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Abstract

Quantum electrodynamics predicts nonlinear interactions of electromagnetic fields. Vacuum fluc-
tuations mediate this interaction. These quantum vacuum nonlinearities supplement Maxwell’s
theory but only become relevant for strong electromagnetic fields. Even at leading high-intensity
laser facilities, these phenomena remain elusive and are therefore yet to be tested.

Precision tests of the theory require accurate predictions of the signatures of quantum vacuum
nonlinearities. The vacuum emission picture allows for an efficient theoretical treatment in
terms of a single photon emission process. Realistic electromagnetic fields lead to difficulties in
analytically calculating the zero-to-one signal photon transition amplitude. The VacEm code
by Blinne provides a tool for numerical simulations of the signal for arbitrary field profiles.
This work contains a detailed analysis of the VacEm code, improves it, and employs it for an
analytically inaccessible system. Reformulating the signal amplitude to allow for efficient numer-
ical computation provides the foundation for understanding the algorithm, code structure, and
workflow. Computational cost is the only limiting factor for the simulations. When balancing
resource usage and result accuracy, numerical artifacts are of great importance and therefore are
analyzed extensively. Furthermore, code improvements are implemented to reduce both memory
usage and computation time. They enable a short study of scattering two counterpropagating
flat top pulses, one featuring a field-free hole in its center. Despite their hard-to-resolve field
profiles, the presumed signal features are found. A partial workaround for the inevitable numer-
ical artifacts is shown using extrapolation and successfully mimics infinite simulation spacetime

volume.

Quantenelektrodynamik sagt nichtlineare Interaktionen von elektromagnetischen Felder voraus.
Vakuumfluktuationen vermitteln diese Interaktionen. Diese Quantenvakuum-Nichtlinearitdten
erginzen Maxwells Theorie. Relevanz erreichen sie jedoch erst bei hohen Feldstdrken. Aus die-
sem Grund ist ihr Nachweis selbst an den fiihrenden Hochintensitéts-Lasereinrichtungen eine
grofle Herausforderung und bleibt zu erbringen.

Prazisionstests der Theorie erfordern genaue Vorhersagen der Signaturen von Quantenvakuum-
Nichtlinearitdten. Das Vacuum Emission Picture bewerkstelligt eine effiziente theoretische Be-
handlung als 1-Photonen-Emissionsprozess. Realistische elektromagnetische Felder fiihren aller-
dings zu Schwierigkeiten bei der analytischen Berechnung der 0-zu-1 Signalphotonen-Ubergangs-

amplitude. Der VacEm-Code von Blinne ist ein numerischer Simulationscode des Signals fiir
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beliebige Feldprofile.

Diese Arbeit enthélt eine detaillierte Analyse des VacEm-Codes, verbessert ihn und setzt ihn zur
Simulation eines analytisch unzugénglichen Systems ein. Eine Neuformulierung der Signalampli-
tude gestattet ihre effiziente numerische Berechnung. Das ist die Grundlage fiir das Verstdndnis
des Code-Algorithmus, seiner Struktur und moglicher Workflows. Rechenaufwand ist der einzi-
ge limitierende Faktor fiir die Simulationen. Bei der Balance zwischen Ressourcennutzung und
Ergebnisgenauigkeit spielen numerische Artefakte die zentrale Rolle. Sie werden darum ausfiihr-
lich untersucht. Des Weiteren werden Code-Verbesserungen implementiert, die sowohl RAM-
Nutzung als auch Rechenzeit reduzieren. Die Verbesserungen ermoglichen eine kleine Untersu-
chung der Streuung zweier gegenldufiger Flat-Top-Pulse, einer mit einem zentralen feldfreien
Loch. Trotz der schwer aufzulésenden Feldprofile wird das vermutete Signalverhalten gefunden.
Fir die unausweichlichen numerischen Artefakte wird ein partieller Workaround gezeigt, der

erfolgreich zu einem unendlich grofien Simulationsvolumen extrapoliert.

ii



Contents

Lars Maiwald

Contents
1 Introduction

2 Vacuum emission picture

2.1 Heisenberg-Euler effective action . . . . .. .. ... ... ... ..........
2.2 Vacuum emission Process . . . . . . . . oo i e e e e e e e e
2.3 Light-by-light scattering . . . . . . . . . . . ... o

Numerical simulation of the vacuum emission process

3.1 VacEmcode . . . . . . . . .
3.1.1 Numerical accessibility of the signal amplitude . . . .. .. .. ... ...
3.1.2  Algorithm and memory usage . . . . . . . . . . . .
3.1.3 Class structure and workflow . . . . . .. .. .. ... L.

3.2 Limitations . . . . . . . . . L
3.21 Finite volume . . . . . . . .. L
3.2.2 Finite grid point density . . . . . . . . . ...

3.3 Improvements . . . . . . ... e e
3.3.1 Multi-node parallelism . . . . . . . . . ... ...
3.3.2 Single-precision floating-point operations . . . . . . .. . ... ... L.

Flat top scattering

4.1 Flat tops and scattering setup . . . . . . . . .. L Lo Lo
4.2 Phase transition of signal profiles . . . . . . . .. ... ... ... 0.
4.3 Extrapolation towards infinite simulation spacetime volume . . . .. . ... ...
Conclusion

Appendix

A Abbreviations . . . . . ..
B Listof figures . . . . . . . . L
C Listoftables . . . . . . . . . e
D Listof listings . . . . . . . . . . .
E  References . . . . . . . .
F Danksagung . . . . . . . . . . e e
G Eigenstdndigkeitserklarung . . . . . . ... Lo

o O R

©

iii



1 Introduction Lars Maiwald

1 Introduction

1873: James Clerk Maxwell publishes A Treatise on Electricity and Magnetism [1] laying the
foundation for countless technologies that shape our world. The precise mathematical study of

electric and magnetic fields contained in his work lives on in the form of Maxwell’s equations.

“From a long view of the history of mankind - seen from, say, ten thousand years
from now - there can be little doubt that the most significant event of the 19th
century will be judged as Maxwell’s discovery of the laws of electrodynamics. The
American Civil War will pale into provincial insignificance in comparison with this

important scientific event of the same decade.” (Feynman 1964 [2])

Maxwell’s theory (ED) accurately describes the behavior of macroscopic electromagnetic fields
and enables applications from radar to wireless communication. Nevertheless, with the advent
of the age of quantum theories the limitations of Maxwell’s classical theory became visible.
Quantum electrodynamics (QED) [3], not to be seen as a replacement for ED but simply as the
relativistic quantum field theory of electrodynamics, allows for extremely accurate predictions
[1] and descriptions of phenomena like the photoelectric effect or photon-photon scattering, in-
compatible with ED. Whether QED will ever become technologically as relevant as ED remains
to be seen. Regardless, the scientific potential is immense. Concerning this work, it provides
a suitable tool in the study of quantum vacuum physics. The quantum vacuum state is the
state with the lowest energy possible. Contrary to naive assumption, the quantum vacuum is
neither empty nor simple. It is a complex state governed by quantum fluctuations (vacuum
fluctuations), i.e. fluctuations in the values measured for field amplitudes and conjugate mo-
menta due to Heisenberg’s uncertainty principle. In particular, the term quantum fluctuations
refers to the virtual processes quantified by Feynman diagrams and occurring in the quantum
vacuum. For the context at hand the picture of constant creation and annihilation of virtual
particle-antiparticle pairs is useful.

QED can be used to probe the quantum vacuum [5]. The vacuum of QED is particularly inter-
esting to study because of its accessibility. In probing the quantum vacuum, it is necessary to
excite the fluctuations. This can straightforwardly be achieved in QED using strong external EM
fields, thanks to the advances in laser physics [(—10]. The research in this area started with the
work of Heisenberg and Euler in 1935/36 [11, 12]. They derived the effective action describing
the quantum vacuum nonlinearities of QED to 1-loop order (Heisenberg-Euler effective action).

This defines the foundation for this work and a lot of research in the field; see [13—-16] for recent
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reviews.

Maxwell’s equations in vacuum are linear, there is no coupling between EM fields. Nonlinearities
only appear in the quantum vacuum and are parametrically suppressed by the reduced Planck’s
constant & [17]. They are higher order corrections to the linear Maxwell action, which brings us
back to our starting point of Maxwell’s theory. The nonlinearities are a pure quantum effect,
a property of the medium which is the quantum vacuum, theoretically predicted and experi-
mentally elusive. Further theoretical study is of great importance in guiding the experiments.
Successful experiments would verify QED in the yet untested regime of low-energy quantum

vacuum properties and advance the quantum vacuum research. Promising signatures of quan-

tum vacuum nonlinearities are vacuum birefringence [18-30], light-by-light scattering [11, 12,
—13], photon merging [11—16], photon splitting [18, 19, 47-52], and higher-harmonic genera-

tion [53-57].

In 2015 Karbstein and Shaisultanov [5%] developed the vacuum emission picture (VEP) allowing

for a clean theoretical study of the QED quantum vacuum nonlinearities in terms of the single
photon emission process. The process of interest is the interaction of three external (classical)
background photons via quantum fluctuations (virtual electrons and positrons) to create one
(quantum) signal photon. The VEP allows us to write down an expression for the transition
amplitude from the vacuum to the single photon state. Analytical studies, working in the VEP,
can be found in e.g. [17, 59, 60]. To expand on the situations that allow for analytical study and
explore analytically inaccessible regimes, numerical simulations become necessary. A successful
approach was developed by Blinne et al. in [61].

Our goal is to expand on the work in [61] by studying the possibilities and limitations of the
numerical simulation code developed by Blinne. Furthermore, we use our adapted version of the
code to study the counterpropagating collision of two pulses, which can be described in the far
field as one flat top pump pulse and one flat top probe pulse featuring a centered field-free hole.
We do so taking inspiration from [17]. When studying the signal produced in the scattering
process, we investigate the dependence of the signal photon emission direction on the beam
waist radius of the pump.

Our work builds on the established analytical research within VEP and is done by high-
performance computing (HPC) numerical simulations written in Python. The computational
resources are provided by the HPC-cluster Draco of FSU Jena [62].

In section 2 we give the necessary theoretical background for this work, mainly focusing on the

VEP. Section 3 provides an in-depth view on the numerical simulation code by Blinne, looks
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into numerical artifacts and explains our performance improvements. Equipped with the theo-

retical understanding of the topic and the vacuum emission code we study flat top scattering in

section 4.
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2  Vacuum emission picture

The quantum vacuum is the ground state of a quantum system, 7.e. the state of the lowest energy
(zero-point energy). We focus exclusively on the QED sector which contains the electromagnetic
field and the electron-positron field. Quantum fluctuations are ever-present in both fields and
govern the properties of the vacuum. The picture of the QED vacuum as a medium with constant
creation and mutual annihilation of electron-positron pairs is useful. Considering the quantum

vacuum as a medium, it is natural to expect corrections to the vacuum ED action.

2.1 Heisenberg-Euler effective action

Heisenberg and Euler published Folgerungen aus der Diracschen Theorie des Positrons [12] in
1936. They derive the effective Lagrangian for QED with classical EM field background to 1-loop
order. The starting point is given by the custom QED Lagrangian

L = iy, (0, — ieA") p — meipp — %FWF‘“’, (2.1)

with Dirac spinor v of the electron-positron field, Dirac adjoint 1), gamma matrices Yu, four-
potential A¥, elementary charge e, electron mass m., and field strength tensor F,, = 0,4, —
0yA,. We have fermionic degrees of freedom (DOF) 1,1, no bosonic DOF, but a classical
(external) EM background field A* (F),,). The result of Heisenberg and Euler, now known as

the Heisenberg-Euler effective Lagrangian Lyg, is given by

Lug = Ly + L™, (2.2)

where Ly is the Maxwell Lagrangian and ,Cllﬂlf °P the 1-loop correction. Expressing this as an

effective action is done by

Iug = /d4$ Lyg, (2.3)

the Heisenberg-Euler effective action. The well known Maxwell Lagrangian can be written in

several ways

1 1
_ __7F,LL1/F _ = B2_E2
LM =—-F= 4 uy — 9 ( ) ) (24)

with electric field E, magnetic field B, and the components of the field strength tensor F*¥ de-
scribing the classical background EM field. Additionally, we introduce two relativistic invariants

F and G of the field strength tensor given by

1 1
F = FuF" = (B~ E*) and G = (EwE" = -B-E, (2.5)

1
2
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where FH = %%mﬁF o8 is the Hodge dual field strength tensor. As metric convention we
choose g, = diag(—1,+1,+41,+1). Keeping the Euler-Lagrange equations in mind, it is directly
apparent that the equations of motion (EOM) for ED are linear, because Ly is quadratic in the
fields. The 1-loop effective Lagrangian can be written as [15]

(eaT)(ebT) 1
tan(eaT’) tanh(ebT) + §( T)2 (a2 a bz) - 1] ) (2.6)

]. OOdT _mgT
HE = 72 0o T3

with secular invariants
1/2 1/2
a=(VP+@-F)" ad b= (VPr@+F)". (2.7)

Note that (2.6) differs slightly from the version given by Heisenberg and Euler in [12], as they
used the CGS system of units. We use the Heaviside-Lorentz system with ¢ = A = 1 for the
theoretical background given in section 2 and SI units in the numerical calculations of sections 3
and 4. Equation (2.6) is only valid for external EM fields F*¥ that vary slowly compared to the
reduced Compton wavelength and time of the electron. In fact, the derivation of (2.6) assumes
the external EM field to be homogeneous. This restriction is later loosened using a locally
constant field approximation (LCFA); see [14, 63]. This is a well justified approximation, as the
spatial and temporal extend of quantum fluctuations is on the order of the reduced Compton
wavelength Ac ~ 3.86 x 107 m and time 7¢ ~ 1.29 x 1072!s. Both quantities are much smaller
than the scale of variation of inhomogeneous EM fields in experiment. We can therefore treat the
external background fields as locally constant for the purpose of quantum vacuum fluctuation
mediated nonlinear couplings between them. The EM fields available in experiment also justify
treating the background as classical in (2.1), because quantum effects can be neglected for the
produced field strengths and length scales.

The diagrammatic representation of the 1-loop Heisenberg-Euler effective action is given by

Hfg
I

where the double line represents the dressed fermion propagator

—— = > +4>—ék+ —Eﬁ»"‘---v (2.9)

A

\ 4
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and X marks external legs. Note that the number of vertices is always even in accordance with
Furry’s theorem [64].

To solve the integral in (2.6), we make use of a weak-field expansion with expansion parameter

€~ L~ ;—b?. The leading order O(e*) result is given by [15]
4 4 2 2
) 4F+7G
ﬁl loop ~ me (6) 4154202 14 = e = TE 2.10
HE 360772 mz (a + oa + ) 907 Egr ) ( )

2

mefcs ~ 1.32x 10'® V/m is the critical

where o = €?/(4) is the fine structure constant and Ee, = “4

electric field strength (Schwinger limit) [65, 66]. (Similarly, one can express a critical magnetic
field strength by Be = Eo/c ~ 4.41 x 10°T.) For fields approaching the Schwinger limit,
higher-order nonlinearities become important. An experimental verification of this theoretical
prediction poses a challenge, since state-of-the-art high-intensity (optical) laser facilities generate
peak field strengths on the order of 10 V/m; see [67] for a comparison of facilities.

The 1-loop Heisenberg-Euler effective Lagrangian Ellﬂlao °P is of order a. Neglecting higher loop
orders is justified, as they need at least one additional internal photon line and are therefore
suppressed by powers of o &~ 1/137 [14]. A study past 1-loop order can be found in [63]. The
restriction to order O(e?) is a restriction to the four legged diagram of (2.8).

Due to the experimental challenges, a lot of theoretical work is invested into the possibilities of
observing the leading nonlinear effects in the weak-field regime. The vacuum emission process

provides an efficient framework for these studies.

2.2 Vacuum emission process

The idea of the vacuum emission process, which we describe using Karbstein’s VEP [58], is to
introduce (quantum) scattering amplitude techniques applied to the Heisenberg-Euler effective
action. The process of interest is the nonlinear interaction of (classical) external fields in the
vacuum via virtual electron-positron pairs from the quantum fluctuations to create one (quan-
tum) photon. The photon’s existence is then a signature of the quantum vacuum nonlinearities,
as this process is impossible on the tree level (ED). We use the term “signal” for photons created
through the vacuum emission process, and we use the term “background” for the external EM
fields.

In current experiment proposals, the background typically dominates the signal on the order
of 1020 photons. Nevertheless, it might be possible to separate the signal from the background
by the properties of the photons and thus enable the detection of nonlinear effects below the

Schwinger limit.
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In the study of the vacuum emission process, we focus on the transition amplitude from the vac-
uum (with classical background EM fields) to the one (quantum) photon state. The transition
amplitude is given by

5(p)(k) _ < ‘Fl loop

0> ; (2.11)

where (y3(k)| is the one photon state with polarization 3 € [0,27) and wave vector k, I‘l loop _

[d*x Ellﬂlao °P is the interaction term, and |0) denotes the vacuum state. To separately account
for background and signal, we decompose the field strength tensor F** — FH 4 f* where F'H*
is now the classical field strength tensor of the background and f*” the operator-valued field
strength tensor of the signal. The interaction term is then given by the Taylor expansion of the
1-loop Heisenberg-Euler effective action in weak-field expansion (2.10) around the background

P
8£1 loop
8FW

Order O(f?), where f = f*¥, does not contribute to the process creating one signal photon.

1 loop f,u/

+O(f2). (2.12)

Processes creating more than one signal photon are typically suppressed [15]. Using the weak-
field expansion result in (2.10) the transition amplitude from vacuum to the one photon state
can be written as [10, (7]

2
1 e m

5300 = 11555 (5 (-5) [ ate 68 4 (eah) B) — e 500 B) Fio)
+7 (es(k) - B(x) — i3 (k) - B(2)) G(o)] |

with wave number k = kY = |k|, orthogonal polarization vectors eg(k), egiz(k), and kz = kM.

(2.13)

Here, {eg(k), eg;z(k), ex(k)} forms an orthonormal basis for all 8, where er(k) = k/k. The

Feynman diagram for this process

v8(k)

A

.
Y o (2.14)
Sy

features three external photon legs denoting the coupling to the background and one (quantum)

A\

photon leg; ¢f. (2.8). Using the transition amplitude we can gain insight into the vacuum

emission process by calculating the signal photon number density

3
T = G IS (215)

where &’k = k?dk dQ and dQ = sin(d)d¥ de . We also refer to (2.15) as the signal spectrum.




2 Vacuum emission picture Lars Maiwald

2.3 Light-by-light scattering

The process of vacuum emission described in section 2.2 and based on the Heisenberg-Euler
effective action (section 2.1) can be interpreted using different pictures. We can interpret the
process as photons being emitted from the vacuum, which is subject to macroscopic EM fields.
Here, we see the vacuum as the medium in which the EM fields propagate. Its nonlinear
properties cause photon emission. There is no need to resolve the microscopic photon structure
of the EM fields. Alternatively, we can interpret the process as the scattering of external photon,
which creates the signal photon. [58]

Intuitively, the first picture corresponds well to the mathematical treatment above (e.g. (2.13)),
whereas the second picture captures the microscopic process represented in the Feynman diagram
(2.14).

In line with the experimental possibilities, we have already introduced the weak-field expansion
in (2.10). Now we want to take into account how the background EM fields are generated.
Modern experiments commonly plan to use lasers. They allow for high intensities using ultra
short pulses. Note that F and G (2.5) vanish for plane waves, because of B = e (k) x E. The
same is true for Gaussian beams in zeroth order paraxial approximation. And as F = G =0
leads to a vanishing signal amplitude Sg, this motivates using more than one laser to attain
nonvanishing invariants [58]. It is, of course, not the only way, but it additionally has the
advantage of increasing the field strength in the interaction area. For an analytical study of an
n-lasers configuration, see [67]. Experimentally, it is difficult to focus the lasers to one spacetime
point. Therefore, we restrict ourselves to using exactly two lasers. In this case, we have two laser
angular frequencies w; and we. Using (2.14) and conservation of energy, we find the possible

signal angular frequencies w to be [10]

w e {wla w1 + 20*}2’ |w1 - 2&)2|,
(2.16)
wa, wa + 2wy, [we — 2w} .

Trivially, we see that for wi; = we = wy the possible signal photon angular frequencies reduce to
w € {wo, 3wo} . (2.17)

This is an idealization, as the energy spectrum of Gaussian beams is smeared out. Nevertheless,

(2.16) and (2.17) tell us where the signal peaks in the energy spectrum.
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3 Numerical simulation of the vacuum emission process

In general, it is not possible to find a closed-form expression for the signal amplitude (2.13).
There are special cases that allow for analytical study, oftentimes making use of the infinite
Rayleigh range approximation; e.g. [59]. Numerically solving the signal amplitude opens up a
wide range of new regimes. Based on the VEP a numerical simulation code was developed by
Blinne in 2019 [61]. We refer to it by the name “VacEm code”. The VacEm code is written in
Python and makes use of optimized libraries to achieve high performance.

Section 3 uses SI units, since the code should produce results giving direct orientation for future
experiments. We start by understanding the inner workings of the VacEm code (section 3.1),

then analyze its limitations (section 3.2), and develop improvements (section 3.3).

3.1 VacEm code

The one and only task of the VacEm code is solving the signal amplitude Sz (2.13) given (at
least) the background EM fields in the focus. Apart from the input, all calculations are done in
the k space.

We examine what the code actually computes (section 3.1.1), how its algorithm works and what
this means for memory usage (section 3.1.2), and look at the underlying class structure leading

to different possible workflows (section 3.1.3).

3.1.1 Numerical accessibility of the signal amplitude

We now establish how the signal amplitude can be rewritten into an efficient numerically acces-
sible form. The focus here is on the efficiency. The numerical accessibility of (2.13) is already
given, as it is only comprised of dot products and a four-dimensional integration. It is possible
to rewrite the equations into a form needing fewer operations and making use of fast Fourier
transforms (FFT). This section together with the algorithm provided in section 3.1.2 forms the
necessary foundation for understanding the capabilities, limitations, and possible improvements
of the VacEm code. The following content is based on unpublished notes written by Blinne,
combined with direct insights into the source code. (For those with access to the vacem reposi-
tory, see doc/vacem.pdf.)

We take the signal amplitude (2.13)

Sy(k) = A/d% et [4(es(k) - B(x) — epis (k) - B(z)) F(x)

+7(es(k) - B(x) — esi5 (k) - B()) G(x)

(3.1)

9
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as a starting point, where the prefactor A is given by

Lem? [k(e)?
_ = AT el (N B 3.2
A idn2 45\ 2 (mg) (3:2)
We have normalized the electric field E with the speed of light ¢ to allow for easier notation

because now E and B have the same dimension. Instead of grouping the terms by F and G we

group them by eg(k) and eg, z (k) to get

Sp(k) = A/d4x ek leg(k) - (AE(x)F(z) + 7B(x)G(z))

3.3
+egrz(k) - (=B(x)F(z) + TE(x)G(z))] - Y
The unit vector eg is perpendicular to the wave vector
k sin(v) cos(yp)
k = | ksin(9)sin(p) | » (3.4)
k cos(19)
where k, ¥, ¢ are the spherical coordinates of the k space, and can be parametrized by
cos(f3) cos(¥) cos(p) — sin(S) sin(p)
es(k) = | cos(B) cos(¥) sin(yp) — sin(B) cos(¢) | - (3.5)
— cos(pB) sin(¥)
It can also be decomposed as
—sin(yp) cos (1) cos(p)
es(k) =sin(B) [ cos(p) | +cos(B) | cos(¥)sin(p) | - (3.6)
0 — sin(9)
=e1 (k) =e2(k)

Attention: this notation violates standard conventions. To obtain a right-handed basis {e;(k),
ez(k), er(k)} the labels in (3.6) should be swapped e;(k) <> e2(k). The VacEm code, and
therefore also this section, uses the left-handed basis for an unknown reason. The unit vectors
e1(k) and es(k) can alternatively be expressed in terms of the components of the wave vector

k by

—ky kyk.
1
ei(k) = o ks and eq(k) = e kyk | (3.7)
0 k2

where k) = \/k2Z + k2. In short, we have

eg(k) =sin(B)ei(k) + cos(B)ez(k) and egiz(k) = cos(f)ei(k) — sin(f)ez(k), (3.8)

10
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because cos(3 + §) = —sin(3) and sin(8 + 5) = cos(B3). Again we regroup the signal photon

amplitude, now with respect to cos(f) and sin(5), to get

Ss(k) = A / 'z &7 [sin(B) (e1 (k) - (AEF + TBG) — ea(k) - (—ABF + TEG))

(3.9)
+ cos(B) (e2(k) - (AEF + 7BG) + ei1(k) - (~4BF + TEQ))] .
This expression can be split into
Su(k) = / d*z %7 (e (k) - (AEF + TBG) — ey(k) - (—ABF + TEG)] , (3.10a)
Su(k) = / d*z &7 [ey(k) - (AEF + TBG) + ex(k) - (—4BF + TEG)] , (3.10D)
such that
Ss(k) = A(sin(B)Sa(k) + cos(8)Sp(k)) . (3.11)

The VacEm code computes the two signal amplitudes in (3.10) and returns them as its output.
Further reformulations are made to achieve high computing efficiency. Looking at (3.10), we see

that the expressions

Q =4EF +7BG, (3.12a)

R =—ABF +7EG (3.12b)

both appear twice in (3.10). We use (2.5) to express F and G by E, B. With the newly

introduced vectors Q, R, we write S,(k) (analogously for S,(k)) as

Su(k) = / d*z " [ey (k) - Q(z) — ea(k) - R(z)]
_ / dt ikt / B e * e (k) - Q(t, ) — es(k) - R(t, )] (3.13)
_ /dt ¢ [e1(k) - Q1. k) — eak) - R(1.K)] |
where Q(t, k) and R(t, k) are the (spatial) Fourier transforms given by
Ot k) = / Bz e ®eQ(tz) and R(t,k) = / &Pz e *E R, 2) . (3.14)

Attention: in (3.13) we have used the metric convention g, = diag(+1,—1,—1,—1) in contrast
to the theoretical background section 2. This is done to yield the conventional Fourier transform

—ik-x

from position to k space with factor e . Of course, it does not have impact on the scalar

signal amplitude. We end up with

Sa(k) = / dt ¢ ey (k) - Q(t, k) — es(k) - R(t, k)| , (3.15a)

11
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Sp(k) = / dt ¢ ey (k) - Q(t, k) + e1(k) - R(t, k)| , (3.15b)

the two parts of the signal photon amplitude in a form accessible to efficient numerical calcula-
tion. As input to the calculation, we need the E and B fields as functions of spacetime. The
VacEm code supports two options for the so called fieldmode: “explicit” and “solver”. As the
names suggest, this gives us the choice between defining the fields as analytical functions of
spacetime or provide initial data at the focus and propagate it by solving the Maxwell equations
in vacuum. The field propagation is done using the Maxwell solver put forward in [68].

The above equations are sufficient to understand the inner workings of the VacEm code for
fieldmode = 'explicit'. When using fieldmode = 'solver' some additional calculations
are required to propagate the focus input data to all required times. Up to this point, we
worked with real electric and magnetic fields. Due to the Maxwell solver getting employed in
the VacEm code, we now need to treat the electric and magnetic fields as complex. This makes
a substitution of E — R(FE) and B — R(B) in all earlier equations necessary.

In fieldmode = 'solver' the code makes use of complex spectral amplitudes ag,(k). They
get introduced with the electromagnetic potential in radiation gauge, where A* = (0, A) and

V - A =0. We write the electromagnetic potential using its Fourier transform

3
A(t,z) — / (‘;;‘)Beik'm(t, k), (3.16)

and define the complex spectral amplitudes ag,(k) (amplitudes in the two orthogonal polariza-

tion directions) through
2
At k) =e N " e (k)agy(k) - (3.17)
p=1

Any possible choice for the spectral amplitudes leads to a solution of the Maxwell equations. This
also allows for easy time propagation of the EM fields. It only requires a simple multiplication
of the spectral amplitudes for each wave vector k with the corresponding temporal phase term

exp(—ickt). For E and B (Remember, the electric field is normalized by c¢.) we find

O A(t,m) [ dk 2. i(k-x—ckt)
B(t,x) = - 500 - / ngkaop(k)ep(kz)e : (3.18a)
Pk < i(k-z—ckt)
B(t,z) = V x A(t,z) = / G p;aop(k)v x ey (K)o —ck) (3.18b)
The cross products turn out to be
V x e1(k)e*® = —ikey(k)e*® and V x ey(k)el*® = ike; (k)elF®. (3.19)

12
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Therefore, the Fourier transforms of the E and B fields can be written as

E(t, k) = ik[ei(k)a1(t, k) + ex(k)az(t, k)], (3.20a)
B(t, k) = ik[e) (k)aa(t, k) — ea(K)ay(t, k)], (3.20D)

where
ap(t, k) = e "aq,(k), (3.21)

and we have

d3k

d3k ik- A lk >
E(t,z) = / i Bk and Bltz) = / i Bl (3.22)
To obtain the complex spectral amplitudes we use
. 1 N
aop(k) = o0 e, (k) - B(to, ). (3.23)
See Blinne [01] for different methods, as this choice is not unique. We note that the complex

spectral amplitudes can also be used to write down an expression for the background photon

number density (in analogy to (2.15)) as

dP*N(k)  eock
&k 2n

(laor (k)[* + laoa (k)[?) (3.24)

where ¢¢ is the vacuum permittivity. We now have all the necessary equations in place for the

VacEm code.

3.1.2 Algorithm and memory usage

Let us review the workings of the code by studying its pseudocode algorithm in listing 1.

Listing 1: VacEm code algorithm in pseudocode for fieldmode = 'solver'.

1 INPUT config.ini (+ complex128 E fields focus data)

2 apl, age $— FieldSolver.from_config('config.ini').a0

3 Sa, Sp—0

4 FOR each time ¢t from t_start to t_stop with step of size At
5 ay, az +— eq. (3.21) (ap1, ap2)

6 Ei, EZ<— eq. (3.20) (a1, a2)

v EBj;, Bi «+— iFFT3(E;, B;)

8 F,G<+— eq.(2.5)(E;, By

9 Qi <— eq.(3.12a) (E;, B;, F, G)

13
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0 Qi «— FFT3(Q;)

1 Sy — 8.+ el%te; . Q

12 Sp +— S, + ciley - Q

13 R; «+— eq.(3.12b) (L, By, F, G)
14 Ry +— FFT3(R;)

15 Sy — Sa—eley R
16 Sp — Sp + eithel . .R
17 ENDFOR

18 S, +— S, At
19 Sy +— SpAt

20 OUTPUT ndarray complex128 S,, Sy

Listing 1 gives the pseudocode for fieldmode = 'solver'. For fieldmode = 'explicit' lines
{2, 5, 6, 7} are neglected, as E, B are known explicitly. The abbreviation FFT3 denotes the
three-dimensional fast Fourier transform and iFF T3 its inverse. We see that the time integration
from (3.15) is done using the rectangle rule (left Riemann sum). This might seem oddly simple
but is a justified choice, since the error introduced by the time integration is expected to be
much smaller than the overall error of the result.

The generated result file contains S,, S, together with some additional data concerning debug-
ging and performance; see section 3.1.3. With the pseudocode at hand, we can think about the
memory usage (RAM) of the VacEm code. Of course, there is also the concern of data storage,
but it is not a limiting factor in our case. The input is given in terms of a configuration file
in the .ini format; see listing 2. It is a short text file of negligible size. In addition to the
simulation volume (L, Ly, L,) and grid (N, Ny, N.), the .1ini file either contains the param-
eters of the lasers (e.g. pulsed Gaussian beams) or the path to stored complex E field profile
data; see section 3.1.3 for further explanations. The latter case typically requires several tens
of gigabytes (GB) of data storage for the input. The same is true for the output data. Let us
return to the far more important question of memory usage. In lines 2, 3 the complex spectral
amplitudes and the signal amplitudes get initialized. The complex spectral amplitudes are in-
stances of the postpic.Field class. The signal amplitudes are instances of the numpy.ndarray
class, 7.e. NumPy arrays. Postpic is a post-processor for particle-in-cell simulations co-developed
by Blinne [69]. Instances of the Field class are made up of a matrix and axes. For fields of
three-dimensional space the matrix is naturally also three-dimensional and therefore its memory

requirements (o< Ny x N, x N ) exceed those of the three one-dimensional axes (o< (Ny+Ny+N)).

14
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For this reason we only focus on the matrix part. This means that for our memory analysis
the postpic.Field is equivalent to the numpy.ndarray. The memory allocated for a field (i.e.
the matrix representing the field) is given by its size N, x N, x N and the data type of each
matrix element. We are working with floating-point numbers (floats), which take up 64 bit as
the default in Python. They are commonly called double-precision floats to separate them from
single-precision floats with 32bit. More on the topic can be found in section 3.3.2. Complex
numbers have a real and an imaginary part, both described by 64 bit-floats, and take up 128 bit.
They are represented using the complex128 data type. One complex field therefore allocates
Ny x Ny x N, x 128 bit. (Keep in mind that 8 bit = 1 byte.) The four complex fields initialized
for input and output in lines 2, 3 define the lower limit of memory usage. For usability reasons,
we have to know the maximum required memory for a given simulation. We need to know the
maximum number of fields allocated at the same time and their data type. The algorithm is
implemented in such a way that FFT/iFFT is always done in-place. The same idea for reducing
memory usage is applied to @ and R, as they are only needed once per loop and never together.
Listing 1 shows that complex fields ag1, age, Sa, Sb, a1, a2, E, B, Q and real fields F, G, e1 es
or their respective replacements are allocated at the same time. The resulting memory usage
RAM,in is given by

1079 GB

RAMuin = Ny Ny N (15 x 128 bit +8 x 64bit) —-- "=,
1

(3.25)

where vectors count as 3. As part of the configuration .ini file, we have the parameter low_
memory_mode with default value False. It leads to better performance and additionally accumu-
lates S,y 4 for d € 2,4 only taking into account every d-th time step. The latter part allows for a
convergence test of the time integration but requires four more complex fields. Of course, there
are also temporary allocations affecting the peak memory usage. While performing simulations
with the VacEm code it became apparent that we obtain a good estimate for the peak memory

usage by
10~°GB

4 .
RAMpeak = = No N, N, x 23 x 128 bit o

3.26
. (3.26)
With this analysis of the memory usage, we have found one of the main problems of the VacEm
code. A three-dimensional grid with hundreds or thousands of grid points in each direction

easily leads to severe memory requirements. Looking at tab. 1 the problem becomes obvious.
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Table 1: Memory usage for different grid sizes.

NyNyN. RAMpyin in GB | RAM,cax in GB

128 x 128 x 128 1 1
256 x 256 x 256 ) 8
512 x 512 x 512 41 66
1024 x 1024 x 1024 326 927
2048 x 2048 x 2048 2611 4215
4096 x 4096 x 4096 20891 33718

Already at 1024 x 1024 x 1024 grid points, we exceed the available memory per node on a typical
HPC-cluster, and 4096 x 4096 x 4096 approaches the technical limit in available memory on one
node for any currently available system. (The state-of-the-art “big memory” HPC Mammoth
of Lawrence Livermore National Laboratory features 2 TB of memory per node [70].) Note that
the VacEm code implementation is only made to run on one node; see section 3.3.1. Our choice
of N, = Ny = N, = 2" in tab. 1 is not necessary, we provide more details on this matter in
section 3.2.2.

The question remains which number of grid points is needed to resolve the laser pulses and
their interaction. This depends on the temporal and spatial frequencies involved. The details
are provided in section 3.2.2. In general, the complexity of the systems of interest exceeds
the available memory resources even at HPC-clusters like Draco [(2]. Special cases allow for
generating new insights using reasonable hardware resources. Of course, Blinne did already

think about these problems. He wrote:

“[...] our code is capable of calculating signal photon emission amplitudes in com-
pletely generic input field configurations, limited only by numerical cost.” (Blinne

2019 [71])

In addition to the memory usage, the time complexity is also an important part of the numerical
cost. We do not analyze the time complexity of the VacEm code in this work. Nevertheless, the
time it takes to finish one simulation is important. It is later discussed in section 3.3.1.

We conclude this section with the remark that the memory usage, or in general the numerical
cost, is indeed the only limiting factor (section 3.2) of the VacEm code in simulating the zero-

to-one signal photon transition amplitude for the process represented in (2.14).
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3.1.3 Class structure and workflow

From the pseudocode algorithm (section 3.1.2), we move on to the actual structure of the
VacEm code. The class structure forms the core of the Python implementation. Understanding
it is necessary for operating and improving the code. We analyzed and visualized the class
structure using the tools pyreverse from pylint [72] in combination with graphviz [73]. The
diagrammatic representation of the class structure of the VacEm code can be seen in fig. 1.

(Classes for testing purposes are excluded.)

SpectralSolution

it kwarge)

GaussianSpectral
E0
GridSpocification

beta
fix_ amplitude after projoction : bool

Figure 1: Class structure of the VacEm code.

In fig. 1 each box represents a class. Classes belonging to the same package have the same
color. The arrows show the class inheritance, pointing from the child class to the parent class.
We see three “families” here, all yellow boxes. GridSpecification and SolverBase are used
to define the simulation box and grid in position and k space. Additionally, they carry some
useful properties of the simulation. SpectralSolution, ExplicitSolution, ComplexEInput,
GaussianParaxial, and GaussianSpectral handle the EM fields (lasers) input. The classes
AbstractSolver, ExplicitFields and FieldSolver take care of providing the EM field data
at each time step. VacEm contains all methods required for the different lines of the algorithm
(listing 1). The class ResultFile allows for easy evaluation of the results. Figure 1 shows the
provided data attributes and methods for each class.

Different workflows are possible with the given class structure. Let us start with the input. The
input creates an instance of one of the three classes GaussianParaxial, GaussianSpectral, or
ComplexEInput. Each of these classes allows for different EM field profiles. GaussianParaxial,

as the name suggests, is used to initialize a pulsed Gaussian beam (3.27) with the parameters

17



3 Numerical simulation of the vacuum emission process Lars Maiwald

in tab. 2.

Table 2: Parameters of the GaussianParaxial class.

Symbol Variable Name
A lambda wavelength
wo w0 beam waist

T tau pulse duration

&o EO peak field amplitude
b0 phiO phase shift
O((wo/2r)") order | order of paraxial approximation
8 beta roll (pulse polarization)

9 theta pitch (pulse orientation)

® phi yaw (pulse orientation)
tocus focus_t focus time
Tocus focus x focus position

The quantity zg = mwd/\ is the Rayleigh range of the pulse. The default for focus_t and
focus_x is given by 0.0 and (0.0, 0.0, 0.0). It is the same for all three classes and a very
useful choice in the “middle” of the simulation volume and time frame. Note that the simulation
volume axes are defined by [[—Ly/2, Ly/2|,[—Ly/2, Ly/2],[—L./2, L,/2]] and the time frame
by [—L:/2, Li/2]. We leave the focus at the center of our simulation spacetime throughout this
work. Nevertheless, there also exist interesting possibilities by shifting the focus of one of the
pulses; see [27]. The Euler angles beta, theta, phi are defined such that (0.0, 0.0, 0.0)
describes pulse propagation in +z direction with polarization vector in 4+x direction. The order
parameter defines the order of paraxial approximation. The Gaussian beam is a solution of the
paraxial Helmholtz equation. It relies on the paraxial approximation, which is a slowly varying
envelope approximation. It is justified for beams that are not strongly divergent, i.e. divergence
wp/zr < 1. This does not hold in general; e.g. in cases of tight focusing. We are therefore
interested in higher order corrections, i.e. an expansion in orders of wg/zr. See [74] for the
derivation up to order 11. Order 1 corresponds to the “standard” Gaussian beam. Order 0 gives
us the infinite Rayleigh range approximation, i.e. zr — co. The VacEm code enables the usage
of order 0 to 5. The parameters wg, 7 mark by the intensity drop-off to 1/e2, not full width at
half maximum (FWHM). This is again a standard for the VacEm code.
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We already introduced the fieldmode parameter in section 3.1.1, which gives us the choice
between providing the EM fields explicitly ('explicit') and propagating the EM fields from
the focus using the Maxwell solver ('solver'). Since GaussianParaxial is based on a closed-
form expression for the EM field as a function of the point in spacetime, it supports both
'explicit' and 'solver' fieldmode. (If you know the field at each time, then you also know
it at the focus time.)

We ignore the class GaussianSpectral. It is designed for a specialized use case that we are not
interested in. See [01, section D.2] [75] for an explanation of this class.

The most powerful input class, and the class of interest for us, is ComplexEInput. It allows to
provide an arbitrary complex E field at tgcus as a postpic.Field. In this case, we do not know
'solver'.

the F field each simulation time step, which limits us to the usage of fieldmode =

The parameters of ComplexEInput are shown in tab. 3.

Table 3: Parameters of the ComplexEInput class.

Symbol Variable Name
E., Ey, E. Ex, Ey, Ez complex electric field input components
(active or stored postpic.Field instance)

Binput input_beta | input coordinates roll (pulse polarization)
Vinput input_theta | input coordinates pitch (pulse orientation)
Pinput input_phi | input coordinates yaw (pulse orientation)

6] beta roll (pulse polarization)

0 theta pitch (pulse orientation)

© phi yaw (pulse orientation)
Tinput_center | 1NPUt_center center of input coordinates
trocus focus_t focus time (time of input data)
Tiocus focus_x focus position
Ainput lambda | wavelength when only providing envelope

The set of parameters allows for a very convenient way of providing input data.

components Ex, Ey, Ez may be generated from an analytical expression or another simulation
software. In both cases, one might be restricted to the use of a certain propagation direction
and polarization. This is no problem, because one can provide the roll, pitch, yaw of the pulse

in the input coordinate system to ComplexEInput. The class takes care of rotating the pulse
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inversely to the “neutral” position and then rotates it into the desired direction and polarization
(beta, theta, phi). With input_center we set the point around which the rotation should
be executed. The lambda parameter can be used when only inputting the envelope instead of
the electric field.

The current state of VacEm therefore allows for three types of input:
o pulsed Gaussian beams ('explicit')
o pulsed Gaussian beams ('solver')
o arbitrary complex EM fields ('solver')

Furthermore, the VacEm code can simulate systems combining multiple and possibly different
input types. Let us examine what that looks like in practice. We provide an example .ini file

in listing 2 that is later used in section 4.

Listing 2: ComplexEInput example configuration of the system in fig. 13 (section 4).

[Setup]

N = 675, 675, 675

L

7.12936756395725e-05, 7.12936756395725e-05, 7.12936756395725e-05

lasers = 2

low_memory_mode = False

float_precision = single
[Run]
t_start = -1.1890505204032268e-13

t_end = 1.1890505204032268e-13

t_steps = 672

fieldmode = solver
[laser_1]

type = complex_e_input
focus x = 0.0, 0.0, 0.0
focus_t = 0.0
input_center = 0, 0, O
theta = 90.0

phi = 90.0

beta = 180.0
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input_theta = 90.0
input_phi = -90.0
input_beta = 90.0

Ex = cpftves_pt_7_EO_hole.npz
[laser_2]

type = complex_e_input
focus x = 0.0, 0.0, 0.0
focus_t = 0.0
input_center = 0, 0, O
theta = 90.0

phi = -90.0

beta = 180.0
input_theta = 90.0
input_phi = -90.0
input_beta = 90.0

Ex = cpftves_pt_7_006_EO.npz

Most of the parameters shown in listing 2 have already been explained. What remains is the
lasers parameter. The VacEm code can simulate systems with an arbitrary number of lasers.
The laser type is independent, 7.e. we can e.g. simulate a system with one laser described using
the GaussianParaxial class and one by ComplexEInput. The type parameter has the options
gaussian_paraxial, gaussian_spectral, complex_e_input as keywords for the respective
classes. For fast creation of configuration files, we created multiple scripts (one for each type).
Their code is loosely based on work by Blinne.

This concludes the input part of the workflow with the VacEm code. To actually run the code

a script vacem_solver.py is provided. The execution command is given by
vacem_solver.py load_ini {jobname}.ini

where {jobname} is a placeholder for the name of the .ini file. There exist of course more

options for vacem_solver.py. Using the conventional
vacem_solver.py ——-help

they can be printed to the terminal. After a simulation has finished a result file {jobname}_

vacem.npz is saved. The NumPy .npz file format is a zip file containing multiple NumPy .npy
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files. A .npy file holds the complete information of one NumPy array. The content of the result

file is shown in listing 3.

Listing 3: Content of a VacEm code result file (low_memory_mode = False).

sl (2, Nx, Ny, Nz)

s2 (2, Nx, Ny, Nz)

s4 (2, Nx, Ny, Nz)

grid (3,)

kgrid (3,)

t (t_steps,)
nrg_input_fields_spatial ()
nrg_input_fields ()

performance ()

Each line in listing 3 is a NumPy array with the shape shown in brackets. The shape () belongs to
scalars. The main result is given by s1. It contains the signal amplitudes S,, Sp. The additional
accumulators S, 4 for every second (d = 2) or every forth time step (d = 4) are saved as s2
and s4. (Remember, they are only accumulated if low_memory_mode = False.) Note that in
the result file the prefactor A (3.2) is not yet applied. Fortunately, there is no need to work
directly with the result file. The class ResultFile is built for convenient evaluation of the result
files. It provides methods that apply the correct prefactor to the signal amplitudes, calculates
the total signal spectrum or the signal spectrum for a given polarization (2.15).

As a last step, we want to include the visualization of the signal spectrum into the workflow. The
signal spectrum is a three-dimensional postpic.Field. For visualization purposes it is therefore
best to reduce its dimension by at least one. Reducing the dimensionality can either be done
through slicing or integration. Both dimensionality reduction and visualization can be tedious
and require hundreds of code lines. To accelerate and simplify this process we have created the
vacem_plot function. It completely automates the visualization process. Oftentimes, we want
to convert the result from Cartesian to spherical coordinates. A mapping function doing this
operation is already provided as part of the VacEm code (field_to_spherical). Note that this
mapping naturally introduces a small error. Further explanations follow in section 3.2.1. There

we also show plots obtained with our plotting function vacem_plot.
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3.2 Limitations

Section 3.1 and [61, 71] show the broad capabilities of the VacEm code in simulating the vacuum
emission process. As already stated, it is only limited by numerical cost. In this section, we
analyze the consequences of working with a finite volume and grid. Based on the theoretical
and algorithmic background (section 3.1), we hypothesize that infinite computational resources
(and infinite discretization of an infinite volume) would reduce the result error to zero. Our
interest lies in determining the needed spacetime volume size and grid point density for obtaining

qualitatively correct results with quantitatively small error.

3.2.1 Finite volume

The volume of the simulation box is defined by lengths L, L, Ly, L.. Based on (2.13) we would
like to work with L; ;. . — oo. Unfortunately, only finite volumes are possible numerically, and
the numerical cost grows with the volume size. If the chosen volume is too small, information
of the background EM fields is “cut off” and therefore lost. Additionally, small spatial volumes
are problematic, because we are employing FFTs of non-periodic functions. It is important to
develop a heuristic for large enough Ly, L., Ly, L. as a function of the spatial and temporal
envelope of the lasers pulses. We do this based on a pulsed Gaussian beam, but it also gives us
baseline parameters for studying more complex beam profiles. We look at propagation in +z

direction and polarization in x direction, w.l.o.g . The real E, field for a pulsed Gaussian beam

E.(t,z) =& % exp (—w:?Z‘P) exp (-W)

spatial envelope temporal envelope
2

X COS <kz —wt + k2}22_z) — arctan (;;) + ¢0> )

is given by [07]

(3.27)

field oscillations

with beam radius w(z) = wo\/1+ (2/2r)?, radius of curvature R(z) = z(1 + (2r/2)?), and
distance from the beam axis | = /22 + y2. We want to choose the simulation box volume
such that the envelope at the boundary drops off to < £ x & compared to the peak value &.
We choose the drop-off parameter £ = 10 % as an initial guess. That number might seem rather
large. It is justified, because the terms contributing to the signal amplitude (2.13) are always
field amplitude to the third power and (10 %)3 = 0.1 %.

We know that the largest error from the analytical approximations in the VEP is due to the

restriction to 1-loop order. 2-loop order is suppressed by the fine-structure constant oo ~ 1,/137.
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Therefore, the error of the analytical approximation is on the order of 1 %.
The field oscillations have no importance at this point. Let us assign the label C to the combined
envelope (product of spatial and temporal envelope) and examine the drop-off for different cases

to determine the required volume size.

o Case: t=1L,/(2¢), 2, =0,2z=1,/2

L.=2m\/e2—1 (3.28)
2mwi 5
== N
o Case: t=1L,/(2c), 1 = Ly, /2, 2 = Zmax
|
C(tvl‘Lv'z) = Z eXp 4 Z ) :é'
max max (3.29)
L, = max 2w(z wo
o Case:t=1L4/2,2,=02=0
E2
- H)
T
(3.30)

Li=71 In(¢—1)

Ly = max(L¢, L. /c)

Note that L, = L, = L, , and that for a different propagation direction of the pulse we assign
2wo+/In(€-1) to all axes orthogonal to the propagation direction and %\/5*27—1 to all other
axes.

Unfortunately, the above considerations based on the EM field drop-off are not enough to find
good parameters for the volume size. The k space grid point density does also depend on the

spatial volume size (Aky, . = Lz, , for Ny, . > 1). It is nontrivial to develop a criterion

x y z
for the needed Ak;, .. What we can do is to use the above expressions for L;;, . and see
if £ = 10% leads to a large enough simulation volume or if adjustments have to be made to
reduce numerical artifacts. The system we use as an example consists of two lasers, each with
A =820nm, wy = 820nm, 7 = 41fs, W = 244 J. The propagation takes place in the z-y plane
(¥ = 90°), one in the direction ¢1 = 39.6° and the other towards ¢o = 90°. The polarization

angles are given by 1 = 2 = m/4. We use the GaussianParaxial class at order = 1 and

24



3 Numerical simulation of the vacuum emission process Lars Maiwald

with fieldmode = 'explicit'. The parameters are based on the capabilities of HPLS at ELI-
NP [76, 77]. The system is taken from work by Sundqvist [00], as it is well suited for our
purpose of identifying numerical artifacts. Note that we use float_precision = 'single' for
the simulations; see section 3.3.2. With the volume size from (3.28) to (3.30) and £ = 10 %, we
obtain the background and signal photon number densities displayed in fig. 2. The grid point
density we use throughout section 3.2.1 is high enough that we can be certain in attributing

appearing numerical artifacts to the finite volume. More details are provided in section 3.2.2.
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Figure 2: Background and signal photon number densities for our GaussianParaxial example

system.

Note that N in the color scale labels is the generic placeholder for the total photon number.
Figure 2a shows the background photon number density and fig. 2b the signal photon number
density. The results are always the sum of both orthogonal polarization directions. Concerning
the background photons (fig. 2a), i.e. laser photons, we see two local maxima (“spots”) corre-
sponding to the two pulsed Gaussian beams. The right one belongs to ¢1 = 39.6° and the left
one to wo = 39.6°. The angles of spherical coordinates are identical in position and k space.
Both spots have the same distance from (0,0), as both lasers operate at the same wavelength.
The spots are not point-like, since we are working with Gaussian beams, not plane waves. The
signal generated through the vacuum emission process (fig. 2b) is 19 orders of magnitude smaller
than the background. It resembles the background but is slightly smeared out and shifted.

We do not want to go deep into the physical interpretation of the results. This section focuses on

the numerical aspects. To be able to visualize possible artifacts, we study the same plots again
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but now with a logarithmic color scale; see fig. 3. The logarithmic scale is cut off at 10 orders of
magnitude below the maximum. There is no physical importance of the photon number density
at the lower end of the scale, since the analytical approximations in the VEP lead to an accuracy
on the order of 1%. Nevertheless, it is interesting to study how well the VacEm code solves
(2.13). Our cut-off choice is, of course, arbitrary but strikes a good balance between including

too much detail and not being able to show any numerical artifacts.
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Figure 3: Background and signal photon number densities for our GaussianParaxial example

system using a logarithmic color scale.

The background photon number density in fig. 3a looks reasonable. Due to the logarithmic scale
the spots grown in size. It is interesting to note that the visible fade towards small energies is
due to the integration along the k, axis. It is similar to projecting a part of a sphere (photons
of the same energy) onto a plane (z-y plane).

Figure 3b clearly shows false results. The vacuum emission process has to conserve not only
energy (2.16) but also momentum. In the lower left quadrant of the plot, we see signal photons
generated in the backwards direction and violating conservation of momentum. These effects
are indeed later identified as numerical artifacts. They vanish using a larger time interval. One
could argue that they are suppressed by roughly 8 orders of magnitude and therefore can be
neglected. Nevertheless, we see them as important. They indicate numerical artifacts which
makes the overall result questionable, and they are partly on the same order of magnitude as
the possibly correct 3wg signal in the upper right of the plot.

Talking about the photon energies, visualization using polar plots is useful. As mentioned in

section 3.1.3 the VacEm code provides the field_to_spherical mapping utility. Polar plots
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are easily generated with vacem_plot and shown in fig. 4.
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Figure 4: Background and signal photon number densities for our GaussianParaxial example

system visualized using polar coordinates.

Figure 4 beautifully shows the usefulness of polar plots visualizing the photon number densities.
As expected, the background photons (fig. 4a) are concentrated at wy, the angular frequency
of the lasers. We use the label wqg, as the two lasers angular frequencies wi, wo are equal
(wop = w1 = we). The angular frequency wy should not be confused with the beam waist wy.
(The radial axis actually describes the wave number k, but we use w = ck as labels.) Comparing
fig. 3 and 4 we see major differences. There are two things that could be responsible. First, the
field_to_spherical mapping can cause unwanted effects. The constructed sphere encapsulates
the whole input box and has therefore a larger volume, which in turn requires extrapolation. The
volume difference is especially strong if one or two edges of the box are significantly smaller than
the largest one. In the case at hand, the mapping should not cause relevant artifacts, because
the k space box is a cube. We achieved this by using the same grid point density along each
position space axis; see section 3.2.2. Second, the data for fig. 3 is integrated over k., whereas the
data for fig. 4 is integrated over ¢. Both can be useful depending on the application/experiment.
Of course, the energy spectrum in fig. 4a does not correctly describe the example system. The
photon number density at high energies is not physical but has to be a numerical artifact.
Comparing it to fig. 3a, we know the effect has to stem from the k, component. Together with
the different integration axes, this explains why the effect only becomes visible in fig. 4a. The

differences from fig. 3b to fig. 4b are also caused by the different integration axis. The artifacts
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at 3wg in the backwards direction are still visible even though highly suppressed. The ones at
wp have not changed.

Besides the input data cut-off loss we studied at the beginning of this section 3.2.1, there are two
possible causes for the numerical artifacts: the FFT and the time integration. All artifacts of
the background are caused by the FFT. The background photon number density is calculated by
(3.24) based on the complex spectral amplitudes (3.23). Numerical artifacts appear, because the
complex spectral amplitudes are proportional to the Fourier transform of the E field. The signal
numerical artifacts enter when Fourier transforming @, R (3.12). Both are separate. There is
no transfer from the background (input) to the signal, since we are working with fieldmode
= 'explicit'. Using fieldmode = 'solver', the artifacts from the Fourier transform of the

input E fields have direct impact on the signal; see fig. 5.
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Figure 5: Background and signal photon number densities for our GaussianParaxial example

system using fieldmode = 'solver'.

We revert to using fieldmode = 'explicit' for the remainder of section 3.2. Figure 5 shows
how numerical artifacts appearing in the background also appear in the signal when using
fieldmode = 'explicit'. As the overarching goal of this research area is a discernible signal
on top of the background, we are interested in reducing artifacts in both background and signal.
This brings us back to the question of why the FF'T generates the smearing out artifact in fig. 4a.
Depending on the function that is Fourier transformed in one dimension, a certain axis length is
required to suppress the artifacts. We do not perform a quantitative analysis of the topic here.

Just note that the different envelope function in the propagation direction compared to the one
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in the orthogonal direction require different axis lengths. The lengths (3.28) and (3.29), derived
solely based on the E field drop-off, are large enough in the propagation direction but not in
the orthogonal direction. Choosing all spatial dimensions to have the same length, the longest
length from (3.28) and (3.29), solves this problem. (This is not the only possible choice. An
increase of L. to a value close to L, , is needed. Choosing L, = L, , is just for convenience.)
In fig. 6, we can see that the k, component actually was the problem and that increasing L,
resolves it. In fig. 7, we see the background and signal photon number densities from fig. 4 again,

now with artifact-free background.
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Figure 6: Background photon number densities for our GaussianParaxial example system

comparing the influence of L.
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Figure 7: Background and signal photon number densities for our GaussianParaxial example

system using L, = L, , = (3.28).

Even though fig. 7 features an artifact-free background (fig. 7a), the signal remains unchanged
(fig. 7b). There is still the (weak) false signal in the background direction. A priori, it is
impossible to tell if the artifacts are caused by the finite temporal length or spatial volume.
Nevertheless, we focus now on the temporal aspect. We do this, because the spatial volume is
already approaching the limit of our computational resources. The simulation for the results
visualized in fig. 7 had a peak memory usage of roughly 70 GB. Increasing the spatial axis
lengths by only a factor of 1.6 would be enough to exceed the available memory of 256 GB.

The time integration only affects the signal. Its computational cost is not memory usage but
only computation time. We simulate the above system using a two and three times larger time

interval L;. The obtained signal photon number density is visualized in fig. 8.
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Figure 8: Signal photon number densities for our GaussianParaxial example system for two

and three times larger time interval L;.

Increasing the time interval by a factor of 2 (fig. 8a) eliminates the 3wq signal in the backwards
direction. The probable explanation lies in the oscillating integrand. Integrating over a finite
interval can lead to terms not canceling each other that would do so when integrating from —oo
to co. A further increase of the time interval is not justified; see fig. 8b. The false wqg signal in
the backwards direction is reasonably suppressed but still existent. It is assumed to vanish for
an even larger simulation spacetime volume. The remaining 3wy signal in the forward direction
shows the phenomenon of photon merging.

Now that we found an adequate parameter set (L; = 2 x (3.30), Ly, . = (3.28)), we take a step
back and visualize the temporal and spatial finite length/volume numerical artifacts separately.
We show the results obtained using only a half or a fourth of the time interval L; = (3.30) in
fig. 9. Similarly, we do a simulation using only a fourth of the spatial axis lengths L , . = (3.28)

and plot the background and signal photon number densities in fig. 10.
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Figure 9: Signal photon number densities for our GaussianParaxial example system for a half

and a fourth of the time interval L;.

Figure 9a shows the false 3wy signal stronger than before. Using an even shorter time interval

(fig. 9b) leads to a characteristic periodic pattern along the symmetry axis between the two laser

spots.
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Figure 10: Background and signal photon number densities for our GaussianParaxial example

system for a fourth of the spatial axis lengths L, ..

We already know the effect of an insufficiently large spatial volume from fig. 4 to 6. Figure 10

confirms that it leads to a false identification of the wave vector. The photon number density gets
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smeared out along the Cartesian k space axes (fig. 10a), which leads to false signals (fig. 10b).
Remember that using fieldmode = 'solver' would mean that the cross-type artifact from
fig. 10a also appears in fig. 10b.

Figures 9 and 10 show that temporal and spatial numerical artifacts caused by insufficient
length/volume are nicely distinguishable. This helps us when using ComplexEInput, where we
can not easily derive a heuristic for the needed simulation spacetime volume.

We have found that with the current computational resources, it is not possible to suppress
numerical artifacts to machine precision. It is also not necessary to do so. We have identified
different types of numerical artifacts for the VacEm code, and we have shown how it is possible

to suppress them in order to obtain physically significant results.

3.2.2 Finite grid point density

In the previous section 3.2.1, we have analyzed the volume-dependent numerical artifacts given a
sufficient grid point density. Now we provide the details on how to choose the grid point density
to avoid related numerical artifacts without incurring an unreasonably high computational cost.
Similar to the volume, the ideal grid point density would be infinitely high. In practice, the grid
point density has to be large enough to sufficiently resolves the involved frequencies. For pulsed
Gaussian beams this means we need to resolve wy 2 = 2me/ A 2 for the background (input) and
(2.16) for the signal. We continue using the example system from section 3.2.1. Therefore, we
need to resolve 3wy. Note that we mean this both temporally and spatially, 7.e. resolve 3wyg
along the t axis and 3kg = 3wg/c along the z, y, z axes. It should be possible to obtain reasonable
results with a lower grid point density in the z direction due to the lasers propagating in the z-y
plane. Nevertheless, we use the same grid point density for all spatial axes, because this leads to
a k space with equal axis lengths. As mentioned in section 3.2.1, this is the desired case when
using field_to_spherical to evaluate the results in spherical coordinates.

How many grid points are required to resolve a certain frequency? To answer this question, we
make use of the Nyquist-Shannon sampling theorem. It provides a criterion to avoid aliasing,

i.e. overlapping of different frequency components.

Theorem. If a function f(t) contains no frequencies higher than W cps, it is completely deter-

mined by giving its ordinates at a series of points spaced 1/(2W) seconds apart. [78]

The unit cps is “cycles per second” and is equivalent to Hz. In other words the theorem states

that we need at least two points per period/wavelength.
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We compare the two cases of using 2.1 or 2.5 points per period/wavelength. For the simulation
spacetime volume, we use L; = 2 x (3.30), Ly, . = (3.28) from section 3.2.1. The previous
section 3.2.1 used 3.025 points per period/wavelength. The results obtained for 2.1 and 2.5

points per period/wavelength at 3w are visualized in fig. 11.

(a) Signal, 2.1 points per period/wavelength at 3wy (b) Signal, 2.5 points per period/wavelength at 3wg

Figure 11: Signal photon number densities for our GaussianParaxial example system with

different grid point densities.

When studying fig. 11, it is important to realize that the plotting routine vacem_plot defaults
to cropping the k space at 1.2 x 3kg. Nevertheless, even for higher wave numbers no numerical
artifacts appear in fig. 11b. Hence, there is no significant advantage in using higher grid point
densities than fig. 11b; ¢f. fig. 8a. Using 2.1 points per period/wavelength at 3wq also fulfills the
Nyquist-Shannon sampling theorem but is insufficient. Numerical artifacts appear in the lower
left quadrant of fig. 11a. This is presumably caused by the fact that the 3wq signal is smeared
out, since already the pulsed Gaussian beams background is smeared around wgy. Therefore, the
absolute highest frequency that needs to be resolved is slightly above 3wg, making 2.1 points at
3wp inadequate.

One might be only interested in the wq signal. Unfortunately, it is not enough for this to resolve

wo and no higher frequencies. We have tested 3 points per period/wavelength at wy in fig. 12.
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Figure 12: Background and signal photon number densities for our GaussianParaxial example

system resolving only wy.

We note that, as expected, 3wg is no longer contained in the k space. The background shown in
fig. 12a is sufficiently resolved, since it is only comprised of frequencies close to wg. It resembles
fig. 7a. In contrast, the signal (fig. 12b) is dominated by numerical artifacts and completely
unphysical. Neither the wg signal nor higher frequency signals are correct.

In the context of resolution, the question of the convergence of the time integration also arises.
The time integration is done using the simple rectangle rule; see listing 1. Nevertheless, no
convergence problems have been observed, not even with the low-resolution test in fig. 12.

We recommend resolving up to 3w using at least 2.5 points per period/wavelength for all axes.

3.3 Improvements

In section 3.2, we have studied the only limitation of the VacEm code in solving the zero-to-one
signal photon transition amplitude (2.13) - the numerical cost. This naturally defines the focus
of possible improvements. The numerical cost can be split into computation time and memory
usage. We managed to achieve improvements in both areas. The computation time can be
drastically reduced using multi-node parallelism. The memory usage can theoretically be halved
by working with single-precision floats. The latter also has the additional effect of reducing the

computation time.
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3.3.1 Multi-node parallelism

The VacEm code developed by Blinne makes use of parallel computation on one node. We
implemented multi-node parallelism on top of the original VacEm code in order to exceed the
computation power of one node and thus reduce the computation time. We identified two
possibilities for multi-node parallelism in listing 1: the FFT and the time integration. The former
is already parallelized on one node. It is unclear if multi-node parallelism of the FFT would
improve performance. The time integration using the rectangle rule can be straightforwardly
split onto multiple nodes. This is the core idea of our multi-node implementation. It is done
using MPI [79] through mpidpy [80].

Let n be the number of nodes. We split the time interval into n parts of equal size. The time
loop from listing 1 gets performed on each node separately for the assigned part of the time
interval. After the loop we add the accumulators (s1_n) using a parallel scheme. The simulation
is finished with lines 18 to 20 from listing 1.

The parallel scheme is a choice and not a necessity of this multi-node parallelization. The
simplest alternative would be to add the results from each node to the result of the head node.
This would make the data transfers a serial process. As the data size being transferred can be
tens of GB for each node, this takes a significant amount of time. The parallel scheme works by
transferring data from every second node to its “neighbor”. This is done level by level until all
data arrives at the head node. The data transfer is parallel, increasing speed and stability. The
disadvantage of the parallel scheme is the restriction of the number of nodes n to a power of 2.
The Draco cluster has a user limit of 10 nodes. This leaves us with maximum of n = 8 nodes.
We return to the example system from fig. 11b, i.e. Ly = 2 x (3.30), Ly, . = (3.28) and 2.5
points per period/wavelength at 3wg. The performance data of our multi-node implementation

is shown in tab. 4.

Table 4: Performance of multi-node parallelism for our GaussianParaxial example system

(section 3.2.1) using double-precision floats.

Nodes | Speedup | Effectiveness | Time in s | Memory in GB
1 1.00 100 % 5063 57
2 1.95 98 % 2590 75
4 3.17 79% 1598 75
8 6.65 83 % 761 75
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We define the speedup as speedup,, = t1 /t,, where t,, is the time needed for the simulation with
n nodes. The effectiveness is effectiveness,, = speedup,,/n. Table 4 shows that using 2 nodes
leads to a speedup of 1.95, i.e. the simulation finished in nearly half of the original time. As
mentioned earlier, halving the simulation time is theoretically the best case when using 2 nodes.
The effectiveness is at 98 %. For higher node numbers, the effectiveness decreases to roughly
80 %. This decrease in effectiveness for higher node numbers is the expected behavior for any
multi-node implementation. It is caused by the synchronization and data transfer between the
nodes. Interestingly, the memory overhead of our multi-node implementation is independent of
the number of nodes - at least for the range tested. The size of the overhead is noticeable but
worth the achieved speedup. When using our multi-node implementation, we have to correct the
peak memory usage (3.26) by replacing the prefactor 4/3 ~ 1.3 with roughly 1.8. The memory
in tab. 4 is allocated on each node.

Note that the performance slightly varies from run to run. This is due to nodes starting late
and therefore influencing the performance statistics. Furthermore, different simulation param-
eters could lead to different performance results. Higher spatial grid sizes should increase the
effectiveness of using more nodes, since they increase the required computation time for one
time step. Table 4 shows that our multi-node implementation does work and using up to 8
nodes is useful. This may be seen as a rule of thumb. Due to the numerical cost and storage

requirements, a rigorous performance study is not worthwhile.

3.3.2 Single-precision floating-point operations

After we have reduced the required simulation time in the previous section 3.3.1, we now aim
to reduce the memory usage. It is the greatest bottleneck of the VacEm code. Of course,
the code already provides the low_memory_mode option, but it does decrease the performance.
According to the documentation by Blinne, it does reduce memory usage by 30 % while increasing
computation time by 30 %. We do not think this is a good trade-off and use low_memory_mode =
False throughout this work. To reduce memory usage, we opt for a very simple approach: using
single-precision floats instead of Python’s default double-precision floats. Naturally, this means
loosing precision, but this loss can be neglected as shown later in this section. A single-precision
float requires 32 bit of memory, this is half of the 64 bit required by a double-precision float.
Theoretically, this allows us to half the total memory usage. In addition to the reduced memory
usage, we also achieve a performance increase. CPU architectures are generally optimized for

single-precision float calculations.
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In practice, using single-precision floats in Python is not always trivial. NumPy nicely supports
different data types. The packages NumExpr [21] and postpic used by the VacEm code have
proven problematic to adapt, as they default to promoting floats to double precision. Our
solution is to use the single-precision float data type for all three-dimensional arrays. These
arrays make up the largest part of the allocated memory. A lot of manual code changes have

been required to make this possible. The results can be seen in tab. 5.

Table 5: Performance of multi-node parallelism tested for our GaussianParaxial example sys-

tem (section 3.2.1) using single-precision floats.

Nodes | Speedup | Effectiveness | Time in s | Memory in GB
1 1.00 100 % 3631 32
2 1.96 98 % 1857 40
4 3.96 99 % 916 40
8 7.25 91 % 501 40

Similar to tab. 4, we find the same trend in the effectiveness of the results in tab. 5. The absolute
values are higher than in tab. 4. This is caused by the smaller field data sizes and therefore
lower overhead. We provide tab. 6 to compare the time and memory requirements using single

and double-precision floats.

Table 6: Comparing single to double-precision float simulations for our GaussianParaxial

example system (section 3.2.1)

Nodes | Time ratio | Memory ratio
1 0.72 0.56
2 0.72 0.53
4 0.57 0.53
8 0.66 0.53

Table 6 shows that for one node, we save 44 % memory and 28 % simulation time using single
precision. For higher numbers of nodes these values stay roughly the same.
Comparing the one-node results for single- and double-precision floats, we find a mean relative

error of 7.64 x 1072 over the whole array s1 that stores the signal amplitudes. This error can
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be neglected compared to the analytical and artifact error. We therefore recommend using

float_precision = single in the configuration file.
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4 Flat top scattering

The ComplexEInput class makes the VacEm code an especially powerful tool in the study of
vacuum emission amplitudes. It allows us to describe arbitrary beam profiles from experiments.
The strength of numerical simulations is the ability to achieve results in regimes that are ana-
lytically inaccessible or require heavy approximations. We want to test these capabilities. After
we have extensively analyzed the numerical artifacts and cost of the VacEm code in section 3,
we now proceed to the scattering of flat top pulses.

By flat top pulse we refer to an EM wave with a Gaussian temporal envelope and a spatial enve-
lope characterized by a flat top profile (Heaviside step function) in the far field. Our interest in
using flat top pulses instead of pulsed Gaussian beams is motivated by experiment. The finite

lenses in the optical path of experimental setups cause a flat-top-like profile of the laser pulses.

4.1 Flat tops and scattering setup

The setup of interest is inspired by Karbstein and Mosman 2020 [17]. They demonstrated
how tailored laser beams achieve accessible quantum vacuum signatures. Their key idea was
to circumvent the problem that the largest contribution to the signal stems from quasi-elastic
scattering and is inaccessible due to the dominating background. This is done with a field-free
region around the optical axis in the far field of one laser pulse. To visualize the idea, we look

at the laser photon number density over the angle ¢ in fig. 13.
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Figure 13: Background photon number density over angle ¢ for our flat top scattering setup

with wpe =6 x 1077 m.

We see the field-free hole at ¢ = 90° in fig. 13a. Furthermore, the flat-top profile of the two pulses
is visible, especially for the one centered around ¢ = 270°. The system that fig. 13 belongs to is
given by two flat top pulses, one with a hole and propagating in +y direction (¢ = 90°, ¢ = 90°),
one without a hole and propagating in —y direction (¢ = 90°, ¢ = 270°). Both pulses have
A = 800nm, 7 = 34fs and are polarized in z direction. They are initially constructed with a
pulse energy of W = 25J each. By cutting out the hole, one beam loses a part of those 25J.
We define the hole size by 70 = 70 mm and rpeam = 140 mm, which are the respective radii at
30cm from the focus. The flat top with hole has a beam waist of wp 1 ~ 2.18 x 107 %m. The
second pulse has w2 = 6 X 10~ m in fig. 13, but we vary this parameter throughout section 4.
Similarly, we work with different simulation spacetime volumes. In the above case we used
Ly =71, L;, .= Tct. Larger axis lengths would lead to an unreasonable resource demand. The
grid point density stays fixed at 2.5 points per period/wavelength at 3wy, where wq is now the
angular frequency of the 800 nm laser pulses. The additional configuration parameters are low_
memory_mode = False, float_precision = 'single' and fieldmode = 'solver'. The flat
top pulses have been generated using code written by Fabian Schiitze, PhD student of Karbstein.
It was Karbstein who derived their analytical focus profile in yet unpublished work.

Figure 13b shows the major numerical challenge that we face in this section. We can not exactly
resolve flat top pulses. In fact, we would need an infinitely large simulation spacetime volume
and grid point density. The former is because we need infinitely many frequencies to describe

a Heaviside step function and the latter because the frequencies get infinitely large. Due to the
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limit in the available computational resources, we always encounter numerical artifacts when
working with flat top pulses. And unlike section 3.2, the artifacts already exist in the input
data. They manifest themselves most prominently in the shoulder-like structures visible in
fig. 13b. They are suppressed by roughly 5 orders of magnitude. The hole depth is only 2 orders
of magnitude. This gives us an indication of the error that propagates through to the signal, but
keep in mind that the signal is generated from the focus region interaction and fig. 13b shows
the far field. We plot the focus profiles for our flat top scattering setup with wp2 = 6 x 107" m
in fig. 14.
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Figure 14: Logarithmic focus profiles for our flat top scattering setup with wpa = 6 x 10~7 m.

The focus profile (fig. 14) encodes the information of the flat top shape (fig. 13) in a central
peak accompanied by infinitely many side peaks. Comparing fig. 14a and 14b, we see that due
to the finite volume, we lose significantly more information about the flat top with hole than
the one without a hole.

When scattering the flat top pulses, we are interested in the signal generated in the forward
direction (4y direction) of the flat top with hole (laser 1). Depending on the beam waist w2
of the flat top without hole (laser 2) more or less of the side peaks of laser 1 (fig. 14b) get
“illuminated”, i.e. are a relevant part of the interaction. We mainly focus on the qualitative
signal profile. The idea is that by increasing wp 2, and thus illuminating more side peaks of the
flat top with hole, the forward signal profile shape converges towards the background profile
shape. It is possible to identify two limiting signal profiles and study the transition between
them; see section 4.2. The signal profiles of setups similar to ours are of experimental relevance,

as there is a need to optimize the signal amplitude in the background hole; cf. [32].
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4.2 Phase transition of signal profiles

In this section, we vary the beam waist wg2 of the flat top without hole and study the signal
of the flat top scattering in forward direction. As mentioned above, we expect two limiting
cases for the signal profile shape. For wg 2 > wo,1, we expect the signal profile shape in forward
direction to resemble the background profile shape, since the side peaks of the flat top with hole
are sufficiently illuminated. This is because for wgo — oo, the flat top without hole becomes
fully homogeneous in the transversal directions, hence no momentum transfer can occur, and
the signal therefore has the same transversal momentum and shape as the background. For
wp,2 <K wp,1 only the central peak gets illuminated leading to a single-peak signal. In the picture
of a scattering process: Photons change their propagation direction through scattering. We
determine that the transition between these states (for the setup defined in section 4.1) occurs
for wo o € [10~"m, 105 m]; cf. wp,1 ~ 2.18 x 107%m. We vary the beam waist wp 2 in this
interval with steps of 107" m. To visualize the transition, we show three selected signal photon

number densities over ¢ in fig. 15.
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Figure 15: Signal photon number densities over angle ¢ for our flat top scattering setup for

different beam waists wp 2.

Figure 15 shows both the forward direction signal centered around ¢ = 90° and the backward
direction signal centered around ¢ = 270°, but we are only interested in the former case. In
fig. 15a, we plot the single-peak case, which qualitatively resembles the expected lower limit-
ing case wp2 < wp,1. Incidentally, numerical artifacts appear for even smaller beam waists.
Figure 15c features two peaks in the forward signal. Hence, we are qualitatively approaching
the expected upper limiting case wo 2 > wo 1; cf. fig. 13a. A transition state is shown in fig. 15b.
Three peaks become visible, but the central peak still dominates.

The resulting picture is reminiscent to that of a phase transition as a function of the control pa-
rameter wy 2 and the peak position serving as an order parameter. There is one phase where the
central peak dominates and another one where the outer peaks dominate. The phase transition

is shown in fig. 16.
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Figure 16: Phase transition between dominating inner and outer peaks of the forward signal for

our flat top scattering setup.

We observe that the phase transition is a first order phase transition. We see the discontinuous
transition, characteristic for a first order phase transition, in fig. 16a. The angle @peax is the
azimuthal angle at which the highest peak is centered. Therefore, ppeax = 90° characterizes
the phase where the central peak dominates and @peax ~ 94° the phase where the outer peaks
dominate. There are two reasons why ¢peak is not constant for the latter phase. First, the central
peak pulls the outer peaks inwards while growing, i.e. for decreasing wp 2. Second, the flat top
without hole also has side peaks in the focus region (although they are closely packed), which
causes fluctuations in the interaction when varying wpo. Figure 16b tracks the peak heights.
From the close graphs, we see that the position of the phase transition is highly susceptible to
numerical artifacts. Slight changes in the graphs can significantly alter the position of the phase
transition. For this reason, we settle on determining the position of the phase transition from
fig. 16a. We find wo2pt7 = (6.5 £ 0.5) x 1077 m, where “pt” stands for “phase transition” and
“7” indicates Ly = 77, Ly, . = TcT.

Unfortunately, this result is strongly affected by numerical artifacts. Their sources are known

from section 3.2 and fig. 14, and we see them manifest in fig. 13b and fig. 17.
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Figure 17: Background and signal total photon numbers over beam waist wg 2 for our flat top

scattering setup.

In fig. 17, we plot the total photon numbers of the background (N') and the signal (V). For the

background, we can analytically calculate the expected total photon number as

e i 2
~ [1 + (1 — e )} W [1 + (1 — (Ydozim) )} x 25
N = beany = =1.762 x 102, (4.1)

he
huwo 8x10—7m

We see that N is independent of wgo as it should be, and we mark the constant value with
black in fig. 17a. The simulation results (blue) deviate for small beam waist up to 35 % from the
expected constant. It is caused by the fixed grid point density, which is unable to resolve the
increasing frequencies that emerge when decreasing wg 2. This could also explain the unexpect-
edly high number of signal photons for wp 2 = 107" m in fig. 17b. Fortunately, these artifacts are
just a rescaling of the energy and should not have a qualitative impact on the phase transition.
We see the finite volume as the main problem when studying the phase transition. The position
of the phase transition is highly susceptible to small variations in the signal, and we also desire
to achieve quantitatively accurate results for future studies. Section 4.3 therefore deals with
extrapolating towards infinite simulation spacetime volume.

Concerning fig. 17b, note that the maximum signal is not achieved at wgs = 5 X 10~"m (this is

just a local maximum) but lies at higher beam waist.
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4.3 Extrapolation towards infinite simulation spacetime volume

Since numerical discretization artifacts can currently not be fully suppressed by pure compu-
tational power, let us study the approach to the continuum in order to estimate the errors
and to extrapolate to the continuum. We focus on extrapolating the results of our flat top
scattering setup towards infinite simulation spacetime volume. This means infinite k space
resolution; 7.e. a continuous k space. To acquire the data for the extrapolation, we repeat
the simulation from section 4.2 for different spacetime volumes L; = ¢ X 7, Ly, . = ¢ X cT,
where ( € {1, 1.5, 2, 3, 4, 5, 6, 7}. We keep the grid point density fixed at 2.5 points per wave-
length at 3wp; i.e. no continuous position space. We plot the results over (7' e.g. fig. 18 for

wp o =6 x 107" m.
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Figure 18: Variation of the simulation spacetime volume for our flat top scattering setup with

w2 =6 x 107" m.
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We have chosen to plot over the inverse of the volume parameter (, because it simplifies the
asymptotic behavior of the results. When fitting the results, the assumption is that the finite
volume numerical artifacts can be expanded like a+b( ™t +c(™2+ O (¢3). We fit linear through
the first three data points and quadratic through the first four data points (linear or quadratic
with respect to (71). This is the smallest number of data points that gives us an error for the
fitting parameters. A priori, it is unclear if the first three data points have a large enough ¢
to justify the linear fit or if the results are still in a regime that would require a higher order
polynomial (analogously for the quadratic fit). For the fits to reasonably describe the asymptotic
behavior ({ — 00), we require that a7, aj, aq are all sufficiently close. a7 is the result at ( =7,
ay is the result for linear extrapolation, and a is the result for quadratic extrapolation. Table 7

shows the comparison of the parameter a for the example beam waist in fig. 18.

Table 7: Comparison of parameter a for an assessment of fit suitability for extrapolation.

v ¥ (8),0-0 [(#),0-0
az 1.6289 x 1020 6.6880 0.132 0.130
ay | (1.6577 £0.0072) x 10%° | 6.4750 & 0.0043 0.007 £ 0.018 —0.027 4 0.029
aq | (1.6651 +0.0222) x 10% | 6.6919 + 0.1385 0.018 4 0.062 0.044 + 0.061

The error values belong to a 95 % confidence interval (£20). We see in tab. 7 that for the total
photon numbers N, N our loosely defined closeness requirement is satisfactorily fulfilled. For
the peak heights, the requirement is clearly violated. We even encounter a negative density,
which, of course, is a numerical artifact of the extrapolation. This indicates that the finite
volume artifacts have a significantly smaller impact on the total photon numbers than on the
peak heights.

To get the full picture, we show the extrapolated versions of fig. 16 and 17 in fig. 19.
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Figure 19: Linear and quadratic extrapolation towards infinite simulation spacetime volume for

our flat top scattering setup.
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The extrapolated plots for the background and signal total photon numbers (fig. 19a to 19d)
look similar to fig. 17. This again supports our claim that the remaining artifacts at ( = 7 in
the total photon numbers are mainly caused by the finite grid point density and not the finite
volume. We also see that the linear fit performs more precise than the quadratic fit. Hence,
we conclude that the data points are in fact in the linear regime. The impact of finite volume
artifacts is sufficiently small, such that we can successfully extrapolate them away.

In fig. 19e and 19f this extrapolation fails. We have large error bars, negative densities and
nonsensical graphs in contradiction to the expected qualitative behavior from fig. 16b. Appar-
ently, the data points are neither in the linear nor in the quadratic regime. The finite volume
numerical artifacts are not sufficiently suppressed for the used data points. Multiple data points
for ( > 7 would be required for the above method to work. The extrapolated peak heights
do not provide insight into the phase transition. Still there is an alternative to determine the
position of the phase transition at infinite simulation spacetime volume. We can determine the

position for different ¢ from plots like fig. 16a. From such a procedure, we obtain fig. 20.

x1077 Table 8: Extrapolation results of the phase
CL1+b1C71

7 {\ aq + bq i CqC_Q transition position.

I wo,2,pt

ar | (0.65+0.05) x 107%m

! ap | (1.14£0.11) x 107 %m
{ aq | (1.5740.13) x 107%m

wWo,2,pt
t
—

014 016 018 020 022 024
471
Figure 20: Position of the phase transition over
the inverse simulation spacetime volume pa-

rameter (! for our flat top scattering setup.

Fitting the data analogous to fig. 18, we find the linear (a;) and quadratic (aq) extrapolation
results in tab. 8. Again, the values for az, ai, aq are not as close as desired, but close enough to
give a reasonable estimate of the phase transition position wg 2 p¢. Judging from fig. 20, the data

points are assumed to be in the quadratic regime. Therefore, we expect the phase transition
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for infinite simulation spacetime volume to happen at wgapt ~ aq = (1.57 £ 0.13) x 1075 m.
Remember that this result is still affected by finite grid point density numerical artifacts.
Section 4.3 has shown that we are working at the frontier of the current computational resources
and algorithms. Eliminating numerical artifacts through extrapolation does work but only when
they are already sufficiently small. Due to the computational limitations, it has to be seen on a
case to case basis if this regime can be entered.

We have successfully explored the frontier of numerical simulations of the vacuum emission
process. The VacEm code plus the improvements made in section 3.3 enable the study of
previously inaccessible regimes; e.g. scattering of flat top pulses beyond typical approximations

used in analytical estimates.
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5 Conclusion

In this work, we studied the VacEm code by Blinne, showed its capabilities and limitations,
made improvements, and employed it to simulate previously unexplored regimes of the vacuum
emission process. The core of this process (2.14) is the signal amplitude (2.13). Solving it poses
a challenge whose difficulty depends on the EM background fields (lasers). With the goal of
calculating the signal amplitude for realistic experimental setups, the need for numerical simu-
lations arises.

After introducing the necessary theoretical background in section 2, we studied the inner work-
ings of the VacEm code in detail; see section 3. This includes the reformulation of the signal
amplitude for efficient computation in section 3.1.1, the simulation algorithm and its memory
usage in section 3.1.2, and the class structure and workflow in section 3.1.3. These sections
may be seen as a technical handbook to using the VacEm code. Analyzing the memory usage
showed that extensive memory requirements are the main limitation of the VacEm code (tab. 1).
Therefore, it is of great importance to choose simulation parameters that achieve accurate re-
sults while minimizing memory usage. This was the topic of section 3.2. We showed finite
volume and finite grid point density numerical artifacts. For pulsed Gaussian beams we derived
an optimal parameter set. Unfortunately, the simulation spacetime volume (3.28) to (3.30) is
inversely proportional to the wavelength. The simulations in this work for 800 nm lasers are
already close to the resource limit. Code improvements are desired, especially with regard to
X-ray free electron lasers (XFEL) that show great promise [25, 27, 83, 84]. We implemented two
improvements to the VackEm code in section 3.3. They tackle both memory usage and compu-
tation time. First, multi-node parallelism was implemented through MPI and allows to divide
the computation time by the number of nodes; see section 3.3.1. Second, we added the option of
single-precision float computations, which saves roughly half the memory and a quarter of the
computation time. The loss in precision is negligible compared to the analytical and artifact
error. The performance of our improvements can be seen in tab. 4 and 5.

Thanks to the improvements, we were able to leave behind the regime of Gaussian beams and
show a proof of concept for numerical simulations of flat top scattering in section 4. Flat tops
pose a great challenge due to the infinite frequencies involved. Nevertheless, we were able to
find a phase transition between two distinct signal profiles (fig. 16a). This feature was assumed
to be there but not yet analyzed in detail when scattering a flat top with hole and one without

hole. To manage the inevitably strong artifacts when simulating flat top pulses, we used ex-
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trapolation towards infinite simulation spacetime volume (infinite k space resolution). This was
only partly successful (fig. 19¢ and 19f), since we are working at the frontier of computational
capabilities. Also, we did only resolve the finite volume artifacts. The finite grid point density
artifacts remain. It should be possible to deal with those in a similar fashion.

We recommend an extrapolation towards infinite grid point density for a future study. There is
great potential in the VacEm code for guiding experiments in the search of non-linear signatures
of the QED quantum vacuum. Our code improvements are only a small step in optimizing the
simulation. The understanding gained in this work provides a strong foundation for further per-
formance enhancements. We see possibilities to streamline the algorithm to require less memory
and operations. As the VacEm code is only limited by computational cost, this would broaden
the set of systems to simulate and insight to gain. Furthermore, it would allow for more quan-
titatively accurate result, a quality strongly desired when comparing theory and experiment.
Already in its current state, the Vackm code can be deployed to countless systems elusive to
analytical study. With the growing accessibility of the QED vacuum in experiment, the VacEm

code could proof to be a valuable tool for signal predictions.
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6 Appendix

A Abbreviations

QFT
QED
VEP

ED
HPC
EOM

LCFA
DOF
FFT
{FFT

XFEL

quantum field theory

quantum electrodynamics

vacuum emission picture
electrodynamics

high-performance computing
equations of motion

locally constant field approximation
degree(s) of freedom

fast Fourier transform

inverse fast Fourier transform

X-ray free electron lasers
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