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1 Einleitung

Wenn wir uns das Vakuum klassisch vorstellen, denken wir zunéchst an einen vollsténdig leeren
Raum, in dem keine Teilchen vorhanden sind. Mathematisch ist diese Vorstellung zwar einfach zu
beschreiben, sie wird jedoch beim Ubergang von der klassischen in die Quantenwelt ad absurdum
gefithrt. Bereits die Heisenberg’sche Unschérferelation zeigt, dass es nicht moglich ist den Ener-
giezustand eines Systems zu einem beliebig genauen Zeitpunkt beliebig genau zu messen. Diese
Einschriankung gilt bemerkenswerterweise nicht nur fiir Systeme aus Teilchen, sondern auch fiir ein
scheinbar teilchenloses System, das sogenannte Vakuum. Hier wird klar: wir miissen uns von der

Vorstellung verabschieden, dass im Vakuum nichts passiert.

Die Quantenfeldtheorie fiillt diese Vorstellung mit Leben, oder besser gesagt mit fluktierenden
Feldern, sogenannten virtuellen Teilchen-Antiteilchen-Paaren, die spontan entstehen und wieder
gegenseitig annihilieren. Das Spannende ist: diese Fluktuationen sind keine rein theoretische Idee.
Sie kénnen experimentell nachgewiesen werden, indem man sie dazu bringt, mit externen Teilchen
oder Feldern zu interagieren. Eine der Moglichkeiten dafiir ist der Casimir-Effekt, der die klassisch
nicht erklédrbare Anziehung zweier leitender Platten beschreibt, zwischen denen sich ein Vakuum
befindet, resultierend aus den Fluktuationen des Photonenfelds [1]. Dieser wurde auch bereits
experimentell nachgewiesen (siehe bspw. [2]). Eine andere Option Quantenfluktuationen sichtbar
zu machen, welche hier genauer untersucht werden soll, sind starke elektromagnetische Felder, die
mit Elektron-Positron-Paaren im Quantenvakuum wechselwirken und dabei ihre Eigenschaften
andern. Beispielsweise konnen einzelne Photonen gestreut werden (Lichtdiffraktion). Durch diese
Interaktionen werden die klassischen elektromagnetischen Feldgleichungen durch nichtlineare Terme

erginzt, was wiederum die Aufgabe des Superpositionsprinzips notwendig macht.

Einer der wesentlichen dabei auftretenden Effekte ist die sogenannte Vakuum-Doppelbrechung,
bei der durch die Interaktion mit dem polarisierten Vakuum die Polarisation der Photonen in einem
elektromagnetischen Feld verschoben wird. Seit 2001 wird im PVLAS-Experiment versucht, diese
Interaktion von Licht mit starken Magnetfeldern im Labor nachzuweisen, jedoch ist dies bisher
noch nicht gelungen [3]. Allerdings wurden Hinweise auf diesen Effekt im emittierten Licht eines
Neutronensterns mit sehr starkem Magnetfeld gefunden [4]. Inzwischen gibt es auch einen neuen
Ansatz, die Vakuum-Doppelbrechung im Labor sichtbar zu machen. Dafiir sollen zwei linear polari-
sierte Hochintensitétslaserpulse in einem Brennpunkt fokussiert werden [5]. Das Experiment wurde
zwar bisher noch nicht erfolgreich in die Tat umgesetzt, jedoch sind die notwendigen technischen
Mittel dafiir bereits in naher Zukunft verfigbar [6].

Diese Moglichkeit Quantenfluktuationen zu beobachten, wird in dieser Arbeit tiefergehend
erldutert. Hier soll die Kollision zweier Laserpulse und die dadurch hervorgerufene Streuung der
Photonen modelliert werden. Real detektierbar sein soll die Vakuum-Doppelbrechung durch eine
Verdnderung der Polarisation eines der Laser nach der Kollision. Ziel soll es sein, diesen Effekt
moglichst weitgehend analytisch zu modellieren, um dann mit Hilfe des Modells und numerischen
Berechnungen in Mathematica mit exemplarischen Parametern die reale Groflenordnung des Effekts

darzustellen.



2 Theoretische Grundlagen

Um die quantenelektrodynamischen Effekte im Vakuum zu behandeln, ist es zunéchst wichtig die
klassische elektromagnetische Feldtheorie einzufithren. Anschlieend wird die quantentheoretische
Formulierung der Elektrodynamik skizziert und die Abweichungen von der klassischen Theorie
begriindet. In dieser Arbeit wird weitgehend mit der kovarianten Formulierung der Elektrodyna-
mik und dem Einstein-Kalkiil gearbeitet, wobei implizit die Minkowski-Metrik mit der Signatur
(+,—,—,—) verwendet wird. Ebenso wird das Heavyside-Lorentz-Einheitensystem (¢ = i = 1)
verwendet, wodurch alle physikalischen Einheiten als Potenz der Energie (in eV') angegeben werden

konnen.

2.1 Die Feldtheorie der klassischen Elektrodynamik

Die klassische lineare Feldtheorie der Elektrodynamik fundiert auf dem elektromagnetischen Feld

A" und dem Feldstarketensor. Dieser lasst sich schreiben als

0 E., E, E.
FH — gF AY — 9¥ A* = <§Z BOZ 70BZ B§I> . (1)
—E. -B, B, 0
E = (E,, E,, E.) und B = (B,, By, B.) sind dabei das klassische elektrische und magnetische Feld.
A# beschreibt ein kovariantes Vektorpotential, aus dem sich F'#¥ ableiten ldsst. Wie man leicht er-
kennt, ist F*¥ antisymmetrisch (F'* = —F*#). Dartiber hinaus ist F'*¥ eichinvariant, also invariant
gegeniiber Eichtransformationen des Vektorpotentials A* — A* 4+ 9* A, wobei A(z#) eine beliebige,
zweifach differenzierbare skalare Funktion beschreibt. Wie leicht an der Bestimmungsgleichung zu

erkennen, hiangt F'*¥ nicht von A(z*) ab.

Aus dem Feldstérketensor lassen sich zwei skalare, algebraisch unabhéngige, Lorentz-invariante
Groflen
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konstruieren!.

Die fundamentalen Gleichungen der Elektrodynamik, die Maxwell-Gleichungen lauten in kovari-

anter Form
P9, F, =0, (4a)

9™ = ", (4b)

wobei j# die Vierer-Stromflussdichte beschreibt, die die Kontinuitétsgleichung 9,,7* = 0 erfiillt und

im Vakuum verschwindet. Die Maxwell-Gleichungen sind lineare partielle Differentialgleichungen

1G ist lediglich eine pseudoskalare Grofle, da bei Zeit- und Paritétsinversion das Vorzeichen vertauscht wird. G2 ist
jedoch ein reguldrer Lorentz-invarianter Skalar.



zweiter Ordnung, ergo geniigen ihre Losungen dem Superpositionsprinzip, da jede Linearkombinati-

on aus Losungen der Gleichungen diese wiederum erfiillt.

Wie allgemein fiir Feldtheorien, lasst sich auch fiir die elektromagnetische Feldtheorie eine skalare
Lagrangedichte £ konstruieren, die Lorentz-invariant ist und aus der mittels der Euler-Lagrange-
Gleichungen,

oL oL

8# a(a}uAy) - 87141, =0, (5)

die Maxwell-Gleichungen folgen. £ kann also allgemein nur von skalaren Lorentz- und eichinvarianten

Groflen abhéngen. Die Festlegung der klassischen Lagrangedichte auf
1 2 -y
L= _ZF F.—-j"A, (6)

lasst sich heuristisch begriinden, da daraus die Maxwell-Gleichungen folgen miissen. Im Vakuum

reduziert sie sich auf )
__r_t(p2_ 732
L=-F 5 (E B ) . (7)

Alternativ lasst sich die Lagrangedichte auch als Variationsprinzip aus der Wirkung

Sz/d“:pﬁ (8)

T

und dem Hamilton’schen Prinzip der extremalen Wirkung formulieren. I' beschreibt dabei eine
beliebige Integrationsregion in der Raumzeit, auflerhalb welcher £ verschwindet. Detailliertere

Einfithrungen und Erlduterungen der hier eingefithrten Grofien finden sich beispielsweise in [7] oder

[8].

2.2 Die Feldtheorie der Quantenelektrodynamik

Die klassische Formulierung der Elektrodynamik ist zwar vereinbar mit Einsteins Spezieller Rela-
tivitatstheorie, jedoch nicht mit der Quantenmechanik, da diese nichtrelativistisch formuliert ist.
Deren Grundidee ist der Welle-Teilchen-Dualismus, wonach massereiche und masselose Teilchen
ebenso Welleneigenschaften aufweisen und die Distinktion dazwischen aufgehoben wird. Der Zustand
eines Ein-Teilchen-Systems ldsst sich in der Quantenmechanik durch einen Zustandsvektor |4} cha-
rakterisieren, der Element eines Hilbertraums # ist. Das Betragsquadrat |¢(z)|? = (¥|1) ldsst sich
als die Aufenthaltswahrscheinlichkeit des Teilchens am entsprechenden Raumpunkt interpretieren,
die tiber den gesamten Raum integriert eins ergeben muss. Physikalischen Observablen (A) wird ein
Operator A zugeordnet und es gilt fiir den Erwartungswert (A) = (| AJ)). Die Evolutionsgleichung

freier quantenmechanischer Zustéinde, auch Schrédinger-Gleichung genannt, lautet

. d 1
Z&W) =Hly) = —%NW- 9)

H bezeichnet den Hamilton-Operator, mit dem sich die Energiezustéinde des Systems berechnen

lassen [9]. An der Gleichung lisst sich schnell erkennen, dass die zugrunde liegende Feldtheorie keine



relativistische sein kann, da Zeit- und Raumableitungen unterschiedlicher Ordnung sind, im Rahmen
dieser Theorie also nicht dquivalent sind. Eine relativistische Formulierung der Quantentheorie

muss dieser Bedingung jedoch gentigen.

Eine der ersten relativistischen Quantenfeldtheorien formulierte Paul Dirac 1928 in seiner Arbeit
[10] fiir Teilchen mit Spin 1/2, charakterisiert durch die Dirac-Gleichung

(i9" 8, —m)y =0, (10)

wobei v# die Dirac-Matrizen, v die vierwertige Zustandsfunktion und m die Teilchenmasse bezeich-
net. Elektronen gentigen als Teilchen mit Spin 1/2 dieser Theorie. Bemerkenswert ist dabei, dass die
Dirac-Gleichung auch Zustinde mit negativer Energie als Losung zuldsst, was implizieren wiirde,
dass beispielsweise in Atomen gebundene Elektronen spontan in einen Zustand niedrigerer Energie
zerfallen konnten und die mogliche Menge freigesetzter Energie dabei unbegrenzt ist. Da dies
faktisch jedoch nicht passiert, formulierte Dirac ein anschauliches Erklarungsmodell: Im Einklang
mit dem Pauli-Prinzip, welches besagt, dass kein fermionischer Zustand mehrfach besetzt sein darf,
seien alle Zustédnde negativer Energie bereits durch nicht beobachtbare Teilchen besetzt. Dieses

Modell wird als Dirac-See bezeichnet 2.

Daraus ergibt sich die Moglichkeit fiir ein Elektron negativer Energie durch Anregung, beispiels-
weise durch ein energiereiches Photon, in einen Zustand positiver Energie gehoben zu werden.
Dadurch verbleibt ein ’Loch’ im Dirac-See mit positiver Energie und gegensétzlicher Ladung,
welches als Positron (das Antiteilchen des Elektrons) bezeichnet wird. Dieser Prozess wird auch
als Paarerzeugung bezeichnet. Dieser Prozess kann genauso umgekehrt stattfinden, wenn ein Elek-
tron das "Loch’ auffillt, also mit einem Positron gegenseitig annihiliert. Dabei werden wiederum
zwei Photonen frei, deren Energie der Teilchenmasse entspricht. Beschrieben wird dieses Modell

beispielsweise in der Einfithrung von [11].

2.3 Die Vakuum-Lagrangedichte in der Quantenelektrodynamik

Als Konsequenz aus diesem Modell ergibt sich, dass im Vakuum ein Photon mit ausreichend Energie
spontan in ein Elektron und ein Positron zerfallen kann. Genauso kann das Vakuum aufgrund
der Energie-Zeit-Unschéarfe lokal Zustinde annehmen, deren Energie sich von null unterscheidet.
Lediglich im Mittel iiber lange Zeitdauern muss die Vakuumenergie null betragen. Diese sogenannten
Vakuumfluktuationen werden in der Quantenelektrodynamik (QED) durch virtuelle Positron-
Elektron-Paare beschrieben, die spontan entstehen und wieder zerfallen®. Da diese Teilchenpaare
eine Ladung tragen, bilden sie einen elektromagnetischen Dipol und kénnen beispielsweise durch
externe elektromagnetische Felder polarisiert werden, die sogenannte Vakuum-Polarisation. Diese hat

wiederum Auswirkungen auf externe Felder. Es wird also deutlich, dass die klassische Lagrangedichte

2Dieses Modell ist zwar in der quantenfeldtheoretischen Beschreibung iiberholt, aber an dieser Stelle ausreichend.

3Tatséchlich konnen auch andere virtuelle Teilchen-Antiteilchen-Paare entstehen. Da jedoch Elektronen die geladenen
Teilchen mit der geringsten Masse sind, werden die Quantenfluktuationen der QED durch Elektron-Positron-Paare
dominiert.



aus Gleichung (7) angepasst werden muss. Diese lautet in der Formulierung der QED
1 - )
‘CQED = _ZFHVF,U,V + ¢(la - m)dj + eAM’@[J’YM’(/} (11)

mit § = ¥9, und ¥ = iy, Der erste Term beschreibt dabei die klassische Dynamik freier
elektromagnetischer Felder, der zweite Term die Dynamik freier Elektronen und Positronen und
der dritte Term die Interaktion zwischen Photonen und Fermionen*, charakterisiert durch die

elektromagnetische Kopplungskonstante e.

+

e

~
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Abb. 1: Eine Ubersicht der elementaren Bauteile von Feynman-Diagrammen in der QED. Das
erste Bauteil beschreibt das Verhalten freier elektromagnetischer Felder, das zweite die
Propagation von Positronen und Elektronen und das dritte die Interaktion zwischen
Fermionen und Photonen. Die Bauteile korrespondieren mit den entsprechenden Termen
der Lagrangedichte.

Aus diesen drei fundamentalen Prozessen lassen sich Feynman-Diagramme konstruieren, die
die Interaktionsprozesse zwischen Fermionen und Photonen beschreiben (siehe Abbildung 1).
Tatséchlich tritt fiir einen Prozess mit festgelegten ein- und ausgehenden Teilchen jeder mogliche
Prozess auf, fiir den mit diesen Randbedingungen ein Feynman-Diagramm konstruiert werden
kann. Alle moglichen Prozesse konnen nach der Anzahl auftretender geschlossener Schleifen in ihren
Feynman-Diagrammen charakterisiert werden, wobei der Beitrag von Prozessen mit n Schleifen in

der GroBenordnung o™ = (%)” unterdriickt wird® [12].

Da in dieser Arbeit die Interaktionen makroskopischer elektromagnetischer Arbeit behandelt wer-
den sollen, reicht es aus Prozesse zu betrachten, deren Anfangs- und Endzusténde frei von Elektronen
und Positronen sind, diese also nur in Form von geschlossenen Schleifen in den Feynman-Diagrammen
inkorporieren. Dartiber hinaus ist es ausreichend, die Interaktion der virtuellen Elektronen und
Positronen mit externen Photonen zu betrachten und mogliche Wechselwirkungen mit virtuellen
Photonen unberiicksichtigt zu lassen, da solche Prozesse nur in héherer Ordnung in « stattfinden.

Faktisch wird also die Streuung (Diffraktion) von Photonen am polarisierten Vakuum betrachtet.

Der klassische Wirkungsterm Sy nach Gleichung (8) wird dann durch einen nichtlinearen Term
erginzt, die effektive Heisenberg-Euler-Wirkung S;,,;. Damit erhélt man die effektive Wirkung

Set = Spw + Sint. Deren analytische Form fiir langsam veranderliche® externe elektromagnetische

4Fermionen sind Teilchen mit halbzahligem Spin. Elementare Fermionen haben alle Spin %, allerdings lassen sich

Vielteilchensysteme, wie beispielsweise Atome, konstruieren, deren Gesamtspin grofler, aber ebenfalls halbzahlig
ist und die fermionisches Verhalten zeigen.
2
Sa = Z—ﬂ = ﬁ ist die elektromagnetische Feinstrukturkonstante.
6Langsam veranderlich meint hier im Verhéltnis zur Compton-Wellenlénge Ac = "% ~3910713m =2,010%eV 1!
e

bzw. zur Compton-Zeit 7¢ ~ 1,31072ls = 2,010V !, also der Skala, auf der die virtuelle Paarbildung



Felder wurde zum ersten Mal 1936 von Heisenberg und Euler in [13] explizit berechnet. Die

entsprechende Heisenberg-Euler-Lagrangedichte lautet

znt = S2

[eS) 1 ) o ) )

/dn [1 - f(E2 — B*n? — EBn? cot(En) coth(Bn) | . (12)
0

Die Herleitung dieser Formel iibersteigt den Rahmen dieser Arbeit, findet sich aber beispielsweise
auch in [14] oder [12]. B = lilu und E = ‘El bezeichnen die dimensionslosen Feldstérken mit
den kritischen Feldstérken

[ V)
[ V)

Burig = ¢ = 4,410°T = 8,510"eV2, By = ¢ =1,310"¥V/m = 851016V (13)
e e

Da real im Labor erzeugte Feldstéarken in der Regel um Groéflenordnungen unter den kritischen
Feldstéirken liegen, kann E, B < 1 angenommen werden, was bedeutet, dass die Schwachfeldniherung
eine realistische Herangehensweise ist. Diese lasst sich aus Gleichung (12) ableiten, indem die trigo-
nometrischen Funktionen im Integranden bis zur dritten Ordnung Taylor-entwickelt werden. Die

Formeln dafiir lauten nach [15]

t(z) = f:(f U S AT (14)
T L (2k)1 2+ s 3 45V
th(z) }ooj 2 ettt LT o (15)
0 2 2k z 3 45

mit den Bernoulli-Zahlen By, wobei By = 1, By = % und By = —3—10 betragen. Damit folgt

mt [ e 1,0 = .. (1 nE (nE)? 1 nB (nB)?
Lint = —% [ dnp— |1—-=(E*-B)n*—n*EB | —=—1—— — =
¢ n [ ( n —n nB+3 I
0

mt T e[ 1., - s L B BB , BB
_ e d Z_1=Z EQ_BQ 2 2EB - = 2_ =2
/77 l ( = 2EE 38 3B wmE! 9"

0

B, BB, BB, BB
=1+ n - n 4+ n
45B 135 135 2025

(16)
Fiir die Schwachfeldndherung werden maximal die zweiten Potenzen der Lorentz-Invarianten nach
Gleichungen (2) und (3) betrachtet, was der Ordnung O(a?) entspricht. Somit werden nur Terme
beriicksichtigt, in denen E und B zusammen nicht in héherer Ordnung als vier auftreten. Damit

reduziert sich der Ausdruck auf

&) ~ ~ ~a o~ e o]
4 —-n B2 _ E2 2 7EQB2 4 4]72 7 2
Lint = o8 / o S+ = — natl /dnne’"- (17)
82 n3 45 8m2ms
0

typischerweise abléduft. Experimentell erzeugte Felder sind auf diesen Skalen in der Regel ndherungsweise konstant.



Damit muss nur noch das Integral hinter der Konstante ausgewertet werden.

7d77176_77 = [—ne"’} ZZZO + 7d77 e "= [—e‘"}:o =1. (18)
0 0

Insgesamt ergibt sich also
_ 202
~ 45m?

Lint(F,G%) [4F% +7G7]. (19)

Dieser Ausdruck fir die Lagrangedichte wird als Ausgangspunkt fiir die Berechnungen in dieser

Arbeit genommen.

Den Grund warum der nichtlineare Anteil der Lagrangedichte bei praktischen Anwendungen in
der Regel keine Rolle spielt, ldsst sich am Vorfaktor erkennen, der die Konstanten m, = 511,0 keV
und o ~ % enthélt. Dieser unterdriickt nichtlineare Effekte um viele Gréflenordnungen, sodass
entsprechende Effekte erst bei sehr hohen Feldstéarken sichtbar werden.



3 Aufgabenszenario und experimentelle GroBen

In diesem Abschnitt geht es darum, die Versuchsbedingungen zu skizzieren, unter denen der Nach-
weis der Vakuum-Doppelbrechung moglich gemacht werden soll. Dafiir werden zunéchst ein paar
allgemeine Uberlegungen zum Versuchsaufbau ausgefiihrt. AnschlieBend werden die mathematischen
Grundlagen zur Beschreibung der beiden verwendeten Laserpulse, sowie der zu bestimmenden experi-

mentellen Parameter eingefithrt, mit denen in den darauffolgenden Kapiteln die Analyse erfolgen soll.

3.1 Ziele und Hintergriinde des Experiments

Ziel des Experimentes ist es, den Effekt der Vakuum-Doppelbrechung in der Wechselwirkung zweier
elektromagnetischer Felder nachzuweisen. Die scheinbar einfachste Moglichkeit dafiir, ein einzelner
linear polarisierter Hochintensitétslaser, fiihrt jedoch zu keinem Ergebnis, da in diesem Fall die
Lorentz-Invarianten F und G verschwinden. Das ist leicht an deren Definitionsgleichungen (2)
und (3) erkennbar. Hier findet zwar auch Vakuum-Polarisation statt, allerdings steht diese immer
senkrecht zur Laserlaufrichtung und hat daher keinen Effekt auf das Laserfeld. Daher ist es inter-
essant, die Uberlagerung der Felder zweier linear polarisierter Hochintensitétslaser zu betrachten.
Laserpulse im Rontgenbereich” mit ausreichend hohen Amplituden, die ein potentiell messbares
Signal hervorrufen, lassen sich am besten mit einzelnen Laserpulsen realisieren [6]. Daher werden
hier keine kontinuierlichen Laser zur Modellierung verwendet. Im Experiment soll die Verschiebung
der Polarisation eines Laserpulses von linearer zu leicht elliptischer Polarisation nachgewiesen
werden. Ziel ist es fiir Beispielparameter von realen Versuchsaufbauten zu zeigen, unter welchen

Bedingungen ein solcher Nachweis der Vakuum-Doppelbrechung praktisch gelingen koénnte.

Der einfachste Fall zweier gegenléufiger Laser, fiir den der Effekt der Doppelbrechung maximal
ausgeprigt ist [6], wird bereits in [17] behandelt. Dieser Aufbau ist zwar mathematisch einfacher zu
beschreiben, jedoch in der Realisierung problembehaftet, da die Quellen der Pulse aufgrund des
geometrischen Aufbaus gleichzeitig das Target des jeweils anderen Pulses sind. Hier wird deshalb eine
Verallgemeinerung fiir beliebige Ausrichtungen der beiden Pulse zueinander betrachtet und daraufhin
der Spezialfall orthogonaler Laserlaufrichtungen ausgewertet®. Der Einfachheit halber wird hierbei
ein vergleichsweise schwacher Probelaser und ein deutlich stirkerer Pumplaser betrachtet. Mit Hilfe
dieser Annahmen koénnen die Wechselwirkungen der Laser mit dem Vakuum néherungsweise als
elastische Stofle der Photonen des Probelasers an den Photonen des Pumplasers modelliert werden.
Dadurch muss nur der Effekt des Pumplasers auf den Probelaser beriicksichtigt werden, was die
Rechnung wesentlich vereinfacht. Dieses Szenario wurde fiir orthogonale Laserlaufrichtungen auch
bereits in [18] direkt anhand der nichtlinearen Feldgleichungen untersucht. Hier wird stattdessen der
Ansatz aus [17] verwendet, bei dem das Fourier-transformierte Signal aus den Fourier-transformierten

nichtlinearen Feldgleichungen berechnet wird.

"Rontgenlaser werden zum Nachweis des Effektes in der Regel verwendet, da mit diesen die hochste Polarisations-
reinheit erzielt werden kann [16].
8Manche Teile der Auswertung sind jedoch auch fiir allgemeine Kollisionswinkel giiltig.
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3.2 Die Feldkonfiguration

Allgemein lasst sich in der klassischen Elektrodynamik die Einhiillende eines kontinuierlichen, in
z-Richtung ausgerichteteten, GauB-férmigen Lasers im Rahmen der paraxialen Naherung nach [19]

mit der Formel

2 2 2 2
o wo T +y LTty —ikz—if(2)
E(@) =¢—— - —ik ' 2
() Ow(z) P { w(z)? } P [ ! 2R(z) ] © (20)

beschreiben. Hier ist
2

w(z) = wo 1+§7, (21)
R
die Strahlbreite,
R(z) ==z (1 + Zi; (22)
der Kriimmungsradius und
&(z) = arctan i (23)

2
kwg

5> beschreibt die Rayleigh-Léange, die durch w(z = zg) = V2w definiert ist
(siehe Abbildung 2). Da fiir den Nachweis von Vakuum-Doppelbrechung die Verwendung stark fokus-

die Gouy-Phase. zg =

Abb. 2: Schematischer Aufbau des Profils der Einhiillenden eines gaussférmigen Laserpulses. Die
roten Linien beschreiben die Phasenfronten.

sierter Laser notwendig ist und sich der Bereich der nichtlinearen Interaktionen im Wesentlichen auf
den Fokuspunkt der beiden Laser beschrénkt, an dem diese kollidieren, kann im Folgenden zp — oo
angenommen werden, wodurch die Strahlbreite tiberall konstant wgy betragt [20]. Dariiber hinaus
fallt die Gouy-Phase £(z) weg und der Krimmungsradius R(z) lduft gegen unendlich. Ebenfalls geht
der Emissionswinkel 6 gegen null und die Phasenfronten bilden jeweils Ebenen (vgl. Abbildung 2).
Da nur der Realteil des elektrischen Felds des Lasers beobachtbar ist, reicht es, sich in der Rechnung
auf diesen zu beschranken. Da hier jedoch die Kollision zweier pulsformiger Laser betrachtet werden

soll, muss ein zusétzlicher zeiteinhiillender Term hinzugefiigt werden.

Das Koordinatensystem wird fiir den Versuchsaufbau so gewéhlt, dass sich der schwache Pro-
belaserpuls F; in die Richtung Kl = (1,0,0) und der starke Pumplaserpuls E5 in die Richtung
K1 = (cos©,sin ©,0) ausbreitet. Die Maxima beider Laserpulse sollen bei z# = (0,0,0,0) aufeinan-

der treffen. Die Einhiillende eines Laserpulses lédsst sich dann mit den obigen Annahmen analog zu

11



[17] durch
- 5 ¢ 2 —2 - 5\2
) = €, oxp | - (f“’»—) exp l_fv—@m)] cos(il@ A - 1) ()

beschreiben und gibt die ortsabhéngige Amplitude der Feldstéirkevektoren E; und B, an. Dabei ist
¢, die Amplitude der Einhiillenden mit ; <« &, 7; die Pulsdauer?, wo,; der Strahlradius'® und w;
die Strahlfrequenz des i-ten Laserpulses. Die Feldstirkevektoren des kombinierten Laserfelds lassen

sich somit beschreiben durch

E=F), +E, mit (25)
E, = E1(0, —sin ¢1,cos 1) und Eé = F5(sin O sin ¢, — cos © sin ¢a, cos ¢2), (26)

sowie
B=B,+ B, mit (27)

B; = E1(0,—cos ¢, —sin¢1) und By = E5(sin O cos ¢a, — cos O cos ¢, — sin ¢3). (28)

Der Winkel © beschreibt die Ausrichtung der beiden Laserpulse zueinander, wobei dieser so definiert
ist, dass die Pulse fiir © = 0 die gleiche Ausbreitungsrichtung haben. Wiahrend die beiden Laserpulse
sich in der x-y-Ebene ausbreiten, sind deren Polarisationswinkel ¢; so gewéhlt, dass sie den Winkel
des Ei—Felds zur z-Achse beschreiben.

3.3 Die charakteristischen Parameter des Signals

Da hier das Signalphotonenfeld und das externe Laserfeld getrennt betrachtet werden, ldsst sich die
Abhéngigkeit der nichtlinearen Lagrangedichte Ly = Line(F + f) in einen Anteil des Laserfels
F* und einen Anteil des Signalphotonenfelds f*¥ = 9*a” — 9a* zerlegen. Dann gilt

Lint(F + f) = Lit(F) — 20" (W) a” + O(a?). (29)

=jv (F)

Da mit stark fokussierten Lasern gearbeitet wird, verschwindet £;,;(F') ndherungsweise aulerhalb

des Kollisionsbereichs und {ibrig bleibt die Lagrangedichte

£ (alF) = — 3 Fun ™ = e (30)

mit der Signalphotonenflussdichte j, (F) und dem Signalphotonenfeld a”. Diese Gleichung beschreibt
alle Interaktionsprozesse des externen Felds mit dem Vakuum, bei denen ein einzelnes Signalphoton

emittiert wird, also Lichtdiffraktionsprozesse'!. Das Signalphotonenfeld folgt dementsprechung aus

97; entspricht der Zeit, an dem die Feldamplitude auf das e%L—faLche abgefallen ist.

10w07i entspricht dem Radius, an dem die Feldamplitude auf das é—fache abgefallen ist.
HDazu gehért die hier untersuchte Vakuum-Doppelbrechung, weitere Effekte dieser Art sind beispielsweise Quanten-
reflektion oder Photonenverschmelzung.

12



der Losung der nichtlinearen Feldgleichungen der Form
O FH = 3", (31)
die sich aus aus (30) berechnen lassen. a”(x) ldsst sich dann wie folgt schreiben:

d3k etk

(@) = Re [ s S (32)

kO=|k|
mit
50 = [tz ), ()
Entsprechend ergibt sich das elektrische Signalfeld aus

—

. ; . SC _
éx) = —Va’(z) — 0sd(z) = Re/ 53 Fau (k) — k50 (k)) - (34)
(2m) kO=|k|
Dariiber hinaus gilt fiir die Energie des Signalpulses mit |&(k)| = |b(k)| = |7 (k)|
w=1 [ ok e > [ e (3
= — = —— €, s
2 ) (2m)3 RF ST (2m)32"7

kO=|k|

wobei sich das elektrische Signalfeld in Richtung zweier normierter, zueinander orthogonaler Polarisa-
tionsvektoren €, aufspannen ldsst. Diese Aufspaltung ermdéglicht spéter, den polarisationsgeflippten
Teil des Signals zu isolieren. Damit folgt die differentielle Signalphotonenzahldichte

43w, &k 1 -
d®N, = —F = —— &, (k) - i (k)|? . 36
»= T = Gl & ) TP (36)
Die in die Formel eingehende Amplitude ldsst sich alternativ auch schreiben als
k) (0], = [t gy 0) P - Gl 0T (37)
kO=|k| KO=|k|
wobei or or
p’ _ —E wnt o B’ nt
or " Tag (38)
die Polarisation und oc oc
M _ _B‘ int E’ int 39
oF " "Tag (39)

die Magnetisierung sind, die durch die Signalphotonen hervorgerufen werden. Diese Formeln und

Herleitungen sind lediglich eine kurze Skizze. Eine ausfiihrliche Einfiihrung findet sich in [17].
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4 Aligemeine Berechnung der differentiellen

Signalphotonenzahldichte und des Signalfelds

In diesem Abschnitt sollen allgemeine analytische Ausdriicke fiir die differentielle Signalphotonen-
zahldichte d®N,, der polarisationsgeflippten Signalphotonen und fiir das Signalphotonenfeld é{(z)
aus den in Abschnitt 3.2 eingefiihrten Feldverteilungen von Probe- und Pumplaser hergeleitet
werden. Dabei werden schrittweise zunéchst die Lorentz-Invarianten F und G und anschlieflend
d3N,, und é(z) selbst berechnet. Fiir beide Formeln ist es notwendig, dasselbe Fourierintegral der

Feldverteilungen der Laser zu 16sen, was am Ende dieses Kapitels passiert.

4.1 Berechnung der Lorentz-Invarianten

Die erste Lorentz-Invariante F lésst sich nach Gleichung (2) wie folgt berechnen:

B ~ -1 o - - -
F =5 (E*=B%) = (B + E2)* = (B1 + B)?) (40)
1 =2 e o 22 22 o o2
= (B +2B By + By” — By’ —2B1- By — By)
B=5/

" —Ei-E>+ BBy,

Es miissen also die Skalarprodukte E;- und Bj-Felder berechnet werden. Mit der Parametrisierung
der Feldrichtungen nach Gleichungen (26) und (28) folgt

E, B, = E1E5(cos © sin ¢ sin ¢g + cos ¢1 cos ¢g) (41)

By By = E1 E5(cos © cos ¢1 cos ¢g + sin ¢ sin ¢g) (42)
und somit

F = E1E5(1 — cos ©)(sin ¢y sin ¢p2 — cos ¢1 cos ¢2) (43)

= —F1F>(1 — cos ©) cos(¢1 + ¢2).

Die zweite Lorentz-Invariante G ldsst sich nach Gleichung (3) wie folgt berechnen:

G=—B-B=—(B + B (B +B) “y

Ei.gizo - - N N
5= [ .B,~ B, E.

Die Berechnung der Skalarprodukte ergibt

E, By = E,E, (cos © sin ¢ cos ¢g — cos @1 sin ¢y) (45)
By -Ey = E,FE, (cos © cos ¢ sin ¢ — sin ¢q cos ¢o). (46)

Damit folgt schliellich

G=-EFE, [(COS O(sin ¢1 cos @ + €os ¢y sin o) — (Sin P1 cos P + cos ¢y sin (;52)]
= E1E5(1 — cos O) sin(¢y + ¢2).
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Es zeigt sich, dass F und G nur von der Summe der Polarisationswinkel abh&ngen. Da fiir die
Definition der Polarisationswinkel ¢; im Bezug auf das Vorzeichen Wahlfreiheit gilt, liele sich
diese Abhéngigkeit fiir eine Transformation ¢; — ¢, = —¢; auch alternativ in eine Winkeldifferenz

umschreiben.

4.2 Die differentielle Signalphotonenzahldichte fiir Vakuum-Doppelbrechung

Um die differentielle Signalphotonenzahldichte nach Gleichung (36) zu berechnen, miissen zunéchst
die Ausdriicke fiir die Polarisation und Magnetisierung des Vakuums gefunden werden, die sich
aus dem nichtlinearen Anteil der Lagrangedichte des Laserfelds ergeben. Mit der Formel fiir den
nichtlinearen Anteil der Lagrangedichte aus Gleichung (19) und den Lorentz-Invarianten aus den
Gleichungen (43) und (47) gilt fiir die Polarisation des Vakuums

5] = acznt =4 8£int 2042 — N
P=-F -B =— 8FE +14GB 48
oF aG 15 (BFE +14GB) (48)
a=2 e*(1 - cos©) - . . . .
= WE1E2 [4cos(¢1 + ¢2)(EL + E2) — Tsin(¢y + ¢2)(B1 + Ba)]
1—cos© sin © sin ¢ . sin © cos ¢
~ W]LHEQ [4 cos(¢1 + ¢2) < Cocso?;n b2 ) — Tsin(¢1 + ¢2) ( cossir(:)(;;)s e ﬂ
und fiir die Magnetisierung des Vakuums
> ~6£im —»aﬁint 20&2 — —
M=-B E =— B — 14GE 4
oF TP ag = g 87 - 14GE) (49)
a=%- e*(1 — cos ©) . . . o
= WEIEQ [4cos(¢1 + ¢2)(B1 + Ba) + Tsin(¢1 + ¢2)(E1 + Es)]
1—cos® sin © cos ¢ . sin © sin ¢
= W&Ez [4 cos(p1 + ¢2) (-coss?ncgs b2 > + 7sin(¢1 + ¢2) (— Cocso?;izn b2 )} )

Dabei wurden alle Terme der Ordnung E? und héher vernachlissigt, da E; < Fy und daher nur
die quasielastische Streuung von Photonen des ersten Lasers am zweiten Laser relevant fir die
Betrachtung ist. Weiterhin gilt nach Gleichung (37)

G- ], = ik [ dte e G0 P e (h) ) (50)
kO=|k| kO=|k|
Fiir €, p=1,2,3,4, gilt hier'?
e_i~E:e_2’~E:e_1'~e_2’:0 und €1 = —€3, €5 = —¢€4. (51)

Der Wellenvektor des Signalphotonenfelds k lasst sich im inversen Raum allgemein parametrisieren

durch
cos O
B ( — sin ¢ §in O ) . (52)

coS ¢, sin Oy,

T

12Formal mathematisch ist es notwendig den Index hier bis vier laufen zu lassen, um mit Gleichung (37) das richtige
Ergebnis zu erhalten (dabei ist €& = €1). Um am Ende das gesamte Signal zu berechnen, reicht jedoch die
Summation tiber die beiden linear unabhéngigen Indizes p = 1, 2.
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Anders als in der konventionellen Definition von Kugelkoordinaten werden die Winkel hier so
definiert, dass 0 den Neigungswinkel zur z-Achse und ¢, den Rotationswinkel um die z-Achse
beschreibt. Dann ldsst sich €, iiber die Definitionsgleichung (51) analog wie in [20] allgemein
schreiben als
— sin 0, cos B
6;7 = < — sin ¢y, cos O, cos B —cos ¢y sin By ) R (53)
cos ¢, cos 0y, cos B —sin ¢y sin By

wobei i € [0,2n] als freier Parameter die Ausrichtung von €, festlegt. Fiir €, — €,71 ist dann
Br — Br + 5. Um den Effekt der Vakuum-Doppelbrechung zu untersuchen, wird 8 nun so
gewéhlt, dass €, - El = 0 gilt, das Signal also senkrecht zur Polarisationsrichtung des Probelasers
polarisiert ist. Dadurch wird nur der polarisationsgeflippte Teil der Signalphotonen beriicksichtigt,
also nur der Teil, der die Polarisation des Probelasers verschiebt und somit aus dem Effekt der

Vakuum-Doppelbrechung resultiert. Daraus lasst sich als Bedingung

+Z, fallsgp =¢1+nm, neZ
=1 ° (54)

arctan(cos 0y cot(pr, — ¢1)), sonst

bestimmen, wobei fiir die Werte ¢, = ¢1 + nt n € Z eine Fallunterscheidung angestellt werden
muss, um die Polstellen in der allgemeinen Bedingungsgleichung zu umgehen. Fiir diesen Spezialfall
wird diese durch beide Wahlen von f; unabhéngig vom Vorzeichen gel6st. Physikalisch macht die
Wahl des Vorzeichens keinen Unterschied, da am Ende nur das Betragsquadrat des Ergebnisses real

gemessen werden kann. Somit ergibt sich fiir den Polarisationsvektor des Signalphotonenfelds

1 — sin 6y,
5; = ( — sin ¢y, cos 0, —cos ¢y, cos 0y, cot(pr—p1) ) (55)
\/1 + cos? 0y, COt2(¢k — ¢1) cos ¢y, cos O, —sin ¢y, cos Oy cot(dr —p1)
und
1 ( sin 0y, cos 0, cot(pr—d1)
€ 11 = sin ¢y, cos? Oy cot(dr—p1)—cos P ) , (56)
P \/]. + cos? 9k COt2 (¢k — ¢1) — cos ¢y, cos? O cot(¢pr—p1)—sin ¢y,
sowie fiir die Spezialfille ¢ = ¢y +nm, n € Z
. 0 ¢ d . =+ sin O 57
€, = | Fcospp un € = =+ sin ¢ cos 6 .
p ( F sin ¢y, ) ptl F cos ¢i cos Gi ( )
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Mit den Gleichungen (48) und (49) ldsst sich dann schreiben

L= L -1 e(1—cosO)
(G P et ] = g
' [ 4dcos(¢1 + ¢2)

V1 + cos? 0, cot® (o — 1)

E\E3 (58)

[(cos 2 — cot(pr — ¢1) cos O sin ¢2) cos ¢ (cos O, — cos O)

+ (sin ¢ + cot(¢r — ¢1) cos by, cos ¢z)
- (sin ¢y, cos Oy, cos © — sin b, sin © — sin ¢y,)]
Tsin(¢py + ¢2)
/1 + cos? 0, cot®(¢r — ¢1)

[(sin g + cot(¢g — P1) cos Oy cos ¢2) cos P (cos b, — cos O)

+ (cot(pr — ¢1) cos b sin ¢o — cos ¢2)
- (sin ¢y, cos Oy, cos © — sin b, sin © — sin ¢y,)]

_e*(1—cos®)

T E7\E3 [4A cos(¢1 + ¢2) + TBsin(¢1 + ¢2)]

beziehungsweise

[e;, Py .M} =+ B, E2 (59)

. [4 cos(pa+ di ) [— cosy, sings (coshy, —cosO) + cospa (singy, cosdy, cos© —sindy, sin® —singy, )]

+ Tsin(¢o+ @ ) [cospy cospa(cosfy, —cosO) +sings (singy, cosdy, cos® —sindy, sin® —singy, )]

e*(1 — cos ©) . ,
= iWElEz [4A" cos(¢1 + ¢2) + 7B’ sin(¢1 + ¢o2)]
fiir die Spezialfille ¢, = ¢1 + nm, n € Z. Dabei werden wiederum alle Terme der Ordnung E?
vernachlédssigt. Da nur die Feldstidrken ortsabhéngig sind, kénnen alle anderen Terme vor das
Integral gezogen werden und die Formel fiir die differentielle Signalphotonenzahldichte reduziert

sich auf

2

3, 0 8(1__ 2 -
d% k- e'(1—cos0) ~[4Acos(¢>1—|—¢2)+7Bsin(¢1+¢2)]2-‘/d4wE1E226_"k | . (60)

a°N, = —
PT(2n)3 2 1802mtms

Damit bleibt nur die Berechnung des Integrals {iber die Feldamplituden (siehe Abschnitt 4.4).
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4.3 Das Signalphotonenfeld

Um das Signalphotonenfeld nach Gleichung (34) zu berechnen, muss zunéchst der Vierer-Vakuumstrom

6£int
OF (61

Jy = 20"

ermittelt werden, wie in Gleichung (29) eingefiihrt. Entsprechend dem bereits in Gleichung (1)

eingefiihrten Feldstédrketensor, wird fiir die Berechnung die folgende Notation verwendet:

FOi _ 7Fi0 — Ei’ F’Lj — GijkBk,

, . , . (62)
E'=-FE;, £ E, B'=-B; £ B.
Damit lassen sich dann die Lorentz-Invarianten darstellen als
1 _ . .
F = i(EZEl — B;B"), Gg=FE;B". (63)
Dann folgt
=20
oL oL 4
int int € ) )
9F0 ~ op'  18om@md Y it 9B, (64)
aL"int 6£int 64
= - == 4FFE; B;
oF0 ~ oET ~ 1sommi 0 Bi T T9B; (65)
8£int _
aFwn O (66)
8Lint a‘cznt a‘cznt 84 k k
— = — — = —€;; = ik|[4AFBY — TGE"
9F aFi 9t 5, ~ Tsommi i lAF BT —TGET; (67)
und somit ldsst sich
jo = —ACO'AFE; + 7GB;] = ACVAFE + 7GB] (68)
sowie
ji = 400" ¢;jx [AFB* — 1GE*] + 4CO°[AFE; + 7GB;] (69)
= —4CV x [AFB — 7GE) — 4ACO,[AFE + 7GB) (70)

herleiten. Um daraus das Signalphotonenfeld zu errechnen, mussen diese Ausdriicke zunéchst Fourier-
transformiert werden. Dabei ldsst sich ausnutzen, dass die Ableitungen in Form der Wellenvektoren
vor das Fourier-Integral gezogen werden kénnen'3. Damit ergibt sich schlieflich nach Einsetzen von

Gleichung (43) und (47) unter Vernachléssigung der Terme hoherer Ordnung in F4
(k) = 4C / d'y e~ YUFE + 7G5 (71)

= —4C(1 — cos ©) ik - [4cos(¢y + (;52)52 — Tsin(¢y + ¢2)§2] /d4x e~ F'Tn B E2

13Dabei muss beachtet werden, dass aufgrund der Wahl der Metrik anders als iiblich fiir rdumliche Ableitungen ein
Vorzeichenwechsel notwendig ist.
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und
ji(k) =j(k) = 4C / A% e ™" ®u O, [AFE 4+ 7GB) + V x [AFB — TGE] (72)
=4C(1 — cos ©) ik°[(4 cos(¢y + ¢2)§2 — 7sin(¢y + ¢2)§2)

—k % (4cos(¢r + ¢2)Ea + Tsin(¢y + ¢2)Bs)] /d4a; e g 2.

Das zu berechnende Integral ist also dasselbe wie das in Abschnitt 4.2 fir die differentielle
Signalphotonenzahldichte. Das gesamte Signalphotonenfeld im Fourier-Raum lasst sich daher nach

Gleichung (34) zusammenfassen durch

~
-

7 —kj% =4C(1 — cos ©) ik® A(k°, Oy, ¢i, b1, P2) /d% e~ B 2 (73)
mit dem winkelabhéngigen Richtungsvektor

AR O, 61, 61, 62) = — K x (4cos(6r + ¢2) Ba + Tsin(y + ¢2) Ea) (74)
s(f1 + ¢2)§2 — Tsin(¢; + ¢2)§2)

+ (4co
4 R(E - (Acos(dr + do) By — Tsin(1 + d2) Ba).

4.4 Die Fourier-Transformation der Feldamplituden

Sowohl fur die Signalphotonenzahldichte, als auch das Signalphotonenfeld bleibt wie gezeigt die

Berechnung des folgenden Integrals

o0 [e.°] oo oo

/d EyEf e = /dx/dy/dz/th E3 e t-ikT (75)

222 22
=¢, & d —— — —— — ik,
1 2/ zexp[ w(2),2 ’LU(2)1 ik,z

s

— 00
oo

y? 292 cos?©  8y?sin?@
Bl T P S

2 - 2

495 822 cos? © + 162ysinO©cos®  222sin?©
dr exp | —— — —ik,x
) Wo 2

2 - 2
1 T3

. / dt exp [_ 4t2 — 8zt 8t2 — 16t(x cos O + ysin O) N ikot]
—0o0

- cos|wy (z — t)] cos? [wa (2 cos © + y sin O)].

Der quadratische Kosinusterm in der letzten Zeile kann zu % gemlttelt werden, da der Probelaser
quasielastisch an Laser 2 gestreut wird und die S1gnalphotonen somit ndherungsweise die Frequenz

wy des ersten Lasers haben. Daher sollte die differentielle Signalphotonenzahldichte kaum von
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der Frequenz des Pumplasers wo abhidngen. Das Zeitintegral lasst sich daher in folgender Form

schreiben:
17 9 1 |m a? — w? a
3 / dt exp [—at + a’t] cos [wy(z —t)] = 2\/;exp {4@ cos |wi(x — %) (76)
—o0
mit
872 4+ 472
_ 87 2‘*'27'2 (77a)
TiT
8 16 (C] in ©
o = d(,y, k) = 52 10(@cos© +ysin®) | 40 (77b)
Ti T2

Nach Einsetzen von a’ und Isolierung aller von x abhéangigen Terme lasst sich das entsprechende

Integral wie folgt schreiben:

oo

b2 — 202 b
dx exp [—ba? — b'z] cos [~wiuz + wib] = T exp 2T s | b 4+ PLY (78)
b 4b 2b
mit 2
8sin’@® 2sin?0©@ 16 [ 1 2 cos ©
be g bln2 N su; 16 <2 co2s ) (792)
T3 w5 a \ 7} 73
b =0y, K k) = py — igk” + ik, (79b)
16 128 64 sin ©
p=sin® cos© (2 - 4) - 78?2 (79¢)
T2 ary ariTs
1 (8cos® 4sin©
=2 ( ; . ) (794)
a T3 i
8sin O 1
0 , 0
bV =" (y, k°) = = w1y + z%wlk (79¢)
8(1 — (C]
u= S0 =cos®) (79f)
ars

Wiederum nach Einsetzen von &’ und b” und Isolierung aller von y abhéingigen Terme kann das

entsprechende Integral folgendermafien berechnet werden:

oo

2 22 /
/ dy exp [—cy® — ic'y] cos [wivy + iwi "] = 4 / T exp i e g T (80)
c 4c 2c

mit 20 20 29 9
1 2 cos 8 sin 64 sin p

R R PO BT BT o

8sin ©
/:/kokwk :k,_ﬁkw rq _ k0 81b
¢ = (K ke, ky) = by 2" T\ 2 ars (81b)
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1 uq U
/" /7(1.0 _ 0
="k k) = (2@ 2b) kY + 2bkw (81c)

8sin®  up
v= —.
ars 2b

(81d)

Final muss also nur noch das Integral iiber z ausgerechnet werden, in dem jedoch keine Mischterme

mit den anderen Integrationsvariablen auftauchen:

T 1 2 9 . Twg jwg wg jw§ ok
/ dzexp |— | 5+ —5 | Z* —ikez| =[5 >—5—exp |-~ 35— | - (82)
K Wy W 2wg  + w5 4(2wg 1 +wg o)

Nach Zusammenfassen all dieser Ergebnisse ergibt sich fiir das gesamte Fourierintegral

2 2 2 .02 2 .2

) ¢ & wh W, wH W,

/d4x E\E3 e~ en — 12 20’1 0’22 exp |~ 0,1 0’22 k2 (83)
4vabe \ 2wg, + w5 Bwg 1 + 4wg 5

1 1
. Z exp l_éla(ko — swp)? — @(k‘z — qk® + uswi )?

s==+1
1 /p pg 8sin®@) 2
—— | ke —ky— | = — kY —
4c (Zb Y <2b ar? e

mit den Parametern

- 87¢ + 473 5 8(1 — cos ©)? +2$in2® (84a)
AT BT
1 2cos? © 8sin* ©
_ L n 84b
¢ wg wg o 4w§72(1 —cos0)2 + (277 + 72)sin? © (84b)

_ 16sin©(1 — cosO) = 278 cos © + 75 sin ©

_ , 84
272 + 72 272 + 712 (84c)
272(1 — cos ©) 277 sin © 8w 5(1 — cos ©)? (84d)
u = -, = - N Y
272 + 72 272 + 72 4(1 — cos G))Qwa2 +sin? ©(272 + 72)

womit sich schliefflich die Formel fiir die differentielle Zahl polarisationsgeflippter Signalphotonen
und das allgemeine Signalphotonenfeld nach Gleichungen (60) und (73) explizit angeben lassen. An
der obigen Gleichung ist schnell ersichtlich, dass man nur in der z-y-Ebene um k° ~ w; ein Signal
erwarten kann, da die Amplitude in z-Richtung und fiir andere Frequenzen sehr schnell exponentiell
abfillt. Die Auswertung kann demnach fiir ¢, = £75 erfolgen'*. Das ist legitim, da das Ergebnis

aus Gleichung (82) ndherungsweise die Form einer Delta-Distribution §(k.) annimmt [21].

14Beide Wahlméglichkeiten werden dabei beriicksichtigt, indem der Definitionsbereich von 6y, alternativ auf [0, 27]
ausgedehnt wird.
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5 Das nichtlineare Signal fiir orthogonale Laserlaufrichtungen und

beispielhafte Parameter

Im vorherigen Abschnitt wurden bereits explizite Formeln fiir die Signalphotonenzahldichte und das
Signalphotonenfeld zwischen einem Probe- und einem Pumplaserpuls fiir beliebige Polarisations-
und Kollisionswinkel hergeleitet. Besonders interessant ist jedoch ein mdoglichst starkes Signal fiir
einen realistischen experimentellen Aufbau zu betrachten, mit dem auch real die Wechselwirkungen
zwischen dem elektromagnetischen Feld und dem Vakuum nachgewiesen werden kénnen. Daher ist
das Ziel optimierte Polarisationswinkel ¢y und ¢ der beiden Laser fiir orthogonale Laserlaufrichtun-
gen (© = %) zu finden. Wie bereits erldutert, wird primar das Signal in der 2-y-Ebene betrachtet
(also ¢ = 7 ) und zunéchst fiir eine maximale Amplitude in 2-Richtung optimiert, da die Vermutung
nahe liegt, dass der Grofiteil des Signals in Richtungen mit kleinem 6 emittiert wird. Ziel ist es, die
Abhéngigkeit der Signalstérke vom Winkel zur Laufrichtung des Probelasers, also von 6, und von
der Taillenbreite des Probelasers wy,; zu analysieren und zu zeigen, ab welchem Winkel die Stérke
des Signalfelds die des Probepulsfelds iibertrifft und die Signatur somit nachgewiesen werden kann.
Dariiber hinaus soll durch Uberlagerung des Signalfelds mit dem Probelaserfeld eine elliptische
Polarisation des Probelaserpulses nach der Kollision und damit der Effekt der Doppelbrechung
rechnerisch nachgewiesen werden und deren relativer Anteil am gesamten nichtlinearen Signal

exemplarisch verdeutlicht werden.

Die in der Auswertung verwendeten Parameter des Pumplasers entsprechen denen des Hochinten-
sitdtslasers ReLaX [22] am European XFEL (X-Ray Free-Electron Laser) in Hamburg, die Parameter

des Probelasers entsprechen denen des Lasers XFEL selbst [23]. Diese lauten in natiirlichen Einheiten:

Probelaser Pumplaser
Pulsdauer 7 =334,4eV 1 Ty = 63,846V 1
Strahlradius wp1 =r-1,014 eV re0.2,25] w2 = 8,619 eVt
Strahlfrequenz w1 =12914eV we = 1,550eV
Pulsenergie Wi =1,2914 - 106 eV Wy =6,24-109 eV
Feldamplitude | & = 1.8,7357-10%eV?, r € [0.2,25] | €, = 163,5-10°eV?

Tab. 1: Die verwendete experimentelle Parameter in natiirlichen Einheiten.

Die Feldamplitude fiir eine gegebene Pulsenergie kann hergeleitet werden, indem das Quadrat
der Einhiillenden der Laserfeldstérke aus Gleichung (24) zu einem beliebigen Zeitpunkt (z.B. ¢ = 0)
iiber den gesamten Raum integriert wird und anschlieBend nach der Amplitude aufgelost wird.

Dann ergibt sich!'®

27/4 /Wi
T 7'(3/4\/771'11)0,1'.

Der Parameter r beschreibt indes die Variation der Strahlbreite des Probelaserpulses wy 1, die hier

(85)

untersucht werden soll. Da bei einer Variation der Strahlbreite die Pulsenergie dennoch konstant

bleiben soll, nimmt die Amplitude somit fiir abnehmende Strahlbreiten zu.

2 2
15Tn der vollstindigen Formel taucht noch ein Faktor (1 —e~71«1)~! auf, der jedoch niaherungsweise eins betrigt.
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5.1 Optimierung der Laser-Polarisationswinkel

Um die optimale Wahl der Polarisationswinkel ¢; und ¢9 zu finden, muss also das Maximum der
Funktion aus Gleichung (58) fiir ¢, = § und © = 7 gefunden werden. Mit diesen Annahmen
vereinfacht sich der Ausdruck zu

(1 +sin 9k)2
cos? ¢y + cos? 0, sin? ¢y,

. [4 cos(¢1 + ¢2)(cos ¢y sin gg + cos b, sin ¢q cos @)
+ 7sin(¢1 + ¢2)(sin ¢ sin ¢ cos O, — cos ¢ cos ¢>2)] 2,

[4A cos(¢1 + ¢2) + TBsin(¢y + ¢2)]” = (86)

Darin sind bereits alle notwendigen Fallunterscheidungen enthalten und die einzige scheinbare
Polstelle bei 0, = £7 und ¢; = £7 kiirzt sich heraus, wenn nur fiir 6, eingesetzt wird. Der

Vorfaktor ldsst sich dann als dreidimensionale Dichtefunktion der Winkel ¢, ¢2 und 6 darstellen.

150

100

o

Abb. 3: Der Betrag des Vorfaktors in Abhédngigkeit von den Polarisationswinkeln der Laser und des
Emissionswinkels 85 des Signals.

Das Diagramm zeigt deutlich, dass wenn man nur den Vorfaktor betrachtet, die stérkste Signatur
nicht in Richtung des Probepulses emittiert wird, sondern fiir eine entsprechende Wahl der Polarisa-
tionswinkel bei 6, ~ 7. Da an dieser Stelle jedoch noch nicht die Abhéngigkeit vom Exponentialterm
aus Gleichung (83) einkalkuliert wurde und mit diesem fiir den Fall ¢ < 1 die Signatur in y-Richtung
exponentiell unterdriickt wird, ist es dennoch sinnvoll vor allem die Amplitude in Laufrichtung des

Probelaserpulses () = 0) zu betrachten'S. Damit vereinfacht sich der Ausdruck aus Gleichung (86)

16Dass das plausibel ist, zeigt sich auch in Abbildung 6
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zu

[4A cos(¢1 + ¢2) + TBsin(¢1 + ¢o)] (87)
= [4 cos(p1+¢2)(cos P1 sin o +sin ¢y cos o) +7 sin(P1 +¢2) (sin ¢ sin Pz —cos ¢y cos ¢2)] 2

= 9sin?(¢1 + ¢2) cos? (o1 + o) = zsin(2¢1 + 2¢3).

@2

"
2.0
1.5
1.0
0.5
| o
1 2 3 4 5 6

Abb. 4: Der Betrag des Vorfaktors in Abhéngigkeit der Polarisationswinkel der Laser.

o

Damit bleiben relativ viele Moglichkeiten zur optimalen Wahl der Polarisationswinkel, wie Ab-
bildung 4 zeigt, da auch an keiner anderen Stelle Abhédngigkeiten von den Polarisationswinkeln
auftreten. Die Bestimmungsgleichung fiir die Extremwerte lautet ¢; + ¢2 = Z(n + %), n € Z und
wird beispielsweise fiir ¢; = 7, ¢2 = 0 erfiillt. Der Maximalwert betrégt also %. Tatséchlich zeigt
sich, dass diese Wahl der Polarisationswinkel unabhéngig von der Wahl des Kollisionswinkel fiir

kleine 6y, das ideale Ergebnis fiir die hier berechneten Werte liefert [6].

5.2 Auswertung der doppeltgebrochenen Signalphotonenzahl

Um die Stéarke des Effekts der Vakuum-Doppelbrechung auszuwerten, muss die Zahl der polarisati-
onsgeflippten Signalphotonen pro Probepuls ausgerechnet und mit der Zahl der Photonen im Puls
ins Verhéltnis gesetzt werden. Fiir den Spezialfall orthogonaler Laserlaufrichtungen reduzieren sich

die Konstanten aus Gleichung (84) auf

8rf + 473 8wl , + 47f + 273
= % =1,999-107%eV?, b= 0272 21 3 2 =26,96- 10736V, (88a)
TiTy wy o(277 + 75)
Swi | + 4w, + 272 + 72 1
= g)]- i} 0,2 N 1 5 2 — 37508 . 10—5 eV2 + _079726 ev27 (88b)
w1 (4w 5 + 277 + 75) 2
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16 7'22

- _7.026-1075 V2 =2 =17,90-1073 88
P= 5o , VL a=gai : : (88c)
972 272 4w?
w= e =0,0821,  wv=——m (1 ——02 ) — 0 9808. (88d)
217 + 1 217 + 1 4w072 + 277 + 75

Ebenso reduziert sich der winkelabhéngige Vorfaktor aus Gleichung (58) mit orthogonaler Laser-

laufrichtung und Festlegung der Polarisationswinkel der Laserpulse auf ¢; = 0 und ¢, = 7 auf

1
sin? ¢y, + cos2 ¢y, cos? O,

[4A cos(¢p1 + ¢2) + TBsin(dy + ¢o))* = (89)

2

3 11
5((:052 b1, cos? 0, + sin? ¢y, + sin ¢y, sin Or) — 5 (cos ¢y, sin O, cos Oy,)

Fiir 0, = 0 und ¢ = £7 ergibt sich damit wie erwartet ein Vorfaktor von %.

Um die absolute Signalphotonenzahl auswerten zu kénnen, muss die gesamte Gleichung (60) iiber
den k-Raum integriert werden. Das Integral iiber die Winkel 6, und ¢y, ist nicht analytisch l6sbar.
Im Gegensatz dazu ist die Integration iiber k° zwar analytisch moglich, die Stammfunktion jedoch
nur numerisch auswertbar, da sie Terme der Gauf’schen Fehlerfunktion erf(z) enthélt. Deshalb wird
die gesamte Integration von vornherein numerisch mittels Mathematica ausgefiihrt. Die Formel fiir
die differentielle Signalphotonenzahldichte ldsst sich mit den hier getroffenen Annahmen insgesamt

schreiben als

A% K0 edeged  wiiwh,
(2m)3 2 7202mBabc 2w§ | + w,

2 9
_ Wo,1Wo,2

2 2
4w071+2w072

d’N, = - exp

(k)2 cos? ¢y, sin? Hk] (90)

2
1 3 11
. R FaT [2 (cos2q5k cos2 0, +sin® ¢y, +singy, sinfy ) — ?(cosdn€ sinf;, cos@k)}

1
- exp [—m(ko — swy)?

2
1 8
~ % (2pbkzo cos 0, + kC sin ¢y, sin 0, — (ZZ - a¢22) K® — USWl) 1

1
— %(kjo cos O — qk® — usw;)?

Dabei wird der Summand fiir s = —1 aus Formel (83) vernachlissigt, da dieser fiir k% > 0 {iberall
faktisch null betragt. Zusétzlich zu den in Tabelle 1 eingefiihrten Parametern wird zur numerischen
Auswertung der Betrag von der elektromagnetischen Kopplungskonstante e = 4ma = 4% und der

137
Elektronenmasse m, = 511,0 103eV benétigt.

Vor der Integration ist es zunéchst einmal interessant zu untersuchen, an welchen Stellen die
differentielle Signalphotonenzahldichte Werte annimmt, die sich wesentlich von null unterscheiden,
wo also die erwarteten schmalen Peaks liegen. Das ist auch notwendig, um die Stiitzstellen bei der
numerischen Integration passend zu wéhlen. Dass das nur um ¢, = £7 der Fall ist, wurde bereits
am Ende von Abschnitt 4.4 gezeigt. Die Abhingigkeit von kY lisst sich fiir ¢, = +7% und 0 =0

wie in Abbildung 5 darstellen und es zeigt sich wie erwartet ein deutlicher Peak um k° = w;, dessen
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Halbwertsbreite auBerhalb der hier beriicksichtigten signifikanten Stellen liegt 7. Der Parameter r

wurde hier exemplarisch gleich eins gewéhlt.

o Np o Np
0.00015
0.00010
0.00008
0.00010
0.00006
4
£.0000 0.00005
0.00002
f . . L KO . . \ e
12913.9 12914.0 129141 129142 12913.9 12914.0 129141 12914.2

Abb. 5: Amplitude der differentiellen Signalphotonenzahldichte fiir ¢ = £7, 6 = 0 und r = 0.3495
& 1.

Analog lasst sich die Abhéngigkeit von 6;, wie in Abbildung 6 darstellen. Der tatsdchliche Peak liegt
also nicht genau bei 0 = 0, sondern ist um ein kleines Stiick verschoben auf 0, e, = 1,797 - 104,
Am Nullpunkt ist die Amplitude tatsdchlich schon um ein Vielfaches abgefallen. Falls stattdessen
¢r = —7% gewdhlt wird, wird der Kurvenverlauf um 6, = 0 gespiegelt, was bedeutet, dass in
beide Richtungen fiir +0 e, = 1,797 - 10~* symmetrische Nebenmaxima auftreten. Bei der

Aufintegration werden im Endeffekt beide Wahlmoglichkeiten berticksichtigt.

d° Np @® Np

0.00020
0.0015F

0.0010

0.0005

. L . g L
-0.0004 -0.0002 0.0002 0.0004 -0.0005 0.0005

Abb. 6: Amplitude der differentiellen Signalphotonenzahldichte fiir k° = wy, ¢p = 5 und r = 0.3495
& 1.

Wenn die Kurven fiir beide Wahlmoglichkeiten ¢, = £7 aufaddiert werden und graphisch in
Abhéngigkeit von 0 und r dargestellt werden wie in Abbildung 7, sind zwei symmetrische Peaks
bei ), ~ 1.797 - 10~* zu erkennen, die fiir zunehmende Probestrahlbreiten immer schirfer werden.
Die maximale Amplitude wird dabei bei einem Wert von r = 22.06 erreicht, was einer Strahlbreite
von wp,1 = 4412 nm entspricht, sodass bei diesem ein isoliertes Signal unter Idealbedingungen am

besten gemessen werden koénnte.

"Wie im Diagramm zu sehen, ist erst in der sechsten signifikanten Stelle eine Abweichung von null (aufler fiir
k% = w1) erkennbar. Hier wird allerdings nur mit vier signifikanten Stellen gerechnet.
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Abb. 7: Amplitude der differentiellen Signalphotonenzahldichte fiir £ = w; und ¢ = +7 in
Abhéngigkeit von 05 und r.

Die gesamte Zahl der polarisationsgeflippten Signalphotonen ergibt sich schlielich durch Aufinte-
gration iiber den gesamten inversen Raum. In Abhéngigkeit des Parameters r, also der Strahlbreite
des Probelasers ergibt sich dann eine Zahl von Signalphotonen der Gréfienordnung, wie in Abbildung
8 fiir einen breiteren Wertebereich und nochmal detailliert um das Maximum herum dargestellt.
Man sieht einen eindeutigen Peak fiir 7,4, = 0,3495, was einer Strahlbreite von wp; ~ 69,9 nm
entspricht und innerhalb der technischen Méglichkeiten fiir Rontgenlaser liegt (vgl. [24], [25], [26]).
Fiir diesen optimalen Parameter betréigt die Signalphotonenzahl pro Puls N, = 1,216 - 1073, Fiir
kleinere Probestrahlbreiten fillt die Signalphotonenzahl sehr schnell sehr steil ab. Fir grofiere
Probestrahlbreiten ist der Abfall deutlich flacher und auch fiir die maximale hier untersuchte
Strahlbreite ist noch eine merkliche Amplitude erkennbar.

Np Np
0.00122
0.0012
0.0010 0.00120
0.0008 0.00118
0.0006
0.00116
0.0004
0.00114
. . \ . A r
5 10 15 20 25 0.2 0.4 0.6 0.8 1.0

Abb. 8: Zahl der polarisationsgeflippten Signalphotonen pro Probepuls fiir 10nm < wg; < 5000 nm.
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Die Giiltigkeit dieses Ergebnis lasst sich mit der analytischen N&herungsformel fiir die Zahl
polarisationsgeflippter Photonen aus [6] (hier fiir © = 7)

gty WiW2 1 Ty w T\ ? Tiwel\® T\ °
N, = 12182 271 L[y D12 g Bwony | Nl 1)
225m2m8  (wiws2)? 71 wo 1 w1 Wo T Wy W1 Wy

-
-

mit den Parametern

2
1+2<ﬁ) wi = wo 1 1+2<w0’1)
2 Wo,2

7'2 w02
T =1 — Wy = Wo 2
7'1 w01

leicht tiberpriifen, bei der unter anderem fiir 8, eine Kleinwinkelndherung bis zur zweiten Ordnung
angesetzt wird. Tatséchlich zeigt sich, dass die Ergebnisse fiir verschiedene Probefokussierungen im

Rahmen der signifikanten Stellen iibereinstimmen. So ergibt sich nach beiden Formeln beispielsweise

N,(r = 0.3495) = 1,216-1072, N,(r=1)=1,201-10"%, N,(r = 25) = 2,816-10"*. (93)

Der Plot der Naherungsformel fiir N,, in Abhéngigkeit von r zeigt jedoch keinen Abfall fiir Werte r <
0.3495, wie in 9 erkennbar. Stattdessen nimmt die Signalstérke fiir abnehmende Probestrahlbreiten
weiter zu und konvergiert fiir 7 — 0 gegen N, = 1.218 - 1073. Die Ursache hierfiir ist aber
moglicherweise, dass fiir sehr kleine Streuregionen breitere Streuwinkel relevant werden und damit
Beitrdge in hoherer Ordnung von 6y, nicht mehr vernachlissigt werden kénnen, worauf auch der
Verlauf von Abbildung 7 fir kleine r hinweist. Ob sich damit jedoch eine so starke numerische
Abweichung erkléaren lésst, ist mindestens fragwiirdig.

Mp

NP 0.00122

0.0012 \
0.00120

0.001¢
0.00118

0.0002

00008 0.00116

0.0004 0.00114

5 10 15 20 25 0.0 0.2 0.4 0.6 0.8 1.0

Abb. 9: Darstellung der Signalphotonenzahl mit Hilfe der Ndherungsformel (91) in Abhéngigkeit
von 7.

Anmerkung: Bei numerischer Integration mit einer hoheren MinRecursion knickt der Kurven-
verlauf erst ab einem Wert von r = (HIER WERT EINFUGEN) ab, wie in Diagramm 10 dargestellt.
Daher kann davon ausgegangen werden, dass das Abknicken durch einen Fehler in der numerischen

Berechnung bedingt ist und der Kurvenverlauf der Ndherungsformel ansatzweise dem realen Verlauf
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entspricht. Die Sprungstellen im zweiten Diagramm sind ebenfalls auf Fehler in der numerischen

Berechnung zurtickzufiihren.

Np Np
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0.0010 0.0010
0.0008 0.0008
0.0006 0.0006
0.0004 0.0004
0.0002 0.0002
02 04 06 08 o 5 10 15 20 25

Abb. 10: Numerisch berechnete Signalphotonenzahl in Abhéngigkeit von r fiir eine héhere minimale
Rekursion

Damit das Signal tatsédchlich detektierbar ist, muss die Zahl der polarisationsgeflippten Si-
gnalphotonen pro Puls normiert iiber die Zahl der Photonen im Probepuls (hier N = 10'2) die
Polarisationsreinheit P iibersteigen. Daher ist diese neben der erreichbaren Feldamplitude einer
der limitierenden Faktoren fiir den experimentellen Nachweis der Nichtlinearititen elektromagneti-
scher Felder, wobei die technische Grenze von P in der Gréfenordnung 107! liegt. Hier wird mit
P =1,4-10"!! gerechnet [27]. Tatséichlich muss jedoch nicht das Feld im Gesamten betrachtet
werden, es reicht aus die Photonenzahl des Signals IV, und des Probepulses Ny fiir einen spezifischen

Emissionswinkel 6, zu betrachten. Dann gilt ab einem bestimmten Winkel 0 ¢y

dN, o dNy
dcos @, = dcos0y

1 .
=PN; (w1w071)2 exp fi(wlw()’l)z sin? 0| . (94)

In der hier verwendete Formel wird das Fernfeld der Probelasers betrachtet. Daher findet die
Néherung der unendlichen Rayleigh-Lange keine Anwendung und entsprechend werden auch fiir
von der Laserlaufrichtung abweichende Winkel Probephotonen detektiert (vgl. [17]). Ny = 10'? ist
hierbei die Zahl der Photonen pro Probepuls.
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AbDb. 11: Die Amplitude von di{;";k in Abhéngigkeit von 6 und r.

In Abbildung 11 zeigt sich sehr gut, welche Parameter optimiert werden miissen, um ein messbares
Signal zu erhalten. Fiir starke Fokussierungen r ~ wyg 1 erhdlt man fiir einen breiteren Winkelbereich
ein Signal mit signifikanter Amplitude. Dieser Bereich engt sich mit zunehmendem r jedoch immer
stdrker um einen scharfen Peak bei 0y a0 = 1,799 - 10~* ein, interessanterweise nimmt jedoch
bis rmaz = 9,000 die Amplitude bei 0, zu. Deshalb ist es faktisch am sinnvollsten bei diesen
Parametern zu messen. Die Amplitude betragt an dieser Stelle %’ék = 164,0 - 103. Tatséchlich
ist der Winkel mit der maximalen Amplitude fiir bestimmte r nicht konstant, sondern weicht
beispielsweise fiir kleine r leicht nach unten ab. Das erklart auch, warum der optimale Winkel aus

Abbildung 6 vom hier berechneten Wert abweicht.

Zu klaren bleibt jedoch, ob an der Stelle auch die Bedingung aus Gleichung (94) erfiillt ist. In
Abbildung 12 zeigt sich jedoch schnell, dass sich die beiden Kurven aus Gleichung (94) schon
fiir » = 2.1 in etwa bei 0, schneiden. Fiir etwas groflere r ist dann 6y ¢rit < Ok, mar und die
Amplitude bei 0y, i+ wird schnell vernachléssigbar klein, sodass es fiir eine scharf winkelaufgeloste
Messung zwei Nebenpeaks bei 0, = £0j 1mq. geben sollte. Wenn fiir viele aufeinanderfolgene
Laserpulskollisionen die winkelaufgeloste Photonenverteilung gemessen wird, kénnten sich diese

Nebenpeaks auch in einer realen Messung zeigen.
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Abb. 12: Vergleich des Abfalls der Probepulsstérke und des Signals fiir = 2.1 und r = 9.

Die Abhéngigkeit des kritischen Winkels von der Probefokussierung ergibt sich wie ansatzweise
in Abbildung 13 dargestellt. Die numerische Berechnung einer stetigen Kurve ist sehr umfangreich
und ndhme deshalb viel Zeit in Anspruch. Tatséchlich sieht man auch schon fiir wenige Punkte
einen charakteristischen Verlauf und es zeigt sich, dass sich der kritische Winkel ab einem gewissen
Wert fiir » nur noch unwesentlich &dndert, etwa ab dem Punkt, ab dem 0, crit < 0k mae gilt und

beide Kurven aus Abbildung 12 exponentiell in entgegengesetzte Richtungen abfallen.

Ocrit

0.0010
0.0008
0.0006
0.0004

0.0002 -

Abb. 13: Die Abhéngigkeit von 8 .-;; von der Probefokussierung, fiir einzelne Werte dargestellt.
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5.3 Auswertung des Signalfelds

Um den Anteil der doppelt gebrochenen Photonen am Gesamtsignal zu analysieren, ist es neben der
Signalphotonenzahl auch interessant das gesamte Signalfeld zu betrachten. Mit den oben festgelegten

Parametern reduzieren sich die Richtungen von E5 und By auf

Bl A0, g

und der Richtungsvektor des Fourier-transformierten Signalfelds aus Gleichung (74) auf

N 11 cos ¢y, sin O, cos O, —3(1—sin ¢y, sin Oy, +cos? 0,) fiir fézeg _6
A(Gk,gbk) = [ 3cos By (1+sin ¢y sin ) —11 cos ¢y, sin Oy (1+sin ¢y, sin O) =7 ( ) (96)
11(1—sin ¢ sin 0 +cos? ¢y, sin? 01 )—3 cos ¢y, sin Oy, cos Oy, 11

Es lasst sich bereits erkennen, dass das elektrische Feld fiir das Signal in z-Richtung in einem Winkel
von etwa a = 56, 71° zur Richtung des elektrischen Felds des Probepulses steht. Somit ist fiir diesen
Fall der Anteil der polarisationsgeflippten Signalphotonen am Gesamtsignal sin o = 83,59%, woran
man erkennen kann, dass die Vakuum-Doppelbrechung ein sehr wesentliches Charakteristikum der
Interaktion elektromagnetischer Felder mit dem Quantenvakuum ist. Der Probelaser ist also nach

der Kollision insgesamt leicht elliptisch polarisiert.

Das gesamte Signalfeld in z-Richtung ergibt sich dementsprechend aus

d* o - e
Cliine; =R [ s 000 3(0n — 3) W5 aCi- Ao Bz (o)
1 et ¢ ¢32 Wo,1Wo,2
= 5 < .
(27’[) 7207’716 vabe /ng,l +U}(2)72
. dko kOE(Qk =0 d)k = E)exp —i(ko—wl)z—i((l—q)ko—f—uwl)Q
’ 2 4a 4b
0
L (p(l=q) 8\ o 2| w120
5 (( 50 +a—7_22 k" —vwy | 7| sink®(t — ).
Dabei wurde wiederum der Term fir s = —1 aus Gleichung (83) vernachlissigt. Das Integral ldsst

sich dann mit in Tabelle 1 definierten Parametern mittels Mathematica numerisch auswerten. Da
das Signalfeld wiederum raum- und zeitabhéngig ist (bzw. im Spezialfall des Signals in z-Richtung
abhéngig von der Differenz t — x), ldsst sich dessen Amplitude in Richtung des normierten Vektors

A fiir maz UNd kleine Differenzen ¢t — x ~ Z—T wie in Abbildung 14 darstellen.
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Abb. 14: Amplitude des gesamten elektrischen Felds des Signals in x-Richtung fiir die ideale
Fokussierung r = 0, 3495.

Man sieht eine eindeutige periodische sinusférmige Schwingung, deren erstes Maximum bei
(t — &) maz = 1,216 - 10~%eV " liegt. Die daraus berechnete Signalfrequenz

Wsignal = m — 129146V (98)
liegt wie erwartet genau beim Wert der Probepulsfrequenz w;. Da das Signal stark oszilliert, ist es zur
Analyse des Signals interessant dessen Einhiillende zu betrachten. Dafiir wurde die Amplitude des
Signalfelds numerisch an aufeinanderfolgenden Maxima ausgewertet, wie in Abbildung 15 dargestellt.
Es wurde insgesamt ein Bereich von 200.000 Maxima um den Ursprung betrachtet. Dabei wurde
jedes 625te Maximum berticksichtigt. Es zeigt sich deutlich, dass die Oszillationsfrequenz kaum von
wy divergiert, da sonst in dieser Darstellung der Einhiillenden merkliche Oszillationen erkennbar
sein miissten. Stattdessen ist der Kurvenverlauf innerhalb der signifikanten Stellen vollstandig

achsensymmetrisch. Die Einhiillende der Signalfeldamplitude Ep lasst sich an eine Gauss-Verteilung

e

2
Tp

der Form

Bpalt =), = B0 |- (99)

=€,

anpassen, analog zur Form des Probepulses nach Gleichung (26). Dann ergibt sich fiir die Amplitude
E, = 0,1432 eV? und fiir die Pulsdauer Tp = 46,31 eV ™! = 30,47 fs, welche bemerkenswerterweise

kleiner als die Pulsdauer des Probelasers ist.
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Abb. 15: Einhiillende des Signalpulses in x-Richtung fiir r» = 0, 3495.

Tatsédchlich zeigt sich jedoch, dass die Pulsdauer des Signals abhédngig von der Probefokussierung
wo,1 ist. Wie in Abbildung 16 dargestellt, nimmt die Pulsdauer mit breiterer Fokussierung ab. Fiir
r = 1 betrégt die Pulsdauer beispielsweise 7, = 45,92 eVl Wie bereits in Abbildung 11 zu sehen,
verringert sich die Amplitude des Signals in z-Richtung im gleichen Bereich jedoch um ein deutlich
groBeres MaB, da fiir groflere r der wesentliche Teil des Signals in Richtung 6y ;q, emittiert wird.

Fiir r > 3,6 war es deshalb nicht mehr moglich, ein numerisches Ergebnis zu berechnen.

P

30r

201

. . . . . . . r
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Abb. 16: Die Pulsdauer des Signalfelds 7, in Abhéngigkeit von der Probefokussierung ~ 7.
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6 Fazit und Ausblick

Im Wesentlichen lassen sich die Ergebnisse dieser Arbeit auf zwei relevante Punkte herunterbrechen.
Zum einen wurde in Kapitel 4 explizite analytische Formeln fiir das elektrische Feld der Signalpho-
tonen und fiir die differentielle Zahl der polarisationsgeflippten Signalphotonen berechnet, welche
die Grofle des Effekts der Vakuum-Doppelbrechung charakterisiert (Gleichungen (60) und (73) in
Kombination mit Gleichung (83). Diese Formeln sind unabhéngig vom Kollisionswinkel, von der
Polarisation der Laserpulse und von den Laserparametern. Auflerdem unterliegen sie nur wenigen
Néherungen, sodass damit Versuchsaufbauten mit einem Probepulslaser und einem Pumppulslaser
allgemein relativ gut beschrieben werden kénnen'®. Daher sind diese Formeln gut zur tiefergehenden

Analyse fiir verschiedene experimentelle Szenarien geeignet.

Zum anderen wurden in Kapitel 5 die hergeleiteten Formeln fiir reale Parameter und einen
spezifischen Kollisionswinkel ausgewertet und eine ideale Wahl der Polarisationswinkel bestimmt.
Hier zeigt sich, dass der Effekt der Vakuum-Doppelbrechung auch fiir sehr grofie Laserfeldstéarken
nur sehr gering ist, das Signal jedoch fiir die passende Wahl der Probefokussierung so scharf
auf einen bestimmten Emissionswinkel fokussiert ist, dass es dort theoretisch moglich sein sollte,
die Vakuum-Doppelbrechung experimentell nachzuweisen. Durch die Auswertung des Signalfelds
lassen sich einige weitere mogliche interessante Beobachtungen vorhersagen, wie die Pulsdauer des
Gesamtsignals oder den Anteil der Vakuum-Doppelbrechung am gesamten nichtlinearen Signal, der,

wie exemplarisch berechnet, sehr wesentliche Ausmafle annimmt.

Was im Rahmen dieser Arbeit jedoch nicht untersucht werden konnte, ist, wie sich die Anderung
des Kollisionswinkels auf die Beobachtbarkeit des Signals auswirkt und ob sich fiir andere Kol-
lisionswinkel eine mogliche bessere Messbarkeit der Vakuum-Doppelbrechung ergibt. Erwartbar
wére nach den Gleichungen aus Kapitel 4, dass die Zahl polarisationsgeflippter Signalphotonen
bis zu einem Kollisionswinkel von 180° weiter zunimmt. Aller Vorraussicht nach treten dann fiir
entsprechende Probefokussierungen scharfe Peaks des Signals bei bestimmten Winkeln in der
Kollisionsebene auf. Hier wére es besonders interessant 0 ;q, und die dazugehorige Amplitude
fr verschiedene Kollisionswinkel zu bestimmen, um allgemein auf die idealen experimentellen
Bedingungen zum Nachweis der Vakuum-Doppelbrechung schlieen zu kénnen'®. Dariiber hinaus
wurden hier nicht die diversen Hindernisse in der experimentellen Umsetzung beriicksichtigt, die
den Nachweis deutlich erschweren?’. Rein exemplarisch sei hier nur die Schwierigkeit genannt,
beide Laserpulse exakt im selben Raumzeitpunkt aufeinandertreffen zu lassen. Dariiber hinaus
miissen externe Storeffekte beispielsweise durch unreines Vakuum moglichst unterbunden werden.
Prinzipiell konnte es aber in naher Zukunft gelingen, die Vakuum-Doppelbrechung und damit die

Nichtlinearitéat elektromagnetischer Felder im Labor nachzuweisen.

18auch wenn der Unterschied zur analytischen Naherungsformel fiir die differentielle Zahl der polarisationsgeflippten
Signalphotonen aus [6] nicht sehr wesentlich sein sollte, sieche Abschnitt 5.2

19Wenn sich beispielsweise experimentelle Parameter finden lieBen, fir die 0k, maa in einem Bereich liegt, in dem der
Winkelvorfaktor aus Abschnitt 5.1 maximal wird, lieBe sich die Signalamplitude nochmal um zwei Gré8enordnungen
verstdrken. Allerdings ist auch der Winkelvorfaktor in einigen Termen abhingig vom Kollisionswinkel und diirfte
daher gewissen Schwankungen unterliegen.

20Eine Untersuchung findet sich beispielsweise in [6].
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