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1 Einleitung
Wenn wir uns das Vakuum klassisch vorstellen, denken wir zunächst an einen vollständig leeren
Raum, in dem keine Teilchen vorhanden sind. Mathematisch ist diese Vorstellung zwar einfach zu
beschreiben, sie wird jedoch beim Übergang von der klassischen in die Quantenwelt ad absurdum
geführt. Bereits die Heisenberg’sche Unschärferelation zeigt, dass es nicht möglich ist den Ener-
giezustand eines Systems zu einem beliebig genauen Zeitpunkt beliebig genau zu messen. Diese
Einschränkung gilt bemerkenswerterweise nicht nur für Systeme aus Teilchen, sondern auch für ein
scheinbar teilchenloses System, das sogenannte Vakuum. Hier wird klar: wir müssen uns von der
Vorstellung verabschieden, dass im Vakuum nichts passiert.

Die Quantenfeldtheorie füllt diese Vorstellung mit Leben, oder besser gesagt mit fluktierenden
Feldern, sogenannten virtuellen Teilchen-Antiteilchen-Paaren, die spontan entstehen und wieder
gegenseitig annihilieren. Das Spannende ist: diese Fluktuationen sind keine rein theoretische Idee.
Sie können experimentell nachgewiesen werden, indem man sie dazu bringt, mit externen Teilchen
oder Feldern zu interagieren. Eine der Möglichkeiten dafür ist der Casimir-Effekt, der die klassisch
nicht erklärbare Anziehung zweier leitender Platten beschreibt, zwischen denen sich ein Vakuum
befindet, resultierend aus den Fluktuationen des Photonenfelds [1]. Dieser wurde auch bereits
experimentell nachgewiesen (siehe bspw. [2]). Eine andere Option Quantenfluktuationen sichtbar
zu machen, welche hier genauer untersucht werden soll, sind starke elektromagnetische Felder, die
mit Elektron-Positron-Paaren im Quantenvakuum wechselwirken und dabei ihre Eigenschaften
ändern. Beispielsweise können einzelne Photonen gestreut werden (Lichtdiffraktion). Durch diese
Interaktionen werden die klassischen elektromagnetischen Feldgleichungen durch nichtlineare Terme
ergänzt, was wiederum die Aufgabe des Superpositionsprinzips notwendig macht.

Einer der wesentlichen dabei auftretenden Effekte ist die sogenannte Vakuum-Doppelbrechung,
bei der durch die Interaktion mit dem polarisierten Vakuum die Polarisation der Photonen in einem
elektromagnetischen Feld verschoben wird. Seit 2001 wird im PVLAS-Experiment versucht, diese
Interaktion von Licht mit starken Magnetfeldern im Labor nachzuweisen, jedoch ist dies bisher
noch nicht gelungen [3]. Allerdings wurden Hinweise auf diesen Effekt im emittierten Licht eines
Neutronensterns mit sehr starkem Magnetfeld gefunden [4]. Inzwischen gibt es auch einen neuen
Ansatz, die Vakuum-Doppelbrechung im Labor sichtbar zu machen. Dafür sollen zwei linear polari-
sierte Hochintensitätslaserpulse in einem Brennpunkt fokussiert werden [5]. Das Experiment wurde
zwar bisher noch nicht erfolgreich in die Tat umgesetzt, jedoch sind die notwendigen technischen
Mittel dafür bereits in naher Zukunft verfügbar [6].

Diese Möglichkeit Quantenfluktuationen zu beobachten, wird in dieser Arbeit tiefergehend
erläutert. Hier soll die Kollision zweier Laserpulse und die dadurch hervorgerufene Streuung der
Photonen modelliert werden. Real detektierbar sein soll die Vakuum-Doppelbrechung durch eine
Veränderung der Polarisation eines der Laser nach der Kollision. Ziel soll es sein, diesen Effekt
möglichst weitgehend analytisch zu modellieren, um dann mit Hilfe des Modells und numerischen
Berechnungen in Mathematica mit exemplarischen Parametern die reale Größenordnung des Effekts
darzustellen.
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2 Theoretische Grundlagen
Um die quantenelektrodynamischen Effekte im Vakuum zu behandeln, ist es zunächst wichtig die
klassische elektromagnetische Feldtheorie einzuführen. Anschließend wird die quantentheoretische
Formulierung der Elektrodynamik skizziert und die Abweichungen von der klassischen Theorie
begründet. In dieser Arbeit wird weitgehend mit der kovarianten Formulierung der Elektrodyna-
mik und dem Einstein-Kalkül gearbeitet, wobei implizit die Minkowski-Metrik mit der Signatur
(+,−,−,−) verwendet wird. Ebenso wird das Heavyside-Lorentz-Einheitensystem (c = ℏ = 1)
verwendet, wodurch alle physikalischen Einheiten als Potenz der Energie (in eV ) angegeben werden
können.

2.1 Die Feldtheorie der klassischen Elektrodynamik

Die klassische lineare Feldtheorie der Elektrodynamik fundiert auf dem elektromagnetischen Feld
Aν und dem Feldstärketensor. Dieser lässt sich schreiben als

Fµν = ∂µAν − ∂νAµ =
( 0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

)
. (1)

E⃗ = (Ex, Ey, Ez) und B⃗ = (Bx, By, Bz) sind dabei das klassische elektrische und magnetische Feld.
Aµ beschreibt ein kovariantes Vektorpotential, aus dem sich Fµν ableiten lässt. Wie man leicht er-
kennt, ist Fµν antisymmetrisch (Fµν = −F νµ). Darüber hinaus ist Fµν eichinvariant, also invariant
gegenüber Eichtransformationen des Vektorpotentials Aµ → Aµ + ∂µΛ, wobei Λ(xµ) eine beliebige,
zweifach differenzierbare skalare Funktion beschreibt. Wie leicht an der Bestimmungsgleichung zu
erkennen, hängt Fµν nicht von Λ(xµ) ab.

Aus dem Feldstärketensor lassen sich zwei skalare, algebraisch unabhängige, Lorentz-invariante
Größen

F = 1
4F

µνFµν = 1
2

(
B⃗2 − E⃗2

)
, (2)

G = 1
4ϵ

µνρσFµνFρσ = −E⃗ · B⃗ (3)

konstruieren1.

Die fundamentalen Gleichungen der Elektrodynamik, die Maxwell-Gleichungen lauten in kovari-
anter Form

ϵµνρσ∂νFρσ = 0, (4a)

∂µF
µν = jν , (4b)

wobei jµ die Vierer-Stromflussdichte beschreibt, die die Kontinuitätsgleichung ∂µj
µ = 0 erfüllt und

im Vakuum verschwindet. Die Maxwell-Gleichungen sind lineare partielle Differentialgleichungen

1G ist lediglich eine pseudoskalare Größe, da bei Zeit- und Paritätsinversion das Vorzeichen vertauscht wird. G2 ist
jedoch ein regulärer Lorentz-invarianter Skalar.
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zweiter Ordnung, ergo genügen ihre Lösungen dem Superpositionsprinzip, da jede Linearkombinati-
on aus Lösungen der Gleichungen diese wiederum erfüllt.

Wie allgemein für Feldtheorien, lässt sich auch für die elektromagnetische Feldtheorie eine skalare
Lagrangedichte L konstruieren, die Lorentz-invariant ist und aus der mittels der Euler-Lagrange-
Gleichungen,

∂µ
∂L

∂(∂µAν) − ∂L
∂Aν

= 0, (5)

die Maxwell-Gleichungen folgen. L kann also allgemein nur von skalaren Lorentz- und eichinvarianten
Größen abhängen. Die Festlegung der klassischen Lagrangedichte auf

L = −1
4F

µνFµν − jνAν (6)

lässt sich heuristisch begründen, da daraus die Maxwell-Gleichungen folgen müssen. Im Vakuum
reduziert sie sich auf

L = −F = 1
2

(
E⃗2 − B⃗2

)
. (7)

Alternativ lässt sich die Lagrangedichte auch als Variationsprinzip aus der Wirkung

S =
∫
Γ

d4x L (8)

und dem Hamilton’schen Prinzip der extremalen Wirkung formulieren. Γ beschreibt dabei eine
beliebige Integrationsregion in der Raumzeit, außerhalb welcher L verschwindet. Detailliertere
Einführungen und Erläuterungen der hier eingeführten Größen finden sich beispielsweise in [7] oder
[8].

2.2 Die Feldtheorie der Quantenelektrodynamik

Die klassische Formulierung der Elektrodynamik ist zwar vereinbar mit Einsteins Spezieller Rela-
tivitätstheorie, jedoch nicht mit der Quantenmechanik, da diese nichtrelativistisch formuliert ist.
Deren Grundidee ist der Welle-Teilchen-Dualismus, wonach massereiche und masselose Teilchen
ebenso Welleneigenschaften aufweisen und die Distinktion dazwischen aufgehoben wird. Der Zustand
eines Ein-Teilchen-Systems lässt sich in der Quantenmechanik durch einen Zustandsvektor |ψ⟩ cha-
rakterisieren, der Element eines Hilbertraums H ist. Das Betragsquadrat |ψ(x)|2 = ⟨ψ|ψ⟩ lässt sich
als die Aufenthaltswahrscheinlichkeit des Teilchens am entsprechenden Raumpunkt interpretieren,
die über den gesamten Raum integriert eins ergeben muss. Physikalischen Observablen ⟨A⟩ wird ein
Operator A zugeordnet und es gilt für den Erwartungswert ⟨A⟩ = ⟨ψ|A|ψ⟩. Die Evolutionsgleichung
freier quantenmechanischer Zustände, auch Schrödinger-Gleichung genannt, lautet

i
d
dt |ψ⟩ = H|ψ⟩ = − 1

2m∆|ψ⟩. (9)

H bezeichnet den Hamilton-Operator, mit dem sich die Energiezustände des Systems berechnen
lassen [9]. An der Gleichung lässt sich schnell erkennen, dass die zugrunde liegende Feldtheorie keine
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relativistische sein kann, da Zeit- und Raumableitungen unterschiedlicher Ordnung sind, im Rahmen
dieser Theorie also nicht äquivalent sind. Eine relativistische Formulierung der Quantentheorie
muss dieser Bedingung jedoch genügen.

Eine der ersten relativistischen Quantenfeldtheorien formulierte Paul Dirac 1928 in seiner Arbeit
[10] für Teilchen mit Spin 1/2, charakterisiert durch die Dirac-Gleichung

(iγµ∂µ −m)ψ = 0, (10)

wobei γµ die Dirac-Matrizen, ψ die vierwertige Zustandsfunktion und m die Teilchenmasse bezeich-
net. Elektronen genügen als Teilchen mit Spin 1/2 dieser Theorie. Bemerkenswert ist dabei, dass die
Dirac-Gleichung auch Zustände mit negativer Energie als Lösung zulässt, was implizieren würde,
dass beispielsweise in Atomen gebundene Elektronen spontan in einen Zustand niedrigerer Energie
zerfallen könnten und die mögliche Menge freigesetzter Energie dabei unbegrenzt ist. Da dies
faktisch jedoch nicht passiert, formulierte Dirac ein anschauliches Erklärungsmodell: Im Einklang
mit dem Pauli-Prinzip, welches besagt, dass kein fermionischer Zustand mehrfach besetzt sein darf,
seien alle Zustände negativer Energie bereits durch nicht beobachtbare Teilchen besetzt. Dieses
Modell wird als Dirac-See bezeichnet 2.

Daraus ergibt sich die Möglichkeit für ein Elektron negativer Energie durch Anregung, beispiels-
weise durch ein energiereiches Photon, in einen Zustand positiver Energie gehoben zu werden.
Dadurch verbleibt ein ’Loch’ im Dirac-See mit positiver Energie und gegensätzlicher Ladung,
welches als Positron (das Antiteilchen des Elektrons) bezeichnet wird. Dieser Prozess wird auch
als Paarerzeugung bezeichnet. Dieser Prozess kann genauso umgekehrt stattfinden, wenn ein Elek-
tron das ’Loch’ auffüllt, also mit einem Positron gegenseitig annihiliert. Dabei werden wiederum
zwei Photonen frei, deren Energie der Teilchenmasse entspricht. Beschrieben wird dieses Modell
beispielsweise in der Einführung von [11].

2.3 Die Vakuum-Lagrangedichte in der Quantenelektrodynamik

Als Konsequenz aus diesem Modell ergibt sich, dass im Vakuum ein Photon mit ausreichend Energie
spontan in ein Elektron und ein Positron zerfallen kann. Genauso kann das Vakuum aufgrund
der Energie-Zeit-Unschärfe lokal Zustände annehmen, deren Energie sich von null unterscheidet.
Lediglich im Mittel über lange Zeitdauern muss die Vakuumenergie null betragen. Diese sogenannten
Vakuumfluktuationen werden in der Quantenelektrodynamik (QED) durch virtuelle Positron-
Elektron-Paare beschrieben, die spontan entstehen und wieder zerfallen3. Da diese Teilchenpaare
eine Ladung tragen, bilden sie einen elektromagnetischen Dipol und können beispielsweise durch
externe elektromagnetische Felder polarisiert werden, die sogenannte Vakuum-Polarisation. Diese hat
wiederum Auswirkungen auf externe Felder. Es wird also deutlich, dass die klassische Lagrangedichte

2Dieses Modell ist zwar in der quantenfeldtheoretischen Beschreibung überholt, aber an dieser Stelle ausreichend.
3Tatsächlich können auch andere virtuelle Teilchen-Antiteilchen-Paare entstehen. Da jedoch Elektronen die geladenen

Teilchen mit der geringsten Masse sind, werden die Quantenfluktuationen der QED durch Elektron-Positron-Paare
dominiert.
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aus Gleichung (7) angepasst werden muss. Diese lautet in der Formulierung der QED

LQED = −1
4F

µνFµν + ψ̄(i/∂ −m)ψ + eAµψ̄γµψ (11)

mit /∂ = γµ∂µ und ψ̄ = ψ†γ0. Der erste Term beschreibt dabei die klassische Dynamik freier
elektromagnetischer Felder, der zweite Term die Dynamik freier Elektronen und Positronen und
der dritte Term die Interaktion zwischen Photonen und Fermionen4, charakterisiert durch die
elektromagnetische Kopplungskonstante e.

Abb. 1: Eine Übersicht der elementaren Bauteile von Feynman-Diagrammen in der QED. Das
erste Bauteil beschreibt das Verhalten freier elektromagnetischer Felder, das zweite die
Propagation von Positronen und Elektronen und das dritte die Interaktion zwischen
Fermionen und Photonen. Die Bauteile korrespondieren mit den entsprechenden Termen
der Lagrangedichte.

Aus diesen drei fundamentalen Prozessen lassen sich Feynman-Diagramme konstruieren, die
die Interaktionsprozesse zwischen Fermionen und Photonen beschreiben (siehe Abbildung 1).
Tatsächlich tritt für einen Prozess mit festgelegten ein- und ausgehenden Teilchen jeder mögliche
Prozess auf, für den mit diesen Randbedingungen ein Feynman-Diagramm konstruiert werden
kann. Alle möglichen Prozesse können nach der Anzahl auftretender geschlossener Schleifen in ihren
Feynman-Diagrammen charakterisiert werden, wobei der Beitrag von Prozessen mit n Schleifen in
der Größenordnung αn = ( e2

4π )n unterdrückt wird5 [12].

Da in dieser Arbeit die Interaktionen makroskopischer elektromagnetischer Arbeit behandelt wer-
den sollen, reicht es aus Prozesse zu betrachten, deren Anfangs- und Endzustände frei von Elektronen
und Positronen sind, diese also nur in Form von geschlossenen Schleifen in den Feynman-Diagrammen
inkorporieren. Darüber hinaus ist es ausreichend, die Interaktion der virtuellen Elektronen und
Positronen mit externen Photonen zu betrachten und mögliche Wechselwirkungen mit virtuellen
Photonen unberücksichtigt zu lassen, da solche Prozesse nur in höherer Ordnung in α stattfinden.
Faktisch wird also die Streuung (Diffraktion) von Photonen am polarisierten Vakuum betrachtet.

Der klassische Wirkungsterm SMW nach Gleichung (8) wird dann durch einen nichtlinearen Term
ergänzt, die effektive Heisenberg-Euler-Wirkung Sint. Damit erhält man die effektive Wirkung
Seff = SMW + Sint. Deren analytische Form für langsam veränderliche6 externe elektromagnetische

4Fermionen sind Teilchen mit halbzahligem Spin. Elementare Fermionen haben alle Spin 1
2 , allerdings lassen sich

Vielteilchensysteme, wie beispielsweise Atome, konstruieren, deren Gesamtspin größer, aber ebenfalls halbzahlig
ist und die fermionisches Verhalten zeigen.

5α = e2

4π =≃ 1
137 ist die elektromagnetische Feinstrukturkonstante.

6Langsam veränderlich meint hier im Verhältnis zur Compton-Wellenlänge λC = 1
me

≃ 3,9 10−13m = 2,0 106eV−1

bzw. zur Compton-Zeit τC ≃ 1,3 10−21s = 2,0 106eV−1, also der Skala, auf der die virtuelle Paarbildung
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Felder wurde zum ersten Mal 1936 von Heisenberg und Euler in [13] explizit berechnet. Die
entsprechende Heisenberg-Euler-Lagrangedichte lautet

Lint = m4
e

8π2

∞∫
0

dη e
−η

η3

[
1 − 1

3(Ẽ2 − B̃2)η2 − ẼB̃η2 cot(Ẽη) coth(B̃η)
]
. (12)

Die Herleitung dieser Formel übersteigt den Rahmen dieser Arbeit, findet sich aber beispielsweise
auch in [14] oder [12]. B̃ = |B⃗|

Bcrit
und Ẽ = |E⃗|

Ecrit
bezeichnen die dimensionslosen Feldstärken mit

den kritischen Feldstärken

Bcrit = m2
e

e
= 4,4 109T = 8,5 1011eV2, Ecrit = m2

e

e
= 1,3 1018V/m = 8,5 1011eV2. (13)

Da real im Labor erzeugte Feldstärken in der Regel um Größenordnungen unter den kritischen
Feldstärken liegen, kann Ẽ, B̃ ≪ 1 angenommen werden, was bedeutet, dass die Schwachfeldnäherung
eine realistische Herangehensweise ist. Diese lässt sich aus Gleichung (12) ableiten, indem die trigo-
nometrischen Funktionen im Integranden bis zur dritten Ordnung Taylor-entwickelt werden. Die
Formeln dafür lauten nach [15]

cot(x) =
∞∑

k=0
(−1)k 22n

(2k)!B2kx
2k−1 = 1

x
− x

3 − x3

45 + O(x5) (14)

coth(x) =
∞∑

k=0

22n

(2k)!B2kx
2k−1 = 1

x
− x

3 + x3

45 + O(x5) (15)

mit den Bernoulli-Zahlen B2k, wobei B0 = 1, B2 = 1
6 und B4 = − 1

30 betragen. Damit folgt

Lint = m4
e

8π2

∞∫
0

dη e
−η

η3

[
1− 1

3(Ẽ2−B̃2)η2−η2ẼB̃

(
1
ηẼ

− ηẼ

3 − (ηẼ)3

45

)(
1
ηB̃

+ ηB̃

3 − (ηB̃)3

45

)]

= m4
e

8π2

∞∫
0

dη e
−η

η3

[
1− 1

3(Ẽ2−B̃2)η2−η2ẼB̃

(
1

η2ẼB̃
+ B̃

3Ẽ
− Ẽ

3B̃
− B̃3

45Ẽ
η2− ẼB̃

9 η2

− Ẽ3

45B̃
η2+ ẼB̃3

135 η4− Ẽ3B̃

135 η4+ Ẽ3B̃3

2025 η
6

)]
(16)

Für die Schwachfeldnäherung werden maximal die zweiten Potenzen der Lorentz-Invarianten nach
Gleichungen (2) und (3) betrachtet, was der Ordnung O(α2) entspricht. Somit werden nur Terme
berücksichtigt, in denen Ẽ und B̃ zusammen nicht in höherer Ordnung als vier auftreten. Damit
reduziert sich der Ausdruck auf

Lint = m4
e

8π2

∞∫
0

dη e
−η

η3
(B̃2 − Ẽ2)2 + 7Ẽ2B̃2

45 η4 = e4

8π2m4
e

4F2 + 7G2

45

∞∫
0

dη ηe−η. (17)

typischerweise abläuft. Experimentell erzeugte Felder sind auf diesen Skalen in der Regel näherungsweise konstant.
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Damit muss nur noch das Integral hinter der Konstante ausgewertet werden.

∞∫
0

dη ηe−η =
[
−ηe−η

]η=∞

η=0
+

∞∫
0

dη e−η =
[
−e−η

]∞

0
= 1. (18)

Insgesamt ergibt sich also

Lint(F ,G2) = 2α2

45m4
e

[
4F2 + 7G2]. (19)

Dieser Ausdruck für die Lagrangedichte wird als Ausgangspunkt für die Berechnungen in dieser
Arbeit genommen.

Den Grund warum der nichtlineare Anteil der Lagrangedichte bei praktischen Anwendungen in
der Regel keine Rolle spielt, lässt sich am Vorfaktor erkennen, der die Konstanten me = 511,0 keV
und α ≃ 1

137 enthält. Dieser unterdrückt nichtlineare Effekte um viele Größenordnungen, sodass
entsprechende Effekte erst bei sehr hohen Feldstärken sichtbar werden.
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3 Aufgabenszenario und experimentelle Größen
In diesem Abschnitt geht es darum, die Versuchsbedingungen zu skizzieren, unter denen der Nach-
weis der Vakuum-Doppelbrechung möglich gemacht werden soll. Dafür werden zunächst ein paar
allgemeine Überlegungen zum Versuchsaufbau ausgeführt. Anschließend werden die mathematischen
Grundlagen zur Beschreibung der beiden verwendeten Laserpulse, sowie der zu bestimmenden experi-
mentellen Parameter eingeführt, mit denen in den darauffolgenden Kapiteln die Analyse erfolgen soll.

3.1 Ziele und Hintergründe des Experiments

Ziel des Experimentes ist es, den Effekt der Vakuum-Doppelbrechung in der Wechselwirkung zweier
elektromagnetischer Felder nachzuweisen. Die scheinbar einfachste Möglichkeit dafür, ein einzelner
linear polarisierter Hochintensitätsläser, führt jedoch zu keinem Ergebnis, da in diesem Fall die
Lorentz-Invarianten F und G verschwinden. Das ist leicht an deren Definitionsgleichungen (2)
und (3) erkennbar. Hier findet zwar auch Vakuum-Polarisation statt, allerdings steht diese immer
senkrecht zur Laserlaufrichtung und hat daher keinen Effekt auf das Laserfeld. Daher ist es inter-
essant, die Überlagerung der Felder zweier linear polarisierter Hochintensitätslaser zu betrachten.
Laserpulse im Röntgenbereich7 mit ausreichend hohen Amplituden, die ein potentiell messbares
Signal hervorrufen, lassen sich am besten mit einzelnen Laserpulsen realisieren [6]. Daher werden
hier keine kontinuierlichen Laser zur Modellierung verwendet. Im Experiment soll die Verschiebung
der Polarisation eines Laserpulses von linearer zu leicht elliptischer Polarisation nachgewiesen
werden. Ziel ist es für Beispielparameter von realen Versuchsaufbauten zu zeigen, unter welchen
Bedingungen ein solcher Nachweis der Vakuum-Doppelbrechung praktisch gelingen könnte.

Der einfachste Fall zweier gegenläufiger Laser, für den der Effekt der Doppelbrechung maximal
ausgeprägt ist [6], wird bereits in [17] behandelt. Dieser Aufbau ist zwar mathematisch einfacher zu
beschreiben, jedoch in der Realisierung problembehaftet, da die Quellen der Pulse aufgrund des
geometrischen Aufbaus gleichzeitig das Target des jeweils anderen Pulses sind. Hier wird deshalb eine
Verallgemeinerung für beliebige Ausrichtungen der beiden Pulse zueinander betrachtet und daraufhin
der Spezialfall orthogonaler Laserlaufrichtungen ausgewertet8. Der Einfachheit halber wird hierbei
ein vergleichsweise schwacher Probelaser und ein deutlich stärkerer Pumplaser betrachtet. Mit Hilfe
dieser Annahmen können die Wechselwirkungen der Laser mit dem Vakuum näherungsweise als
elastische Stöße der Photonen des Probelasers an den Photonen des Pumplasers modelliert werden.
Dadurch muss nur der Effekt des Pumplasers auf den Probelaser berücksichtigt werden, was die
Rechnung wesentlich vereinfacht. Dieses Szenario wurde für orthogonale Laserlaufrichtungen auch
bereits in [18] direkt anhand der nichtlinearen Feldgleichungen untersucht. Hier wird stattdessen der
Ansatz aus [17] verwendet, bei dem das Fourier-transformierte Signal aus den Fourier-transformierten
nichtlinearen Feldgleichungen berechnet wird.

7Röntgenlaser werden zum Nachweis des Effektes in der Regel verwendet, da mit diesen die höchste Polarisations-
reinheit erzielt werden kann [16].

8Manche Teile der Auswertung sind jedoch auch für allgemeine Kollisionswinkel gültig.
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3.2 Die Feldkonfiguration

Allgemein lässt sich in der klassischen Elektrodynamik die Einhüllende eines kontinuierlichen, in
z-Richtung ausgerichteteten, Gauß-förmigen Lasers im Rahmen der paraxialen Näherung nach [19]
mit der Formel

E(x⃗) = E0
w0

w(z) exp
[
−x2 + y2

w(z)2

]
exp

[
−ik x

2 + y2

2R(z)

]
e−ikz−iξ(z) (20)

beschreiben. Hier ist

w(z) = w0

√
1 + z2

z2
R

, (21)

die Strahlbreite,

R(z) = x

(
1 + z2

R

z2

)
(22)

der Krümmungsradius und
ξ(z) = arctan z

zR
(23)

die Gouy-Phase. zR = kw2
0

2 beschreibt die Rayleigh-Länge, die durch w(z = zR) =
√

2w0 definiert ist
(siehe Abbildung 2). Da für den Nachweis von Vakuum-Doppelbrechung die Verwendung stark fokus-

Abb. 2: Schematischer Aufbau des Profils der Einhüllenden eines gaussförmigen Laserpulses. Die
roten Linien beschreiben die Phasenfronten.

sierter Laser notwendig ist und sich der Bereich der nichtlinearen Interaktionen im Wesentlichen auf
den Fokuspunkt der beiden Laser beschränkt, an dem diese kollidieren, kann im Folgenden zR → ∞
angenommen werden, wodurch die Strahlbreite überall konstant w0 beträgt [20]. Darüber hinaus
fällt die Gouy-Phase ξ(z) weg und der Krümmungsradius R(z) läuft gegen unendlich. Ebenfalls geht
der Emissionswinkel θ gegen null und die Phasenfronten bilden jeweils Ebenen (vgl. Abbildung 2).
Da nur der Realteil des elektrischen Felds des Lasers beobachtbar ist, reicht es, sich in der Rechnung
auf diesen zu beschränken. Da hier jedoch die Kollision zweier pulsförmiger Laser betrachtet werden
soll, muss ein zusätzlicher zeiteinhüllender Term hinzugefügt werden.

Das Koordinatensystem wird für den Versuchsaufbau so gewählt, dass sich der schwache Pro-
belaserpuls E1 in die Richtung ˆ⃗κ1 = (1, 0, 0) und der starke Pumplaserpuls E2 in die Richtung
ˆ⃗κ1 = (cos Θ, sin Θ, 0) ausbreitet. Die Maxima beider Laserpulse sollen bei xµ = (0, 0, 0, 0) aufeinan-
der treffen. Die Einhüllende eines Laserpulses lässt sich dann mit den obigen Annahmen analog zu

11



[17] durch

Ei(x⃗) = Ei exp

−

(
x⃗ · ˆ⃗κi − t

τi/2

)2
 exp

[
− x⃗2 − (x⃗ · ˆ⃗κi)2

w2
0,i

]
cos
(
ωi(x⃗ · ˆ⃗κi − t)

)
(24)

beschreiben und gibt die ortsabhängige Amplitude der Feldstärkevektoren E⃗i und B⃗i an. Dabei ist
Ei die Amplitude der Einhüllenden mit E1 ≪ E2, τi die Pulsdauer9, w0,i der Strahlradius10 und ωi

die Strahlfrequenz des i-ten Laserpulses. Die Feldstärkevektoren des kombinierten Laserfelds lassen
sich somit beschreiben durch

E⃗ = E⃗1 + E⃗2 mit (25)

E⃗1 = E1(0,− sinϕ1, cosϕ1) und E⃗2 = E2(sin Θ sinϕ2,− cos Θ sinϕ2, cosϕ2), (26)

sowie

B⃗ = B⃗1 + B⃗2 mit (27)

B⃗1 = E1(0,− cosϕ1,− sinϕ1) und B⃗2 = E2(sin Θ cosϕ2,− cos Θ cosϕ2,− sinϕ2). (28)

Der Winkel Θ beschreibt die Ausrichtung der beiden Laserpulse zueinander, wobei dieser so definiert
ist, dass die Pulse für Θ = 0 die gleiche Ausbreitungsrichtung haben. Während die beiden Laserpulse
sich in der x-y-Ebene ausbreiten, sind deren Polarisationswinkel ϕi so gewählt, dass sie den Winkel
des E⃗i-Felds zur z-Achse beschreiben.

3.3 Die charakteristischen Parameter des Signals

Da hier das Signalphotonenfeld und das externe Laserfeld getrennt betrachtet werden, lässt sich die
Abhängigkeit der nichtlinearen Lagrangedichte Lint = Lint(F + f) in einen Anteil des Laserfels
Fµν und einen Anteil des Signalphotonenfelds fµν = ∂µaν − ∂νaµ zerlegen. Dann gilt

Lint(F + f) = Lint(F ) − 2∂µ

(
∂Lint(F )
∂Fµν

)
︸ ︷︷ ︸

=jν (F )

aν + O(a2). (29)

Da mit stark fokussierten Lasern gearbeitet wird, verschwindet Lint(F ) näherungsweise außerhalb
des Kollisionsbereichs und übrig bleibt die Lagrangedichte

Lγ(a|F ) = −1
4fµνf

µν − jνa
ν (30)

mit der Signalphotonenflussdichte jν(F ) und dem Signalphotonenfeld aν . Diese Gleichung beschreibt
alle Interaktionsprozesse des externen Felds mit dem Vakuum, bei denen ein einzelnes Signalphoton
emittiert wird, also Lichtdiffraktionsprozesse11. Das Signalphotonenfeld folgt dementsprechung aus

9τi entspricht der Zeit, an dem die Feldamplitude auf das 1
e4 -fache abgefallen ist.

10w0,i entspricht dem Radius, an dem die Feldamplitude auf das 1
e

-fache abgefallen ist.
11Dazu gehört die hier untersuchte Vakuum-Doppelbrechung, weitere Effekte dieser Art sind beispielsweise Quanten-

reflektion oder Photonenverschmelzung.
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der Lösung der nichtlinearen Feldgleichungen der Form

∂µF
µν = jν , (31)

die sich aus aus (30) berechnen lassen. aν(x) lässt sich dann wie folgt schreiben:

aν(x) = Re
∫ d3k

(2π)3
eikµxµ

ik0 jν(k)
∣∣∣∣
k0=|⃗k|

(32)

mit
jν(k) =

∫
d4x e−ikµxµ jν(x). (33)

Entsprechend ergibt sich das elektrische Signalfeld aus

e⃗(x) = −∇⃗a0(x) − ∂ta⃗(x) = Re
∫ d3k

(2π)3 e
−ikµxµ (⃗j(k) − k⃗j0(k))

∣∣∣∣
k0=|⃗k|

. (34)

Darüber hinaus gilt für die Energie des Signalpulses mit |e⃗(k)| = |⃗b(k)| = |⃗j(k)|

W = 1
2

∫ d3k

(2π)3 |e⃗(k)|2
∣∣∣∣
k0=|⃗k|

=
∑

p=1,2

∫ d3k

(2π)3
1
2 |⃗ϵp · j⃗(k)|2

∣∣∣∣∣
k0=|⃗k|

, (35)

wobei sich das elektrische Signalfeld in Richtung zweier normierter, zueinander orthogonaler Polarisa-
tionsvektoren ϵ⃗p aufspannen lässt. Diese Aufspaltung ermöglicht später, den polarisationsgeflippten
Teil des Signals zu isolieren. Damit folgt die differentielle Signalphotonenzahldichte

d3Np = d3Wp

k0 = d3k

(2π)3
1

2k0 |⃗ϵp(k) · j⃗(k)|2
∣∣∣∣
k0=|⃗k|

. (36)

Die in die Formel eingehende Amplitude lässt sich alternativ auch schreiben als

ϵ⃗p(k) · j⃗(k)
∣∣∣
k0=|⃗k|

= ik0
∫

d4x e−ikµxµ [⃗ϵp(k) · P⃗ − ϵ⃗p+1(k) · M⃗ ]
∣∣∣∣
k0=|⃗k|

, (37)

wobei
P⃗ = −E⃗ ∂Lint

∂F
− B⃗

∂Lint

∂G
(38)

die Polarisation und
M⃗ = −B⃗ ∂Lint

∂F
+ E⃗

∂Lint

∂G
(39)

die Magnetisierung sind, die durch die Signalphotonen hervorgerufen werden. Diese Formeln und
Herleitungen sind lediglich eine kurze Skizze. Eine ausführliche Einführung findet sich in [17].
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4 Allgemeine Berechnung der differentiellen
Signalphotonenzahldichte und des Signalfelds

In diesem Abschnitt sollen allgemeine analytische Ausdrücke für die differentielle Signalphotonen-
zahldichte d3Np der polarisationsgeflippten Signalphotonen und für das Signalphotonenfeld e⃗(x)
aus den in Abschnitt 3.2 eingeführten Feldverteilungen von Probe- und Pumplaser hergeleitet
werden. Dabei werden schrittweise zunächst die Lorentz-Invarianten F und G und anschließend
d3Np und e⃗(x) selbst berechnet. Für beide Formeln ist es notwendig, dasselbe Fourierintegral der
Feldverteilungen der Laser zu lösen, was am Ende dieses Kapitels passiert.

4.1 Berechnung der Lorentz-Invarianten

Die erste Lorentz-Invariante F lässt sich nach Gleichung (2) wie folgt berechnen:

F = −1
2 (E⃗2 − B⃗2) = −1

2 ((E⃗1 + E⃗2)2 − (B⃗1 + B⃗2)2)

= −1
2 (E⃗1

2
+ 2E⃗1 · E⃗2 + E⃗2

2
− B⃗1

2
− 2B⃗1 · B⃗2 − B⃗2

2
)

E⃗i
2=B⃗i

2

= −E⃗1 · E⃗2 + B⃗1 · B⃗2.

(40)

Es müssen also die Skalarprodukte E⃗i- und B⃗i-Felder berechnet werden. Mit der Parametrisierung
der Feldrichtungen nach Gleichungen (26) und (28) folgt

E⃗1 · E⃗2 = E1E2(cos Θ sinϕ1 sinϕ2 + cosϕ1 cosϕ2) (41)

B⃗1 · B⃗2 = E1E2(cos Θ cosϕ1 cosϕ2 + sinϕ1 sinϕ2) (42)

und somit
F = E1E2(1 − cos Θ)(sinϕ1 sinϕ2 − cosϕ1 cosϕ2)

= −E1E2(1 − cos Θ) cos(ϕ1 + ϕ2).

(43)

Die zweite Lorentz-Invariante G lässt sich nach Gleichung (3) wie folgt berechnen:

G = −E⃗ · B⃗ = −(E⃗1 + E⃗2) · (B⃗1 + B⃗2)
E⃗i·B⃗i=0= −E⃗1 · B⃗2 − B⃗1 · E⃗2.

(44)

Die Berechnung der Skalarprodukte ergibt

E⃗1 · B⃗2 = E1E2(cos Θ sinϕ1 cosϕ2 − cosϕ1 sinϕ2) (45)

B⃗1 · E⃗2 = E1E2(cos Θ cosϕ1 sinϕ2 − sinϕ1 cosϕ2). (46)

Damit folgt schließlich

G = −E1E2
[
(cos Θ(sinϕ1 cosϕ2 + cosϕ1 sinϕ2) − (sinϕ1 cosϕ2 + cosϕ1 sinϕ2)

]
= E1E2(1 − cos Θ) sin(ϕ1 + ϕ2).

(47)
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Es zeigt sich, dass F und G nur von der Summe der Polarisationswinkel abhängen. Da für die
Definition der Polarisationswinkel ϕi im Bezug auf das Vorzeichen Wahlfreiheit gilt, ließe sich
diese Abhängigkeit für eine Transformation ϕi → ϕ′

i = −ϕi auch alternativ in eine Winkeldifferenz
umschreiben.

4.2 Die differentielle Signalphotonenzahldichte für Vakuum-Doppelbrechung

Um die differentielle Signalphotonenzahldichte nach Gleichung (36) zu berechnen, müssen zunächst
die Ausdrücke für die Polarisation und Magnetisierung des Vakuums gefunden werden, die sich
aus dem nichtlinearen Anteil der Lagrangedichte des Laserfelds ergeben. Mit der Formel für den
nichtlinearen Anteil der Lagrangedichte aus Gleichung (19) und den Lorentz-Invarianten aus den
Gleichungen (43) und (47) gilt für die Polarisation des Vakuums

P⃗ = −E⃗ ∂Lint

∂F
− B⃗

∂Lint

∂G
= − 2α2

45m4
e

(
8FE⃗ + 14GB⃗

)
α= e2

4π= e4(1 − cos Θ)
180π2m4

e

E1E2
[
4 cos(ϕ1 + ϕ2)(E⃗1 + E⃗2) − 7 sin(ϕ1 + ϕ2)(B⃗1 + B⃗2)

]
≃ e4(1 − cos Θ)

180π2m4
e

E1E
2
2

[
4 cos(ϕ1 + ϕ2)

(
sin Θ sin ϕ2

− cos Θ sin ϕ2
cos ϕ2

)
− 7 sin(ϕ1 + ϕ2)

(
sin Θ cos ϕ2

− cos Θ cos ϕ2
sin ϕ2

)]
(48)

und für die Magnetisierung des Vakuums

M⃗ = −B⃗ ∂Lint

∂F
+ E⃗

∂Lint

∂G
= − 2α2

45m4
e

(
8FB⃗ − 14GE⃗

)
α= e2

4π= e4(1 − cos Θ)
180π2m4

e

E1E2
[
4 cos(ϕ1 + ϕ2)(B⃗1 + B⃗2) + 7 sin(ϕ1 + ϕ2)(E⃗1 + E⃗2)

]
≃ e4(1 − cos Θ)

180π2m4
e

E1E
2
2

[
4 cos(ϕ1 + ϕ2)

(
sin Θ cos ϕ2

− cos Θ cos ϕ2
− sin ϕ2

)
+ 7 sin(ϕ1 + ϕ2)

(
sin Θ sin ϕ2

− cos Θ sin ϕ2
cos ϕ2

)]
.

(49)

Dabei wurden alle Terme der Ordnung E2
1 und höher vernachlässigt, da E1 ≪ E2 und daher nur

die quasielastische Streuung von Photonen des ersten Lasers am zweiten Laser relevant für die
Betrachtung ist. Weiterhin gilt nach Gleichung (37)

ϵ⃗p(k) · j⃗(k)
∣∣∣
k0=|⃗k|

= ik0
∫

d4x e−ikµxµ [ϵ⃗p(k) · P⃗ − ⃗ϵp+1(k) · M⃗ ]
∣∣∣∣
k0=|⃗k|

. (50)

Für ϵ⃗p, p = 1, 2, 3, 4, gilt hier12

ϵ⃗1 · k⃗ = ϵ⃗2 · k⃗ = ϵ⃗1 · ϵ⃗2 = 0 und ϵ⃗1 = −ϵ⃗3, ϵ⃗2 = −ϵ⃗4. (51)

Der Wellenvektor des Signalphotonenfelds k⃗ lässt sich im inversen Raum allgemein parametrisieren
durch

ˆ⃗
k =

(
cos θk

− sin ϕk sin θk

cos ϕk sin θk

)
. (52)

12Formal mathematisch ist es notwendig den Index hier bis vier laufen zu lassen, um mit Gleichung (37) das richtige
Ergebnis zu erhalten (dabei ist ϵ⃗5 ≡ ϵ⃗1). Um am Ende das gesamte Signal zu berechnen, reicht jedoch die
Summation über die beiden linear unabhängigen Indizes p = 1, 2.
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Anders als in der konventionellen Definition von Kugelkoordinaten werden die Winkel hier so
definiert, dass θk den Neigungswinkel zur x-Achse und ϕk den Rotationswinkel um die x-Achse
beschreibt. Dann lässt sich ϵ⃗p über die Definitionsgleichung (51) analog wie in [20] allgemein
schreiben als

ϵ⃗p =
(

− sin θk cos βk

− sin ϕk cos θk cos βk−cos ϕk sin βk

cos ϕk cos θk cos βk−sin ϕk sin βk

)
, (53)

wobei βk ∈ [0, 2π] als freier Parameter die Ausrichtung von ϵ⃗p festlegt. Für ϵ⃗p → ⃗ϵp+1 ist dann
βk → βk + π

2 . Um den Effekt der Vakuum-Doppelbrechung zu untersuchen, wird βk nun so
gewählt, dass ϵ⃗p · E⃗1 = 0 gilt, das Signal also senkrecht zur Polarisationsrichtung des Probelasers
polarisiert ist. Dadurch wird nur der polarisationsgeflippte Teil der Signalphotonen berücksichtigt,
also nur der Teil, der die Polarisation des Probelasers verschiebt und somit aus dem Effekt der
Vakuum-Doppelbrechung resultiert. Daraus lässt sich als Bedingung

βk =

±π
2 , falls ϕk = ϕ1 + nπ, n ∈ Z

arctan(cos θk cot(ϕk − ϕ1)), sonst
(54)

bestimmen, wobei für die Werte ϕk = ϕ1 + nπ n ∈ Z eine Fallunterscheidung angestellt werden
muss, um die Polstellen in der allgemeinen Bedingungsgleichung zu umgehen. Für diesen Spezialfall
wird diese durch beide Wahlen von βk unabhängig vom Vorzeichen gelöst. Physikalisch macht die
Wahl des Vorzeichens keinen Unterschied, da am Ende nur das Betragsquadrat des Ergebnisses real
gemessen werden kann. Somit ergibt sich für den Polarisationsvektor des Signalphotonenfelds

ϵ⃗p = 1√
1 + cos2 θk cot2(ϕk − ϕ1)

(
− sin θk

− sin ϕk cos θk−cos ϕk cos θk cot(ϕk−ϕ1)
cos ϕk cos θk−sin ϕk cos θk cot(ϕk−ϕ1)

)
(55)

und
⃗ϵp+1 = 1√

1 + cos2 θk cot2(ϕk − ϕ1)

( sin θk cos θk cot(ϕk−ϕ1)
sin ϕk cos2 θk cot(ϕk−ϕ1)−cos ϕk

− cos ϕk cos2 θk cot(ϕk−ϕ1)−sin ϕk

)
, (56)

sowie für die Spezialfälle ϕk = ϕ1 + nπ, n ∈ Z

ϵ⃗p =
( 0

∓ cos ϕk

∓ sin ϕk

)
und ⃗ϵp+1 =

(
± sin θk

± sin ϕk cos θk

∓ cos ϕk cos θk

)
. (57)
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Mit den Gleichungen (48) und (49) lässt sich dann schreiben

[
ϵ⃗p · P⃗ − ⃗ϵp+1 · M⃗

]
= e4(1 − cos Θ)

180π2m4
e

E1E
2
2

·
[

4 cos(ϕ1 + ϕ2)√
1 + cos2 θk cot2(ϕk − ϕ1)

[(cosϕ2 − cot(ϕk − ϕ1) cos θk sinϕ2) cosϕk(cos θk − cos Θ)

+ (sinϕ2 + cot(ϕk − ϕ1) cos θk cosϕ2)

· (sinϕk cos θk cos Θ − sin θk sin Θ − sinϕk)]

+ 7 sin(ϕ1 + ϕ2)√
1 + cos2 θk cot2(ϕk − ϕ1)

[(sinϕ2 + cot(ϕk − ϕ1) cos θk cosϕ2) cosϕk(cos θk − cos Θ)

+ (cot(ϕk − ϕ1) cos θk sinϕ2 − cosϕ2)

· (sinϕk cos θk cos Θ − sin θk sin Θ − sinϕk)]
]

= e4(1 − cos Θ)
180π2m4

e

E1E
2
2 [4A cos(ϕ1 + ϕ2) + 7B sin(ϕ1 + ϕ2)] ,

(58)

beziehungsweise

[
ϵ⃗p · P⃗ − ⃗ϵp+1 · M⃗

]
= ±e4(1 − cos Θ)

180π2m4
e

E1E
2
2

·
[
4 cos(ϕ2+ϕk)[− cosϕk sinϕ2(cosθk −cosΘ)+cosϕ2(sinϕk cosθk cosΘ−sinθk sinΘ−sinϕk)]

+ 7 sin(ϕ2+ϕk)[cosϕk cosϕ2(cosθk −cosΘ)+sinϕ2(sinϕk cosθk cosΘ−sinθk sinΘ−sinϕk)]
]

= ±e4(1 − cos Θ)
180π2m4

e

E1E
2
2 [4A′ cos(ϕ1 + ϕ2) + 7B′ sin(ϕ1 + ϕ2)]

(59)

für die Spezialfälle ϕk = ϕ1 + nπ, n ∈ Z. Dabei werden wiederum alle Terme der Ordnung E2
1

vernachlässigt. Da nur die Feldstärken ortsabhängig sind, können alle anderen Terme vor das
Integral gezogen werden und die Formel für die differentielle Signalphotonenzahldichte reduziert
sich auf

d3Np = d3k

(2π)3
k0

2
e8(1−cos Θ)2

1802π4m8
e

· [4A cos(ϕ1+ϕ2) + 7B sin(ϕ1+ϕ2)]2 ·
∣∣∣∣∫ d4xE1E

2
2e

−ikµxµ

∣∣∣∣2 . (60)

Damit bleibt nur die Berechnung des Integrals über die Feldamplituden (siehe Abschnitt 4.4).
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4.3 Das Signalphotonenfeld

Um das Signalphotonenfeld nach Gleichung (34) zu berechnen, muss zunächst der Vierer-Vakuumstrom

jν = 2∂µ ∂Lint

∂Fµν
(61)

ermittelt werden, wie in Gleichung (29) eingeführt. Entsprechend dem bereits in Gleichung (1)
eingeführten Feldstärketensor, wird für die Berechnung die folgende Notation verwendet:

F 0i = −F i0 = Ei, F ij = ϵijkBk,

Ei = −Ei =̂ E⃗, Bi = −Bi =̂ B⃗.
(62)

Damit lassen sich dann die Lorentz-Invarianten darstellen als

F = 1
2(EiE

i −BiB
i), G = EiB

i. (63)

Dann folgt

∂Lint

∂F 0i
= ∂Lint

∂Ei
=

=2C︷ ︸︸ ︷
e4

180π2m4
e

[4FEi + 7GBi], (64)

∂Lint

∂F i0 = −∂Lint

∂Ei
= − e4

180π2m4
e

[4FEi + 7GBi], (65)

∂Lint

∂Fµµ
= 0, (66)

∂Lint

∂F ij
= −∂Lint

∂F ji
= −ϵijk

∂Lint

∂Bk
= e4

180π2m4
e

ϵijk[4FBk − 7GEk], (67)

und somit lässt sich

j0 = −4C∂i[4FEi + 7GBi] = 4C∇[4FE⃗ + 7GB⃗] (68)

sowie

ji = 4C∂iϵijk[4FBk − 7GEk] + 4C∂0[4FEi + 7GBi] (69)

= −4C∇ × [4FB⃗ − 7GE⃗] − 4C∂t[4FE⃗ + 7GB⃗] (70)

herleiten. Um daraus das Signalphotonenfeld zu errechnen, müssen diese Ausdrücke zunächst Fourier-
transformiert werden. Dabei lässt sich ausnutzen, dass die Ableitungen in Form der Wellenvektoren
vor das Fourier-Integral gezogen werden können13. Damit ergibt sich schließlich nach Einsetzen von
Gleichung (43) und (47) unter Vernachlässigung der Terme höherer Ordnung in E1

j0(k) = 4C
∫

d4x e−ikµxµ ∇[4FE⃗ + 7GB⃗]

= −4C(1 − cos Θ) ik⃗ · [4 cos(ϕ1 + ϕ2) ˆ⃗
E2 − 7 sin(ϕ1 + ϕ2) ˆ⃗

B2]
∫

d4x e−ikµxµ E1E
2
2

(71)

13Dabei muss beachtet werden, dass aufgrund der Wahl der Metrik anders als üblich für räumliche Ableitungen ein
Vorzeichenwechsel notwendig ist.
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und
ji(k) =j⃗(k) = 4C

∫
d4x e−ikµxµ ∂t[4FE⃗ + 7GB⃗] + ∇ × [4FB⃗ − 7GE⃗]

=4C(1 − cos Θ) ik0[(4 cos(ϕ1 + ϕ2) ˆ⃗
B2 − 7 sin(ϕ1 + ϕ2) ˆ⃗

E2)

− ˆ⃗
k × (4 cos(ϕ1 + ϕ2) ˆ⃗

E2 + 7 sin(ϕ1 + ϕ2) ˆ⃗
B2)]

∫
d4x e−ikµxµ E1E

2
2 .

(72)

Das zu berechnende Integral ist also dasselbe wie das in Abschnitt 4.2 für die differentielle
Signalphotonenzahldichte. Das gesamte Signalphotonenfeld im Fourier-Raum lässt sich daher nach
Gleichung (34) zusammenfassen durch

j⃗ − ˆ⃗
kj0 = 4C(1 − cos Θ) ik0 A⃗(k0, θk, ϕk, ϕ1, ϕ2)

∫
d4x e−ikµxµ E1E

2
2 (73)

mit dem winkelabhängigen Richtungsvektor

A⃗(k0, θk, ϕk, ϕ1, ϕ2) = − ˆ⃗
k × (4 cos(ϕ1 + ϕ2) ˆ⃗

B2 + 7 sin(ϕ1 + ϕ2) ˆ⃗
E2)

+ (4 cos(ϕ1 + ϕ2) ˆ⃗
E2 − 7 sin(ϕ1 + ϕ2) ˆ⃗

B2)

+ ˆ⃗
k(ˆ⃗k · (4 cos(ϕ1 + ϕ2) ˆ⃗

E2 − 7 sin(ϕ1 + ϕ2) ˆ⃗
B2).

(74)

4.4 Die Fourier-Transformation der Feldamplituden

Sowohl für die Signalphotonenzahldichte, als auch das Signalphotonenfeld bleibt wie gezeigt die
Berechnung des folgenden Integrals

∫
d4xE1E

2
2 e

−ikµxµ =
∞∫

−∞

dx
∞∫

−∞

dy
∞∫

−∞

dz
∞∫

−∞

dt E1E
2
2 e

ik0t−ik⃗·x⃗

=E1E
2
2

∞∫
−∞

dz exp
[

− 2z2

w2
0,2

− z2

w2
0,1

− ikzz

]

·
∞∫

−∞

dy exp
[

− y2

w2
0,1

− 2y2 cos2 Θ
w2

0,2
− 8y2 sin2 Θ

τ2
2

− ikyy

]

·
∞∫

−∞

dx exp
[

−4x2

τ2
1

− 8x2 cos2 Θ + 16xy sin Θ cos Θ
τ2

2
− 2x2 sin2 Θ

w2
0,2

− ikxx

]

·
∞∫

−∞

dt exp
[
−4t2 − 8xt

τ2
1

− 8t2 − 16t(x cos Θ + y sin Θ)
τ2

2
+ ik0t

]
· cos[ω1(x− t)] cos2[ω2(x cos Θ + y sin Θ)].

(75)

Der quadratische Kosinusterm in der letzten Zeile kann zu 1
2 gemittelt werden, da der Probelaser

quasielastisch an Laser 2 gestreut wird und die Signalphotonen somit näherungsweise die Frequenz
ω1 des ersten Lasers haben. Daher sollte die differentielle Signalphotonenzahldichte kaum von
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der Frequenz des Pumplasers ω2 abhängen. Das Zeitintegral lässt sich daher in folgender Form
schreiben:

1
2

∞∫
−∞

dt exp
[
−at2 + a′t

]
cos [ω1(x− t)] = 1

2

√
π

a
exp

[
a′2 − ω2

1
4a

]
cos
[
ω1(x− a′

2a )
]

(76)

mit
a = 8τ2

1 + 4τ2
2

τ2
1 τ

2
2

(77a)

a′ = a′(x, y, k0) = 8x
τ2

1
+ 16(x cos Θ + y sin Θ)

τ2
2

+ ik0. (77b)

Nach Einsetzen von a′ und Isolierung aller von x abhängigen Terme lässt sich das entsprechende
Integral wie folgt schreiben:

∞∫
−∞

dx exp
[
−bx2 − b′x

]
cos [−ω1ux+ ω1b

′′] =
√

π

b
exp

[
b′2 − ω2

1u
2

4b

]
cos
[
ω1b

′′ + ω1ub
′

2b

]
(78)

mit

b = a− 8 sin2 Θ
τ2

2
+ 2 sin2 Θ

w2
0,2

− 16
a

(
1
τ2

1
+ 2 cos Θ

τ2
2

)2
(79a)

b′ = b′(y, k0, kx) = py − iqk0 + ikx (79b)

p = sin Θ cos Θ
(

16
τ2

2
− 128
aτ4

2

)
− 64 sin Θ

aτ2
1 τ

2
2

(79c)

q = 1
a

(
8 cos Θ
τ2

2
+ 4 sin Θ

τ2
1

)
(79d)

b′′ = b′′(y, k0) = 8 sin Θ
aτ2

2
ω1y + i

1
2aω1k

0 (79e)

u = 8(1 − cos Θ)
aτ2

2
. (79f)

Wiederum nach Einsetzen von b′ und b′′ und Isolierung aller von y abhängigen Terme kann das
entsprechende Integral folgendermaßen berechnet werden:

∞∫
−∞

dy exp
[
−cy2 − ic′y

]
cos [ω1vy + iω1c

′′] =
√

π

c
exp

[
−c′2 + ω2

1v
2

4c

]
cos
[
iω1

(
c′′ − c′v

2c

)]
(80)

mit
c = 1

w2
0,1

+ 2 cos2 Θ
w2

0,2
+ 8 sin2 Θ

τ2
2

− 64 sin2 Θ
aτ4

2
− p2

4b (81a)

c′ = c′(k0, kx, ky) = ky − p

2bkx +
(
pq

2a − 8 sin Θ
aτ2

2

)
k0 (81b)
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c′′ = c′′(k0, kx) =
(

1
2a − uq

2b

)
k0 + u

2bkx (81c)

v = 8 sin Θ
aτ2

2
+ up

2b . (81d)

Final muss also nur noch das Integral über z ausgerechnet werden, in dem jedoch keine Mischterme
mit den anderen Integrationsvariablen auftauchen:

∞∫
−∞

dz exp
[

−

(
1
w2

0,1
+ 2
w2

0,2

)
z2 − ikzz

]
=

√
πw2

0,1w
2
0,2

2w2
0,1 + w2

0,2
exp

[
−

w2
0,1w

2
0,2k

2
z

4(2w2
0,1 + w2

0,2)

]
. (82)

Nach Zusammenfassen all dieser Ergebnisse ergibt sich für das gesamte Fourierintegral

∫
d4xE1E

2
2 e

−ikµxµ =π2E1E
2
2

4
√
abc

√
w2

0,1w
2
0,2

2w2
0,1 + w2

0,2
exp

[
−

w2
0,1w

2
0,2

8w2
0,1 + 4w2

0,2
k2

z

]

·
∑

s=±1
exp
[

− 1
4a (k0 − sω1)2 − 1

4b (kx − qk0 + usω1)2

− 1
4c

(
p

2bkx − ky −
(
pq

2b − 8 sin Θ
aτ2

2

)
k0 − vsω1

)2
]

(83)

mit den Parametern

a = 8τ2
1 + 4τ2

2
τ2

1 τ
2
2

, b = 8(1 − cos Θ)2

2τ2
1 + τ2

2
+ 2 sin2 Θ

w2
0,2

(84a)

c = 1
w2

0,1
+ 2 cos2 Θ

w2
0,2

+ 8 sin4 Θ
4w2

0,2(1 − cos Θ)2 + (2τ2
1 + τ2

2 ) sin2 Θ
(84b)

p = −16 sin Θ(1 − cos Θ)
2τ2

1 + τ2
2

, q = 2τ2
1 cos Θ + τ2

2 sin Θ
2τ2

1 + τ2
2

(84c)

u = 2τ2
1 (1 − cos Θ)
2τ2

1 + τ2
2

, v = 2τ2
1 sin Θ

2τ2
1 + τ2

2

(
1 −

8w2
0,2(1 − cos Θ)2

4(1 − cos Θ)2w2
0,2 + sin2 Θ(2τ2

1 + τ2
2 )

)
, (84d)

womit sich schließlich die Formel für die differentielle Zahl polarisationsgeflippter Signalphotonen
und das allgemeine Signalphotonenfeld nach Gleichungen (60) und (73) explizit angeben lassen. An
der obigen Gleichung ist schnell ersichtlich, dass man nur in der x-y-Ebene um k0 ≃ ω1 ein Signal
erwarten kann, da die Amplitude in z-Richtung und für andere Frequenzen sehr schnell exponentiell
abfällt. Die Auswertung kann demnach für ϕk = ±π

2 erfolgen14. Das ist legitim, da das Ergebnis
aus Gleichung (82) näherungsweise die Form einer Delta-Distribution δ(kz) annimmt [21].

14Beide Wahlmöglichkeiten werden dabei berücksichtigt, indem der Definitionsbereich von θk alternativ auf [0, 2π]
ausgedehnt wird.
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5 Das nichtlineare Signal für orthogonale Laserlaufrichtungen und
beispielhafte Parameter

Im vorherigen Abschnitt wurden bereits explizite Formeln für die Signalphotonenzahldichte und das
Signalphotonenfeld zwischen einem Probe- und einem Pumplaserpuls für beliebige Polarisations-
und Kollisionswinkel hergeleitet. Besonders interessant ist jedoch ein möglichst starkes Signal für
einen realistischen experimentellen Aufbau zu betrachten, mit dem auch real die Wechselwirkungen
zwischen dem elektromagnetischen Feld und dem Vakuum nachgewiesen werden können. Daher ist
das Ziel optimierte Polarisationswinkel ϕ1 und ϕ2 der beiden Laser für orthogonale Laserlaufrichtun-
gen (Θ = π

2 ) zu finden. Wie bereits erläutert, wird primär das Signal in der x-y-Ebene betrachtet
(also ϕk = π

2 ) und zunächst für eine maximale Amplitude in x-Richtung optimiert, da die Vermutung
nahe liegt, dass der Großteil des Signals in Richtungen mit kleinem θk emittiert wird. Ziel ist es, die
Abhängigkeit der Signalstärke vom Winkel zur Laufrichtung des Probelasers, also von θk, und von
der Taillenbreite des Probelasers w0,1 zu analysieren und zu zeigen, ab welchem Winkel die Stärke
des Signalfelds die des Probepulsfelds übertrifft und die Signatur somit nachgewiesen werden kann.
Darüber hinaus soll durch Überlagerung des Signalfelds mit dem Probelaserfeld eine elliptische
Polarisation des Probelaserpulses nach der Kollision und damit der Effekt der Doppelbrechung
rechnerisch nachgewiesen werden und deren relativer Anteil am gesamten nichtlinearen Signal
exemplarisch verdeutlicht werden.

Die in der Auswertung verwendeten Parameter des Pumplasers entsprechen denen des Hochinten-
sitätslasers ReLaX [22] am European XFEL (X-Ray Free-Electron Laser) in Hamburg, die Parameter
des Probelasers entsprechen denen des Lasers XFEL selbst [23]. Diese lauten in natürlichen Einheiten:

Probelaser Pumplaser
Pulsdauer τ1 = 334,4 eV−1 τ2 = 63,84 eV−1

Strahlradius w0,1 = r · 1,014 eV−1, r ∈ [0.2, 25] w0,2 = 8,619 eV−1

Strahlfrequenz ω1 = 12 914 eV ω2 = 1,550 eV
Pulsenergie W1 = 1,2914 · 1016 eV W2 = 6,24 · 1019 eV
Feldamplitude E1 = 1

r · 8,7357 · 106 eV2, r ∈ [0.2, 25] E2 = 163,5 · 106 eV2

Tab. 1: Die verwendete experimentelle Parameter in natürlichen Einheiten.

Die Feldamplitude für eine gegebene Pulsenergie kann hergeleitet werden, indem das Quadrat
der Einhüllenden der Laserfeldstärke aus Gleichung (24) zu einem beliebigen Zeitpunkt (z.B. t = 0)
über den gesamten Raum integriert wird und anschließend nach der Amplitude aufgelöst wird.
Dann ergibt sich15

Ei = 27/4√
Wi

π3/4√
τiw0,i

. (85)

Der Parameter r beschreibt indes die Variation der Strahlbreite des Probelaserpulses w0,1, die hier
untersucht werden soll. Da bei einer Variation der Strahlbreite die Pulsenergie dennoch konstant
bleiben soll, nimmt die Amplitude somit für abnehmende Strahlbreiten zu.

15In der vollständigen Formel taucht noch ein Faktor (1 − e−τ2
1 ω2

1 )−1 auf, der jedoch näherungsweise eins beträgt.
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5.1 Optimierung der Laser-Polarisationswinkel

Um die optimale Wahl der Polarisationswinkel ϕ1 und ϕ2 zu finden, muss also das Maximum der
Funktion aus Gleichung (58) für ϕk = π

2 und Θ = π
2 gefunden werden. Mit diesen Annahmen

vereinfacht sich der Ausdruck zu

[
4A cos(ϕ1 + ϕ2) + 7B sin(ϕ1 + ϕ2)

]2 = (1 + sin θk)2

cos2 ϕ1 + cos2 θk sin2 ϕk

·
[
4 cos(ϕ1 + ϕ2)(cosϕ1 sinϕ2 + cos θk sinϕ1 cosϕ2)

+ 7 sin(ϕ1 + ϕ2)(sinϕ1 sinϕ2 cos θk − cosϕ1 cosϕ2)
]2
.

(86)

Darin sind bereits alle notwendigen Fallunterscheidungen enthalten und die einzige scheinbare
Polstelle bei θk = ±π

2 und ϕ1 = ±π
2 kürzt sich heraus, wenn nur für θk eingesetzt wird. Der

Vorfaktor lässt sich dann als dreidimensionale Dichtefunktion der Winkel ϕ1, ϕ2 und θk darstellen.

Abb. 3: Der Betrag des Vorfaktors in Abhängigkeit von den Polarisationswinkeln der Laser und des
Emissionswinkels θk des Signals.

Das Diagramm zeigt deutlich, dass wenn man nur den Vorfaktor betrachtet, die stärkste Signatur
nicht in Richtung des Probepulses emittiert wird, sondern für eine entsprechende Wahl der Polarisa-
tionswinkel bei θk ≃ π

2 . Da an dieser Stelle jedoch noch nicht die Abhängigkeit vom Exponentialterm
aus Gleichung (83) einkalkuliert wurde und mit diesem für den Fall q ≪ 1 die Signatur in y-Richtung
exponentiell unterdrückt wird, ist es dennoch sinnvoll vor allem die Amplitude in Laufrichtung des
Probelaserpulses (θk = 0) zu betrachten16. Damit vereinfacht sich der Ausdruck aus Gleichung (86)

16Dass das plausibel ist, zeigt sich auch in Abbildung 6
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zu

[
4A cos(ϕ1 + ϕ2) + 7B sin(ϕ1 + ϕ2)

]2
=
[
4 cos(ϕ1+ϕ2)(cosϕ1 sinϕ2+sinϕ1 cosϕ2)+7 sin(ϕ1+ϕ2)(sinϕ1 sinϕ2−cosϕ1 cosϕ2)

]2
= 9 sin2(ϕ1 + ϕ2) cos2(ϕ1 + ϕ2) = 9

4 sin(2ϕ1 + 2ϕ2).

(87)

Abb. 4: Der Betrag des Vorfaktors in Abhängigkeit der Polarisationswinkel der Laser.

Damit bleiben relativ viele Möglichkeiten zur optimalen Wahl der Polarisationswinkel, wie Ab-
bildung 4 zeigt, da auch an keiner anderen Stelle Abhängigkeiten von den Polarisationswinkeln
auftreten. Die Bestimmungsgleichung für die Extremwerte lautet ϕ1 + ϕ2 = π

2 (n+ 1
2 ), n ∈ Z und

wird beispielsweise für ϕ1 = π
4 , ϕ2 = 0 erfüllt. Der Maximalwert beträgt also 9

4 . Tatsächlich zeigt
sich, dass diese Wahl der Polarisationswinkel unabhängig von der Wahl des Kollisionswinkel für
kleine θk das ideale Ergebnis für die hier berechneten Werte liefert [6].

5.2 Auswertung der doppeltgebrochenen Signalphotonenzahl

Um die Stärke des Effekts der Vakuum-Doppelbrechung auszuwerten, muss die Zahl der polarisati-
onsgeflippten Signalphotonen pro Probepuls ausgerechnet und mit der Zahl der Photonen im Puls
ins Verhältnis gesetzt werden. Für den Spezialfall orthogonaler Laserlaufrichtungen reduzieren sich
die Konstanten aus Gleichung (84) auf

a = 8τ2
1 + 4τ2

2
τ2

1 τ
2
2

= 1,999 · 10−3 eV2, b =
8w2

0,2 + 4τ2
1 + 2τ2

2

w2
0,2(2τ2

1 + τ2
2 ) = 26,96 · 10−3 eV2, (88a)

c =
8w2

0,1 + 4w2
0,2 + 2τ2

1 + τ2
2

w2
0,1(4w2

0,2 + 2τ2
1 + τ2

2 ) = 3,508 · 10−5 eV2 + 1
r2 0,9726 eV2, (88b)
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p = − 16
2τ2

1 + τ2
2

= −7,026 · 10−5 eV2, q = τ2
2

2τ2
1 + τ2

2
= 17,90 · 10−3, (88c)

u = 2τ2
1

2τ2
1 + τ2

2
= 0, 9821, v = 2τ2

1
2τ2

1 + τ2
2

(
1 −

4w2
0,2

4w2
0,2 + 2τ2

1 + τ2
2

)
= 0, 9808. (88d)

Ebenso reduziert sich der winkelabhängige Vorfaktor aus Gleichung (58) mit orthogonaler Laser-
laufrichtung und Festlegung der Polarisationswinkel der Laserpulse auf ϕ1 = 0 und ϕ2 = π

4 auf

[4A cos(ϕ1 + ϕ2) + 7B sin(ϕ1 + ϕ2)]2 = 1
sin2 ϕk + cos2 ϕk cos2 θk

·
[

3
2(cos2 ϕk cos2 θk + sin2 ϕk + sinϕk sin θk) − 11

2 (cosϕk sin θk cos θk)
]2
.

(89)

Für θk = 0 und ϕk = ±π
2 ergibt sich damit wie erwartet ein Vorfaktor von 9

4 .

Um die absolute Signalphotonenzahl auswerten zu können, muss die gesamte Gleichung (60) über
den k⃗-Raum integriert werden. Das Integral über die Winkel θk und ϕk ist nicht analytisch lösbar.
Im Gegensatz dazu ist die Integration über k0 zwar analytisch möglich, die Stammfunktion jedoch
nur numerisch auswertbar, da sie Terme der Gauß’schen Fehlerfunktion erf (x) enthält. Deshalb wird
die gesamte Integration von vornherein numerisch mittels Mathematica ausgeführt. Die Formel für
die differentielle Signalphotonenzahldichte lässt sich mit den hier getroffenen Annahmen insgesamt
schreiben als

d3Np = d3k

(2π)3 · k
0

2 · E2
1E

4
2e

8

7202m8
eabc

·
w2

0,1w
2
0,2

2w2
0,1 + w2

0,2
· exp

[
−

w2
0,1w

2
0,2

4w2
0,1 + 2w2

0,2
(k0)2 cos2 ϕk sin2 θk

]

· 1
sin2ϕk +cos2ϕk cos2θk

[
3
2(cos2ϕk cos2θk +sin2ϕk +sinϕk sinθk)− 11

2 (cosϕk sinθk cosθk)
]2

· exp
[

− 1
2a (k0 − sω1)2 − 1

2b (k0 cos θk − qk0 − usω1)2

− 1
2c

(
p

2bk
0 cos θk + k0 sinϕk sin θk −

(
pq

2b − 8
aτ2

2

)
k0 − vsω1

)2
]
.

(90)

Dabei wird der Summand für s = −1 aus Formel (83) vernachlässigt, da dieser für k0 ≫ 0 überall
faktisch null beträgt. Zusätzlich zu den in Tabelle 1 eingeführten Parametern wird zur numerischen
Auswertung der Betrag von der elektromagnetischen Kopplungskonstante e2 = 4πα = 4π

137 und der
Elektronenmasse me = 511,0 103eV benötigt.

Vor der Integration ist es zunächst einmal interessant zu untersuchen, an welchen Stellen die
differentielle Signalphotonenzahldichte Werte annimmt, die sich wesentlich von null unterscheiden,
wo also die erwarteten schmalen Peaks liegen. Das ist auch notwendig, um die Stützstellen bei der
numerischen Integration passend zu wählen. Dass das nur um ϕk = ±π

2 der Fall ist, wurde bereits
am Ende von Abschnitt 4.4 gezeigt. Die Abhängigkeit von k0 lässt sich für ϕk = ±π

2 und θk = 0
wie in Abbildung 5 darstellen und es zeigt sich wie erwartet ein deutlicher Peak um k0 = ω1, dessen
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Halbwertsbreite außerhalb der hier berücksichtigten signifikanten Stellen liegt 17. Der Parameter r
wurde hier exemplarisch gleich eins gewählt.

Abb. 5: Amplitude der differentiellen Signalphotonenzahldichte für ϕk = ±π
2 , θk = 0 und r = 0.3495

& 1.

Analog lässt sich die Abhängigkeit von θk wie in Abbildung 6 darstellen. Der tatsächliche Peak liegt
also nicht genau bei θk = 0, sondern ist um ein kleines Stück verschoben auf θk,max = 1, 797 · 10−4.
Am Nullpunkt ist die Amplitude tatsächlich schon um ein Vielfaches abgefallen. Falls stattdessen
ϕk = −π

2 gewählt wird, wird der Kurvenverlauf um θk = 0 gespiegelt, was bedeutet, dass in
beide Richtungen für ±θk,max = 1, 797 · 10−4 symmetrische Nebenmaxima auftreten. Bei der
Aufintegration werden im Endeffekt beide Wahlmöglichkeiten berücksichtigt.

Abb. 6: Amplitude der differentiellen Signalphotonenzahldichte für k0 = ω1, ϕk = π
2 und r = 0.3495

& 1.

Wenn die Kurven für beide Wahlmöglichkeiten ϕk = ±π
2 aufaddiert werden und graphisch in

Abhängigkeit von θk und r dargestellt werden wie in Abbildung 7, sind zwei symmetrische Peaks
bei θk ≃ 1.797 · 10−4 zu erkennen, die für zunehmende Probestrahlbreiten immer schärfer werden.
Die maximale Amplitude wird dabei bei einem Wert von r = 22.06 erreicht, was einer Strahlbreite
von w0,1 = 4412 nm entspricht, sodass bei diesem ein isoliertes Signal unter Idealbedingungen am
besten gemessen werden könnte.

17Wie im Diagramm zu sehen, ist erst in der sechsten signifikanten Stelle eine Abweichung von null (außer für
k0 = ω1) erkennbar. Hier wird allerdings nur mit vier signifikanten Stellen gerechnet.
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Abb. 7: Amplitude der differentiellen Signalphotonenzahldichte für k0 = ω1 und ϕk = ±π
2 in

Abhängigkeit von θk und r.

Die gesamte Zahl der polarisationsgeflippten Signalphotonen ergibt sich schließlich durch Aufinte-
gration über den gesamten inversen Raum. In Abhängigkeit des Parameters r, also der Strahlbreite
des Probelasers ergibt sich dann eine Zahl von Signalphotonen der Größenordnung, wie in Abbildung
8 für einen breiteren Wertebereich und nochmal detailliert um das Maximum herum dargestellt.
Man sieht einen eindeutigen Peak für rmax = 0, 3495, was einer Strahlbreite von w0,1 ≃ 69,9 nm
entspricht und innerhalb der technischen Möglichkeiten für Röntgenlaser liegt (vgl. [24], [25], [26]).
Für diesen optimalen Parameter beträgt die Signalphotonenzahl pro Puls Np = 1, 216 · 10−3. Für
kleinere Probestrahlbreiten fällt die Signalphotonenzahl sehr schnell sehr steil ab. Für größere
Probestrahlbreiten ist der Abfall deutlich flacher und auch für die maximale hier untersuchte
Strahlbreite ist noch eine merkliche Amplitude erkennbar.

Abb. 8: Zahl der polarisationsgeflippten Signalphotonen pro Probepuls für 10 nm ≤ w0,1 ≤ 5000 nm.
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Die Gültigkeit dieses Ergebnis lässt sich mit der analytischen Näherungsformel für die Zahl
polarisationsgeflippter Photonen aus [6] (hier für Θ = π

2 )

Np = 8α4ω1W1W
2
2
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e

1
(w1w2)2
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mit den Parametern

T1 = τ1

√
1 + 2

(
τ1

τ2

)2
, w1 = w0,1

√
1 + 2

(
w0,1

w0,2

)2
,

T2 = τ2

√
1 + 1

2

(
τ2

τ1

)2
, w2 = w0,2

√
1 + 1

2

(
w0,2

w0,1

)2
(92)

leicht überprüfen, bei der unter anderem für θk eine Kleinwinkelnäherung bis zur zweiten Ordnung
angesetzt wird. Tatsächlich zeigt sich, dass die Ergebnisse für verschiedene Probefokussierungen im
Rahmen der signifikanten Stellen übereinstimmen. So ergibt sich nach beiden Formeln beispielsweise

Np(r = 0.3495) = 1, 216 ·10−3, Np(r = 1) = 1, 201 ·10−3, Np(r = 25) = 2, 816 ·10−4. (93)

Der Plot der Näherungsformel für Np in Abhängigkeit von r zeigt jedoch keinen Abfall für Werte r <
0.3495, wie in 9 erkennbar. Stattdessen nimmt die Signalstärke für abnehmende Probestrahlbreiten
weiter zu und konvergiert für r → 0 gegen Np = 1.218 · 10−3. Die Ursache hierfür ist aber
möglicherweise, dass für sehr kleine Streuregionen breitere Streuwinkel relevant werden und damit
Beiträge in höherer Ordnung von θk nicht mehr vernachlässigt werden können, worauf auch der
Verlauf von Abbildung 7 für kleine r hinweist. Ob sich damit jedoch eine so starke numerische
Abweichung erklären lässt, ist mindestens fragwürdig.

Abb. 9: Darstellung der Signalphotonenzahl mit Hilfe der Näherungsformel (91) in Abhängigkeit
von r.

Anmerkung: Bei numerischer Integration mit einer höheren MinRecursion knickt der Kurven-
verlauf erst ab einem Wert von r = (HIER WERT EINFÜGEN) ab, wie in Diagramm 10 dargestellt.
Daher kann davon ausgegangen werden, dass das Abknicken durch einen Fehler in der numerischen
Berechnung bedingt ist und der Kurvenverlauf der Näherungsformel ansatzweise dem realen Verlauf
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entspricht. Die Sprungstellen im zweiten Diagramm sind ebenfalls auf Fehler in der numerischen
Berechnung zurückzuführen.

Abb. 10: Numerisch berechnete Signalphotonenzahl in Abhängigkeit von r für eine höhere minimale
Rekursion

Damit das Signal tatsächlich detektierbar ist, muss die Zahl der polarisationsgeflippten Si-
gnalphotonen pro Puls normiert über die Zahl der Photonen im Probepuls (hier N = 1012) die
Polarisationsreinheit P übersteigen. Daher ist diese neben der erreichbaren Feldamplitude einer
der limitierenden Faktoren für den experimentellen Nachweis der Nichtlinearitäten elektromagneti-
scher Felder, wobei die technische Grenze von P in der Größenordnung 10−11 liegt. Hier wird mit
P = 1, 4 · 10−11 gerechnet [27]. Tatsächlich muss jedoch nicht das Feld im Gesamten betrachtet
werden, es reicht aus die Photonenzahl des Signals Np und des Probepulses N0 für einen spezifischen
Emissionswinkel θk zu betrachten. Dann gilt ab einem bestimmten Winkel θk,crit

dNp

dcos θk
>

dN0

dcos θk
= PN1(ω1w0,1)2 exp

[
−1

2(ω1w0,1)2 sin2 θk

]
. (94)

In der hier verwendete Formel wird das Fernfeld der Probelasers betrachtet. Daher findet die
Näherung der unendlichen Rayleigh-Länge keine Anwendung und entsprechend werden auch für
von der Laserlaufrichtung abweichende Winkel Probephotonen detektiert (vgl. [17]). N1 = 1012 ist
hierbei die Zahl der Photonen pro Probepuls.
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Abb. 11: Die Amplitude von dNp

dcos θk
in Abhängigkeit von θk und r.

In Abbildung 11 zeigt sich sehr gut, welche Parameter optimiert werden müssen, um ein messbares
Signal zu erhalten. Für starke Fokussierungen r ∼ w0,1 erhält man für einen breiteren Winkelbereich
ein Signal mit signifikanter Amplitude. Dieser Bereich engt sich mit zunehmendem r jedoch immer
stärker um einen scharfen Peak bei θk,max = 1, 799 · 10−4 ein, interessanterweise nimmt jedoch
bis rmax = 9, 000 die Amplitude bei θk,max zu. Deshalb ist es faktisch am sinnvollsten bei diesen
Parametern zu messen. Die Amplitude beträgt an dieser Stelle dNp

dcos θk
= 164, 0 · 103. Tatsächlich

ist der Winkel mit der maximalen Amplitude für bestimmte r nicht konstant, sondern weicht
beispielsweise für kleine r leicht nach unten ab. Das erklärt auch, warum der optimale Winkel aus
Abbildung 6 vom hier berechneten Wert abweicht.

Zu klären bleibt jedoch, ob an der Stelle auch die Bedingung aus Gleichung (94) erfüllt ist. In
Abbildung 12 zeigt sich jedoch schnell, dass sich die beiden Kurven aus Gleichung (94) schon
für r = 2.1 in etwa bei θk,max schneiden. Für etwas größere r ist dann θk,crit < θk,max und die
Amplitude bei θk,crit wird schnell vernachlässigbar klein, sodass es für eine scharf winkelaufgelöste
Messung zwei Nebenpeaks bei θk = ±θk,max geben sollte. Wenn für viele aufeinanderfolgene
Laserpulskollisionen die winkelaufgelöste Photonenverteilung gemessen wird, könnten sich diese
Nebenpeaks auch in einer realen Messung zeigen.
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Abb. 12: Vergleich des Abfalls der Probepulsstärke und des Signals für r = 2.1 und r = 9.

Die Abhängigkeit des kritischen Winkels von der Probefokussierung ergibt sich wie ansatzweise
in Abbildung 13 dargestellt. Die numerische Berechnung einer stetigen Kurve ist sehr umfangreich
und nähme deshalb viel Zeit in Anspruch. Tatsächlich sieht man auch schon für wenige Punkte
einen charakteristischen Verlauf und es zeigt sich, dass sich der kritische Winkel ab einem gewissen
Wert für r nur noch unwesentlich ändert, etwa ab dem Punkt, ab dem θk,crit < θk,max gilt und
beide Kurven aus Abbildung 12 exponentiell in entgegengesetzte Richtungen abfallen.

Abb. 13: Die Abhängigkeit von θk,crit von der Probefokussierung, für einzelne Werte dargestellt.
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5.3 Auswertung des Signalfelds

Um den Anteil der doppelt gebrochenen Photonen am Gesamtsignal zu analysieren, ist es neben der
Signalphotonenzahl auch interessant das gesamte Signalfeld zu betrachten. Mit den oben festgelegten
Parametern reduzieren sich die Richtungen von ˆ⃗

E2 und ˆ⃗
B2 auf

ˆ⃗
E2 = 1√

2

(
1
0
1

)
,

ˆ⃗
B2 = 1√

2

( 1
0

−1

)
, (95)

und der Richtungsvektor des Fourier-transformierten Signalfelds aus Gleichung (74) auf

A⃗(θk, ϕk) =
(

11 cos ϕk sin θk cos θk−3(1−sin ϕk sin θk+cos2 θk)
3 cos θk(1+sin ϕk sin θk)−11 cos ϕk sin θk(1+sin ϕk sin θk)
11(1−sin ϕk sin θk+cos2 ϕk sin2 θk)−3 cos ϕk sin θk cos θk

)
für ˆ⃗

k= ˆ⃗ex=
(−6

3
11

)
. (96)

Es lässt sich bereits erkennen, dass das elektrische Feld für das Signal in x-Richtung in einem Winkel
von etwa α = 56, 71◦ zur Richtung des elektrischen Felds des Probepulses steht. Somit ist für diesen
Fall der Anteil der polarisationsgeflippten Signalphotonen am Gesamtsignal sinα = 83, 59%, woran
man erkennen kann, dass die Vakuum-Doppelbrechung ein sehr wesentliches Charakteristikum der
Interaktion elektromagnetischer Felder mit dem Quantenvakuum ist. Der Probelaser ist also nach
der Kollision insgesamt leicht elliptisch polarisiert.

Das gesamte Signalfeld in x-Richtung ergibt sich dementsprechend aus
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(97)

Dabei wurde wiederum der Term für s = −1 aus Gleichung (83) vernachlässigt. Das Integral lässt
sich dann mit in Tabelle 1 definierten Parametern mittels Mathematica numerisch auswerten. Da
das Signalfeld wiederum raum- und zeitabhängig ist (bzw. im Spezialfall des Signals in x-Richtung
abhängig von der Differenz t− x), lässt sich dessen Amplitude in Richtung des normierten Vektors
ˆ⃗
A für rmax und kleine Differenzen t− x ≃ 2π

ω1
wie in Abbildung 14 darstellen.
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Abb. 14: Amplitude des gesamten elektrischen Felds des Signals in x-Richtung für die ideale
Fokussierung r = 0, 3495.

Man sieht eine eindeutige periodische sinusförmige Schwingung, deren erstes Maximum bei
(t− x)max = 1, 216 · 10−4eV−1 liegt. Die daraus berechnete Signalfrequenz

ωSignal = π

2(t− x)max
= 12 914 eV (98)

liegt wie erwartet genau beim Wert der Probepulsfrequenz ω1. Da das Signal stark oszilliert, ist es zur
Analyse des Signals interessant dessen Einhüllende zu betrachten. Dafür wurde die Amplitude des
Signalfelds numerisch an aufeinanderfolgenden Maxima ausgewertet, wie in Abbildung 15 dargestellt.
Es wurde insgesamt ein Bereich von 200.000 Maxima um den Ursprung betrachtet. Dabei wurde
jedes 625te Maximum berücksichtigt. Es zeigt sich deutlich, dass die Oszillationsfrequenz kaum von
ω1 divergiert, da sonst in dieser Darstellung der Einhüllenden merkliche Oszillationen erkennbar
sein müssten. Stattdessen ist der Kurvenverlauf innerhalb der signifikanten Stellen vollständig
achsensymmetrisch. Die Einhüllende der Signalfeldamplitude E⃗p lässt sich an eine Gauss-Verteilung
der Form

|E⃗p,x(t− x)|
∣∣∣ˆ⃗
k=e⃗x

= Ep,x · exp
[
−4(t− x)2

τ2
p

]
(99)

anpassen, analog zur Form des Probepulses nach Gleichung (26). Dann ergibt sich für die Amplitude
Ep,x = 0,1432 eV2 und für die Pulsdauer τp = 46,31 eV−1 =̂ 30,47 fs, welche bemerkenswerterweise
kleiner als die Pulsdauer des Probelasers ist.
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Abb. 15: Einhüllende des Signalpulses in x-Richtung für r = 0, 3495.

Tatsächlich zeigt sich jedoch, dass die Pulsdauer des Signals abhängig von der Probefokussierung
w0,1 ist. Wie in Abbildung 16 dargestellt, nimmt die Pulsdauer mit breiterer Fokussierung ab. Für
r = 1 beträgt die Pulsdauer beispielsweise τp = 45,92 eV−1. Wie bereits in Abbildung 11 zu sehen,
verringert sich die Amplitude des Signals in x-Richtung im gleichen Bereich jedoch um ein deutlich
größeres Maß, da für größere r der wesentliche Teil des Signals in Richtung θk,max emittiert wird.
Für r > 3, 6 war es deshalb nicht mehr möglich, ein numerisches Ergebnis zu berechnen.

Abb. 16: Die Pulsdauer des Signalfelds τp in Abhängigkeit von der Probefokussierung ∼ r.
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6 Fazit und Ausblick
Im Wesentlichen lassen sich die Ergebnisse dieser Arbeit auf zwei relevante Punkte herunterbrechen.
Zum einen wurde in Kapitel 4 explizite analytische Formeln für das elektrische Feld der Signalpho-
tonen und für die differentielle Zahl der polarisationsgeflippten Signalphotonen berechnet, welche
die Größe des Effekts der Vakuum-Doppelbrechung charakterisiert (Gleichungen (60) und (73) in
Kombination mit Gleichung (83). Diese Formeln sind unabhängig vom Kollisionswinkel, von der
Polarisation der Laserpulse und von den Laserparametern. Außerdem unterliegen sie nur wenigen
Näherungen, sodass damit Versuchsaufbauten mit einem Probepulslaser und einem Pumppulslaser
allgemein relativ gut beschrieben werden können18. Daher sind diese Formeln gut zur tiefergehenden
Analyse für verschiedene experimentelle Szenarien geeignet.

Zum anderen wurden in Kapitel 5 die hergeleiteten Formeln für reale Parameter und einen
spezifischen Kollisionswinkel ausgewertet und eine ideale Wahl der Polarisationswinkel bestimmt.
Hier zeigt sich, dass der Effekt der Vakuum-Doppelbrechung auch für sehr große Laserfeldstärken
nur sehr gering ist, das Signal jedoch für die passende Wahl der Probefokussierung so scharf
auf einen bestimmten Emissionswinkel fokussiert ist, dass es dort theoretisch möglich sein sollte,
die Vakuum-Doppelbrechung experimentell nachzuweisen. Durch die Auswertung des Signalfelds
lassen sich einige weitere mögliche interessante Beobachtungen vorhersagen, wie die Pulsdauer des
Gesamtsignals oder den Anteil der Vakuum-Doppelbrechung am gesamten nichtlinearen Signal, der,
wie exemplarisch berechnet, sehr wesentliche Ausmaße annimmt.

Was im Rahmen dieser Arbeit jedoch nicht untersucht werden konnte, ist, wie sich die Änderung
des Kollisionswinkels auf die Beobachtbarkeit des Signals auswirkt und ob sich für andere Kol-
lisionswinkel eine mögliche bessere Messbarkeit der Vakuum-Doppelbrechung ergibt. Erwartbar
wäre nach den Gleichungen aus Kapitel 4, dass die Zahl polarisationsgeflippter Signalphotonen
bis zu einem Kollisionswinkel von 180◦ weiter zunimmt. Aller Vorraussicht nach treten dann für
entsprechende Probefokussierungen scharfe Peaks des Signals bei bestimmten Winkeln in der
Kollisionsebene auf. Hier wäre es besonders interessant θk,max und die dazugehörige Amplitude
für verschiedene Kollisionswinkel zu bestimmen, um allgemein auf die idealen experimentellen
Bedingungen zum Nachweis der Vakuum-Doppelbrechung schließen zu können19. Darüber hinaus
wurden hier nicht die diversen Hindernisse in der experimentellen Umsetzung berücksichtigt, die
den Nachweis deutlich erschweren20. Rein exemplarisch sei hier nur die Schwierigkeit genannt,
beide Laserpulse exakt im selben Raumzeitpunkt aufeinandertreffen zu lassen. Darüber hinaus
müssen externe Störeffekte beispielsweise durch unreines Vakuum möglichst unterbunden werden.
Prinzipiell könnte es aber in naher Zukunft gelingen, die Vakuum-Doppelbrechung und damit die
Nichtlinearität elektromagnetischer Felder im Labor nachzuweisen.

18auch wenn der Unterschied zur analytischen Näherungsformel für die differentielle Zahl der polarisationsgeflippten
Signalphotonen aus [6] nicht sehr wesentlich sein sollte, siehe Abschnitt 5.2

19Wenn sich beispielsweise experimentelle Parameter finden ließen, für die θk,max in einem Bereich liegt, in dem der
Winkelvorfaktor aus Abschnitt 5.1 maximal wird, ließe sich die Signalamplitude nochmal um zwei Größenordnungen
verstärken. Allerdings ist auch der Winkelvorfaktor in einigen Termen abhängig vom Kollisionswinkel und dürfte
daher gewissen Schwankungen unterliegen.

20Eine Untersuchung findet sich beispielsweise in [6].
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