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Paarproduktion auf der Weltlinie

Zusammenfassung

Die Paarproduktion ist als nichtlineares, nichtperturbatives Phänomen der Quan-

tenfeldtheorie sowohl von theoretischem als auch von experimentellem Interesse.

Während im Aufbau befindliche Experimente die Realisierung von e
+
e
− Paarbil-

dung in starken elektrischen Feldern in Aussicht stellen, ist die Anwendung der

vorhandenen theoretischen Modelle auf Spezialfälle beschränkt. In dieser Arbeit

verwenden wir den neuartigen Zugang der Weltliniennumerik, der durch die Kom-

bination von Methoden der String-Theorie mit Monte Carlo-Techniken entstanden

ist. Dieser Ansatz führt zu einem numerischen Algorithmus zur Berechnung von

Paarproduktionsraten in skalarer QED für beliebige Hintergrundfelder. Wir testen

den Algorithmus anhand des klassischen Sauter-Potentials, für das wir zum ersten

Mal die lokale Produktionsrate berechnen. Des Weiteren untersuchen wir die Pro-

duktionsrate für die Superposition eines konstanten E-Feldes mit einem räumlich

oszillierenden Feld in Abhängigkeit von der Oszillationsfrequenz. Unsere Resul-

tate zeigen, dass die Näherung der lokalen Ableitungsentwicklung bereits für kleine

Frequenzen scheitert, dass aber stark fluktuierende Felder durch Ableitungsen-

twicklung für das gemittelte Feld behandelt werden können. Dadurch erhalten wir

mit dem Weltlinienbild ein umfassendes Verständnis für die nichtlokale Natur der

Paarproduktion.

Pair Production on the Worldline

Abstract

As a nonlinear and nonperturbative phenomenon of quantum field theory, pair

production is both of theoretical and experimental interest. While the experimen-

tal realization of e
+
e
− pair production in strong electric fields is in prospect, the

application of existing theoretical approaches is limited to special cases. In this

thesis we make use of the recently developed worldline numerics, which combines

string-inspired methods with Monte-Carlo techniques. This approach yields a nu-

merical algorithm to compute pair-production rates in scalar QED for arbitrary

background fields. We test the algorithm with the classic Sauter potential, for

which we compute the local production rate for the first time. Furthermore we

study the production rate for a superposition of a constant E field and a spatially

oscillating field in dependence on the oscillation frequency. Our results reveal, that

the approximation by a local derivative expansion fails already for small frequen-

cies, whereas for strongly fluctuating fields a derivative expansion of the averaged

field yields proper results. Thereby we obtain a deep understanding of the non-

local nature of pair production in the worldline picture.
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Chapter 1

Introduction

Pair production is one of the most striking non-linear phenomena in quan-

tum field theory. It was first proposed for electron-positron pairs in strong

temporally and spatially constant electric fields [1, 2, 3]. Today it is often re-

ferred to as the Schwinger [4] mechanism. As a nonperturbative mechanism,

pair production is of great theoretical interest. From a phenomenological

point of view, it corresponds to probing the theory in the domain of strong

fields. Consequently we encounter pair production in many topics of con-

temporary physics, for instance black hole evaporation [5] and e+e− creation

in the vicinity of charged black holes [6, 7] as well as particle production

in hadronic collisions [8] and in the early universe [9, 10]. Since QED pair

production in strong fields represents the conceptually simplest case, it can

serve as a theoretical laboratory for all these cases.

However, a sizeable rate for spontaneous pair production requires extraor-

dinary strong electric fields. For instance macroscopic or mesoscopic field

strengths should be comparable in size to the so-called critical field strength

which corresponds to the electron-mass scale, Ecr = m2/e ≈ 1.3 · 1018 V
m

. For

a long time it seemed inconceivable to produce macroscopic electric fields of

the required strength in the laboratory. With the development of intense

optical lasers, in the early 1970’s the question was raised whether they have

the potential to experimentally study pair production [11]. But until now

all disposable optical lasers did not reach the required intensity. Meanwhile

the possibility of making use of the strong Coulomb fields evolving in heavy

ion collisions has been discussed [12], but no clear experimental signature

has been detected yet. Today there are several promising experiments in

progress. X-ray free electron lasers (FEL) are under construction, the Linac

1



2 CHAPTER 1. INTRODUCTION

Coherent Light Source (LCLS) at SLAC [13] and the TESLA XFEL at DESY

[14, 15]. These X-ray lasers with their high energy and transverse coherence

may be focusable down to the diffraction limit in order to obtain electric

fields of very high peak intensity [16]. Also the use of optical lasers of the

peta-watt class is under discussion [17].

At present, with the prospect of experimental realizations, the topic is of

special interest also from the theoretical point of view. Many different meth-

ods, such as the proper-time method [4, 18], the canonical method [18], the

Schrödinger-Functional approach [19], functional techniques [20, 21], mean-

field treatment [22, 23, 24] and instanton techniques [25, 26], have been de-

veloped, to study pair production in external fields. Of particular conceptual

interest is the computation of the production rate in terms of the effective

action for a given background, which is also used in this thesis. Owing to

an intimate relation between the effective action and the vacuum-persistence

amplitude, it is the imaginary part of the effective action that encodes in-

formation about pair production, which, in this context, is interpreted as

spontaneous vacuum decay. This approach yields the instantaneous produc-

tion rate, neglecting back-reactions and memory effects. However, mean-field

QED reveals, that the imaginary part of the effective action appears as the

source term in quantum-kinetic equations [22, 23, 24]. Consequently, for phe-

nomenology, results based on the effective-action approach can directly serve

as input for transport equations, which can take back-reactions and memory

effects into account.

Even though the existing methods follow a well defined and technically

stringent concept, their application often involves serious technical and con-

ceptual difficulties. Up to now, no reliable and universal method is known,

neither analytic nor numeric, to obtain pair-production rates in inhomoge-

neous electric fields. In standard approaches functional traces have to be

evaluated with the knowledge of the spectrum of the corresponding differen-

tial operator, which is only available for special cases. Moreover, controlling

the divergencies one possibly encounters when summing up the eigenvalues

is a delicate task.

In this thesis, we develop a new approach to compute the pair-production

rate for inhomogeneous electric fields in scalar quantum electro dynamics

(QED). We make use of a recently developed algorithm [27, 28, 29, 30, 31]

which is based on the string-inspired worldline formalism [32, 33, 34, 35, 36,

37, 38]. The idea of this approach consists of rewriting the functional de-
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terminants that we encounter when computing the effective action in terms

of one-dimensional path integrals. These paths represent the worldlines of

the quantum fluctuations in coordinate space, thereby offering an intuitive

picture of the quantum world. The path integrals can then be evaluated

numerically with Monte-Carlo techniques. The important advantage com-

pared to other approaches lies in the fact that the worldline algorithm can

be formulated independently of any symmetry of the background. The iden-

tification of and the summation over the spectrum of quantum fluctuations

are done in one single and finite step.

Our efforts will result in a profoundly universal algorithm that we apply

to spatially inhomogeneous electric fields. As a result we gain a detailed

understanding of the dependence of pair production on spatial field-strength

fluctuations. Our findings demonstrate that the pair-production rate for in-

homogeneous fields interpolate between two limiting cases: For slowly varying

fields, the field strength can be regarded as locally constant, i.e., a derivative

expansion in lowest order yields proper results (averaged derivative expan-

sion). By contrast, if the field contains small-scale fluctuations, the pair

production is well approximated by averaging out the fluctuations to per-

form a derivative expansion on the averaged field. Our findings determine

quantitatively the transition from the averaged derivative expansion to the

derivative expansion of the average, revealing that the latter limit is ap-

proached surprisingly rapidly. As a by-product we obtain new results for the

local production rate of the classic Sauter potential (the global rate has been

evaluated analytically by Nikishov [39] which we rediscover in passing).

The organization of this thesis is as follows. In chapter 2 we present the

basic concepts of worldline numerics: The Schwinger functional and the ef-

fective action are introduced, in Minkowski as well as in Euclidean space.

We proceed with the one-loop computation of the effective action and in-

troduce its worldline representation. It is explicitely derived for both, scalar

and spinor QED. At this point we preliminary specialize to scalar QED and

describe the numerical realization of the worldline approach, the capabil-

ity of which is then demonstrated for the example of a constant magnetic

field. To compare the numerical values to the analytic result, we also review

the derivation of the Heisenberg-Euler effective action. The chapter is con-

cluded with a brief outlook on worldline numerics in spinor QED. Chapter 3

is devoted to the worldline numerical approach to pair production in scalar

QED. After pointing out the connection between the effective action and the
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pair-production rate, we describe various steps of the development process

of our algorithms: At first we address the example of a constant electric

field. The Schwinger pair-production is derived and several algorithms of

increasing sophistication are developed to deal with different field strengths.

The example provides us not only with a better understanding of the de-

tails of the worldline numerical approach, but also with a deeper insight into

the quantum nature of pair production. All this serves as a preparation for

turning to inhomogeneous fields. Considering the Sauter potential as an an-

alytically mastered example configuration, we proceed with the development

of our algorithms. The most efficient and flexible algorithm is based on a

numerical analysis of a probability distribution function (PDF) for a suit-

ably defined ensemble observable that facilitates the extraction of coherent

n-pair-production poles. Using this algorithm, the local pair-production rate

is computed and integrated to obtain the total pair-production rate which

agrees with Nikishov’s result with satisfactory accuracy. Of course, the algo-

rithm is not restricted to the Sauter potential, but is immediately applicable

to any spatially inhomogeneous field configuration. In order to perform a

systematic study of the influence of inhomogeneities on pair production, we

finally consider a superposition of a time independent sine potential and a

constant field. By varying the sine frequency, the consequences of inhomo-

geneity can be studied in quantitative detail. As one of our main results,

we discover new nonlocal phenomena in the pair-production rates, that find

an intuitive explanation in the worldline picture. Thereby we gain a pro-

found understanding of the dependence of pair production on spatial field

fluctuations of different scales.

We conclude with a summary of the results and point out some perspec-

tives for future work.



Chapter 2

Effective Action on the

Worldline

2.1 The Effective Action

2.1.1 Minkowski Space

In Minkowski space, the Schwinger functional Z[J ] is defined by

Z[J ] :=

∫

Dφ ei
R

d4x (L[φ]+Jφ). (2.1)

The integral in the exponent extends over all space-time. To be more precise,

the x0 integration goes from limT→−∞ T (1− iǫ) to limT→∞ T (1− iǫ) with an

infinitesimal small ǫ > 0. The Schwinger functional then is proportional to

the vacuum-persistence amplitude, the probability amplitude for recovering

a system, which has initially been in the vacuum state |Ω〉 for T → −∞, in

this state for T → ∞ in presence of the source J . Moreover, the Schwinger

functional represents the generating functional for all n-point correlators.

Closely related to the Schwinger functional is the generating functional of

the connected Green’s functions E[J ], which is defined by

e−iE[J ] := Z[J ]. (2.2)

To introduce the effective action we need to define one further quantity, the

classical field φcl, which is the vacuum expectation value of the field:

φcl := 〈Ω|φ|Ω〉J . (2.3)

5



6 CHAPTER 2. EFFECTIVE ACTION ON THE WORLDLINE

The effective action Γ is a functional of φcl, obtained by a Legendre transform

of the generating functional E[J ]:

Γ[φcl] := −E[J ] −
∫

d4y J(y)φcl(y). (2.4)

In the language of Feynman’s diagrammar, Γ[φcl] is the generating functional

of 1PI Green’s functions, also called proper vertices.

2.1.2 Euclidean Space

The Euclidean effective action ΓE is −i times the continuation of Γ to −iT ,

keeping in mind that T goes to infinity in the end:

ΓE(T ) := −iΓ(−iT ) (2.5)

= iE(−iT ) + i

∫ −iT/2

iT/2

dy0

∫

d3y J(y)φcl(y) (2.6)

y4:=iy0

= −EE +

∫ T/2

−T/2

dy4

∫

d3y J(y)φcl(y)). (2.7)

We have defined the Euclidean generating functional EE analogously to the

Euclidean effective action, EE := −iEM(−iT ). That means

eEE =

∫

Dφ ei
R −iT/2
iT/2

dx0
R

d3x (L[φ]+Jφ)
(2.8)

LE:=−L
=

∫

Dφ e−
R T/2
−T/2

dx4

R

d3x (LE[φ]−Jφ)
(2.9)

SE:=
R

dxE LE
=

∫

Dφ e−SE[φ]+
R

dxE Jφ. (2.10)

Throughout this thesis we will work in Euclidean spacetime, if not stated

otherwise, but physical external fields will be kept Minkowski-valued. To

avoid cluttering up the notation, we will drop the subscript E in the following.

2.2 1-Loop Computation of the Effective Ac-

tion

We evaluate the path integral in (2.10) with the steepest-descent approxima-

tion. φs denotes the stationary point of the exponent, i.e.,

δ

δφ(x)

(

S[φ] −
∫

dy Jφ

)∣

∣

∣

∣

φs

= 0 (2.11)
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for all x. Expanding the exponent about φs with the notation η := φ − φs

yields

S[φ] −
∫

dx Jφ = S[φs] −
∫

dx Jφs

+

∫

dx η(x)





δS[φ̃]

δφ̃(x)

∣

∣

∣

∣

∣

φs

− J(x)



 (2.12)

+
1

2

∫

dx

∫

dy η(x)
δ2S[φ̃]

δφ̃(x)δφ̃(y)

∣

∣

∣

∣

∣

φs

η(y)

+ · · · .
The second term on the right-hand side is zero because of (2.11). Thus

eE ≈ e−S[φs]+
R

dx Jφs

∫

Dη e
− 1

2

R

dx
R

dy η(x) δ2S[φ̃]

δφ̃(x)δφ̃(y)

˛

˛

˛

˛

φs

η(y)

= N e−S[φs]+
R

dx JφsDet−
1
2
δ2S

δφδφ

∣

∣

∣

∣

φs

. (2.13)

For the generating functional we get

E[J ] ≈ −S[φs] +

∫

dx Jφs −
1

2
Tr ln

δ2S

δφδφ

∣

∣

∣

∣

φs

, (2.14)

dropping the constant term lnN . The effective action now reads

Γ ≈ S[φs] +
1

2
Tr ln

δ2S

δφδφ

∣

∣

∣

∣

φs

. (2.15)

The classical field is just δE/δJ . Consequently, by using only the leading

order of (2.14),

φcl ≈
δ

δφs
(−S[φs] +

∫

dx Jφs)
δφs

δJ
+ φs = φs (2.16)

due to (2.11). Hence we can write, to first order,

Γ ≈ S[φcl] +
1

2
Tr ln

δ2S

δφδφ

∣

∣

∣

∣

φcl

. (2.17)

We have obtained this result for real fields. For fields with more than one de-

gree of freedom we get additional combinatorial factors. In case of a complex

field, for example, we get

Γ ≈ S[φcl] + Tr ln
δ2S

δφ∗δφ

∣

∣

∣

∣

φcl

. (2.18)
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This expression is of central interest in the present work. The effective

action governs the dynamics of the VEV of the field. In the present approxi-

mation, it is given by the classical action plus corrections due to the quantum

fluctuations in Gaußian approximation.

The steepest-descent approximation is valid for large exponents in (2.10),

that is if the classical action is large compared to the quantum of action ~,

which is equal to one in natural units. In fact the approximation we have

used is an expansion in ~ up to O(~) as can be shown by explicitly tracing

~ throughout the calculation. This in turn is equivalent to a loop expansion

up to one-loop order. We emphasize that we have not performed a coupling

expansion, expression (2.10) contains tree and one-loop diagrams to all orders

in the coupling times the classical field.

Despite the plain structure of (2.18), evaluating the functional trace in

general poses a great challenge. Exact analytical treatment using the gener-

alized zeta function [40] or Schwinger’s propertime approach [4] requires the

knowledge of the spectrum of δ2S
δφδφ

. In QED this is known, for instance, for

the case of a constant pure magnetic field, which will be studied analytically

in section 2.8.1, and more generally for a uniform, but otherwise arbitrary,

electromagnetic background (Heisenberg-Euler action [2, 3, 41]). For inho-

mogeneous fields, in the majority of cases, one is reliant on approximations.

If the background varies slowly with respect to the Compton wavelength

1/m, regarding the field as locally constant and using the Euler-Heisenberg

result is a valid approximation. Beyond this approximation one can perform

a derivative expansion, still facing restrictions on the field variation. Up to

now, also standard numerical methods rely on highly symmetric background

fields or use spacetime discretization.

In this thesis a new numerical algorithm is developed to evaluate the

imaginary part of the functional trace for inhomogeneous background fields.

We bypass the difficulties of prior approaches by applying an emerging tech-

nique called worldline numerics which combines the string-inspired worldline

formalism with Monte Carlo methods.
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2.3 Worldline Representation of the Effective

Action

Let us now present the basis of the announced numerical algorithm, the

so-called worldline formalism. This formalism will result in an analytical

expression for the functional trace in (2.17), which is not only predestinated

for numerical implementation, but moreover has a nice physical interpreta-

tion giving some qualitative understanding of the effective action’s nonlocal

character.

To make expressions more concise we define

Hw :=
δ2S

δφδφ
. (2.19)

The first-order correction to the effective action, i.e., the second term of

(2.18), we call Γ1.

In the first step towards the worldline formalism we switch to Schwinger’s

propertime representation, using Frullani’s integral,

Γ1 := Tr lnHw = −
∫ ∞

0

dT

T
Tr(e−HwT − e−T ).

The second term in the trace is field independent an thus dropped in the

following. We perform the functional trace in x-space.

Γ1 = −
∫ ∞

0

dT

T

∫

dx〈x|e−HwT |x〉 (2.20)

Now we make the second and essential step: The matrix element 〈x|e−HwT |x〉
can be treated analogously to transition amplitudes in quantum mechanics,

where we write matrix elements as path integrals:

〈x2|e−iHT |x1〉 = N
∫

x(0)=x1
x(T )=x2

Dx(t) ei
R T
0

dt L. (2.21)

Hence we can write

〈x|e−HwT |x〉 = N
∫

x(0)=x(−iT )=x

Dx(t) ei
R −iT
0

dt Lw (2.22)

τ :=it
= N

∫

x(0)=x(T )=x

Dx(τ) e
R T
0 dτ Lw , (2.23)
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where Lw is the worldline Lagrangian corresponding to the worldline Hamil-

tonian Hw in (2.19). To sum up,

Γ1 = −
∫ ∞

0

dT

T

∫

dx N
∫

x(0)=x(T )=x

Dx(τ) e
R T
0

dτ Lw

= −
∫ ∞

0

dT

T
N
∫

x(0)=x(T )

Dx(τ) e
R T
0 dτ Lw . (2.24)

This is the one-loop contribution to the effective action in the so-called world-

line representation. Having started with a D-dimensional field theory, we

conclude with an expression containing a field x(τ) in one dimension, but

with D components. We have mapped the set of quantum fluctuations on

top of a given background to an ensemble of closed worldlines that can be

interpreted as the traces of the quantum fluctuations in spacetime. Each

trace gathers information about the background along the worldline. For an

even more visual interpretation we need to know Lw, which is derived for

scalar QED in the next section.

2.4 Worldline Formalism in Scalar QED

We will now compute Lw in (2.24) for scalar QED. The Euclidean Lagrangian

of the field theory reads

L =
1

4
F 2

µν + (Dµφ)∗Dµφ+m2φ∗φ, (2.25)

with Dµ = ∂µ + ieAµ. Hw acting on an arbitrary field η yields:

(Hwη)(x) =

∫

dy
δ2S

δφ∗(x)δφ(y)
η(y)

=

∫

dy
δ2

δφ∗(x)δφ(y)

∫

dz

(

1

4
F 2

µν + ((∂z − ieA(z))φ∗(y))((∂z + ieA(z))φ(z)) +m2φ∗φ

)

η(y)

=

∫

dy
δ

δφ∗(x)

(

(−∂y + ieA(y))(∂y − ieA(y))φ∗(y) +m2φ∗(y)
)

η(y)

=
(

−(∂x + ieA(x))2 +m2
)

η(x), (2.26)

and we can formally write

Hw = −(∂ + ieA)2 +m2. (2.27)
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The corresponding Lagrangian is

Lw =
1

4
ẋ2 − eẋA(x) −m2, (2.28)

as can be checked easily by a Legendre transform. In (2.24) the integration

variable is τ = it, thus it is useful to substitute the t derivatives by τ deriva-

tives which are denoted by the dot from now on, d
dt
x = i d

dτ
x =: iẋ. Now, the

worldline representation of the first-order contribution to the effective action

in scalar QED reads

Γ1 = −
∫ ∞

0

dT

T
N
∫

x(0)=x(T )

Dx(τ) e−
R T
0

dτ
“

ẋ2

4
+ieẋA(x)+m2

”

. (2.29)

We can split the path integral into an ordinary integral over all x0 and a

path integral over all paths with centre of mass x0.

Γ1 = −
∫ ∞

0

dT

T

∫

dx0 N
∫

x(0)=x(T )
CM x0

Dx(τ) e−
R T
0 dτ

“

ẋ2

4
+ieẋA(x)+m2

”

. (2.30)

The normalization N is determined from the limit of zero potential, for which

the diagonal elements in (2.20) can be computed analytically.

Γ1
∣

∣

A=0
= −

∫ ∞

0

dT

T

∫

dx〈x|e−(−∂2+m2)T |x〉

= −
∫ ∞

0

dT

T

∫

dx
1

(4πT )D/2
e−m2T

= −
∫ ∞

0

dT

T

∫

dx0 N
∫

x(0)=x(T )
CM x0

Dx(τ) e−
R T
0 dτ

“

ẋ2

4
+m2

”

=⇒ N =
1

(4πT )D/2

1
∫

x(0)=x(T )
CM x0

Dx(τ)e−
R T
0

dτ ẋ2

4

. (2.31)

Defining the Wilson loop

W := e−ie
R T
0

dτ ẋA(x) (2.32)

and its expectation value

〈W 〉 :=

∫

x(0)=x(T )
CM x0

Dx(τ) We−
R T
0

dτ ẋ2

4

∫

x(0)=x(T )
CM x0

Dx(τ)e−
R T
0 dτ ẋ2

4

, (2.33)
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we can write

Γ1 = − 1

(4π)D/2

∫

dx0

∫ ∞

0

dT

TD/2+1
e−m2T 〈W 〉. (2.34)

It can be useful to split W into a symmetric and an antisymmetric part,

W = cos

(

e

∫ T

0

dτ ẋA(x)

)

−i sin
(

e

∫ T

0

dτ ẋA(x)

)

. (2.35)

For any path x(τ) with Wilson loop value W , the path x−(τ) := x(1 − τ)

has the same weight e−
R T
0

dτ ẋ2

4 , but Wilson loop value W−1. This leads to

a cancellation of the sin part in (2.35) when performing the path integral.

This is not surprising, as it is antisymmetric in the field strength. Thus, for

further calculations, only the cos part is needed to which We refers from now

on:

We := cos

(

e

∫ T

0

dτ ẋA(x)

)

. (2.36)

The exponential term in the denominator of (2.33) damps the contribu-

tion of paths with large proper length to the path integral. Hence the Wilson

loop expectation value 〈W 〉 at x0 is dominated by paths with small proper

length, which are somehow close to their centre of mass x0. This leads to

the following interpretation of (2.34): Around each point x0 in space-time

there is an accumulation of closed worldlines which we call loop cloud in the

following. The role of the parameter T becomes more clear by the introduc-

tion of the unit loop y(t), which is also most convenient for the numerical

realization. We define

y(t) :=
1√
T
x(Tt) − x0. (2.37)

The Wilson loop expectation value then reads

〈W 〉 :=

∫

y(0)=y(1)
CM x0

Dy(t) We−
R 1
0 dt ẏ2

4

∫

y(0)=y(1)
CM x0

Dy(t)e−
R 1
0

dt ẏ2

4

. (2.38)

The weight factor is now independent of T , whereas the Wilson loop reads

W = e−ie
R 1
0 dt

√
T ẏA(

√
Ty+x0). (2.39)
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Thus T controls the extension of the loop cloud. A small T value means

a small loop cloud, whereas for large T values the cloud becomes bloated.

According to the scale of the loop cloud, it picks up small-scale, i.e. UV

information or large-scale (IR) information of the background field, as illus-

trated in Fig. 2.1. Consequently we can continuously zoom in or out of the

background field by varying T . The effective action contains informations of

all scales because of the T integral in Eq. (2.34).

UV IR

Figure 2.1: For small T values, the loop cloud gathers small-scale (UV)

information of the background field, if T is increased and the cloud bloated,

it picks up large scale (IR) information.

The Wilson loop expectation value at x0 contains information about the

background field gathered by the loop cloud in the neighbourhood of x0. By

this, the information is assigned to x0 in a canonical way and, omitting the

x0 integration in (2.34), we obtain an effective action density.

2.5 Renormalization

Expression (2.34) is still formulated in unrenormalized quantities and we

expect the T integrand to be divergent for T → 0 due to the factor T−D/2−1.

Thus we regularize by replacing the lower bound of the T integration by

a finite value Λ−2. This corresponds to a UV cutoff, since the insertion of

(2.27) into (2.20) leads to the term e−T∂2
which damps large momenta in the

trace, except for the limit T → 0. Having a closer look at the Wilson loop

expectation value, a heat-kernel expansion yields

〈W 〉 = 1 − 1

12
T 2e2F 2

µν(x0) + O(T 4). (2.40)

The leading order is field independent and can therefore be dropped. As a

consequence, with D = 4, the next order ∝ T 2 is the only one leading to a
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divergence and therefore is integrated separately:

Γ1 = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

dx0

(

〈W 〉 − 1 +
1

12
T 2e2F 2

µν(x0)

)

+
1

(4π)2

∫ ∞

Λ−2

dT

T 3
e−m2T

∫

dx0
1

12
T 2e2F 2

µν(x0) (2.41)

In the first line, we have already replaced the lower bound by 0, since the

integral is finite. In the second line, the T integration can be performed

analytically and this line becomes

1
192π2 Ei(−m2

Λ2 )
∫

dx0 e
2F 2

µν(x0)

= 1
192π2

(

C − ln( Λ2

m2 )
)

∫

dx e2F 2
µν(x0) + O(m2

Λ2 ), (2.42)

where C denotes Euler’s constant C ≈ 0.577216. Together with the bare

Maxwell action, the complete effective action to first order now reads

Γ =

∫

dx0

(

1

4

(

1 − e2

48π2

(

C − ln
Λ2

m2

))

F 2
µν + (Dµφcl)

∗Dµφcl +m2φ∗
clφcl

)

− 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

dx0

(

〈W 〉 − 1 +
1

12
T 2e2F 2

µν

)

+ O(
m2

Λ2
),

(2.43)

where e and F denote the bare coupling and field. We impose the renormal-

ization condition
∂Γ

∂ 1
4
F 2

R

= 1 − e2R
48π2

ln
m2

µ2
, (2.44)

ensuring that the photon propagator is canonically normalized for electron

on-shell renormalization conditions µ = m. The renormalized field is con-

nected to the bare one via

F 2
R = ZFF

2 (2.45)

with

ZF = 1 − e2

48π2

(

C − ln
Λ2

µ2

)

, (2.46)

whereas the renormalized charge satisfies

e2R = Z−1
F e2, (2.47)
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such that eF = eRFR remains invariant. We rediscover the β-function for

scalar QED, β(e2R) = µ∂µe
2
R(µ) = e4R/(24π2). Inserting (2.45) into (2.43) and

imposing the electron on-shell condition µ = m, the first line reads

∫

dx0

(

1

4
F 2

µν + (Dµφcl)
∗Dµφcl +m2φ∗

clφcl

)

, (2.48)

where we have dropped the subscript R of the renormalized quantities, since

we will use no bare quantities from now on. After performing the limit Λ →
∞, the second line of (2.43) yields the renormalized one-loop contribution to

the effective action,

Γ1 = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

dx0

(

〈W 〉 − 1 +
1

12
T 2e2F 2

µν(x0)

)

. (2.49)

The divergent term of the one-loop contribution Γ1 has been absorbed into

the bare Maxwell term of the classical action and Γ1 is UV and IR finite now.

It describes the quantum corrections to Maxwell’s classical electrodynamics.

These corrections are non-linear in the electromagnetic field. The principle

of linear superposition known from the classical theory does no longer hold.

Besides, as illustrated best by the loop-cloud interpretation, this leads to a

non-local effective theory.

2.6 Worldline Formalism in Spinor QED

In spinor QED, instead of the plus in Eq. (2.18), one obtains a minus, due

to the Grassmann properties of the field. The Lagrangian in Euclidean space

reads

L =
1

4
F 2

µν + ψ̄iD/ψ +mψ̄ψ (2.50)

and the functional derivation of the corresponding action yields

δ2S

δψ̄δψ
= iD/+m. (2.51)

Thus the one-loop order of the effective action reads

Γ1
spinor = − ln Det(iD/+m). (2.52)
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In four dimensions the effective action is a Lorentz scalar and consequently

independent of the sign of D/. Hence we can write

Det(iD/+m) = Det(−iD/ +m)

= (Det(iD/+m)Det(−iD/ +m))
1
2

= Det
1
2

(

D2/ +m2
)

(2.53)

and we obtain

Γ1
spinor = −1

2
Tr ln

(

D2/ +m2
)

= −1

2
Tr ln

(

−(∂ + ieA)2 +m2 − i
1

2
eσµνFµν

)

, (2.54)

where σµν denotes 1
2
[γµ, γν ]. The argument of the logarithm corresponds

to Hw in Eq. (2.27) of the preceding section. The only difference is the

additional spinor term −i1
2
eσµνFµν . Consequently the worldline Lagrangian

Eq. (2.28) now reads

Lw =
1

4
ẋ2 − eẋA(x) −m2 + i

1

2
eσµνFµν , (2.55)

and we end up with the “spinorial Wilson loop”

Wspinor = e−ie
R T
0 dτ ẋA(x) trγPe

ie
R T
0 dτ 1

2
σµνFµν(x), (2.56)

where trγ denotes the spinor part of the functional trace in Eq. (2.54). By

introducing F̄µν := 1
T

∫ T

0
Fµν(x) we can write

Wspinor = e−ie
R T
0 dτ ẋA(x) trγPe

iT e 1
2
σµν F̄µν . (2.57)

The one-loop contribution to the effective action in spinor QED is then given

by

Γ1
spinor =

1

2

1

(4π)D/2

∫

dx0

∫ ∞

0

dT

TD/2+1
e−m2T 〈Wspinor〉. (2.58)

We resume that the one-loop contribution to the effective action in spinor

QED differs from the scalar QED result Eq. (2.34) in an additional spinor

term in the Wilson loop and an overall factor −1
2
. Analogously to renormal-

ization in scalar QED, one obtains the renormalized expression

Γ1
spinor =

1

2

1

(4π)D/2

∫

dx0

∫ ∞

0

dT

TD/2+1
e−m2T

(

〈Wspinor〉 − 1 − 1

6
T 2e2F 2

µν(x0)

)

,

(2.59)

which is closely related to the scalar-QED expression Eq. (2.49).
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2.7 Worldline Numerics in Scalar QED

As announced, expression (2.49) is predestinated for numerical computation.

Paths of large proper length are suppressed in the Wilson loop expectation

value (2.33) by the kinetic term of the worldline ∝ ẏ2, which has already

led us to the introduction of the term loop cloud and makes it possible to

approximate the path integrals by sums over finite path ensembles. For an

ensemble of paths that are distributed according to the exponential weight

factor exp(−
∫ 1

0
dτ ẏ2

4
), the Wilson loop expectation value is equal to the

ensemble average of W . For the numerical implementation, we need to dis-

cretise the loops, that means each loop y(t) is represented by a finite number

of N supporting points yk at t = k/N with k = 1, · · · , N ,

y(t) → {yk} := {y( k
N

)}. (2.60)

We use the vloop algorithm to create an ensemble of nL discrete and closed

unit loops {yk} with the distribution functional

P [{yk}] = δ(y1 + · · ·+ yN) exp

(

−N
4

N
∑

k=1

(yk − yk−1)
2

)

. (2.61)

This is the discrete form of the weight factor exp(−
∫ 1

0
dτ ẏ2

4
), the delta

function reflects the fact, that only closed loops are generated. The vloop

algorithm is reviewed in appendix A.1. Once the loop ensemble has been

generated, it can be used to compute 〈W 〉 for different T and x0.

First W is computed for each unit loop. It is tempting to interpret the

supporting points as defining a polygon and perform the t integral in (2.39)

analytically. With regard to the Wilson loop, this is advantageous, since it

conserves gauge invariance. Nevertheless, the polynomial interpolation dis-

torts the loop ensemble, it does not preserve the desired spacial information.

The interpolated paths have a smaller average distance to the centre of mass

x0 than their supporting points, thus interpolation actually means shrinking

the loop cloud. The background field is no longer scanned in the desired

range. For small N this effect leads to results with a sizeable systematic

error. Hence, we make a simple step-function approximation:

∫ 1

0

dtẏA(
√
Ty + x0) ≈

N
∑

k=1

(yk+1 − yk)A(
√
Tyk + x0), (2.62)
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where we have used ẏ = N(yk+1 − yk). The potential A is evaluated only at

the points yk, we do not make any further assumptions about the path in

between. As a side effect, simpler mathematical expressions arise which lead

to a significantly faster numerical evaluation.

After W has been computed for each loop, we merely have to take the

average to obtain the Wilson loop expectation value,

〈W 〉 =
1

nL

∑

{y}
W [y]. (2.63)

The standard error provides an estimate of the statistical error,

∆〈W 〉 =
1√
nL

√

〈W 2〉 − 〈W 〉2. (2.64)

In addition to this statistical error the discreteness of the loops leads to

a systematic error. The number of supporting points N has to be chosen

sufficiently large, such that this error can be neglected compared to the sta-

tistical error. In practice, the value to choose depends on the background

field. N should be adjusted, so that the distance |xk+1−xk| =
√
T |yk+1−yk|

is smaller than the characteristic length scale of the inhomogeneities of the

field for most loops and k. For large N , the distance is distributed accord-

ing to the weight exp(−N/(4T )(|xk+1 − xk|)2) with the standard deviation

σ =
√

2T
N

. Comparison of σ to the length scale of the background field helps

us to make a reasonable choice for N .

To summarize, the numerical estimate is governed by two parameters, nL

and N . Each controls one of the two approximations we have made so far:

Both the path integral and the loop propertime integral have been replaced

by a finite sum. It is noteworthy, that we have not discretized space-time.

2.8 Example: Constant Magnetic Field

2.8.1 Analytic Calculation

Let us examine the case of a constant B field in x1 direction given by AM =

(0, 0, 0, Bx2)⊤ in Minkowski space. In Euclidean space the potential A, as

used in the previous sections, is defined by A4 = iA0
M and Aj = Aj

M, j =

1, · · · , 3. Hence the constant B field is given by A = (0, 0, Bx2, 0)⊤ and Fµν
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reads

Fµν =











0 0 0 0

0 0 −B 0

0 B 0 0

0 0 0 0











. (2.65)

Expression (2.20) is the starting point of our calculation. Inserting Hw

for scalar QED (2.27) yields

Γ1 = −
∫ ∞

0

dT

T
e−m2T Tr eT (∂+ieA)2 . (2.66)

The operator (∂ + ieA)2 = ∂2 + i2eBx2∂3 − e2B2x2
2 has the eigenstates

e−i(k1x1+k3x3+k4x4)ψn(x2 −
k3

eB
), (2.67)

where ψn are eigenstates of the one dimensional harmonic oscillator,

(−∂2
x + e2B2x2)ψn(x) = eB(2n+ 1)ψn(x). (2.68)

The corresponding eigenvalues are

−(k2
1 + k2

4 + eB(2n+ 1)). (2.69)

We can now evaluate the trace by means of box quantization. Using a box

with sides L1, · · · , L4 and periodic boundary conditions, the sum over all

eigenstates passes into
∫ ∞

−∞

L1

2π
dk1

∫ eBL2

0

L3

2π
dk3

∫ ∞

−∞

L4

2π
dk4

∞
∑

n=0

, (2.70)

where we use integral notation, since we will finally take Li → ∞. Note the

integration boundaries of the k3-integration: Due to the periodic boundary

conditions we actually do not use the eigenstates (2.67), which are not peri-

odic. Instead of ψn we use the linear combination
∑∞

l=−∞ ψn(x − k3+leBL2

eB
),

which has no effect on the eigenvalues (2.69). These linear combinations are

a basis of all periodic combinations of ψn. Obviously they are periodic in k3

with period eBL2, which leads to the above mentioned integration bound-

aries. The trace now reads

TreT (∂x+ieA(x))2 =

∞
∫

−∞

L1

2π
dk1

eBL2
∫

0

L3

2π
dk3

∞
∫

−∞

L4

2π
dk4

∞
∑

n=0

e−T (k2
1+k2

4+eB(2n+1))

=
L1L2L3L4

16π2T 2

TeB

sinh(TeB)
, (2.71)



20 CHAPTER 2. EFFECTIVE ACTION ON THE WORLDLINE

and Γ1

Γ1 = −L1L2L3L4

16π2

∫ ∞

0

dT

T 3
e−m2T TeB

sinh(TeB)
(2.72)

Li→∞−→ − 1

16π2

∫ ∞

0

dT

T 3
e−m2T

∫

d4x0
TeB

sinh(TeB)
. (2.73)

Comparison to Eq. (2.34) yields

〈W 〉 =
TeB

sinh(TeB)
. (2.74)

The renormalized effective action (2.49) now reads

Γ1 = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

d4x0

(

TeB

sinh(TeB)
− 1 +

1

6
T 2e2B2

)

. (2.75)

This is the well known Heisenberg-Euler effective action of scalar QED for a

homogeneous B field [2].

2.8.2 Numerical Computation

Let us now study the field configuration of the previous section with the

numerical method presented in section 2.7. Equation (2.36) reads

We = cos(TeBI), (2.76)

where we have introduced I :=
∫ 1

0
dt ẏ3y2.

In Fig. 2.2 the numerical values of 〈W 〉 = 〈We〉 for several values TeB are

compared to the exact result (2.74) with satisfactory agreement. We have

used an ensemble of nL = 5000 loops where each loop is specified byN = 1000

ppl (points per loop). The last number is certainly larger than necessary for

a constant background field. One could safely choose only 100 supporting

points, but with regard to inhomogeneous fields, where more supporting

points are needed, we get a better idea of the algorithm’s performance.

The computations so far are quite simple and with the chosen values for

nL and N , the algorithm is very fast, it took only some seconds CPU time on

an ordinary workstation to produce Fig. 2.2. The already convincing result

could be enhanced by increasing the number of loops nL. Nevertheless, for

numerical renormalization, small statistical errors are not sufficient. Inserting
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exact result
numerical values

TeB

〈W 〉

54.543.532.521.510.50

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2.2: Wilson loop expectation value for a constant magnetic field: exact

result equation (2.74) in comparison with the numerical estimate. Number

of loops: nL = 5000. Points per loop: N = 1000 ppl.

this into Eq. (2.49) and omitting the x0 integration yields the one-loop

contribution to the renormalized effective Lagrangian

L1
eff = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

(

〈We〉 − 1 +
1

6
T 2e2B2

)

. (2.77)

Even the slightest deviation of the first orders of 〈W 〉 from the exact re-

sult prevent the counterterms to cancel the divergencies for T → 0. The

first orders have to be known exactly. Fortunately we know them exactly.

The counterterms have been determined by use of the heat-kernel expansion

(2.40). We can use this expansion again and adjust the pure worldline nu-

merical result. This is done by fitting a polynomial to the numerical values

of 〈W 〉 for small T , the first three terms of which are fixed by the expansion.

The polynomial together with the fit errors then can be used instead of the

previously calculated values for small T .

Figure 2.3 shows the corrected propertime integrand of Eq. (2.77) without

the mass term. It vanishes for T = 0. Without the correction it would be

divergent for T → 0.

The polynomial fit has been performed with Numerical Recipes’ lfit-

function. We have used a polynomial of fourth order fitted to five values
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exact result
numerical values

TeB

(

〈W
〉−

1
+

1 6
(T
eB

)2
)

/(
T
eB

)3

1614121086420

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 2.3: The propertime integrand in (2.77) without the mass term: exact

result in comparison with the numerical estimate. nL = 5000, N = 1000.

of 〈W 〉 between TeB = 0 and TeB = 1. lfit provides a covariance matrix C

of the coefficients ai. The error of a polynomial value is

△P (T ) = △(a0, · · · , an)(1, · · · , T n)⊤ = (1, · · · , T n)C(1, · · · , T n)⊤,

where n denotes the order of the polynomial. For small T this error is smaller

than the statistical error of the worldline numerical Wilson loop expectation

values, due to the information we have provided with the knowledge of the

first three coefficients. The range of T in which this is the case is about the

same as the one used for the fitting procedure. In particular the error vanishes

for T → 0. We would like to stress that this renormalization procedure would

also work if we did not know the exact first few terms. In this case, we could

still fit the T integrand to a polynomial and subtract the first few terms.

These terms would then provide us with a numerical estimate for the β

function.

As a final task the T integral has to be performed. There exist several

powerful algorithms for this purpose, leading to Fig. 2.4. The error of the

integral is the integrated error of the integrand. This is a very conservative

estimate, since it assumes the integrand’s values to be strictly correlated for

different T values. But indeed there is a strong correlation, as we use the

same loop cloud for all T .
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exact values
numerical values

eB/m2

L1 eff
/m

4

1086420

0

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

Figure 2.4: The one-loop contribution to the effective Lagrangian for the con-

stant magnetic field: exact result in comparison with the numerical estimate.

nL = 5000, N = 1000 ppl.

We have demonstrated the successful usage of worldline numerics in scalar

QED for a simple example. In the following we will develop the method fur-

ther to tackle more complicated problems, in particular the electron-positron

pair production in inhomogeneous electrical fields.

2.9 Worldline Numerics in spinor QED

In this thesis, we will concentrate on scalar QED, but most of the numerical

computations can easily be extended to spinor QED. The essential difference

to the scalar-QED computations is the extra term in the Wilson loop, cf. Eq.

(2.57),

trγPe
iT e 1

2
σµν F̄µν . (2.78)

For the example of the preceding section, the constant B field, this means

no major changes for the computations. If the field is constant, for obvious

reasons, the average F̄µν , and thus the complete extra term, is independent

of the path. Therefore it can be factored out of the expectation value, and
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the path ordering can be dropped.

〈Wspinor〉 = 〈e−ie
R T
0

dτ ẋA(x)〉 trγe
iT e 1

2
σµνFµν

= 〈Wscalar〉 trγe
iT e 1

2
σµνFµν . (2.79)

With Fµν from Eq. (2.65) we obtain

σµνFµν = i2B











0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0











. (2.80)

Even powers of the matrix are equal to the identity, whereas odd powers have

a vanishing trace. We can therefore write

〈Wspinor〉 = 〈Wscalar〉 4

(

1 +
1

2!
(TeB)2 +

1

4!
(TeB)4 + · · ·

)

= 〈Wscalar〉 4 cosh(TeB). (2.81)

Hence, to obtain the spinor QED effective action for the constant B field

with worldline numerics, only an analytically known extra term has to be

considered when performing the T integration.



Chapter 3

Pair Production in Scalar QED

Since the early 1930’s, the QED vacuum in a static spatially uniform elec-

tric background field is known to be unstable. The vacuum decays, which

corresponds to the creation of particles. However, this process has not been

observed experimentally ever since. This arises from the fact, that very

strong electric fields are necessary to observe a sizeable production rate.

Some simple considerations lead to a first estimate for the field strength

needed: Due to Heisenberg’s uncertainty principle, even in the vacuum state

of QED without any background field, pairs of electrons and positrons appear

continously as virtual particles. They annihilate each other within a short

amount of time due to energy conservation. An external electric field which

couples to the virtual particles can lead to a real e+e− pair, by compensat-

ing for the lack of energy which arises from the newly created mass of the

pair. We assume the virtual pair to have a spatial extension ∆l of the same

order of magnitude as the Compton wavelength of the electron, ∆l ≈ 1/m.

The work of the field on one particle of charge e over this distance then is

eE∆l = eE/m. This energy has to be equal to the mass of the particle,

eE/m
!
= m. This leads to a critical field strength Ecr = m2/e ≈ 1.3 · 1016 V

cm
.

Even if this is only a rough estimate, this numbers shows that very strong

fields are necessary to observe a considerable amount of created pairs. Exper-

imentally, these field strengths will presumably be reached on a macroscopic

or mesoscopic scale with upcoming high-intensity lasers.

If the field strength is weaker than Ecr, pair production is not eliminated.

As long as the field is able to provide the pair with enough energy to prevent

it from annihilation, pair production occurs via tunneling. This is the case

if the corresponding potential varies by at least 2m
e

. The length scale of the

25
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variation has only a quantitative effect on the pair-production rate. If the

field is weak and the variation extends over a large distance, we expect to

observe less particles than for a stronger field, but if the necessary potential

difference is given, pairs are produced.

An elegant approach to make quantitative predictions about pair produc-

tion beyond our estimates, is the use of the effective action, as presented in

the subsequent section (for details on the effective action approach in QED

see [42]).

3.1 Effective Action and Pair Production

The real part of the effective action leads to vacuum polarization, the imag-

inary part to the pair production. To understand the latter, we make the

following considerations.

In section 2.1.1, we already stated, that the vacuum-persistence amplitude

is proportional to the Schwinger functional in Minkowski space, and thus with

a suitable normalization it is equal to

Z[J ] = e−iEM[J ]. (3.1)

At J = 0 the generating functional EM[J ] is equal to minus the effective

action, cf. Eq. (2.4), and for the vacuum persistence amplitude we obtain

e−iEM[0] = eiΓM[φcl|J=0]. (3.2)

The corresponding vacuum-persistence probability P then is

P = |eiΓM|2 = e−2ImΓM . (3.3)

That means, if the effective action has a positive imaginary part, the proba-

bility for recovering our system, which has initially been in the vacuum state

for T → −∞, in the same state for T → ∞, is smaller than one. This implies

that the vacuum is unstable, it decays and pairs are spontaneously produced

with the probability

1 − P = 1 − e−2ImΓM > 0. (3.4)

If the Hamiltonian H is time independent, we can write the vacuum-

persistence amplitude as

P = 〈Ω|e−iHT |Ω〉
= 〈Ω|e−iHΩT |Ω〉
= e−iHΩT , (3.5)
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with T → ∞, where HΩ denotes the eigenvalue of the vacuum state cor-

responding to H . Consequently, again for a suitable normalized Schwinger

functional, we have

EM = HΩT. (3.6)

As stated in 2.1.2, the Euclidean quantity corresponding to EM is defined as

EE = −iEM(−iT ), and therefore

EE = −HΩT = −EM. (3.7)

In absence of sources, we reason

ΓE = HΩT = −ΓM, (3.8)

and for the vacuum-persistence probability we obtain

P = e2ImΓE = e2ImHΩT . (3.9)

If ImΓE and therewith ImHΩ is negative, this equation yields a typical expo-

nential decay. The number of pairs created per time is equal to 2|ImΓE|/T .

Thus the production rate per space-time volume is given by twice the imag-

inary part of the effective Lagrangian, 2|ImLEeff |.
We already noted that for our conclusions a suitable normalization of

the Schwinger functional is necessary. In QED the vacuum is stable if the

potential Aµ is zero, consequently we demand

1
!
= |Z|Aµ=0|2 = e2ImΓE (3.10)

which is equivalent to

ImΓE|Aµ=0
!
= 0. (3.11)

As we have seen in section 2.8, switching on a constant magnetic field

has no effect on ImΓE. But in the presence of an electric field, the Euclidean

effective action gains a negative imaginary part. In the following we will

extend the use of worldline numerics to field configurations which result in

effective actions with finite imaginary parts. Thereby we have to consider,

that the worldline-numeric approach, as presented in prior sections, underlies

principle limitations: Due to the fact, that it only includes quantum effects

up to one-loop order, the Coulomb interaction between the produced parti-

cles and the resulting mass shift is neglected, as well as back-reactions of the

created pairs on the external field. The external E field is partially shielded
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by the created electrons and positrons and effectively becomes weaker for

appropriate production rates. The possibility of considering this effect in

a self-consistent approach has still to be investigated [43]. Higher-loop cal-

culations, for instance, have shown that they indeed account for Coulomb

interactions between the produced pairs [44, 45]. In addition to that we will

preliminary concentrate on scalar QED, leaving the generalization to spinor

QED to future investigations.

3.2 Constant Electric Field

Let us study pair production in scalar QED for the simplest electric field,

the constant pure electric field. We will firstly retrieve Schwinger’s analytic

result before we try to implement worldline numerics straight forwardly. In

doing so, we are faced with a number of problems, the analysis of which

leads to a vivid understanding of the physics of pair production. During the

development of an applicable worldline-numerical algorithm, we find several

algorithms, each covering special cases of the general problem. One of them,

the pole fit routine presented in section 3.2.4, will be the basis of our final

universal algorithm, the CDF fit, which is developed in section 3.3.3. The

more phenomenologically interested reader may skip the following section

and continue reading chapter 3.3.

3.2.1 Analytical Approach

In section 2.8.1 we have analytically computed the Wilson loop expectation

value and the effective action for a constant pure magnetic field. The case of

a constant pure electric field can be deduced from this result. We know that

the effective action depends on the two Lorentz invariants which characterize

the electromagnetic field, F := 1
4
F µνFµν = 1

2
(B2 −E2) and G := 1

4
F µνF̃µν =

−B · E. Thus we reason, for a pure E field,

Γ1(E,B = 0) = Γ1(F = −1

2
E2,G = 0)

= Γ1(0, B = iE). (3.12)

That means we replace B in the result (2.74) with iE to obtain 〈W 〉 for the

constant pure electric field:

〈W 〉 =
TeE

sin(TeE)
. (3.13)
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The significant difference to the expectation value (2.74) are the poles at

T = π
eE
k with k = 1, 2, · · · . When performing the T integral in expression

(2.49), we have to choose an integration contour that avoids the poles. To

obtain the desired sign of the effective action, we use a contour in the upper

half plane, as shown in Fig. 3.1. The residues of the poles are real. They enter

TIm

ReT

3π π2 π
eE eE eE

Figure 3.1: Integration contour of the T integration in Eq. (2.49) for the

constant electric field.

the T integral with a purely imaginary prefactor and thus are responsible for

the imaginary part of the result. In general the imaginary part of the effective

action can be written as a sum over the residues:

ImΓ1 = Im
−1

(4π)2

∫

dx0

∫ ∞

0

dT

T 3
e−m2T

(

〈W 〉 − 1 +
1

6
(TeE)2

)

=
−1

(4π)2

∫

dx0 Im
∑

Tpol

1

T 3
pol

e−m2Tpol(−πi)Res(〈W 〉, Tpol)

=
1

16π

∫

dx0

∑

Tpol

1

T 3
pol

e−m2TpolRes(〈W 〉, Tpol). (3.14)

Here the sum goes over all pole positions Tpol. For the constant E field this

reads

ImΓ1 =
1

16π

∫

dx0

∞
∑

k=1

(

eE

kπ

)3

e−m2 kπ
eE Res

(

TeE

sin(TeE)
, T =

kπ

eE

)

=
V

16π

∞
∑

k=1

(−1)k

(

eE

kπ

)2

e−m2 kπ
eE , (3.15)

where V denotes the space-time volume. Since the first order of the effective

action, the classical action, is real, this is the complete imaginary part of the

effective action up to one-loop order. It is very remarkable that the result

(3.15) has an essential singularity in the limit e → 0. This shows explicitly,

that pair creation is a nonperturbative effect which cannot be calculated by
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a series expansion in the coupling constant. Thus it is essential to consider

all one-loop diagrams.

For weak fields, the exponential term suppresses terms with large k and

the sum is dominated by the first term:

ImΓ ≈ − V

16π3
(eE)2e−m2 π

eE . (3.16)

In the strong field limit, the exponential term is approximately 1 for the

dominating terms and we obtain

ImΓ ≈ V

16π

(

eE

π

)2 ∞
∑

k=1

(−1)k

k2
= − V

192π
(eE)2 (3.17)

In the following, we will use these analytical findings to test the results

of our numerical method during the process of development.

3.2.2 Numerical Computation: Straightforward Ap-

proach

In Minkowski space, a homogeneous electric field in x1 direction is given by

the potential AM = (−Ex1, 0, 0, 0)⊤. The corresponding Euclidean potential

reads A = (0, 0, 0,−iEx1)
⊤ and we have

Fµν =











0 0 0 0

0 0 0 −iE
0 0 0 0

0 iE 0 0











. (3.18)

Note that E always denotes the physical Minkowski-valued field strength.

Owing to parity invariance, we only need the even part of the Wilson loop

We = cos

(

e

∫ 1

0

dt
√
T ẏ4

(

−iE
(√

Ty1 + x01

))

)

= cos(iT eEI), (3.19)

where I :=
∫ 1

0
dt ẏ4y1. We insert We into the renormalized one-loop effective

action (2.49) and obtain

Γ1 = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

dx0

(

〈cos(iT eEI)〉 − 1 − 1

6
T 2e2E2

)

. (3.20)
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Actually We = cosh(TeEI) and the argument is real. That means, We is

exponentially increasing in T for all paths. This agrees with the fact that

the expectation value has poles on the T axis as we already know from the

analytical calculations. The increase of We is canceled by the mass term

only for paths with I < m2

eE
. As in the analytical evaluation, we therefore

have to find an appropriate integration contour for the T integration in the

complex plane, but things are more subtle for the numerical approach. In

our numerical algorithm, we can only use finite loop ensembles. There will

be one loop that maximizes I for a given ensemble. For a value of T with

large real part ReT , this single loop will dominate the expectation value.

In this case, the numerics breaks down, since the finite loop ensemble is no

longer representative for the infinite ensemble of the path integral. In fact,

the numerics already breaks down for smaller ReT . The dominance of one

single loop is merely the extreme case of a more general overlap problem.

We cannot numerically compute the Wilson loop expectation value for all

points of any path in the T -plane with ReT → ∞. As a way out, we rotate

the T integration contour onto the positive imaginary axis to end up with an

expression which has the structure of a Fourier transform. With ξ := −iT it

reads

Γ1 =
1

(4π)2

∫ ∞

0

dξ

ξ3
e−im2ξ

∫

dx0

(

〈cos(ξeEI)〉 − 1 +
1

6
ξ2e2E2

)

s=ξeE
=

(

eE

4π

)2 ∫

dx0

∫ ∞

0

ds e−i m2

eE
s

(〈cos(sI)〉 − 1

s3
+

1

6s

)

. (3.21)

Since this s integral has the form of a Fourier integral with frequency m2

eE
,

we can know use the Fast Fourier Transform (FFT) to compute Γ1 for a

whole spectrum of m2

eE
all at once. However, from the numerical viewpoint,

new difficulties arise: The expectation value comes with the statistical error.

As a consequence, fine structures of the T dependence cannot be resolved.

We do not expect to obtain information about the high frequency spectrum,

that means for large m2

eE
. Unfortunately this range is of importance because

it includes the weak field limit. A second problem is the error propagation.

The standard FFT routines cannot give an estimate of the spectrum’s errors

for given errors of the input data. Modifying the standard routines cannot

solve this problem without increasing the runtime significantly.

We try to avoid the described difficulties by interchanging propertime

and path integral, i.e., first performing the propertime integral and taking
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the expectation value afterwards. Γ1 now reads

Γ1 =

(

eE

4π

)2 ∫

dx0

(〈
∫ ∞

0

ds e−i m2

eE
s cos(sI) − 1

s3

〉

+

∫ ∞

0

ds e−i m2

eE
s 1

6s

)

.

The imaginary part of the effective action, which we are focusing on, becomes

ImΓ = −
(

eE

4π

)2 ∫

dx0

(〈
∫ ∞

0

ds sin

(

m2

eE
s

)(

cos(Is) − 1

s3

)〉

+
π

12

)

= −
(

eE

4π

)2 ∫

dx0

(〈

∫ ∞

0

ds sin

(

m2

eE
s

) −2 sin2
(

I
2
s
)

s3

〉

+
π

12

)

= −
(

eE

4π

)2 ∫

dx0

(

〈F 〉 +
π

12

)

(3.22)

where we have analytically performed the propertime integral and introduced

(see Fig. 3.2).

F =

{

−π
2

m2

eE
(|I| − 1

2
m2

eE
) , 0 ≤ m2

eE
≤ |I|

−π
4
I2 , |I| < m2

eE

(3.23)

Obviously the last step, the analytical Fourier transform to obtain F , is

|I| = 0.6
|I| = 0.4
|I| = 0.2

m2/(eE)

F

1.41.210.80.60.40.20

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

Figure 3.2: F for different values of |I| as function of m2

eE

only possible in the very special case of a constant E field. In more complex

settings, we must bank on FFT.



3.2. CONSTANT ELECTRIC FIELD 33

In Fig. 3.3 the result of the numerical calculation is compared to the

Schwinger effective action. For the FFT we have used the sinft routine

combined with the realft algorithm, both from Numerical Recipes [46]. We

have truncated the Fourier integral at s = 128 and used 8192 data values.

The loop ensemble consisted of 5000 loops with 1000 ppl each.

exact result
numerical values

eE/m2

Im
Γ

1
/m

4

101

10

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

Figure 3.3: Imaginary part of the effective action for strong homogeneous

electric fields. nL = 5000, N = 1000 ppl.

The described method works for small m2

eE
, i.e., strong fields. It yields ex-

act results in the strong-field limit: The original function in Eq. (3.22) drops

off with 1
s3 . For sufficiently large frequency m2

eE
, the first sine increases very

slowly with s, such that the overlap of the two factors vanishes in the limit
m2

eE
→ 0 and the s integral gives zero for all I, even if performed numerically.

Under these circumstances the expectation value 〈F 〉 in Eq. (3.22) is zero,

too, and Eq. (3.22) gives our analytical result (3.17).

However, the error bars become large for weak fields. It is the shape of

the spectrum F , which is responsible for this.

The spectrum F (m2

eE
) has a non-compact support. However, discrete

Fourier transform only works for bandwidth limited functions because the

finite sample rate limits the maximal frequency resolved to the half of its own

value. In our case, FFT provides the correct spectrum for lower frequencies,

i.e. strong fields, it fails for high frequencies. However, by enhancing the
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sample rate, that is evaluating the Wilson loop for more s values, we can

extend the range of the calculations at the expense of CPU time.

Even if we could master the numerical Fourier transform or, in case of

the constant field, use the analytical Fourier transform, we are restricted to

strong fields. The reason for this is demonstrated in figure 3.2: For weak

fields, the F values for different I are widely spread. As a result, the expec-

tation value in this range comes with a large statistical error. In Eq. (3.22)

the expectation value is shifted by π
12

and gets close to zero, whereas the

statistical error stays untouched. Thus the shift leads to huge relative errors.

Of course, for constant E we can find an expression for the distribution of

I in the loop ensemble analytically, cf. section 3.3.3, and compute the exact

expectation value of F , but again we want to make use of worldline numerics

with more general field configurations in mind.

We put on record that we have found a useful routine for field strengths

E roughly larger than the critical field strength m2

e
. In the next section we

will search a workaround for the treatment of weaker fields.

3.2.3 Treatment of Weaker Fields

Both difficulties of the last section, the failing of the discrete Fourier trans-

form and the large statistical error for weak fields, are rooted in the infinite

support of the spectrum F . In turn, the infinite support of F is enrooted in

the quadratic order of the original function in (3.22):

−2 sin2
(

I
2
s
)

s3
=

1

s3

(

−I
2

2
s2 + O(s4)

)

= −I
2

2s
+ O(s). (3.24)

The Fourier transform of − I2

2s
is −π

4
I2 = limE→0 F . It is precisely this term,

which is responsible for the unlimited spectrum. The expectation value of

its Fourier transform is

〈−π
4
I2〉 = 〈 lim

E→0
F 〉 = lim

E→0
〈F 〉 = − π

12
(3.25)

The last equality holds because limE→0 ImΓ = 0 and thus limE→0〈F 〉 has to

cancel the + π
12

in Eq. (3.22).

The + π
12

comes from 1
12

(TeFµν)
2 in (2.49) which corresponds to the renor-

malization counterterm to compensate for the quadratic order of 〈W 〉. In-

stead of compensating the quadratic order of the Wilson loop expectation

value as a whole, we can cancel the quadratic order W2 of each Wilson loop
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separately. This conforms to using 〈W2〉 = − 1
12

(TeFµν)
2 in (2.49) which

leads to

Γ1 = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

dx0 (〈W −W2〉 − 1) . (3.26)

In place of (3.22) we obtain

ImΓ1 = −
(

eE

4π

)2 ∫

dx0

〈

∫ ∞

0

ds sin

(

m2

eE
s

)

(

−2 sin2
(

I
2
s
)

s3
+
I2

2s

)〉

= −
(

eE

4π

)2 ∫

dx0 〈FR〉 (3.27)

with

FR =

{

−π
2

m2

eE
(|I| − 1

2
m2

eE
) + π

4
I2 , 0 ≤ m2

eE
≤ |I|

0 , |I| < m2

eE

(3.28)

(see Fig. 3.4). FR has a compact support, in contrast to F . In general, if the

|I| = 0.6
|I| = 0.4
|I| = 0.2

m2/(eE)

FR

10.80.60.40.20

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 3.4: FR for different values of |I|

third coefficient W2 is not known analytically, it can be obtained by fitting a
polynomial to W for small T . We know the first two Taylor coefficients to be
1 and 0, due to the fact that the argument of the cosine in (2.36) vanishes for
T = 0 (in the constant-field case even all odd orders are zero). In practice
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the fit to obtain the higher orders corresponds to solving






△T
2 · · · △T

n

...
. . .

...

((n − 1) △ T )2 · · · ((n − 1) △ T )n













W2
...

Wn






=







W (△T ) − 1
...

W ((n − 1) △ T ) − 1







using the inverted matrix, which gives the coefficients ai of a fitted polynomial

of nth order. This procedure is faster than lf it, which is important as it

needs to be performed several thousand times more often than the fit in the

previous section.

Using (3.27) not only makes it possible to obtain the Fourier transform

for the whole spectrum by FFT, but also shifts the range of large statistical

error from large m2

eE
to strong fields. Both leads to better results for field

strengths below eE
m2 ≈ 2.2, as demonstrated in Fig. 3.5. For this figure we

already used the polynomial fit to obtain W2, with n = 9 and △TeE = 1/8,

i.e. we fitted between TeE = 0 and TeE = 1. The statistical error is even

small for stronger fields, but the strong-field limit is not reproduced exactly

as in the previous method, due to the dependence of FR on I for m2

eE
= 0 (see

Fig. 3.4).

exact result
numerical values
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Figure 3.5: Imaginary part of the effective action for weaker homogeneous

electric fields. nL = 5000, N = 1000 ppl.

However, for weak fields from eE
m2 ≈ 0.4 downwards, the numerical results

are not convincing. Figure 3.5 foreshadows a drop of the numerical values for
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eE
m2 < 0.4. In fact our approach underlies principal limitations. For each loop

with certain value I, FR is zero for m2

eE
> |I| (see Eq. (3.28) and Fig. 3.4).

This implies that every loop contributes information about the dependence

of the effective action’s imaginary part on the field strength only for m2

eE
< |I|.

In other words: For loops with |I| < m2

eE
, the background field is simply not

existent. Since we use finite loop ensembles, there is a value for eE
m2 below

which no loop at all gathers information about the background concerning

the imaginary part. In this case the exponent of the Wilson loop TeEI is

Bin/I

F
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Figure 3.6: Typical distribution of I =
∫ 1

0
dt ẏ0y1. nL = 5000, N = 1000.

smaller than m2T for all loops. Consequently the T integral in Eq. (2.49) is

finite for each single loop, no naive divergences occur and thus the integral

has no imaginary part.

Figure 3.6 shows a typical distribution of I for an ensemble of 5000 loops.

Only four loops have values |I| > 2.5, i.e. FR is unequal zero at eE
m2 = 0.4.

Consequently we expect the statistical error to fail in giving a proper estimate

of the numerical accuracy for weak fields. In fact, in our example no loop

gives |I| > 3. As a consequence the calculation yields ImΓ1 = 0 for eE
m2 <

1
3

in

contrast to the exact result, while the corresponding statistical error is zero

(at least if the Fourier integral was performed analytically).

We will analytically calculate the distribution function of I in section

3.3.3, but we can already use the present result to gain a more concise idea
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of the limitations. The distribution function reads

P (I) =
π

4

1

cosh2(π
2
I)
. (3.29)

The proportion of loops with |I| larger than a certain value I0 is 2/(1+eπI0).

That means, for a given number of loops nL, the value I0, which is exceeded

by |I| for on average n loops, is

I0 =
1

π
ln
(

2
nL

n
− 1
)

. (3.30)

If n is the minimal number of loops that contribute information about the

background to the effective action to obtain a reasonable result, we find that

Emin = m2

eI0
is a lower bound for the treatable field strength. Unfortunately

Eq. (3.30) shows that I0 goes merely logarithmically with nL, which itself is

proportional to CPU time. This inhibits to downsize Emin considerably by

pure brute force.

Even though our approach so far was related to the constant-field case,

we do not expect to find less limitations for more complex background fields.

In general one can say, the loop cloud provided by the vloop algorithm does

not deliver enough direct information about weak-field scenarios. One option

is the modification of the distribution of paths in the loop ensemble, such

that there are more loops with larger |I|, and subsequent reweighting of

the Wilson loop values when calculating the expectation value. In the next

subsection we present a different method which guarantees exact results in

the weak field limit.

3.2.4 Weakest Fields: Pole Fit

In Eq. (3.14) we wrote the imaginary part of the effective action as sum over

the residues of the Wilson loop expectation value. The weaker the fields the

smaller the contribution of poles at large T , due to the damping mass term.

In the weak-field limit only the first pole contributes. In other words, if the

residues and positions of the first poles are known, the imaginary part of the

effective action can be predicted very precisely for weak fields.

For field configurations obtained by steady deformation of the constant

field, we expect the Wilson loop expectation value to emerge from the con-

stant field’s 〈W 〉 by steady deformation, too. Our strategy is the following:

Taking the exact Wilson loop expectation value for the constant field (3.13),
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we introduce several parameters to obtain a more general function of T . This

function is fitted to the numerical Wilson loop expectation values for non-

constant fields, defining the values of the parameters. Afterwards, the poles

of the fitted function are obtain analytically.

Of course it is important to make a reasonable choice for the introduced

parameters. We make the assumption, that for any field configuration the

poles of 〈W 〉 only differ from the constant-field poles in their position on the

real axis and the real part of the residuals. For each pole of (3.13) we will

introduce two parameters, controlling these quantities.

We can write TeE/ sin(TeE) as sum:

TeE

sin(TeE)
= 1 +

(TeE)2

π

∞
∑

k=−∞
k 6=0

(−1)k

k(TeE − πk)

= 1 +
∞
∑

k=−∞
k 6=0

(−1)k eE

πk

T 2

T − πk
eE

= 1 +

∞
∑

k=−∞
k 6=0

ak
T 2

T − bk
, (3.31)

with ak = (−1)k eE
πk

= Res(TeE cosec(TeE), T = bk)/b
2
k and bk = πk

eE
.

We use ak and bk as the above mentioned parameters and vary them to

fit Eq. (3.31) to the numerical Wilson loop expectation values.

Actually we do not fit (3.31), but a slightly simplified expression. 〈W 〉 is

always even in T , that means ak and bk are antisymmetric in k. Consequently

we can write

〈W 〉 = 1 + 2T 2

∞
∑

k=1

akbk
T 2 − b2k

. (3.32)

Of course, in practice the infinite sum has to be approximated by a finite

one, leaving us with a finite number of parameters.

Once the parameters are determined, the imaginary part of the effective

action is calculated as in (3.14):

ImΓ1 =
−1

(4π)2

∫

dx0 Im

∞
∑

k=1

1

bk
3 e

−m2bk(−πi)Res (〈W 〉, T = bk)

=
1

16π

∫

dx0

∞
∑

k=1

e−m2bk
ak

bk
. (3.33)
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exact values
numerical values
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Figure 3.7: The imaginary part of the effective Lagrangian for the constant

pure electric field: exact result in comparison with the numerical estimate

obtained by pole fitting. nL = 5000, N = 1000.

Figure 3.7 shows the absolute value of the effective Lagrangian obtained

by the pole-fitting procedure, using the same loop ensemble as in the previous

figures. For the same reason by which we rotated the T integration contour

onto the imaginary axis in 3.2.2, the fit-function (3.32) has been fitted to

〈W 〉 for imaginary T . We have used 15 values between 0 and TeE = i/2

and fitted ten parameters. That means we have truncated the progression

in the fit-function (3.32) after five terms. If procurable one should use more

terms, since in our fitting range the terms with k > 5 contribute up to 14%

to the complete sum. Larger fitting ranges mean even larger contributions.

Yet using more fitting parameters requires the use of more loops to reduce

the statistical error.

Despite the fact that we have used only five terms of the progression, the

values for the effective action are convincing. This arises from the fact that

the effective action is dominated by the first pole which is determined very

precisely by the fit. Apparently the terms of higher k compensate for the

truncation of the progression. Their poles are not correctly determined, but

they do not contribute to the effective action because of the damping mass
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term in (3.33).

The pole fitting procedure has no lower limit for the field strength E. On

the contrary, the weaker the field, the better it works, as the domination of

the effective action by the first pole increases. Stronger fields can be accessed

by considering more poles in the fit function, that is including terms of higher

k.

3.2.5 Conclusion

We presented three algorithms to compute the effective action for the con-

stant pure E field. Each has its own range of use: weak, medium and strong

fields, respectively. Now that we have subdued the constant electric field with

worldline numerics, we turn towards inhomogeneous field configurations.

3.3 The Sauter Potential

The Sauter Potential defines a spatial inhomogeneous but temporally con-

stant electric field, for which an analytical expression of the corresponding

total pair production is known. In Minkowskian space the potential reads

A0
M = −a tanh(kx1), (3.34)

Ai
M = 0, i = 1, 2, 3. (3.35)

The x1 component of the corresponding field is

E1
M =

ak

cosh2(kx1)
(3.36)

whereas the other components are zero (see Fig. 3.8). That means the field is

equally oriented in the whole space, in our coordinates in x1 direction which

is also the only direction in which the strength varies. The field is strongest

at x1 = 0, where it amounts to |E| = ak, and drops off on both sides. The

parameter k is a size parameter: its inverse k−1 determines the extent of the

Sauter potential in x1 direction.

The imaginary part of the corresponding effective action can be written

as an integral expression [39]:

ImΓ =
V

8π2

√
(ea)2−m2
∫

0

dp⊥p⊥

ea−
√

p2
⊥

+m2
∫

−ea+
√

p2
⊥

+m2

dp0 ln

(

1 − sinh(2πµ) sinh(2πµ)

sinh2(π(µ+ ν)) + cos2(πλ̃)

)

.
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Figure 3.8: The electric field corresponding to the Sauter potential.

Here, V denotes the space-time volume and we have used the following ab-

breviations:

µ, ν :=
1

2k

√

(p0 ± ea)2 − p2
⊥ −m2, (3.37)

λ̃ :=

√

1

4
−
(ea

k

)2

. (3.38)

For given parameters a and k, the integrals can be performed numerically,

e.g., by use of Mathematica. One qualitative property is apparent: the in-

tegration intervals vanish if |ea| = m. This reflects the fact that pairs are

produced only if particle and anti-particle are separated by a difference in

potential energy that is larger than the total mass of the pair. For the Sauter

potential, the potential energy differs between x1 = −∞ and x1 = +∞ by

2ea, which has to be compared to the mass of two particles 2m. This leads

to the condition |ea| > m. Otherwise ImΓ is zero.

3.3.1 Worldline Numerics: Preceding Advisement

In Euclidean space, the Sauter potential reads

A4 = −ia tanh(kx1), (3.39)

Ai = 0, i = 1, 2, 3. (3.40)
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Inserting the Sauter potential into the even part of the Wilson loop (2.36)

yields

We = cos

(

e

∫ 1

0

dt
√
T ẏ4(−i)a tanh

(

k
(√

Ty1 + x0

))

)

= cosh

(√
Tea

∫ 1

0

dt ẏ4 tanh
(

k
(√

Ty1 + x0

))

)

. (3.41)

In general, we have

tanh(x) →
{

1, for Rex→ ∞
−1, for Rex→ −∞ . (3.42)

Thus, in the limit Re
√
T → ±∞, the hyperbolic tangent in Eq. (3.41)

becomes a sign function. Speaking in terms of loop clouds: if the loop

cloud is expanded by a large factor Re
√
T , it does not realize the small-scale

information about the hyperbolic tangent in the range of the origin, but

only the large-scale information, which is the same as for the sign function

σ(k
√
Ty1). For the even part of the Wilson loop this means

We

|Re
√

T |≫1≈ cosh

(√
Tea

∫ 1

0

dt ẏ4σ(y1)

)

. (3.43)

Similarly to the constant field case discussed in section 3.2.2, We diverges for

|Re
√
T | → ∞. If |Re

√
T | becomes large, the expectation value 〈W 〉 = 〈We〉

will be dominated by the loop which maximizes
∫ 1

0
dt ẏ4σ(y1). The only way

to circumvent this, is to prevent |Re
√
T | from becoming large by choosing an

integration contour close to the negative real axis. Though with that choice,

the t integration of a given loop will hit the poles of the hyperbolic tangent,

if |T | goes to infinity. Thus we have to conclude, that we cannot compute the

Wilson loop expectation value for arbitrary large |T | with worldline numerics.

The straight forward approach to compute the effective action, evaluating

the Wilson loop expectation value and integrating over T afterwards, is not

feasible for the Sauter potential, as, for all possible integration contours, |T |
goes to infinity. Thereby, two of the three methods we have developed for

the constant pure electric field find no analogue for the Sauter potential:

both, the strong field algorithm, presented in section 3.2.2, and its variation

for weaker fields, section 3.2.3, use an explicit contour integration in the

complex T plane. In the following we will study the adaptability of the pole

fitting procedure. From the experimental view, this is the most interesting

one, since experimental realizations are far from reaching field strengths that

can be treated by the other methods.
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3.3.2 Pole Fit

The considerations of the preceding section taught us, that worldline nu-

merics provides the Wilson-loop expectation value only for T values from a

relatively small environment of T = 0. Thus the pole fit is restricted to a

small interval. Facing the numerous fitting parameters we used in 3.2.4, very

small statistical errors of the Wilson loop expectation values are required.

Some test runs show, that the fit is hardly feasible for loop clouds realiz-

able on common computers. Accordingly, we have to rethink the fit function

(3.32). It is rather discontenting that ten or more parameters are used but

only two of them are required for our final result, the imaginary part of

the effective action for weak fields. Starting from the analytical Wilson-loop

expectation value for constant E, we try to introduce only two parameters:

TeE

sin(TeE)
→ a

bT

sin(bT )
. (3.44)

The parameters a and b control position and residue of all poles simultane-

ously, in particular of the first pole. But for small T , the fit function has to

agree with the heat-kernel expansion, Eq. (2.40),

a
bT

sin(bT )
= a +

ab2

6
T 2 + · · · !

= 1 +
1

6
(TeE(x0))

2 + · · · , (3.45)

and as a consequence there is no freedom for adjusting the parameters. We

extend the fit function in 3.44 by adding a third parameter to obtain a bT
sin(bT )

+

c. With the knowledge of the heat-kernel expansion, two of the parameters

can be expressed by the third one, leaving us with only one parameter,

T (eE)2

b sin(bT )
+ 1 − (eE)2

b2
. (3.46)

Admittedly, one fitting parameter is not sufficient to obtain two characteris-

tics of 〈W 〉, the residue and the position of the first pole. We have searched

for further extensions of expression (3.46) involving more parameters, but

have not found an obvious candidate for a manifest fit function. The reason

lies in the existence of multi-local constraints: the pole structure of 〈W 〉 and

the small-T behavior have to be taken into account. Instead we will fit a

function to a more fundamental quantity than the Wilson-loop expectation

value, as described in the following.
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3.3.3 CDF Fit

This subsection describes the development of our most efficient and most

flexible algorithm that we recommend for general use. In the numerical

computation of the Wilson-loop expectation value 〈W 〉, the t integration

in Eq. (2.39) reduces the information of each unit loop y(t) to a single

scalar quantity. In section 3.2.2, where the constant E field is treated, we

have introduced I =
∫ 1

0
dt ẏ4y1. Let us analytically compute the probability

density function (PDF) P (I). We have

P (I) = 〈δ(I −
∫ 1

0

dt ẏ4y1)〉

=
1

N

∫

Dy δ(I −
∫ 1

0

dt ẏ4y1) e
−

R 1
0 dt ẏ2

4 . (3.47)

Using the Fourier representation of the δ function, one obtains

P (I) =

∫

dω

2π
eiωI 1

N

∫

Dy e−iω
R 1
0 dt ẏ4y1e−

R 1
0 dt ẏ2

4 . (3.48)

The path integral is exactly the worldline representation of the Wilson-loop

expectation value for a pure constant B field with TeB = ω. We can revert

to our previous result, Eq. (2.74):

P (I) =

∫

dω

2π
eiωI ω

sinhω

=
π

4

1

cosh2 π
2
I
. (3.49)

This expression is already normalized. The Wilson-loop expectation value in

terms of P (I) reads

〈W 〉 =

∫ ∞

−∞
dI P (I)W (I) (3.50)

=

∫ ∞

−∞
dI

π

4

1

cosh2 π
2
I

cosh(TeEI) (3.51)

=
TeE

sinTeE
, (3.52)

as it should, cf. Eq. (3.13).

For a non-constant field, we generalize the quantity I:

I :=
i
∫ 1

0
dt ẏA(

√
Ty + x0)√

TE0

. (3.53)
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Figure 3.9: The probability distribution of I for the constant field and the

integrand of the I integration in Eq. (3.51). For large TeE, the integrand

contributes to the integral mainly for I values with very small P (I).

The field strength E0 in the denominator is a priori arbitrary and has been

introduced to obtain a dimensionless quantity. In most cases we can use

E0 := |E(x0)|. For the constant E field, our generalized definition of I

conforms to the previous one. The Wilson-loop expectation value can be

computed as in Eq. (3.50) for any field configuration, if the probability

density function P (I) is known:

〈W 〉 =

∫ ∞

−∞
dI P (I)W (I) =

∫ ∞

−∞
dI P (I) cosh(TeE0I). (3.54)

The difficulty is that we face an overlap problem which we already encoun-

tered in section 3.2.2 and 3.3.1. There, it prevented us from computing the

Wilson-loop expectation value for large ReT and Re
√
T , respectively. In

Eq. (3.54), the probability density P (I) will always be concentrated around

I = 0 as in expression (3.49) in the constant-field case. However, if TeE0

becomes large, the maximum of the complete integrand moves to values of I

far from zero. Thus the relative overlap of P (I) and the integrand decreases

for increasing TeE0. This is demonstrated in Fig. 3.9 for the constant field,

where P (I) and the integrand for different values of TeE are plotted. This

is of importance since we use finite loop ensembles: with a shrinking overlap
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the integral is dominated by a decreasing number of loops. We solve this

problem by interpolating the numerically obtained probability distribution

by a functional form that also extrapolates implicitly to I values larger than

the largest value of the loop ensemble. In order to make contact with the nu-

merical data, we make use of a fitting procedure. As for the pole fit we take

the analytic result for the constant electric field, in this case P (I) = π
4

1
cosh2 π

2
I
,

and generalize it by introducing free parameters:

Pfit(I) = N
1

cosh2ν π
2
aI
. (3.55)

The two positive parameters a and ν control the two main features of the

probability density function Pfit(I), the width and the sheerness, respectively.

The normalization constant N is a function of a and ν. The constraint
∫∞
−∞ dI Pfit(I) = 1 gives

N =

(

∫ ∞

−∞
dI

1

cosh2ν π
2
aI

)−1

=

√
πaΓ(ν + 1

2
)

2Γ(ν)
, (3.56)

where Γ denotes the Euler gamma function.

In contrast to prior approaches, we are able to perform the I integral

analytically, if a and ν are determined. This is advantageous as the integral

in Eq. (3.54) is only well defined for TeE0 smaller than a certain value. The

exponentially increasing cosine hyperbolicus has to be damped by the prob-

ability distribution P . In the constant-field case, for example, this requires

TeE < π, otherwise the integral (3.51) is divergent. Nevertheless, the result

for small TeE has a well-defined analytic continuation into the whole com-

plex plane: expression (3.52) holds for all values of TeE, except for the pole

positions. In the pole-fit algorithm of section 3.2.4, we have computed the

I integral numerically for small TeE, and have tried to find a continuation

afterwards by fitting an analytic function to the computed values. Now, with

the analytic integration, the continuation of the analytic result is immediate.

To obtain 〈W 〉 for a given T , we apply the following procedure: I is

computed for every loop of our ensemble. The fraction of loops with |I|
smaller than a given value |I0| provides us with an estimate for the cumulative

density function (CDF), defined by

D(|I0|) =

∫ |I0|

−|I0|
dI P (I) = 2

∫ |I0|

0

dI P (I). (3.57)
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We compute the estimate of D(|I0|) for several values of |I0| and fit them

with the CDF corresponding to the PDF in Eq. (3.55),

Dfit(|I0|) = 2

∫ |I0|

0

dI Pfit(I) = 2

∫ |I0|

0

dI N
1

cosh2ν π
2
aI
, (3.58)

to determine the parameters a and ν. Figure 3.10 shows an example of a

constant field, analytic result

Sauter, Dfit(|I0|)
Sauter, numerical estimate
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Figure 3.10: Example of a fitted cumulative density function (CDF) Dfit(|I0|)
at T = 10 in the centre of a Sauter potential, compared to the numerical

estimate. The exact CDF for the constant field is also shown for comparison.

Parameters of the Sauter potential: ea = 3
2
m, k = 2

3
m. Parameters of the

loop cloud: nL = 100000, N = 1000ppl.

fitted CDF for the Sauter potential compared to the numerical estimate.

Even though our ansatz (3.55) is very simple, the agreement is satisfactory.

The figure also shows the exact CDF for the constant field,

D(|I0|) = 2

∫ |I0|

0

dI
π

4

1

cosh2 π
2
I

= tanh(
π

2
|I0|). (3.59)

In a final step, the probability density function Pfit with the parameters pro-

vided by the fit is inserted into Eq. (3.54) and the I integration is performed
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analytically,

〈W 〉 =

∫ ∞

−∞
dI N

1

cosh2ν π
2
aI

cos(iT eE0I)

= N
4ν

πa

Γ(ν + TeE0

πa
)Γ(ν − TeE0

πa
)

Γ(2ν)
. (3.60)

The appearance of the gamma function, which has poles on the real axis,

gives rise to the pole structure of the Wilson loop-expectation value. The

latter is studied in more detail in the next section.

3.3.4 Application of the CDF Fit

Pole Positions

To compute the imaginary part of the effective action, we first have to de-

termine the pole positions of the Wilson-loop expectation value Eq. (3.60),

at least the position of the first pole on the real T axis.

The gamma function Γ(x) has simple poles on the real negative axis

at x = 0,−1,−2, · · · . For positive T , the second gamma function in the

numerator of (3.60) is responsible for the pole structure of 〈W 〉. Poles occur,

if

ν − TeE0

πa
= −l (3.61)

with l = 0, 1, 2, · · · .
It should be stressed, that Eq. (3.60) does not reflect the full T depen-

dence of 〈W 〉. The I values have to be computed for a certain T value.

The probability density function P (I) depends on this value and so do the

parameters a and ν which appear in Eq. (3.60) and Eq. (3.61). Hence the

poles have to be searched for, repeating the CDF-fit procedure for different

values of T .

An adequate, though optimizable, search routine is given by the following:

As a first guess, we choose for the T value the pole position Tp1 of 〈W 〉 for

a constant E field with field strength E0 corresponding to, for instance, the

local field strength of a given point x. The fitted parameters a and ν are

then used in Eq. (3.61) to obtain a better estimate for the pole’s T value,

Tp2 =
πa(Tp1)

eE0
(ν(Tp1) + l). (3.62)
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When searching for the first pole, we use l = 0, additional poles are obtained

by using higher l values. This step is repeated iteratively, until convergence

is reached,

Tpi+1 =
πa(Tpi)

eE0
(ν(Tpi) + l). (3.63)

The iteration provides us with an estimate of the pole position Tpol, but

is not well suited for error propagation. A simple method for still obtaining

a reliable estimate for the statistical error of the pole position and moreover

for any other secondary quantity of 〈W 〉 is the jackknife analysis, that is

reviewed in appendix A.2.

Once the position T of the first pole is determined, it gives a first infor-

mation about the corresponding imaginary part of the effective action. The

larger the T value, the more the contribution of the pole’s residue to the

effective action is suppressed by the factor e−m2T , cf. Eq. (3.14). We expect

large T values, if small imaginary parts of the effective action are anticipated

and vice versa.

constant-field limit
Sauter
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Figure 3.11: Position of the first pole of 〈W 〉 in the centre of a Sauter po-

tential with maximum field strength m2

e
versus the width parameter k. The

dashed line marks the analytic result for the constant-field limit E ≡ m2

e
at

T/m2 = π. Parameters of the loop cloud: nL = 100000, N = 1000ppl.

For the Sauter potential we know the imaginary part of the effective
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action to vanish if ea becomes equal to m. Consider a Sauter potential with

the maximal field strength Emax = ak ≡ m2

e
. We start with the limit k → 0,

i.e., a constant field of strength Emax with the first pole at T/m2 = π. When

increasing the parameter k, while keeping Emax fixed, the width of the field

distribution decreases. Consequently we expect the pair production rate to

decrease, whereas the T value of the pole position should increase. When

k reaches k = m, which implies ea = m and a vanishing pair production,

the T value should approach infinity, such that no poles of the Wilson-loop

expectation value should be detectable. Figure 3.11 shows the result of the

CDF-fit procedure for the position of the first pole of 〈W 〉 in the centre

x1 = 0 of the described Sauter potential versus the width parameter k. As

expected, we recover the constant field result in the limit k → 0 and the T

value of the pole position increases with an increasing k. For k = m, we

have expected it to go to infinity. Although we still find a pole in that case,

the corresponding T value as well as its error estimate is very large. For

T/m2 = 30, the damping mass term e−m2T has the order of magnitude 10−15

which can be regarded as the numerical inaccuracy of a zero result.

This is an important and successful test of our CDF-fit procedure. Since

the choice (3.55) for the fit function represents a potentially biassed assump-

tion for the exact distribution, we have introduced a systematic error in our

algorithm. This error cannot be controlled a priori, since the exact form of

P (I) and its important features cannot be predicted for an arbitrary inho-

mogeneous field. But, as this test case for the Sauter potential demonstrates

surprisingly accurately, the systematic error of our procedure is vanishingly

small even in an extremal case. We consider this as a strong evidence for the

reliability of our procedure.

Residues

In order to determine the imaginary part of the effective action using Eq.

(3.14), in addition to the positions of the poles of the Wilson-loop expectation-

value, we need to determine their residues. We have

Res

(

Γ

(

ν − TeE0

πa

)

, Tpol

)

=
Res(Γ,−l)

d
dT

(

ν − TeE0

πa

)∣

∣

Tpol

=
(−1)l

l! d
dT

(

ν − TeE0

πa

)∣

∣

Tpol

. (3.64)
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Thus Eq. (3.60) yields

Res(〈W 〉, Tpol) = N
4ν

πa

Γ(ν +
TpoleE0

πa
)

Γ(2ν)

(−1)l

l! d
dT

(

ν − TeE0

πa

)∣

∣

Tpol

. (3.65)

For the first pole, i.e., l = 0 and ν = TeE0

πa
, this equation reads

Res(〈W 〉, Tpol) = N
4ν

πa

1
d

dT

(

ν − TeE0

πa

)∣

∣

Tpol

. (3.66)

The derivative in the denominator can be approximated by a difference quo-

tient. That means, after we have found the T value of the pole, we have to

perform one last CDF fit to obtain a and ν for a slightly shifted T value.

Imaginary Part of the Effective Action

We can now use the results obtained in the preceding sections to evaluate

Eq. (3.14). The number of poles that have to be taken into account depends

on the field configuration. For an inhomogeneous field distribution with

maximal field strength Emax, the poles have larger T values than for a field

of constant strength Emax. Consequently their residues are suppressed more

and using the same number of poles one would use for the constant field yields

a reliable estimate. In the case of a constant field E ≡ m2

e
, 〈W 〉 has poles at

T/m2 = πl, cf. Eq. (3.13). The residues’ absolute values are proportional

to T . Due to the factor e−m2T

T 3 in Eq. (3.14), the contribution of the second

pole to ImΓ is about 1% of that of the first pole and can be neglected if

the statistical error is larger than 1%. Thus, to compute the imaginary part

of the effective action for the Sauter potential of the pole-position plot Fig.

3.11 with the maximal field strength Emax = m2

e
, we only take the first pole

into account.

Before we compute the imaginary part of the complete effective action,

let us first study the corresponding density ImLeff in the centre of the Sauter

potential, which is closely related to the pole position of the Wilson-loop

expectation value shown in Fig. 3.11. Figure 3.12 shows ImLeff at x1 = 0

against the width parameter k. It goes to zero, when k reaches m, despite

the fact, that the field strength at x1 = 0 is kept constantly equal to m2

e
.

This clearly demonstrates the nonlocal nature of Leff , which comes from

the fact, that a loop cloud, sitting in the centre of the Sauter potential,
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Figure 3.12: The imaginary part of the effective Lagrangian in the centre of a

Sauter potential with maximal field strength m2

e
versus the width parameter

k. The dashed line marks the analytically obtained contribution of he first

pole to |ImLeff | for the constant field limit. nL = 100000, N = 1000 ppl.

gathers information not only at its centre of mass, but also from the centre’s

neighbourhood. There the field gets weaker, when k increases.

The density ImLeff has to be integrated over all space time, in order to

obtain ImΓ. Only the x1 integration has to be performed numerically, as

the problem is translationally invariant in the other directions. Figure 3.13

shows the x1 dependence of ImLeff for k = 0.4m and Emax ≡ ak = m2

e
.

It is compared to the effective Lagrangian obtained analytically, if the field

is assumed to be locally constant. Again we notice a nonlocal behaviour:

the locally constant field approximation is literally ”washed-out” by the loop

cloud. Worldline numerics yields smaller values in the centre of the poten-

tial, whereas it gives larger values at a distance from x1 = 0. Finally, Fig.

3.14 shows ImΓ
L2T

after the numerical x1 integration compared to the Nikishov

result. With increasing width of the potential, which means an increasing

quotient m/k, the imaginary part of the effective action and therewith the

pair-production rate increases. The agreement with Nikishov’s result is sat-

isfactory and the vanishing pair production for ea = m is reproduced. To

better visualize these two points, the same quantities as in Fig. 3.14 are plot-
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Figure 3.13: Spatial distribution of the effective Lagrangian for a Sauter

potential. The numerical result is compared to the locally constant field ap-

proximation that overestimates the true result by up to ∼ 50%. Parameters

of the Sauter potential: k = 0.4m, Emax = m2

e
. Parameters of the loop cloud:

nL = 100000, N = 1000 ppl.

ted as proportion of the result of the locally constant field approximation in

Fig. 3.15. The numerical values reproduce the analytic result for all k while

the locally constant field approximation only holds for very small k values,

i.e., small spatial field variation.

3.3.5 Conclusion

With the CDF fit procedure we have developed a powerful numerical algo-

rithm to compute the imaginary part of the effective action. The procedure

is applicable for arbitrary potentials. The quality of its result depends on

how good the ansatz Pfit in Eq. (3.55) matches the real probability distri-

bution function for the given problem. As a generalization of the constant

field result and with two free parameters controlling the main features of

the PDF, our choice of Pfit appears to represent a very reasonable approach,

which is strongly supported by the results for the Sauter potential. Thus we

are prepared to turn towards field configurations for which reliable analytical

treatments have not been developed so far.
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Figure 3.14: The imaginary part of the effective action of a Sauter potential

versus the width 1/k: comparison of the numerical result with Nikishov’s

analytic expression. nL = 100000, N = 1000 ppl.

3.4 Sine Potential

In this section we study the superposition of a sine potential with a constant

field potential. This configuration is of general interest, as it is representa-

tive for a class of field configurations, which are a superposition of a slowly

varying field–in our example the constant field–and high-frequency modes. A

very important aspect is the dependence of the pair-production rate on the

frequency of the small scale field-structures. We will use our simple example

configuration to study this question with the intention to identify conclusions

of more general validity.

In Minkowski space the potential is given by

A0
M = −a sin kx1 − E0x

1, (3.67)

Ai
M = 0, i = 1, 2, 3. (3.68)

It corresponds to an E field in x1 direction with field strength

E1
M = E0 + ak cos kx1, (3.69)

which reaches the maximal field strength Emax = E0 + ak. By studying

the dependence of the pair production on the frequency k of the sine, we
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Figure 3.15: The imaginary part of the effective action of a Sauter potential

as fraction of the locally constant field approximation ImΓlc versus the width

parameter k: comparison of the numerical result with Nikishov’s analytic

expression. nL = 100000, N = 1000 ppl.

obtain information about the qualitative and quantitative influence of spatial

inhomogeneities.

Before performing the CDF algorithm, let us shortly discuss the two ex-

treme cases k = 0 and k → ∞. For small k and a slowly varying field, the

effective action density is well approximated if the field is regarded as locally

constant using the Schwinger formula. In the opposite limit, if k goes to in-

finity and the field fluctuates rapidly around the constant field E0, we expect

to obtain the pair production of this constant field. Heuristically, the ”size”

scale λC ≈ 1
m

of a virtual pair cannot resolve the spatial inhomogeneities with

k ≫ m. Thus the pair production rate should be obtainable by averaging

over the field strength and computing the effective action afterwards. On the

other hand, for small k, the calculation corresponds to first computing the

effective action density and averaging in the second place, to obtain the pair

production per space-time volume. The differing pair-production rate that

we expect for the two extreme cases, immediately raises the question how it

devolves from one value to the other and in which range of k the transition

takes place.
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Figure 3.16: Position of the first pole of 〈W 〉 at a maximum of the field

strength. With increasing frequency k, the pole moves from the constant

field limit E ≡ Emax to the limit E ≡ E0. Parameters of the field: E0 =

0.2m2

e
, Emax = 0.3m2

e
. In between, it develops an unexpected maximum

corresponding to a minimum of the local production rate. Parameters of the

loop cloud: nL = 100000, N = 1000 ppl.

As an example, we study a field with E0 = 0.2m2

e
and Emax = 0.3m2

e
. In

this case, the pair production rate is dominated by the first pole contribution,

and as in the previous section we can safely neglect the remaining poles.

Figure 3.16 shows the position of the first pole of the Wilson loop expectation

value in the centre of a maximum of the field strength. For small k, the

constant-field limit E ≡ Emax is reproduced. For large k, the pole position

converges to the result of the averaged field E ≡ E0. In between, the curve

is not monotonically increasing, as one might have expected, but reaches T

values which are significantly larger than in both constant-field limits. As a

consequence, the corresponding density of the imaginary part of the effective

action will be smaller than in the constant-field limit E ≡ E0. One might

assume, that if the density at a maximum of the field strength is smaller than

for the averaged field, the total pair production will also be smaller. Before

resolving this question, let us study the origin of the somewhat surprising

behaviour of the pole.
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Figure 3.17: Sketch of a loop cloud at a maximum of the field strength.

For small frequencies, it detects only the maximum (A). After increasing the

frequency, the two nearest minima dominate (B). For larger frequencies the

cloud encounters further maxima (C), until it perceives an averaged field (D).

Starting with the limit k → 0, a loop cloud sitting at a maximum detects

a constant field of strength Emax. A sketch of this scenario if given in Fig.

3.17.A. If k is increased and the wavelength of the sine becomes shorter,

the loop cloud more and more overlaps with the minima on each side of the

maximum and the pole moves to larger T values. If k exceeds a certain

value, in our example at about k = 0.8m, the two close-by minima dominate

the Wilson loop expectation value, Fig. 3.17.B, and despite the maximum

in the centre of the loop cloud, the pole is at a larger T value than for the

averaged field. Not until the loop cloud approaches the adjacent maxima,

Fig. 3.17.C, the T value becomes smaller again, to finally converge to the

value of the averaged field, Fig. 3.17.D. Since the Wilson loop expectation

value at a maximum of the field strength can be dominated by the adjacent

minima, also the inverse situation can occur at a minimum, where the result

can be dominated by the two adjacent maxima. In this case, the first pole

of 〈W 〉 is at a smaller T value than for the averaged field, leading to a

larger imaginary part of the effective Lagrangian. This inversion is shown

in Fig. 3.18, where the spatial distribution of the imaginary part of the
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Figure 3.18: Spatial distribution of the imaginary part of the effective-

action density for the sine potential with k = 1.8m, compared to the lo-

cally constant-field approximation and the constant field limit E ≡ E0.

nL = 200000, N = 1000 ppl.

effective action for k = 1.8m is plotted, compared to the locally constant-

field approximation and the constant-field limit E ≡ E0.

Figure 3.19 shows the imaginary part of the total effective action per

space-time volume for our example configuration versus the frequency k. In

contrast to its density at x0, ImΓ does not fall below the result for the aver-

aged field. Starting with the result of the locally constant field approximation

at k = 0, we obtain the constant field limit E ≡ E0 for large frequencies.

It is remarkable, that the imaginary part of the effective action reaches the

value of the averaged field for k values as small as about k = m, whereas

its density still fluctuates spatially for even larger k values, as we have seen

in Fig. 3.18. The fluctuations cancel each other, so that they have no effect

on the integrated quantity. The numerical accuracy does not eliminate the

possibility of a k-dependent structure for k values larger than m. According

to the values of Fig. 3.18, one actually might assume a slight increase of the

pair production for k > m, until it falls back to the result for the averaged

field if k/m → ∞. To definitely clarify this, the PDF fit has to be rerun

with a larger loop ensemble, at the expense of CPU time. However, the
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Figure 3.19: The imaginary part of the total effective action per space-time

volume against the frequency k. The dashed lines mark the locally constant-

field approximation and the result for the averaged field E ≡ E0, respectively.

nL = 200000, N = 1000 ppl.

present result shows, that any possible k dependence for k > m has to be

relatively small and the averaged-field approximation yields good results in

this range. On the other hand, Figure 3.19 shows that the locally constant

field approximation yields proper results only for very small frequencies, i.e.,

a very slowly varying field.

We obtained two remarkable results: Firstly we found, that for certain

values of k the imaginary part of effective Lagrangian is largest at the minima

of the field strength and smallest at the maxima. This is very notable, since

the effective Lagrangian corresponds to the local pair-production rate. That

means, we expect more pairs to be produced where the field is weakest than in

regions of maximal field strength! Beyond the quantitative result, the under-

lying worldline formalism provides us with a vivid qualitative understanding

of this nonlocal phenomenon in terms of loop clouds. Our second major

result is the range of validity for the averaged field approximation, where

the small-scale structures of the field are averaged out and the remaining

field is treated as locally constant. We have expected it to be valid, if the

wavelength of the sine becomes much shorter than the Compton wavelength
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of the produced particles, i.e., if k ≫ m. Instead, we found it to provide

satisfying results for k & m. Despite the fact that we have treated only a

special field configuration, we can conclude that, for any field consisting of

a slowly varying component of the same order of magnitude as our constant

field E0 = 0.2m2

e
and spatial fluctuations with an amplitude of about 0.1m2

e
,

the averaged field approximation is valid, provided that the characteristic

length scale of the fluctuations is smaller than the Compton wavelength of

the created particles.

3.5 Steepest-Descent Approach to Pair Pro-

duction

A method to approximately obtain the pair production on the worldline

based on instanton techniques has been presented in [47]. The basic idea is

to interchange the T integral and the path integral in expression (2.29) and

compute both in the steepest-descent approximation. After rescaling T and

τ , Eq. (2.29) reads

Γ1 = −
∫ ∞

0

dT

T
N
∫

Dxe−m2

2
T− 1

2T

R 1
0

dτẋ2−ie
H

dxA (3.70)

= −N
∫

Dxe−ie
H

dxA

∫ ∞

0

dT

T
e−(m2

2
T+ 1

2T

R 1
0

dτẋ2). (3.71)

The exponent in the T integral has a minimum at T 2
0 =

∫

ẋ2/m2. Assuming

m2
∫ 1

0
ẋ2 ≫ 1, the steepest-descent approximation yields

Γ1 = − 1

m

√

2π

T0
N
∫

Dx e−S, (3.72)

where we introduced the action S = m
√

∫

ẋ2 + ie
∮

dxA. This action is

stationary if
mẍµ
√

∫

ẋ2
= −eFµν ẋν . (3.73)

For the constant E field, F34 = −F43 = E, the action has a minimum for the

worldline instanton

xcl =
m

eE
(0, 0, cos 2πτ, sin 2πτ) (3.74)



62 CHAPTER 3. PAIR PRODUCTION IN SCALAR QED

with S[xcl] = πm2

eE
. This is already the correct exponent of the first term in

the Schwinger pair-production rate Eq. (3.15). The quadratic order of the

expansion of S about xcl gives the correct imaginary prefactor, as shown in

[47], and the steepest-descent approximation yields

ImΓ =
(eE)2

16π2
e−π m2

eE , (3.75)

which is exactly the first-pole contribution to the Schwinger pair-production

rate. Further terms of the series are obtained with multi-instantons with

higher winding numbers.

It is very remarkable that one single circular path gives the correct expo-

nential dependence of the first term of the Schwinger pair-production rate,

whereas the small fluctuations around this path lead to the correct imag-

inary prefactor. In comparison to this, the loops we use for our numerical

computations seem to be extraordinary complex. Not a single loop in our en-

sembles has resemblance with a circle or fluctuations thereof. This gives rise

to the conjecture that the computation of the imaginary part requires very

little information about the shape of the loops. We expect that we should

be able to extract the instantonic content of our loops by a suitable cooling

procedure. Since cooling removes “UV noise”, i.e., high-frequency fluctua-

tions of the loops, only low-frequency information seems to be relevant for

pair-production. This agrees with our observation that pair production is

induced by “large” loops that can acquire enough energy in the E field.

Therefore, it is well possible that a different loop discretization which op-

timizes IR properties allows for an even more efficient computation of the

imaginary part. A further investigation of this topic might lead to a more

profound understanding of worldline numerics.



Chapter 4

Conclusions and Outlook

Pair production in quantum field theory is a vital subject both in experi-

mental and in theoretical physics. However, the application of established

theoretical methods is restricted to special cases. In this thesis we have de-

veloped a new universal approach. It is based on the combination of the

worldline formalism with Monte Carlo techniques.

We have used the constant pure electric field in scalar QED as a laboratory

for the development of an algorithm to compute pair-production rates in more

general backgrounds. However, during the treatment of this simple example,

we have come across a result of general importance. As we have noticed

in section 3.2.3, the use of pure worldline numerics for weak electric fields

is limited by the size of the employed loop ensemble. Only unit loops that

exceed a certain minimal extension contribute to the pair production: the

integral I =
∫ 1

0
dtẏ4y1 has to fulfill the condition |I| > Ecr/E. In a finite

loop ensemble the |I| values are bounded, so that for a sufficiently small

field strength E no loop at all contributes to the pair-production rate. To

still access weak field configurations, only very few reasonable assumptions

of physical nature have been necessary to deduce relevant information from

the finite loop ensemble.

Our efforts have resulted in a universal algorithm, the CDF-fit proce-

dure, which has been introduced in section 3.3.3. With use of this algo-

rithm, we have not only recovered Nikishov’s analytic result for the total

pair-production rate in a Sauter potential, but moreover we have computed

the distribution of the local pair-production rate for this classic case. The

CDF-fit algorithm is not restricted to any symmetry of the given background

potential. In fact, it is applicable for arbitrary potentials.

63
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As an example we have applied the developed CDF-fit algorithm to the

potential of a constant electric field superimposed by a sine potential. This

field configuration is representative for a whole class of fields with large-scale

structures and small scale fluctuations. Concerning the local pair-production

rate, for an appropriate frequency of the sine we found the remarkable situa-

tion, in which the rate is largest in the minima of the field strength whereas

it is smallest where the field is strongest. We have also studied the total pair

production rate as a function of the sine’s frequency. For small frequencies,

our numerical result agrees with the derivative expansion to lowest order.

More remarkable is the behaviour for high frequencies: already for relatively

large wave lengths of the same order of magnitude as the Compton wave

length of an electron, the result of the CDF-fit algorithm agrees with the

pair-production rate corresponding to the averaged field. This finding sug-

gests, that for many field configurations the correct pair-production rate is

obtained by averaging out small-scale fluctuations of the background field to

perform a derivative expansion on the averaged field.

So far, we have concentrated on pair production in scalar QED. For the al-

gorithms we developed for the constant field, a generalization to spinor QED

is a straightforward task. The extra term (2.78) has to be taken into ac-

count when computing the Wilson loop. However, in the CDF-fit algorithm

the Wilson loop values are never computed explicitly. A straightforward

(though CPU consuming) generalization is nevertheless possible by deter-

mining the CDFs depending now on two variables: the quantity I, as before,

and the additional spin-field coupling term. The total result then follows by

integrating over the distributions of both quantities.

As already noted, the CDF-fit algorithm is applicable for arbitrary po-

tentials. This also includes time dependent potentials. But, as we have

performed all calculations in Euclidean space, the potential must be known

on the imaginary time axis. Provided that the time dependence of the po-

tential is given analytically, the CDF-fit should be of use when studying time

dependent fields.

Our approach yields the instantaneous pair-production rate, back-reactions

and memory effects are neglected. However, as we have mentioned in the in-

troduction, the results of our algorithm can be used as input for transport

equations, which take these effects into account.

From a technical perspective, we have been able to solve a strong “over-

lap” problem by extrapolating the probability distribution of I to large val-
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ues. Similar approaches can be useful to tackle overlap problems that occur

in a different context. Also the ability of our algorithm to compute the imag-

inary part of functional determinants should be of general numeric interest,

for instance, for fermionic determinants in thermal field theory with nonzero

chemical potential.
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Appendix A

Numerical Tools

A.1 The VLoop Algorithm

Let us review the vloop algorithm that was originally introduced in [30].

It is based on a linear variable transformation {yk} → {v̄k}, such that the

discretized distribution (2.61) becomes purely Gaußian. These new variables

are velocity-like and diagonalize the quadratic form in the exponent.

Because of the δ function in Eq. (2.61), only N − 1 coordinates per loop

are independent. Defining
∫

Dy =
∫∞
−∞

N
∏

i=1

dyi, we may perform, e.g., the yN

integration using the δ function,

∫

Dy P
[

{yk}
]

. . .

=

∫ N−1
∏

i=1

dyi e
[−N

4 (
PN−1

i=2 (yi−yi−1)2+(2y1+y2+···+yN−1)2+(y1+y2+···+2yN−1)2)] . . .

=:

∫ N−1
∏

i=1

dyi e
[−N

4
Y ] . . . , (A.1)

where the dots represent an arbitrary y-dependent operator, and we intro-

duced the abbreviation Y for the quadratic form. In order to turn the expo-

nential into a product of simple Gaußians, we define N − 1 new velocity-like

variables,

v̄1 :=
3

2
y1 + y2 + y3 + · · · + yN−2 +

3

2
yN−1,

vi := yi − yi−1, i = 2, 3, . . . , N − 1. (A.2)

67



68 APPENDIX A. NUMERICAL TOOLS

For notational simplicity, it is useful to also introduce the auxiliary variable,

vi,j = vi + vi−1 + · · ·+ vj+1 ≡ yi − yj, for i ≥ j = 1, 2, . . . , N − 1, (A.3)

such that the exponent Y can be written as

Y =

N−1
∑

i=2

v2
i +

(

v̄1 −
1

2
vN−1,1

)2

+

(

v̄1 +
1

2
vN−1,1

)2

= 2v̄2
1 +

1

2
v2

N−1,1 +
N−1
∑

i=2

v2
i . (A.4)

We observe that the variable v̄1 now appears quadratically in the exponent

as desired. The same has still to be achieved for v2 . . . vN−1. For this, we

note that vN−1,1 = vN−1 + vN−2,1 by definition (A.3). Defining

v̄N−1 := vN−1 +
1

3
vN−2,1, (A.5)

we indeed obtain for the exponent Y

Y = 2v̄2
1 + v2

N−1 +
1

2
(vN−1 + vN−2,1)

2 +

N−2
∑

i=2

v2
i

= 2v̄2
1 +

3

2
v̄2

N−1 +
1

3
vN−2,1 +

N−2
∑

i=2

v2
i , (A.6)

where v̄2
N−1 also appears quadratically. We can continue this construction by

defining

v̄N−i := vN−i +
1

i+ 2
vN−i−1,1, i = 1, . . . , N − 2 , (A.7)

which turns the exponent Y into a purely Gaußian form:

Y = 2v̄2
1 +

3

2
v̄2

N−1 +
4

3
v̄2

N−2 + · · ·+ i+ 2

i+ 1
v̄2

N−i + · · ·+ N

N − 1
v̄2
2. (A.8)

The last step of this construction consists in noting that we can substitute

the integration variables according to

N−1
∏

i=1

dyi = J

N−1
∏

i=2

dvidv̄1 = J̄

N−1
∏

i=1

dv̄i ≡ Dv̄ (A.9)
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with nonzero but constant Jacobians J , J̄ , the value of which is unimportant

for the calculation of expectation values. This allows us to write the path

integral Eq. (A.1) as

∫

Dy P
[

{yk}
]

. . . = J̄

∫

Dv̄ exp

[

−N
4

(

2v̄2
1 +

N−2
∑

i=1

i+ 2

i+ 1
v̄2

N−i

)]

. . .

≡ J̄

∫

Dv̄ P
[

{v̄k}
]

. . . , (A.10)

where P
[

{v̄k}
]

can now be generated straightforwardly with the Box-Müller

method [48].

For the construction of unit loops (“v loops”), the above steps have to be

performed backwards. The recipe is the following:

(1) generate N−1 numbers wi, i = 1, . . . , N−1 via the Box-Müller method

such that they are distributed according to exp(−w2
i );

(2) compute the v̄i, i = 1, . . . , N − 1, by normalizing the wi:

v̄1 =

√

2

N
w1,

v̄i =
2√
N

√

N + 1 − i

N + 2 − i
wi, i = 2, . . . , N − 1 ; (A.11)

(3) compute the vi, i = 2, . . . , N − 1, using

vi = v̄i −
1

N + 2 − i
vi−1,1, where vi−1,1 =

i−1
∑

j=2

vj ; (A.12)

(4) construct the unit loops according to

y1 =
1

N

(

v̄1 −
N−1
∑

i=2

(

N − i+
1

2

)

vi

)

,

yi = yi−1 + vi, i = 2, . . . , N − 1,

yN = −
N−1
∑

i=1

yi ; (A.13)

(5) repeat this procedure nL times for nL unit loops.
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The formulas in step (4) can be checked straightforwardly by inserting

the definitions of the vi’s and v̄1.

This v-loop algorithm allows us to generate unit loops very efficiently and

works for an arbitrary number of points per loop N . For further techniques

to generate loop ensembles with the desired distribution see [30].

A.2 Jackknife Error Estimation

Let us briefly review the jackknife method. Consider a not very large sample

of Ns independent measurements of a primary quantity A. The measured

values are A1, A2, · · · , ANs. The best estimate of an arbitrary secondary

quantity y is y(Ā), where Ā denotes the arithmetic average of the sample.

To obtain an error estimate for y(Ā) we compute the jackknife averages ĀJi,

which are defined as the averages of the samples obtained by omitting a single

measurement Ai from the original sample. We get Ns jackknife estimates

y(ĀJi) with the average ȳJ . The variance of y is then estimated by Ns − 1

times the variance of the jackknife estimates,

σ2 =
Ns − 1

Ns

Ns
∑

i=0

(y(ĀJi) − ȳJ)2. (A.14)

In our context we apply this method as follows. The loop ensemble is split

into Ns subensembles. The CDF of the complete loop ensemble then is the

average of the subensembles’ CDFs which correspond to the measurements

A1, A2, · · · , ANs. The jackknife estimates of a secondary quantity like the

pole position are computed by omitting one subensemble from the complete

ensemble and rerunning the procedure used to obtain the secondary quantity.

In case of the pole search, this would imply running the search routine Ns

times. But for a reliable error estimate one should use Ns ≥ 50. If the pole

position has the same order of magnitude as in the case of the constant E

field, its error is about the same as the error of the estimated position in

the last iteration of the search. To obtain this quantity, we only have to

run one fitting procedure for each jackknife estimate. However, if a pole is

found at a T value significantly larger than in the case of a constant E, this

simplification gives too small error estimates.
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als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den ...................... .....................................
Unterschrift


