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Abstract

While quantum electrodynamics (QED) is arguably the most attested theory in physics,
perturbation theory suggests that the running gauge coupling diverges at a finite Landau
pole, albeit at a regime ∼ 10286 eV far beyond the electroweak scale where the prediction is
modified by a non-Abelian gauge symmetry. Nonetheless, the fundamental inconsistency of
pure QED as an interacting theory is confirmed by lattice simulations and non-perturbative
functional methods.

Recently, it has been shown that well-defined ultraviolet (UV) completions can be accom-
modated by including the next-to-leading-order Pauli operator of canonical dimension 5.
This spin-field coupling term may be rendered relevant by quantum fluctuations, resulting
in non-trivial fixed points of the non-perturbative functional renormalization group (FRG).
One of these has been connected by a line of constant physics to phenomenological values
of the gauge coupling and anomalous electron magnetic moment.

In this work, we apply FRG techniques to investigate whether such asymptotic safety
scenarios are consistent with the small fermion masses of the Standard Model due to the
Higgs mechanism. In particular, we consider the Nambu-Jonas-Lasinio (NJL) subspace of
dimension-6 four-fermion operators, a simpler effective model for chiral symmetry breaking
in quantum chromodynamics. While chiral symmetry is already explicitly broken by the
Pauli term, divergences in the NJL couplings still herald dynamical generation of masses
at a large UV scale.

Deriving the RG flow equations for the NJL couplings, we first consider a natural single-
channel approximation in which all dependence on flavor number drop out incidentally.
The observed fixed point collisions exclude the possibility of physically relevant asymptotic
safety scenarios with light fermions. A more interesting case is given by a flavor-dependent
two-channel model. For flavor number larger than one, we observe IR-stable fixed points,
which safeguard against dynamical mass generation for UV values tuned in the appropriate
phase, without introducing further physical parameter to the asymptotic safety scenarios
in the gauge/Pauli sectors. Such fixed points persist despite the fermionic anomalous
dimension rendering the NJL couplings perturbatively marginal.

The discovery of additional fixed points with relevant directions may extend asymp-
totic safety to the NJL sector, but the large deviations from canonical scaling necessitate
further investigation by bosonization of the four-fermion interactions.
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Chapter 1

Introduction

In quantum and statistical field theories, the renormalization group (RG) describes the
running coupling upon coarse-graining of UV degrees of freedom. A well-known exam-
ple is the gauge coupling e in quantum electrodynamics (QED), which is anticipated
to increase with energy scale due to the screening nature of a vacuum populated by
virtual fermion-antifermion pairs. Despite the remarkable agreement between theory and
experiment [1, 2], such predictions are based solely on QED in the perturbative regime. In
the ultraviolet (UV) limit, the gauge coupling e is expected to diverge at a finite scale.
Phenomenologically, such a Landau pole occurs far above the electroweak scale where
the physics of a non-Abelian gauge theory must be taken into account. Nonetheless, the
Landau pole represents a fundamental inconsistency in pure QED as an interacting theory.
Of course, this may simply signal the breakdown of perturbation theory for large coupling,
but a similar conclusion is supported by lattice simulations and the non-perturbative
functional renormalization group (FRG).

Without extending the particle spectrum beyond that of pure QED, a recently pro-
posed resolution to the triviality of QED is to include the next-to-leading order Pauli term.
As a dimension-5 operator in d = 4 spacetime dimensions, this spin-field coupling term is
perturbatively non-renormalizable, but may become relevant at a non-Gaussian fixed point
due to quantum fluctuations. This can provide a well-defined UV completion for QED. Such
asymptotic safety scenarios were demonstrated by Gies and Ziebell and indeed, one such
universality class is able to account for phenomeonological values of QED in the infrared [3].

A natural line of inquiry is to investigate the effects of including higher-dimensional
operators. In this work, we focus on the dimension-6 four-fermion operators, particularly
those channels belonging to the Nambu-Jonas-Lasinio (NJL) model. This provides an
effective theory of spontaneous chiral symmetry breaking and the associated dynamical
generation of mass, as observed in the constituent quarks of quantum chromodynamics
(QCD). Similarly, we would like to investigate whether mass is generated at a UV scale
in the strong coupling regimes of the aforementioned Pauli-induced asymptotic safety
scenarios, which would contradict the light fermions of the Standard Model.

To establish the groundwork for our analysis, we revise in Chapter 2 the essential concepts
behind the Wilsonian explanation for the universal scaling behavior among microscopically
distinct systems. We then turn to the formulation of RG by Wetterich, with desirable
properties for non-perturbative computations. We also develop intuition for dynamical
mass generation by direct references to the low-energy phenomenology of QCD. In Chapter
3, we review in turn the application of FRG to the Pauli and NJL sectors which form the
basis of our model in Chapter 4. There we derive the flow equations for the NJL couplings
in the presence of a finite Pauli coupling, illustrating each term by its corresponding 1PI
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Feynman diagram. Chapter 5 is then devoted to an analysis of the phase structure in
the NJL sector, based on whether mass generation is triggered. For the sake of clarity,
various simplifying approximations are employed before we examine the full model. As
an epilogue, we summarize our findings and remark upon some interesting directions for
further research in Chapter 6.
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Chapter 2

Background

In this chapter, we review some essential prerequisites for our work. We begin with a
summary of Wilsonian renormalization as a general notion of scale dependence in physics,
along with definitions of recurring quantities such as beta function, fixed point, anomalous
dimension, critical exponent and relevance/irrelevance. Armed with these concepts, we
then focus on the running of the gauge coupling in quantum electrodynamics (QED). We
see that at least according to perturbation theory, QED is inconsistent as a theory of
interactions, since the gauge coupling appears to diverge at a finite scale known as the
Landau pole.

Faced with this conundrum, we turn to the non-perturbative technique of functional
renormalization, in particular the formulation by Wetterich. After a quick review of
generating functionals in quantum field theories, we derive Wetterich’s equation for the
effective average action and comment on some pertinent concerns to further conceptual
understanding.

We then finish with a revision of chiral symmetry breaking and the associated gen-
eration of mass, using the low-energy mesonic and baryonic degrees of freedom in QCD as
a phenomenological example. This will motivate the formulation of our model in Chapter
3.

2.1 Wilsonian Renormalization

The renormalization group addresses a profound issue at the heart of physics; namely,
how physical predictions could be made at our macroscopic scales, without first having
obtained a microscopic theory of everything. The flow of a river is well described by the
Navier-Stokes equation of fluid mechanics, without due consideration of the underlying
molecular degrees of freedom by kinetic theory, the electronic wavefunctions by quantum
mechanics, or ultimately, the open question of how the intricacies of quantum chromody-
namics conspire to form nucleons bound together by the exchange of pions.

We begin with a review of Wilsonian renormalization, developed by Kenneth Wilson
in order to solve a long-standing problem in condensed matter physics [4]. This is per-
formed here in momentum space, though an alternative real-space formulation by Migdal
and Kardanoff is commonly applied to lattice theories such as the well-known Ising model
[5, 6, 7].
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For simplicity, we consider a scalar field with the most general action in d dimensions:

SΛ[ϕ] =

∫
ddx

[
1

2
(∂µϕ)

2 +
∑
i

Λd−digiOi(x)

]
, (2.1)

where Oi(x) represent local operators of dimension di which may be consistent with desired
symmetries of the system such as the discrete Z2 : ϕ→ −ϕ. For example, setting to zero
all the coefficients gi except for the quadratic and quartic terms would leave us with a
massive ϕ4 theory. Note that we have parametrized the action in terms of dimensionless
(bare) couplings, by including suitable powers of the momentum cutoff Λ such that the
action is dimensionless.

We can then construct the partition function in Euclidean spacetime, related to Minkowski
spacetime by a Wick rotation t→ −it:

Z =

∫
|p|<Λ

Dϕ exp(−SΛ[ϕ]), (2.2)

where we regulate the theory by integrating only those degrees of freedom with momentum
|p| < Λ, thus avoiding any ultraviolet (UV) divergences. Such a UV cutoff naturally arises
in statistical mechanics, in an effective field theory (EFT) for the long-distance behaviour
of a fundamentally discrete model at the atomic scale. For quantum field theories (QFTs),
the cutoff Λ may represent a scale at which hitherto unknown physics emerges, far beyond
the reach of current experimental probes. This may for example be at 1016 GeV for a
Grand Unified Theory or 1019 GeV for quantum gravity [8]. Alternatively, we may be
interested in sending the cutoff Λ→∞ in search of a well-defined continuum limit, which
is known as the asymptotic freedom/safety scenario [9, 10].

To obtain a low energy effective field theory, we can perform the functional integral
(2.2), but only over field fluctuations with momentum above a lower scale Λ′. Concretely,
we decompose the field into fast modes ϕ> with support only over the shell [Λ′,Λ) in
momentum space and slow modes ϕ< supported over [0,Λ′):

ϕ = ϕ> + ϕ<. (2.3)

The partition function (2.2) then becomes

Z =

∫
Dϕ<Dϕ> exp(−SΛ[ϕ> + ϕ<]) :=

∫
|p|<Λ′

Dϕ< exp(−SΛ′ [ϕ<]), (2.4)

where we have defined a new effective action SΛ′ [ϕ] at the lower scale Λ′. For a general action
with non-Gaussian operators Oi, the integrated fast modes ϕ mediate new interactions
between the remaining slow modes. But since we started with the most general possible
form of the action (2.1) at Λ, the effective action at Λ′ must take the same form and differ
only in the coupling values:

SΛ′ [ϕ<] =

∫
ddx

[
1

2
ZΛ′ (∂µϕ<)

2 +
∑
i

Λ′ d−diZ
ni/2
Λ′ g′iOi(x)

]
, (2.5)
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where ni represent the power of ϕ and its derivative contained in the monomial Oi and the
wavefunction renormalization ZΛ′ parametrizes quantum correction to the kinetic term.
We can restore canonical normalization by rescaling

ϕ = Z
1/2
Λ′ ϕ<, (2.6)

giving the effective action

SΛ′ [ϕ] =

∫
ddx

[
1

2
(∂µϕ)

2 +
∑
i

Λ′ d−di g′iOi(x)

]
. (2.7)

This integration of fast modes can be iterated, generating the renormalization group
(RG) flow in an infinite-dimensional theory space of all possible couplings. By iteratively
integrating over infinitesimally thin momentum shells, perturbative approximations can be
employed with reduced violation of self-similarity in the RG flow, i.e. taking successive RG
steps should amount to the same flow as one combined step [8]. Note that mathematically
the renormalization group is actually a semigroup, as the elimination of small-wavelength
fluctuations is not reversible and thus the existence of an inverse transformation is not
guaranteed.

2.1.1 Beta Functions and Anomalous Dimensions

More quantitatively, the couplings gi(Λ) run in order to keep the partition function (2.2),
and therefore the physics, unchanged. Defining an RG time as the logarithm of the cutoff
Λ relative to some arbitrary scale µ:

t := log

(
Λ

µ

)
, (2.8)

we obtain a Gell-Mann-Low equation

0 =
d

dt
Z =

 ∂

∂t

∣∣∣∣∣
gi

+
∑
i

βi
∂

∂gi

Z, (2.9)

where we have defined the beta functions as the rates at which the couplings run:

βi({gj}) :=
∂gi(Λ)

∂t
= (di − d)gi + quantum corrections. (2.10)

The first scaling term simply reflects the power-counting dimension of the (dimensionful)
coupling, but this may be altered by quantum corrections generally involving all couplings
gj.

The Gell-Mann-Low equation (2.9) can be generalized to the n-point correlation functions

G
(n)
Λ (x1, . . . , xn) =

1

Z

∫
Λ

Dϕϕ(x1) . . . ϕ(xn) exp [−SΛ[ϕ]] , (2.11)
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which are the vacuum expectation values of products of fields evaluated at different space-
time points. The scale dependence then enters through the wavefunction renormalization
ZΛ of the fields in (2.11):

Z
−n/2
Λ G

(n)
Λ (x1, . . . , xn) = Z

−n/2
Λ′ G

(n)
Λ′ (x1, . . . , xn). (2.12)

Taking the scale derivative leads to the Gell-Mann-Low equation

0 =

 ∂

∂t

∣∣∣∣∣
gi

+
∑
i

βi
∂

∂gi
+ nγ

G
(n)
Λ (x1, . . . , xn), (2.13)

where we have defined the anomalous dimension

γ = −1

2

∂ lnZΛ

∂t
. (2.14)

In the next section 2.1.2, we will see the physical interpretation of this quantity.

2.1.2 Fixed Points, Critical Exponents and Universality

We now focus on special theories where the couplings have been tuned such that all the
beta functions βi({g∗j}) = 0 vanish. Such fixed points are left invariant under the RG flow,
corresponding to scale-invariant theories where the correlation functions take a particularly
simple form. In particular, the Gell-Mann-Low equation (2.13) simplifies to(

Λ
∂

∂Λ
+ 2γ∗

)
G

(2)
Λ (x, y) = 0, (2.15)

where γ∗ := γ({g∗i }) is the anomalous dimension at the fixed point g∗i . This implies a scale
dependence of the form G

(2)
Λ ∼ Λ−2γ∗ . Furthermore, dimensional analysis and Lorentz

invariance imply that

G
(2)
Λ (x− y) = Λd−2 g(Λ|x− y|, g∗i ) =

f(g∗i ) Λ
d−2

(Λ|x− y|)d−2+2γ∗
. (2.16)

The power-law scaling signifies a divergence of the correlation length (which would other-
wise appear in the additional exponential decay of correlations), as well as a deviation from
the classical scaling due to the anomalous dimension γ∗. In fact, under modest assumptions
including unitarity and Poincare invariance [11], all known scale-invariant QFTs are further
invariant under an enhanced group of angle-preserving conformal transformations. While
a proof of this equivalence exists in d = 2 due to Zamolodchikov and Polchinski [12, 13], it
remains a conjecture in d = 4 beyond perturbation theory. Nonetheless, in such conformal
field theories, the n-point functions are completely constrained up to a set of parameters.

A trivial example of a fixed point is the Gaussian fixed point, where all couplings g∗i = 0
vanish. The absence of interactions in this free theory generates no new terms upon inte-
gration of fast modes. In addition, there may be non-trivial fixed points where quantum
corrections precisely cancel the canonical scaling in (2.10).
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We can further linearize the RG flow in the vicinity of a fixed point:

∂tgi = Bij(gj − g∗j ) +O
(
(gi − g∗i )2

)
, (2.17)

where Bij is the stability matrix. Its eigenvectors correspond to particular linear com-
binations of couplings which are not mixed by the linearized RG transformation. The
corresponding (negatives of) eigenvalues are the critical exponents θi. As discussed in
(2.10), we expect this to classically take the value of θi = d − di for an operator with
power-counting dimension di. Quantum corrections such as the anomalous dimension
γi further contribute to the actual scaling dimension ∆i, such that θi = d−∆i. In this
eigenbasis, (2.17) is then solved by the power law

∂tδgi = −θi δgi =⇒ δgi(Λ) ∼ Λ−θi δg0i, (2.18)

where δgi = gi − g∗i is the deviation from the fixed point g∗i . We can conclude that for
a fixed spacetime dimension d, operators Oi with scaling dimensions ∆i > d (negative
critical exponents θi < 0) are irrelevant to the long-range physics, as deviations along these
directions are suppressed in the IR. As such, we need not consider arbitrarily complicated
operators with many powers or derivatives of fields. In fact, the fixed point lies on an
infinite-dimensional infrared (IR) critical manifold/surface consisting of all points which
are attracted towards the fixed point in the IR. The irrelevant operators at each fixed
point then span the corresponding tangent plane.

By contrast, operators with scaling dimensions ∆i < d (positive critical exponents θi > 0)
are relevant as deformations in such directions, i.e. away from the critical manifold,
drive the RG flow further away from the fixed point (Figure 2.1). For a fixed spacetime
dimension, there are only finitely many such operators with sufficiently few powers or
derivatives of fields. In the interest of asymptotic safety, the number of relevant directions
corresponds to the number nphys of physical parameters which must be fine-tuned so as
to connect a particular long-range physical scenario with the UV fixed point in question.
While a large nphys accommodates a higher dimensional set of UV complete theories,
this comes at the expense of predictability. On the other hand, irrelevant couplings can
often1 be eliminated from the physical description by a redefinition of the initial relevant
couplings [7].

A QFT containing both relevant and irrelevant operators may happen to lie in the vicinity
of a critical surface. The suppression of irrelevant operators and growth of relevant ones
then focus the RG flow towards a renormalized trajectory emanating from a fixed point,
largely independent of the initial conditions (Figure 2.1). This is the origin of univer-
sality, where seemingly unrelated phenomena exhibit the same power-law scaling close
to critical points. For example, despite fundamental microscopic differences between the
celebrated Ising model and the liquid-gas phase transition, they both belong to the same
universality class [15], characterized by the critical exponents of their shared IR fixed point2.

1However, there exist dangerously irrelevant systems where irrelevant couplings appear in a singular
fashion in scaling relations, e.g. ϕ4 theory above d = 4 [7].

2For completeness, we acknowledge that in addition to isolated fixed points, there exist RG flows with
more exotic global topologies, for example including a one- or higher-dimensional continuum of fixed
points (XY model in d = 2), recurring limit cycles (three-body bound states of U(1) bosons and SU(3)
fermions) or even chaotic flows without fixed points [7].
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Figure 2.1: IR Critical manifold (blue) consisting of all RG trajectories (dashed) in theory
space which are attracted towards the fixed point in the IR. Any deformation (black)
from the critical surface results in focusing towards a renormalized trajectory (red). Thus,
depending only on a handful of relevant couplings, all theories in the same universality
class have the same IR limit. Image taken from [14].

The last case consists of marginal operators with ∆i = d (vanishing critical exponents
θi = 0). Since the eigenvalues of the stability matrix then vanish, we must consider
higher-order terms in the beta function (2.17), which give rise to weak logarithmic scale
dependences. This allows classification as marginally relevant/irrelevant, with the same
qualitative implications as the aforementioned relevant/irrelevant operators. As an ex-
ample, we consider the Gaussian fixed point (where the anomalous dimension vanishes)
for a scalar field ϕ with a discrete Z2 symmetry, which has mass dimension (d− 2)/2 in
spacetime dimension d. The mass term ϕ2 remains relevant for all d. In d = 4, higher
powers than ϕ4 are irrelevant to the macroscopic physics. ϕ4 becomes relevant for d < 4,
but it’s only at d = 3 that ϕ6 becomes marginal.

While in d = 4 the quartic interaction of scalar fields and the gauge coupling in quantum
electrodynamics (QED) are both dimensionless, one-loop calculations show that they are
in fact marginally irrelevant [16]:

βϕ4(λ) =
3λ2

16π2
βQED(e) =

e3

12π2
. (2.19)

The breakdown of classical scale invariance by quantum fluctuations in the screening vacua
of massless ϕ4 theory and QED are examples of trace anomalies [16].
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2.1.3 Landau Pole

Before we discuss the ramifications of the QED beta function (2.19), we first consider the
case of a single coupling (as in our single channel approximation in Section 3.2.2) and
discuss possible behaviours of the perturbative beta function. To lowest order, this is
determined by the sign of the coefficient a of the beta function β(g) ∼ agn.

1. For β(g) > 0, the coupling g(Λ) increases with scale Λ. Of course, this eventually runs
into the large-coupling regime where perturbation theory breaks down. However,
if g continues to grow under the non-perturbative beta function, it can diverge
asymptotically as Λ→∞ or even at a finite value of Λ, which is known as a Landau
pole. This phenomenon is further discussed below for the case of QED. In the IR,
the coupling is attracted towards the Gaussian fixed point corresponding to a free
theory.

2. For β(g) < 0, the coupling g(Λ) instead decreases with scale Λ. The RG flow is
repelled from the Gaussian fixed point in the UV and becomes non-perturbative in
the IR. Such asymptotic freedom is a distinctive feature of Yang-Mills theories such
as QCD.

3. If β(g) = 0 for all g, the theory is conformal and finite for all values of the coupling.
An example is the highly symmetric N = 4 Super-Yang-Mills theory, which features
prominently in the AdS/CFT correspondence.

Considering higher-order terms, the beta function may change signs at non-trivial fixed
points. For example, β(g) may be positive to lowest order but then vanish at a non-trivial
UV fixed point g∗, as shown in Figure 2.2(a). Alternatively, β(g) may be negative for
small g and vanish at a non-trivial IR fixed point (Figure 2.2(b)). This is observed in
QED3 as the gauge coupling becomes relevant, and in ϕ4 theory as the Wilson-Fisher
fixed point for d < 4. While the exact beta function may depend on the specific choice of
regularization scheme, its slope at each fixed point represents a universal quantity, as the
negative of a critical exponent.

Turning to QED, integration of (2.19) reveals that the gauge coupling e runs logarithmically
at the one-loop level:

1

e2(Λ′)
− 1

e2(Λ)
=

1

6π2
ln

Λ

Λ′ =⇒ e2(Λ) =
6π2

ln ΛLandau/Λ
, (2.20)

where as before the Landau pole ΛLandau is the finite scale at which the gauge coupling
diverges. To estimate the scale of the Landau pole, recall that the celebrated fine structure
constant has been accurately measured at the scale of the electron mass me = 511 keV [1,
2]:

α =
e2(me)

4π
=

1

137
=⇒ ΛLandau ≈ 10286 eV. (2.21)

Phenomenologically, this far exceeds the electroweak scale ∼ 246 GeV where the elec-
troweak SU(2) × U(1)Y gauge group is spontaneously broken by the Higgs mechanism
to the U(1)em symmetry of QED. This non-Abelian gauge theory modifies the QED beta
function (2.19) before the purported Landau pole [17]. Similarly, the weak hypercharge
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𝛽 𝑔

𝑔𝑔∗

(a) Initially positive beta function β(g) which vanishes at a UV fixed point.

𝛽 𝑔

𝑔∗ 𝑔

(b) Initially negative beta function β(g) which vanishes at a IR fixed point.

Figure 2.2: Possible behaviors for the beta function when taking into account next-to-
leading-order contributions in perturbation theory. The arrows show the direction of the
RG flow towards the IR.

U(1)Y factor is expected to exhibit a Landau pole at 1040 GeV, which accommodates
possible quantum gravitational physics at the Planck scale of 1019 GeV [3].

Based on this analysis of the perturbative beta function (2.19), it would seem that the
Landau pole inconsistency of pure QED can only be avoided by considering a free theory
in the IR (see Figure 2.3). This phenomenon is known as the (perturbative) triviality of
QED. To clarify whether the Landau pole represents more than an artefact of perturbation
theory, we review the non-perturbative techniques of the functional renormalization group.

10



Λ

e

Figure 2.3: QED in d = 4 is perturbatively trivial. The perturbative beta function (2.19)
predicts that the gauge coupling diverges at a finite Landau pole, as in (2.20). As such,
perturbative QED admits a well-defined continuum limit only as a free theory with e = 0.
Arrows indicate flows towards the Gaussian fixed point in the IR.

2.2 Functional Renormalization

There exist various implementations of the exact renormalization group (ERG), such as that
due to Polchinski, which introduces a smooth UV cutoff to the Wilsonian action describing
the slow modes yet to be integrated [8, 18, 19]. Here we focus on a mathematically
equivalent formulation by Wetterich, which instead revolves around the 1PI effective action
for the fast modes above a smooth IR cutoff. As such, we begin with a recapitulation of
the functional formulation of QFT.

2.2.1 Generating Functionals

From the Wightman reconstruction theorem [20, 21], a QFT can be constructed from all
the correlation functions or Green functions

〈ϕ(x1) . . . ϕ(xn)〉 =
1

Z

∫
Λ

Dϕϕ(x1) . . . ϕ(xn) exp [−S[ϕ]] , (2.22)

as defined in (2.11). After the Wick rotation, the action plays an analogous role to the free
energy in a statistical field theory, weighting the contribution of each field configuration in
the functional integral

∫
Dϕ.

We can further introduce a source field J(x) to define the generating functional

Z[J ] =

∫
Dϕ exp

[
−S[ϕ] +

∫
Jϕ

]
≡ exp [W [J ]] , (2.23)

where
∫
Jϕ =

∫
x
J(x)ϕ(x). In terms of the generating functional (2.23), all correlation

functions can be computed by taking functional derivatives
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〈ϕ(x1)ϕ(x2) . . . ϕ(xn)〉 =
1

Z[0]

δn

δJ(x1) . . . δJ(xn)
Z[J ]

∣∣∣
J=0

. (2.24)

Similarly, the Schwinger functional W [J ] = logZ[J ] represents the generating functional
of connected correlation functions. For example, the second derivative gives

δ2W [J ]

δJ(x)δJ(y)

∣∣∣∣∣
J=0

=
1

Z[0]

∫
Dϕϕ(x)ϕ(y)e−S[ϕ] − 1

Z[0]2

∫
Dϕϕ(x)e−S[ϕ]

∫
Dϕϕ(y)e−S[ϕ]

= 〈ϕ(x)ϕ(y)〉 − 〈ϕ(x)〉〈ϕ(y)〉 ≡ G(x, y), (2.25)

which is the full non-perturbative propagator. Analogous calculations apply for the higher
n-point connected functions.

In an analogy to statistical field theory, ϕ(x) may represent the fluctuating spin field
of an Ising ferromagnet and J(x) an external magnetic field. The Schwinger functional
W [J ] = logZ[J ] would be analogous to the Helmholtz free energy. A natural next step is
then to perform a Legendre transform with respect to the source field J(x) and define the
effective action

Γ[φ] ≡ sup
J

(∫
Jφ−W [J ]

)
, (2.26)

where the supremum ensures convexity of Γ[φ].

To interpret the new field φ, we note that at the supremum value of J = Jsup[φ],

δ

δJ(x)

(∫
Jφ−W [J ]

)
= 0

=⇒ φ(x) =
δW [J ]

δJ(x)
=

1

Z[J ]

δZ[J ]

δJ(x)

(2.24)
= 〈ϕ(x)〉J . (2.27)

Thus, the so-called classical field φ(x) is the expectation value of the fluctuating quan-
tum field ϕ(x) in the presence of the source field J(x), analogous to the magnetization
being the thermal average of the local spin field in the presence of an external magnetic field.

The utility of the effective action Γ[φ] can be seen be taking its functional derivative

δΓ[φ]

δφ(x)
= J(x) +

∫
y

(
δJ(y)

δφ(x)
φ(y)− δW [J ]

δJ(y)

δJ(y)

δφ(x)

)
(2.27)
= J(x). (2.28)

Setting J(x) = 0, we obtain the quantum equation of motion analogous to the classical
principle of least action δS/δϕ = 0. In particular, stationary points of the effective action
correspond to vacuum states 〈ϕ(x)〉 in the absence of a source field. Much like Z[J ] and
W [J ], Γ[φ] is a generating functional, but of one-particle-irreducible (1PI) correlation
functions. These are represented by Feynman diagrams which cannot be disconnected into
two non-trivial pieces by removing one line [16].
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Substituting the equation of motion (2.28) into the definition (2.26) and performing a
change of variable ϕ→ ϕ+ φ under the functional integral, we obtain the expression

e−Γ[φ] =

∫
Λ

Dϕ exp

(
−S[ϕ+ φ] +

δΓ[φ]

δφ
ϕ

)
(2.29)

for the effective action Γ[φ]. Exact solutions of this nonlinear first-order functional
differential equation are known only for special cases, thus necessitating approximation
schemes. One approach proceeds by a vertex expansion of the effective action Γ[φ] in
terms of 1PI vertices Γ(n):

Γ[φ] =
∞∑
i=0

1

n!

∫
dDx1 . . . d

Dxn Γ
(n)(x1, . . . , xn)φ(x1) . . . φ(xn). (2.30)

Substitution of this series into equation (2.29) and equating the coefficients of corresponding
monomials yields an infinite hierarchy of integro-differential equations known as Dyson-
Schwinger equations. Approximate solutions by truncation have been found in the context
of gauge theories [22, 23, 24].

2.2.2 Effective Average Action

Yet another approximation scheme involving the effective action (2.26) directly rather
than the individual n-point functions Γ(n) is provided by the functional renormalization
group (FRG), inspired by the Wilsonian idea of integrating over fluctuations in successive
momentum shells rather than all at once [25, 26]. This is implemented by introducing an
effective average action Γk which interpolates between the classical bare action S and the
full quantum effective action Γ as we integrate over momentum shells centered at k:

Γk→Λ = S + const. Γk→0 = Γ. (2.31)

To construct the effective average action Γk, we add an IR regulator term

∆Sk[ϕ] =
1

2

∫
p

ϕ(−p)Rk(p)ϕ(p) (2.32)

to the generating functional (2.23):

Zk[J ] =

∫
Λ

Dϕ exp

[
−S[ϕ]−∆Sk[ϕ] +

∫
Jϕ

]
≡ exp [Wk[J ]] . (2.33)

As a quadratic term in ϕ, the regulator (2.32) acts as a momentum-dependent mass term.
In particular, the regulator function Rk(p) should approach the limit

lim
p2/k2→0

Rk(p) > 0 (2.34)

such that IR fluctuations with momentum p much smaller than the IR cutoff k are screened.
For example, the regulator may asymptotically adopt a constant value Rk → k2 and behave
as a mass m2 ∼ k2. To ensure that the boundary conditions (2.31) are satisfied, we require
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the limit

lim
k2/p2→0

Rk(p) = 0 (2.35)

as the cutoff k → 0 is sent towards the IR. The vanishing regulator recovers the full
generating functional Zk→0[J ] = Z[J ]. In the opposite UV limit,

lim
k2→Λ→∞

Rk(p)→∞ (2.36)

such that the only contribution to the functional integral (2.33) comes from the stationary
point of the exponent, i.e. the classical field configuration. A plot of a typical regulator
Rk(p) satisfying these three conditions is shown in Figure 2.4. The form of the regulator is
often expressed in terms of a dimensionless shape function r(x) of dimensionless momentum:

Boson: Rk(p) = p2rB(p
2/k2) Fermion: Rk(p) = /p rF (p

2/k2), (2.37)

with a natural generalization to fermions which perserves chiral symmetry [27]. To compute

Figure 2.4: Shape of a typical regulator Rk(p
2) (red), which screens IR fluctuations

(p2 < k2) in a mass-like fashion. Its derivative ∂tRk(p
2) (violet) is supported mainly in a

momentum shell centred around the cutoff k2. Image taken from [25].

the flow of the generating functional Wk[J ], we define an RG time as in (2.8):

t = log

(
k

Λ

)
. (2.38)
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Keeping the source J independent of k for the time being,

∂tWk[J ]|J = − 1

2Zk[J ]

∫
Λ

Dϕ
∫
p

ϕ(−p)∂tRk(p)ϕ(p) exp

[
−S[ϕ]−∆Sk[ϕ] +

∫
Jϕ

]
= −1

2

∫
p

∂tRk(p)Gk(p)− ∂t∆Sk[φ], (2.39)

where the first term would pick up a minus sign in the fermionic case from commuting the
Grassman-valued fields. Analogous to (2.25),

Gk(p) =
δ2Wk[J ]

δJ(p)δJ(−p)
= 〈ϕ(p)ϕ(−p)〉 − 〈ϕ(p)〉〈ϕ(−p)〉 (2.40)

denotes the full connected propagator in the presence of the cutoff k.

We now define the effective average action Γk as the modified Legendre transform

Γk[φ] ≡ sup
J

(∫
Jφ−Wk[J ]

)
−∆Sk[φ], (2.41)

where any non-convexity introduced by the regulator ∆Sk[φ] must vanish as k → 0. As in
(2.27) in the absence of the regulator,

φ(x) =
δWk[J ]

δJ(x)
= 〈ϕ(x)〉J (2.42)

and so the classical field φ remains as the expectation value of the quantum field ϕ in the
presence of the now k-dependent source J . But the quantum equation of motion (2.28) is
modified to

δΓ[φ]

δφ(x)
+ (Rkφ)(x) = J(x). (2.43)

The analogue of equation (2.29) becomes

e−Γk[φ] =

∫
Λ

Dϕ exp

(
−S[ϕ+ φ]−∆Sk[ϕ] +

δΓk[φ]

δφ
ϕ

)
. (2.44)

For k →∞, the divergent regulator tends toward the delta functional δ[ϕ] and suppresses
all fluctuations in the functional integral, explicitly showing that the desired boundary
conditions (2.31) for the effective average action Γk[φ] are fulfilled.

2.2.3 Wetterich Equation

Taking the functional derivative of (2.43) yields the operator equation

δ2Γ[φ]

δφ(x)δφ(y)
+Rk(x, y) =

δJ(x)

δφ(y)
, (2.45)
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where for the case of Grassman-valued fermionic fields, the two functional derivatives are
to act from opposite sides. On the other hand, differentiating (2.42) gives an expression
for the inverse:

δφ(y)

δJ(x′)
=

δ2Wk[J ]

δJ(x′)δJ(y)
≡ Gk(x

′ − y). (2.46)

Composing equations (2.45) and (2.46) implies

δ(x− x′) = δJ(x)

δJ(x′)
=

∫
y

δJ(x)

δφ(y)

δφ(y)

δJ(x′)
=

∫
y

(
Γ
(2)
k [φ] +Rk

)
(x, y)Gk(y − x′), (2.47)

where we denote the functional derivatives of the effective average action

Γ
(n)
k [φ](x1, . . . , xn) =

δnΓk[φ]

δφ(x1) . . . δφ(xn)
. (2.48)

In operator notation, we can write the inverse propagator as

G−1
k = Γ

(2)
k +Rk. (2.49)

With these results, we now derive the Wetterich equation for the effective average action
[28]. Taking φ to be a k-independent field, the supremum value of the source J ≡ Jsup[φ]
in definition (2.41) must then depend on k:

∂tΓk[φ] = −∂tWk[J ]|φ +
∫

(∂tJ)φ− ∂t∆Sk[φ]

= −∂tWk[J ]|J − ∂t∆Sk[φ]
(2.39)
=

1

2

∫
p

∂tRk(p)Gk(p)

(2.49)
=

1

2
Tr
[
∂tRk

(
Γ
(2)
k [φ] +Rk

)−1
]
. (2.50)

In a theory with more complicated field structures, we would take a supertrace STr over
real or momentum space as well as any Lorentz or internal indices such as Dirac or flavor,
with an extra minus sign in the fermionic sector. Due to the quadratic form of the regulator
(2.32), the Wetterich equation has a one-loop structure in the exact propagator [29], as
shown in Figure 2.5. This avoids the technical difficulties associated with overlapping loop
integrals in perturbation theory [16] or the Dyson-Schwinger equations.

∂tΓk[φ] =
1
2∂tRk

Figure 2.5: One-loop form of the Wetterich equation, consisting of the full propagator
Gk(p) and the derivative insertion ∂tRk.
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While Rk serves as an IR regulator in the denominator of (2.50), its inserted derivative ∂tRk

acts as a UV regulator, since a typical regulator is mainly supported over a momentum shell
at p2 = k2 (Figure 2.4). Though the UV cutoff Λ appeared in the functional definitions
(2.33) and (2.44), the flow equations themselves are oblivious to the presence of Λ. While
we have derived the Wetterich equation from the more familiar functional formalism of
QFT, it is equally justified to define the theory by the bare action and its flow towards the
IR, subject to symmetry constraints [25]. This is the perspective we will adopt in Chapter
3. In light of this, we can search for UV completions by sending k →∞ without regard
for Λ. The absence of Λ also ensures that the self-similarity of the RG flow is preserved,
even when truncated in a derivative expansion (a common approximation to be discussed
later in this section) [8].

As shown in Figure 2.6, the arbitrary choice of regulator may affect the RG trajec-
tory, but the boundary conditions (2.31) ensure that the endpoints remain the same. We
should also note that in gauge theories, the appearance of the IR cutoff k inevitably violates
gauge invariance. Such complications can be sidestepped by introducing a non-dynamical
background field such that the theory is invariant under the enlarged group of gauge
transformations and only removing the auxiliary field at the end of the computation [25].

Figure 2.6: The specific RG trajectory in theory space depends on the choice of regulator,
but the endpoints do not, since the boundary conditions (2.31) fix them to equal the bare
action (violet) in the UV and the full effective action (red) in the IR. Image taken from
[25].

As a further sanity check, perturbation theory at the leading-order can be recovered by a
loop expansion of the effective average action

Γk = S + ~Γ1-loop
k +O(~2). (2.51)

To leading order, the Wetterich equation (2.50) then becomes

∂tΓ
1-loop
k =

1

2
STr

[
∂tRk

(
S(2) +Rk

)−1
]
=

1

2
∂t
[
STr ln

(
S(2) +Rk

)]
. (2.52)
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Taking the limit k → 0 where (2.35) applies, we obtain the usual one-loop effective action

Γ = S +
~
2

STr lnS(2) + const. (2.53)

Compared to (2.29), the Wetterich equation is unburdened by the additional complication
of a functional integral. Nevertheless, the solution of this functional differential equation
is mathematically nontrivial as it corresponds to an infinite tower of coupled nonlinear
partial differential equations [30]. The strength of functional RG techniques thereby lies in
the diversity of systematic approximation schemes. One possibility is to perform a vertex
expansion as in (2.30) and obtain flow equations for the 1PI vertices Γ(n)

k as they interpolate
between the bare and fully dressed vertices, somewhat resembling the Schwinger-Dyson
equations [25].

The alternative approach which we will employ is to expand the effective average ac-
tion in terms of operators with increasing derivative order or canonical dimension. The
infinite hierarchy of equations can then be closed by a systematic and consistent truncation
which retains all terms of a given order. The choice of a suitable truncation is generally
informed only by an understanding of the relevant physical degrees of freedom, though
truncation errors need to be estimated. While this can be achieved by a somewhat involved
examination of higher-order terms, a convenient check is provided by the spurious regulator
dependence introduced by the truncation.

Furthermore, we ought to choose optimized regulators such that the RG flow takes
the ”shortest” path in theory space and converges most rapidly towards the true, scheme-
independent values of physical observables [31, 32, 33, 34, 35]. In particular, they can be
chosen to maximize the mass gap C of the full inverse propagator, defined as

min
p2≥0

(
δ2Γk

δφ(p)δφ(−p)
+Rk(p)

)
≡ Ck2. (2.54)

This ensures effective IR regularization of singular zero modes and optimizes the regularity
of the RG flow kernel, thus enhancing robustness against approximations [36, 37].

2.3 Chiral Symmetry Breaking

We are now ready to apply the techniques of functional RG to asymptotic safety of QED,
but as one final piece of preparation, let us review the phenomenon of chiral symmetry
breaking and the associated dynamic generation of mass. Consider the QED action for Nf

flavors of massless Dirac fermions ψa minimally coupled to a U(1) gauge field Aµ:

S =

∫
x

ψ̄ai /D[A]ψa +
1

4
FµνF

µν , (2.55)

where a = 1, . . . , Nf labels the fermion flavors and is implicitly summed over. Dµ[A] =
∂µ − ieAµ is the gauge covariant derivative. Our following discussion also applies to
non-Abelian gauge theories such as quantum chromodynamics (QCD), where the fermions
carry an extra color index transforming in the fundamental representation of an SU(3)
gauge group and Aµ represents some element of the corresponding Lie algebra.

18



In the chiral representation which exists only in even spacetime dimensions (explicitly
given in Appendix 6), we can decompose the fermionic term in terms of left-handed and
right-handed Weyl spinors ψaL and ψaR, respectively:

ψ̄a /D[A]ψa = iψaR
†σµD

µψaR + iψaL
†σ̄µD

µψaL, (2.56)

where the Pauli matrices are packaged into the convenient notation σµ = (1, σi), σ̄µ =
(1,−σi). Here we have used the Euclidean Dirac matrices, though the discussion pro-
ceeds similarly for Minkowski spacetime. We see that the action (2.55) is classically
invariant under a global U(Nf )L × U(Nf )R symmetry, which allows independent unitary
transformations of the two chiralities in flavor space:

U(Nf )L : ψaL 7→ LabψbL, U(Nf )R : ψaR 7→ RabψbR. (2.57)

We can factorize this symmetry group and discuss the fate of each part upon quantization:

U(Nf )L × U(Nf )R = U(1)V × U(1)A × SU(Nf )L × SU(Nf )R, (2.58)

The Abelian U(1)V vector symmetry consists of overall phase rotations of both handedness

U(1)V : ψa 7→ eiαψa, Noether current: jµ = ψ̄aγµψ
a. (2.59)

This preserved symmetry gives rise to the conservation of fermions of either handedness,
known as baryon number in the context of QCD. The other Abelian U(1)A axial symmetry
transforms the two chiralities with opposite phases

U(1)A : ψa 7→ eiβγ5ψa, Noether current: j5µ = ψ̄aγµγ5ψ
a. (2.60)

While this would result in conservation of left- and right-handed fermions separately, the
axial symmetry suffers the Adler-Bell-Jackiw anomaly in the presence of a gauge field [38,
39], as it is only a symmetry of the classical action (2.55), but not of the measure in the
functional integral.

Phenomenologically, the remaining non-Abelian chiral symmetry SU(Nf )L × SU(Nf )R is
explicitly broken by the non-zero quark masses of QCD. Nonetheless, it may survive as
an approximate symmetry when only considering the u, d and perhaps s quarks, which
have relatively small masses compared to the QCD scale of ∼ 300 MeV [40]. However, the
Lagrangian (2.55) would then be invariant under axial flavor transformations

ψa 7→ eiα
A
(
TA

)ab
γ5ψb, Noether current: JA5µ = ψ̄aγµγ5

(
TA
)ab

ψb, (2.61)

where TA are the generators of SU(Nf ) labelled by the index A = 1, . . . , N2
f −1 running up

to the dimensionality N2
f − 1 of the Lie algebra. The corresponding pseudoscalar Noether

charges, when acting upon single-particle states3 constructed from a chirally invariant

3For simplicity, let us ignore confinement here.
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vacuum,

QA
5 =

∫
d3xJA50 =⇒ QA

5 |M, s,+, a〉 =
(
TA
)ab |M, s,−, b〉 (2.62)

would be expected to produce hadronic doublets of (approximately) equal masses and
spins, but opposite parities.

The general absence of such parity doublets can be explained by spontaneous chiral sym-
metry breaking (χSB) due to the formation of a chiral condensate in the non-perturbative
regime of a gauge theory [40]. Analogous to the formation of Cooper pairs in superconduc-
tors, the condensate corresponds to a nonzero vacuum expectation value of the composite
operator

〈ψ̄aLψbR〉 = −σδab, (2.63)

where σ ∼ Λ3
QCD is a parameter of mass dimension three, anticipated to scale with

the cube of the QCD scale. This implies that the ground state no longer satisfies the
full SU(Nf )L × SU(Nf )R global symmetry of the Lagrangian (2.55). Indeed, under the
transformation (2.57) but with L,R ∈ SU(Nf ),

〈ψ̄aLψbR〉 7→ −σ
(
RL†)ba , (2.64)

which remains invariant only if L = R. This leaves us only with the diagonal subgroup of
flavour symmetries

SU(Nf )L × SU(Nf )R → SU(Nf )V . (2.65)

According to Goldstone’s theorem, each of the spontaneously broken N2
f − 1 continuous

symmetry gives rise to a massless Goldstone boson, corresponding to an excitation along the
degenerate manifold of vacua [41, 42]. In QCD, the (pseudo-)Goldstone bosons correspond
to the SU(3)V octet of pseudoscalar mesons composed of the three lightest quarks4. These
mesons are light compared to the proton, but not massless due to explicit breaking of
flavour symmetry by the different quark masses and couplings to the EM sector. With
a relatively small mass difference of ∼ 2 MeV compared to the QCD scale, the SU(2)V
isospin symmetry of the u and d quarks accounts for the pions as the lightest mesons [40].
Relations within the mass spectrum can be computed by a low-energy chiral perturbation
theory.

In addition, there exist bound states of Nc = 3 quarks called baryons. With masses
of the order of the QCD scale ΛQCD (much heavier than the current quark masses),
baryons are nonetheless stable as the lightest particles charged under U(1)V . They can
in fact be viewed as Skyrmions with non-trivial winding numbers in chiral perturbation
theory, where they are also organized into approximate multiplets of SU(3)V .

The formation of a chiral condensate has been observed in lattice simulations, but in the
absence of a complete analytic explanation, a commonly studied model for χSB is the
Nambu-Jonas-Lasinio (NJL) model [43], which we review in Section 3.2.

4The broken U(1)A axial symmetry also manifests in the relatively large mass of the η′ meson.
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Chapter 3

Model

Having reviewed the perturbative trviality of textbook QED, in this chapter we discuss one
possible resolution by the Pauli operator. As this spin-field coupling term is perturbatively
non-renormalizable, functional renormalization techniques have been applied to investigate
asymptotic safety scenarios, one of which exhibits long-range physics consistent with
experimental observations.

To investigate if such UV completions are consistent with the light fermions of the
Standard Model, we also introduce the Nambu-Jona-Lasinio (NJL) model, which is known
as an effective four-fermion model for chiral symmetry breaking in QCD, but can also be
induced by Abelian gauge interactions, While this symmetry is already explicitly broken
by the Pauli term, divergences in the NJL couplings still indicate dynamical generation of
Planck scale masses.

3.1 Pauli Term

Pure QED consists of a U(1) gauge field Aµ minimally coupled to a Dirac fermion ψ,
whose partial derivatives ∂µ are replaced by gauge covariant derivatives Dµ[A] = ∂µ− ieAµ.
Physically, this describes a coupling between the gauge field and fermion charge. As
discussed in Sections 2.1.2 and 2.1.3, the ψ̄ /Aψ operator, of dimension-4 in d = 4, is
marginally irrelevant as per the perturbative beta function (2.19), which predicts a Lan-
dau pole inconsistency for any non-trivial theory with interactions. Of course, this may
simply signal the expected breakdown of perturbation theory in the regime of large gauge
coupling e, but lattice simulations [44, 45] and non-perturbative functional methods [46]
further substantiate the triviality of pure QED, though the exact mechanism inhibiting a
UV-complete theory is somewhat different from a naive Landau pole.

Various resolutions have been proposed; for example, based on the introduction of ad-
ditional fields [47, 48, 49, 50], enhancement of the U(1) symmetry [51, 52] or even the
inclusion of quantum gravitational fluctuations [53, 54, 55, 56]. One possibility retaining
only fermionic and photonic degrees of freedom is that the Landau pole emerges only as an
artifact of pure QED as the leading order approximation of an effective field theory (EFT),
which may further contain an infinite number of irrelevant local interactions, as long as
they are consistent with underlying symmetries [57]. A next-to-leading order contribution
is the Pauli term ψ̄σµνF

µνψ, which completes the truncation of the effective action to
lowest derivative-order (1st order for fermions and 2nd order for photons) and to operators
of dimension-5.

While the Pauli term is a perturbatively non-renormalizable dimension-5 operator, this
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Figure 3.1: One-loop correction to the QED vertex function, giving rise to an anomalous
magnetic moment deviating from the Dirac prediction of g = 2.

proximity to the theory space of textbook QED suggests possible RG relevance in a
strong coupling regime, where quantum fluctuations can counteract the canonical scaling.
Functional RG techniques have recently been used by Gies and Ziebell to show that the
extended theory space spanned by the Pauli coupling includes additional non-trivial fixed
points which enable an asymptotic safety scenario for QED as observed at low energies [3].

Recall that the commutator σµν = i [σµ, σν ] /2 furnishes a representation of the SO(4) rota-
tional symmetry group of Euclidean spacetime, generalizing the non-relativistic Pauli spin
matrices. The Pauli term couples these to the electromagnetic field tensor Fµν = ∂ [µAν].
Such a term describes the famous anomalous magnetic moment of the electron due to the
contributions of diagrams such as in Figure 3.1 [58].

Here we include the Pauli term explicitly in the bare action, defined with a UV cutoff Λ
due to the perturbative non-renormalizability of the Pauli coupling:

S =

∫
d4x

[
ψ̄ai /D[A]ψa +

1

4
FµνF

µν − im̄ψ̄aψa + iκ̄ψ̄aσµνF
µνψa

]
, (3.1)

where Dµ[A] = ∂µ−iēAµ is the gauge covariant derivative and m̄, κ̄, ē denote the bare mass
and couplings. The factors of i in the mass and Pauli terms ensure reflection positivity,
which allows for analytic continuation back to a QFT on a Lorentzian manifold by the
Osterwalder-Schrader theorem [59].

While the action (3.1) retains a local U(1) gauge symmetry, global chiral symmetry
is broken by both the mass and Pauli terms. While the mass is traditionally ignored
as a source of chiral symmetry breaking (χSB) in the deep Euclidean region where the
renormalized mass m is negligible in comparison to any other momentum scale, the explicit
breaking of chiral symmetry by the Pauli term necessitates a more equitable treatment of
both mass and Pauli coupling, which is enabled by the formalism of functional RG. Here
we summarize some relevant results as reported in [3], as well as from our earlier analysis
of the flavor Nf dependence of the RG flow [60].

The average effective action Γk, which flows from the bare action (3.1) upon integra-

22



tion of modes with momentum k as discussed in Section 2.2.2, reads

Γk =

∫
d4x

[
ψ̄a
(
iZψ /∂ + ē /A− im̄+ iκ̄σµνF

µν
)
ψa +

1

4
ZAFµνF

µν +
ZA
2ξ

(∂µA
µ)2
]
, (3.2)

where Zψ and ZA are the wavefunction renormalizations for the fermions and photon
respectively and ξ is the gauge fixing parameter, which we set to ξ = 0 in the Lan-
dau gauge as a fixed point of the RG flow [61, 62]. Subleading terms omitted in this
truncation may include higher derivatives such as ψ̄ /D /Dψ (dimension-5) and Fµν2F

µν

(dimension-6), or the dimension-6 four-fermion operators which form the focus of this study.

In the search for scale-invariant fixed points, it is convenient to define the renormal-
ized dimensionless parameters

e =
ē

Zψ
√
ZA

, κ =
kκ̄

Zψ
√
ZA

, m =
m̄

Zψk
, (3.3)

and anomalous dimensions

ηψ = −∂t lnZψ ηA = −∂t lnZA. (3.4)

The corresponding beta functions (22), (23), (24) and anomalous dimensions (25), (26) as
obtained from the Wetterich equation are given in the Appendix 6 [3].

For the case of Nf = 1, two interacting fixed points B and C can be observed in ad-
dition to the Gaussian fixed point A, with their properties listed in Table 3.1. The fixed
points occur with various multiplicities since the action (3.2) is invariant under two Z2

symmetries: charge conjugation, as well as the discrete axial rotation

ψ → ei
π
2
γ5ψ ψ̄ → ψ̄ei

π
2
γ5 κ̄→ −κ̄ m̄→ −m̄, (3.5)

a relic of the broken continuous chiral symmetry. As such, for each fixed point (e∗, κ∗,m∗),
there exist further fixed points

(−e∗,−κ∗,m∗), (e∗,−κ∗,−m∗), (−e∗, κ∗,−m∗), (3.6)

obtained by simultaneous sign-flips of e and κ or κ and m, all representing the same
universality class. Table 3.1 also lists their critical exponents and corresponding eigendi-
rections in terms of components along the e, κ and m basis in theory space. The number
nphys of (marginally) relevant directions corresponds to physical parameters which must
be fine-tuned to determine the long-range physics of the theory. As an estimate of the
validity of our truncated derivative expansion of the effective action (3.2), the anomalous
dimensions ηψ and ηA parametrizing the running of the kinetic terms are expected to
remain small. Only those fixed points satisfying this consistency criterion have been
retained. Figure 3.2 shows the phase diagram in the (κ,m) plane at e = 0, where the
gauge coupling beta function (22) vanishes, as well as the (κ, e) plane at m = 0.

As expected from the discussions of Section 2.1.2, the anomalous dimensions vanish
at the Gaussian fixed point A and the critical exponents are as expected from power-
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Table 3.1: Fixed points of QED with Pauli coupling in d = 4 and Nf = 1.

(e∗, κ∗, m∗) Multiplicity
(
η∗ψ, η∗A

)
nphys Critical Exponents Eigendirections

A

0
0
0

 − (0, 0) 1 (1, 0,−1)

0
0
1

1
0
0

0
1
0



B

 0
5.09
0.328

 Z2 × Z2 (−1.4, 0.53) 2 (3.10, 2.13,−0.813)

 0
−1
0.04

 0.4
0.9
0.02

 0
−1
−0.1



C

 0
3.82
0

 Z2 (−1, 0) 3 (2.25, 1.79, 0.413)

0
1
0

1.0
0
0.3

0
0
1



counting. The mass m is the only RG relevant direction with critical exponent θm = 1.
As in perturbation theory, the gauge coupling is marginally irrelevant (θe = 0) and the
Pauli coupling irrelevant θκ = −1.

As for the non-trivial fixed points, these lie outside the theory subspace of usual QED with
finite values of κ∗. Fixed point B also features a finite (dimensionless) mass m∗ and just
one irrelevant direction lying within the (κ,m) plane at e = 0. By tuning two parameters,
for example the IR value of the gauge coupling in accordance with α ' 1/137 and the
initial UV scale in terms of the physical fermion mass, the long-range Pauli coupling is
then a firm prediction of the universality class. Two UV-complete trajectories can be
constructed from fixed point B and its Z2 reflection under charge conjugation, but the
associated anomalous magnetic moments

ae = −
4

e
κm

∣∣∣∣∣
k=0

=

{
−18.55
14.01

}
� g − 2

2
=

α

2π
+O(α2) ≈ 0.00116 (3.7)

are orders of magnitude larger than the physical value, dominating even the Dirac contribu-
tion of g = 2 to the g-factor. This contradiction with one of the most precise measurements
in physics clearly rules out physical QED from belonging to the universality of fixed point
B, despite offering an asymptotically free gauge coupling.

On the other hand, fixed point C is entirely IR repulsive, with the anomalous dimensions
η∗ψ = −1, η∗A = 0 responsible for the (marginal) relevance of the Pauli coupling even before
considering further quantum fluctuations. With three relevant directions, the basin of
attraction of C must contain some three-dimensional neighbourhood of the fixed point.
The Z2 reflection of C has in fact been connected to a range of long-range values including
those of physical QED, with the transition from perturbative to asymptotically safe regime
occurring at a scale much larger than the electron mass, but below the electroweak scale:

Λc ≈ 23.67GeV. (3.8)
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Figure 3.2: Renormalization group flow for QED with Pauli term in d = 4 spacetime
dimensions and with Nf = 1 fermion flavor. The Gaussian fixed point A and non-Gaussian
fixed points B and C are labelled as red crosses indicating their respective eigendirections.
The arrows point in the directions of flow towards the IR.

As seen in Figure 3.2, separatrices lead from the UV fixed point C to the IR fixed points
A and B. All other trajectories emanating from B and C towards smaller Pauli coupling
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Figure 3.3: Variation of the Pauli coupling κ∗ and mass m∗ at fixed point B with increasing
flavor number.

κ flow toward the formal fixed point at |m| → ∞ of non-propagating fermions and free
photons (e = κ = 0). Since m represents the dimensionless mass, the physical mass
approaches a finite IR value as massive modes decouple from the RG flow.

Our subsequent studies showed that in d = 4, the fixed point C and its critical ex-
ponents do not depend on flavor number Nf [60]. For vanishing gauge coupling e and
mass m in d = 4, the beta function of the Pauli coupling (23) reduces to

∂tκ|e,m=0 = (1 + ηψ)κ, ηψ = − 3

5π2

κ2

1− 3
40π2κ2

; (3.9)

namely, the fermion anomalous dimension η∗ψ at fixed point C must take exactly the value
required to render the Pauli coupling marginally relevant, for all Nf . On the contrary,
for fixed point B with finite mass, κ∗ increases and m∗ decreases with increasing Nf , as
shown in Figure 3.3. The simultaneous increase in anomalous dimensions casts doubt on
the reliability of our conclusions, but within the current approximation, a quantum phase
transition seems to occur at the critical flavor number Nf ' 18.501 Fixed point B collides
with another fixed point coming from even larger coupling values, bifurcating into the
complex plane. This other unphysical fixed point fails our consistency condition of small
anomalous dimensions at Nf = 1.

1In contrast to their classical counterparts, quantum phase transitions occur by varying some non-
thermal parameter at T = 0, where critical behavior is governed by quantum (rather than thermal)
fluctuations [63].
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3.2 Nambu-Jona-Lasinio Model

The aim of our present studies is to investigate the consistency of the non-Gaussian
fixed points B and C, by extending our truncation to include dimension-6 four-fermion
operators. Such interactions may be rendered relevant by quantum fluctuations and trigger
dynamic generation of fermion mass in contradistinction to the small values observed in
the Standard Model.

Four-fermion interactions are of interest in various physical systems. Perhaps most
famous is Fermi’s theory of beta decay as a local four-fermion interaction with a (V-A)
structure (see (3.15) for clarification of the notation). This non-renormalizable theory is
now understood as a low-energy EFT obtained after integrating out the highly massive
gauge bosons of the weak interaction. Self-interacting fermions also feature in the exactly
solvable Thirring (vector channel) and Gross-Neveu (scalar channel) models [64, 65, 66,
67]. Despite its simplicity2, the non-trivial phase structure of the Gross-Neveu model
describes the Peierls-Froehlich model and relativistic ferromagnetic superconductors in
condensed matter physics [69]. In 1 + 1 dimensions, the perturbatively renormalizable
coupling is asymptotically free. Moreover, the Gross-Neveu model contains a discrete
chiral symmetry which may be spontaneously broken, resulting in mass generation and
formation of bound states [70].

In this work, we focus on the Nambu-Jona-Lasinio-type (NJL) channels, which admit an
enhanced continuous chiral symmetry. Inspired by the successful theory of superconduc-
tivity by Bardeen, Cooper and Schrieffer [71, 72, 73], the NJL model was devised as a
description of two-body interactions between nucleons. Despite later being supplanted by
QCD, it remains useful as a mathematically tractable EFT of strongly interacting fermions
which captures some essential symmetries of QCD. Thus, the NJL model facilitates studies
of chiral symmetry breaking and the associated dynamic generation of fermion masses. By
fitting the model to empirical values of masses and decay constants, two- and three-flavor
variants of the model describe with reasonable accuracy the meson spectrum introduced
in Section 2.3 and provide qualitative insights into the effects of external influences such
as temperature and chemical potential [43]. The generation of NJL-type interactions from
QCD in the course of the RG flow has now been studied from first principles [74, 75, 76].

For one fermion flavor in spacetime dimension d = 4, the effective action takes the
form

ΓNJL[ψ, ψ̄] =

∫
d4x

{
iZψψ̄ /∂ψ +

1

2
λ̄σ

[(
ψ̄ψ
)2 − (ψ̄γ5ψ)2]} , (3.10)

where higher-order derivative terms can be dropped in the leading order of a derivative
expansion, as long as the anomalous dimension ηψ = −∂t lnZψ is small. Such four-fermion
interactions may be due to fundamental fermionic nonlinearities, but here we will adopt
the perspective that such terms are generated by UV gauge boson fluctuations in the
course of the RG flow.

Note that in d = 4, fermionic fields have mass dimension 3/2 and thus any four-fermion cou-
pling has dimension −2, implying that the NJL model is perturbatively non-renormalizable.

2The finite temperature phase diagram can even be analytically computed in the large Nf limit [68].
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Thus, the model must be defined along with a choice of regularization scheme based on
desired physical properties and symmetries [43]. Here we impose a UV cutoff in Euclidean
spacetime, though other possibilities include a non-covariant three-momentum cutoff,
proper-time and Pauli-Villars regularization.

3.2.1 Chiral Symmetry and Fierz Transformations

As with the QED action (2.55), the NJL action (3.10) is clearly invariant under the U(1)V
vector symmetry

ψ 7→ eiαψ, ψ̄ 7→ ψ̄e−iα, (3.11)

as well as the U(1)A axial symmetry

ψ 7→ eiβγ5ψ, ψ̄ 7→ ψ̄eiβγ5 (3.12)

in the absence of an explicit mass term. To see this, we rewrite the NJL channel in terms
of Weyl spinors transforming with opposite phases: ψL 7→ e−iβψL, ψR 7→ eiβψR. In the
chiral representation of the Euclidean Dirac matrices given in Appendix 6,

(
ψ̄ψ
)2 − (ψ̄γ5ψ)2 = (ψ†

R ψL + ψ†
L ψR

)2
−
(
−ψ†

R ψL + ψ†
L ψR

)2
(3.13)

= 4
(
ψ†
R ψL

)(
ψ†
L ψR

)
.

Thus, the linear combination
(
ψ̄ψ
)2 − (ψ̄γ5ψ)2 is invariant under the axial rotation (3.12),

even though each individual term is not.

However, the NJL action (3.10) is by no means complete, as local four-field operators can
be algebraically reordered by the Fierz transformations [77].(

ψ̄1Aψ2

) (
ψ̄3Bψ4

)
=
(
ψ̄1Cψ4

) (
ψ̄3Dψ2

)
. (3.14)

For the case of one fermion flavour ψ, A, B, C and D are simply elements of the Euclidean
Clifford algebra Cl4,0(C), which we can expand in a complete basis Γa, normalized by
Tr{ΓaΓb} = 4δab. We further choose basis elements which yield irreducible representations
of the SO(4) symmetry group of Euclidean spacetime:

ΓS = I4 ΓV = γµ ΓT =
i

2
[γµ, γν ] ΓA = iγµγ5 ΓP = γ5, (3.15)

with the corresponding Dirac bilinears transforming as a scalar, vector, tensor, axial vector
and pseudoscalar, respectively. Note that factors of i have been included as necessary
to render all basis elements Hermitian. Here we work with an irreducible representation
of the Dirac algebra, with dimension dγ = 2bd/2c = 4. The completeness of this basis is
evident as the 1 + 4 + 6 + 4 + 1 basis elements account for the 16 independent entries of a
4× 4 matrix A. In such a basis, we can write the Fierz transformations as(

ψ̄1Γaψ2

) (
ψ̄3Γbψ4

)
= C cd

ab

(
ψ̄1Γcψ4

) (
ψ̄3Γdψ2

)
, (3.16)
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with repeated indices summed over implicitly. The coefficients C cd
ab can be found using

the orthonormality of the basis (3.15):

(Γa)ij (Γb)kl = C cd
ab (Γc)il (Γd)kj =⇒ C cd

ab =
1

16
Tr [ΓaΓdΓbΓc] . (3.17)

In fact, to obtain a scalar Lagrangian invariant under SO(4), we need not consider all
possible pairs of basis matrices

(
ψ̄1Γaψ2

) (
ψ̄3Γbψ4

)
, but rather just invariants(

ψ̄1Γ
A
a ψ2

) (
ψ̄3Γ

Aaψ4

)
, (3.18)

where a = 1, . . . , dimA now runs only over the elements in an irreducible representation
A = S,V,T,A,P as enumerated in the basis (3.15). For ease of notation, we adopt the
shorthand

(A) =
(
ψ̄ΓA

a ψ
) (
ψ̄ΓAaψ

)
, (3.19)

such that NJL channel is written as (S− P). Of such four-fermion operators, any other
chirally invariant channel must be constructed from the vector (V) channel and the axial
vector (A) channel, since γ5 anti-commutes with all gamma matrices γµ.

However, the Fierz transformation (3.17) shows that these three channels are in fact
not independent. In particular, the NJL channel can be rewritten as

(S− P) = −1

2
(V + A) . (3.20)

Thus, for one fermion flavour, the space of chirally symmetric four-fermion couplings is
two-dimensional, spanned by a basis (V± A).3 The Fierz-complete action

Γ[ψ, ψ̄] =

∫
d4x

{
iZψψ̄ /∂ψ +

1

2
λ̄+ (V + A) +

1

2
λ̄− (V− A)

}
. (3.21)

removes any ambiguity in the representation of four-fermion channels that are consistent
with the U(1) chiral symmetry. The action must then be closed under the RG flow, with
a non-trivial λ̄− possibly generated even starting with a pure NJL model with just λ̄+.

As a leading order approximation, we further ignore any momentum dependence in
the couplings:

λ̄(p1, p2, p3) = λ̄(0, 0, 0) +O
(
|pi|
k

)
. (3.22)

While this point-like limit can herald the onset of spontaneous chiral symmetry breaking
(see Section 3.2.2), a drawback is that it cannot predict the mass spectrum in the chirally
broken phase, as bound states (e.g. mesons in QCD) appear as momentum poles in the
couplings. Such momentum dependence may be conveniently described by a Hubbard-

3For a single-channel approximation, writing (V + A) = −2(S− P) somewhat simplifies computation
of the beta function by one gamma matrix per four-fermion vertex. But for a Fierz-complete analysis,
taking the basis (V + A) allows for a similar treatment of both channels for much of the calculations.
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Stratonovich transformation, which introduces bosonic fields to represent possible bound
states 〈φ〉 ∼ 〈ψ̄ψ〉 of the fermions [70]. The four-fermion coupling is resolved to be
mediated by the condensate bosons, which are Yukawa-coupled to the fermions [70]. The
point-like limit is then a decent approximation when the exchanged bosons are heavy, i.e.
in the chirally symmetric phase.

3.2.2 Renormalization Group Flow for Nf = 1

As we derive from the Wetterich equation (2.50) in Chapter 4, the beta functions for the
renormalized dimensionless couplings

λ± = (Zψ)
−2 k2λ̄± (3.23)

are given by

∂tλ+ = (2 + 2ηψ)λ+ + 8v4 l
(F)
4 (0, 0)

(
3λ2+ + 4λ+λ−

)
(3.24)

∂tλ− = (2 + 2ηψ)λ− + 8v4 l
(F)
4 (0, 0)λ2+, (3.25)

where v4 = 1/ (32π2). For consistency, the flow equations (3.24) and (3.25) can be com-
pared to those given in [70] for the basis (S − P),−(V), related by the transformation
λσ = 2 (λ− − λ+) , λV = −2λ−.

The threshold function l
(F)
4 (0, 0), as defined in Appendix 6, imposes the IR and UV

regularization in the Wetterich formulation of FRG (see Section 2.2.3) and thereby quanti-
fies the contribution of the 1PI Feynman diagram shown in Figure 3.4(a) to the four-fermion
couplings, as successive momentum shell are integrated over. While threshold functions
encapsulate the freedom to choose the regularization scheme without altering predictions
for physical observables, we use the optimized regulators introduced in Section 2.2.3, with
rapid convergence properties. Due to the one-loop structure of the Wetterich equation,
higher-order femion self-interactions do not contribute to the RG flow of our four-fermion
interactions, at least in the point-like approximation4.

As for the anomalous dimension ηψ associated with the running of the kinetic term, this
is expected to receive contributions from the 1PI Feynman diagram of Figure 3.4(b).
However, in our point-like limit (3.22), momentum conservation requires that the loop
momentum q be independent of the incoming/outgoing momentum p. As a result, ηψ
vanishes and the wavefunction renormalization can be set to a constant Zψ = 1. This is
no longer true if we resolve the momentum dependence of the couplings in a partially
bosonized formulation [70].

4In a partially bosonized formulation, 8-fermion interactions, as parametrized by quartic interactions
of the condensate bosons, do contribute to the RG flow of four-fermion couplings. Deviations from the
purely fermionic formulation become especially pronounced in the chirally broken phase due to excitations
of massless Goldstone bosons [70].
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Figure 3.4: a) 1PI Feynman diagram representing quantum self-corrections which contribute
to the RG flow of the four-fermion couplings λ±, as described by the quadratic terms in
the beta functions (3.24) and (3.25). The double lines represent the full propagator. b)
1PI Feynman diagram representing modifications to the propagator, thereby contributing
to the running of the wavefunction renormalization Zψ. In the point-like limit, the
loop momentum q must be independent of the incoming/outgoing momentum p due to
momentum conservation, which leads to a vanishing anomalous dimension ηψ = −∂t lnZψ.

Single-Channel Model

To simplify the analysis of the beta functions, we first consider a single-channel approxima-
tion. Since (for one fermion flavour) the beta function (3.25) of λ− only receives quantum
correction from the (V + A) channel, we set λ− = 0. The remaining beta function then
reduces to

∂tλ+ = 2λ+ + 24v4 l
(F)
4 (0, 0)λ2+, (3.26)

with a Gaussian fixed point λGauss
+ = 0 as well as a non-trivial UV fixed point5

λ∗+ = −4

3
ζ = −16π2

3
, (3.27)

where for ease of comparison with later results, we have defined the scheme-dependent
quantity

ζ ≡ 1

16v4 l
(F)
4 (0, 0)

, (3.28)

and in the last step we evaluated the optimized regulator l(F)4 (0, 0) = 1/2 as tabulated in
Appendix 6. This beta function is analogous to that shown in Figure 2.2(a). As observed
in Figure 3.5, we can affect a quantum phase transition by tuning the UV value λΛ+ of the
coupling. For λΛ+ > λ∗+, the subsequent RG flow is attracted towards the Gaussian fixed
point and the theory becomes free in the IR while preserving chiral symmetry. On the
contrary, with λΛ+ < λ∗+, the flow is repelled away from the interacting fixed point λ∗+ and
λ+ decreases rapidly. In fact, the flow equation (3.26) can be solved analytically as

λ+(k) = λΛ+

[(
Λ

k

)θ (
1−

λΛ+
λ∗+

)
+
λΛ+
λ∗+

]−1

(3.29)

5It has been shown that this non-Gaussian fixed point is an artefact of the point-like approximation
with a finite UV cutoff λ in d = 4 [70].
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where θ is a universal critical exponent

θ = −∂ (∂tλ+)
∂λ+

∣∣∣
λ∗+

= 2, (3.30)

whose value does not depend on the choice of regulator. From this solution, we see that
the NJL coupling λ+ diverges at a finite scale6

kSB = Λ

(
1−

λ∗+
λΛ+

)1/θ

θ(λ∗+ − λΛ+). (3.31)

From a bosonized formulation of the model (3.21), we can interpret the divergent coupling
as an indicator that the ground state of the theory no longer respects chiral symmetry,
as the Ginzburg-Landau-type effective potential of the condensate develops a non-trivial
minimum [70]. Thus, the non-Gaussian fixed point (3.27) behaves as a quantum critical
point, separating two qualitatively disjunct regimes.

g

𝜆!∗ 𝜆!

𝜒𝑆𝐵 𝜒𝑆

𝜕#𝜆!

Figure 3.5: Phase diagram for the single-channel NJL model. If we tune the UV value of
the four-fermion coupling λΛ+ > λ∗+ above the critical value λ∗+ given by the non-trivial
fixed point, the RG flow drives the theory towards asymptotic freedom in the IR. On the
other hand, a UV value λΛ+ < λ∗+ below the fixed point results in a rapid divergence of the
coupling, which heralds the spontaneous breakdown of chiral symmetry. This constitutes
a quantum phase transition between a chiral-symmetric (χS, black) and chiral-symmetry-
broken (χSB) phase.

6This in fact defines the scale for any observable O ∼ kdOSB with dimension dO in the chirally broken
phase [70].
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Fierz-Complete Basis

Returning to the full Fierz-complete beta functions (3.24) and (3.25), we now observe the
scheme-dependent fixed points tabulated in Table 3.2, along with their universal critical
exponents and eigendirections. As in (2.17) and (3.30), these are defined by diagonalizing
the stability matrix

Bij =
∂ (∂tλi)

∂λj

∣∣∣
λ∗
. (3.32)

Table 3.2: Fixed points of four-fermion interactions with Nf = 1.

(λ∗+, λ
∗
−) Critical Exponents Eigendirections

FGauss
1

(
0
0

)
(−2,−2)

(
0
1

)(
1
0

)

F2

(
−ζ
−ζ/4

)
(2,−5/2)

(
2
1

)(
1/4
−1

)

F3

(
4ζ
−4ζ

)
(2,−10)

(
1
−2

)(
1
1

)

All interacting fixed points feature one IR attractive and one IR repulsive direction, with
F2 approximated by the single-channel non-trivial fixed point (3.27). As shown in Figure
3.6 (drawn for optimized regulators for which ζ = 4π2), the two-dimensional theory space is
divided into regions by separatrices (red curves) flowing between fixed points (blue points),
which generalize the role of the critical coupling (3.27) in the single-channel approximation.

For example, by tuning the UV values (λΛ+, λΛ−) to lie within the Ia, Ib, IIIa or IIIb domains,
chiral symmetry is broken when the four-fermion couplings diverge at a finite scale kSB
as in (3.31). However, theories within the Ia/b universality class are attracted towards a
different IR fixed point (at infinity)

F∞
2 = lim

α→∞
F2 = lim

α→∞
(−αζ, αζ/4) (3.33)

than those in the IIIa/b universality class:

F∞
3 = lim

α→∞
F3 = lim

α→∞
(4αζ,−4αζ) . (3.34)

Though both universality classes feature a ground state with some broken symmetry,
differences in their low-energy phenomenologies would have to be resolved by a partially
bosonized formulation [70]. On the contrary, theories in the II and IV regions belong to
the basin of attraction of the Gaussian fixed point F Gauss

1 and therefore become free in
the IR.
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Figure 3.6: Phase diagram of a Fierz-complete NJL model with a single fermion flavor.
The separatrices (red curves) flowing between fixed points Fi (blue dots) divide the theory
space into disjunct domains based on UV and IR properties. Theories belonging to phases
II and IV (labelled in black) preserve chiral symmetry and become asymptotically free.
Theories in phases I and III (labelled in red) break chiral symmetry in the ground state,
though they may still differ in the IR.

We note once more that for the current Nf = 1 model, the RG flows of λ± are cou-
pled such that there exists no pure NJL-like trajectory with λ− ≡ 0, while λ+ ≡ 0
corresponds to a trivial trajectory with a constant dimensionful λ̄−. This absence of
quantum self-corrections to λ− in the beta function (3.25) gives rise to only three fixed
points with finite couplings. In the many-flavor model discussed in the next Section 3.2.3,
the fixed point at infinity, whose UV-critical manifold includes the Ib and IIIa regimes,
becomes finite.
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3.2.3 Renormalization Group Flow for Nf > 1

A natural deformation of our action (3.21) is to introduce Nf > 1 flavors ψa satisfying a
chiral SU(Nf )L⊗SU(Nf )R symmetry, which we recall from Section 2.3 to be the symmetry
of QED/QCD in the limit of massless fermions. Of course, there now exist more possible
contractions into fermion bilinears. Starting with the smaller symmetry group of SU(Nf ),
these can be classified as flavor singlets

(S− P) ≡
(
ψ̄aψa

)2 − (ψ̄aγ5ψa)2 (3.35)

(V± A) ≡
(
ψ̄aγµψ

a
)2 ∓ (ψ̄aγµγ5ψa)2 , (3.36)

where the flavor indices are pairwise contracted within the same fermion bilinear, or
alternatively as flavor non-singlets

(S− P)N ≡
(
ψ̄aψb

)2 − (ψ̄aγ5ψb)2 (3.37)

(V± A)N =
(
ψ̄aγµψ

b
)2 ∓ (ψ̄aγµγ5ψb)2 , (3.38)

where the flavor indices are contracted non-trivially between the different bilinears, as in(
ψ̄aψb

)2 ≡ (ψ̄aψb) (ψ̄bψa). In the point-like limit, we can independently perform a Fierz
transformation with respect to the flavor indices as well as the Dirac indices:

(S− P) = −1

2
(V + A)N (3.39)

(V− A) = (V− A)N (3.40)
(V + A) = −2 (S− P)N . (3.41)

Such relations allow us to consider only the three flavor singlets as independent four-
fermion operators. To see the additional restrictions in the case of SU(Nf )L × SU(Nf )R,
we express the channels in terms of Weyl spinors. As in (3.13),

(S− P) =
(
ψa

†

R ψaL + ψa
†

L ψaR

)2
−
(
ψa

†

R ψaL − ψa
†

L ψaR

)2
(3.42)

= 4
(
ψa

†

R ψaL

)(
ψb

†

L ψ
b
R

)
, (3.43)

which is not invariant under separate chiral transformations of the left- and right-handed
fermions:

SU(Nf )L : ψaL 7→ LabψbL, SU(Nf )R : ψaR 7→ RabψbR. (3.44)

Likewise, we can express the (V± A) channels using the chiral representation (3):

(V + A) = i
(
ψa

†

L σ̄µψ
a
L + ψa

†

R σµψ
a
R

)2
− i
(
−ψa†L σ̄µψaL + ψa

†

R σµψ
a
R

)2
(3.45)

= 4i
(
ψa

†

L σ̄µψ
a
L

)(
ψb

†

R σµψ
b
R

)
(3.46)

(V− A) = 2i
(
ψa

†

L σ̄µψ
a
L

)2
+ 2i

(
ψa

†

L σ̄µψ
a
L

)2
,
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which remain as the only two independent channels consistent with an SU(Nf )L×SU(Nf )R
symmetry.

As we derive in Chapter 4, the flow equations for this Fierz-complete basis read

∂tλ+ = (2 + 2ηψ)λ+ + 4v4 l
(F)
4 (0, 0)

[
6λ2+ + (dγNf + 4)λ+λ−

]
(3.47)

∂tλ− = (2 + 2ηψ)λ− + 2v4 l
(F)
4 (0, 0)

[
(dγNf − 4)λ2− + dγNfλ

2
+

]
. (3.48)

Note that the flavor dependence drops out in the single-channel approximation λ− = 0, as
we will explain in the next Chapter 4. We see that for Nf > 1, the λ2− term in the beta
function (3.48) no longer vanishes, giving rise to an additional IR-repulsive fixed point F4

which comes from infinity at Nf = 1:

Table 3.3: Fixed points of four-fermion interactions with Nf flavors.

(λ∗+, λ
∗
−) Critical Exponents Eigendirections

FGauss
1

(
0
0

)
(−2,−2)

(
0
1

)(
1
0

)

F2

− 4ζ(Nf+3)

2N2
f+5Nf+9

− 4ζNf

2N2
f+5Nf+9

 (
2,−2− 8Nf

2N2
f+5Nf+9

) (
1 + 2

Nf+1

1

)(
1− 3

Nf+3

−1

)

F3

(
4ζ

2Nf−1

− 4ζ
2Nf−1

) (
2,−2− 8

2Nf−1

) (
1− 1

Nf+1

−1

)(
1
1

)

F4

(
0

− 4ζ
Nf−1

) (
2, 2 + 8

Nf−1

) (
0
1

)(
1
0

)

As such, the phase diagram for Nf > 1 flavors is qualitatively identical to that shown
in Figure 3.7 for Nf = 2, with chirally symmetric phases II and IV flowing towards the
attractive Gaussian fixed point F1. Fixed point F4 is purely repulsive; F2 and F3 each
have one attractive and one repulsive direction7.

7An interesting limit is that of Nf →∞. At leading order in 1/Nf , the rescaled fixed-point couplings
NfFi approach a constant limit [70].
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Figure 3.7: Phase diagram of a Fierz-complete NJL model with Nf = 2 flavors. The
separatrices (red curves) flowing between fixed points Fi (blue dots) divide the theory
space into disjunct domains based on UV and IR properties. Theories belonging to phases
II and IV (labelled in black) preserve chiral symmetry and become asymptotically free.
Theories in phases I and III (labelled in red) break chiral symmetry in the ground state,
though they may still differ in the IR.

37



38



Chapter 4

Calculation

Having laid the groundwork in Chapters 2 and 3, we are ready to confront the central
problem of this thesis: to investigate the relevance of four-fermion interactions in the
asymptotic safety scenarios provided by adding the Pauli term to textbook QED. If these
dimension-6 operators do turn out to be RG-relevant at the UV fixed points B or C, it
would indicate the potential dynamical generation of fermion masses on the order of some
UV scale, say the Planck scale. This would be much larger than the phenomenological
values due to the Higgs mechanism, in contrast to observation. In this chapter, we derive
the flow equations for the basis of four-fermion interactions identified in Section 3.2.3,
which are considered to be induced by photonic fluctuations.

4.1 Computation of Γ(2)

We consider an Abelian-gauged NJL model ofNf Dirac flavors with an SU(Nf )L⊗SU(Nf )R
chiral symmetry. This is explicitly broken by an additional Pauli term, but we assume
that we can neglect the additional four-fermion terms generated by the RG flow and focus
on the theory subspace spanned by the (V± A) flavor singlet channels. This is motivated
by the fact that explicit symmetry breaking terms in the Standard Model vanish or at
least are extremely small; hence such terms in our model should also be insignificant so as
to be compatible with observation.

The corresponding effective action is given by

Γk [Φ] =

∫
x

{
ψ̄a
(
iZψ /∂ + ē /A+ iκ̄σµνF

µν
)
ψa +

ZA
4
FµνF

µν +
ZA
2α

(∂µA
µ)2

+
1

2
λ̄+ (V + A) +

1

2
λ̄− (V− A)

}
, (4.1)

where we have grouped the fermionic and bosonic fields into the collective field

Φ ≡

 Aµ(p)
ψa(p)

ψ̄a
T
(−p)

 , ΦT ≡
(
Aµ(−p), ψa

T

(−p), ψ̄a(p)
)

(4.2)

Here the adjoints of the complex Dirac spinors count as independent degrees of freedom.
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With the Fourier conventions

Aµ(x) =

∫
d4p

(2π)4
Aµ(p)e

ip·x, ψa(x) =

∫
d4p

(2π)4
ψa(p)eip·x, ψ̄a(x) =

∫
d4p

(2π)4
ψ̄a(p)e−ip·x,

(4.3)

we can rewrite the action in momentum space,

Γk[Φ] =

∫
p

{
−Zψψ̄a(p)/pψa(p) +

ZA
2

(
p2 |Aµ(p)|2 +

(
1

α
− 1

)
|pµAµ(p)|2

)}
+

∫
p1, p2

ψ̄a(p1 + p2) (ēγ
µ + 2κ̄p2ν σ

µν)ψa(p1)Aµ(p2) (4.4)

+

∫
p1, p2, p3

∑
±

λ̄±
2

[
ψ̄a(p1)γµψ

a(p2)ψ̄
b(p3)γ

µψb(p1 − p2 + p3)∓ (γµ → γµγ5)
]
,

where one of the momentum integrals has been eliminated by the locality of the field
operators and we have used the reality of the gauge field Aµ(−p) = Aµ

∗
(p).

To compute the beta functions of the four-fermion couplings, it is convenient to express
the Wetterich equation (2.50) as

∂tΓk =
1

2
STr ∂̃t ln

(
Γ
(1,1)
k +Rk

)
, (4.5)

in an analogous form to the perturbative equation (2.52). Here the supertrace STr is
defined as in Section 2.2.3 and the formal derivative ∂̃t acts only on the scale dependence
of the regulator Rk. We denote the (m+ n)-point functions of the effective average action
as

Γ
(m,n)
k [Φ] ≡

−→
δ

δΦT
. . .

−→
δ

δΦT︸ ︷︷ ︸
m-times

Γk[Φ]

←−
δ

δΦ
. . .

←−
δ

δΦ︸ ︷︷ ︸
n-times

, (4.6)

which takes into account the Grassmann nature of the fermionic fields and their derivatives.
To derive the beta functions, it suffices to consider spatially homogeneous background
fields1, which are represented in momentum space by

ψa(p) = ψa(2π)4δ(4)(p), ψ̄a(p) = ψ̄a(2π)4δ(4)(p) (4.7)

1To compute the anomalous dimension, we would instead consider a plane wave background ψa(p) =
ψa(2π)4δ(4)(p−Q).
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The second functional derivative then becomes the field-space matrix

Γ
(1,1)
k [Φ] (4.8)

=



ZA p
2
(
Pµν⊥ (p) + 1

αP
µν
‖ (p)

)
ψ̄b (ēγµ + 2κ̄pρ σ

ρµ) −ψbT
(
ēγµ

T
+ 2κ̄pρ σ

ρµT
)

(
−ēγνT + 2κ̄pρ σ

ρνT
)
ψ̄a

T
F ab11 −Zψ/pT δab + F ab12

(ēγν − 2κ̄pρ σ
ρν)ψa −Zψ/p δab + F ab21 F ab22


δp, p′ ,

where the delta function δp,p′ = (2π)4δ(p−p′) indicates that the two-point function Γ
(1,1)
k [Φ]

is diagonal in momentum space for constant background fields.

In the bosonic sector, the transversal and longitudinal projectors are respectively de-
fined as

P µν
⊥ (p) = gµν − pµpν

p2
, P µν

‖ (p) =
pµpν

p2
. (4.9)

Meanwhile, the fermionic entries are given by

F ab
11 = −

∑
±

λ̄±
{
γTρ ψ̄

aT ψ̄bγρ ∓ γ5T γTρ ψ̄a
T

ψ̄bγργ5
}

(4.10)

F ab
21 =

∑
±

λ̄±
{
γρ
[
ψaψ̄b ± γ5ψaψ̄bγ5

]
γρ + δabγρ

[(
ψ̄cγρψc

)
∓ γ5

(
ψ̄cγργ5ψc

)] }
(4.11)

F ab
12 = −F baT

21 , F ab
22 = F ab

11 with ψ̄a
T → ψa, ψ̄b → ψb

T

, (4.12)

where we have dropped any terms involving gauge field Aµ since we consider only the flows
of the four-fermion couplings. Note that the transposition of Grassmann-valued spinors
such as

(
ψaψ̄b

)T
= −ψ̄bTψaT incurs a minus sign. Whereas (4.10) describes four-fermion

vertices with two outgoing external fermions of flavors a and b, (4.11) represents vertices
with one incoming and one outgoing external fermion, with the first term allowing for
a change in the flavor carried by the loop (b → a) and the second corresponding to an
unchanged loop flavor a = b before and after the vertex.

Note that the momentum dependence of the Pauli vertex leads to a sign difference
from the corresponding minimal coupling term when taking fermionic functional deriva-
tives from the left (corresponding to entries in the first column of (4.8)). The antisymmetry
of the field strength tensor Fµν results in relatively large numerical prefactors in the beta
function.
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To form the inverse propagator, we use the chirally symmetric regulators introduced in
(2.37):

Rk(p, p
′) =



ZA p
2 rB(p) g

µν 0 0

0 0 −Zψ rF (p) /pT δab

0 −Zψ rF (p) /p δab 0


δp, p′ . (4.13)

We then decompose the inverse regularized propagtor into a field-independent (inverse)
propagator matrix Pk and a field-dependent fluctuation matrix Fk:

Γ
(1,1)
k +Rk = Pk + Fk[Φ], (4.14)

in terms of which equation (4.5) can be Taylor expanded:

∂tΓk =
1

2
STr

{
∂̃t

(
1

Pk
Fk
)}
− 1

4
STr

{
∂̃t

(
1

Pk
Fk
)2
}

+
1

6
STr

{
∂̃t

(
1

Pk
Fk
)3
}

+ . . . ,

(4.15)

where we have dropped a field-independent constant ∼ STr ∂̃t lnPk. Our propagator matrix
reads

1

Pk
=



1
PB
P⊥
µν 0 0

0 0 − 1√
p2PF

/p

0 − 1√
p2PF

/pT 0


δp, p′ , (4.16)

where we have gauge fixed after the inversion, setting α = 0 in the Landau gauge as a
fixed point of the RG flow [61, 62]. Here we have defined the regularized momenta

PB = p2 (1 + rB(p)) , PF = p2 (1 + rF (p))
2 . (4.17)
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The corresponding fluctuation matrix is given by

Fk =



0 ψ̄b (ēγµ + 2κ̄pρ σ
ρµ) −ψbT

(
ēγµ

T
+ 2κ̄pρ σ

ρµT
)

(
−ēγνT + 2κ̄pρ σ

ρνT
)
ψ̄a

T
F ab11 F ab12

(ēγν − 2κ̄pρ σ
ρν)ψa F ab21 F ab22


δp, p′ ,

(4.18)

which includes all the dressed vertices of the theory after amputating two legs. Multiplying
powers of the propagator (4.16) and fluctuation (4.18) matrices and taking the supertrace
as in (4.15), we sum over all diagrams which are one-loop in the full propagator and of
arbitrarily high perturbative-loop order [29]. At first order in the expansion (4.15) of the
one-loop structure, the trace over momentum space vanishes due to a linear integrand in p:

1

Pk
Fk (4.19)

=



0 1
PB
P⊥
µνψ̄

b (ēγµ + 2κ̄pρ σ
ρµ) − 1

PB
P⊥
µνψ

bT
(
ēγµ

T

+ 2κ̄pρ σ
ρµT
)

1√
p2PF

/p (−ēγν + 2κ̄pρ σ
ρν)ψa − 1√

p2PF
/pF ab21 − 1√

p2PF
/pF ab22

1√
p2PF

/p
T
(
ēγν

T − 2κ̄pρ σ
ρνT
)
ψ̄a

T − 1√
p2PF

/p
TF ab11 − 1√

p2PF
/p
TF ab12


δp, p′ .
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4.2 Terms of O(λ̄2)

Going to second order in the expansion (4.15), we obtain
(

1

Pk
Fk
)2

(4.20)

=



1√
p2PFPB

P⊥
µν ψ̄

a
[
ē2
(
γα /p γµ − µ↔ α

)
+2ēκ̄pρ

(
γµ /p σρα − σρµ /p γα + µ↔ α

)
+4κ̄2pρpσ

(
σρµ /p σσα − µ↔ α

) ]
ψa

1
p2PF

[
ē/p
(
F ab21 /p γ

νψb − F ab22 /p
T γν

T

ψ̄b
T
)

+2κ̄pρ /p
(
−F ab21 /p σ

ρνψb + F ab22 /p
Tσρν

T

ψ̄b
T
) ] 1

p2PF

(
/pF ac21 /pF

cb
21 + /pF ac22 /p

TF cb11
)

+O
(
ē2, ēκ̄, κ̄2

)

O
(
ēλ̄
)

O
(
λ̄2
)

O
(
ē2
)

O (ēκ̄)

O
(
κ̄2
)



δp, p′ ,

where we have abbreviated terms giving identical contributions to those written explicitly.
The terms associated with the interchange of Lorentz indices µ ↔ α are obtained by
transposition of fermion bilinears

(
ψT ψ̄T

)
=
(
ψT ψ̄T

)T
= −ψ̄ψ. Once again, note the

relative minus signs carried by the Pauli coupling terms.

We can further simplify the top left entry by projecting the product of Dirac matrices
onto the basis (3.15) of the Clifford algebra. In particular, for the Euclidean conventions
where γ5 = γ1γ2γ3γ4 (see Appendix 6),

γµγνγρ = gµνγρ + gρνγµ − gρµγν − ερµνσγσγ5 (4.21)

γµγνγργσ = gρνgσµ − gρµgσν + gρσgµν + ερσµνγ5 (4.22)

− igµνσρσ − igσνσρµ + igρνσσµ + igσµσρν − igρµσσν − igρσσµν

γµγνγργσγα = gµσgνργα − gµρgνσγα + gµνgρσγα + gασgνργµ − gαρgνσγµ + gανgρσγµ

− gασgµργν + gαρgµσγν − gαµgρσγν + gασgµνγρ − gανgµσγρ + gαµgνσγρ

− gαρgµνγσ + gανgµργσ − gαµgνργσ + εαµρσγνγ5 − εανρσγµγ5

− εαρσβgµνγβγ5 + εµνσβgαργβγ
5 − εµνρβgασγβγ5 − εαµνβgρσγβγ5. (4.23)

To obtain these from the corresponding Minkowski relations (where γ5 = iγ0γ1γ2γ3), we
can perform the substitution (γ5)M → i (γ5)E. Since the trace of an odd product of gamma
matrices vanishes, identities (4.21) and (4.23) involve only the vector and axial vector terms,
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which both give rise to chirally symmetric four-fermion channels. On the other hand,
identity (4.22) for an even product generates chiral-symmetry-breaking channels outside
the two-dimensional NJL subspace. With a caveat regarding Fierz ambiguity (further
discussed in the next section 4.3), we choose to discard such terms.

The matrix (4.20) then simplifies to
(

1

Pk
Fk
)2

(4.24)

=



− 2√
p2PFPB

P⊥
µν

(
ē2 − 4κ̄2p2

)
εαµρσpσ

(
ψ̄aγργ5ψ

a
)

2
p2PF

[
ē/p
(
−F ab21 /p γ

νψb + F ab22 /p
T γν

T

ψ̄b
T
)

+2κ̄pρ /p
(
F ab21 /p σ

ρνψb − F ab22 /p
Tσρν

T

ψ̄b
T
) ] 1

p2PF

(
/pF ac21 /pF

cb
21 + /pF ac22 /p

TF cb11
)

+O
(
ē2, ēκ̄, κ̄2

)

O
(
ēλ̄, κ̄λ̄

)
O
(
λ̄2
)

O
(
ē2
)

O (ēκ̄)

O
(
κ̄2
)



δp, p′ ,

Focusing on the fermionic sector and taking into account identical contributions from the
two diagonal elements,

− 1

4
STr

{
∂̃t

(
1

Pk
Fk
)2
}∣∣∣∣∣

λ̄2

(4.25)

=
1

2
Ω

∫
p

1

p2
∂̃t

(
1

PF

)
tr
(
/pF

ab
21 /pF

ba
21 + /pF

ab
22 /p

TF ba11

)
= −1

2
Ω
(
λ̄2−, λ̄

2
+, 2λ̄+λ̄−

)
·
∫
p

1

p2
∂̃t

(
1

PF

)
(4.26)

{
2

2

0

(ψ̄aγµ /p γνψa − µ↔ ν
) (
ψ̄bγν /p γ

µψb
)
+


2

−2
0

(γν → γνγ
5
)

+


4

0

2

(ψ̄aγµ /p γν /p γµψa) (ψ̄bγνψb)+


4

0

−2

(γν → γνγ
5
)

+Nf tr
(
/p γµ /p γν

)

−1
−1
−1

(ψ̄aγµψa) (ψ̄bγνψb)+

−1
−1
1

(γµ,ν → γµ,νγ
5
)
}

= Ωk2v4 l
(F)
4 (0, 0)

{
λ̄2− (dγNf − 4) (V−A) + λ̄2+ [12 (V + A) + dγNf (V−A)]

+ 2λ̄+λ̄− (dγNf + 4) (V + A)
}
, (4.27)
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where Ω = (2π)4 δ4(0) represents the spacetime volume arising from the integration over
p′ and tr indicates a Dirac trace. In the second line, we use that γ5 anticommutes with
all gamma matrices ({γµ, γ5} = 0) and is traceless (tr γ5 = 0). In the third line (4.26), we
apply identities (4.21) and (4.23) to the product of gamma matrices and take the Dirac
trace of (4.22), keeping the dimension dγ = tr

(
Idγ
)

of the representation general. The
momentum integrals are simplified by spherical symmetry to∫

p

pµpνf(p2) =
1

4
gµν
∫
p

p2f(p2), (4.28)

the normalization of which can be confirmed by contraction with gµν . Another useful
relation for dealing with the Levi-Civita symbols that arise from (4.21) and (4.23) is

εµνρσε α
µνρ = 6gσα. (4.29)

The definitions for all threshold functions in this chapter are given in Appendix 6.

The result (4.27) agrees with the findings of [70] and [78], upon taking the appropri-
ate no-color limit. The various terms on line (4.26) can be interpreted in terms of the 1PI
diagrams of Figure 4.1. Here the fermion lines have been color-coded by their flavors a/b,
while the black fermion loop in diagram 4.1(c) indicates a sum over all possible flavors
circulating therein. Note that such diagrams (proportional to Nf ) with two λ+ vertices do
not contribute to the RG flow of λ+ in (4.27), such that the single-channel approximation
λ− = 0 exhibits no flavor dependence. Furthermore, the λ2− diagrams 4.1(a) and 4.1(b)
are exactly cancelled by diagram 4.1(c) for Nf = 1, such that there is no self-correction
term in the beta function of λ−. This has important ramifications for the NJL fixed point
structure discussed in Chapter 5.
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(a) First line of (4.26). a

a

b

b

λ± λ±

(b) Second line of (4.26).

a
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b

b

λ± λ±

(c) Third line of (4.26).

Figure 4.1: 1PI Feynman diagrams representing the terms of (4.26). The fermion lines
are color-coded based on their flavors, with double lines representing full propagators and
black lines indicating a sum over all flavors.

4.3 Terms of O(ē2λ̄, κ̄2λ̄)

Turning now to the third order terms of the expansion (4.15),(
1

Pk
Fk
)3

(4.30)

=



2
p2PFPB

P⊥
µν ψ̄

a
[
ē2γµ /p

(
F ab
21 /p γ

αψb − F22 /p
Tγα

T
ψ̄b

T
)

−4κ̄2 pρpσ σρµ /p
(
F ab
21 /p σ

σαψb − F ab
22 /p

T σσα
T
ψ̄b

T
) ]

O(ē2λ̄)
O(κ̄2λ̄)

O(ē2λ̄)
O(κ̄2λ̄)



δp, p′ ,

where the factor of 2 in the top left entry accounts for the identical contributions from
terms of O

(
ēλ̄, κ̄λ̄

)
in the first column of (4.24).
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Likewise, the diagonal entries of the fermionic sector contribute identically to the supertrace
upon transposition, giving another overall factor of 3:

1

6
STr

{
∂̃t

(
1

Pk
Fk
)3
}∣∣∣∣∣

ē2λ̄

(4.31)

= Ω ē2
∫
p

1

p2
∂̃t

(
1

PFPB

)
P⊥
µν ψ̄

aγµ/p
(
F ab
21 /p γ

νψb − F ab
22 /p

Tγν
T

ψ̄b
T
)

= Ω ē2
∫
p

1

p2
∂̃t

(
1

PFPB

)
P⊥
µν

(
λ̄−, λ̄+

)
·{(

1

1

)[(
ψ̄aγµ /p γ

ρψa − µ↔ ρ
) (
ψ̄bγρ /p γ

νψb
)
+
(
ψ̄aγµ /p γ

ρ
/p γ

νψa
) (
ψ̄bγρψ

b
)]

+

(
1

−1

)(
γρ → γργ

5
)}

= 12Ω v4 l
(B,F)
4 (0, 0)

[
ē2λ̄−(V− A)− ē2λ̄+ (V + A)

]
,

The terms due to the gauge coupling agree with the analysis of four-fermion interactions
with an additional SU(Nc) gauge symmetry in [78], up to a factor of two that has been
accounted for.

1

6
STr

{
∂̃t

(
1

Pk
Fk
)3
}∣∣∣∣∣

κ̄2λ̄

(4.32)

= −4Ω κ̄2
∫
p

pρ pσ
p2

∂̃t

(
1

PFPB

)
P⊥
µν ψ̄

aσρµ/p
(
F ab
21 /p σ

σνψb − F ab
22 /p

Tσσν
T

ψ̄b
T
)

= −4Ω κ̄2
∫
p

pρ pσ
p2

∂̃t

(
1

PFPB

)
P⊥
µν

(
λ̄−, λ̄+

)
·{(

1

1

)[(
ψ̄aσσµ /p γ

αψa
) (
ψ̄bγα /p σ

ρνψb − γα ↔ σρν
)
+
(
ψ̄aσσµ /p γ

α
/p σ

ρνψa
) (
ψ̄bγαψ

b
)]

+

(
1

−1

)[(
γα → γαγ

5
)]}

= −24Ω k2 v4 l(1,B,F)4 (0, 0)
[
κ̄2λ̄− (V + A) + κ̄2λ̄+ (V− A)

]
+ discarded (S),

where in addition to the relations of the previous Section 4.2, we also use that P⊥
µν is a

symmetric projector of trace 3:

P⊥
µν = P⊥

νµ, pµP⊥
µν = 0, gµνP⊥

µν = 3. (4.33)

This vanishes upon contraction with the antisymmetric Levi-Civita symbol (P⊥
µνε

µνρσ = 0).
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Moreover, under the momentum integrals, we can make the replacement

P⊥
µν qαqβ ε

µργαεν δβρ → qαqβ ε
µργαε δβ

µρ , (4.34)

as the momentum-dependent part of the projector P⊥
µν would lead to a quartic term

qµqνqαqβ in momentum. The generalization of identity (4.28) leads to all possible contrac-
tions of the four indices µ, ν, α, β in the two Levi-Civita symbols, which cancel each other.

Note that there are no ēκ̄λ̄ terms as their integrands are odd in momentum. Since chiral
symmetry is explicitly broken by the Pauli term, channels outside our two-dimensional
NJL subspace are generated in (4.32). To further comment on such terms, we consider
the 1PI Feynman diagrams described by these cubic terms (Figure 4.2). In particular,
Figure 4.2(a) depicts the exchange of a Pauli-coupled photon between different flavors.
The even number of Dirac matrices on each fermion line generates the scalar Gross-Neveu(
ψ̄aψa

) (
ψ̄bψb

)
scalar channel, violating chiral symmetry.

On the contrary, the chiral-invariant exchange of a Pauli-coupled photon between the same
flavor contributes non-diagonally to the RG flow in the (V± A) basis, such that λ+ in
Figure 4.2(b) contributes solely to the RG flow of λ−, and vice versa. This is because the
γ5 at the four-fermion vertex anticommutes with each of the three gamma matrices from
the propagator and the Pauli vertex further along the fermion line. This coupling between
the flows of λ± is thus not captured in the single-channel model λ− = 0.

b

a

e, κ

e, κ
λ±

a

b

(a) a

a

e, κ

e, κ
λ±

b

b

(b)

Figure 4.2: 1PI Feynman diagrams representing the cubic terms in the expansion (4.15)
of the one-loop Wetterich equation, with the double lines representing full propagators.
Diagrams 4.2(a)/4.2(b), depicting the exchange of a photon between different/identical
flavors, respectively violates/respects chiral symmetry, in agreement with the number of
Dirac matrices along each fermion line. Moreover, diagram (b) couples the RG flows of λ±,
such that λ+ in this diagram contributes exclusively to the RG flow of λ−, and vice versa.
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In the absence of a Fierz-complete basis in the larger space of all four-fermion interactions
(chirally invariant or not), the choice of terms to retain or discard is somewhat arbitrary.
For example, we can decompose the scalar channel as

(S) = (S + γV± γA)− γ (V± A) , (4.35)

for any arbitrary γ ∈ R. In the face of this Fierz ambiguity, we adopt a ”maximal
subtraction” prescription and simply discard any contributions which do not reside entirely
within the two-dimensional NJL theory subspace. This prescription is unambiguous as it
preserves the chirally invariant subspace.

4.4 Terms of O
(
ē4, ē2κ̄2, κ̄4

)
As for the quartic terms of the expansion (4.15),(

1

Pk
Fk
)4

(4.36)

=



4
p2PFP

2
B
P⊥
µνP

⊥
αβ (ē

4 − 8ē2κ̄2p2 + 16κ̄4(p2)2)

εαµρσεεβγδpσpδ
(
ψ̄aγργ5ψ

a
) (
ψ̄bγγγ5ψ

b
)

O (ē4)

O (ē2κ̄2)

O (κ̄4)

O (ē4)

O (ē2κ̄2)

O (κ̄4)



δp, p′ ,

where the abbreviated fermionic elements collectively give the same term as the bosonic
entry upon transposition, resulting in an overall factor of 2 in the supertrace:
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− 1

8
STr

{
∂̃t

(
1

Pk
Fk
)4
}∣∣∣∣∣

ē4, ē2κ̄2, κ̄4

(4.37)

= Ω

∫
p

(
ē4 − 8ē2κ̄2p2 + 16κ̄4(p2)2

) pσpδ
p2

∂̃t

(
1

PFP 2
B

)
P⊥
µνP

⊥
αβ

εµαρσενβγδ
(
ψ̄aγργ5ψ

a
) (
ψ̄bγγγ5ψ

b
)

= 3Ω k−2 v4 l
(B2,F)
4 (0, 0) ē4 − 24Ω v4 l

(1,B2,F)
4 (0, 0) ē2κ̄2 + 48Ω k2 v4 l

(2,B2,F)
4 (0, 0) κ̄4

[(V + A)− (V− A)] .

Along with the relations of the previous sections 4.2 and 4.3, we use a generalization of the
argument behind (4.34), such that only the momentum-independent terms of the two projec-
tors give rise to non-vanishing contributions upon contraction with the Levi-Civita symbols.

The terms of this order correspond to the box diagrams of Figure 4.3, which only survive
upon momentum integration for even powers of ē and κ̄. The Gross-Neveu channel dropped
in (4.24) is generated by the even number of Dirac matrices associated with one gauge and
one Pauli vertex on the same fermion line. No other chirally asymmetric channels are
induced, as all other placements of an even number of gauge and Pauli vertices results in
an odd number of Dirac matrices on each line.

e, κ

e, κ

e, κ

e, κ

Figure 4.3: 1PI Feynman diagrams representing the quartic terms in the expansion (4.15)
of the one-loop Wetterich equation, with the double lines representing full propagators.
The chiral-symmetry-breaking Gross-Neveu channel is generated by diagrams with one
gauge and one Pauli vertex on each fermion line, associated with four Dirac matrices.

Through such box diagrams, four-fermion interactions may be generated even if the cou-
plings λ are set to vanish in the UV. Combined with the 1PI diagram 4.2 (absent in the
single-channel approximation), all ladder and crossed-ladder diagrams are resummed [79,
80].
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4.5 Four-Fermion Couplings Flow Equations

Meanwhile, substitution of the homogeneous background fields (4.7) simplifies the four-
fermion terms in the left-hand side of the Wetterich equation (4.15) to

∂tΓk =
1

2
Ω
∑
±

∂tλ±(V± A). (4.38)

Equating this to terms from (4.25), (4.31), (4.32) and (4.37) and defining the renormalized
dimensionless couplings

λ± =
k2λ̄±
Z2
ψ

, e =
ē

Zψ
√
ZA

, κ =
kκ̄

Zψ
√
ZA

, (4.39)

the beta functions of the four-fermion couplings are given by

∂tλ+ = (2 + 2ηψ)λ+ + 4v4 l
(F)
4 (0, 0)

[
6λ2+ + (dγNf + 4)λ+λ−

]
(4.40)

− 24v4 l
(B,F)
4 (0, 0) e2λ+ − 48v4 l

(1,B,F)
4 (0, 0)κ2λ−

+ 6v4 l
(B2,F)
4 (0, 0) e4 − 48v4 l

(1,B2,F)
4 (0, 0) e2κ2 + 96v4 l

(2,B2,F)
4 (0, 0)κ4,

∂tλ− = (2 + 2ηψ)λ− + 2v4 l
(F)
4 (0, 0)

[
(dγNf − 4)λ2− + dγNfλ

2
+

]
(4.41)

+ 24v4 l
(B,F)
4 (0, 0) e2λ− − 48v4 l

(1,B,F)
4 (0, 0)κ2λ+

− 6v4 l
(B2,F)
4 (0, 0) e4 + 48v4 l

(1,B2,F)
4 (0, 0) e2κ2 − 96v4 l

(2,B2,F)
4 (0, 0)κ4.

We will analyse the implications of these flow equations in the next chapter 5.
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Chapter 5

Analysis

Having derived the flow equations (4.40) and (4.41), we now consider the RG flow of the
NJL sector in the vicinities of the Pauli-induced UV fixed points B and C (see Table 3.1),
in which an asymptotically safe trajectory remains for infinite RG time. We thus neglect
the flow in the gauge/Pauli sectors, though (e∗, κ∗,m∗) may still be tuned by varying
the number of fermion flavors Nf (at least at fixed point B). This analysis provides first
indications as to whether such asymptotic safety scenarios for QED are compatible with
the light fermions of the Standard Model. We will also be interested in how the number
of physical parameters for each universality class B/C is altered by the inclusion of the
dimension-6 NJL operators.

5.1 Single-Channel Model

For simplicity, we start again with a single-channel approximation, setting λ− = 0 and
investigating the fate of the fixed point structure illustrated in Figure 3.5. We first focus
on the non-Gaussian fixed point C(e∗ = 0, κ∗ = 3.82,m∗ = 0), which can be connected to
phenomenological values of the fine-structure constant and anomalous magnetic moment
of the electron (see Section 3.1). The following analysis applies also to the Z2 reflection of
C, since the beta function (4.40) is even in κ.

In the neighborhood of C, we can neglect the fermion mass and assume that the asymp-
totically safe trajectory remains within the massless regime for a large range of scales,
as have been constructed in [3]. The Pauli term is then the only source of explicit chiral
symmetry breaking. As we saw in Chapter 4, this generates an additional Gross-Neveu
channel outside the two-dimensional NJL theory subspace, which would otherwise be
consistent with an SU(Nf )L × SU(Nf )R symmetry. For this analysis, we assume such
terms to remain irrelevant and concentrate only on the possibility of mass generation by
the NJL channels.
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For the vanishing gauge coupling e∗ = 0 at C, (4.40) simplifies to

∂tλ+ = (2 + 2η∗ψ)λ+ + 24v4 l
(F)
4 (0, 0)λ2+ + 96v4 l

(2,B2,F)
4 (0, 0)κ∗4. (5.1)

With the non-diagonal contribution of diagram 4.2(b) to the RG flow in the (V± A) basis,
the finite Pauli coupling manifests only in the term associated with the box diagram 4.3.
As would also be the case for a nonvanishing gauge coupling e∗, the net effect is a constant
upward shift of the convex beta function, allowing for the possibility of a fixed-point
collision and annihilation in a saddle-node bifurcation (Figure 5.1). As alluded to in
Section 3.2.2, it has been shown by bosonization that a divergent λ+ corresponds to the
formation of a chiral condensate 〈ψ̄ψ〉, with scalar and pseudoscalar (pionic) excitations
evocative of low-energy QCD phenomenology.

-70 -60 -50 -40 -30 -20 -10 0

𝜕!𝜆"

𝜆"
𝜅∗ = 0

𝜅∗ = 𝜅$%&!

𝜅∗ = 3.82	

Figure 5.1: The two fixed points (black dots) of the (V + A) channel annihilate at a critical
value κcrit ≈ 3.28 of the Pauli coupling (blue dot). Above this value, the NJL operator
becomes relevant, signaling dynamical generation of mass at the scale where the coupling
diverges.
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5.1.1 Vanishing Anomalous Dimension

In the leading order, we neglect the anomalous dimension ηψ = −∂t lnZψ. The beta
function (5.1) then exhibits two fixed points as long as

1− 2304v24 κ
∗4 l

(F)
4 (0, 0) l

(2,B2,F)
4 (0, 0) > 0 =⇒ |κ∗| < κcrit =

4

√
32

27
π ≈ 3.28, (5.2)

where we have evaluated the optimized regulators as enumerated in Appendix 6. This
condition is evidently not satisfied at fixed point C (κ∗ = 3.82). In the absence of an IR
attractor, the NJL channel becomes relevant regardless of the initial UV value. As dis-
cussed in Section 3.2.2, mass is dynamically generated at the scale where the four-fermion
coupling λ+ diverges, in contradistinction to the small fermion masses observed in the
Standard Model. Since the single-channel beta function is independent of flavor number
Nf , as is the fixed point C, the conclusion is the same for all values of Nf .

As for fixed point B, we can explore its consistency by including a finite fermion mass
m∗ in the regulators of the beta function (5.1). Neglecting that this additional source of
χSB generates additional terms in the beta function, the only role of the mass is then
to decouple the fermions from the RG flow, such that stronger interactions are required
to induce criticality. In terms of Figure 5.1, the finite m∗ reduces the shift of the beta
function due to the Pauli coupling κ∗ and decreases the curvature of the parabola such
that the two fixed points are spaced further apart, possibly avoiding bifurcation at B. The
condition analogous to (5.2) for the irrelevance of the NJL operator reads

4− 9(2m∗2 + 3)κ∗4

8π4 (m∗2 + 1)4
> 0, (5.3)

which is not satisfied by the fixed point B(κ∗ = 5.09,m∗ = 0.328). For larger Nf , this
is further exacerbated as the Pauli coupling κ∗ grows and the suppressive effect of m∗

decreases. Therefore, at least at leading order in the single-channel approximation, both
UV fixed points B and C trigger dynamical mass generation close to the initial UV scale.

5.1.2 Non-Vanishing Anomalous Dimension

Beyond the leading order, we take into account the anomalous dimension η∗ψ = −1 at
fixed point C, which would result in a marginally relevant Pauli coupling as required by
(3.9) (though the 1PI diagrams associated with each threshold function generate further
quantum fluctuations and result in relevance). With no contributions from four-fermion
terms in the point-like limit (see Figure 3.4(b)), the same value of η∗ψ = −1 significantly
alters the structure of the beta function (5.1). In particular, the vanishing scaling term
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(linear in λ+) renders the NJL coupling marginal at the (only) Gaussian fixed point,
highly susceptible to fluctuations due to the Pauli term. We see that any finite coupling
κ∗ removes the IR (saddle-node) fixed point and renders the channel relevant, again
culminating in dynamical mass generation.

In the vicinity of fixed point B, the even larger (negative) anomalous dimension η∗ψ = −1.38
renders λ+ relevant at the NJL Gaussian fixed point, such that the RG flow develops
a non-trivial IR fixed point. Regardless of whether we take into account higher-order
resummations through the appearance of anomalous dimensions η∗ψ,A in the regulators, the
fixed point is annihilated at the large Pauli coupling κ∗ = 5.09 at B. This same observation
applies to Nf > 1. While the growth in η∗A with increasing Nf tends to result in a smaller
coefficient of the Pauli term in (5.1), this is offset by increases in κ∗ and η∗ψ, as well as a
decrease in the dimensionless mass m∗. Thus, our conclusions regarding the viability of
fixed points B and C remain unchanged from the leading order.

5.2 Two-Channel Model

While the conclusions of the previous Section 5.1 may seem inauspicious for the premise
of Pauli-induced asymptotic safety scenarios, we highlight two pecularities of the single-
channel model. Firstly, it is independent of flavor number Nf , since diagram 4.1(c) does
not contribute to self-correction terms ∼ λ2+ in the beta function (4.40). By extending the
truncation to include also the (V− A) channel, the flavor number serves as an additional
parameter in the search for consistent asymptotic safety scenarios.

Moreover, by setting λ− = 0, the role of diagram 4.2(b) in coupling the RG flows of
λ± is overlooked and the only effect of a finite Pauli coupling is to bring the NJL fixed
points closer together towards bifurcation. This is only exacerbated with the anomalous
dimension ηψ = −1 rendering the NJL couplings perturbatively marginal and the ensuing
instability of fixed points against further quantum fluctuations. However, from the beta
functions for both (V± A) channels (for the irreducible representation of the Dirac algebra
with dγ = 4)

∂tλ+ = (2 + 2ηψ)λ+ + 8v4 l
(F)
4 (0, 0)

[
3λ2+ + 2 (Nf + 1)λ+λ−

]
(5.4)

− 48v4 l
(1,B,F)
4 (0, 0)κ∗2λ− + 96v4 l

(2,B2,F)
4 (0, 0)κ∗4,

∂tλ− = (2 + 2ηψ)λ− + 8v4 l
(F)
4 (0, 0)

[
(Nf − 1)λ2− +Nfλ

2
+

]
(5.5)

− 48v4 l
(1,B,F)
4 (0, 0)κ∗2λ+ − 96v4 l

(2,B2,F)
4 (0, 0)κ∗4,
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we observe that by allowing for mutual feedback within the two-dimensional flow of λ±, a
linear term ∼ κ∗2λ∓ is restored in the presence of a finite Pauli coupling κ∗. Such terms
(represented by diagram 4.2(b)) enable the resummation of all ladder and crossed-ladder
diagrams and turn out to play an essential role in preventing fixed point annihilations. As
for the gauge coupling e, the box diagram terms ∼ κ∗4 contribute with opposite signs to
the flows of λ±.

5.2.1 Vanishing Anomalous Dimension

Single Fermion Flavor at C

To appreciate the consequence of a finite Pauli coupling κ∗ as opposed to gauge coupling
e∗, we first consider the leading order approximation ηψ = 0 at fixed point C. The missing
quadratic λ2− term from the λ− beta function (5.5) for Nf = 1 allows for simple substitution
into the λ+ beta function, resulting in the cubic equation

1

32π4
λ3+ −

(
5κ∗2

16π4
+

3

8π2

)
λ2+ −

(
κ∗4

16π4
+ 2

)
λ+ +

9κ∗6

8π4
− 9κ∗4

4π2
= 0, (5.6)

with three fixed points

FGauss
1 =

(
8π2 + 4κ∗2 −

√
34κ∗4 + 64π2κ∗2 + 64π4,−8π2 − 4κ∗2 +

√
34κ∗4 + 64π2κ∗2 + 64π4

)
,

F2 =

(
−4π2 + 2κ∗2,−π2 − κ∗2 + 15κ∗4

8π2

)
, (5.7)

F3 =
(
8π2 + 4κ∗2 +

√
34κ∗4 + 64π2κ∗2 + 64π4,−8π2 − 4κ∗2 −

√
34κ∗4 + 64π2κ∗2 + 64π4

)
.

The fixed points F1 and F2 collide at κcrit ≈ 3.70, analogously to the single-channel
model where κcrit ≈ 3.28. However, instead of annihilating each other in a saddle-node
bifurcation, F1 and F2 persist for all values of κ∗ and instead exchange IR stability in
a transcritical bifurcation. This is solely due to the presence of the non-diagonal terms
κ∗2λ±, which results in a positive-definite discriminant in (5.6) except at κcrit, as opposed
to an indefinite discriminant for the analogous cubic equation with e∗.

At fixed point C with κ∗ ≈ 3.82, F2 becomes fully attractive (see Table 5.1), though
the proximity of κ∗ to the bifurcation at κcrit results in F1 and F2 being hardly distinguish-
able in the phase diagram of Figure 5.2. The separatrix connecting F1 and F3 remains
intact, separating the chirally broken phase Ib and the chirally symmetric phase II, while
F4 at infinity no longer connects to F2. The existence of such an IR attractor thus allows
the Pauli-induced fixed point C to avoid dynamical mass generation by initializing the RG
flow in phase II of Figure 5.2, without adding any further physical parameters to the three
already associated to the universality class.
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Moreover, a possible UV completion in the NJL sector is provided by the trajectory
from F1. This comes at the expense of introducing a relevant NJL coupling, which
should reflect fermion-fermion scattering amplitudes in the IR. As outlined in Chapter 6,
non-trivial fixed points of purely fermionic NJL models in d = 4 often represent artefacts
of the point-like limit. With a relatively small positive critical exponent indicating weak
quantum corrections, F1 would hold some promise of surviving a resolution of momentum
dependence, but the fixed point structure is already drastically altered by the inclusion of
η∗ψ = −1, as we shortly discuss in Section 5.2.2.

Table 5.1: NJL fixed points for Nf = 1 flavor at C in leading order approximation ηψ = 0.

(λ∗+, λ
∗
−) Critical Exponents Eigendirections

F1

(
−13.3
13.3

)
(0.153,−3.82)

(
0.707
0.707

)(
0.645
−0.764

)

F2

(
−10.3
16.0

)
(−0.149,−3.88)

(
0.679
0.734

)(
0.685
−0.729

)

F3

(
288
−288

)
(3.82,−15.1)

(
0.406
−0.914

)(
0.707
0.707

)

Multiple Fermion Flavors at C

As for Nf > 1, the picture is similar, in spite of the fully IR repulsive fixed point F4 coming
from infinity (see Table 5.2 and Figure 5.3 for the case Nf = 2). Once again, F1 and F2

collide and exchange stability at a critical value of the Pauli coupling κcrit which increases
gradually with the number Nf of fermion flavors. Extending to non-integer values of Nf

by analytic continuation, we define a critical flavor number Nf, crit ≈ 5.25 where the Pauli
coupling κ∗ = κcrit = 3.82 at fixed point C is barely sufficient to induce the bifurcation
between fixed points F1 and F2.

At even larger Nf , F1 is the IR attractive fixed point, though F2 (with one relevant
direction) remains in close proximity. The phase diagram is then qualitatively akin to
Figure 3.7. As such, there appears to be a one-dimensional set of asymptotically safe
trajectories emanating from the purely repulsive F4, in addition to the two trajectories
from F2 and F3. However, with critical exponents as large as θmax ≈ 6, the large deviations
from canonical scaling at these prospective UV fixed points suggest they may not remain
after partial bosonization. As Nf increases, F3 and F4 also approach each other but
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Figure 5.2: NJL phase diagram for Nf = 1 in the vicinity of fixed point C with Pauli
coupling κ∗ = 3.82. At leading order, the fermionic anomalous dimension ηψ = 0 has been
neglected. UV values of λUV

± within region II (labelled in black) are attracted towards the
IR-attractive fixed point F2 (blue dot), avoiding dynamical generation of Planck scale
fermion masses.

undergo no collision at finite Nf .

Table 5.2: NJL fixed points for Nf = 2 flavor at C in leading order approximation ηψ = 0.

(λ∗+, λ
∗
−) Critical Exponents Eigendirections

F1

(
−12.3
12.3

)
(0.102,−4.41)

(
0.707
0.707

)(
0.657
−0.754

)

F2

(
−10.9
13.5

)
(−0.101,−4.44)

(
0.696
0.718

)(
0.672
−0.741

)

F3

(
104
−104

)
(4.41,−5.78)

(
0.508
−0.861

)(
0.707
0.707

)

F4

(
29.3
−187

)
(10.0, 2.75)

(
0.995
−0.102

)(
4.88× 10−4

1.00

)
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Figure 5.3: NJL phase diagram for Nf = 2 in the vicinity of fixed point C with Pauli
coupling κ∗ = 3.82. At leading order, ηψ = 0 has been neglected. UV values of λUV

± within
region II (labelled in black) are attracted towards the IR-attractive fixed point F2 (blue
dot), avoiding dynamical generation of Planck scale fermion masses.

Fixed Point B

Turning to the fixed point B, the situation is qualitatively identical to C. The NJL fixed
points F1 and F2 collide and exchange stability. As with the single-channel model in
Section 5.1, the non-zero mass m∗ results in a higher critical value of κcrit, which nonetheless
remains smaller than κ∗. For large Nf ≈ 18 (before B bifurcates away at larger Nf ), fixed
points F3 and F4 approach each other, though the large anomalous dimensions involved
(η∗ψ = −2.65, η∗A = 3.24) necessitate their inclusion.
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5.2.2 Non-Vanishing Anomalous Dimension

Single Fermion Flavor at C

We now turn to the next-to-leading-order contribution from the anomalous dimension
η∗ψ = −1 at fixed point C. It is evident that with both the linear scaling term ∼ λ− and the
self-correction term ∼ λ2− vanishing for Nf = 1, the remaining term of the beta function
5.5 in the absence of a Pauli term can only accommodate the Gaussian fixed point. The
question is then whether a finite Pauli coupling could reintroduce fixed points in the NJL
theory subspace.

For finite κ∗, the beta functions 5.4 and 5.5 give rise to two non-trivial fixed points,
bifurcating from the Gaussian fixed point at κ∗ = 0:

F1 =
(
−1.75κ∗2, 1.75κ∗2

)
, F3 =

(
8.89κ∗2,−8.89κ∗2

)
, (5.8)

both of which have one relevant direction. For κ∗ = 3.82 in the vicinity of C, the fixed
points and their critical exponents are listed in Table 5.3.

Table 5.3: NJL fixed points for Nf = 1 flavor at C with anomalous dimension η∗ψ = −1.

(λ∗+, λ
∗
−) Critical Exponents Eigendirections

F1

(
−25.5
25.5

)
(3.14,−2.36)

(
0.707
0.707

)(
−0.601
0.799

)

F3

(
130
−130

)
(2.36,−6.30)

(
0.351
−0.937

)(
−0.707
−0.707

)

Thus, to avoid divergences in the NJL couplings λ±, we would have to tune the UV
values λUV

± to lie on certain separatrices in Figure 5.4, necessitating an additional physical
parameter in the asymptotic safety scenario at C. The trajectory directed from F3 to F1

also admits a UV completion in the NJL sector, though again the significant deviations
from canonical scaling indicate substantial quantum corrections and casts doubt on whether
F3 persists if we resolve the momentum dependence of the NJL couplings λ±(p1, p2, p3).

Multiple Fermion Flavors at C

For Nf > 1, the non-vanishing leading term ∼ λ2− maintains a similar phase diagram
regardless of our treatment of the subleading linear term ∼ λ− containing the anomalous
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Figure 5.4: NJL phase diagram for Nf = 1 in the vicinity of fixed point C with Pauli
coupling κ∗ = 3.82 and fermionic anomalous dimension η∗ψ = −1. Dynamical generation
of Planck scale fermion masses can only be avoided by tuning the UV values of λUV

± to lie
along the appropriate separatrices.

dimension η∗ψ. In particular, there exist four fixed points whose NJL couplings λ± are
proportional to κ∗2. For Nf = 2, these take the values

F1 =
(
−1.38κ∗2, 1.38κ∗2

)
, F2 =

(
0.56κ∗2, 4.35κ∗2

)
(5.9)

F3 =
(
3.76κ∗2,−3.76κ∗2

)
, F4 =

(
2.35κ∗2,−4.61κ∗2

)
,

with F2 and F4 located at infinity for Nf = 1. For Nf = 2, the fixed points and their
critical exponents are given in Table 5.4. As illustrated in Figure 5.5, F2 attracts the flow
throughout phase II, thus maintaining light fermion masses in the IR for the asymptotic
safety scenario C. With a two-dimensional IR-critical manifold, no relevant NJL coupling
is introduced as an additional physical parameter of the universality class. This persists
for all Nf , with the transcritical bifurcation of F3 and F4 at Nf ≈ 4.94, whereupon F3

becomes IR repulsive. As well as the possible continuum limit at F1, there now exists a
one-dimensional set of UV-complete trajectories flowing from F3 to F2 (illustrated more
clearly in Figure 5.7 for an analogous scenario at fixed point B), though again the critical
exponents are concerningly large.
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Table 5.4: NJL fixed points for Nf = 2 flavor at C with η∗ψ = −1.

(λ∗+, λ
∗
−) Critical Exponents Eigendirections

F1

(
−20.1
20.1

)
(2.81,−3.42)

(
0.707
0.707

)(
0.635
−0.773

)

F2

(
8.15
63.5

)
(−1.74,−6.72)

(
0.221
0.975

)(
0.985
−0.173

)

F3

(
54.9
−54.9

)
(3.42,−1.75)

(
0.456
−0.890

)(
0.707
0.707

)

F4

(
34.3
−67.3

)
(3.53, 1.53)

(
0.693
−0.721

)(
0.320
0.947

)
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Figure 5.5: NJL phase diagram for Nf = 2 in the vicinity of fixed point C with Pauli
coupling κ∗ = 3.82 and fermionic anomalous dimension η∗ψ = −1. UV values of λUV

± within
region II (labelled in black) are attracted towards the IR-attractive fixed point F2 (blue
dot), avoiding dynamical generation of Planck scale fermion masses.
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Fixed Point B

At fixed point B, the large (negative) critical exponent η∗ψ of the fermion tends to reflect
fixed points across the origin and reverse the directions of the RG flow. As a generalization
of our discussion of the single-channel approximation in Section 5.1, the Gaussian fixed
point F1 in the absence of a Pauli term is now purely IR repulsive; relevant directions
in Figure 3.6 become irrelevant and vice versa. Thus, for Nf = 1 there is no purely
IR-attractive fixed point. With the large value of η∗ψ increasing the sizes of the thresh-
old functions, F1 and F2 collide and exchange stability at a critical value of only κcrit ≈ 2.76.

At Nf > 1, an additional IR-attractive fixed point F4 comes from infinity (see Fig-
ure 5.6 for the case of Nf = 2). This gives rise to a similar phase diagram as for C in
Figure 5.5, though the roles of the various fixed points are interchanged due to the large
anomalous dimension η∗ψ < −1. For Nf = 2, the only asymptotically safe trajectory
emanates from F3 with maximum critical exponent θmax ≈ 5.
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Figure 5.6: Phase diagram for Nf = 2 in the vicinity of fixed point B with Pauli coupling
κ∗ = 5.19, (dimensionless) mass m∗ = 0.282, fermionic and photonic anomalous dimensions
η∗ψ = −1.55, η∗A = 0.904.

For Nf & 3, the fixed-point value of the Pauli coupling κ∗ < κcrit does not exceed the
critical value κcrit required for the collision of F1 and F2. The significance is that F1 still
behaves as an IR-repulsive fixed point, connected to the attractor F4. In contrast to the
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Nf = 2 case, there now exists a one-dimensional set of UV-complete trajectories flowing
between the two fixed points, shown in Figure 5.7 for Nf = 4. Asymptotic safety at F1

(θmax ≈ 9) would introduce both NJL couplings as physical parameters in addition to the
two associated with B.
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Figure 5.7: Phase diagram for Nf = 4 in the vicinity of fixed point B with Pauli coupling
κ∗ = 5.35, (dimensionless) mass m∗ = 0.229, fermionic and photonic anomalous dimensions
η∗ψ = −1.78, η∗A = 1.41.
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Chapter 6

Conclusion

In summary, the existence of fixed points in the dimension-6 NJL sector may at first
glance seem precarious, given the condition from (3.9) that at the level of truncation (3.2),
a purely Pauli-induced asymptotic safety scenario C requires perturbatively marginal NJL
couplings λ±. Any fixed point may be maximally susceptible to the finite Pauli coupling
κ∗ in the first place. Nonetheless, by considering a two-channel NJL model which would
be Fierz-complete under an SU(Nf )L ⊗ SU(Nf )R symmetry broken by the Pauli term,
we take into account diagrams for the exchange of a single Pauli-coupled photon, thus
resumming the full set of ladder diagrams in the RG flow. The mutual feedback between
the RG flows of λ± significantly affects the phase structure in the NJL sector; instead of a
fixed point annihilation at the critical value of the gauge coupling ecrit, we merely observe
an exchange of stability in the highly non-perturbative regime beyond κcrit.

For more than one flavor, there persists a fully irrelevant fixed point F2 which attracts
the RG flow throughout a light fermion phase II, keeping the NJL couplings finite. This
avoids the generation of mass at a large UV scale which would contradict observations of
the Standard Model, without adding physical parameters to the three of universality class
C. For Nf = 1, fixed point C remains a viable UV completion in the gauge/Pauli sector,
but at the expense of introducing a relevant four-fermion coupling which must be tuned
to reproduce scattering amplitudes in the IR.

We should note that our characterization of the NJL phase diagram is based entirely on
the optimized regulators of Appendix 6, which enable analytic computations. Nonetheless,
their non-analytic structures (based on the Heaviside step function and derivatives thereof)
may introduce artefacts to the RG flow at higher orders in the derivative expansion. In
the present approximation, this is not an issue and other common regulators are expected
to result in the same conclusion. Using a family of regulators with control parameters,
an application of the principle of minimum sensitivity would additionally allow for an
estimate of convergence in physical predictions such as the universal critical exponents
[33].
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Figure 6.1: Diagram representing feedback from NJL sector to the flow of the gauge
coupling e. Since the Pauli vertex is proportional to momentum, the only non-vanishing
contribution must pick up mass m dependence from one leg of the fermionic loop.

Another natural line of inquiry would be to take into account the running gauge/Pauli
couplings beyond the immediate vicinity of fixed points B and C. The flow in the Pauli
sector is anticipated to receive contributions from the diagram of Figure 6.1. The anal-
ogous diagram with the gauge coupling e vanishes at the fixed point due to modified
Ward-Takahashi identities [78], but similar arguments are not expected to apply to the
gauge-invariant Pauli term ψ̄σµνF

µνψ. Due to the momentum dependence of the Pauli
vertex, diagram 6.1 survives the momentum trace only by picking up mass m dependence
from one leg of the fermionic loop. With the Dirac trace of an odd product of gamma
matrices vanishing, the only remaining term would be of the form

λ±κmpµAν
(
ψ̄γρ/p σµνγρψ

)
. (6.1)

Even without performing the full computation, it is clear that the odd product of gamma
matrices in this fermion bilinear can only be projected onto a contribution to the gauge
coupling. Thus, the sufficient condition (3.9) for the existence of fixed point C at vanishing
mass and gauge coupling e∗ = m∗ = 0 when η∗ψ = −1 remains unchanged, though the
critical exponents may change. One can then construct the modified flow trajectories, in
an attempt to reproduce phenomenological values of QED.

Moreover, as detailed in Chapter 4, the explicit breaking of chiral symmetry by the Pauli
term generates the Gross-Neveu channel outside the NJL subspace. The relevance of this
scalar channel remains to be investigated, as well its feedback on the NJL subspace and
the potential generation of a tensor channel. Particularly in the neighbourhood of fixed
point B, the finite mass m∗ provides an additional source of explicit χSB, resulting in
many additional terms in the beta functions (4.40) and (4.41). To systematically complete
the truncation (4.1) to dimension-6, we can include higher derivative terms such as ψ̄ /D /Dψ
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Figure 6.2: Bosonization resolves a four-fermion vertex to be mediated by a Yukawa-
coupled boson corresponding to a condensate. The four-fermion coupling λ is then mapped
to the ratio of the Yukawa coupling h and the exchanged boson mass.

and Fµν2F
µν .

It may be of interest to extend asymptotic safety to the NJL sector. As observed in
Chapter 5, especially after accounting for the fermionic anomalous dimension η∗ψ = −1, the
significant deviations from canonical scaling at prospective UV fixed points imply that the
non-Gaussian fixed points may be artefacts of the point-like limit in our purely fermionic
model, as would be the case in d = 4 without the Pauli coupling . As alluded to in Chapter
3, the momentum dependence of four-fermion couplings can be conveniently described by
partial bosonization [70]. Introducing composite bosonic fields for the condensates, the
four-fermion interaction is then mediated by Yukawa-coupled bosons (Figure 6.2), with
four-fermion couplings mapped to ratios of Yukawa-type coupling and boson mass. While
they can be rather delicate due to the marginality of the Yukawa coupling in d = 4, we
can search for genuine UV completions in the bosonized model.

Finally, thermal fluctuations at temperature T can be described by compactifying Eu-
clidean time to a strip of width β = 1/T . While finite-temperature effects do not affect the
UV physics at T/k � 1 and therefore the asymptotic safety scenarios B and C, the fermions
acquire a Matsubara mass ∼ T in order to satisfy anti-periodic boundary conditions, which
contributes to the freeze-out from the RG flow in the IR.
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Appendix A

Euclidean Dirac Algebra

Here we provide a chiral representation of the Euclidean Dirac algebra in d = 4:

γ1,2,3 =

(
0 iσ1,2,3

−iσ1,2,3 0

)
γ4 =

(
0 I2
I2 0

)
. (2)

We can abbreviate this as

γµ =

(
0 iσµ

iσ̄µ 0

)
, (3)

where σi are the Pauli matrices for i = 1, 2, 3, σ̄i = −σi and σ4 = σ̄4 = −iI2.

γ5 := γ1γ2γ3γ4 =

(
−I2 0

0 I2

)
(4)

In this chiral representation, we can express the spinors as

ψ :=

(
ψL

ψR

)
, ψ̄ := ψ†γ4 =

(
ψ†
R ψ†

L

)
, (5)

with each chirality ψL/R furnishing an irreducible representation of the SO(4) symmetry
group of Euclidean spacetime.
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Appendix B

Threshold Functions and Regulators

In general spacetime dimension d, the threshold functions used in the flow equations (4.40)
and (4.41) are defined by

l
([n], X

[xp]

[xd]
, Y

[yp]

[yd]
,...)

d (ωX , ωY , ...; ηX , ηY , ...)

=
(−1)1+xpxd+ypyd+...

2

∫
dx xn+d/2−1∂̃t

[(
∂

∂x

)xd
GX(ωX)

]xp [( ∂

∂x

)yd
GY (ωY )

]yp
..., (6)

for particles of type X, Y etc [3]. The brackets [...] contain optional indices which would
otherwise take the default values of n = 0, xd = 0, yd = 0, ..., xp = 1, yp = 1, ... and the
minus sign ensures that all threshold functions are positive for finite dimensionless mass
parameters ωX,Y,... and anomalous dimensions ηX,Y,.... x = p2/k2 denotes the momentum
squared normalized to the cutoff at k2. GX(ωX) is the dimensionless regularized propagator
for particle X

GB(ωB) =
1

xB + ωB
, GF (ωF ) =

1

xF + ωF
, GF̃ (ωF̃ ) =

1 + rF
xF + ωF̃

, (7)

where

xB = x(1 + rB(x)), xF = x(1 + rF (x))
2 (8)

are the regularized momenta and rB and rF are the bosonic and fermionic regulator shape
functions. For analytic computations, we choose to use the optimized linear regulators [70]

rB(x) =

(
1

x
− 1

)
θ(1− x), rF (x) =

(
1√
x
− 1

)
θ(1− x), (9)
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where θ denotes the Heaviside step function. For massless photons with ωB = 0 and
potentially massive fermions with ωF = m2 in d = 4,

l
(F2)
4 (m2) =

5− ηψ
10 (m2 + 1)2

, (10)

l
(B,F)
4 (0,m2) =

−5 (m2 + 1) ηA − 6ηψ + 30m2 + 60

60 (m2 + 1)2
, (11)

l
(1,B,F)
4 (0,m2) = −7 (m2 + 1) ηA + 8ηψ − 56 (m2 + 2)

168 (m2 + 1)2
, (12)

l
(B2,F)
4 (0,m2) = −5 (m2 + 1) ηA + 3ηψ − 15 (2m2 + 3)

30 (m2 + 1)2
, (13)

l
(1,B2,F)
4 (0,m2) = −7 (m2 + 1) ηA + 4ηψ − 28 (2m2 + 3)

84 (m2 + 1)2
, (14)

l
(2,B2,F)
4 (0,m2) = −9 (m2 + 1) ηA + 5ηψ − 45 (2m2 + 3)

180 (m2 + 1)2
. (15)

For the Pauli-induced fixed point C in Table 3.1, depending on whether we take into
account the anomalous dimension η∗ψ, the threshold functions simplify to

l
(F2)
4 (m2) =

1

10
(5− ηψ) , (16)

l
(B,F)
4 (0,m2) =

1

10
(10− ηψ) , (17)

l
(1,B,F)
4 (0,m2) =

1

168
(112− 8ηψ) , (18)

l
(B2,F)
4 (0,m2) =

1

30
(45− 3ηψ) , (19)

l
(1,B2,F)
4 (0,m2) =

1

84
(84− 4ηψ) , (20)

l
(2,B2,F)
4 (0,m2) =

1

180
(135− 5ηψ) . (21)
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Appendix C

Flow Equations for QED with Pauli
Term

As obtained from the Wetterich equation for the truncation (3.2), the beta functions for
the renormalized dimensionless couplings in (3.3) are given in general spacetime dimension
d by [3]:

∂te = e

(
d

2
− 2 + ηψ +

ηA
2

)
− 4vd

(d− 4)(d− 1)

d
e3 l

(1,B,F̃2
)

d (0,m2)

− 16vd
(d− 2)(d− 1)

d
eκ2 l

(2,B,F̃2
)

d (0,m2)− 32vd
d− 1

d
e2κm l

(1,B,F,F̃)
d (0,m2,m2)

− 4vd
(d− 2)(d− 1)

d
e3m2 l

(B,F2)
d (0,m2)− 16vd

(d− 4)(d− 1)

d
eκ2m2 l

(2,B,F2)
d (0,m2), (22)

∂tκ = κ

(
d

2
− 1 + ηψ +

ηA
2

)
+ 16vd

(d− 4)(d− 1)

d
κ3 l

(2,B,F̃2
)

d (0,m2)

− 4vd

(
3
(d− 6)(d− 2)

d
+ 1

)
e2κ l

(1,B,F̃2
)

d (0,m2)

+ 4vd e
3m
[d− 3

d

[
l
(1,B,F,F̃1)
d (0,m2,m2)− l(1,B,F1,F̃)

d (0,m2,m2)
]

− (d− 4)(d− 1)

2d
l
(B,F,F̃)
d (0,m2,m2)

]
+ 16vd eκ

2m
[5(d− 4)(d− 3)

2d
l
(1,B,F,F̃)
d (0,m2,m2)

+
d− 3

d

[
l
(2,B,F,F̃1)
d (0,m2,m2)− l(2,B,F1,F̃)

d (0,m2,m2)
]
− d+ 2

d
l
(1,B,F,F̃)
d (0,m2,m2)

]
+ 16vd

(
1− (d− 4)2

d

)
κ3m2 l

(1,B,F2)
d (0,m2) + 4vd

(d− 4)(d− 1)

d
e2κm2 l

(B,F2)
d (0,m2),

(23)

∂tm = −m(1− ηψ)− 16vd (d− 1) eκ l
(1,B,F̃)
d (0,m2) + 16vd (d− 1)κ2ml

(1,B,F)
d (0,m2)

− 4vd (d− 1)e2ml
(B,F)
d (0,m2), (24)
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where vd = [2d+1πd/2Γ(d/2)]−1 is a phase space factor, such that v4 = 1/ (32π2). Similarly,
the fermion and photon anomalous dimensions of (3.4) are given by the algebraic equations

ηψ = 4vd
(d− 2)(d− 1)

d
e2 l

(B,F̃)
d (0,m2)− 8vd

d− 1

d
e2 l

(1,B,F̃1)
d (0,m2)

+ 16vd
(d− 4)(d− 1)

d
κ2 l

(1,B,F̃)
d (0,m2)− 32vd

d− 1

d
κ2 l

(2,B,F̃1)
d (0,m2)

+ 32vd
d− 1

d
eκm l

(1,B,F1)
d (0,m2), (25)

ηA = 8vd
dγNf

d+ 2
e2 l

(2,F̃2
1)

d (m2) + 16vddγNfκ
2m2 l

(F2)
d (m2)− 16vd

d− 4

d
dγNfκ

2 l
(1,F̃2

)
d (m2)

− 64vd
dγNf

d
eκm l

(1,F1,F̃)
d (m2,m2) + 8vd

dγNf

d
e2m2 l

(1,F2
1)

d (m2). (26)

As is explicit from Appendix 6, the threshold functions themselves implicitly depend on
the anomalous dimension as an RG improvement resumming over higher-loop diagrams.
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