(x)δJ(y) = δφ(y)

δJ(x) =
(
δJ(x)
δφ(y)

)−1 (1.12)
=

(
δ2Γk[φ]

δφ(x)δφ(y) +Rk(x, y)
)−1

.
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Hence we obtain the flow equation for the effective average action:

∂tΓk[φ] = 1
2

∫
ddx ddy ∂Rk

∂t

(
δ2Γk[φ]

δφ(x)δφ(y) +Rk(x, y)
)−1

. (1.15)

Of course, the integral may be performed in momentum space, too; we can write (1.15) basis-
independently in operator form,

∂tΓk = 1
2 Tr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
. (1.16)

In order to solve the theory, one has to solve this first-order nonlinear functional differential equation
for Γk with the initial condition ΓΛ ' S. In general, no exact solution to this problem is known, and
approximations regarding the form of the average action are necessary.

1.3 Local Potential Approximation

We shall employ the so-called local potential approximation (LPA) [10, 22–25], assuming the average
action to be of the form

Γk[φ] =
∫

ddx
[

1
2∂µφ∂

µφ+ Uk (φ)
]
, (1.17)

i.e. we only consider the leading order of the derivative expansion. Also, we do not include field-
strength renormalization, thus setting the anomalous dimension to zero. In general, this is a dramatic
simplification. In the case of a single field in three dimensions studied here, higher order corrections
are relatively small [26]. Evaluating

δ2Γk[φ]
δφ(x)δφ(x′) =

[
−∂2 + U ′′k (φ(x))

]
δ(x− x′)

and using the fact that in position space Rk(x, x′) = δ(x − x′)Rk(−∂2) where Rk(p2) denotes the
regulator in momentum space, we define R̃k(p2) = p2 +Rk(p2), such that the flow equation (1.16) can
be written

∂tΓk[φ] = 1
2 Tr

[
∂tR̃k

R̃k + U ′′k (φ)

]
= 1

2

∫ ddp
(2π)d

∂tR̃k(p2)
R̃k(p2) + U ′′k (φ)

.

Since we are primarily interested in the effective potential, it is sufficient to restrict ourselves to the
case of a uniform field φ = const. This way we assume the vacuum configuration that minimizes Γ to
be invariant under Poincaré transformations [16, p. 367]. The average action is then proportional to
the average potential, Γk = ΩUk, where Ω =

∫
ddx denotes the volume of the system. Absorbing this

volume, the flow of the effective average action reduces to a flow equation for the effective average
potential:

∂tUk(φ) =
∫ ddp

(2π)d
∂tR̃k(p2)

R̃k(p2) + U ′′k (φ)
. (1.18)

Throughout this thesis, we will be using the optimized regulator

Rk(p2) = (k2 − p2)Θ(k2 − p2) , (1.19)

which is known to yield the maximum radius of convergence of a series expansion in the LPA [21].
From this choice, we find ∂tR̃k(p2) = ∂tRk(p2) = 2k2Θ(k2 − p2). Plugging this into (1.18) and
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performing the angular integration results in

∂tUk(φ) = Sd
(2π)d

∫ ∞
0

dp pd−1 2k2Θ(k2 − p2)
p2 + (k2 − p2)Θ(k2 − p2) + U ′′k (φ)

= Sd
(2π)d

∫ k

0
dp pd−1 2k2

k2 + U ′′k (φ) ,

where Sd = 2πd/2/Γ(d2 ) denotes the surface of the d-dimensional unit sphere. Consequently,

∂tUk (φ) = kd
[

2Sd
(2π)dd

]
1

1 + k−2U ′′k (φ) . (1.20)

Since we will be looking for a scale-invariant fixed point, we switch to dimensionless variables, which
is to say that the averaging procedure is accompanied by a rescaling to the intrinsic scale in order
that quantities at different scales are comparable. Therefore, we express the field and effective average
potential as

φ̃ := k
2−d

2 φ and uk(φ̃) := k−dUk(φ) = k−dUk(k
d−2

2 φ̃) , (1.21)

respectively. The flow of the dimensionless potential is then given by

∂tuk(φ̃) = −d k−d Uk(φ) + d− 2
2 φ̃ k−

d+2
2 U ′k(φ) + k−d ∂tUk(φ) .

Substituting (1.20) and using u′k(φ̃) = k−
d+2

2 U ′k(φ), u′′k(φ̃) = k−2U ′′k (φ), we obtain

∂tuk(φ̃) = −d uk(φ̃) + d− 2
2 φ̃ u′k(φ̃) +

[
2Sd

(2π)dd

]
1

1 + u′′k(φ̃)
, (1.22)

the flow equation for the dimensionless effective average potential. Its full RG transformation thus
consists of a scaling part, namely the first two terms on the right-hand side, and an averaging or
coarse-graining part, the last term of (1.22).

Finally, we require Z2 or O(1) symmetry, i.e. the potential is to be invariant under the transformation
φ̃ 7→ −φ̃, which is the one-dimensional analog to an invariance under orthogonal transformations
O(N) and ensures that the potential is asymptotically convex. Hence assume uk(φ̃) = vk(ρ), where
ρ = 1

2 φ̃
2. Consequently, u′′k(φ̃) = v′k(ρ) + 2ρv′′k (ρ). This leads to the flow equation for the Z2-invariant

potential:

∂tvk = −dvk + (d− 2)ρv′k +
[

2Sd
(2π)dd

]
1

1 + v′k + 2ρv′′k
. (1.23)

In search of a fixed point, we shall set ∂tvk = 0, thus obtaining a nonlinear ordinary differential
equation for v. It should be noted that, although this equation is of second order, there is only
one free parameter left due to the fact that we have lost one degree of freedom when assuming Z2
invariance. This will become clear later when we expand v in powers of ρ. However, it can already be
seen in (1.23) where the second derivative of the average potential is multiplied by the field, effectively
restoring one order in a series expansion as opposed to (1.22) where the second derivative occurs
nakedly.

In the following, we will primarily be working in d = 3 dimensions, hence

∂tvk = −3vk + ρv′k + 1
6π2

1
1 + v′k + 2ρv′′k

(1.24)

is the flow equation of interest.
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2 Wilson-Fisher Fixed Point Solution

As it has been mentioned in the introduction, fixed points of the flow equation are of special interest
because they represent points of attraction at least along certain directions in theory space and thus
correspond to physically realized theories. Starting with an arbitrary initial condition at some high-
energy scale Λ, the theory will naturally evolve towards a fixed point along these directions as the scale
is lowered. Therefore, the number of repulsive directions determines the theory’s degrees of freedom:
these are the parameters that must be fine-tuned carefully in order to arrive at the correct effective
theory. This will be examined in greater depth in Section 3.

In any space-time dimension, the free theory where the action is of the form S =
∫

ddx (∂φ)2 is a fixed
point of the renormalization group transformation, called the Gaussian fixed point [16,27]. For high-
dimensional systems, the Gaussian fixed point is stable and theories can be constructed as perturbative
expansions of the free theory. For d < 4, however, the Gaussian fixed point becomes unstable, and new
fixed points emerge that determine the low-energy limit [16, pp. 402-403]. In d = 3 dimensions and
within our approximation scheme, we will find one such extra fixed point, namely the Wilson-Fisher
fixed point. In the language of statistical physics, it describes a second-order phase transition, i.e. the
theory is on the edge between the symmetric and spontaneously broken regimes [10].

Setting ∂tvk = 0 in (1.24) we arrive at the 3-dimensional fixed point equation for the average poten-
tial,

3v − ρv′ = 1
6π2

1
1 + v′ + 2ρv′′ . (2.1)

No exact solution of (2.1) is known, and in order to find an approximation of the fixed point potential
we shall discuss two limiting cases first, namely ρ→ 0 and ρ→∞.

2.1 Small Field Asymptotics

2.1.1 Series Expansion

In order to obtain an approximate analytical solution of (2.1) for ρ � 1, we expand the effective
potential in a power series around the origin,

v(ρ) =
∞∑
n=0

cnρ
n . (2.2)

Thus we can express the flow of the effective potential v in terms of the evolution of the coupling
constants cn. Plugging the ansatz into the right-hand side of (1.24), we find

∂tv =
[
−3c0 + 1

6π2(1 + c1)

]
+ ρ

[
−2c1 −

c2

π2(1 + c1)2

]
+ ρ2

[
−c2 + 1

6π2

(
36c2

2
(1 + c1)3 −

15c3

(1 + c1)2

)]
+ . . .

=:
∑
n

βn(c)ρn , (2.3)

where we introduced the β functions β0, β1, ... by collecting powers of ρ. These govern the evolution
of the coupling constants as can be seen by substituting (2.2) into the left-hand side of (1.24):

∂tcn = βn(c) . (2.4)

Note that the derivative does not act on the field ρ; the k dependence of ρ has already been accounted
for when switching to dimensionless variables in (1.21).
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Tab. 1: First coefficients in a Taylor expansion of the fixed point potential for small field

c0 1/18π2(1 + λ)

c1 λ

c2 −2π2λ(1 + λ)

c3
4
5π

4λ(1 + λ)3(1 + 13λ)

c4 − 72
7 π

6λ2(1 + λ)4(1 + 7λ)

c5
32
35π

8λ2(1 + λ)5(2 + 121λ+ 623λ2)

c6 − 32
385π

10λ2(1 + λ)6(−4 + 429λ+ 13362λ2 + 58289λ3)

c7
2304

35035π
12λ2(1 + λ)7(1− 153λ+ 6114λ2 + 160345λ3 + 653037λ4)

c8 − 384
175175π

14λ2(1 + λ)8(−6− 544λ− 142327λ2 + 994146λ3 + 42524975λ4 + 177605120λ5)

At the fixed point, ∂tv = 0, and thus we are left with a set of ntrunc + 1 coupled algebraic equations
for the coefficients c0, c1, ..., namely

βn(c) = 0 for all n = 0, . . . , ntrunc . (2.5)

It now becomes manifest that there is one free parameter left because in general, βn depends on all
couplings c0, . . . , cn+1. We choose this free parameter to be the mass term c1 := λ.

For computational reasons, however, it is advantageous to work with (2.1) directly. Substituting
(2.2), multiplying by the right-hand side’s denominator and collecting powers of ρ, we are lead to a
recurrence relation of the form

c0 = 1
18π2

1
1 + λ

,

c1 = λ ,

(2.6)c2 = −2π2λ(1 + λ)2 ,

cn+3 = 1
(n+ 3)(6n+ 15)c0

(n− 1− (2n+ 4)c1) cn+2

+
n∑
j=0

1
j! ((j + 1)(n− j − 1)cj+1cn−j+2 + 2(j + 2)(j + 1)(n− j − 2)cj+2cn−j+1)

 .

The first few coefficients in terms of the parameter λ are collected in Table 1.

2.1.2 Convergence Behavior and the Parameter λ

The coupling constant λ in the above expansion of the effective potential is in fact not arbitrary. The
free parameter appears as a side effect of truncation. The standard procedure to choose λ is to require
that cntrunc+1 vanish, but this choice is usually not unique and depends on the truncation. We want to
fix λ in such a way that the obtained power series reaches its maximum radius of convergence [26,28].
The radius of convergence of a series like (2.2) is given by [29, p. 75]

ρc = 1/lim sup
n→∞

n
√
|cn| . (2.7)
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Fig. 1: (a) First five roots of the coefficients cn as a function of n. Only roots in the interval (−1, 0)
are considered, and for each cn the roots are enumerated from left to right. Thus the leftmost curve
describes the evolution of the first root, next the evolution of the second, and so on. The roots converge to
λ? = −0.186 064 2... as n is increased; (b) examples plots of the small field expansion for different truncations
ntrunc with λ = −0.186 064 2.

From Table 1 we see that the coefficients cn are polynomials in λ. Therefore, in order to maximize
ρc, it seems reasonable to look for common roots of the cn. There are two trivial choices, λ = −1 and
λ = 0, both of which reduce to constant potential. The former is a mere peculiarity of the equation
and is not related to a scaling solution [30]: v = c0 = ∞ does not satisfy (2.1). By contrast, the
latter, λ = 0, corresponds to the theory’s Gaussian fixed point seeing as only the derivative term in
the effective action (1.17) survives.

Since the Wilson-Fisher fixed point is related to a second-order phase transition, we want u′′(0) < 0,
so that the potential is concave at the origin and limk→0 U

′′
k (0)→ 0−. Carried over to v, we therefore

need λ? < 0 for the parameter λ? describing the Wilson-Fisher fixed point. In view of the divergence
of v as λ→ −1, it is expected to lie somewhere in the interval (−1, 0) in order to allow for a smooth
transition from the Gaussian to the Wilson-Fisher fixed point.

Analyzing the dependence of the roots of the cn in (−1, 0) upon the order n, we first find that all of
them roots lie in the interval (−0.2, 0). Furthermore, they tend to drift to the left towards the lower
bound of this interval with increasing n. Sorting and enumerating the roots from left to right, we
can study their “evolution” as a function of the order n. This reveals indeed a converging behavior,
as can be seen from Figure 1(a). As the order is increased, the roots move to the bottom to finally
merge at λ? = −0.186 064 2..., which we shall use as the defining value of the Wilson-Fisher fixed
point potential as a start. This is in accordance with [26,28,31].

Having fixed the value of λ, we turn our attention to the converging behavior of the series expansion
itself. A few examples of the truncated series are plotted in Figure 1(b). Bearing in mind the definiton
of the radius of convergence (2.7), we take 1/ n

√
|cn| as an estimate of ρc. From Figure 2(a), ρc ≈ 0.1

seems to be reasonable considering the first 200 coefficients. Looking at the absolute values of the
coefficients themselves, depicted in Figure 2(b), we find an approximately exponential growth of the
cn with n. We shall return to the asymptotic behavior of the coefficients later when the value of λ?
has been determined more accurately.

At this point, we would like to emphasize that all coefficients we computed were calculated in an
algebraically exact way using Mathematica’s symbolic manipulation capabilities. This turned out
to be crucial because numerical errors would spoil the picture dramatically. Due to the recursive
character of the calculation, any rounding errors accumulate. This became manifest in Figure 2(b),
for instance, where a more-than-exponential growth is suggested if calculations are done numerically,
and it is particularly true for the findings of the next section.

Before we double-check the solution by re-inserting it into the β function, i.e. the right-hand side
of (1.24), we would like to point to an interesting property of the signs of the individual coupling
constants cn.
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Fig. 2: Convergence behavior of the Taylor-like series for the fixed point potential; (a) the quantity 1/ n
√
|cn|

as a function of the order n. This should yield the radius of convergence ρc in the limit n → ∞; (b)
logarithmic plot of the absolute value of the series’ coefficients.

2.1.3 Sign Structure of the Coupling Constants

With λ? = −0.186 064 200 being the best guess for the mass parameter c1 so far, we would like to
investigate the alternating behavior of the coefficients cn of the series expansion. The solutions to
many problems in physics are described by alternating (asymptotic) series [32,33]. Since we are unable
to solve the recurrence relation (2.6), we may try to find an analytic expression that approximates the
coefficients cn in the limit n→∞. In the previous section, we conjectured that the absolute values of
the coefficients grow exponentially. To complete the picture, it seems natural to investigate the sign
structure of these coefficients, too. Furthermore, it will allow us to confirm and fine-tune the value of
λ?.

At a first glance, the sign structure of the cn seems to be rather random. However, due to the
approximative character of our choice of λ?, we shall probe this structure for small deviations of λ
from its previously fixed value. Consider Figure 3(a), for example, where we plotted the sign of the
nth coefficient as a function of λ as a dark (+1) or light (−1) pixel in a rectangular grid. Here, we
vary λ in the sixth digit, and the coefficients of orders 50 through 100 are displayed. It can be seen
that the value of λ? (i.e. ∆λ = 0) indeed marks a change of sign for many coefficients. Nevertheless,
this is in fact not surprising because we chose λ? to be an (approximate) root of the cn, so that a
change of sign is rather likely.

Therefore, consider now Figure 3(b) where we have zoomed in on the critical region, varying λ in the
eigth digit of λ? for each pixel. It turns out that our view on the sign structure was too vague. At this
stage, we find that the border zone is more complex than it looked like in the first place. Furthermore,

- 50. - 40. - 30. - 20. - 10. 0. 10. 20. 30. 40. 50.

50

60

70

80

90

100

DΛ � 10 - 6

n

(a)

- 50. - 40. - 30. - 20. - 10. 0. 10. 20. 30. 40. 50.

50

60

70

80

90

100

DΛ � 10 - 8

n

(b)

Fig. 3: Visualization of the sign structure of the coefficients c50 through c100 of the small field series for
different values of the parameter λ. Light: −1; dark: +1. On the horizontal axis, the deviation ∆λ = λ−λ?
from λ? = −0.186 064 20 is recorded. For each pixel, λ? is varied in the (a) sixth digit and (b) eigth digit,
respectively.
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we are tempted to correct our estimate of λ?: Guided by the idea of an alternating pattern, the actual
border appears to lie about 5×10−8 units to the left from the original value. This observation is
supported by an even closer look at the critical region—we refer to Appendix A for a more complete
and detailed picture of the sign structure of the first 200 coefficients. Setting λ? = −0.186 064 250
from now on, we find an (almost) regular structure where sign changes occur in every third term. In
addition, we can limit the uncertainty of this value to ±2 in the last digit in order to maintain this
pattern.

This sign change in every third coefficient is almost perfect. Nevertheless, calculating the first 1000
coefficients for fixed λ = λ?, we find an additional ‘+’ every 127th term, the first occurence of four
positive terms in a row being c123 through c126. Moreover, the first three terms, c0, c1, and c2, are out
of line, too. Hence, apart from these first three coefficients, the sign structure is periodic in 127 with
each period being sub-periodic in 3 except for the last four terms all being positive. This pattern is
confirmed up to order n = 1000.

A further investigation, however, shows that this notion is not exact either. There is a change to
extra ‘−’ terms at n = 1139 and back to ‘+’ irregularities at n = 1898, but this variation could also
be caused by a deviation of λ? from the actual fixed point value. Anyhow, we can only speak of
an approximate 127-periodic structure with a 3-periodic substructure. We shall come back to this
intriguing (ir)regularity in the next sections because it turns up in other contexts, too.

2.1.4 Deviation from the Fixed Point and Radius of Comvergence

In order to check the quality of the approximation, we plug the truncated series back into the right-
hand side of (1.24) and thus calculate the global β function. The result is plotted in Figure 4 for
several different truncations. We understand that the convergence of the series seems to improve as
the truncation ntrunc is increased. However, all of the approximations drift away from the fixed point
at ρ . 0.1.

To quantify these observations, we define the maximum absolute deviation δ and the total deviation
∆ of the β function in an interval (a, b):

δ(a,b)v := max
ρ∈(a,b)

∣∣∣β(v)|ρ
∣∣∣ ; ∆(a,b)v :=

∫ b

a

dρ
∣∣∣β(v)|ρ

∣∣∣ . (2.8)

These quantities will be used to compare different approximation schemes later, too. Evaluating in the
interval (0, 0.1), we find good convergence up to an order of truncation of about 130, as can be seen
in Figure 5(a). For all ntrunc = 20 . . . 130, we obtain ∆(0,0.1) < 2× 10−5. For certain choices of ntrunc,
namely ntrunc = 55, 57, 62, the total deviation is reduced to ∆(0,0.1) < 1× 10−7. For ntrunc > 130,
the deviations increase, and so does the oscillatory behavior. However, the integration was performed
numerically, so that the strong oscillations in particular were presumably caused by numerical errors.

0.06 0.07 0.08 0.09
Ρ

-4. ´ 10- 7

-3. ´ 10- 7

-2. ´ 10- 7

-1. ´ 10- 7

1. ´ 10- 7

2. ´ 10- 7

3. ´ 10- 7

Β H v L Ρ

n trunc =15

n trunc = 50

n trunc =100

n trunc =150

Fig. 4: Flow of the effective potential for different truncations of the asymptotic series; β(v) = 0 is desired
for a fixed point.
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Fig. 5: The total deviation from the fixed point as a function of the order of truncation n = ntrunc. In (a),
the considered interval is (0, 0.1), and convergence is good up to n ≈ 130 when numerical errors become
predominant. In (b), the interval is extended to (0, 0.15), and the deviation grows exponentially with the
order of truncation.
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Fig. 6: The empirical radius of convergence ρ̃c as a function of the truncation n = ntrunc. The threshold δmax
is 10−11 for the black curve and 10−8 for the gray curve. In (a), a close-up of the region n = 50 . . . 250 is
shown; in (b), ρc is plotted up to n = 1000.

In Figure 5(b) we extended the interval to (0, 0.15). Note that the ∆-axis is now scaled logarithmically.
Apparently, the approximation does not hold very far beyond ρ ' 0.1, and lower-order truncations, if
any, should be chosen to approximate the potential in this region. More precisely, we expect to find
a singularity in the complex ρ-plane at a distance ρc ≈ 0.1 from the origin.

To verify this notion, we define an empirical radius of convergence

ρ̃c := sup
{
ρ ∈ (0,∞) : δ(0,ρ) < δmax

}
(2.9)

for some threshold value δmax. In other words, ρ̃c is the maximum ρ for which the absolute deviation
from the fixed point stays below the threshold value δmax. Hence, we define another criterion of
convergence based on the maximum (local) deviation δ rather than the total deviation ∆.

The result obtained from evaluating this for various truncations is affirmative. As shown in Figure
6(a), the empirical radius of convergence is an overall increasing function of the truncation, and
this observation is independent of the choice of the threshold value δmax. Taking into account the
above calculated total deviations, we are tempted to choose the optimum truncation n? such that
n? < 130. In this case, we get n? = 106 with ρ̃c = 0.088 for δmax = 10−11 or n? = 94 with ρ̃c = 0.091
for δmax = 10−8, respectively. However, the values of ρ̃c are all close to each other in the range
ntrunc = 80 . . . 130 as are the total deviations, and thus the concept of an optimum truncation is
rather meaningless in this case.
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An extended view of ρ̃c in Figure 6(b) suggests an actual radius of convergence of about 0.095.
Furthermore, this figure reveals the pattern of periodicity we detected in the previous section again.
As did the signs of the coefficients, the empirical radius of convergence oscillates with one peak followed
by two dips, showing an approximative 3-periodic structure. Moreover, this structure itself exhibits
peak values every 127 terms.

Having a vague idea of the sign structure of the cn and its influence on the series, we also want to
analyze the asymptotic behavior of the coefficients’ absolute values. We already noted in Figure 2(b)
that the cn appear to grow exponentially with n. This impression is retained for the slightly modified
value of the parameter λ?, and hence we shall try a linear fit of the form

ln |cn| ∼ α0 + α1n . (2.10)

Considering the first 1000 coefficients, this yields α0 = −16.46(8) and α1 = 2.33741(10). According
to (2.7), the radius of convergence is

ρc = 1/ lim
n→∞

n
√
|cn| ∼ 1/ lim

n→∞
n
√

eα0+α1n = e−α1 , (2.11)

which evaluates to ρc = 0.096 577(10) in the given case. In the next section, we shall substantiate this
assumption by means of an analysis of the functions complex singularities.

2.1.5 Resummation and Special Points

Power series like the small field expansion calculated here have very limited convergence properties.
A general result of complex analysis is that for any function which has singularities in the complex
plane, its power series representation is convergent in a circle around the expansion point whose ra-
dius is determined by the distance to the nearest singularity from this point [34, p. 204]. However,
even divergent series still carry information about the function they represent, and the aim of resum-
mation techniques is to make this information available beyond the (potentially vanishing) radius of
convergence, and to accelerate convergence in general [33,35].

The method of Padé approximants is particulary useful to extend the region of convergence or to obtain
other information such as the location of singularities and branch points of the function considered
[35–39]. An application of the technique to various nonlinear ODEs can be found in [15], where the
analysis of special points is put into action, too.

The idea of Padé approximation is rather simple seeing as the obvious lack of a power series is its
inability to account for the function’s singularities. Instead of a polynomial, we thus try to use a
rational function to approximate the potential v around the origin:

P[M/N ]v(ρ) = a0 + a1ρ+ . . .+ aMρ
M

1 + b1ρ+ . . . ...+ bNρN
(2.12)

The parameters ai and bj are to be chosen in such a way that the first M + N + 1 coefficients of a
Taylor expansion of (2.12) match with those of the original function v, i.e. [39]

v(ρ)− P[M/N ]v(ρ) = O
(
ρM+N+1) as ρ→ 0 . (2.13)

Therefore, we can calculate the [M/N ] Padé approximant of v from the coefficients c0, . . . , cntrunc

of the small field expansion where ntrunc = M + N . A detailed description of this procedure is
given in Appendix B. All approximants may be collected in the so-called Padé table with the [M/N ]
approximant in the Mth row and Nth column.

Three examples of Padé approximants to the truncated series with ntrunc = 15 are plotted in Figure
7(a), and Figure 7(b) shows their deviation from the fixed point. Here we observe that the Padé
expressions do not improve convergence significantly although the deviation from the fixed point is
reduced slightly. The majority of the entries in the Padé table exhibits poles on the positive real line,
especially when going to higher orders.
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Fig. 7: (a) Padé approximants of order M +N = 15 to the small field expansion of the fixed point potential
and (b) their deviation from the fixed point. For comparison, the corresponding small field series graphs
with ntrunc = 15 are plotted in red in both panels.

We would like to mention at this point that there exists a powerful procedure related to Padé approx-
imation that provides a way to determine unknown parameters such as the mass coefficient λ in our
case. We understand that a series expansion and its Padé approximant agree up to the (M+N+1)-th
coefficient of the series. The idea of the Padé-Hankel method is to estimate the free parameter by
enforcing this matching condition on the next order as well [15, 40]. We shall not dwell on this
method here because it does not change the general picture. Instead, we refer to Appendix B.3 for
now, but we shall come back to this concept in Section 3.4, too. Here we only note that we find
λ? = −0.186 064 249 4 . . . by this procedure using the first 45 terms of the series, which is a dramatic
increase in accuracy compared to solving for roots of the cn directly as done in Section 2.1.2.

Let us rather discuss the distribution of poles and zeros of the Padé expressions for it reveals many
additional properties of the function they approximate, too. In particular, the structure of singularities
and branch points is approximated [36, pp. 44-56]. So despite the fact that we are unable to extend
the solution significantly by the method of Padé, we can still extract useful information from the
approximants.

We note that it might happen that roots of the numerator and the denominator of an approximant
coincide, effectively reducing the degree of either one. These are called ghost pairs [38] or defects
[36, 37]. Furthermore, the respective leading order coefficients aM , aM−1, . . . and bN , bN−1, . . . may
vanish as a result of solving the corresponding system of equations. Thus the exact degrees of the
numerator and denominator may be different from those assumed by the ansatz (2.12). The defect of
the [M/N ] approximant is defined by

d[M/N ] := min{M −M ′, N −N ′} (2.14)

whereM ′ andN ′ denote the exact degrees of the numerator and denominator of the Padé approximant.
The operator P[M/N ] is continuous at v with respect to the supremum norm if and only if d[M/N ] = 0
[41, p. 109]. Although we do not exactly know v or, more precisely, its Taylor coefficients cn, continuity
of the Padé operator assures that for small deviations of the cn, the deviation of the corresponding ai
and bj from the “exact” values remains small as well.

Unfortunately, we will see that in the case considered here, the approximations exhibit lots of potential
defects where zeros and poles virtually coincide. They are usually caused by an almost singular
system of equations to determine the Padé coefficients [37]. This should be kept in mind in the
following discussion. Most of the Padé table was calculated numerically, but the results were checked
qualitatively against exact computations for certain approximants up to order M +N = 43.

Coming back to the Padé approximants of the fixed point series expansion, a typical distribution of
poles and zeros is displayed in Figure 8. Here we plotted the [N+3/N ] approximants in anticipation of
the large-order behavior of the fixed point potential, v(ρ) ∼ ρ3 as ρ→∞ (cf. Section 2.2). However,
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Fig. 8: Distribution of poles and zeros of the [N+3/N ] Padé approximants for N = 47, . . . , 50; (a) the full
interesting region; (b) close-up of the top wing and the central cut.
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Fig. 9: Distribution of poles and zeros of the [N + J/N ] approximants in the off-diagonal region of the Padé
table. Poles are marked by “×”, zeros by “◦”; (a) J > 0, such that there are more zeros than poles; (b)
J < 0, extra poles.

there is no evidence from the small field Padé table that this particular choice ofM −N = 3 is singled
out. The picture of any close-to-diagonal approximant is essentially the same.

Of course, the distribution of poles and zeros is symmetric with respect to the real line because the
coefficients ai and bj are real. From the left panel, we notice two distinctive structures. On the one
hand, there are two wings of poles and zeros accumulating at ρ ≈ 0.05±0.08 i. On the other hand, we
find a second cut in the center at ρ ≈ 0.10. A close-up of the two regions is plotted in the right panel.
Besides these two salient regions, a number of potential ghost pairs that show no converging behavior
arise. Refering to the above remark, this casts doubt on the continuity of the Padé operator.

Of the two prevailing clusters of poles and zeros, the wings are already manifest in the diagonal [N/N ]
sequence at N ≈ 5. The central cut however only shows up at N ≈ 20. This suggests that the wings
are the dominant structure of the potential v whereas the central cut may either be a spurious feature
of the approximation or be suppressed at lower orders.

This notion is further emphasized if we consider the situation away from the diagonal of the Padé
table, plotted in Figure 9. In this case, an equal number of poles and zeros accumulate in the wing
region again. Extra zeros, however, arrange in a semicircle in the left part of the complex plane. The
same is true for additional poles, but some of the poles cluster at the edges of the central cut, too.

The fact that the wings are marked by a sequence of poles and zeros that tend to merge in one point at
ρ± = 0.049± 0.083 i suggests that the original function v has branch points at ρ = ρ± [36, p. 47]. The
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line of poles and zeros then models the corresponding branch cut such that the region of convergence
is maximized in some sense [42]. This conception is supported by the considerations of Appendix B.2,
as well. The distance of these branch points from the origin determines the radius of convergence of
the small field series expansion. For M + N ' 100 we find |ρ±| ≈ 0.096455, which is in agreement
with the results of the previous section.

Moreover, we believe that the location of the branch points can be related to the sign structure of the
coefficients cn of the small field series: Consider a function f of the form

f(ρ) = 1
2
(
1− α eiΩρ

)γ + c.c. (2.15)

with α > 0, Ω and γ real. We added the complex conjugate in order that the function is real for real
values of ρ. For γ /∈ Z, this function has branch points at ρ = e±iΩ/α. Expanding at ρ = 0, we get

f(ρ) = 1
2

∞∑
n=0

(−1)n

n!

[
n−1∏
i=0

(γ − i)
]
αneiΩnρn + c.c. ,

which may be written

f(ρ) =
∞∑
n=0

(−1)n

n!

[
n−1∏
i=0

(γ − i)
]
αn cos(Ωn)ρn . (2.16)

As soon as n > γ, the terms in square brackets alternate in sign with n. Since α > 0, these oscillations
are canceled by the factor (−1)n, and the only term affecting the sign structure of the series coefficients
is cos(Ωn); if Ω = π/κ, the sign of the coefficients changes every κ terms.

In Section 2.1.3 we found that the signs of the cn change approximately every three terms, thus
suggesting κ ≈ 3 for the series of v. From the close-to-diagonal Padé approximants of order M +N =
100 we determined the argument of the branch points’ locations to be Ω ≈ 1.037. This corresponds
to a value of κ ≈ 3.031. Hence, the sign structure is approximately, but not exactly 3-periodic. We
can write it as Ω = π

3
(
1− 1

K

)
with K = 98.53, which leads to a 3-periodic structure that is delayed

in such a way that approximately every 98 or 99 terms an additional fourth term of the same sign
occurs. This is not quite K ≈ 127 which we would expect from the actual behavior observed above,
but it is reasonably close.

We also recall that c0, c1, and c2 did not follow the pattern of the rest of the coefficients. We found
from (2.16) that the structure of the cn is solely determined by Ω for n > γ. Thus we may assume
γ < 3 locally around the origin. However, the average potential v is obviously not of the simple form
(2.15), and other effects influence the sign structure of the coefficients. Most strikingly, this approach
does not reflect the large-order behavior to be examined in Section 2.2.

2.1.6 The Vacuum Expectation Value

To finish up with the small field limit, we would like to collect some properties of the potential that
can already be read off this approximation. The vacuum energy v(0) given by the coefficient c0 is
determined as 0.006 915 7 . . .; of course, this does not contain any physical information, we merely
note it down in order to compare it to later results.

More interesting from a physical point of view is the vacuum expectation value ρ0 corresponding to
the minimum of the potential because the behavior of the potential in the vicinity of ρ0 determines
the macroscopic properties of the system. In a more sophisticated next step, one could try to restore
space-time dependence of the field ρ by considering fluctuations around the vacuum expectation value,
ρ(x) = ρ0 + δρ(x), leading to corrections to the effective action.

The location of the minimum lies well inside the region of convergence. We find ρ0 = 0.0306 . . . for all
expansions with ntrunc ≥ 5, and ρ0 = 0.030 647 9(5) for ntrunc ≥ 10. This reinforces the notion that
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the expansion is a reliable approximation up to a certain distance from the origin. The associated
value of v is vmin = v(ρ0) ≈ 0.003 860 87(1).

2.2 Large Field Asymptotics

The approximate expressions obtained in the last section all break down at ρ . 0.1. As another
limiting case, we would like to discuss (2.1),

3v − ρv′ = 1
6π2

1
1 + v′ + 2ρv′′ , (2.1’)

in the large-field limit ρ→∞.

2.2.1 Series Expansion

Assuming ρ � 1, we investigate the leading order behavior using the method of dominant balance
first. To lowest order, neglect the right-hand side, i.e.

1
1 + v′ + 2ρv′′ � 3v, ρv′ (ρ→∞) . (2.17)

Consequently, setting the left-hand side equal to zero, we find

v(0)(ρ) = Aρ3 , (2.18)

where A is a real constant to be fixed later. It must be positive in order to ensure that the potential is
asymptotically convex. Apparently, this result for the leading order is consistent with the assumption
(2.17). We see that the large-field behavior is dominated by the scaling part of the flow equation. To
proceed, we could follow the route of [43] and continue with a perturbative expansion, thus plugging
v = v(0)+v(1) into the left-hand side of (2.1) and substitute v = v(0) on the right-hand side to calculate
v(1), and so on. However, for computational reasons, it turns out to be advantageous to start with a
power series expansion

v(ρ) =
∞∑

n=n0

Cnρ
−n (2.19)

and derive a recurrance relation for the coefficients Cn again. Note that we do not start the series at
n = 0 but rather at some arbitrary n0. To be consistent with (2.18), we expect to find n0 = −3.

Inserting the series expansion into (2.1) and sorting by powers of ρ, we get

(2.20)

n0−1∑
r =2n0+1

ρ−r
r−n0−1∑
n =n0

(r − n+ 2)(2n+ 1)nCr−n−1Cn

+
∞∑

r =n0

ρ−r

[
(r + 3)Cr +

r−n0−1∑
n=n0

(r − n− 2)(2n+ 1)nCr−n−1Cn

]
!= 1

6π2 .

The first term on the left-hand side occurs if and only if n0 ≤ −1. Comparing to the right-hand side,
the inner sum over n must then vanish for all r. The smallest possible n0 is thus found by setting
r = 2n0 + 1 whence the inner sum contains only one term,

ρ−(2n0+1)(n0 + 3)(2n0 + 1)n0 C
2
n0

!= 0 .

The only integer solution consistent with the precondition n0 ≤ −1 is then n0 = −3. Hence we have
recovered the previously found leading order behavior. Choosing C−3 := A as our free parameter, we
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Fig. 10: Converging behavior of the large field series; (a) n-th root of the n-th coefficient as a function
of the parameter A. This quantity converges to Rc as n → ∞. From top to bottom, we have n = 70,
n = 55, n = 40; (b) n-th root of the n-th coefficient as a function of the order n for the optimum parameter
A? = 28.067.

can successively calculate all other Cn. The next non-vanishing coefficient is C2 obtained from the ρ0

term,

C2 = 1
450π2A

. (2.21)

All other coefficients can be calculated recursively again: For r = 1, 2, . . .,

(2.22)Cr+2 = −1
15(r + 5)A

[
(r + 3)Cr +

r+1∑
n=−2

(r − n+ 2)(2n+ 1)nCr−n−1Cn

]
.

The resulting series is

v(ρ) = Aρ3 + 1
450π2Aρ2 −

1
9450π2A2ρ4 + 1

182 250π2A3ρ6 −
1

607 500π4A3ρ7 + . . . , (2.23)

the same result as obtained form a perturbative expansion and in accordance with [43] taking into
account the different units (see also Appendix C).

2.2.2 Radius of Convergence

As in the weak-field case, we are left with one free parameter, the leading order coefficient A. It would
be nice to find a similar procedure as before, i.e. a way to determine the value of A such that the
convergence of the series (2.23) is optimum. From [34, p. 213] together with (2.7), an inverse power
series

v(ρ) = Aρ3 +
∞∑
n=1

Cnρ
−n (2.24)

like (2.23) converges for all ρ > Rc with

Rc = lim sup
n→∞

n
√
|Cn| . (2.25)

Unfortunately, the roots of the Cn do not exhibit a converging structure with increasing order unlike
it was in the small field case. Moreover, Rc shows an overall decrease with increasing A because the
singularities at ρ = 0 from negative powers are suppressed (see Figure 10(a)).

However, the coefficients Cn decrease rapidly with increasing n such that there is hope to find a
relatively large region of convergence. Indeed, Figure 10(b) suggests that it extends extends to ρ ' 0.1.
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Fig. 11: (a) Value of the parameter A such that ∆SL is minimized in the connecting interval (0.08, 0.10) for
different orders n of the small field and N of the large field series expansions; (b) small and large field series
expansions around the connecting interval (0.08, 0.10), where A was determined such that ∆SL is minimum.
Small field truncations: n = 4 (orange), n = 7 (red), n = 15 (brown); large field truncations: N = 10
(purple), N = 20 (blue), N = 30 (cyan).

In the plot, A was chosen as the optimum parameter that we shall determine in the next section, but
it should be seen as an example here; the qualitative picture is essentially the same independent of
A.

Given that the radius of convergence reaches to a region where we found the small field series to yield
confidable results, we shall determine the constant A? that describes the potential at the Wilson-
Fisher fixed point by minimizing the difference between the small and large field series in a connecting
interval (ρ1, ρ2). That is to say, we minimize

∆2
SL(A) =

∫ ρ2

ρ1

dρ [vS,n(ρ)− vL,N (ρ)]2 (2.26)

in a region where both expansions can be considered reliable. Here vS,n denotes the small field
asymptotic series up to order ntrunc = n, and vL,N = v(0) + . . .+ v(N) is the large field approximation
of order N in the perturbation series, i.e. v(k) is the kth non-vanishing term in the series (2.24). The
connecting interval should be chosen in such a way that both approximations can be assumed reliable;
we use (ρ1, ρ2) = (0.08, 0.10) for now and check this assumption later.

In Figure 11(a) we display the optimized value of A depending on different truncations of the small
and large field series expansions. It can be seen that it stabilizes around A = 28.0 . . . 28.1 as n and
N are increased. The fluctuations for values N > 30 are due to the singularity of the approximation
vL,N at ρ = 0. Note that the actual radius of convergence of the inverse power series lies outside the
connecting interval, such that the influence of the singularity increases with N .

Averaging in the region n = 10 . . . 20, N = 5 . . . 30, we find A? = 28.067(25); this will become
our choice for the parameter A from now on. It agrees with the results A? = 28.05 from [44] and
A? = 28.054 in [43] after a conversion of units (Appendix C).

In order to justify the choice of the connecting interval, take a look at Figure 11(b) where we plotted
the series expansions vS,n and vL,N for various truncations n and N . Obviously, the small and large
field approximations coincide in the interval ρ = 0.08 . . . 0.13. Note, however, that this consistency
interval shrinks as either n or N are increased. Shifting the connecting interval (ρ1, ρ2) to the right
within this range does not affect the value of A? within the confidence interval given above.

2.2.3 Deviation from the Fixed Point

Next, we would like to check how well this large field approximation satisfies the fixed point condition
β(v) = 0. Using the leading order term v(0)(ρ) = Aρ3 only, the expression is analytic on the whole
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Fig. 12: Flow of the effective potential for different truncations of the large field perturbation series; β(v) = 0
is desired for a fixed point.

real line. The flow β can be computed straightforwardly in this case, and we find

β(v(0)) = 1
6π2

1
1 + 15Aρ2 . (2.27)

For this expression, we can calculate the total deviation ∆(0,∞)v(0) as defined in (2.8), which can be
considered to provide an upper bound for a meaningful global approximation to be found. Here

∆(0,∞)v(0) =
∫ ∞

0
dρ
∣∣β(v(0))|ρ

∣∣ = 1
12π
√

15A
, (2.28)

which evaluates to approximately 0.0013 for A = A? = 28.067. Apparently, the larger we choose A,
the better our solution conforms with the fixed point equation. This provides another explanation of
the difficulties to determine A? from the series’ intrinsic properties.

If more terms of the series (2.24) are included, the deviation becomes infinite due to the singularity
at the origin, of course. Nevertheless, we can still analyze the converging behavior by reinserting the
truncated series into (2.1). The resulting flow β(v) is plotted in Figure 12 for various truncations
Ntrunc. We see that the maximum deviation in the interval (0.15,∞), δ(0.15,∞)v, remains smaller than
3× 10−8 for Ntrunc ≥ 15. This is a remarkable result seeing as the solution was obtained in the limit
ρ� 1.

Furthermore, we can calculate the total deviations ∆(0.1,∞)v for different truncations, extending the
lower bound of the interval to 0.1. We find that ∆(0.1,∞) < 3× 10−7 for Ntrunc ≥ 10. This should be
compared to ∆(0,0.1) < 1× 10−7 obtained from the optimum truncations of the small field series on
the remaining part of the positive real axis, (0, 0.1). Combining the two approximations, we can thus
specify the fixed point potential up to a total deviation ∆(0,∞) < 4× 10−7.

All in all, these findings further justify our rather bumbling method to obtain the optimum value
of A = A?. Indeed, we shall be able to recover some properties of the small field series in the next
section.

2.2.4 Improvement of Convergence

If we extend our discussion of the total deviation from the fixed point to the interval (0.01,∞), the
limited radius of convergence of the large field solution becomes manifest again. To allow for compari-
son of results from this and the previous section, we note that for Ntrunc = 20 we get ∆(0.01,∞) ≈ 1010,
which increases further with Ntrunc, e.g. for Ntrunc = 40 we find ∆(0.01,∞) ≈ 1030.

Given that the large field series (2.23) is quite well-behaved, we shall try to extend convergence to
the whole positive real axis by the method of Padé approximants again. In particular, it would be
interesting to see if the large field series carries information about the potential minimum. We hope
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Fig. 13: Padé approximants to the large field series expansion. The ntrunc = 25 approximation of the weak
field expansion is plotted in red color for comparison. Exact calculation of the coefficients was processed in
(a) whereas in (b) the coefficients were calculated numerically. While the shape of the potential around its
minimum is resembled quite well, convergence to the value at ρ = 0 does not seem to improve significantly
at higher orders.

to reproduce the properties found in Section 2.1.6, namely the vacuum energy v(0) = 0.006 915 7 and
the minimum of the potential vmin = 0.003 860 87 at ρ0 = 0.0306479.

As before, the polynomial order of the numerator and denominator are denoted M and N , respec-
tively. In order to maintain the correct behavior in the limit ρ → ∞, we restrict ourselves to Padé
approximants where M −N = 3. The coefficients ai, bj are calculated by expanding the Padé ansatz
around ρ = ∞ and comparing coefficients to the Cn as defined in (2.24). For details see Appendix
B.1.2. The obtained system of equations turns out to have no solution for some of the low-order
approximants, but the general result is that the method leads to well-defined analytic expressions on
the whole non-negative real line.

The first useful expression is the [5/2] approximant, for which v̄(0) = 0.0047 already hits the desired
value of 0.0069 closely. Furthermore, its graph also exhibits the correct form, showing a minimum at
ρ̄0 = 0.0293, which is reasonably close to the expected value ρ0 = 0.0306, too. Increasing the order
of the Padés reveals an interesting structure: the [M/N ] approximants where N is an even number
seem to converge quickly to the correct solution, merging with the small field series. Those with odd
N , however, tend to bend off towards decreasing values of v̄ as ρ approaches 0. To illustrate this, take
a look at Figure 13(a).

This behavior may be explained by the fact that the roots of a polynomial with real coefficients come
in pairs of complex conjugates. Hence, for a polynomial of odd degree, there remains at least one
root on the real axis. Nevertheless, we see that the [16/13] approximant converges exceptionally well;
compared to the other approximant’s poles, its only singularity on the real line is located “far away”
from the origin at ρ = −0.183. Generally speaking, the effect of the extra real root is vanishing as N
is increased, which can be seen from Figure 13(b). Furthermore, some Padé approximants with even
N such as the [9/6] expression have two poles on the real axis.

The approximants up to order N = 13, visualized in Figure 13(a), were calculated by solving the
corresponding system of equations exactly. Due to extensively growing computation times, we switched
to numerical methods for higher orders, see Figure 13(b). We found that the approximations of order
N > 13 did not improve convergence to the exact solution (more precisely, the small field expansion
in this region), be it caused by numerical instabilities or a general limitation of the Padé method.

To quantify the quality of the approximation, we calculated the total deviation from the fixed point
as defined in (2.8). Seeing as these Padé functions are analytic in the whole domain of interest, we
extended the interval to the positive real axis. As expected from the graph in Figure 13, the best
result is obtained for the [16/13] approximant where ∆(0,∞) = 1.85× 10−5, which is two orders of
magnitude smaller than the deviation of the leading order term v(0)(ρ) = Aρ3 alone. The major
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contribution comes from the interval (0, 0.02) where ∆(0,0.02) = 1.62× 10−5. The maximum deviation
of the β function is δ(0,∞) = 1.7× 10−3.

The [11/8], [13/10], and [15/12] approximants all have ∆(0,∞) ∼ 10−5. Unfortunately, all our approx-
imations with N ≥ 14 drift away from the fixed point as ρ→∞. We assume that this is a numerical
issue since we started to use numerical methods at this order.

Lastly, it should be noted that the [16/13] Padé, being the optimum approximation so far, also
reproduces the potential minimum very accurately. It is found at ρ̄0 = 0.03079; this is a deviation of
only 0.45% from the position obtained in Section 2.1.6. The value of the Padé expression at this point
underestimates the potential minimum by only 0.26%. The best values in this regard are obtained
from the [13/10] approximant for which ρ0 and v(ρ0) deviate by +0.32% and −0.13%, respectively.

Apparently, the information about the large field behavior allowed us to construct a reasonably good
approximation of the fixed point potential on the whole real line. However, the deviation from the
fixed point is about two orders of magnitude higher than what is obtained by directly “gluing together”
certain truncations of the small and large field series at ρ = 0.1. Before we try to refine our global
approximation, we want to have a look at the singularity structure proposed by the large field Padé
functions.

2.2.5 Special Points Analysis

As before we would like to examine the locations of poles and zeros of the Padé approximants in order
to get an approximate picture of special points of the potential as viewed from infinity.

As it is visualized in Figure 14, we now recognize five special points, all of which lie in a range where
|ρ|= 0.10 . . . 0.12. The way the poles and zeros accumulate around these points suggests that they have
branch point character again. Note that the approximants were computed from a series expansion at
infinity, so that the cuts are modeled by a series of poles and zeros bending off towards the origin.
We also see that the choice M − N = 3 is singled out in this case; the typical distribution of poles
and zeros along these cuts is found for M −N ≥ 3 only. Obviously, these are the only approximants
capable of reflecting the correct large-order behavior (unless several coefficients vanished).

Of the five candidates for branch points, the one on the negative real axis is presumably the weakest
in the sense that it emerges last when considering entries of increasing order in the Padé table. It
shows up for N ' 16 whereas the remaining four arise at N ' 6 or 7.

The fact that we find at least four special points here as opposed to only two in the small field case
is astounding. Although the absolute values of the positions of these points agree, it reinforces the
notion that the nature of these singular points is rather complicated. A simple branch point of the
form (2.15) would appear at the very same position in a large field expansion as in the small field
case, a fact that is illustrated in Appendix B.2.

We also note that a variation of the free parameter A changes the absolute value of the special points
positions, but leaves the overall pattern and especially the argument of their positions unaffected.
The discrepancy of special point structures as suggested by the Padé approximants of small and large
field approximations therefore remains unsolved. We shall come back to it in Section 2.3.2 when we
have established a global approximation making use of both limiting cases.

2.3 Global Approximation

In this section we shall incorporate information from both the small and large field series expansions
to obtain a single approximating expression for the effective potential on the whole positive real axis.
The method of choice are rational functions once again. These will provide improved accuracy and
they will allow us to record the transition between the special point structures observed above.

23



´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

é é é é

é

é

é é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

é é é

é

é

é é

é

é

é é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

é é é é é é é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

´ ´ ´ ´ ´ ´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

é é é é é é é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

é

- 0.15 - 0.10 - 0.05 0.05 0.10
Re

- 0.15

- 0.10

- 0.05

0.05

0.10

0.15
Im

N

J

-1

1

3

5

45

Fig. 14: Poles and zeros of the [45+J / 45] Padé ap-
proximants of the large-field series. Their distri-
bution suggests that there are five branch points
of the potential v all in a region where |ρ|=
0.10 . . . 0.12. The value J = 3 (markers almost
completely hidden underneath the J = 5 ones
here) stands out for marking the border between
those approximants whose zeros fall into line with
the poles (J ≥ 3) and those whose zeros distribute
differently (J < 3).
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Fig. 15: Comparison of the lowest order two-point
Padé approximant [4/1]2,4 (red) to the small field
(blue) and large field (cyan) truncated series with
ntrunc = 25 and Ntrunc = 25. In their respec-
tive domain of validity, no difference between the
series expansions and the interpolating Padé func-
tion is visible to the naked eye.

2.3.1 Two-point Padé Approximation

The method of Padé approximation has yielded improvements of convergence in either of the small
and large field cases. We shall go one step further and calculate a single Padé approximant that takes
into account both the small and the large field series expansions. The general idea is to start from an
expression like (2.12) again,

P[M/N ]r,R
v(ρ) = a0 + a1ρ+ . . .+ aMρ

M

1 + b1ρ+ . . . ...+ bNρN
. (2.29)

However, the coefficients ai and bj are now determined by matching the first r coefficients of a Taylor
expansion of (2.29) around the origin with the small field series and the first R coefficients of a Taylor
expansion of (2.29) at infinity with the large field series [35, p. 393]. Effectively, we are thus using
ntrunc = r − 1 in (2.2) and Ntrunc = R − 1 in (2.24), respectively. Of course, r + R = M + N + 1 is
required for the resulting system of equations to have a unique solution. This idea is worked out in
detail in Appendix B.1.3.

In the following, [M/N ]r,R is to denote the Padé approximant of order M in the numerator and
N in the denominator with truncations r and R of the contributing expansions at 0 and infinity,
respectively. We shall also write it as [M/N ]s where s = R−r

2 denotes the excess of included large
field terms over small field terms.

Qualitatively, this method yields impressive results. Consider for example Figure 15. Here we plotted
the lowest order approximant [4/1]2,4 ≡ [4/1]1 along with the small and large field truncated series.
This expression already interpolates between the two limiting cases without a noticeable deviation at
the scale of the plot. Within the class of [4/1] approximants, the best result was obtained from the
s = 1 weighting shown here. This reveals a general tendency yet to be explored in the next sections:
The optimum weight (in a sense defined below) for each class has s > 0, but 2s

M+N < 1
2 .

2.3.2 Special Points Analysis

Before we turn our attention to an investigation of the accuracy of these expressions, we would like
to have a look at the poles and zeros of the two-point approximants. Seeing as their distribution was
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Fig. 16: Poles and zeros of the [13/10] Padé approximants for different weights of the small field series. The
red markers correspond to the large-field-only weight (R = 24), the violet ones to the small-field-only weight
(r = 24).

quite different in the small field and large field cases, it should be interesting to check how this picture
transforms as the weight s is changed.

We monitored this transformation for the [13/10] approximants in Figure 16. A similar picture is
found for other orders. Indeed, there is a smooth transition of the arrangement of special points with
changing weight.

For the case of only small field terms considered, i.e. r = 24 or s = −12, we have the picture of two
branch points at a distance ρc ≈ 0.095 from the origin with the corresponding cuts trailing off to
infinity. This was already observed in Section 2.1.5 (Figure 8). As we include more and more terms
of the large field series, it seems as if these cuts combine in the negative half-plane. In other words,
the cuts that were presumably connected at infinity in the small field case now lie in a finite region of
the complex plane. The combination point is pushed towards the origin as s is increased.

When r = 0 or s = 12, respectively, we recover the picture of Section 2.2.5 (Figure 14). It appears
from Figure 16 that the large field series’ branch points in the positive half-plane correspond to the
ones found for the small field series. On the contrary, the extra points in the negative half-plane that
we encountered in the large field case seem to be obscured in the small field series. Alternatively, they
may be interpreted as laterals of the cut itself.

2.3.3 Accuracy

In order to discuss the accuracy of these approximations, let us again consider the total deviation
∆(0,∞) on the whole positive real line as defined by (2.8) first. A graphical representation of this
measure for various orders and weights is shown in Figure 17. Certain approximants exhibit poles
in the interval (0,∞) and hence β(v) diverges at these points leading to an infinite total deviation.
These are marked by a dark red square. This is more likely to occur for negative or small positive
values of s where the effect of the small field terms dominates.

It can be seen that the deviation generally decreases as the order is increased, thus suggesting a
convergent character of the approximants. The [4/1]1 term plotted above in Figure 15 has ∆(0,∞) =
4.3(5)× 10−3. Notice that the integrals were evaluated numerically here. The error was approximated
by varying the integration procedure and estimating the contributions from outside the integration
interval, which was chosen to be (0, 10).
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Fig. 18: The [16/13]6 approximant (red) compared to
the small field (blue) and large field (cyan) truncated
series with ntrunc = 25 and Ntrunc = 25 on the whole
physical domain.

The lowest order expression with ∆(0,∞) < 10−7 is the [11/8]1 approximant, which has ∆(0,∞) =
4.25(2)× 10−8. This result is not beaten by any of the [12/9] or [13/10] terms.

Of all approximations we considered, the one with the minimum total deviation is the [16/13]6 ex-
pression (r = 9, R = 21), for which we found ∆(0,∞) = 1.84(2)× 10−8. This is one order of magnitude
better than the combined small and large field series expansions connected at ρ = 0.1. More im-
portantly, it is a single approximation to the average potential that is analytic in the whole physical
domain. We plotted it on a global scale along with the small and large field series in Figure 18.

It should be noted that there are more expressions with similar accuracies among the [14/11] through
[17/14] approximants. In each of these classes we find at least one choice for s such that ∆(0,∞) <

2× 10−8. The above quoted rule of thumb that the optimum weight lies in the range 0 < s < M+N
4

is confirmed here.

At higher orders, our methods to evaluate β(v) for a certain value of the field ρ turn out to be
numerically unstable. We plotted this flow for the best approximants of the [13/10] and [16/13]
classes in Figure 19. Starting from order [15/12], some of these graphs showed random jumps, hinting
at problems with the numerics again. For the cases displayed in the figure, however, it can be seen
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Fig. 19: Flow β(v) of the best approximants of the (a) [13/10] and (b) [16/13] classes as a function of ρ. The
deviation from the fixed point solution is maximum around ρ ≈ 0.05.
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that the deviation is zero in the vicinity of the origin, then the approximants drift away from the fixed
point solution, but the deviation falls off quickly again and becomes vanishingly small at ρ ' 0.2 in
case of the [13/10] and at ρ ' 0.1 in case of the [16/13] terms.

Comparing to the distribution of poles and zeros in Figure 16, we see that for the approximants whose
flow is shown in Figure 19(a), most of the poles of these approximants (the greenish ones in Figure
16) are located in the region |ρ|= 0.02 . . . 0.08, which is where the deviation is largest.

Finally, it should be mentioned that all approximants show relatively large deviations at the location
of the potential minimum at ρ ≈ 0.03. Although we were able to approximate the potential by
reasonably accurate expressions, this means that the minimum, being the “most interesting” point of
the potential from a physical point of view, is not recovered as well as desired. We shall continue with
a more thorough examiniation of physical properties and the extent to which they are preserved by
these approximations in the next section.
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3 Critical Exponents

In the following, we shall investigate the behavior of the average potential in the vicinity of the Wilson-
Fisher fixed point. We will be able to extract critical exponents of the theory, which are a fundamental
property of the physical system. It is this context where the relation between quantum and statistical
physics is most striking. In particular, and in contrast to previous results, these critical exponents do
not depend on the regulator chosen in the definition of the interpolating effective action [19]. They
emerge from the eigenvalues obtained by a stability analysis of the fixed point and can be related to the
behavior of a statistical system near a second-order phase transition [10,27,35,45]. Most importantly,
they allow to compare theory and experiment [45].

3.1 Stability Matrix

We consider for now an arbitrary expansion of the effective average potential vk in terms of a set
of coupling constants c = (c0, c1, . . .). We assume that the flow equation for the potential has been
reduced to a coupled set of flow equations for the couplings like in (2.4),

∂tcm = βm(c) (m = 0, 1, . . .) . (3.1)

At the fixed point, characterized by c?, we have of course βm(c?) = 0 for all m. We now expand (3.1)
around the fixed point, letting cm = c?m + δcm. On the left-hand side, we find

∂tcm = ∂tc?m + ∂tδcm = ∂tδcm ,

and on the right-hand side we expand βm in powers of δc:

βm(c) = βm(c?) +
∑
n

∂βm
∂cn

∣∣∣∣
c=c?

δcn + 1
2!
∑
n1,n2

∂2βm
∂cn1∂cn2

∣∣∣∣
c=c?

δcn1δcn2 + . . .

To leading order in δc, we thus obtain the relation

∂tδcm =
∑
n

∂βm
∂cn

∣∣∣∣
c=c?

δcn , (3.2)

which we can be written

∂tδc = Sδc , Smn = ∂βm
∂cn

∣∣∣∣
c=c?

. (3.3)

Although it may not be the case in general, we now assume that the stability matrix S can be
characterized by its eigenvalues ω1, ω2, . . ., and V1,V2, . . . shall be the corresponding eigenvectors.
The solution to this equation then takes the form

δc =
∑
m

εmVmeωmt =
∑
m

εmVm

(
k

Λ

)ωm

(εm = const) . (3.4)

Bearing in mind the definition of the RG time t = ln(k/Λ) and the fact that the RG flow runs
from k = Λ to k = 0 (from t = 0 to t = −∞), we understand that as the RG time progresses
the solution approaches the fixed point along the eigendirections belonging to eigenvalues with a
positive real part whereas it drifts away from the fixed point for eigenvalues with a negative real
part. The Vm of the former class are called irrelevant, the ones of the latter class relevant, and
those with vanishing coefficient to first order marginal operators [20, pp. 13-14]. Hence only relevant
and potentially marginal operators affect the macroscopic behavior, and consequently the number of
negative eigenvalues determines the system’s number of degrees of freedom.

The eigenvalues describe a power-law scaling relation of the couplings in the vicinity of the fixed point.
Borrowing from statistical physics, they are referred to as critical exponents. Indeed, in statistical
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field theory, the most relevant eigenvalue ω1 is related to the exponent ν of the correlation length ξ
via ν = −1/ω1, and subleading eigenvalues mediate corrections [10, 24]. The correlation length itself
describes the asymptotic behavior of the two-point function. In the vicinity of the fixed point (i.e. the
critical point), the correlation length scales like ξ ∼ |τ |−ν where τ = (T − TC)/TC is the reduced
temperature. In case of the small field series, for example, it may be identified with the parameter
∆λ = λ− λ? (or any other coupling used to fine-tune to the fixed point). In this way, field-theoretic
results can be tested experimentally on real-world systems.

Critical exponents of the Wilson-Fisher fixed point in O(1) scalar field theory have been computed by
various methods in the past. It is found that there is only one relevant eigendirection with an eigenvalue
ω1 usually quoted ν = −1/ω1. Its value is reported as ν = 0.6304(13) by a perturbative expansion of
φ4 theory in [46] or ν = 0.6294(2) by Monte-Carlo methods in [47]. A comprehensive collection of both
theoretical and experimental results is given in [45], and it is confirmed that theoretical predictions
agree with experiment. Correspondingly, ω1 ' −1.58 is expected as the leading contribution to the
spectrum of the stability matrix that we shall probe now for the various approximation schemes we
employed.

3.2 Small Field Series

For the weak field solution calculated in Section 2.1, we have the β functions at hand by (2.3). It
is straightforward to set up the stability matrix S for a given truncation ntrunc and calculate its
eigenvalues. Note that this way, we only consider perturbations consistent with Z2 symmetry.

Independent of the truncation ntrunc, all eigenvalues are found to be real, and two of them are neg-
ative. Furthermore, the smallest eigenvalue is ω0 = −3 regardless of ntrunc. Since the corresponding
eigenvector is V0 = (1, 0, 0, . . .), we understand that it is directly related to the coefficient c0, which
is just a shift of the vacuum energy. But since the reference point for measuring energies is arbitrary,
we will exclude the eigenvalue ω0 from our discussion from now on.

Thus the only relevant degree of freedom links to the remaining negative eigenvalue ω1. Its dependence
upon the truncation is plotted in the top panel of Figure 20(a). We see that it settles down quickly
to a value of ω1 = −1.5394 . . . corresponding to a critical exponent ν = 0.6495 . . . which conforms
with the results obtained in [26, 48]. The deviation from the above quoted values is caused by the
approximative character of the effective action. Within the framework of the LPA, our value can be
considered to reflect the standard result [26,43,48]. The two next smallest eigenvalues are plotted in the
subsequent panels of Figure 20(a). Their values are determined as ω2 = 0.655 . . . and ω3 = 3.180 . . .,
respectively.

We also note that the eigenvalues and thus the critical exponent ν crucially depend on the mass
parameter λ. This is illustrated in Figure 21 where we varied λ in the interval (−0.3,−0.1) and
calculated the first three eigenvalues. Their variation with λ is quite noticeable, which is expected
seeing as a wrong choice of λ means the Wilson-Fisher fixed point is missed. The result is compared
to the high-accuracy calculations performed in [48]. We see that at the scale considered, the curves
pass right through the intersection point of the exponents calculated there and our choice of λ?.

3.3 Critical Exponents from Padé Approximants

After having computed a global approximation to the Wilson-Fisher fixed point potential in Section
2.3, we would like to investigate how much of the physical information about the local behavior of
the RG flow around the fixed point these expressions still contain. Therefore, we shall derive flow
equations for the generalized Padé couplings a0, . . . , aM , b1, . . . , bN .
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Fig. 20: Dependence of the three smallest eigenvalues ω1, ω2, ω3 of the stability matrix for different ap-
proximation schemes upon the truncation ntrunc. (a) Stability matrix obtained from the small field power
series couplings c0, c1, ... (b) Stability matrix obtained from the small field Padé approximant couplings
a1, . . . , aM , b1, . . . , bN where M −N = 3 and M +N = ntrunc.
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Fig. 21: Dependence of the eigenvalues (a) ω1, (b) ω2, and (c) ω3 upon the mass parameter λ. The horizontal
lines mark the LPA values taken from [48]: ω1 = −1.539 499, ω2 = 0.655 746, ω3 = 3.180 007 (rounded to 6
decimal places). The vertical lines indicate the previously determined value of λ? = −0.186 064 250.
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The relation between the Padé couplings and the couplings c0, . . . , cntrunc for fixed truncation ntrunc =
M +N is given by (see also Appendix B)



1 0 0 · · · 0
b1 1 0 · · · 0
... b1 1

bN
... b1

. . .
...

0
. . .

... 1 0
0 b1 1





c0
c1
c2

...

cntrunc


=



a0
a1

...

aM
0
...
0


⇔: Bc =

(
a
0

)
.

Multiplying by B−1 from the left, we obtain

c0
c1

...

cntrunc


=



b̃0 0 · · · 0

b̃1 b̃0
. . .

... b̃1
. . .

...
...

. . . b̃0 0
b̃M+N b̃1 b̃0





a0
...
aM
0
...

0 ,


(3.5)

where b̃0 = 1, b̃i = −
∑i−1
k=0 b̃kbi−k. This is just a coordinate transformation in the space of coupling

constants: The power series couplings c = (c0, . . . , cntrunc) are expressed in terms of the Padé couplings
(a0, . . . , aM , b1, . . . , bN ), which we shall collectively denote by ĉ = (a, b). Note that this transformation
is nonlinear; for example, c1 = a1 − a0b1. Given the flow of the couplings c via the β functions
β = (β0, . . . , βntrunc) as before, we would like to find the flow of the Padé couplings,

β̂m(ĉ) ≡ ∂tĉm =
∑
n

∂ĉm
∂cn

∂cn
∂t

=
∑
n

∂ĉm
∂cn

βn(c(ĉ)) . (3.6)

The matrix ∂ĉm/∂cn is the inverse of the Jacobian Jmn = ∂cm/∂ĉn of the transformation (3.5). From
the Padé β functions β̂ai

, β̂bj
, we can again determine the stability matrix Ŝ with components

Ŝmn = ∂β̂m
∂ĉn

∣∣∣∣∣
ĉ=ĉ?

=
∑
i,j

[
∂2ĉm
∂ci∂cj

∂cj
∂ĉn

βi + ∂ĉm
∂ci

∂βi
∂cj

∂cj
∂ĉn

]∣∣∣∣∣∣
ĉ=ĉ?

(3.7)

=
∑
i,j

∂ĉm
∂ci

∂βi
∂cj

∂cj
∂ĉn

∣∣∣∣∣∣
ĉ=ĉ?

(3.8)

because βi(c?) = 0 by definition of the fixed point. Altogether,

β̂ = J−1β and Ŝ = J−1SJ ; (3.9)

the matrices S and Ŝ are related by a similarity transform and thus have the same eigenvalues.

However, there remains a subtlety to this method due to the finite truncation. In general, the function
βn depends on all coefficients c0 through cn+1; in particular, βntrunc depends on cntrunc+1. Usually, we
set cntrunc+1 ≡ 0 in βntrunc . For the power series expansion, this has the effect that βntrunc(c?) 6= 0,
but all other βn are still annihalted by the fixed point solution. Therefore, the impact on the stability
matrix and its spectrum is relatively small. In the case of Padé parametrization, unfortunately, the
dependence upon cntrunc+1 becomes manifest in all couplings except a0, and setting cntrunc+1 ≡ 0 in
all terms messes up the stability matrix because we have β̂n(ĉ) 6= 0 for all n ≥ 1. In particular,
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the step from (3.7) to (3.8) is no longer valid. Hence S and Ŝ are no longer related by a similarity
transformation, so that the spectrum is not preserved.

In order to be able to calculate critical exponents from Padé couplings nonetheless, we modify the
transformation of β functions (3.6) slightly and set βntrunc ≡ 0, effectively reducing the order of
truncation in the flow of the couplings. Consequently, all Padé couplings satisfy their individual flow
equations again: β̂n(ĉ?) = 0 for all n = 0, . . . ,M +N .

Note that a similar effect could have been achieved by substituting the known value of cntrunc+1 from
the next order of the truncation into βntrunc . However, this method is more artificial in the sense that
it introduces cntrunc+1 as a random parameter that is unrelated to the Padé approximant at this order.
In particular, the (ntrunc+1)-th coefficient in a Taylor series expansion of the [M/N ] approximant is
generally different from cntrunc+1.

Having restored the fixed point condition for the Padé couplings, we can compute Ŝ from these
modified β̂ functions in the usual way, Ŝmn = ∂β̂m/∂ĉn|ĉ=ĉ? , and determine its eigenvalues.

To show the validity of this method, we calculate the critical exponents obtained from the small field
series Padé approximants and compare them with those obtained from the series directly choosing
M −N = 3 such that the controlling factor is ρ3 as ρ→∞. We first notice that—like in the previous
case—all eigenvalues are real. Furthermore, the smallest eigenvalue turns out to be ω̂0 = −3, which
we will ignore as before, and there is one more negative eigenvalue converging to ω̂1 = −1.539 . . ., too.
Next in order we find ω̂ = 0, again regardless of truncation. This is an artefact of the approximations
made during the coupling transformation, to be traced back to setting βntrunc ≡ 0 in (3.6); we will
therefore ignore this eigenvalue as well.

For comparison, the dependence of the eigenvalues as calculated from the flow of the Padé approx-
imants by the above method upon the order of truncation is plotted in Figure 20(b). All in all, it
can be seen that the stability matrix obtained from the Padé couplings exhibits the same spectrum
as does the one obtained from the ordinary power series expansion, although convergence is slower
due to the approximations made. Also, the computing time is considerably larger in the Padé case
because the β̂ functions are more complicated than their power series counterparts.

3.4 Large Field Series

Unfortunately, the stability matrix method does not work in the large-field case due to the fact that
its spectrum is entirely controlled by the scaling part of the fixed point equation. Let us consider
again an inverse power series like (2.19) with couplings Cn0 , Cn0+1, . . ., CNtrunc starting with some
arbitrary order n0 ≤ −3. We would like to investigate the form of the corresponding β functions. The
contribution of the scaling part is trivial,

βn(C) = −(n+ 3)Cn + . . . . (3.10)

The leading order of the coarse-graining part is proportional to ρn0+1/Cn0 as can be seen by plugging
the power series into the right-hand side of (2.1). Consequently, the first β function affected by this
part is β−(n0+1). But this implies that the stability matrix ∂βm/∂Cn is triangular, and the diagonal
elements—corresponding to the eigenvalues in this case—are solely determined by the scaling part
(3.10). More precisely, we find the eigenvalues −(n0 + 3), −(n0 + 4), . . ., −(n0 + 3 +Ntrunc).

Since this simple approach does not function, we go back to the flow equation for the average potential
(1.24) and add a small perturbation similar to (3.4) to the fixed point solution directly:

vk(ρ) = v?(ρ) + εh(ρ)eωt , ε� 1 , (3.11)

where ω is the eigenvalue we are looking for. Plugging this into (1.24) leads to the following differential
equation for h:

−(ω + 3)h+ ρh′ = 1
6π2

h′ + 2ρh′′

(1 + v′? + 2ρv′′? )2 . (3.12)

32



In order to determine the eigenvalues ω, we have to solve (3.12) along with some boundary condition.
The idea is similar to the procedure of Bridle, Dietz, and Morris [43] although they start from (1.22),
using the classical field φ̃ =

√
2ρ instead, and integrate the corresponding equation for the perturbation

numerically, in contrast to our intention here.

To solve (3.12), we use the method of dominant balance similar to how it was described in Section
2.2.1 in order to find a series representation of its solution. To leading order, neglecting the right-hand
side, we find h(0)(ρ) = ρω+3 where we set the arbitrary normalization constant to unity. Subsequent
orders are obtained by substituting the previous result into the right-hand side and expanding to
leading order in a Taylor series at infinity. This way, we calculated

h(ρ) = ρω+3 − (ω + 3)(2ω + 5)
6750π2A2

?

ρω−2 + (ω + 3)(2ω + 5)
70 875π2A3

?

ρω−4 + . . . (3.13)

=: ρωhP (ρ) ,

where we separated the polynomial (or rather integer-power) part

hP (ρ) = ρ3 + (ω + 3)(2ω + 5)
[
− 1

6750π2A2
?ρ

2 + 1
70 875π2A3

?ρ
4 + . . .

]
. (3.14)

Instead of a numerical integration, we shall approximate the perturbation by a Padé function again.
Since we can only treat uniformly increasing powers by this method, we restrict ourselves to the
computation of an approximation to the polynomial part hP , such that h(ρ) ≈ ρω P[M/N ]hP (ρ).

Let us now turn our attention to finding an appropriate boundary condition so as to quantize the
eigenvalue spectrum. One option, employed in [43], is to classify the perturbations as even or odd
functions of the field φ̃. This should be done by adding a perturbation g = g(φ̃) to the fixed point
solution u?(φ̃) = v?( 1

2 φ̃
2) and substituting into (1.22). Thereafter, one can impose the boundary

conditions

g(0) = 0 and g′(0) = 0 (3.15)

in order to find odd and even perturbations, respectively. Although we could have started from
(1.22) working with the field φ̃, too, this would not have yielded any progress combined with the
Padé method because we would not have been able to use conditions (3.15) anyway. The reason is
that this way we obtain a series similar to (3.13), where we have to split off the polynomial part as
before, g(φ̃) = φ̃2ωgP (φ̃) in order to be able to compute Padé approximants. But since the Padé
expressions are regular at the origin by definition, conditions (3.15) are satisfied for any ω > 0 or
ω > 1, respectively.

Another approach to deal with the parity conditions would be to impose them on the polynomial part
or its Padé approximant, respectively. Although it is a priori unknown whether φ̃2ω is even or odd
or whether this question is meaningful at all, we could enforce the condition on gP and compute the
corresponding eigenvalues ω. These would then determine the parity of φ̃2ω and thus of the whole
expression g(φ̃) = φ̃2ωgP (φ̃). The reason why this does not work in this case, either, is that the series
representation of gP is already an even function of φ̃ and so is its Padé approximant as a result.

We shall therefore use a different quantization condition called the Padé-Hankel method. It is de-
scribed, for example, in [40] or [15], and we had mentioned it in Section 2.1.5 as a way to estimate
the mass parameter λ of the small field series (see also Appendix B.3).

By construction, the firstM+N+1 terms of a power series expansion of the [M/N ] Padé approximant
match with those of the approximated function h. The idea of the Padé-Hankel method is to estimate
the remaining parameter ω, by requiring that this matching condition hold for the next-order coeffi-
cient, too. Adopting this method to a sequence of Padé approximants of increasing order, we hope to
find a converging behavior leading to the eigenvalues sought.

The method has proven successful in various instances; examples can be found in [15, 40] as well. A
particular motivation may be that it provides another way to establish an accurate guess of the mass
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Fig. 22: Real solutions ω in the range (−5, 15) of the Padé-Hankel condition imposed on the [N + 3/N ]
approximants.

parameter λ of the small field series, a fact that is worked out in Appendix B.3. We note, though,
that the free parameter A of the large field series was not extractable by this procedure.

There are two eigenvalues that can in fact be read off equations (3.12) and (3.14) directly. The first
one is the well-known ω = −3 solution corresponding to h = const that we had already encountered
in the previous sections. The second one is ω = − 5

2 , and the reason why we have not found it before
is that it is an odd perturbation: It is linked to the operator h(ρ) = √ρ ∼ φ̃, which may be present,
for instance, when coupling to an external source, and clearly breaks Z2 invariance.

These two solutions are also manifest in Figure 22 where we plotted the values ω that satisfy the
Padé-Hankel condition for the [N+3/N ] approximants to hP up to order N = 18. Frankly, these
are the only two values showing a definite converging behavior for they are present at every order. It
should be mentioned, too, that the picture of Figure 22 is not complete. On the one hand, we ignored
all complex-valued solutions. On the other hand, the figure shows only values between −5 and 15,
but some may lie to either side of the interval. Nevertheless, the selected range is the region where
the solutions concentrate.

Another accumulation point is at ω ≈ −0.65 where there are close-by solutions in every term starting
from N = 7. In [43], another solution ω = − 1

2 is reported, although it is characterized as redundant
there. It may or may not be associated with our finding.

On the contrary, opposing expectations from the previous sections, we cannot locate any clustering
around ω ≈ −1.5. There are approximants such as N = 8 or N = 13 for which a solution in this
region exists, but their appearance seems to be rather random. Instead, the next aggregation is found
in the irrelevant regime at ω ≈ +1.5. In Section 3.2, the first two positive eigenvalues found were
ω2 ≈ 0.66 and ω3 ≈ 3.2, so that the results here do not match apparently.

Curiously enough, our solutions ω ≈ −0.65 and ω ≈ 1.5 would comply with the expected values
ω1 ≈ −1.5 and ω2 ≈ 0.65 if they were shifted by about 0.85, but this coincidence is merely a peculiarity.
Although there surely remains an uncertainty associated with the parameter A, for instance, the error
cannot be large enough to make up for the above deviation. As an example, we would need A ' 20 in
order to move ω ≈ −0.65 to about −1.5. This is inacceptable, especially in view of the small deviation
we obtained for A? compared with [43].

We must therefore conclude that the spectrum of critical exponents linked to the Wilson-Fisher fixed
point is not accessible from the large field series by our methods. It remains unclear whether this
is a limitation of the methods or an intrinsic peculiarity of the series itself. On the one hand, the
series’ radius of convergence does not extend to the “critical region” around the vacuum expectation
value, but on the other hand, its resummation by means of Padé approximants appeared to recover
this neighborhood quite well.
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Tab. 2: Spectrum of a selection of [6/3] approximants∗

M N r R spectrum

6 3 10 0 −3, −1.538, 0, 6.438−1, 3.183, 9.208, 2.2421, 4.7341, 9.2471, 1.7842

6 3 8 2 −3, −1.539, −1, 0, 0,5.989−1, 4.683, 1.5421, 3.9321, 9.1721

6 3 6 4 −3, −2, −1.579, −1,−2.478−1, 0, 1.461, 9.732, 2.7761,1.7113

6 3 4 6 −5, −4, −3, −3, −2, −1.450, −1, 0, 0, 4.851

6 3 2 8 −7, −6, −5, −4, −3, −3, −2, −1, 0, 0

6 3 0 10 −9, −8, −7, −6, −5, −4, −3, −2, −1, 0

3.5 Critical Information of the Global Approximation

In this final section, we would like to explore how much of the critical information we can restore from
the two-point rational approximations calculated in Section 2.3 by the stability matrix method.

The first thing we note is that the β̂ functions for the Padé coefficients, calculated above in Section
3.3, are not universal in the sense that they do not generally vanish for other weights (r,R) than the
ones they were computed with. In other words, in Section 3.3 we transformed the small field series’ β
functions, corresponding to a weight of r = M+N+1, R = 0, into the functions β̂m which described
the flow of the couplings a0, . . . , aM , b1, . . . , bN , and we observed that, indeed, β̂m(ĉ) = 0 for all m.
But if we use these β̂ functions to compute the flow of Padé coefficients from a different weight (r,R),
we find that the individual components of the flow vector β̂ deviate tremendously from zero, although
the total flow β(v̂) where v̂ = v̂(ρ) is the rational Padé function may actually satisfy the fixed point
condition better.

This may be surprising at first glance. After all, the structure of the Padé function and the role
of the coefficients ai and bj is essentially the same for all weights (r,R) within a class of [M/N ]
approximants. However, the transformation of β functions (3.6) makes use of the explicit form of the
coupling transformation (3.5), and of course this differs for different weights.

Therefore, we are forced to calculate the β̂ functions for each weight individually. The strategy is
exactly the same as in Section 3.3, but we use the mixed coupling transformations (Appendix B.1.3)
and the corresponding β functions from both series with the appropriate weight instead. As for the
small field part, we set βr−1 ≡ 0 again in order to compensate for the extra coupling cr not represented
in the transformation. This way, all β̂m vanish by virtue of the definition, and we are ready to evaluate
the stability matrix. It should be noted, though, that we were not always able to verify β̂m(ĉ) = 0
due to numerical instabilities (see also Appendix D).

Generally speaking, the expressions obtained for the β̂ functions by this method become rather lengthy.
In order that the actual calculation would not become useless due to numerical errors, it was crucial to
simplify the terms as much as possible by means of Mathematica’s symbolic simplification procedures.
This way, we established the stability matrix and computed its spectrum for all two-point Padé
approximants with M − N = 3 up to order [6/3] and for most of the [7/4] approximants. The
determined spectra are collected in Table 3 in Appendix D along with the respective fixed point
deviations ∆(0,∞). An excerpt is presented in Table 2.

It can be seen that the two-point Padé spectrum is basically a mix of the small and large field spectra
obtained by the stability matrix method that resembles the particular weight (r,R). The more terms
of the small field series are included, the more critical exponents appear, whereas the large field terms
only contribute the spurious negative integers we already found in Section 3.4.

Tables 2 and 3 reveal the hierarchy of eigenvalues again that was already observable in Section 3.2.
With regard to the small field series, the first eigenvalue emerging (r = 1) is the artificial 0 that results
∗The notation ab is a shorthand for a×10b. Decimal numbers are truncated, not rounded.
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from setting βr−1 ≡ 0. The subsequent eigenvalues virtually come up in numerical order, starting
with −3, −1.5, . . .; this shows that the main contribution to the relevant operator comes from the
low-order couplings c1, c2, etc. For the large field series, the spectrum starts with 0, −1, −2, . . . as
observed before.

Lastly, we note that the quality of the approximation in terms of the total deviation∆(0,∞) is obviously
not related to the amount of critical information extractable. Accuracy of the eigenvalues apparently
does not improve for expressions with low overall deviation. Moreover, those approximants with a
small total deviation tended to have R > r, but the exponents are better reflected by those with
r > R.

All in all, no additional information is revealed by the Padé approximants using the stability matrix
method. At the same time, no features of the individual spectra are lost, either. Considering the
comparatively high demand of computing resources, the Padé method is not recommendable for the
calculation of critical exponents. These are obtained more effectively from the β functions of the
simple Taylor series, which have to be determined for the method used here anyway. To conclude, we
can state that the Padé approximant preserves the critical information contained in the constituents
that entered its construction.
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Conclusions

In the framework of the functional renormalization group, this thesis presented an analytic approach
to the effective average action characterizing the Wilson-Fisher fixed point in the three-dimensional
Z2 model. Working in the local potential approximation, we aimed at an analytic expression to
approximate the effective average potential. By probing its behavior in the vicinity of the fixed point,
we went to find critical properties of theories constructed around it.

As a start, we expanded the solution of the fixed point equation in two limiting cases, namely for
small values of the field around the origin and for large field values at infinity. In both cases, a
recurrance relation for the series’ coefficients was derived with one free parameter to be tuned to the
Wilson-Fisher fixed point.

For the small field series, we determined the parameter by maximizing the radius of convergence.
Investigating the sign structure of the series’ coefficients, we revealed an interesting regularity which
led to a refined definition of this parameter. It was found that the sign oscillates approximately every
three coefficients, but a fourth term of equal sign turns up at about every 127th coefficient; this
pattern was confirmed up to order 2000. From a fit to the series’ coefficients, we estimated the radius
of convergence to be about 0.0966.

Using the method of Padé approximants, we intended to extend convergence of the small field series.
No significant improvement was achieved, but the distribution of poles and zeros unveiled some more
properties of the fixed point potential. We found evidence for two branch points in the complex plane
whose locations confirm the radius of convergence and additionally may be linked to the intruiging
sign structure observed before.

In the large field case, no obvious choice of the free parameter was noticeable. However, we established
that the large field series’ domain of convergence reaches closely to that of the small field series.
Therefore, we were able to determine the parameter’s value characterizing the Wilson-Fisher fixed
point by matching medium order truncations of the two series in a connecting interval. By combining
certain truncations of the two series expansions, a global solution could be specified up to a total
deviation of 4× 10−7.

As before, we computed various Padé approximants from the large field expansion as well. In this
case, these expressions indeed allowed us to extend the solution to the whole positive real line, but the
total deviation was about two orders of magnitude smaller than that of the combined series. Here,
too, the poles and zeros of the Padé expressions suggested the existence of two branch points at similar
locations as in the small field case. Nevertheless, more such points in the negative half-plane appeared
which were not visible before.

Seeing as the Padé method had proven successful, we finally computed rational approximations to the
average potential including terms from both limiting cases. This way, we were able to limit the total
deviation on the whole positive real axis to less then 2× 10−8. Furthermore, we could observe the
transformation of the singularity structure as a moving of the branch cut from infinity to the origin.

In order to extract critical exponents from our solutions, we set up the stability matrix and evaluated
its spectrum for the various approximation schemes. The exponents computed from the small field
series showed excellent agreement with those cited in the references. In the large field case, by contrast,
the stability matrix method did not work because of degenerated β functions. In a second approach,
we tried to work out the eigenvalues using the Padé-Hankel method, but the obtained spectrum agreed
with previous results in trivial cases only and was distorted otherwise.

We could show, however, that the stability matrix method can be extended to Padé coupling con-
stants by an appropriate transformation of the β functions. Calculating the eigenvalues for different
orders and weights of the small and large field series, we established that the resulting spectrum is a
combination of the individual contributions from the two limits. The overall finding was that the Padé
functions did not disclose any new information, but all pieces contained in the contributing coefficients
of the respective series were preserved.
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A Sign Structure Diagrams

In the following diagrams, the sign of the first 200 coefficients of the small field series expansion is
displayed as a function of the deviation ∆λ = λ − λ? from λ? = −0.186 064 250(2). Every square
corresponds to one pair (∆λ, sgn(cn)). Dark: +1; light: −1.
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Fig. 23: Varying λ in the 7th digit, λ? = −0.186064250. The ‘zipper’ in the middle of the picture reflects the
alternating structure at λ = λ?
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Fig. 24: Close-up of Figure 23, varying λ in the 9th digit, λ? = −0.186064250. From the situation in the
region from n = 120 to n = 126 we can limit the uncertainty of λ? to ±2 in the last digit in order to maintain
the regular structure.
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B Padé Approximants

Generally speaking, the convergence of power series is very limited. A Taylor series expansion of a
function may only converge in a circle around the expansion point whose radius is determined by the
location of the closest singularity or branch point from this expansion point in the complex plane.
The idea of Padé approximants is to replace the approximating polynomial (i.e. the truncated power
series) by a rational function. These rational expressions can include poles naturally and therefore
have superior convergence properties. In addition, the locations of the poles may allow to recover
information about singularities or branch points of the original function. The basic idea along with
some example of accelerated convergence are presented in [35], an exhaustive treatment of the method
and its applications is the book of Baker and Graves-Morris [36]. Many aspects of the analysis of
special points in general and algebraic branch points in particular are explored in [37].

B.1 Calculation from Taylor-like Series

B.1.1 Expansion at 0

Consider a truncated power series,

v(ρ) =
ntrunc∑
n=0

cnρ
n . (B.1)

We want to replace this expression by a quotient of polynomials of the form

P[M/N ]v(ρ) = a0 + a1ρ+ . . .+ aMρ
M

1 + b1ρ+ . . . ...+ bNρN
(B.2)

where M +N = ntrunc. The coefficients ai, bj are determined such that they coincide with the Taylor
coefficients cn up to the order of truncation, i.e. we set

ntrunc∑
n=0

cnρ
n = a0 + a1ρ+ . . .+ aMρ

M

1 + b1ρ+ . . . ...+ bNρN

⇔

 N∑
j=0

bjρ
j

(ntrunc∑
n=0

cnρ
n

)
=

M∑
i=0

aiρ
i (b0 = 1)

⇔
ntrunc+N∑

i=0
ρi

i∑
j=0

bjci−j =
M∑
i=0

aiρ
i .

Thus, the ai and bj are determined from the system of M +N + 1 equations

i∑
j=0

bjci−j = ai for i = 0, . . . ,M

and
i∑

j=0
bjci−j = 0 for i = M + 1, . . . , ntrunc (B.3)
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or in matrix form: 

1 0 0 · · · 0
b1 1 0 · · · 0
... b1 1

bN
... b1

. . .
...

0
. . .

... 1 0
0 b1 1





c0
c1
c2

...

cntrunc


=



a0
a1

...

aM
0
...
0


. (B.4)

This form is used in Section 3.3 because it emphasizes the character of a coordinate transformation
between power series and Padé coefficients. However, to actually compute the ai and bj it is more
convenient to write (B.3) in a slightly different form. First, consider the second set of equations
involving only the bj . They are obtained as the solution of the linear system of equations

C̄

 b1
...
bN

 = −

 cM+1
...

cM+N

 , C̄ij = cM+i−j . (B.5)

The ai can then be computed by substituting these solutions into the first set of equations of (B.3),

ai =
i∑

j=0
ci−jbj . (B.6)

B.1.2 Expansion at ∞

We now start with an inverse power series

v(ρ) =
Ntrunc∑
n=0

CJ−nρ
J−n , (B.7)

where we have incorporated a leading order behavior of ρJ as ρ→∞. The Padé approximation takes
the same form as in (2.12), but we require M −N = J . Equating the two expressions, multiplying by
the denominator and comparing powers of ρ, we are left with

N∑
j=0

bjCi−j = ai for i = 0, . . . ,M

and
N∑
j=0

bjCi−j = 0 for i = −1,−2, . . . ,−N . (B.8)

To minimize computation time, the bj may be calculated as the solutions of the linear system of
equations

C̄

 b1
...
bN

 = −

C−1
...

C−N

 , C̄ij = C−i−j (i, j = 1, . . . , N) , (B.9)
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from which the ai can then be calculated directly similar to the previous case:

ai =
N∑
j=0

Ci−jbj . (B.10)

Note, however, that the sums convoluting bj and Ci−j now run 0 to N in contrast to the previous
case where they would run from 0 to i.

B.1.3 Two-Point Approximation at 0 and ∞

In a final step, we would like to establish a single approximating Padé expression incorporating
information from a function’s expansions both at 0 and at infinity. The approximation is to match
r orders of the small field and R orders of the large field series. That is, our starting point are the
truncated series

vS(ρ) =
r−1∑
n=0

cnρ
n and vL(ρ) =

R−1∑
n=0

CJ−nρ
J−n (J = M −N) . (B.11)

In order to obtain a well-defined solution, we require M + N + 1 = r + R. As in the previous cases,
we equate the Padé ansatz with the two series expansions and compare coefficients in powers of ρ.
However, we have to bear in mind the different truncations now. From the small field limit, we use
the first r equations of

i∑
j=0

bjci−j = ai , i = 0, . . . ,M ;

i∑
j=0

bjci−j = 0 , i = M + 1, . . . ,M +N , (B.12)

i.e. i technically runs from 0 to r − 1 only. In a similar manner, we take into account the first R
equations of

N∑
j=0

bjCi−j = ai , i = M,M − 1, . . . , 0 ;

N∑
j=0

bjCi−j = 0 , i = −1,−2, . . . ,−N , (B.13)

such that i runs reversely from M to M − R + 1 in this case. In this way, we are left with r + R =
M + N + 1 equations for the M + N + 1 coefficients ai, bj . Note that it is guaranteed that each
coefficient appears in at least one of the equations. In particular, all ai are present because i starts
from 0 in the small field, but fromM in the large field limit. Setting either R = 0 or r = 0, we retrieve
the sets of equations of Sections B.1.1 or B.1.2, respectively.

B.2 Recovery of Special Points

In this section we give an empirical survey of how Padé approximants pick up singular points of the
approximated function. The examples are chosen on the analogy of the structure that was found for
the small field series in Section 2.1.5. To be precise, we placed the special points at ρ = e±iΩ/α in the
complex ρ plane where α = 0.095 and Ω = π

3 , close to the ones detected there. We then expanded the
model function v around the origin and calculated Padé approximants from this series expansion.

42



´

´

´

´

éé

´

´

´

´

é é é

´

´

´

´

é

é

é é é

´

´

´

´

´é é´

´

´

´

´

é é é é

´

´

´

´

é é

é

é

é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é

- 0.2 - 0.1 0.1 0.2
Re

- 0.15

- 0.10

- 0.05

0.05

0.10

0.15
Im

N

J
- 3
-1
1

4 5 6 7 8

(a)

´

´

´

´

éé

´

´

´

´

é é é

´

´

´

´

é

é

é é é

´

´

´

´

´é é´

´

´

´

´

é é é é

´

´

´

´

é é

é

é

é é

´́́

´́́

é é é

´́́

´́́

é é é

´́́

´́́

é é é´

´́́

´́́

é é é é

´́́

´́́

é é é´ ´é

é

é

é

é

é é
é

´

´

´́́

´́́

é

é

é é é´ ´

é

é

é

é

é é é´ ´ ´

é

é

é

é

é

é
é
é

é

- 0.2 - 0.1 0.1 0.2
Re

- 0.15

- 0.10

- 0.05

0.05

0.10

0.15
Im

N

J
- 3
-1
1

4 5 6 7 8

(b)

Fig. 25: Poles (×) and zeros (◦) of v(ρ) =
(
1− αeiΩρ

)−3 + c.c. having poles of order 3 at ρ = e±iΩ/α; the
pole is fully recovered by the [3/6] approximant and all higher order expressions in an exact calculation
in (a). The poles are marked by filled gray circles. Blue and green crosses belonging to the J = −3,−1
approximants are hidden underneath the red ones. In (b), it can be seen that a numerical calculation of the
Padé approximants produces spurious zeros. The extra poles lie outside the plotted region.
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Fig. 26: Poles (×) and zeros (◦) of v(ρ) = exp
[
1/
(
1− αeiΩρ

)]
+ c.c. having essential singularities at ρ =

e±iΩ/α; in (a) it can be seen that the poles (and zeros) cluster around the singularity. The close-up (b)
reveals that they do not hit the singularity but rather arrange in a (semi-)circle around it.

The first example is a multi-pole of order 3,

v(ρ) =
(
1− αeiΩρ

)−3 + c.c. . (B.14)

Poles and zeros of low-order Padé approximants are plotted in Figure 25. The function is fully
recovered by the [3/6] expression, and all higher order approximants (M ≥ 3, N ≥ 6) reduce to the
[3/6] approximant because the coefficients ai and bj vanish for i > 3, j > 6.

In the right panel of the figure, the poles and zeros of the exact same approximants are plotted, but
here the Padé expressions were computed numerically with 80 digits precision. The figure reveals the
discontinuity of the Padé operator for approximants with defects quite impressively. The approximants
up to order [3/6] agree with the exact calculation, but for higher orders, the additional coefficients do
not vanish and lead to spurious zeros and poles. The latter are not visible in the plot because they
are located far away from the origin (|ρ| ∼ 1000) and tend to drift towards infinity with increasing
order.

As a second example, we placed essential singularities of the form

v(ρ) = exp
[
1/
(
1− αeiΩρ

)]
+ c.c. (B.15)

at the same spots. The resulting pattern of Padé poles and zeros is shown in Figure 26. We see that
almost all of them accumulate at the singular points. The detailed view in the right panel reveals that
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Fig. 27: Poles (×) and zeros (◦) of v(ρ) =
(
1− αeiΩρ

)7/3 + c.c. having branch points at ρ = e±iΩ/α; both
the full view (a) and the detailed view (b) show that poles and zeros approach the branch point pairwise
along a line that models the corresponding branch cut in the complex plane such that the complement of
its domain of convergence has minimum capacity [42].
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Fig. 28: Poles (×) and zeros (◦) of the Padé approximants obtained from an expansion at infinity of v(ρ) =
ρ−7/3 (1− αeiΩρ

)7/3 + c.c. having branch points at ρ = e±iΩ/α (and ρ = 0); as in the case of the expansions
around the origin, both the full view (a) and the detailed view (b) show that poles and zeros approach the
branch point pairwise along a line that models the corresponding branch cut.

they encircle the singularity with poles and zeros approaching it from opposite directions.

Lastly, we consider the case of branch points at these positions,

v(ρ) =
(
1− αeiΩρ

)7/3 + c.c. , (B.16)

where the exact form of the exponent is rather irrelevant; it does not affect the qualitative picture.
Looking at Figure 27, this is obviously the pattern that reflects the one found for the average potential
v best. There is a line of poles and zeros approaching the singular point. The fact that they come
in pairs seems reasonably seeing as there is no real pole or zero along the line, so that they almost
cancel each other. However, there is no exact match of poles and zeros, thus the defect is zero. It can
be shown that this line outlines a branch cut related to the point in such a way that the region where
the Padé approximants do not converge has minimum capacity [42].

Lastly, we would like to point out that Padé approximants calculated from series at different expansion
points, namely infinity, show the same picture. Consider

v(ρ) = ρ−7/3 (1− αeiΩρ
)7/3 + c.c. , (B.17)

where we added the factor ρ−7/3 in order that the leading order as ρ→∞ is zero; any integer value
of the exponent would yield similar results. This function has branch points at the same locations
as (B.16) plus the one at the origin. We expanded the function in a Taylor series at infinity and
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calculated the Padé table as described in Section B.1.2. Examples of the distribution of poles and
zeros of these approximants are shown in Figure 28.

The structure is very similar to the one obtained above for the expansion about the origin. It should
be noted that the J = −1 approximant does not convey the information to the same extent because
it is obviously unable to account for the correct leading order behavior (unless the coefficients bN and
bN−1 vanished, which is not the case). However, for all approximants with J ≥ 0, the qualitative
picture is the same as in the previous case. The branch cut, now winding towards the origin since the
expansion point is at infinity, is sketched by a series of poles and zeros accumulating at the branch
point. Interestingly, the branch point at the origin is highlighted much less than the other two.
Presumably, this reflects the fact that it is located further away from the expansion point.

B.3 Padé-Hankel Method

The Padé-Hankel method provides a procedure to find in some sense optimum estimates for free pa-
rameters of a series expansion. It is based upon the idea of a two-point boundary value problem which
is solved in terms of a series expansion at the first boundary. The solution can then be approximated
using Padé functions again. Ideally, one can impose the boundary condition at the second point on the
Padé expression itself. In general, this may not be possible, though, due to limited or slow convergence
of the Padé approximants far away from the expansion point.

Therefore, a second procedure has been suggested by Fernández et al. [49] that amounts to enforcing
a match of the series expansion and its Padé approximant to one more order. That is to say, the series
and an [M/N ] approximant agree in the first M+N+1 terms by definition, but we require that the
free parameter be chosen in such a way that the (M+N+2)-th terms match as well. The naïve hope
is that this way the Padé expression reflects the function it is to approximate “better” at the remote
boundary than before. Solving the corresponding equation for the free parameter for various orders
of the approximation, one may find that the solutions indeed converge to its correct value. The good
news is that this method has actually proven successful in many instances [15,40,49,50].

Of course, the method can be carried out explicitly by computing the Padé approximant as shown
above, re-expanding it into a Taylor series and comparing the (M+N+2)-th coefficients. The same
result can be obtained more effectively, though, by requiring the vanishing of the Hankel determinant
detH where the matrix H is related to C̄ in (B.5) or (B.9), respectively [40].

Consider the case of a finite expansion point (Section B.1.1) first. There, v(ρ) and P[M/N ]v(ρ) agree
to order O

(
ρM+N). Requiring that this match extend to O

(
ρM+N+1) is equivalent to adding the

case i = M+N+1 = ntrunc+1 to the second set of equations in (B.3). We can append this line to the
matrix C̄ and the inhomogeneity in (B.5), leading to an (N+1)×N -matrix C̄ ′, so that the resulting
system of equations for the bj becomes overdetermined.

As a general result of linear algebra, a system of equations like (B.5) is consistent if the coefficient
matrix C̄ and the matrix augmented by the inhomogeneity are of equal rank [51, pp. 232-233], i.e. the
right-hand side depends linearly on the columns of the matrix C̄. Seeing as it is useless to think about
the Padé-Hankel method otherwise, we assume that the original Padé system, (B.5), has a unique
solution, which means rk C̄ = N . The extra line obtained from the Hankel condition cannot change
this, and therefore rk C̄ ′ = N , too. If this system is to be consistent, the augmented matrix

Hij = cM+i−j+1 i, j = 0, . . . , N (B.18)

must have rkH = N as well. Here, we added the inhomogeneity before the first column of the matrix
C̄ ′ to obtain H (the extra minus sign does not change the argument). This condition is equivalent to
the vanishing of the determinant of the (N+1)× (N+1) Hankel matrix H,

detH = 0 , (B.19)

similar to [40].
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Fig. 29: Solutions λ of the Hankel condition in the interval [−1, 0] for the [N+3/N ] approximants in the
range N = 1 . . . 20. The values λ = 0,−1 are under-represented. For unknown reasons, the computation
failed at orders N = 9, 10.

We shall show now that this indeed works as a method to determine the correct value of the mass
parameter λ of the small field series associated with the Wilson-Fisher fixed point. Nevertheless, it
did not work, for instance, to find the correct guess of the constant A of the large field series.

In Figure 29 we plotted the values λ satisfying the Hankel condition for several approximants up
to order [23/20]. We chose M − N = 3 again to reflect the correct large-field behavior. So as
not to overload the diagram, we displayed every representative of the values λ = 0 and λ = −1
only once although numerous copies appear at every order. Furthermore, we excluded any complex-
valued solutions, but the limitation to the interval [−1, 0] is natural because there do not appear any
converging roots outside this interval up to this order.

Inside the interval, by contrast, there is an accumulation at the prominent value of λ ≈ −0.186. More
precisely, λ? = −0.186 064 249 4 . . . is suggested to this order, in agreement with previous findings.
This estimate makes use of the coefficients c0 through c45. For comparison, note that our first guess,
obtained in Section 2.1.2 by an investigation of the roots of the cn, was λ? = −0.186 064 2 . . ., and it
included terms up to order 200.

It is straightforward to formulate the same condition for an expansion at infinity. Requiring a match
in the next order coefficient is equivalent to enforcing the second part of (B.8) for i = −(N + 1) as
well. Therefore, we add the corresponding line to the matrix C̄ in (B.9), thus making the system
overdetermined as before. In complete analogy to the previous case, we move the inhomogeneity on
the right-hand side to the left, which leaves us with the Hankel matrix

Hij = C−i−j−1 , i, j = 0, . . . , N . (B.20)

For the system to have a solution, we must have detH = 0 again, and this provides a way to estimate
an unknown parameter that the Ck depend on. By this way, we tried to compute critical exponents
from the large field series in Section 3.4.

C Conversion to Units of Reference [43]

We derive the conversion between the units employed in this thesis and those of Bridle, Dietz, and
Morris in [43], to which results of Section 2.1 are partly compared. All variables are defined as in
Section 2.1 of this work; corresponding quantities in [43] will be denoted by a tilde. The fundamental
classical fields are the same: φ = φ̃.

In this thesis, the effective potential v is expressed in terms of ρ = 1
2k

2−dφ2 whereas in [43], ṽ
is a function of σ̃ = αk(2−d)/2φ, where α is a (k-independent) scaling factor to be determined by
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comparison of the resulting equation—its value is not given in the reference. Comparing in terms of
the classical field φ, we find

ρ = 1
2α2 σ̃

2 . (C.1)

Furthermore, an additional constant 1/B is absorbed by the potential in ṽ, such that we obtain the
relation

v(ρ) = 1
B
ṽ(σ̃) = 1

B
ṽ(α
√

2ρ) . (C.2)

From this it follows that v′(ρ) = αṽ(σ̃)/Bσ̃ and v′′(ρ) = α2ṽ′′(σ̃)/Bσ̃2 − ṽ′/Bσ̃3. Substituting into
(2.1) leads to

6π2

B
3ṽ − 6π2

B

1
2 σ̃ṽ = 1

1 + α2

B ṽ
′′
,

which should be compared to the 3-dimensional fixed point equation (2.12) in [43]:

3ṽ − 1
2 σ̃ṽ

′ = 1
1 + ṽ′′

. (2.12) in [43]

Thus we find B = 6π2 and α =
√
B =

√
6π2, i.e.

ρ = 1
12π2 σ̃

2 , v(ρ) = 1
6π2 ṽ(σ̃) . (C.3)

Finally, comparing terms of power series such that

Cnρ
n != 1

B
C̃2nσ̃

2n

we find
Cn = (12π2)n

6π2 C̃2n = 2(12π2)n−1C̃2n . (C.4)

In particular, A = C3 = 288π4Ã = 28.054 for the Wilson-Fisher fixed point (cf. (2.15) in [43]).

D Spectrum of Padé β Functions

In the following table, we present the spectra of various two-point Padé approximants for different
weights (r,R) of the small and large field series. Calculations were performed using the method
described in Sections 3.3 and 3.5. Please also note the annotations to the different abbreviations
below.

Tab. 3: Spectrum of two-point Padé approximants for various orders and weights calculated from weighted
flows (with βr−1 ≡ 0)1

M N r R ∆(0,∞)
2 spectrum NB 3

4 1 6 0 ∞ −3, −1.550, 0, 1.162, 9.530,3.4571

4 1 5 1 (∞) −3, −1.537, 0, 0, 2.168, 1.6481

4 1 4 2 (∞) −3, −1.450, −1, 0, 0,4.851
4 1 3 3 > 2 −3, −2, −1.085, −1, 0, 0
4 1 2 4 1.0−2 −3, −3, −2, −1, 0, 0
4 1 0 6 1.3−3 −5, −4, −3, −2, −1, 0

– Continuing on next page –
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– Tab. 3 (cont.) –

M N r R ∆(0,∞)
2 spectrum NB 3

5 2 8 0 ∞ −3, −1.539, 0, 5.989−1,4.683, 1.5421, 3.9321, 9.1721

5 2 7 1 (∞) −3, −1.544, 0, 0, 7.399−1, 6.400, 2.1711, 5.9551

5 2 6 2 (∞) −3, −1.550, −1, 0, 0, 1.162,9.530, 3.4571

5 2 5 3 (∞) −3, −2, −1.537, −1, 0, 0, 2.168,1.6481

5 2 4 4 7.7−3 −3, −3, −2,−1.450, −1, 0,0, 4.851
5 2 3 5 3.1−4 −4,−3,−3,−2,−1.086,−1, 0, 0
5 2 2 6 1.4−4 −5, −4, −3, −3,−2, −1, 0, 0
5 2 1 7 1.6−4 −6, −5, −4, −3,−2, −1, 0, 0
5 2 0 8 1.1−4 −7, −6, −5, −4, −3, −2, −1, 0

6 3 10 0 ∞ −3, −1.538, 0, 6.438−1, 3.183, 9.208, 2.2421, 4.7341,
9.2471, 1.7842

6 3 9 1 ∞ −3, −1.537, 0, 0, 5.985−1, 3.697,1.1661, 2.8901, 6.2801,
1.3122

6 3 8 2 (∞) −3, −1.539, −1, 0, 0,5.989−1, 4.683, 1.5421, 3.9321,
9.1721

6 3 7 3 > 6 −4.0262, −3, −1.544, −1.000, 0,0, 7.429−1, 6.409,
2.2041,6.2291

(N1)

6 3 6 4 2.7−4 −3, −2, −1.579, −1,−2.478−1, 0, 1.461, 9.732,
2.7761,1.7113

(N1)

6 3 5 5 2.7−4 −4, −3, −3, −2, −1.537, −1, 0, 0, 2.168, 1.6481

6 3 4 6 4.8−5 −5, −4, −3, −3, −2, −1.450, −1, 0, 0, 4.851
6 3 3 7 3.1−5 −6, −5, −4, −3,−3, −2, −1.085, −1, 0,0 (N4)
6 3 2 8 4.3−5 −7, −6, −5, −4, −3, −3, −2, −1, 0, 0
6 3 1 9 Padé system of equations not solvable. U
6 3 0 10 1.1−4 −9, −8, −7, −6, −5, −4, −3, −2, −1, 0

7 4 12 0 ∞ −3, −1.539, 0, 6.712−1, 3.061, 6.429, 1.4791, 3.0511,
5.7131, 1.0052, 1.7132, 2.9582

7 4 8 4 4.5−3 −3, −3, −2, −1.539,−1, 0, 0, 5.989−1,4.683, 1.5421,
3.9321, 9.1721

7 4 7 5 3.3−4 −7.5461, −3, −2.983, −2, −1.964, −1.616, −1, 0, 1.030±
9.653i, 7.133, 1.5332

N1, C

7 4 6 6 3.5−5 −5, −4, −3, −3,−2, −1.550, −1, 0, 0, 1.162, 9.530, 3.4571 R
7 4 5 7 1.1−5 −3.2041, −9.824± 5.366i, −4.807, −3.647, −2.348, 1.609,

6.449± 2.353i, 1.4641, 3.0411, 5.4031
R, C

7 4 4 8 9.3−6 −7, −6, −5, −4, −3, −3, −2, −1.450, −1, 0, 0, 4.851
7 4 3 9 4.8−3 −2.44717, −1.10917, −3.23216, −7.9651, −2.0931,

−4.3972 ± 7.0491i, 4.1791, 1.5042, 6.1472, 6.88115 ±
3.39617i

N11, C

7 4 0 12 4.9−3 −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0

8 5 14 0 ∞ −3, −1.539, 0, 6.504−1, 3.259, 5.577, 1.0631, 2.1461,
3.9691, 6.8311, 1.1172, 1.7712, 2.7752, 4.4482

8 5 0 14 1.9−2 −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2,
−1, 0
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Annotations:
1 The notation ab is a shorthand for a×10b. Decimal numbers are truncated, not rounded.
2 Approximants marked with ‘∞’ have infinite deviation determinable from analytic criteria,
i.e. they exhibit poles on the positive real line or the wrong large-field behavior. For those
marked with ‘(∞)’, our numerical integration procedure does not converge, but they do show
the correct behavior in the limit ρ→∞ (namely v ∼ A?ρ3).

3 Codes:

C Spectrum contains complex eigenvalues. Usually, these are the result of numerical instabil-
ities in the flow calculation (code ‘N’) or limited computing resources (code ‘R’).

N Numerical instabilities leading to indeterminancies in the calculation of the Padé coeffi-
cients’ flow β̂m; the postpositioned figure indicates the number of affected terms. If the
code is enclosed in parentheses, these difficulties could be overcome by iterating Mathemat-
ica’s symbolic simplification procedure before inserting numerical values for the terms in
question.

R Due to limited computing resources, the Padé coefficients’ flows could not be evaluated
with high-enough precision so as to verify that they vanish.

U Padé approximant is undefined because the system of equations to calculate the Padé
coefficients from the series coefficients is not solvable.
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