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———— Zusammenfassung ————

Ziel. In dieser Arbeit nehmen wir eine dem Titel nach generische selbst-wechselwirkende, lokal
U(1)-invariante und materiefreie Theorie im Rahmen der durch die funktionale Renormierungs-
gruppe bereitgestellten Methoden in den Blick. Für dieses Modell werden wir unser Interesse
anschließend auf die Suche nach global existierenden Fixpunktwirkungen ausrichten.

Methoden. Die zugrundeliegende effektive Lagrangedichte L wird aus der Quantenelektro-
dynamik heraus motiviert und zunächst im d = 4 − ϵ dimensionalen euklidischen Raum als
beliebige Funktion in den manifest lokal U(1)-invarianten Kontraktionen des (dualen) Feld-
stärketensors, F = 1

4FµνF
µν und G = 1

4Fµν (⋆F )µν , für einen betragsmäßig kleinen Param-
eter ϵ formuliert. Mit Hilfe nicht-perturbativer Techniken der exakten Renormierungsgruppe
werden homogene Feldkonfigurationen mit als konstant angenommenen Invarianten F und
G betrachtet und zunächst die, auf das skalenabhängige effektive Potential Wk projizierte,
Flussgleichung detailliert abgeleitet. Für die daraus resultierende Fixpunktgleichung erfolgt
unter Ausschluss der Invariante G und Beschränkung auf den Fall der Selbstdualität, F = ⋆F,
eine gemäß den Methoden der Klein- und Großfeldentwicklung geleitete analytische Sichtung
nach global existierenden Fixpunktpotentialen in d = 4 raumzeitlichen Dimensionen.

Resultate. Die gefundenen Ergebnisse offenbaren unter den hier getroffenen Kernannahmen,
im Einzelnen; vernachlässigter Materiesektor, trunkierter Feldraum und selbstduale Feldkonfig-
urationen, sich stabilisierende Lösungen für Kleinfeldapproximationen der Fixpunktgleichung
mit Konvergenzradien der Größenordnung r ∼ 10−3. Demgegenüber versagen Großfelden-
twicklungen infolge divergierender Koeffizienten und ein Anschluss an den Bereich kleiner Fel-
damplituden erweist sich als ausgeschlossen. Wir schließen mit der Erkenntnis, dass global
existierende Fixpunktwirkungen für das in dieser Arbeit demonstrierte, eingeschränkte U(1)-
Eichmodell nicht konstruierbar sind.

—————— Abstract ——————

Aim. In this thesis, we consider a generic self-interacting, locally U(1)-invariant and matter-
free theory within the methodological framework provided by the functional renormalisation
group. For this model, we will subsequently focus our interest on the search for globally-existing
fixed point actions.

Methods. The underlying effective Lagrangian L is motivated from quantum electrodynam-
ics and is formulated in d = 4 − ϵ dimensional Euclidean space as an arbitrary function in the
manifest locally U(1)-invariant contractions of the (dual) field strength tensor, F = 1

4FµνF
µν

and G = 1
4Fµν (⋆F )µν , for a small parameter ϵ. Using non-perturbative techniques of the exact

renormalisation group, homogeneous field configurations with constant invariants F and G are
considered and the projected flow equation with respect to the scale-dependent effective poten-
tial Wk is derived in detail. For the resulting fixed point equation, an analytical investigation,
guided by the methods of small- and large-field expansion, is carried out under exclusion of the
invariant G and restriction to the case of self-duality, F = ⋆F, in d = 4 spacetime dimensions

Results. Under the influence of our core assumptions, including a neglected matter sector, a
truncated field space and self-dual field configurations, the results of this work reveal stabilising
solutions for small-field approximations of the fixed point equation with corresponding radii of
convergence of order r ∼ 10−3. In contrast, large-field evaluations fail due to diverging expan-
sion coefficients and thus contact to the region of small-field amplitudes proves to be precluded.
We will conclude that globally-existing fixed point actions are not constructible, at least for
the restricted U(1) gauge model demonstrated in this thesis.
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—————— List of Abbreviations ——————

QFT Quantum Field Theory
QED Quantum Electrodynamics
QCD Quantum Chromodynamics
YM Yang-Mills
RG Renormalisation Group
FRG Functional Renormalisation Group
EAA Effective Average Action
ERGE Exact Renormalisation Group Equation
FPE Fixed Point Equation
GFP Gaussian Fixed Point
NGFP Non-Gaussian Fixed Point
IR Infrared
UV Ultraviolet
SFE Small-Field Expansion
LFE Large-Field Expansion
LHS Left-Hand Side
RHS Right-Hand Side
ODE Ordinary Differential Equation
PDE Partial Differential Equation
1PI One-Particle Irreducible
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————— Notation & Conventions —————

Units

nu We agree on a natural unit system in which both the reduced
Planck constant and the speed of light are set to value 1, i.e.
ℏ = 1 ∧ c = 1.

Symbols

≜ For two expressions E1 and E2 which are equal by definition we
write E1 ≜ E2.

⊜ An object O furnished with a collection of structure elements
may be represented by another object Õ ≡ F (O) that exhibits
the same properties as the original object. Here, F describes a
specific representation and in this situation we write O ⊜ F (O).

N The set of natural numbers without zero, i.e. {1, 2, 3, . . .}. Addi-
tionally we have N0 = N ∪ {0}.

1A The indicator function with regard to a set A. If A is a subset
of a set X, then by definition:

1A : X → {0, 1}; x 7→

1 if x ∈ A

0 otherwise
.

ℜ[ · ],ℑ[ · ] Real and imaginary part of a complex number. Consider z ∈ C,
then in canonical formulation we write z ⊜ ℜ[z] + ıℑ[z], where
ℜ[z],ℑ[z] ∈ R respectively designate the real and imaginary part
of z, and ı denotes the imaginary unit which satisfies ı2 = −1.

ıR The set of imaginary numbers, that is the vertical axis of the
complex plane, i.e. ıR ≡ {z ∈ C | ℜ[z] = 0}.

Z2 The cyclic group of order 2 which is isomorphic to the group(
{1,−1}, ·

)
, that is the two-element set {1,−1} ⊂ Z furnished

with the ordinary multiplication · as the group operation.
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⋆ Let ∧(V ) be the exterior algebra of a d-dimensional vector
space V . The Hodge star operator, ⋆, transforms a p-form,
α ∈ ∧p(V ), into a (d− p)-form ⋆α ∈ ∧d−p(V ) which is called
the Hodge dual to α.

⊗ Given two elements u,w ∈ V of a d-dimensional vector space
V , the dyadic product of u and w, denoted as u⊗ w, forms a
d×d-matrix with components (u⊗ w)ij = uiwj for all (i, j) ∈
{1, . . . , d}2.

Kronecker and Dirac delta

δ The Greek letter δ is used for both the discrete Kronecker delta
and its continuum continuation; the Dirac delta distribution.
We distinguish them by their index structure: the Kronecker
delta always appears with two indices, δab = 1 for a = b and
δab = 0 otherwise, whereas the Dirac delta distribution in d
dimensions is indicated as δ(d)(x, y) for a pair of points (x, y)
that belong to some (pseudo-)Riemannian manifold M. The
defining property of δ(d)(x, y) is for any suitable test function
f on M given by:

�

M

f(x)δ(d)(x, x0)dV(x) = f(x0),

where dV is the natural volume form on M.

Transformations

Legendre Let f be a convex function, then its Legendre transform is
denoted by f ∗.

Fourier The Fourier transform Ff of a function f , which is initially
defined on some coordinate space taking values f(x), is a func-
tion in momentum space with values f(p) ≡ (Ff) (p). The
distinction between the coordinate and momentum space rep-
resentation of f will mostly be made by its argument. Factors
of 2π appear exclusively in the momentum integral. Transi-
tions between d-dimensional coordinate and momentum space
are carried out due to the following relations:

f(x) =
�
f(p)eıp·x ddp

(2π)d

∣∣∣∣∣ f(p) =
�
f(x)e−ıp·xddx.

ix



Further Arrangements

Einstein
notation

Summation over pairs of identical raised and lowered indices
that appear within a single term is automatically understood.

Conjugation Let z ∈ C be a complex number, then we identify z̄ as the
complex conjugate of z. That is, if z ⊜ ℜ [z] + ıℑ [z], then
z̄ ⊜ ℜ [z] − ıℑ [z]. For any complex valued object z, the
Hermitian conjugate of z is denoted by z† ≡ z̄T , i.e. a complex
conjugation in combination with transposition.

Derivatives Let O be an object, for instance a function, which depends on
a single argument a ∈ D, i.e. O ⊜ {O(a) | a ∈ D}, where D
denotes the domain of O. The derivative of any object with
respect to its argument is marked by a prime: O′ ≡ dO

da
. The

number of primes indicates the number of derivatives which
are taken of O. Alternatively, the number of derivatives can
also appear as a parenthesised superscript, so that the n-th
derivative of O is denoted as O(n).

Tensors
& Forms

Bold letters are used for all objects that exhibit a non-trivial
index structure. This includes in particular tensors of all
kinds and differential forms. However, the components of
these objects are denoted by light italic letters equipped with
the appropriate number of indices. Exceptions to this agree-
ment are the Kronecker delta, and - for reasons of convenience
- all sorts of one-index objects. For instance, a vector, as an
object with one index, could appear as u with components ui.
Likewise, a tensor of degree 2 could be designated by T with
components Tij.

ε The usual rules for the totally antisymmetric Levi-Civita ten-
sor ε apply. In d dimensions we agree on the following ”initial
condition”: ε12···d = 1.

Signature For the Minkowski metric tensor η, acting on d-
dimensional Minkowski space, we assume a signature σ(η) ≡
(r+(η), r−(η)) = (d − 1, 1). The Euclidean metric tensor is
denoted by δ and has signature σ(δ) = (d, 0).

Fixed
Points

If the renormalisation flow of a given theory contains a fixed
point, then flow quantities ck evaluated at the fixed point are
marked by an asterisk subscript, i.e. ck → c∗ as the scale
parameter k approaches its fixed point value.
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“The effort to understand the universe is one
of the very few things which lifts human life

a little above the level of farce and gives
it some of the grace of tragedy.”

∼ Steven Weinberg

[image source]
Loeb McClain, D. (July 25, 2021).
“Steven Weinberg, Groundbreaking Nobelist in Physics, Dies at 88”,
The New York Times.
[quote source]
Weinberg, S. (1976).
“The First Three Minutes”,
(1st edition), p. 149. Fontana Paperbacks.
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Preface

From a historical perspective on physics, the past century was predominantly characterised
through the paradigmatic shift that was induced by the formation of two novel scientific disci-
plines in the field of physics whose horizons of application are designed rather contrary to each
other, but yet enjoy pronounced acknowledgement and major acceptance within the modern
scientific physics community.

In the years from 1905 to 1915, the essential foundations of the theory of relativity were
decisively developed and published by Albert Einstein, which until today represent the most
resistant attempt for a classical description of mechanical phenomena and the gravitational
interaction [ 1 ]-[ 3 ]. On the other side, the substantial principles of quantum mechanics were
worked out just a few years later in the period from 1925 to 1932 by historical personalities such
as M. Born, P. Dirac, W. Heisenberg, W. Pauli and E. Schrödinger among others [ 4 ]-[ 6 ]. Since
then, both branches have developed rather independently from each other, not least because of
their significant conceptual differences and quite separated scopes.

To be more specific, general relativity, whose core is supported by the Einstein field equa-
tions, provides a deterministic description of the mutual interplay between the way matter
behaves under curvature variations of spacetime, and conversely, how curvature responds to
matter dynamics. In contrast, the physical reality of the microcosm experiences a quantum
theoretical portrayal, which is driven by indeterminacy of physical observables and granularity
at fundamental scales.

In the mid 20th century, a prominent cornerstone of quantum physics beyond ordinary quan-
tum mechanics has been established with the successful construction of a quantum theory of the
electromagnetic field, which is nowadays known as quantum electrodynamics and is still one of
the most efficacious theories to date [ 7 ]-[ 9 ]. In the meantime, further of so-called quantum field
theories have been shaped with the esperance to expand the triumph of quantum electrody-
namics to the other known fundamental forces of nature, followed by quantum chromodynamics
that covers the strong interaction [ 10 ]-[ 12 ], as well as the unification of the electromagnetic
and weak force in the Glashow-Salam-Weinberg model of the electroweak interaction [ 13 ] &
[ 14 ]. Eventually, the ambitious efforts have culminated in one of the most accurate theoretical
framework known today as the standard model of particle physics, which essentially summarises
the evolution of quantum theory in the realm of particle physics in one key word.

However, despite the striking achievement of the standard model, the strenuous times in
modern theoretical physics are not over yet, so that much of current endeavour happens in
rather recent fields of research which are often phrased as “physics beyond the standard model”.
Among them are the attempts to add also the strong interaction to the amalgamation of the
electromagnetic and weak interaction in order to arrive at so-called grand unified theories, which
are represented by combined symmetry groups of their constituents, such as SU(5) or SO(10)
[ 15 ].
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Aside from the well-known interactions exposed above, of whom we already have successful
quantum descriptions at hand, the gravitational interaction still awaits its quantum depiction.
The reason for this circumstance is that, conceptually, gravity does not match with stan-
dard quantum field theoretical methods, such as perturbative renormalisation [ 16 ]. In fact,
a multitude of research groups worldwide are still facing the question of how to reconcile the
probabilistic nature of quantum theory with the deterministic classical reality encoded in the
principles of general relativity.

Ideas for theories of quantum gravity are numerous and diverse, some of them even leave the
approved tracks of quantum field theory, the probably most popular of them being string theory
[ 17 ] and loop quantum gravity [ 18 ]. As one of the concepts closest to quantum field theory
stands the non-perturbative treatment of gravity using a scenario known as asymptotic safety,
which originated from a seminal 1979 paper published by Steven Weinberg [ 19 ]. He conjec-
tured the existence of a non-trivial fixed point in the exact renormalisation flow of gravity. This
statement is presently known as the “asymptotic safety hypothesis”, which is still considered
as being unproven. However, a non-negligible collection of indications provide evidence for its
validity [ 20 ]-[ 26 ].

In fact, it has already been shown that a non-trivial fixed point of the gravitational renormal-
isation flow exists within the naturally given Einstein-Hilbert truncation in d = 3+1 dimensions
[ 24 ]. Furthermore, promising analyses which assume truncations of increased complexity, in-
volving additional powers of the Ricci scalar R within so-called f(R) gravity have already taken
place and contributed further instances in favor of the asymptotic safety hypothesis [ 26 ].

As it was already mentioned, a general proof for the asymptotic safety hypothesis remains
elusive. Progress in this direction is primarily dampened by hard technical demands and pe-
culiarities inherent to gravity. The latter involves a careful implementation of diffeomorphism
invariance - at least in the framework of quantum Einstein gravity - and moreover, a precise
integration of background independence, which is one of the key properties every theory of
quantum gravity is expected to go along with. For this purpose, the background field method
provides a common tool in which the metric g, that initially serves as the dynamical variable,
is decomposed into a fixed background component, ḡ, and a dynamical fluctuating part, h,
leading to g = ḡ + h. Here, h now acts as the actual dynamical variable and the background
ḡ enables the applicability of quantum field theoretical methods. Following this route, back-
ground independence is restored by keeping ḡ arbitrary to some sufficient extent [ 28 ].

With the aspiration of approximating the difficile complex regarding asymptotic safety in
quantum gravity, we follow a basically untained path and substitute the common pattern by
a reduced model which exhibits structures technically similar to gravity, but is simple enough
to make a thorough investigation of its fixed point sector accessible. These structures include
a selected type of gauge invariance as well as the inclusion of tensorially associated degrees of
freedom, propagating on the background of a flat space. Specifically, we consider a generic the-
ory of a massless vector boson with local U(1) symmetry. The degrees of freedom are captured
by the most general set of independent U(1) invariants which are related to the boson’s field
strength tensor and are consistent with the canonical requirement of Lorentz invariance.

We will proceed as follows: In the subsequent chapter, ch. 2, the basic technical under-
standing of the utilised methodology - the functional renormalisation group - will be mediated
among other relevant concepts, including aspects of asymptotic safety and global existence of
fixed point actions. All relevant terms are introduced and explained there. Ch. 3 then be-
gins with the core analysis that consists of two principal parts: the derivation of the central
equations and identities will be carried out in the first part, sec. 3.1, whereas the presentation
and corresponding discussion of their consequences concerning the existence of non-trivial and
globally defined fixed point actions is devoted to the second part, sec. 3.2. All considerations
receive their final comments in ch. 4 where we additionally give an outlook that refers in partic-
ular to possible extensions of the work presented here and is intended to make possible points
of contact for further investigation transparent.
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“Indeed, everything in nature is changing,
but behind the changing rests an eternal.”

∼ Johann Wolfgang von Goethe

[image source]
Adapted from p. 79 of ref. [ 28 ].
[quote source]
“Goethe: Lektüre für Augenblicke”,
(1st edition from 1982),
p. 46, Insel Verlag.
>translated from German by the author<



2

Conceptual and Technical Foundations

In the course of this chapter, we describe the elementary preconditions for the upcoming
analyses, starting in ch. 3. Beginning with sec. 2.1, we develop a basic understanding about
the central method of this work - the functional renormalisation group (FRG) - which combines
features of Wilson’s renormalisation group as well as of functional aspects originating from the
path integral formalism of quantum field theory (QFT). The FRG technique enables us to
probe quantum fluctuations over all energy scales and constitute an opportunity for general
considerations of QFTs at a non-perturbative level. Specifically, fixed point structures can be
explored accurately and rather straightforwardly using this method.

All the relevant information about fixed points and their status within the generic asymp-
totic safety scenario will be outlined in sec. 2.2, including classification schemes and general
computation patterns provided by the FRG.

Conclusively, in sec. 2.3, we discuss an essential property of fixed points that goes under the
name “global existence” and give an illustration of this abstract notion by means of a worked
example afterwards. Simultaneously, we will portray two crucial procedures which help to sys-
tematically construct globally existing fixed point solutions. They are known as small- and
large-field expansion (SFE & LFE).

2.1
The Functional Renormalisation Group

Remark: the content of this section decisively follows refs. [ 27 ]-[ 29 ] and partly [ 31 ]. Moreover,
another common FRG reference is [ 30 ].

A. From the Partition Functional to the Effective Average Action

Apart from more specific field quantisation procedures such as algebraic or loop quantisation,
the common way to construct QFTs from classical templates is commonly either canonical
or path integral quantisation. They are connected through the n-point functions, Gn, which
carry the correlation data of a system containing n quantum fields, thus representing the
key objects of any QFT in which all the relevant physical information is encoded. To avoid
unnecessary technical and structural complications, let us stipulate on a scalar field theory
with a corresponding action S, that depends on a real scalar field, φ, which propagates on
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2.1 The Functional Renormalisation Group

a d-dimensional flat Euclidean background manifold,
(
Rd, δ

)
. Here, δ denotes the Euclidean

metric tensor whose associated matrix representation in Cartesian coordinates is given by the
d-dimensional unit matrix; δ ⊜ 1d×d.

Within canonical quantisation, the classical fields are promoted to field operators, φ → φ̂,
which act upon an appropriate Fock space.

In contrast to this pattern, we could also keep the classical fields as functions, but instead
introduce a functional integral formalism to obtain a quantum description of physical quantities
by integrating over all possible field configurations, which ultimately leads to the path integral
algorithm.

The link between both perspectives becomes visible at the level of the n-point functions,
where we have the following relation which connects field operators and path integrals [ 31 ]:

〈
T
[
φ̂(x1) · · · φ̂(xn)

]〉
vac

≡ Gn

(
{xi}n

i=1

)
≡ 1

N

�
φ(x1) · · ·φ(xn)e−S[φ] [Dφ] . (2.1)

On the left, T is the time-ordering operator and ⟨·⟩vac gives the vacuum expectation value of
its argument. The right-hand side represents a functional integral expression that contains a
normalisation factor N −1 - which is determined by the condition Gn(∅) = 1, i.e. where no
fields are considered at all - as well as a weight factor, e−S, such that the total expression
behaves similar to an expectation value for continuous functions. The integral measure, [Dφ],
is generally not well-defined unless a scale regulator is implemented, e.g. a momentum cutoff.

Now, let us stick to the path integral formalism for what is to come. Beside eq. (2.1), the
n-point functions can also be obtained from a generating functional, Z, which is known as the
partition functional, or simply partition function, of QFT. It is defined as:

Z [J ] ≡ eW[J ] ··=
�

exp
(

−S [φ] +
�
φ(x)J(x)ddx

)
[Dφ] . (2.2)

The argument of Z describes an arbitrary smooth source function that manifests itself in the
source action “

�
φJ”. With this construction, Gn is regained by taking n functional derivatives

with respect to the source J :

Gn

(
{xi}n

i=1

)
= 1

N

(
δnZ [J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0

)
. (2.3)

In the middle of eq. (2.2) we have incidentally introduced the generating functional for the con-
nected n-point functions, W , which is sometimes also referred to as the Schwinger functional.
Speaking in terms of perturbative methods, W includes only connected Feynman diagrams
when calculating the n-point functions explicitly in terms of a perturbation series. These re-
duced n-point functions are generated in accordance to eq. (2.3) after Z was replaced by W .

It is a common fact that Feynman diagrams can be dismantled down to one-particle ir-
reducible (1PI) diagrams where the core physical data is stored, and in fact, there is also a
generating functional only for this type of diagrams which is known as the effective action Γ.
The construction procedure of Γ follows a Legendre transformation of W , or equivalently of
ln (Z):

Γ [ϕ] ··= ln (Z)∗ [ϕ] ≜ sup
J

(�
ϕ(x)J(x)ddx− ln

(
Z [J ]

))
. (2.4)

Here, the new variable ϕ - that is induced from the Legendre transformation - can be interpreted
as the vacuum expectation value of the field operator φ̂ in the presence of the “supremum
source”, J̃ , which is singled out by the supremum operation in eq. (2.4), that is:

ϕ(x) = ⟨φ̂J̃(x)⟩vac ≡
(

1
Z [J ]

δZ [J ]
δJ(x)

) ∣∣∣∣∣
J=J̃

. (2.5)

6



2.1 The Functional Renormalisation Group

Applying the principle of least action to Γ yields the quantum equations of motion, that is, the
equations of motion for the vacuum expectation value of the field operators that accounts for
all quantum fluctuations. For a proof of this statement and eq. (2.5) see either Lemma D.1 &
Theorem D.3 of app. D, or ref. [ 27 ].

In order to review the above ideas, the generating functionals presented so far are pictorially
compared in fig. 2.1.

Figure 2.1: Generating functionals in terms of Feynman diagrams. The partition functional
Z includes the whole spectrum of possible diagrams. A piecewise exclusion of specific diagram
classes, namely disconnected and then also one-particle reducible diagrams, leads respectively to
the Schwinger functional W and the effective action Γ.

There are various options to calculate the effective action, however, a rather prolific approach
uses elements of Wilson’s renormalisation group (RG) in a fairly modern kind. For this, we
introduce a smooth interpolating action, Γk, that mediates between the microscopic bare action,
S - which appears for instance in eq. (2.2) - and the effective action Γ. The continuous parameter
k ∈ R+

0 describes a momentum scale, such that Γk can be construed as an average action that
accounts for all quantum fluctuations in the ultraviolet (UV) region beyond k; that includes
momenta p ∈ [k,∞), whereas fluctuations of the corresponding infrared (IR) sector are entirely
suppressed. This concept, which can be interpreted as a combination of the RG together with
functional aspects, is labelled as the functional renormalisation group (FRG). Although
this description suggests a sharp momentum cutoff, the formulas provided by the FRG basically
allow for a wide range of more general cutoff profiles, see eq. (2.10) below. The interpolating
action Γk is specified such that we obtain the following limits [ 27 ]:

lim
k→∞

Γk ≡ Γ∞ ≃ S & lim
k→0

Γk ≡ Γ0 = Γ. (2.6)

Because of its proximity to the effective action as well as its averaging character, Γk is often
called effective average action (EAA).

An explicit expression for Γk can be found by tracing back eq. (2.4) and consequently define
a modified partition functional, Zk, such that:

Γk [ϕ] = ln (Zk)∗ [ϕ] + Fk [ϕ] , (2.7)

where we have used the freedom to add any functional, Fk, to the Legendre transformation of
ln (Zk), as long as it vanishes for k → 0 to recover the IR limit, that is the effective action, given
in (2.4). We will see that there is actually a preferred choice for Fk, once we have introduced
the regulator concept below. First of all, we obtain the path integral representation of Zk

essentially from eq. (2.2), in which the bare action is extended by an IR regulator term, such
that Zk gets equipped with a built-in IR suppression [ 27 ]:

Zk [J ] =
�

exp
(

−S [φ] − ∆Sk [φ] +
�
φ(x)J(x)ddx

)
[Dφ] . (2.8)

For any given k ∈ R+
0 , the extra weight factor, e−∆Sk , where ∆Sk is called the cutoff action,

precisely realises the inhibition of low momentum modes, i.e. of those momenta p with a

7



2.1 The Functional Renormalisation Group

smaller squared norm than k; p2 < k2. This is done through a mass-like damping behaviour
of ∆Sk as p2 drops below the scale k2. In contrast, the high momentum modes, i.e. modes
in momentum space with p2 > k2, are straightforwardly integrated out, unaffected of any
additional suppression.

The typical shape of a cutoff action is best presented for fields φ defined in momentum space
by means of the Fourier transformation. In this situation we have [ 27 ]:

∆Sk [φ] = 1
2

�
φ(−p)Rk(p)φ(p) ddp

(2π)d
, (2.9)

and even for more complicated field space structures, such as vector-like degrees of freedom,
the cutoff action appears often in the form (2.9), containing a characteristic quadratic field
dependence and its essential component, the regulator function Rk. For completeness, the
coordinate space representation of the regulator Rk is derived in Lemma D.2 of app. D, however,
eq. (2.9) is sufficient for what follows.

The concrete appearance of the regulator function Rk is almost unrestricted up to some
necessary but mild properties [ 27 ]:

lim
p2
k2 →0

Rk(p) > 0 & lim
p2
k2 →∞

Rk(p) = 0. (2.10)

In the simplest but common situation, we have Rk(p) ∼ k2 for p2 ≪ k2, i.e. in the IR regime.
To get a better grasp on the regulator function, an archetypal example is visualised in fig. 2.2.

Figure 2.2: A sketch of a generic regulator function Rk (black curve) and its “RG time”
derivative, ∂tRk ≜ k∂kRk (red curve), see eq. (2.12) below. The significance of the latter
will become clear in paragraph B of this section. As it is obvious, the profile of Rk satisfies
the conditions given in (2.10) and as a consequence, the term k∂kRk develops a pronounced
peak around the boundary between the UV and IR regions. It is this property that implements
Wilson’s concept of a momentum shell with respect to a fixed momentum scale k.

Let us finally turn back to eq. (2.7). With ∆Sk from eq. (2.9), together with the properties
(2.10), we just found an excellent candidate for Fk and can conclude with the full expression
for the EAA [ 27 ]:

Γk [ϕ] = sup
J

(�
ϕ(x)J(x)ddx− ln

(
Zk [J ]

))
− ∆Sk [ϕ] . (2.11)
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2.1 The Functional Renormalisation Group

B. Renormalisation Flow and Theory Space

There exists a “dynamical” equation that offers the effective average action as its solution
once a set of initial data has been fixed. A detailed derivation of this so-called flow equation
can be found in various references, e.g. [ 27 ]-[ 29 ], but also in Theorem D.5 of app. D. However,
here we are instead satisfied with a brief sketch, which is sufficient for our purposes.

One starts by introducing a UV cutoff scale, Λ < ∞, to render all functional integrals
well-defined, and additionally establishes an alternative parameter that replaces the scale k:

t ··= ln
(
k

k0

)
⇒ ∂

∂t
= k

∂

∂k
, (2.12)

where k0 ∈ R+
0 is an arbitrary reference scale setting the transition between negative and

positive values for t. Since the new parameter acquires its values from the whole real axis
R, it behaves similar to a time coordinate and is therefore called renormalisation group time.
Next, one would take the time derivative of Γk using eq. (2.11), for the right-hand side being
evaluated at the now scale dependent “supremum source” J = J̃k. The result is essentially
of the form: ∂tΓk [ϕ] = −∂t ln

(
Zk[J̃k(ϕ)]

)
− ∂t∆Sk [ϕ]. The t-derivative of the first term

can be obtained from eq. (2.8), where one parallely introduces a symbol for the scale and
source dependent connected propagator, Gk(x, y) ··= δ2 ln(Zk[J ])

δJ(x)δJ(y) . This quantity satisfies the rather
important operator relation: (

Γ(2)
k + Rk

)
Gk = 1, (2.13)

where we have introduced a common shorthand:

Γ(n)
k [ϕ] ≡ δnΓk [ϕ]

δϕ(x1) · · · δϕ(xn) . (2.14)

From the results above, one can conclusively deduce the flow equation. Here, we will directly
present its general form which is valid even beyond the scalar field approach. The flow equation
reads [ 28 ]:

∂tΓk [Φ] = 1
2STr

[(
Γ(2)

k [Φ] + Rk

)−1
∂tRk

]
. (2.15)

In this expression, Φ represents a collection of fields, possibly also of different kinds. The
supertrace operation, STr, performs summations over all incorporated index structures, e.g.
including an integration over coordinate or momentum space and summation over Lorentz in-
dices, spinor indices and so forth, considering a minus sign for fermionic degrees of freedom.

Eq. (2.15) is alternatively well known as the Wetterich equation, named after Christof
Wetterich who derived it in 1993 [ 32 ]. Seminal publications in this regard are in addition [ 33 ]
& [ 34 ]. Moreover, it is an exact renormalisation group equation (ERGE), i.e. that the
implicit dependence on the UV cutoff Λ can be removed by taking the limit Λ → ∞. Further-
more, the formal limit of the solution Γk as k → 0 yields the exact effective action Γ. This is
properly justified from the Wilsonian structure invoked through the term ∂tRk (cf. fig. 2.2).

In preparation for ch. 3, we will now work out a step by step recipe of how to apply the
FRG method in order to inspect natural phenomena and their corresponding field theoretical
quantum description using the Wetterich equation.

(1). As a first step, we need to decide on a set of concrete physical degrees of freedom and sym-
metry conditions. In simple cases, these decisions are actually anticipated by already existing
classical field theories.

If we turn for a moment back to the scalar field theory, one could for instance ask for a rela-
tivistic Z2 symmetric model. Then we would address this requirement with an action functional
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2.1 The Functional Renormalisation Group

that includes all independent Lorentz covariant products of the field and its derivatives which
are invariant under parity transformations in field space. Then, an appropriate set of “basis el-
ements” could contain: {1, ϕ2n, (∂µϕ)2m , ϕ2n (∂µϕ)2m , . . .} ≡ Bϕ, with n,m ∈ Z. Consequently,
the desired action can be constructed by means of the linear span of Bϕ with in general yet
unknown coefficients.

Let us now universalise this perspective and consider a collection B, which is assumed to
be a maximally extended set of “basis functionals”, i.e. actions containing operator products
that are consistent with a given choice of symmetry constraints just as desribed in the scalar
field example above1. A typical element b ∈ B could look like: b [Φ] =

�
(∂µΦa(x))2 ddx. This

suggests to define the space of all actions which are elements of the span of B and refer to it as
theory space, T ··= span (B). Indeed, also the searched for EAA, Γk, counts as an element of
T for all k ∈ R+

0 , hence it can be expanded using the basis B:

Γk [Φ] =
∑
α∈I

uα(k)bα [Φ] , (2.16)

for bα ∈ B and I being an appropriate index set. For the components uα we motivate the term
generalised couplings.

In order to concisely summarise the above discussion, step (1) basically consists of the task
to specify a theory space that respects our structural boundary conditions.

(2). We need one more ingredient for the Wetterich equation (2.15), that is the regulator
function Rk. In principle, all momentum and scale dependent functions which fulfil the demands
(2.10) do the job. Since part of the ERGE is based on Rk, different choices accordingly lead to
different solutions. In fact, one can show that under a slight variation Rk → Rk + ϵR̃k, where
ϵ is viewed as a small parameter and R̃k is any suitable regulator, the EAA is correspondingly
deformed; Γk → Γk + ϵΓ̃k with [ 28 ]:

Γ̃k [Φ] = 1
2STr

[(
Γ(2)

k [Φ] + Rk

)−1
R̃k

]
. (2.17)

However, for k → 0, the deformation eventually vanishes and reproduces the effective action
without any modification. Therefore, the technical details of mode suppression are rather
insubstantial in a full RG flow analysis as long as no truncations of theory space were made
beforehand [ 28 ]. However, fixed points, that are yet to be discussed in the next section, do
depend on the choice of Rk. In this sense, explorations of fixed point sectors go along with an
optimisation process due to different options regarding the particularities of regularisation.

In ch. 3, we will adhere to the conventional choice for Rk, that is the linear cutoff, or
sometimes also called the optimised cutoff [ 35 ]:

Rop
k (p) =

(
k2 − p2

)
1[0,k2)(p2) ≡ p2Rop

(
p2

k2

)
. (2.18)

In the last step we have introduced the regulator shape function, Rop, by explicitly factorising
the p-dependence such that the argument of Rop is dimensionless per construction2.

(3). Once Γk and Rk are fixed, the RHS of eq. (2.15) is now computable. We need the second
functional derivative of the EAA, Γ(2)

k , the time derivative of the regulator function, ∂tRk,
and the regularised full propagator,

(
Γ(2)

k + Rk

)−1
≡ Gk. The latter usually marks the most

intricated stage.

1In typical situations it is |B| = ∞. The case |B| < ∞ is a rare exception and mostly adheres to truncations
of the space of all possible action functionals, the so-called theory space T (see the next sentence).

2Note that [Rk] = 2, cf. app. B.
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2.2 The Idea of Asymptotic Safety

In ch. 3, we will use an expansion of the propagator in terms of projectors which act upon
configuration space, determine the algebraic structure of them and make a general ansatz for the
regularised full propagator with a set of unknown coefficients that need to be determined. The
identity 1 =

(
Γ(2)

k + Rk

) (
Γ(2)

k + Rk

)−1
offers a system of coupled algebraic equations whose

solution space yield the sought-for coefficients. Finally, we have to take care of the supertrace,
i.e. we need to identify the various index species.

(4). An expansion of the RHS of eq. (2.15) in terms of elements taken from B - like it is done
in eq. (2.16) - and a subsequent comparison with the LHS gives an infinite tower of coupled
differential equations for the generalised couplings. Because of the notable complexity that
this system generally reveals, one practically starts by investigating reduced systems to find
approximate solutions. This translates to so-called truncations of theory space, in which we aim
for a proper evaporation of B into a finite residue B̃ ⊂ B with |B̃| < ∞. In this way, the infinite
tower of differential equations melts down to a more or less well treatable system which can
then be adressed by either analytical or numerical methods, or even a combination of those.
However, sometimes also infinite dimensional truncations of theory space are considered.

Before we conclude this section, it should be made transparent that we tacitly assumed the
existence of a vector space structure for theory space multiple times, though this is actually
not justified. To this date, there is no convincing proposal for any generic algebraic structure
upon T . However, since theory space pertinently suggests at least aspects of a vector space by
its very construction, we will adopt this conjecture like for instance in ref. [ 28 ] in what follows.

2.2
The Idea of Asymptotic Safety

Remark: for this section we mostly refer to refs. [ 28 ] & [ 29 ].

A. Beta Functions and Fixed Points

In order to approach the important notion of a fixed point by means of its definition within
the FRG formalism, it is useful to introduce a specific class of functions which depend on the
generalised couplings uα. Since the LHS of the Wetterich equation (2.15) represents an action
functional, and therefore an element of theory space T , so must the RHS. Thus, whatever the
supertrace on the RHS may yield, we can at least formally expand it by means of an appropriate
operator basis B. The Wetterich equation then reads [ 28 ]:∑

α∈I

(
∂tuα(k)

)
bα [Φ] =

∑
α∈I

β̂α

(
u(k); k

)
bα [Φ] . (2.19)

The formal coefficients β̂α, are the famous generalised beta functions, i.e the beta functions for
the generalised couplings uα. Because of the complicated structure of the RHS in eq. (2.15),
the β̂α could in principle depend on all generalised couplings collected in the coupling vector
u(k) ≡ (u1(k), u2(k), . . .)T ∈ T .

As it becomes clear from eq. (2.19), the generalised beta functions carry all the information
about the renormalisation flow, that is, the change of the generalised couplings - and therefore of
the EAA - with respect to variations of the RG time parameter t. It manifests the phenomenon
which is usually dubbed as “running of the coupling constants”, which is already known from
standard QFT [ 31 ].

11



2.2 The Idea of Asymptotic Safety

In concrete FRG applications, it is often beneficial to perform a transition to dimensionless
generalised couplings. For this, let us consider any coupling uα. Its canonical mass dimension
should be [uα] = dα, and we use the mass scale provided by the scale parameter k to define:
ũα ··= k−dαuα. In this way, we have separated the explicit scale dependence of uα from the
fundamental coupling strenght ũα, which is dimensionless and depends explicitly on the RG
time t. From ∂tuα(k) = β̂α

(
u(k); k

)
, following from eq. (2.19) for all α ∈ I, we get:

∂tũα(t) = k−dα β̂α

(
u(k); k

)
− dαũα(t). (2.20)

Finally, we define the beta functions of the dimensionless generalised couplings:

β̃α

(
ũ(t)

)
··= ∂tũα(t). (2.21)

We should emphasise that we did not consider any scaling effects of the canonical mass di-
mensions dα to this end. Nevertheless, they are actively modified and shifted by an amount
that is known as the anomalous dimension as soon as interactions are turned on. Since cou-
pling parameters are generally sensible to the RG flow and change with respect to variations of
the scale parameter k, the anomalous dimension behaves accordingly. In FRG equations, the
anomalous dimension appears explicitly after renormalisation of the field strength, i.e. adding
another factor, the field strength renormalisation Zk, to the definition of ũα. We will keep it
with this rather perfunctory discussion for now and come back to it during our analysis in ch.
3 where we give further details and a formal definition of the anomalous dimension.

Let us now clarify the meaning of fixed points3. Let ũ ∈ T and β̃ ≡
(
β̃1, β̃2, . . .

)T
∈ T be

the beta vector that, like the coupling vector, collects all the beta functions. The vector ũ is
called a fixed point, denoted with ũ ≡ ũ∗, by definition iff [ 28 ]:

β̃
(
ũ∗
)

= 0. (2.22)

This fixed point equation actually reflects an inifinite tower of coupled algebraic equations,
which is inherited from the character of the ERGE.

There is some kind of a domain of influence for any given fixed point ũ∗ ∈ T , which can
formally be characterised as a subset of theory space. To describe it, we need one more concept.
Let c : I ⊆ R → T be a curve in theory space, parametrised with the RG time t. We say
that c is RG future-extendible, if there exists an RG future end-point c∞ ∈ T in some suitable
asymptotic extension of T ⊂ T , such that c(t) → c∞ in the asymptotic RG future, that is for
t → ∞. Indeed, fixed points can serve as reasonable candidates for the RG future end-points
of renormalisation flow trajectories, i.e. solutions of the ERGE. Now, let us consider a fixed
point ũ∗ ∈ T . The set of all points p ∈ T for which there exists an RG future-extendible
(and already RG future-extended) curve c, that passes through p and is pulled into ũ∗ under
the inverse flow, i.e. for increasing t, is referred to as the UV critical hypersurface of the fixed
point, denoted by IUV

(
ũ∗
)
.

In order to gain better insight about the algebraic features of the UV critical hypersurface and
consequently also about the significance of fixed points in view of non-perturbative descriptions
of QFTs, let us focus on the properties of the renormalisation flow in direct proximity to such
a fixed point. For this, we assume the existence of a fixed point, ũ∗, and consider a small
neighbourhood around ũ∗ in which we expand the beta vector:

β̃
(
ũ(t)

)
= β̃

(
ũ∗
)

︸ ︷︷ ︸
≜ 0

+ Jβ̃

(
ũ∗
)(
ũ(t) − ũ∗

)
+ O

(
ũ(t) − ũ∗

)
; for ũ → ũ∗. (2.23)

3For reasons of convenience, we will just write “beta functions” and “couplings”, instead of, respectively,
“beta functions of dimensionless generalised couplings” and “dimensionless generalised couplings” from now on.
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2.2 The Idea of Asymptotic Safety

Here, Jβ̃

(
ũ∗
)

denotes the Jacobian matrix of the beta vector evaluated at the fixed point. It
is commonly called the stability matrix and denoted as B ≡ Jβ̃

(
ũ∗
)
. Moreover, the stability

matrix satisfies an eigenvalue equation of the form BVK = θKVK , where the index K labels
different - possibly complex - eigenvalues θK ∈ C and their corresponding eigenvectors VK . The
former are also known as critical exponents. After a linearisation of the flow, which accounts
to a truncation of eq. (2.23) after first order in the deviation ũ(t) − ũ∗, the remaining system
of equations can straightforwardly be solved, its solution being [ 28 ]:

ũ(t) ≃ ũ∗ +
∑
K

(
CKe−θKt

)
VK . (2.24)

Here, the CK are constants of integration and are to be considered as free parameters of the
theory.

Eigenvectors VK that refer to eigenvalues with negative real part, ℜ[θK ] < 0, are called
irrelevant for obvious reasons: irrelevant parts within the eigenvector expansion of eq. (2.24)
eventually diverge for t → ∞, thus developing an unacceptable behaviour in the UV limit, i.e.
that e−θKt continuously grows for increasing t. As a consequence, the eigenvector expansion in
eq. (2.24) would contain at least a single divergent constituent, such that the curve ũ leaves the-
ory space for t → ∞, i.e. in the asymptotic RG future. Therefore, we choose the corresponding
constants of integration CK to vanish identically. Eigenvalues θK which are purely imaginary,
i.e. ℜ[θK ] = 0, are called marginally irrelevant and describe oscillating contributions to the
curve ũ near the fixed point ũ∗. However, since marginally irrelevant directions VK survive the
limit t → ∞ if their constants of integration CK are nonzero, they ultimately lead to a devia-
tion from ũ∗ provided we keep them in the expansion (2.24). Of course, marginally irrelevant
directions do not result in blowing up the curve ũ out of theory space like this would be the
case for an irrelevant direction, but instead forces ũ orbiting the fixed point ũ∗. Thus, also for
the marginally irrelevant directions we require their corresponding constants of integration to
vanish. The remaining CK , for which ℜ[θK ] > 0 need to be fixed by experiment. Since such a
task is only attainable for a finite set of free parameters we demand

∣∣∣{CK | ℜ[θK ] > 0
}∣∣∣ < ∞

for a viable fixed point to hold.
In consequence, the set of all relevant eigenvectors VK , for which ℜ[θK ] > 0, parametrise the

space of points in T which are attracted under the inverse renormalisation flow, i.e. towards
the ultraviolet, thus inducing the dimension of the UV critical hypersurface:

DUV
(
ũ∗
)

≡ dim
[
IUV

(
ũ∗
)]

=
∣∣∣∣{θK

∣∣∣ ℜ[θK ] > 0
}∣∣∣∣. (2.25)

The request for DUV
(
ũ∗
)
< ∞ is a first example of a so-called selection criterion. It measures

the degree of predictivity of the theory that emanates from the fixed point. In sec. 2.3, we
will familiarise with another such selection criterion, namely the global existence of fixed point
actions. To conclude this paragraph, a visualisation of IUV

(
ũ∗
)

is presented in fig. 2.3.

B. Non-perturbative Renormalisability and Asymptotic Freedom

When exploring fixed point structures of any given theoretical frame, one normally tends to
establish a gross classification scheme according to which fixed points are called either Gaussian
or non-Gaussian. Remembering that a fixed point is actually an action functional living in
theory space, the former type of fixed points corresponds to a free field theory, i.e. that all
couplings which - beside the parts that are quadratic in the fields - induce interacting terms in
the operator expansion vanish at a Gaussian fixed point (GFP). In contrast, a fixed point that
contains an interacting sector is referred as being a non-Gaussian fixed point (NGFP)4.

4These definitions of GFPs and NGFPs can of course be formalised (although this will not be of interest for
us): at a GFP, the stability matrix is diagonal with eigenvalues that coincide with the canonical mass dimensions
of the couplings. This is not true for at least one eigenvalue at an NGFP [ 28 ].
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2.2 The Idea of Asymptotic Safety

Figure 2.3: A portrayal of the UV critical hypersurface IUV defined upon the fixed point ũ∗
and embedded into theory space T . Curves that are completely built on relevant eigendirections
are attracted by ũ∗ (black lines), whereas curves that contain the information of at least one
irrelevant eigendirection miss the fixed point and eventually leave theory space (red line). The
arrows that are attached to the solid lines indicate the direction of the renormalisation flow, i.e.
towards the infrared.

The strong impact of the FRG on QFT becomes visible in particular when we are confronted
with the problem of perturbative non-renormalisability, like it is the case for gravity. Since
perturbative QFT breaks down as soon as the couplings become considerably large as we
resolve nature to shorter and shorter distance scales, we cannot expect to have success with our
standard perturbative approach which ultimately leaves its domain of applicability. Instead,
we would need an alternative formalism that does not rely on any diminutiveness assumptions
about the couplings and therefore enables a treatment beyond the perturbative regime. In
fact, the ERGE given in (2.15) can be considered as a possible instrument for this quest and
serves a starting point for non-perturbative studies. Theories which may not be perturbatively
renormalisable, could possibly be so from a non-perturbative perspective. An answer to this
question can be found using the FRG formalism by searching for a viable fixed point in the
region from which the theory receives its pathological behaving contributions. Once a suitable
fixed point is singled out, we can construct well-defined theories over all energy scales by looking
for solutions of the ERGE equipped with our fixed point as the “initial data” (or asymptotic
data). These solutions are viewed as asymptotically safe renormalisation flow trajectories and
represent a whole programme which is known as asymptotic safety [ 28 ] & [ 29 ].

In concrete calculations, one normally encounters not only a single fixed point in a given
theory space, but instead a whole collection of them. Each one can be a suitable option for
declaring an asymptotically safe UV behaviour. Choosing one or the other fixed point leads to
qualitatively different QFTs which belong to various of so-called universality classes [ 28 ].

In the special case in which our theory asymptotically arrives at a GFP, we say that it is
asymptotically free. A celebrated example of so-called asymptotic freedom, which was honoured
by the nobel-prize in 2004, is given by QCD: it has been shown that quarks behave like freely
propagating particles in the deep UV region [ 36 ]-[ 38 ].

As it was mentioned at the end of paragraph A of this section, the choice for a suitable fixed
point is based on carefully reflected selection criteria, which are generated to a large extent
upon physical admissibility conditions.
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Although the word “suitable” is easily written down, justifying any specific fixed point selection
in an impermeable manner is often quite laborious. We have already discussed an example of
a rather popular selection criterion, that of predictivity, i.e. that DUV

(
ũ∗
)

is a finite (and
preferably not too large) number. In the upcoming section, we will add another selection
criterion that has, for instance, a significant influence on applications in statistical physics and
is known under the name “global existence of fixed point actions”.

2.3
Global Existence of Fixed Point Actions

A fairly natural condition on fixed points is known under the name “global existence”. Let
us first elucidate the precise meaning of this notion. For this, we take a fixed point (action)
ũ∗ ∈ T and expand it with an appropriate operator basis B, such that we get the following
representation:

ũ∗ [Φ] ⊜
∑
α∈I

(ũ∗)α b
α [Φ] . (2.26)

We recall that bα represents a functional of the form bα [Φ] =
�
ℓα (Φ) ddx, where ℓ denotes an

arbitrary function in the field Φ, as long as it is compatible with the symmetry constraints that
were imposed beforehand. Then, eq. (2.26) becomes:

ũ∗ [Φ] ⊜
� (∑

α∈I

(ũ∗)α ℓ
α (Φ)

)
ddx ≡

�
L∗ (Φ) ddx, (2.27)

where in the last step we have introduced the fixed point Lagrangian function, or simply fixed
function L∗ ··=

∑
α∈I

(ũ∗)α ℓ
α. If we restrict w.l.o.g. on a single real valued field species, Φ → ϕ,

we have that ϕ(x) ∈ R for any x ∈ Rd for which ϕ is defined. Hence, L∗ could be considered as
a partial function defined on some subset S ⊆ X ⊆ R of the maximal domain of definition, X,
which contains all values of ϕ that could possibly occur. Sometimes, X ̸= R, for instance if ϕ
is constructed from a fundamentally positive quantity, like the squared norm of a vector degree
of freedom in Euclidean space. Finally, we say that the fixed point (action) ũ∗ is globally-
existing, or simply global, if the corresponding fixed function L∗ is a total function, i.e
S = X. That means, if ũ∗ is a global fixed point, then L∗ : X → R is a function free of
definition singularities, i.e. points in X for which L∗ is not defined.

In many applications which are based on derivative expansions of the action, L∗ is often
decomposed into a purely kinetic part, ∼ (∂µϕ)2 + . . ., and a fixed point potential, V∗, where the
latter is usually assumed to contain only non-derivative expressions in the field ϕ. If we keep the
explicit form of V∗ unspecified, the renormalisation flow can be projected onto the fixed point
potential by assuming a constant field amplitude, such that the fixed point equation (2.22)
yields an ordinary differential equation for V∗ [ 28 ]. In this way, another perspective on the
notion of globally-existing fixed points occurs, which is to be understood as follows: within the
theory of differential equations, the notions of “local” and “global” solutions are well known and
can be adopted for our purposes to declare the notion of a global fixed point in an alternative
manner. In this specific situation, a fixed point ũ∗ would be referred to as being global, if V∗
defines a global solution of the fixed point equation of the projected renormalisation flow.

Let us now illustrate the idea of globally-existing fixed point actions by means of an explicit
model.
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Example. Global Wilson-Fisher Fixed Point of the Ising Model

The versatile class of O(N,R)-symmetric theories is well suited for descriptions of a wide
range of critical phenomena, such as the ferromagnetic phase transition in O(3,R), leading
to the Heisenberg model, or the daily experienced liquid-vapor phase transition in O(1,R),
which is known as the Ising model [ 39 ]. In a general O(N,R) theory, the degrees of freedom
are collected in a field vector Φ ≡ (φ1, . . . , φN)T living in an N -dimensional flat field space.
A general action functional in d spacetime dimensions which suffices the symmetry condition
imposed by the O(N,R) group action is given by [ 40 ]:

SO(N,R) [Φ] =
� (1

2 (∂µΦa)2 + V (φ̄)
)

ddx, (2.28)

where φ̄ ≡ |Φ| with respect to the standard inner product on RN . Therein, the function V
appears as a potential whose field dependence is restricted on O(N,R) invariant expressions,
which are exactly the elements of the polynomial ring in the field norm |Φ| =

√
ΦaΦa over R.

This paragraph is devoted to give a demonstration of the concept of “globally-existing fixed
points” by investigating the rather simple fixed point sector of the Ising model, i.e. O(1,R)
theory - where O(1,R) =

(
{+1,−1}, ·

) ∼= Z2 is the group that contains just the identity
and parity inversion with the ordinary multiplication · acting as the group operation - and
concurrently familiarise with two important analytical methods which appear as useful tools to
construct global fixed point solutions. Now, our field vector carries only a single component,
Φ ≡ φ, and according to eq. (2.28) the action reads:

SO(1,R) [φ] =
� (1

2 (∂µφ)2 + V (φ)
)

ddx. (2.29)

Let us build the effective average action from the bare action (2.29) by modifying the potential
V with a scale dependence k, V → Vk, which gives us the so-called effective average potential.
Moreover, also the kinetic term acquires a flowing coupling, Zk, which is known as the field
strength renormalisation. However, for the sake of simplicity, we add the additional assumption
that Zk = 1 for all values of k. These specifications are sometimes summarised under the name
local potential approximation, in whose spirit our ansatz for the EAA reads [ 28 ]:

Γk [ϕ] =
� (1

2 (∂µϕ)2 + Vk (ϕ)
)

ddx. (2.30)

We note, that the argument of Γk does generally not coincide with the bare field φ, but should
rather be interpreted, similar to the full effective description in eq. (2.5), as the vacuum expec-
tation value of φ in presence of the scale-dependent supremum source J̃k which follows from
the definition eq. (2.11). In the upcoming step, we want to set up the Wetterich equation (2.15)
for the ansatz (2.30). The LHS, ∂tΓk, is rather trivial, so we therefore directly turn our focus
to the RHS. First, we need the second functional derivative of Γk, which under consideration
of the elementary relation δϕ(x)

δϕ(y) = δ(d)(x, y) gives:

Γ(2)
k [ϕ] (x, y) ≡ δ2Γk [ϕ]

δϕ(x)δϕ(y) =
[
−∂2

x + V ′′
k

(
ϕ(x)

)]
δ(d)(x, y), (2.31)

in which ∂2
x denotes the d’Alembert operator acting on the coordinates x, and V ′′

k (ϕ) ≡ ∂2Vk(ϕ)
∂ϕ2

according to our conventions. Since (2.31) represents the (x, y) entry of the operator Γ(2)
k [ϕ] as

it appears in the Wetterich equation and in its coordinate space representation, we can observe
that Γ(2)

k [ϕ] is diagonal in its coordinate indices.
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2.3 Global Existence of Fixed Point Actions

Thus, the corresponding operator can be read off to:

Γ(2)
k [ϕ] = −∂2 + V ′′

k (ϕ) F−→ p2 + V ′′
k (Fϕ) , (2.32)

where we have performed the Fourier transformation F right after, such that Γ(2)
k [ϕ] is now

given in its momentum space representation. For simplicity, we set Fϕ ≡ ϕ from now on and
keep in mind that ϕ is to be considered in momentum space.

Since we have set Zk = 1, the (∂µϕ)2-direction in the (truncated) theory space is insignificant
for our analysis, because the flow in this direction is freezed by assumption. The impor-
tant part belongs only to the scale-dependent effective average potential that contains purely
non-derivative field contributions. Therefore, it is convenient to consider constant field config-
urations that rule out the uninteresting sector of the EAA by default.

Now, because of the diagonal structure of Γ(2)
k [ϕ], the regularised full propagator, Gk [ϕ] =(

Γ(2)
k [ϕ] + Rk

)−1
, is nothing but the reciprocal of its components in momentum space. Conclu-

sively, the supertrace in (2.15) reduces to a trace-pair over coordinate and momentum space,
i.e. integrals thereof, such that the insertion of the expressions above yields:

Ωd

[
∂tVk (ϕ)

]
= 1

2Ωd

�
∂tRk(p)

p2 + Rk(p) + V ′′
k (ϕ)

ddp

(2π)d
, (2.33)

where Ωd corresponds to a volume factor originating from the coordinate space integration.
Since it appears on both sides, these factors simply cancel.

For the regulator we choose the optimised cutoff such as it was already introduced in eq. (2.18),
Rop

k (p) = (k2 − p2) 1[0,k2)(p2), which is linear in p2. In consequence, the integral on the RHS of
eq. (2.33) becomes spherical in momentum space. An adequate switch to spherical coordinates
yields:

∂tVk (ϕ) = 1
(4π)d/2 Γ

(
d
2 + 1

) kd+2

k2 + V ′′
k (ϕ) . (2.34)

In order to obtain the fixed point equation, it is advantageous to establish dimensionless quan-
tities first. A simple dimensional analysis reveals: [Vk] = d and [ϕ] = d−2

2 . Hence, we define:
Ṽk

(
ϕ̃
)

··= k−dVk (ϕ) with the dimensionless field ϕ̃ ··= k
2−d

2 ϕ. At a fixed point we have ∂tṼk = 0
for Ṽk ≡ Ṽ∗. After inserting the dimensionless quantities and summarising the geometric factor
by a−1

d
··= (4π)d/2 Γ

(
d
2 + 1

)
, we obtain from eq. (2.34):

dṼ∗
(
ϕ̃
)

− 1
2 (d− 2) ϕ̃Ṽ ′

∗

(
ϕ̃
)

= ad

1 + Ṽ ′′
∗

(
ϕ̃
) . (2.35)

For our subsequent calculation we specify on three spacetime dimensions, d = 2 + 1, where we
have a3 = 1

6π2 . In this situation, eq. (2.35) reduces to:

6Ṽ∗
(
ϕ̃
)

− ϕ̃Ṽ ′
∗

(
ϕ̃
)

= 1
3π2

1
1 + Ṽ ′′

∗

(
ϕ̃
) . (2.36)

In view of finding a global fixed point action, our strategy provides an approach to a suitable
fixed point solution by constructing it piecewise from two sides; the small-field amplitude regime
and its counterpart for large field amplitudes. Thus, the treatment of the non-linear ODE (2.36)
proceeds as follows5.

5The following algorithm consists of three steps (S1), (S2) and (S3) and will also be of relevance in ch. 3.
Therefore, we pursue a more detailed and careful description in what follows.
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2.3 Global Existence of Fixed Point Actions

(S1). As a first attempt, we expand the fixed point potential Ṽ∗ in terms of a formal power
series with an infinitely large collection of unknown coefficients, {σ2n}n∈N0 , where the numbering
“2n” arises from the Z2 symmetry of Ṽ∗. As it becomes clear explicitly in the considerations
below, any beta function, β2n̂ for n̂ ∈ N0, does not only depend on all previous order couplings,
{σ2n}n̂−1

n=0 together with the present order coupling σ2n̂, but also on the first successive one,
σ2(n̂+1). That means, that at the tower level 2n̂ of eq. (2.22), we gathered a system that contains
one more unknown than we have equations at hand. This implies that we can choose one element
of the set {σ2n}n̂+1

n=0 as a free parameter and express all other elements in terms of it. For this,
we could choose for instance σ2, which corresponds to the first non-constant contribution in
the power series expansion for Ṽ∗. Either way, an additional “exterior” information would be
necessary to close the algebraic system up to σ2(n̂+1). Here comes the point where we utilise
a method called small-field expansion (SFE) [ 40 ]: for small field values ϕ̃, it is sufficiently
reasonable to truncate the power series expansion of Ṽ∗ at a certain order 2n̂ ≥ 0, by setting
all subsequent coefficients to zero, i.e. σ2n ≡ 0 for all n > n̂. This includes in particular
σ2(n̂+1) ≡ 0, which, after recalling that we have expressed every coefficient in terms of σ2, yields
a solution space of possible values for σ2 and therefore all the other remaining σ2n that were
not be supposed to vanish. The small.field expansion ansatz is then of the form:

Ṽ SFE
∗

(
ϕ̃
)

=
n̂∑

n=0

σ2n

(2n)! ϕ̃
2n. (2.37)

Albeit the system has been successfully closed, however, since the fixed point equation ul-
timately sets up a non-linear algebraic system of coupled equations, we will generally find a
plethora of possible solutions. To take a systematic decision on one of them, we need to identify
a stabilising behaviour within the solution spaces of σ2(n̂+1)(σ2) = 0 as we go to higher orders of
our truncation, 2n̂ → 2(n̂+ 1) → . . ., i.e. we have to single out a specific value for σ2 on which
part of the solution space to the equation σ2(n̂+1)(σ2) = 0 converges. In this way, we solve the
algebraic fixed point system approximately for arbitrary large n̂ with increasing precision. As
a result, we ensure a maximal radius of convergence for the SFE.

(S2). Once we have successfully constructed a well-defined fixed point solution for the small
field amplitude regime, we can turn to large field values then. Here, the procedure works similar
to what was already described in step (S1), but using an expansion in negative instead of pos-
itive powers of ϕ̃, relative to a leading power, to render the fixed point’s asymptotic behaviour
properly at large field amplitudes. The asymptotically dominating part of Ṽ∗, i.e. in the limit
ϕ̃ → ∞, is captured by a term ∼ ϕ̃2N for some N ∈ Z and for which a formula can be derived
by means of dimensional reasoning. In d spacetime dimensions, N is given by [ 41 ]:

N = d

d− 2 + η∗
, (2.38)

in which η∗ is called the anomalous dimension evaluated at the fixed point6. In this way, we
can formulate the analogue of the small-field expansion by choosing once more a truncation
order 2n̂ ≥ 0 and write down a large-field expansion (LFE) in a form that is suggested in
[ 40 ]:

Ṽ LFE
∗

(
ϕ̃
)

= λϕ̃2N +
n̂∑

n=0
λ2nϕ̃

−2n. (2.39)

The role of the free parameter is now assigned to λ. From here on we can proceed analogously
to step (S1) and use the fixed point equation to express all coefficients λ2n in terms of λ.

6As it was already explained in paragraph A of sec. 2.2, we will encounter the anomalous dimension again
in ch. 3 together with its general definition and where we also briefly clarify its physical interpretation.
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2.3 Global Existence of Fixed Point Actions

(S3). Finally, we need to determine the radius of convergence of both, the small-field expansion
as well as the large-field expansion. For this, one generically has to use the formula expression
of the Cauchy-Hadamard theorem, that is:

rf = 1
lim sup

n→∞

(
n
√
cn

) , (2.40)

in which cn are the coefficients of some series expansion of a given function f , and rf denotes
its radius of convergence. Another formula, which is often considerably better to handle, is
given as a consequence of the ratio test:

rf = lim
n→∞

∣∣∣∣∣ cn

cn+1

∣∣∣∣∣, (2.41)

which is only applicable if the limit really exists. However, the radius of convergence can also
readily be estimated geometrically by scanning the graphs of Ṽ SFE

∗

(
ϕ̃
)

and Ṽ LFE
∗

(
ϕ̃;λ

)
for a

pathological changeover as we tend to larger or smaller field values respectively. The remaining
parameter λ has to be adjusted in such a way, that the interval [rLFE, rSFE] ̸= ∅, in which
rSFE ≡ rṼ SFE

∗
and rLFE ≡ rṼ LFE

∗
. Moreover, there shall exist a field value, ϕ̃0 ∈ [rLFE, rSFE],

for which Ṽ SFE
∗

(
ϕ̃0
)

= Ṽ LFE
∗

(
ϕ̃0
)
. If these conditions are fulfilled, we eventually can weld our

partial solutions at ϕ̃0 together and generate a global solution Ṽ∗. To improve the quality of
this agglutination, we could supplementary fine tune the parameter λ, such that the total error
between Ṽ SFE

∗ and Ṽ LFE
∗ is minimised in the overlap region, which is accounted by demanding: d

dλ

rSFE�

rLFE(λ)

[
Ṽ SFE

∗

(
ϕ̃
)

− Ṽ LFE
∗

(
ϕ̃
)]2

dϕ̃


∣∣∣∣∣∣∣∣
λ=λ⋆

= 0. (2.42)

Apart from the analytical methods described above, there are a number of numerical ap-
proaches, such as for instance so-called pseudo-spectral methods. Though these are applied very
successfully to construct global fixed point actions, the analytical algorithms do not lose their
relevance and often provide a reliable starting point for the application of numerical techniques,
or are already even sufficient. For a demonstration of numerical treatments of the Ising model,
see [ 41 ]. An extension to various O (N,R) models can be found in [ 40 ].

Let us now begin to apply the steps (S1)-(S3) on eq. (2.36).

(S1). Small-Field Expansion

According to our instructions formulated above, we first perform a MacLaurin series expansion
of the RHS of eq. (2.36) in even powers of the field ϕ̃ to account for the Z2 symmetry condition
on the fixed point potential and insert the small field ansatz, eq. (2.37), right after. Equating
coefficients of same powers in the field amplitude yields the following relation:

(3 − n)σ2n = 1
6π2

d2n

dϕ̃2n

 1
1 + Ṽ ′′

∗

(
ϕ̃
)
 ∣∣∣∣∣∣

ϕ̃=0

, for n ≥ 0. (2.43)

The derivative structure on the RHS constitutes a total of 2n + 2 derivatives of Ṽ∗ for any
n ∈ N0. Thus, evaluating for ϕ̃ = 0 at the end of our calculation do not only gives the previous
coefficients, {σ2m}n

m=0, but in addition also their successor, σ2n+2, as we expect it from the
description in (S1).
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2.3 Global Existence of Fixed Point Actions

Accordingly, we let σ2 - that is the coefficient of the mass-like term 1
2σ2ϕ̃

2 - adopt the role of a
free parameter and change its symbol to σ2 → µ for better identification. Below, the first five
relations are presented explicitly in terms of µ as they follow from eq. (2.43) (but skipping the
trivial information σ2 = µ):

σ0 = 1
18π2

1
1 + µ

,

σ4 = −12π2µ (1 + µ)2 ,

σ6 = 72π4µ (1 + µ)2
(
1 + 14µ+ 13µ2

)
,

σ8 = −25 920π6µ2 (1 + µ)4 (1 + 7µ) ,

σ10 = 103 680π8µ2 (1 + µ)5
(
2 + 121µ+ 623µ2

)
,

...

(2.44)

A truncation at order n̂ ≥ 0 serves as an additional information in the spirit of the SFE, namely
σ2(n̂+1)(µ) = 0, which closes the algebraic system (2.44) up to ϕ̃2n̂ in the power series expan-
sion (2.37). For different truncation orders n̂, the induced set of zeros,

{
µ |σ2(n̂+1)(µ) = 0

}
,

is depicted in fig. 2.4. Within this chart we can clearly observe the Gaussian line of zeros
at µGFP = 0, but in addition also a non-trivial attractor of the solution space sequence at
µNGFP ≃ −0.18606.

Figure 2.4: At each truncation order n̂ ≥ 1, there is a non-empty set of zeros for the first
resected coefficient of the power series expansion after truncation order σ2(n̂+1). Up to truncation
order n̂ = 20, the solution µGFP = 0 is perpetually present, which only leaves the constant term
Ṽ∗ = σ0 = 1

18π2 and corresponds to the trivial, or Gaussian, fixed point solution of eq. (2.36).
In addition, several downward directed branches develop a seemingly converging behaviour at
higher truncation orders. They strive to a non-trivial zero µNGFP ≃ −0.18606, which is expected
to be approximated with increasing accuracy in direction of truncation orders beyond n̂ = 20.

For this specific value of µ, the fixed point potential in the small-field amplitude regime Ṽ SFE
∗

is presented in fig. 2.5, with a good perspective on the rapid change of tendency at roughly
|ϕ̃| ≃ 0.5. Hence, we obtain a graphical estimate for the radius of convergence to rSFE ≃ 0.5.
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2.3 Global Existence of Fixed Point Actions

Figure 2.5: The graph of Ṽ SFE
∗ that contains the information of the power series expansion,

eq. (2.37), up to contribution ∼ ϕ̃40 for µ = µNGFP. The transition to the irregular, and therefore
unreliable region is markedly visible at |ϕ̃| ≃ 0.5, which allows for a valuation of the radius of
convergence as it is indicated by the red vertical lines.

(S2). Large-Field Expansion

In order to properly describe the fixed point potential Ṽ∗ in situations where the modulus of
the field amplitude becomes very large, we can refer to the ansatz (2.39) which comprises an
asymptotically dominating part in the limit |ϕ̃| → ∞, as well as a “shrinking tail” that vanishes
in the same limit process. Explicitly, we have:

Ṽ LFE
∗

(
ϕ̃
)

= λϕ̃2N +
∞∑

n=0
λ2nϕ̃

−2n. (2.45)

In view of ch. 3, we already anticipate at this stage that the anomalous dimension evaluated
at the NGFP, η∗, is proportional to the change of the field strength renormalisation Zk with
respect to the scale parameter k. Since we have decided on Zk = 1 for all scales k, this
implies that η∗ = 0 within the scope of the local potential approximation. Consequently, the
asymptotic power N can comfortably be inferred from eq. (2.38), yielding N = 3 in d = 3
spacetime dimensions.

It is convenient to introduce a new field variable, χ̃ ··= ϕ̃−1, which represents a small quantity
for large field amplitudes |ϕ̃|. As a consequence, eq. (2.36) now reads:

6Ṽ∗ (χ̃) + χ̃Ṽ ′
∗ (χ̃) = 1

3π2
1

1 + 2χ̃3Ṽ ′
∗ (χ̃) + χ̃4Ṽ ′′

∗ (χ̃)
. (2.46)

After inserting the ansatz (2.45) for the new variable χ̃ together with another MacLaurin series
expansion of the RHS in even powers of χ̃ afterwards, we obtain:

∞∑
n=0

2λ2n

(
3 + n

)
χ̃2n = χ̃4

3π2

∞∑
n=0

1
(2n)!


1

30λ+ χ̃4 +
∞∑

j=1
2j (2j + 1)λ2jχ̃

2j+6


(2n)

χ̃=0

χ̃2n. (2.47)

Because of the generic RHS-factor χ̃4 in front of the MacLaurin series, the coefficients λ0 and λ2
are forced to vanish by comparison with the LHS: λ0 = λ2 = 0. For the higher order coefficients
we can find an analogue of eq. (2.43) by equating prefactors of same powers in χ̃ on both sides
of eq. (2.47).
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This results in:

λ2n+4 = 1
6π2

1
(2n)!(5 + n)


1

30λ+ χ̃4 +
∞∑

j=1
2j (2j + 1)λ2jχ̃

2j+6


(2n)

χ̃=0

, for n ≥ 0. (2.48)

Following our argumentation in (S2), we declare λ to act as a free parameter for which the
first five non-vanishing relations that follow from the system (2.48) read:

λ4 = 1
900π2λ

,

λ8 = − 1
37 800π2λ2 ,

λ12 = 1
1 458 000π2λ3 ,

λ14 = − 1
2 430 000π4λ3 ,

λ16 = − 1
53 460 000π2λ4 ,

...

(2.49)

as well as λ6 = λ10 = 0. At this point, our piecewise two-step analysis of the fixed point
potential is completed and we try to appropriately combine both results in the upcoming step.

(S3). Matching the SFE and LFE

If we restrict our attention on non-negative field values, ϕ̃ ≥ 0 - which is without loss of es-
sential information because of Z2 symmetry - we can achieve a global solution by the formal
statement:

Ṽ∗
(
ϕ̃
)

= Ṽ SFE
∗

(
ϕ̃
)
1[0,ϕ̃0)

(
ϕ̃
)

+ Ṽ LFE
∗

(
ϕ̃;λ⋆

)
1[ϕ̃0,∞)

(
ϕ̃
)
, (2.50)

in which ϕ̃0 and λ⋆ are interpreted as explained in (S3). Now, we aim for an optimal choice of
the remaining parameter, λ → λ⋆, and accordingly deduce a concrete ϕ̃0. For this, we begin by
extracting the information λ⋆ ∈ (2.5, 5) from fig. 2.6 with a corresponding radii of convergence
estimated to rLFE(λ = 5) ≃ 0.4 and rLFE(λ = 2.5) ≃ 0.35 at the boundaries of the interval.

To proceed, we make a further assumption that simplifies the resolution of the optimisation
equation (2.42) significantly: in case we keep the implicit λ dependence of rLFE, then the
evaluation of eq. (2.42) becomes challenging since we are not aware of any explicit expression
for rLFE(λ). The latter could, in principle, be inferred from the limit behaviour of the function
sequence |λ2n(λ)/λ2(n+1)(λ)| as n → ∞. To avoid these complications, we are instead satisfied
by taking the mean [rLFE(2.5) − rLFE(5)]/2 = 0.375 and suppose this value to refer to rLFE(λ⋆),
which is an adequate approximation. Then, the evaluation of (2.42) is rather straightforward
and yields:

λ⋆ ≃ 3.34499 & ϕ̃0 ≃ 0.48186. (2.51)

To conclude this example of the three dimensional Ising model, we insert the information from
(2.51) in eq. (2.50) and plot the full fixed point potential that can be seen in fig. 2.7. Moreover,
our results are in good agreement with [ 41 ].
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Figure 2.6: Both, the graphs of the small-field and large-field solution are presented as red
and black curves respectively. The latter are shown in three different variants according to
distinct values for λ as indicated. The shaded areas below the large-field curves delimit the
overlap regions, i.e. the closed intervals [rLFE(λ), rSFE(λ)]. The solid line coloured in black,
which corresponds to Ṽ LFE

∗

(
ϕ̃;λ = 1

)
, does not show any intersection with the red solid line,

but the dashed and dotted black lines enclose the sector where the optimal parameter λ⋆ and a
point of contact, ϕ̃0, between Ṽ SFE

∗ and Ṽ LFE
∗ can be found.

Figure 2.7: The well-known global Wilson-Fisher fixed point potential of the three dimensional
Ising model is depicted by the red solid line, whereas black dashed lines indicate the graphs
according to the partial solutions of the separated analyses that were made in the context of
SFE and LFE.
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2.4
Exact Renormalisation Group Methods for Gauge Theories

A. Gauge Redundancies

In this section, we will discuss the final preliminaries in prospect of ch. 3. There, we are
confronted with a functional renormalisation group that entails local symmetries at the level
of the effective action. We can think of these symmetries as being implemented by local
transformation parameters. Any physical system that contains such a symmetry is referred as
being gauge invariant under its corresponding gauge transformation.

A well-studied example is Maxwell’s theory of electromagnetism where we have freedom to
transform the four potential pointwise and continuously to any desired value without affecting
Maxwell’s equations and hence the observable electric and magnetic field. To be a little more
concrete, let7 A ⊜ (ϕ,A) denote the four potential that summarises the scalar potential ϕ and
the vector potential A. Then, the electric and magnetic field, E and B respectively, can be
constructed from A like follows (see for instance [ 51 ]):

E = −∇ϕ− ∂A
∂t

& B = ∇ × A. (2.52)

It is standard textbook knowledge that these relations are invariant under a local transfor-
mation of the form Aµ 7→ Aµ + ∂µφ, in which φ is supposed to be any sufficiently smooth
function [ 51 ]. The special feature of this type of transformation is its local character, i.e. we
transform A to a different value at each point in spacetime. Such mappings are known as gauge
transformations. In this situation, we call the four potential A a gauge field and the local
transformation parameter φ a gauge function.

Let us now gather some basic informations about how to apply the FRG in the presence of
gauge symmetries. For definiteness, we shall consider a well-known instance to explain the new
features that appear in the FRG implementation of gauge invariant theories, that is Yang-Mills
theory (YM theory). A thorough discussion has already been carried out in [ 27 ]. Therefore,
we will mostly stick to this reference until the end of the present section.

For a precise fomulation we begin with a collection of rather general facts about Lie groups
and Lie algebras [ 42 ]. Let G be a Lie group, i.e. a differentiable manifold furnished with a
group structure, such that the basic group operations are smooth. In case of Yang-Mills theory,
the Lie group is usually considered to be the special unitary group SU(n) with n ∈ N. Each
Lie group can be associated with its induced Lie algebra g, that is the algebra defined on the
vector space which is tangent to the neutral element of G together with the Lie bracket [·, ·]
that serves as the vector space structure respecting multiplicative compostion. For SU(n), the
associated Lie algebra is denoted as su(n).

Now, let us take a set of basis vectors, or sometimes also called generators, {XI} for g in its
adjoint representation and expand any 1-form ω that has tangential components ωµ in terms
of that basis:

ω = ωµdxµ =
(
ωI

µXI

)
dxµ =

(
ωI

µdxµ
)
XI ≡ ωIXI . (2.53)

The Lie bracket relations among {XI} define the so-called structure constants {f IJK} of the
Lie algebra g:

[XI , XJ ] = f K
IJ XK . (2.54)

7At this point, we agree on more convention: the purely spatial part of any full [(d− 1) + 1]-dimensional
vector v is indicated by the same, but bold-face typed letter, i.e v ⊜ (v0,v). In addition, we will write all
(d− 1)-dimensional vectors in terms of bold-face letters.
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After this common discussion, let us turn back to the Yang-Mills example where G ≡ SU(n).
The classical YM action can be written in terms of the field strength tensor, F, which is
constructed as a 2-form upon the Lie algebra valued 1-form degrees of freedom A. In gauge
theories, we identify these 1-forms with the above mentioned gauge fields. Either way, the YM
action reads [ 27 ]:

SYM [A] =
� 1

4F
I
µνF

µν
I ddx. (2.55)

We can now take any pair of local tangential indices (µ, ν) and expand Fµν in terms of generators
from su(n). According to the common formulation we get [ 27 ]:

F I
µν = ∂µA

I
ν − ∂νA

I
µ + gf I

JKA
J
µA

K
ν , (2.56)

in which the upper capital latin Lie algebra indices are also known as adjoint colour labels and
g represents a coupling parameter. If the structure constants do not vanish entirely, we would
call the underlying gauge theory non-Abelian, which is lucid from eq. (2.54) when we interpret
the Lie bracket as a commutator.

In order to define a QFT based on the YM action (2.55), we could use eq. (2.2) as an
orientation and declare a gauge partition functional by:

ZYM [J ] ∼
�

su(n)

exp
(

−SYM [A] +
�
AI

µ(x)Jµ
I (x)ddx

)
[DA]

≡
�

su(n)

exp
(

−SYM [A] − SSource [A; J ]
)

[DA] ,

(2.57)

where SSource [A; J ] ··= −
�
AI

µ(x)Jµ
I (x)ddx denotes a source action. In eq. (2.57), we have

intentionally not used an equal sign, otherwise we would commit a conceptual blunder. The
reason for that is attributable to the existence of physically equivalent field configurations due
to gauge invariance. More precisely, the YM action (2.55) is unchanged under the following
local infinitesimal gauge transformation [ 27 ]:

AI
µ(x) 7→ AI

µ(x) − ∂µα
I(x) + gf I

JK α
J(x)AK

µ (x), (2.58)

in which α is an infinitesimal transformation parameter that is considered as a smooth func-
tion. Any continuous variation of α yields another valid transformation parameter and any
finite gauge transformation can be obtained by performing a sequence of infinitesimal ones. We
call the latter Uα. Gathering all possible gauge transformations of the form (2.58) within a
set and equipping them with the usual composition on functions gives us the so-called gauge
group. Moreover, we can declare an equivalence relation on su(n) where two gauge fields A and
Ã are said to be equivalent by definition iff there exists a gauge transformation Uα such that
Ã = UαAU−1

α − 1
g

(∇Uα) U−1
α . In this situation we write A ∼α Ã. Then, the space su(n)⧸∼α

consists of equivalence classes that collect physically indistinguishable field configurations which
are known as the gauge orbits.

Now, the expression
�
su(n) [DA] represents a functional integration over all field configura-

tions, while we actually wish to integrate only over physically inequivalent ones. That means,
we rather need an integral that accounts for the gauge orbit structure, or formally:

�

su(n)

[DA] −→
�

su(n)⧸∼α

[DArep] , (2.59)

where Arep denotes a representative for each gauge orbit.
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2.4 Exact Renormalisation Group Methods for Gauge Theories

In order to avoid gauge redundancies due to the integration over all field configurations in
presence of a gauge symmetry, we can invoke an algorithm that goes back to Ludvig Dmitrievich
Faddeev and Victor Nikolaevich Popov which essentially explains how the idea (2.59) can
technically be realised [ 43 ]. We are going to illustrate it in the upcoming paragraph.

B. The Faddeev-Popov Procedure

Given the formal expression (2.59) we need to install a mechanism that controls the inte-
gration over gauge orbit space. Let us consider an arbitrary gauge orbit, i.e. an equivalence
class [Arep] ∈ su(n)⧸∼α

in which all elements are connected through transformations build from
(2.58). As a consequence of gauge freedom, we can proceed analogously to standard methods
from electrodynamics and impose an extra condition to fix a specific gauge:

GI [A] = 0, (2.60)

for all index values I. If we now choose any gauge field A ∈ [Arep] that does not satisfy
eq. (2.60), we pick a suitable Uα from the gauge group and transform A such that eq. (2.60)
holds. The ideal scenario would be that the gauge fixing condition - which appears as a system
of differential equations for the gauge transformation parameter α - is fulfilled by only a single
element from each gauge orbit, however, this is generally not true, especially for non-Abelian
gauge theories and refers essentially to the so-called Gribov ambiguity [ 27 ]. Fortunately, there
are conditional solutions to that problem and in what follows we assume that the Gribov
ambiguity is circumvented properly such that we can continue with the formulation of a well-
defined QFT.

To incorporate the gauge fixing condition (2.60) into the path integral expression eq. (2.57),
we can use a functional generalisation of the one dimensional unit relation: 1 =

�
U
δ(f)df =�

R |f ′(x)|δ (f(x)) dx where f : R → U ⊆ R is supposed to exhibit only a single zero. At the
level of functional integrals this reads:

1 =
�
δ
(
GI
) [

DGI
]

=
�

SU(n)

δ
(
GI [Aα]

)
Det

(
δGI [Aα]
δαJ

)
dµ (α) , (2.61)

in which µ is called the Haar measure that is used for the group integration over SU(n), or
more generally, for the integration over spaces that contain group structures, and where Aα is
supposed to be of the form (2.58).

The functional determinant under the integral in the last expression of (2.61) is sometimes
called the Faddeev-Popov determinant and according to standard textbooks it has been shown
that it is indeed gauge invariant, see for instance ref. [ 31 ]. Consequently, we can simplify the
integral expression by making the specific choice α = 0, i.e. αI = 0 for all index values I, such
that the integrand becomes independent of the integration variable. Since the Haar measure is
normalised, i.e µ (SU(n)) ≡

�
SU(n) dµ = 1, we obtain:

1 = δ
(
GI [A]

)
Det

(
δGI [Aα]
δαJ

) ∣∣∣∣∣
α=0

. (2.62)

This result can directly be inserted into (2.57) which finally replaces the ∼ symbol by an equal
sign:

ZYM [J ] =
�

exp
(

−SYM [A] − SSource [A; J ]
)
δ
(
GI [A]

)
Det

(
δGI [Aα]
δαJ

) ∣∣∣∣∣
α=0

[DA] . (2.63)
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It is conventional to properly enqueue also the delta functional and the Faddeev-Popov deter-
minant in the sequence of actions under the exponential. In order to realise this for the delta
functional, we can adhere to the approximation of the delta function by means of the normal
distribution:

δ
(
GI [A]

)
→ lim

κ→0
exp

(
− 1

2κ

�
GI [A(x)] GI [A(x)] ddx

)
··=e−Sgf [A]. (2.64)

Here, we have introduced the gauge-fixing action Sgf that is determined by the gauge-fixing
condition eq. (2.60).

For doing the exponentiation of the Faddeev-Popov determinant we recall a general repre-
sentation of functional determinants in terms of path integrals over Grassmann-valued fields.
In order to review it, let θ be a Grassmann-valued vector and M a Hermitian matrix with
eigenvalues {µi}. Then, the following formula proves to be correct [ 31 ], or see Proposition D.6
in app. D: �

e−θ†Mθdθ̄dθ =
∏

i

µi = det (M) . (2.65)

The path integral analogue of relation (2.65) with det (M) being identified with the Faddeev-
Popov determinant yields:

Det
(
δGI [Aα]
δαJ

) ∣∣∣∣∣
α=0

=
�

exp
[
−
�
c̄I(x)

(
δGI [Aα(x)]

δαJ

) ∣∣∣∣∣
α=0

cJ(x)ddx

]
[Dc̄Dc] . (2.66)

The anticommuting real-valued fields c and c̄ are known as Faddeev-Popov ghosts. Finally, we
define the ghost action as:

Sgh [c, c̄;A] ··=
�
c̄I(x)

(
δGI [Aα(x)]

δαJ

) ∣∣∣∣∣
α=0

cJ(x)ddx. (2.67)

Now we turn back to the partition functional ZYM in eq. (2.63) and use eq. (2.64) together with
eqs. (2.66) & (2.67), yielding:

ZYM
[
J,Θ, Θ̄

]
=

�
e−SYM[A]−SSource[A;J,Θ,Θ̄]−Sgf [A]−Sgh[c,c̄;A] [DADc̄Dc] , (2.68)

whereby we have expanded the source action by two additional parts which account for the
new ghost fields. That means we now have:

SSource
[
A; J,Θ, Θ̄

]
= −

� (
AI

µ(x)Jµ
I (x) + Θ̄I(x)cI(x) + ΘI(x)c̄I(x)

)
ddx. (2.69)

Though we have basically finished our short review on the FRG in presence of gauge sym-
metries, we have not yet discussed any details on the effective action or the flow equation.
However, the analysis is quite analogous to what we have already explained in sec. 2.1 and
details can be found in ref. [ 27 ]. Moreover, eq. (2.15) still applies for the present case of YM
theory, where we have to take care not to miss the ghost fields when computing the supertrace.

An interesting situation appears in the case of Abelian gauge theories, i.e. when all struc-
ture constants vanish identically. As a consequence, the ghost fields decouple from the gauge
degrees of freedom and the Faddeev-Popov determinant reduces to a constant factor that can
be absorbed into the path integral measure [DA]. In this way, only the gauge-fixing action
remains as the additional piece of information due to gauge invariance within the partition
functional, eq. (2.68). The ghost fields are thus also irrelevant for the Wetterich equation and
the renormalisation flow is determined solely by the behaviour of the effective action under
variations of the gauge fields. We will come back to this discussion in ch. 3.
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3

Global Fixed Point Structures in
Self-Interacting U(1) Gauge Theories

Now that we have developed a solid foundation in the course of ch. 2, we are well prepared for
the core analysis of this thesis. In principle, we proceed technically quite similarly to the Ising
model example presented in sec. 2.3. The structural differences primarily concern the degrees
of freedom under consideration, the symmetry constraints and the restrictions imposed by the
local potential approximation. More precisely, we change from scalar to bosonic spin-1 degrees
of freedom, represented by vector quantities, replace the group O (1,R) by the one-dimensional
unitary group U(1) which acts as the gauge group on our model, and we will refrain from the
limitation Zk = 1 and instead consider an RG dynamical field strength renormalisation. From
a bird’s eye perspective, our model can be interpreted as a renormalisation flow portrayal of
a purely self-interacting massless spin-1 bosonic field without couplings to any sort of matter
degrees of freedom. Incidentally, first results are due to the work of Heisenberg & Euler, who
already derived the effective Lagrangian of the pure electromagnetic field up to 1-loop order in
1936, see ref. [ 47 ].

The outline of this chapter is as follows: in sec. 3.1, we discuss the basis of the theory
and subsequently derive the technical setup on which we will apply the techniques that were
introduced in ch. 2. In this way we try to extract relevant information about the fixed-point
sector. Their demonstration and discussion takes place in sec. 3.2.

In order to improve readability, we refrain from a thorough presentation of the majority of
calculations and instead merely outline their execution.

3.1
Prelude: Modelling the Theory

A. Quantum Electrodynamics Revisited and Basic Constructions

In order to classify the subject of interest, let us start with the prominent instance of QED,
i.e. the quantum description of the electromagnetic interaction mediated by spin-1 bosons
and acting between electrically charged spin-1/2 particles. Physically, they are commonly
considered as photons and electrons respectively, whereas mathematically, the latter type of
particles is formulated with elements obtained from the d-dimensional canonical representation
of the spin group Spin(d − 1, 1), which are called Dirac spinors and are usually denoted by ψ
[ 44 ]. Conversely, the former particle type, that is the spin-1 boson, is described by a vector-like
degree of freedom, A, that has components Aµ.
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3.1 Prelude: Modelling the Theory

Within the Lorentz covariant formulation of classical electrodynamics, A represents the four
potential, containing the scalar potential A0 ≡ −ϕ, and the components of the vector potential
Ai ≡ Ai.

In d = 4 spacetime dimensions and against the background of flat Lorentzian geometry,
dynamics between spin-1/2 fermions and spin-1 bosons is encoded in the Lagrangian of QED
[ 45 ]:

LQED (AM, ψ) = −1
4 (FM)µν (FM)µν + ψ

(
ı /D −m

)
ψ. (3.1)

Here, (FM)µν are the (covariant) components of the second degree field strength tensor FM.
Because we will move to Euclidean space later, we have decided to indicate the formulation of
the field strength tensor with respect to Minkowski space by adding the subscript1 “M”, which
we also apply to related quantities like, for instance, the four potential. Later on, when we pass
over from Minkowski to Euclidean signature, we will ventilate our notation and drop the index
“M”.

Either way, the field strength tensor is related to the four potential according to:

(FM)µν ≜ ∂µ (AM)ν − ∂ν (AM)µ . (3.2)

Furthermore, ψ ··= ψ†γ0 is referred to as the Dirac adjoint of ψ, where γ0 denotes a member of
the Dirac matrices {γµ}. The latter are moreover used to define the Feynman dagger, which
appears explicitly in eq. (3.1) as /D ··= γµDµ. Here, we also find the interaction link between
spin-1/2 fermions and spin-1 bosons, which is incorporated within the covariant derivative,
Dµ ··= ∂µ + ıe (AM)µ, with e being the electric charge. Lastly, m signifies the fermion mass
parameter.

An important observation on the QED Lagrangian (3.1) refers to its symmetry under local
phase transfomations:

AM(x) 7→ AM(x) + ∂Λ(x) & ψ(x) 7→ eıα(x)ψ(x), (3.3)

in which Λ and α are some sufficiently smooth functions on spacetime. Because of its local char-
acter, we recognise (3.3) as a pair of gauge transformations on both the bosonic and fermionic
sector of LQED respectively. In this situation, the gauge group is identified with the first unitary
group U(1).

With this brief recapitulation of QED, we are now in position to introduce the model of
interest, starting from the Lagrangian (3.1). For the purposes of this work, we completely dis-
regard all fermion contributions, including its interactions with the vector degrees of freedom.
In compensation to that, we instead enlarge the bosonic sector by adding a generic collection of
further expressions which obey - besides Lorentz invariance - the local U(1) symmetry condition
imparted through (3.3) while ignoring the spinor transformation part. These modifications es-
sentially result in a new Lagrangian of the form LM (AM) = −1

4 (FM)µν (FM)µν +I (AM), where
the additional term I - which incidentally displays self-interactions among the spin-1 field - is
considered to be the most general appropriate composition that can be build from the funda-
mental degree of freedom AM.

For definiteness, we can consult the fact that an arbitrary Lorentz and local U(1) invariant
quantity can always be decomposed into combinations of only two primal invariants, which
read2 [ 48 ]:

FM ··=
1
4 (FM)µν (FM)µν & GM ··=

1
4 (FM)µν (⋆FM)µν . (3.4)

Here, ⋆FM is the Hodge dual to FM which can be constructed via the Levi-Civita tensor:

(⋆FM)µν ··=
1
2ε

µνλσ (FM)λσ . (3.5)

1Since later, the spinor part of the QED Lagrangian will not be of interest for us, we do not establish this
notation for ψ or /D, though their representation does also depend on the background manifold signature.

2A reasoning of this statement can be found in app. D, cf. Theorem D.8.
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3.1 Prelude: Modelling the Theory

Let us turn back to the Lagrangian LM. According to what we have just said, we can justly
interpret the extra contribution I as a function that specifically depends only on FM and GM
instead of AM.

Since we did not arranged any further restrictions on I, the unconstrained effective action3

of the QFT that is characterised by LM, denoted as Γ̃M, yields:

Γ̃M [AM] =
�

LM (FM,GM) d4x =
� [

−FM + I (FM,GM)
]
d4x. (3.6)

From here on, we could begin to formulate the renormalisation flow for the effective action ΓM
(after gauge fixing Γ̃M → ΓM) and explore in particular its fixed point sector. However, in
view of the technical complexity with which we might be confronted, it is reasonable to first
carry out the transition from Minkowski to Euclidean signature and to re-introduce all previous
quantities that have been provided an additional subscript “M” by their Euclidean counterpart.

B. From Lorentzian to Euclidean Geometry

Let us start again with the spin-1 field Lagrangian, but this time without taking any self-
interactions into account such that LM becomes purely kinetic:

LM = −FM. (3.7)

Starting from this equation, the central demand that leads to Euclidean conditions relies on
the request for an analogue expression which does not carries an overal negative sign, i.e.
LM → L ≡ F . Here, the Euclidean equivalents L and F belong to LM and FM respectively.

How such a transition is done in detail can properly be understood by considering the explicit
expression for FM in terms of the electric and magnetic field EM and BM respectively. Using
the relations (FM)0i = (EM)i and (FM)ij = εijℓ (BM)ℓ, together with the antisymmetry of the
field strength tensor, (FM)µν = − (FM)νµ, a simple calculation yields: FM = 1

2 (B2
M − E2

M).
Let us now consider an Euclidean construction of the field strength tensor, denoted as

F, which again contains the components of the (Euclidean) electric and magnetic field, E
and B respectively, and that is structurally equivalent to FM, i.e. we still have F0i = Ei

and Fij = εijℓBℓ, but where now the Euclidean metric tensor δ is applied for raising and
lowering indices instead of the Minkowski metric tensor η. That means that we now get:
F = 1

4δ
µλδνσFµνFλσ, which in turn gives: F = 1

2 (B2 + E2).
One might now ask the question: what precisely is the connection between the Euclidean and

Minkowskian quantities that were introduced in paragraph A? The answer can be formulated
as follows: analogously to Wick rotations in coordinate space, we can consider Wick rotations
in field space that only affect the “timelike” component of the gauge field A (or AM, depending
on where we start), that is A0 (or (AM)0). As a consequence, the naught components of the
field strength tensor, i.e. F0i = −Fi0 and therefore the components of the electric feld, inherit
the modifications from the Wick rotation procedure. Explicitly, this means: EM 7→ E = ıEM
and trivially BM 7→ B = BM. Under regard of eq. (3.7) we find exactly what was initially
requested:

L = F = 1
2
(
B2 + E2

)
= 1

2
(
B2

M − E2
M

)
= FM = −LM. (3.8)

Let us now summarise the new ensemble of Euclidean quantities that we have introduced during
this paragraph. First of all, using the Euclidean four potential A, eq. (3.2) becomes:

Fµν = ∂µAν − ∂νAµ. (3.9)
3We use the term “unconstrained” to point out a special pecularity of gauge theories, which forces us to

declare a gauge fixing condition to avoid redundancies due to the integration over physically gauge equivalent
fields. Detailed information on this aspect were already presented in sec. 2.4.
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3.1 Prelude: Modelling the Theory

Then, the Hodge dual to F reads:

⋆Fµν = 1
2ε

µνλσFλσ. (3.10)

Since the invariants given in eq. (3.4) change accordingly, we thus find:

F ≡ 1
4FµνF

µν & G ≡ 1
4 (Fµν) (⋆F µν) . (3.11)

These preparations are sufficient to enlarge L in the same manner as we did for LM, i.e. by
adding an additional contribution I that is considered to be a function of F and G . Hence,
the Minkowski version of the unconstrained effective action from eq. (3.6) becomes:

Γ̃ [A] =
�

L (F ,G ) ddx =
� [

F + I (F ,G )
]
ddx. (3.12)

In addition, we have decided to lift the number of spacetime dimensions from d = 4 to a basically
unspecified number d, though the appearance of the four-dimensional Levi-Civita tensor within
the definition of G nevertheless forces us to deviate at most infinitesimally from exactly four
dimensions. That means we need to set d = 4 − ϵ for a small parameter |ϵ| ≪ 1.

It should also be noted that a detailed compilation of information concerning the field strength
tensor, the dual field strength tensor and the invariants can be found in app. A. There, one
can also look for the precise mathematical relation between F and ⋆F according to the Hodge
operator. In addition to the four-dimensional Minkowskian/Euclidean formulation of F and
⋆F, corresponding representations in dimensions d ∈ N0 with d < 4 are presented in both
Minkowski and Euclidean space.

Since it will be of interest in the upcoming paragraph below, let us conclude with a short
look on also the second primal invariant, G , and figure out its connection to GM. Yet another
simple calculation gives as a first result: GM = −EM · BM. After Wick rotation, this becomes:
−EM · BM = ıE · B ≡ ıG , i.e. that the Euclidean invariant G = −ıGM is purely imaginary.
However, we can obtain a real valued quantity by taking the square: G 2 = −G 2

M ∈ R.

C. The Effective Average Action and the Full Propagator

Now that we have built our foundations, we could apply the FRG procedure that has been
explained in ch. 2. Specifically this means to furnish the effective action (3.12) with a scale
dependence k and obtain the unconstrained effective average action as an interpolation between
Γ̃ and an appropriate microscopic bare action. The explicit form of the latter is rather arbitrary
as long as it belongs to the underlying theory space. After that, we can proceed with detailed
studies of the renormalisation flow and the fixed point sector. However, before we turn to these
issues, it is fairly worthwile to become more precise on the definition of theory space for the
present case.

In order to uniquely specify the theory space T , we need to fix a collection of degrees
of freedom as well as a selection of imposed symmetry conditions. Recalling our discussion
from paragraphs A and B of this section, the relevant degrees of freedom are represented by
the invariants F and G , though, in principle, the gauge field A appears as the fundamental
variable. However, since we demand Lorentz and local U(1) invariance, the restriction on pure
F and G dependencies is nevertheless justified, at least as long as invariants constructed from
field strength derivatives can be neglected (see below). Thus, theory space is considered as the
following set of action functionals A:

T ··=
{
A | A ⊜ A [F ,G ]

}
. (3.13)
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3.1 Prelude: Modelling the Theory

In terms of a derivative expansion, a generic theory space representative A ∈ T appears like:

A [F ,G ] =
� { ∑

n,m∈Z
anmF nG m

}
≡

�
W
(
F ,G

)
ddx, (3.14)

which corresponds to the zeroth order expansion term. In a more general approach, also higher
order derivative contributions would need to be considered in the equations, including for
instance ∼ (∂µF )2 or ∼ (∂µF

µν)2. In this situation, it is no longer possible to fully express
a generic action functional A ∈ T solely in terms of F and G and the theory space (3.13)
needs to be properly adjusted. The integrand in (3.14) is then enlarged by a “kinetic function”
K which depends on new field strength derivative invariants. In this thesis, however, we will
exclusively concentrate on the homogeneous case which will be characterised further below.

It is clear, that also the effective action (3.12) shows up as an element of T , and so does the
unconstrained effective average action Γ̃k for all k ∈ R+

0 . The unconstrained EAA possesses
the same generic form like it is presented in eq. (3.14), but since it describes an RG curve in
theory space, the coefficients become scale dependent, i.e. anm → anm(k). They carry all the
information of the renormalisation flow and are designated as generalised couplings as in the
language of ch. 2.

The scale attachment W → Wk allows us to write Γ̃k as follows:

Γ̃k [A] =
�

Wk

(
F ,G

)
ddx. (3.15)

At the end of paragraph B we have already seen that G ∈ ıR. However, if one wants the
EAA to be real-valued, this implies that some of the generalised couplings need to be purely
imaginary. To see this, take for instance the term a01(k)G in eq. (3.14). Since G ∈ ıR, but
Γk ∈ R for each k by request, we conclude that a01 ∈ ıR. Conversely, this is not true for the
quadratic contribution a02G 2, because G 2 is already a real number and thus a02 ∈ R. Either
way, to avoid collections of mixed-valued generalised couplings, one can restrict on a uniform
structure in the sense that all couplings which actively drive the renormalisation flow take their
values from the same algebraic field of numbers. Since F is a manifestly real-valued quantity,
one can exclude all parts of Wk that contribute in odd powers of G and therefore appear purely
imaginary.

However, there is another good reason to exclude odd powers of G in eq. (3.14), which relies
on the fact that the Euclidean EAA must be parity-preserving. The invariant G by itself
is a pseudoscalar; consider a parity transformation that can be described by a matrix P ⊜
diag (1,−1,−1,−1). Now apply P on the field strength tensor F, where a simple computation
of the product PT FP reveals that the electric field transforms like E 7→ −E and the magnetic
field is unchanged, B 7→ B. We already saw how to express G in terms of E and B, which
implies: G = E · B 7→ −E · B = −G . Thus, G behaves odd under parity transformations and
hence appears as a pseudoscalar. However, even powers of G precisely laminate this property
and behave like parity-preserving quantities as it is required for the EAA.

According to our recent discussion, eq. (3.15) reduces to:

Γ̃k [A] ↘ Γ̃red
k [A] =

�
W red

k

(
F ,G 2

)
ddx. (3.16)

In order to keep the notation simple, we recycle identifiers and set W red
k → Wk as well as

Γ̃red
k → Γ̃k. In what follows, our focus is on setting up the Wetterich equation (2.15) for the

EAA (3.16).
Let us begin by deriving an expression for the regularised full propagator,

(
Γ(2)

k [A] + Rk

)−1
,

and first concentrate on the second functional derivative of Γ̃k, putting the regulator aside for
a moment. For this we have to compute:(

Γ̃(2)
k

)µν
[A] (x, y) = δ2Γ̃k [A]

δAµ(x)δAν(y) =
�

δ2Wk (F ,G 2)
δAµ(x)δAν(y)ddz. (3.17)
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Expanding the second functional derivative of Wk by using the chain rule leads to:
δ2Wk (F ,G 2)
δAµ(x)δAν(y) = ∂2Wk

∂F 2

(
δF (z)
δAµ(x)

)(
δF (z)
δAν(y)

)
+ ∂2Wk

∂ (G 2)2

(
δG 2(z)
δAµ(x)

)(
δG 2(z)
δAν(y)

)

+ ∂2Wk

∂F∂G 2

[(
δF (z)
δAµ(x)

)(
δG 2(z)
δAν(y)

)
+
(
δG 2(z)
δAµ(x)

)(
δF (z)
δAν(y)

)]

+ ∂Wk

∂F

(
δ2F (z)

δAµ(x)δAν(y)

)
+ ∂Wk

∂G 2

(
δ2G 2(z)

δAµ(x)δAν(y)

)
.

(3.18)

To proceed, we need to take a total of four functional derivatives of the invariants (3.11). This
works rather straightforwardly and can be done using standard rules of functional differentia-
tion. Let us therefore directly jump to the results:

δF (z)
δAµ(x) = F λµ∂λδ

(d) (z, x) , δG 2(z)
δAµ(x) = 2G (⋆F )λµ ∂λδ

(d) (z, x) ,

δ2F (z)
δAµ(x)δAν(y) = δµν

[
∂λδ

(d) (z, y)
] [
∂λδ(d) (z, x)

]
−
[
∂µδ(d) (z, y)

] [
∂νδ(d) (z, x)

]
,

δ2G 2(z)
δAµ(x)δAν(y) = 1

4FκρFπτ

(
εµνλσεκρπτ + 2εµσπτενλκρ

) [
∂λδ

(d)(z, y)
] [
∂σδ

(d)(z, x)
]
.

(3.19)

After insertion of (3.19) into (3.18), the integration in eq. (3.17) can be carried out piecewise;
for each term we obtain an expression of the form ∼

� [
∂λδ

(d)(z, x)
] [
∂σδ

(d)(z, y)
]

ddz, which,
by means of integration by parts, can be reformulated as ∼

� [
∂λ∂σδ

(d)(z, x)
]
δ(d)(z, y)ddz =

∂λ∂σδ
(d)(y, x), after having neglected additional boundary terms. However, since so far the

field strength tensor is considered as a local function on spacetime, the integration by parts
additionally generates derivatives of the field strength itself and therefore of the invariants
F and G . To avoid unnecessary complications, we follow a similar argumentation as in the
context of the Wilson-Fisher example in sec. 2.3 and agree on the further assumption that
the field strength derivative sector do not exert a strong influence on the flow of Wk, as it was
already suggested by the definition of T in (3.13) and its elements in eq. (3.14). In practice,
this means that the renormalisation flow is projected onto the potential4 Wk. Alternatively and
more accurately expressed, we suppose a sufficiently homogeneous field strength, F(z) ≃ const.
for all z ∈ Rd, and refer to this argument as the homogeneity condition.

Before we continue, it is convenient to compactify our notation, hence we define:
∂Wk

∂F
··=W ′

k & ∂Wk

∂G 2
··=Ẇk. (3.20)

Under consideration of the homogeneity condition, the next intermediate result reads:(
Γ̃(2)

k

)µν
[A] (x, y) = W ′

k

[
δµν

(
−∂2

)
+ ∂µ∂ν

]
δ(d)(x, y) −

{
W ′′

k F
λµF σν

+ 4G 2Ẅk

(
⋆F λµ

) (
⋆F σν

)
+ 2G Ẇ ′

k

[
F λµ

(
⋆F σν

)
+ F λν

(
⋆F σµ

)]

+ 1
4ẆkFκρFπτ

(
εµνλσεκρπτ + 2εµσπτενλκρ

)}
∂λ∂σδ

(d)(x, y).

(3.21)

4It would be inadequate to identify Wk with a potential in the ordinary sense, since it exhibits also kinematical
properties, like for instance the term F which displays the kinetic energy of freely propagating spin-1 bosons
in Euclidean space. Anyway, for the sake of convenience we will nevertheless simply call Wk the “potential”, or
more precisely, the “effective average potential”.
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Instead of working with the coordinate space representation of Γ̃(2)
k which contains derivatives of

delta distributions, it is conventional to perform the transition to momentum space where Γ̃(2)
k

becomes a purely algebraic expression. Since the remaining local dependencies are carried by the
derivative operators and the Dirac delta distributions, it is straightforward to apply a Fourier
transformation, e.g. by using the common rules: δ(d)(x) F7→ 1Rd(x) and ∂µf(x) F7→ −ıpµf(p),
where F denotes the Fourier transformation and f is any suitable test function.

Before we turn to explicitly present the momentum space representation of Γ̃(2)
k , we can make

a notable simplification on the last term in eq. (3.21), which in momentum space reads:

1
4ẆkFκρFπτ

(
εµνλσεκρπτ +2εµσπτενλκρ

)
pλpσ = 2ẆkG ε

µνλσpλpσ +2Ẇk

(
⋆F µλ

)(
⋆F νσ

)
pλpσ. (3.22)

Here we have the totally antisymmetric Levi-Civita tensor in combination with the symmetric
product pλpσ, thus εµνλσpλpσ = 0 and only the second term in (3.22) survives. Thus, from
eq. (3.21) we obtain:

(
Γ̃(2)

k

)µν
[A] (p) = W ′

k

(
δµνp2 − pµpν

)
+
{

W ′′
k F

µλF νσ

+ 2
(
Ẇk + 2G 2Ẅk

) (
⋆F µλ

)(
⋆F νσ

)

+ 2G Ẇ ′
k

[
F µλ

(
⋆F νσ

)
+ F νλ

(
⋆F µσ

)]}
pλpσ.

(3.23)

Let us now face the problem of gauge redundancies. As it was explained in sec. 2.4, the
unconstrained EAA needs to be equipped with a mechanism that ensures the path integral
only to integrate over physically inequivalent field configurations. For this, the regulated weight
factor e−S−∆Sk is enlarged by two additional actions which take care of gauge fixing and the
integration over gauge orbit space. These requirements are implemented via a gauge fixing
action, Sgf , and the Faddeev-Popov ghost action, Sgh, respectively. Since we are dealing with
an Abelian gauge theory, the ghost fields decouple from the spin-1 bosonic degrees of freedom. In
consequence, the ghost degrees of freedom do not contribute non-trivially to the renormalisation
flow and hence can be dropped from our consideration.

It remains to decide for a proper gauge fixing condition. A convenient choice is the standard
Lorenz gauge:

0 = G (A) ≡ ∂µA
µ. (3.24)

From this, the corresponding scale-dependent gauge fixing action can be constructed according
to eq. (2.64):

(Sgf)k [A] = 1
2κZk

�
(∂µA

µ)2 ddx, (3.25)

where κ ∈ R is a formally necessary gauge parameter. It will drop out at some point of our
calculations. The flow controlled field strength renormalisation Zk appears as a consequence of
having Zk as the generic prefactor in front of the kinetic energy, F ∼ A2. It further implements
non-trivial flow dynamics through its k dependence.

Following the same procedure as for the unconstrained EAA, we find by a simple computation:

(
S

(2)
gf

)µν
(p) =

(
F

δ2 (Sgf)k [A]
δAµ(x)δAν(y)

)
(p) = 1

κ
Zkp

µpν . (3.26)

Conclusively, the constrained effective average action is given as Γk = Γ̃k +(Sgf)k, and its second
functional derivative follows from eqs. (3.23) & (3.26).
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It can be written in a compactified form that uses field space projectors:

Γ(2)
k = ζ⊥

k P⊥ + ζ
∥
kP∥ + ζ△k P△ + ζ▽k P▽ + ζ♢k P♢. (3.27)

The definitions of the projectors, {P⊥,P∥,P△,P▽,P♢}, and their coefficients, {ζ⊥
k , ζ

∥
k , ζ

△
k , ζ

▽
k , ζ

♢
k },

are summarised in tab. 3.1 below.

Field Space Direction Projector Projection Coordinate

Transversal P⊥ = δ − p⊗p
p2 ζ⊥

k = W ′
kp

2

Longitudinal P∥ = p⊗p
p2 ζ

∥
k = 1

κ
Zkp

2

Sub-Transversal P△ = (Fp)⊗(Fp)
(Fp)2 ζ△k = W ′′

k (Fp)2

Dual Sub-Transversal P▽ = (⋆Fp)⊗(⋆Fp)
(⋆Fp)2 ζ▽k = 2

(
Ẇk + 2G 2Ẅk

)
(⋆Fp)2

Skew Sub-Transversal P♢ = (Fp)⊗(⋆Fp)+(⋆Fp)⊗(Fp)
G p2 ζ♢k = 2G 2Ẇ ′

kp
2

Table 3.1: Operator components of Γ(2)
k . Remark: recall that ⊗ denotes the dyadic product.

Let us briefly list some geometric properties of the projectors. Each of them acts as an operator
on the A-field space and filters directional propagation informations. For instance, consider the
wide class of gauge fields Aµ(p) = pµΛ(p) for largely arbitrary functions Λ. Their transversal
component of propagation is singled out by the action of P⊥, but since Aµ ∼ pµ points in direc-
tion of motion, we basically do not expect a transversal part in this situation. Indeed, together
with tab. 3.1 we find: P µν

⊥ Aν(p) =
(
δµνpν − pµpνpν

p2

)
Λ(p) = (pµ − pµ) Λ(p) = 0. By contrast, the

longitudinal projection acts like an identity in this case, i.e. P µν
∥ Aν(p) = Aµ(p). This example

should justify the namings “transversal” and “longitudinal” that appear in tab. 3.1.
It is trivial to verify that the transversal and longitudinal projectors add up to unity:

P⊥ + P∥ = δ ≡ 1. (3.28)

Furthermore, since (Fp)µ pµ = F µνpµpν = 0, because we contract an antisymmetric object, the
field strength tensor F, with the symmetric product pµpν , the actions of the remaining pro-
jectors {P△,P▽P♢} on Aµ(p) ∼ pµ vanish identically. Together with eq. (3.28), it thus follows
that their codomains must be a subset of the transversal portion of A-field space on which P⊥
is surjective.

Moreover, it is not difficult to show that each projector is idempotent of degree 2, so they can
factually be classified as projection operators in the strict algebraic sense. The only exception to
this concerns the skew sub-transversal projector P♢, where P2

♢ ̸= P♢ and the object rather ap-
pears as a sum of two proper projection operators, namely (Fp)⊗(⋆Fp)

G p2 ··=PL
♢ and (⋆Fp)⊗(Fp)

G p2 ··=PR
♢ .

As it is clear from eq. (3.27), Γ(2)
k appears as a linear combination of the projectors given in

tab. 3.1. Each of them is provided with a scale dependent coefficient that controls the projection
coordinate while drifting along the renormalisation flow. Except for ζ∥

k , they strongly depend
on the potential Wk and in particular on its derivatives.
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Eventually, for the derivation of the full propagator we need the set of algebraic relations
among the projectors under ordinary multiplication. For this purpose we introduce the Cayley
table that includes the finite set of really projection operators, i.e. taking care of the decompo-
sition P♢ = PL

♢ + PR
♢ in proper sub-transversal projectors. The individual computations rely

to some extent on two helpful identities:
F µλF ν

λ + (⋆F )µλ (⋆F )ν
λ = 2F δµν ,

F µλ (⋆F )ν
λ = (⋆F )µλ F ν

λ = G δµν .

(3.29)

For a proof of them, one is invited to consult the end of app. A, cf. Proposition A.1. Finally,
the Cayley table is positioned below.

• P⊥ P∥ P△ P▽ PL
♢ PR

♢

P⊥ P⊥ 0 P△ P▽ PL
♢ PR

♢

P∥ 0 P∥ 0 0 0 0

P△ P△ 0 P△ g2PL
♢ PL

♢ P△

P▽ P▽ 0 g2PR
♢ P▽ P▽ PR

♢

PL
♢ PL

♢ 0 P△ PL
♢ PL

♢
1
g2 P△

PR
♢ PR

♢ 0 PR
♢ P▽

1
g2 P▽ PR

♢

Table 3.2: Multiplication relations among projection operators on A-field space. The dimen-
sionless parameter g is defined as g ··= G p2√

(Fp)2(⋆Fp)2 .

In order to construct the regularised full propagator, we need to implement a regularisation
scheme in the form of an IR regulator as it was described in sec 2.1. For this, we adhere to
eq. (2.18), but for the sake of generality without giving additional details on the shape function
R until further notice. Furthermore, it has just become necessary to consider a field strength
renormalisation also for the regulator itself, such that it accounts for the required mass-like
damping in the deep IR regime, i.e. Γ(2)

k + Rk = Zk (p2 + k2) + . . . for p2 ≪ k2. This means,
that the regulator shall reduce to Rk(p) ≈ Zkk

2 in the IR limit to avoid an odd suppression
behaviour that generates a mass k2/Zk instead of k2, as it would be the case if we decide on
limp2/k2→0 Rk = k2. This measure is also known under the name “adjusted cutoffs” and further
details of it can be found in ref. [ 28 ]. With these comments, a quite generic form for Rk

appears as a linear combination of the two disjoint projectors P⊥ and P∥:

Rk(p) = Zkp
2R

(
p2

k2

) [
P⊥ + 1

κ
P∥

]
. (3.30)

Combining the eqs. (3.27) & (3.30) we obtain the regularised full propagator :

Γ(2)
k + Rk =

(
ζ⊥

k + Zkp
2R
)

P⊥ +
(
ζ

∥
k + 1

κ
Zkp

2R
)

P∥ + ζ△k P△ + ζ▽k P▽ + ζ♢k P♢. (3.31)
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D. The Exact Renormalisation Flow Equation

This paragraph is devoted to the derivation of an explicit formulation of the exact renormali-
sation group equation (ERGE). First, let us recall the Wetterich equation (2.15) and customise
it to our present case:

∂tΓk [A] = 1
2 Tr

(P ·L)

[(
Γ(2)

k [A] + Rk

)−1
∂tRk

]
. (3.32)

The supertrace manifests as a trace-pair; on one hand we need to take a momentum trace (P ),
provided that all quantities within the trace operation are also considered in their momentum
space representation, otherwise we would have to integrate over coordinate space first, which
we can circumvent by means of a Fourier transformation. Using the homogeneity condition,
the coordinate space integral yields a volume factor Ωd that cancels with another volume factor
on the LHS of eq. (3.32), and what remains is precisely the momentum trace. On the other
hand, since we are dealing with vector degrees of freedom, we additionally need to perform a
trace over Lorentz indices (L).

The advantage of working with projection operators becomes markedly perceptible when we
derive the inverse of (3.31). Let O denote an arbitrary operator, then its inverse - if it exists - is
uniquely determined and satisfies the equation OO−1 = 1 = O−1O. We identify O ≡ Γ(2)

k +Rk

and make an expansion ansatz in field space projectors {P⊥,P∥,P△,P▽,P♢} for
(
Γ(2)

k + Rk

)−1
,

which is justified as the full propagator represents yet another operator that acts on A-field
space: (

Γ(2)
k + Rk

)−1
= ξ⊥

k P⊥ + ξ
∥
kP∥ + ξ△k P△ + ξ▽k P▽ + ξ♢k P♢. (3.33)

The determination of the unknown coefficients {ξ⊥
k , ξ

∥
k, ξ

△
k , ξ

▽
k , ξ

♢
k } proceeds as follows: first we

consider 1 =
(
Γ(2)

k + Rk

) (
Γ(2)

k + Rk

)−1
and insert (3.31) together with (3.33). Next, we make

use of the Cayley table, tab. 3.2, to deal with the projector products and factorise in terms of
projection operators rightafter. Then, we take account of eq. (3.28) and eventually read off the
algebraic system of equations that uniquely fixes the coefficients {ξ⊥

k , ξ
∥
k, ξ

△
k , ξ

▽
k , ξ

♢
k }. Indeed, the

whole calculation is rather tedious but elementary, since the resulting algebraic system is only
weakly coupled. In order to maintain clarity we skip most of the details and directly present
its solution:

ξ⊥
k = 1

ζ⊥
k + Zkp2R

, ξ
∥
k = 1

ζ
∥
k + 1

κ
Zkp2R

,

ξ△k =

(
ζ⊥

k + Zkp
2R
)−1

[(
ζ♢k
)2
g−2 − ζ△k

(
ζ⊥

k + ζ▽k + Zkp
2R
)]

(
ζ⊥

k + ζ△k + ζ♢k + Zkp2R
) (
ζ⊥

k + ζ▽k + ζ♢k + Zkp2R
)

−
(
ζ♢k + ζ▽k g

2
) (
ζ△k + ζ♢k g

−2
) ,

ξ▽k =

(
ζ⊥

k + Zkp
2R
)−1

[(
ζ♢k
)2
g−2 − ζ▽k

(
ζ⊥

k + ζ△k + Zkp
2R
)]

(
ζ⊥

k + ζ△k + ζ♢k + Zkp2R
) (
ζ⊥

k + ζ▽k + ζ♢k + Zkp2R
)

−
(
ζ♢k + ζ▽k g

2
) (
ζ△k + ζ♢k g

−2
) ,

ξ♢k =

(
ζ⊥

k + Zkp
2R
)−1 [

ζ△k ζ
▽
k g

2 − ζ♢k
(
ζ⊥

k + ζ♢k + Zkp
2R
)]

(
ζ⊥

k + ζ△k + ζ♢k + Zkp2R
) (
ζ⊥

k + ζ▽k + ζ♢k + Zkp2R
)

−
(
ζ♢k + ζ▽k g

2
) (
ζ△k + ζ♢k g

−2
) .

(3.34)

Let us now take the RG time derivative of eq. (3.30):

∂tRk(p) = −Zkp
2
(
ηkR + 2p

2

k2R
′
) [

P⊥ + 1
κ

P∥

]
. (3.35)
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Here, we finally re-encounter the anomalous dimension ηk, that by definition represents a
measure for the relative change of the field strength renormalisation Zk with respect to RG
time:

ηk ··= − 1
Zk

∂tZk = −∂t ln (Zk) . (3.36)

From a physical perspective, the effect that arises through the anomalous dimension becomes
visible by comparing free field theories with their possible interacting extensions, for instance
within a perturbation theoretical framework. In the free Gaussian case, each operator O changes
by a factor of a−∆ under a dilation x 7→ ax with a ∈ R. The number ∆ is called the canonical
dimension of O. When turning on interactions, this number could shift by an amount that
refers to the anomalous dimension, i.e. ∆ → ∆ + η, and as soon as renormalisation flow effects
come into play, this shift will be scale-dependent and corresponds to what we have just defined
according to eq. (3.36).

Using once more the Cayley table, tab. 3.2, the operator product of (3.33) and (3.35) can be
inferred:(

Γ(2)
k + Rk

)−1
∂tRk = −Zkp

2
(
ηkR + 2p

2

k2R
′
)[(

Γ(2)
k + Rk

)−1
+ 1 − κ

κ
ξ

∥
kP∥

]
. (3.37)

We are now in position to go through the various traces that we need to apply in (3.37). As
it was already mentioned, from the homogeneity condition it follows that Wk is independent of
any local coordinates, thus the LHS of the Wetterich equation (3.32) reduces to ∂tΓk = Ωd∂tWk,
where Ωd denotes a volume factor that originates from the d-dimensional coordinate space inte-
gration. On the RHS of eq. (3.32), we can express all quantities in momentum space, obtaining
another factor Ωd that cancels with its counterpart on the LHS as we have recently explained.
The Lorentz trace (L) is distributed among the individual projectors, whose computations can
be done straightforwardly, except for P♢ which requires slightly more effort. For this, we need
eq. (3.29):

Tr
(L)

[P♢] = Tr
(L)

[
(Fp) ⊗ (⋆Fp) + (⋆Fp) ⊗ (Fp)

G p2

]

=
(Fp)µ (⋆Fp)µ + (⋆Fp)µ (Fp)µ

G p2

= 2F
µλ (⋆F )ν

λ pµpν

G p2
(3.29)= 2G δµνpµpν

G p2 = 2.

(3.38)

The remaining Lorentz traces are:

Tr
(L)

[P⊥] = d− 1 & Tr
(L)

[
P∥
]

= Tr
(L)

[P△] = Tr
(L)

[P▽] = 1. (3.39)

Eventually, the momentum trace (P ) translates into a momentum integral that cannot be solved
at this stage, unless more information on the shape function R is provided (cf. sec. 3.2).

Collecting the results from (3.37)-(3.39) and inserting them into eq. (3.32) finally yields the
exact renormalisation group equation to leading order in a derivative expansion:

∂tWk = −1
2Zk

�
p2
(
ηkR + 2p

2

k2R
′
)(

(d− 1)ξ⊥
k + 1

κ
ξ

∥
k + ξ△k + ξ▽k + 2ξ♢k

) ddp

(2π)d
. (3.40)

Our original aim was to investigate the fixed point sector of the self-interacting locally U(1)
invariant model, i.e. of the renormalisation flow which is characterised by the ERGE (3.40).
For this, it is useful to perform the transition to dimensionless quantities first.
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E. Dimensionless Quantities and Field Renormalisation

The goal of this paragraph is to render the functional PDE (3.40) autonomous in its scale
dependence k. This mathematical condition can be achieved by switching to dimensionless
quantities.

In what follows, we adhere to the information provided in app. B, where some basic di-
mensional analysis based on the model of our present case was already carried out, e.g. that
[F ] = [G ] = d holds in natural units where ℏ = 1 and c = 1.

The only characteristic quantity at hand defining a mass scale is given by the scale param-
eter k. It counts one mass unit since it represents a momentum, i.e. [k] = 1. Let us therefore
introduce dimensionless invariants by multiplying F and G with an appropriate power of k,
but simultaneously implement a normalisation to account for the generic field strength renor-
malisation factor in front of the momentum integral as presented in eq. (3.40):

F̃ ··= Zkk
−dF & G̃ ··= Zkk

−dG . (3.41)

According to these definitions, it is now possible to deduce a dimensionless field strength tensor.
For this, we use the definition of F :

F̃ ≜ Zkk
−d
(1

4FµνF
µν
)

= 1
4

(√
Zkk

− d
2Fµν

)(√
Zkk

− d
2F µν

)
≡ 1

4 F̃µνF̃
µν . (3.42)

Hence we identify the renormalised dimensionless field strength:

F̃ =
√
Zkk

− d
2 F, (3.43)

where the same is true for the Hodge dual ⋆F.
In addition to this, we define a dimensionless version of the effective average potential under

consideration of [Wk] = d (cf. app. B):

wk

(
F̃ , G̃ 2

)
··= k−dWk

(
Z−1

k kdF̃ ,
(
Z−1

k kdG̃
)2
)

≡ k−dWk

(
F ,G 2

)
. (3.44)

With this, all preparations are made to translate the LHS of eq. (3.40) to its dimensionless
form:

∂tWk = k∂k

(
kdwk

)
= k

(
dkd−1wk + kd∂kwk + kdw′

k∂kF̃ + kdẇk∂kG̃
2
)

= kd
(
dwk + ∂twk − w′

k (ηk + d) F̃ − 2ẇk (ηk + d) G̃ 2
)
.

(3.45)

Note that we follow the convention (3.20) once more, i.e. a prime or a dot indicates derivatives
of w with respect to F̃ or G̃ 2 respectively.

Let us now turn our attention to the RHS of eq. (3.40) and consider the collection of coef-
ficients {ξ⊥

k , ξ
∥
k, ξ

△
k , ξ

▽
k , ξ

♢
k } ≡ Ξ. To improve readability, we will generically speak of arbitrary

representatives ξk ∈ Ξ in what follows. The same holds for ζk ∈ Π ≡ {ζ⊥
k , ζ

∥
k , ζ

△
k , ζ

▽
k , ζ

♢
k }. Before

we continue our discussion, it is useful to derive a set of relations connecting derivatives of Wk

with derivatives of wk using the eqs. (3.41) & (3.44):

W ′
k ≜

∂Wk

∂F
= ∂F̃

∂F

∂

∂F̃

(
kdwk

)
= Zkw

′
k −→ W ′′

k = Z2
kk

−dw′′
k ,

Ẇk ≜
∂Wk

∂G 2 = ∂G̃ 2

∂G 2
∂

∂G̃ 2

(
kdwk

)
= Z2

kk
−dẇk −→ Ẅk = Z4

kk
−3dẅk,

Ẇ ′
k ≜

∂2Wk

∂F∂G 2 =
(
∂F̃

∂F

)(
∂G̃ 2

∂G 2

)
∂2

∂F̃∂G̃ 2

(
kdwk

)
= Z3

kk
−2dẇ′

k.

(3.46)
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For definiteness and to give an illustration, let us specifically consider ζ⊥
k ∈ Π and make use of

the relations (3.46) (cf. also tab. 3.1):

ζ⊥
k ≜ W ′

kp
2 = Zkw

′
kk

2 p
2

k2 ≡ Zkk
2
(
w′

ks
2
)

≡ Zkk
2ζ̃⊥

k . (3.47)

Here, we have introduced a dimensionless parameter s that measures the momentum p in por-
tions of the scale k, i.e. s ··= p/k. This enables us to read off the dimensionless transversal
projection coordinate ζ̃⊥

k ≡ w′
ks

2. Since all projection operators are dimensionless per con-
struction, each ζk ∈ Π must behave identically to ζ⊥

k under dimensional rescaling, thus we can
deduce: ζk = Zkk

2ζ̃k for all ζk ∈ Π. Based on the information from tab. 3.1, we obtain the
following set of dimensionless projection coordinates:

ζ̃⊥
k = w′

ks
2, ζ̃

∥
k = 1

κ
s2,

ζ̃△k = w′′
k

(
F̃s
)2
, ζ̃▽k = 2

(
ẇk + 2G̃ 2ẅk

) (
⋆F̃s

)2
, ζ̃♢k = 2G̃ 2ẇ′

ks
2.

(3.48)

From the observation that elements which live in Π correspond to the inverse propagator(
Γ(2)

k + Rk

)
, whereas elements from Ξ belong to the full propagator, we can conclude that

each ξk ∈ Ξ must scale inversely to ζk ∈ Π under dimensional transformations ξk 7→ ξ̃k. That
means: ξk = 1

Zkk2 ξ̃k for all ξk ∈ Ξ.
Let us return to the RHS of eq. (3.40) and use our recent findings:

− 1
2Zk

�
p2
(
ηkR + 2p

2

k2R
′
)(

(d− 1)ξ⊥
k + 1

κ
ξ

∥
k + ξ△k + ξ▽k + 2ξ♢k

) ddp

(2π)d

(p 7→ p
k

= s)
= −1

2k
d

�
s2
(
ηkR + 2s2R′

) (
(d− 1)ξ̃⊥

k + 1
κ
ξ̃

∥
k + ξ̃△k + ξ̃▽k + ξ̃♢k

) dds

(2π)d
.

(3.49)

Note that the shape function R now depends on the variable s2.
Equating (3.45) and (3.49) finally yields the autonomous ERGE:

∂twk + dwk − (ηk + d)
(
w′

kF̃ + 2ẇkG̃
2
)

= −1
2

�
s2
(
ηkR + 2s2R′

)
Ξ̃(d)

k

dds

(2π)d
. (3.50)

Here, we have introduced a compact notation5:

Ξ̃(d)
k

··= (d− 1)ξ̃⊥
k + 1

κ
ξ̃

∥
k + ξ̃△k + ξ̃▽k + ξ̃♢k . (3.51)

Eq. (3.50) serves as the starting point for the rest of our upcoming analysis covered in sec. 3.2.

5Note that Ξ̃(d)
k do not only depend on the scale k and the number of spacetime dimensions d, but also on

the dimensionless momentum measure s as well as the dimensionless invariants F̃ and G̃ 2.
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3.2
Global Fixed Points: Results and Discourse

A. Fixed Point Equation and Truncation of Theory Space

The autonomous ERGE (3.50) describes the projected renormalisation flow of wk, that is a
family of RG trajectories within the dimensionless truncated theory space T̃trunc ≡

{
A | A ⊜

A
[
F̃ , G̃ 2

]}
⊂ T̃ =

{
A | A ⊜ A

[
F̃ , G̃

]} ∼= T . Each member of that family is uniquely
determined once a set of well-posed boundary conditions was asserted. A careful analysis
of eq. (3.50) requires information about possible RG future-end points, i.e. UV attractors
for t → ∞, to guarantee, among other physical conditions, a well-behaving RG flow in the
asymptotic future. As it was discussed in sec. 2.2, physically reasonable candidates for such
future-end points are fixed points of the RG flow, i.e. where variations of all generalised
couplings with respect to RG time freezes, meaning ∂twk → 0 as we approach the fixed point
wk → w∗. Thus, from eq. (3.50), we obtain the fixed point equation (FPE):

dw∗ − (η∗ + d)
(
w′

∗F̃ + 2ẇ∗G̃
2
)

= −1
2

�
s2
(
η∗R + 2s2R′

)
Ξ̃(d)

∗
dds

(2π)d
. (3.52)

At first glance we can make the following structural observations on eq. (3.52):

(1). Even though the fixed point equation does not appear as a functional PDE anymore, it is
still a PDE in the ordinary sense. It describes the fixed point potential’s dynamical behavior
in the variables F̃ and G̃ 2.

(2). The integral on the RHS can be studied piecewise for each term of eq. (3.51). If we decide
for a linear cutoff, cf. eq. (2.18), the transversal and longitudinal integrations, which correspond
to ξ̃⊥

∗ and ξ̃
∥
∗ respectively, can properly be solved analytically using properties of the hyperge-

ometric function. However, due to the high degree of non-linearity which especially reveals in
the sub-transversal portions, manifesting in rational integrands containing contributions of the
form

(
F̃s
)2
,
(
⋆F̃s

)2
and powers of s up to forth order in both numerator and denominator,

these sectors are hardly accessible by means of analytical methods.

(3). Even if we find well-suited solutions to the sub-transversal integrals, they are likely of
comparable complexity as their integrands, which provokes a significant non-linear derivative
structure of the fixed point potential up to second order in both variables. The resulting PDE
for w∗ is therefore expected to reveal a considerably complicated structure.

For these reasons, we start with a rather cautious approach which intends to truncate theory
space even further. Specifically, we decide to exclude all contributions of w∗ which are propor-
tional to any power of G̃ , namely by supposing that all related generalised couplings vanish
identically. In consequence it follows that ẇ∗ = ẅ∗ = ẇ′

∗ = 0, which simplifies our system
substantially. Moreover, the fixed point equation (3.52) reduces to a non-linear ODE which is
much better to handle than a significantly non-linear PDE.

Furthermore, two dimensionless projection and inverse projection coordinates vanish in this
one-dimensional situation according to (3.48): ζ̃▽∗ = ζ̃♢∗ = 0 and consequently ξ̃▽∗ = ξ̃♢∗ = 0.
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We are left with:

ξ̃⊥
∗ = 1

ζ̃⊥
∗ + s2R

, ξ̃∥
∗ = 1

ζ̃
∥
∗ + 1

κ
s2R

, ξ̃△∗ = − ζ̃△∗(
ζ̃⊥

∗ + s2R
) (
ζ̃⊥

∗ + ζ̃△∗ + s2R
) . (3.53)

Upon insertion of (3.48) in each term of (3.53) we find:

s2Ξ̃(d)
∗ = d− 1

w′
∗ +R

+ 1
1 +R

−
w′′

∗

(
F̃s
)2

(w′
∗ +R)

[
(w′

∗ +R) s2 + w′′
∗

(
F̃s
)2
] . (3.54)

In view of integrating (3.54) by means of the fixed point equation, the only problematic structure
comes through the non-linear factor

(
F̃s
)2

. To get a better overview, we can express it in terms
of dimensionless electric and magnetic fields, Ẽ and B̃ respectively. Assuming d = 4 spacetime
dimensions and a vector representation s ⊜ (s0, s)T , we get:(

F̃s
)2

= s2
0Ẽ2 + Ẽ2s2 cos (ϑe)2 + B̃2s2 sin (ϑm)2 + 2s0s ·

(
Ẽ × B̃

)
, (3.55)

where ϑe and ϑm denote the angles enclosed between s and Ẽ or B̃ respectively. To avoid severe
technical difficulties and produce first concrete results, it is advantageous to restrict ourselves
to a certain class of field configurations which are summarised under the term self duality.
As the name suggests, this class relies on the assumption that F̃ = ⋆F̃ which is equivalent
to Ẽ = B̃. Actually, the only non-trivial additional information that we have put into our
model is that both the electric and magnetic field are initially not perpendicular, because then
it can be shown that there always exists a frame of reference in which Ẽ and B̃ are parallel,
provided that there is no system in which Ẽ · B̃ = 0 is true6. It should be noted that the
idea of “self duality” only becomes meaningful in d = 4 spacetime dimensions, because then
the field strength and dual field strength tensor are of the same degree and can therefore be
mathematically compared to each other.

Either way, the key implication of self duality can be seen from the upper equation in (3.29):
using F̃ = ⋆F̃ we obtain:

2F̃s2 = 2F̃ δµνsµsν = F̃ µλF̃ ν
λ sµsν +

(
⋆F̃
)µλ (

⋆F̃
)ν

λ
sµsν = 2

(
F̃ s
)2
, (3.56)

which leads to the elegant identity:

(
F̃s
)2

= F̃s2. (3.57)

Inserting (3.57) in (3.54) results in a sequence of radial functions which can easily be integrated.
Let us now inspect the consequences on eq. (3.52) that are caused by the entirety of our recent

truncations/restrictions. First of all, the RHS can be solved in three steps by splitting the
integral according to eq. (3.54). For this it is useful to consider a general identity that simplifies
radial integrals by performing their angular integration first. For any locally integrable function
f : Rd → U ⊂ R we have:

1
2

�

Rd

f
(
s2
) dds

(2π)d
= vd

∞�

0

r
d
2 −1f(r)dr,

vd ··=
1

2 (4π)d/2 Γ
(

d
2

) .
(3.58)

6For a proof of this statement, see app. D, cf. Proposition D.7.
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A proof of this relation follows by a direct calculation that works for instance with d-dimensional
spherical coordinates.

Using (3.58) under consideration of eq. (3.54) together with the identity (3.57) cuts the fixed
point equation (3.52) down to:

dw∗ − (η∗ + d)w′
∗F̃ = (1 − d) vd

∞�

0

r
d
2 −1η∗R(r) + 2rR′(r)

w′
∗ +R(r) dr

−vd

∞�

0

r
d
2 −1η∗R(r) + 2rR′(r)

1 +R(r) dr

+vdw
′′
∗F̃

∞�

0

r
d
2 −1 η∗R(r) + 2rR′(r)(

w′
∗ +R(r)

) [
w′

∗ + w′′
∗F̃ +R(r)

]dr.

(3.59)

The remaining radial integrals can be referred to as so-called threshold functions which
commonly appear in the realm of renormalisation flow computations. They show up as a
consequence of the supertrace operation that needs to be performed in order to find explicit
representations of the Wetterich equation and parametrise the 1-loop integrals. Since the oper-
ators of which the supertrace needs to be taken are usually a combination of some differential
operators, it can be shown that the result is expandable in an appropriate set of functions [ 28 ].
These functions refer precisely to the above mentioned threshold functions.

As it becomes visible in (3.59), the integrands share the same numerator which contains the
shape function R and its derivative R′. Recalling our discussion from sec. 2.1, the shape func-
tion is constructed such that it is non-vanishing only up to values r ≃ 1, whereas R′ is peaked
around that point of transition. Consequently, the integrals in (3.59) receive their contributions
primarily from the unit interval, just before the built-in suppression dominates for larger values
r > 1 (hence the name “threshold functions”).

Let us now fix a specific regularisation scheme. For reasons of convenience we choose an
optimal cutoff according to eq. (2.18). The shape function is then given by:

R(r) ≡ Rop (r) = 1 − r

r
1[0,1) (r) ,

R′(r) ≡ (Rop)′ (r) = − 1
r2 1[0,1) (r) .

(3.60)

At this point, it is also convenient to introduce a pair of new abbreviations that improve
readability of our formulas: ω(1) ··= 1 −w′

∗ and ω(2) ··= 1 −w′
∗ −w′′

∗F̃ , so we have ω(2) − ω(1) =
−w′′

∗F̃ . Insertion of (3.60) into (3.59) yields the following sequence of solutions:

(1). First the transversal threshold function:

∞�

0

r
d
2 −1η∗R(r) + 2rR′(r)

w′
∗ +R(r) dr =

1�

0

r
d
2 −1η∗ (1 − r) − 2

1 − ω(1)r
dr

= 4η∗

d(d+ 2)2F1

(
1, d2; d2 + 2; ω(1)

)
− 4
d

2F1

(
1, d2; d2 + 1; ω(1)

)
.

(3.61)
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(2). Second the longitudinal threshold function:

∞�

0

r
d
2 −1η∗R(r) + 2rR′(r)

1 +R(r) dr =
1�

0

r
d
2 −1

(
η∗ − 2 − η∗r

)
dr = −4

d

(
1 − η∗

d+ 2

)
. (3.62)

(3). Finally, the sub-transversal threshold function, where it is helpful to use a split of the form
1

(1−ω(1)r)(1−ω(2)r) = 1
ω(2)−ω(1)

(
ω(2)

1−ω(2)r
− ω(1)

1−ω(1)r

)
before performing the integral directly:

∞�

0

r
d
2 −1 η∗R(r) + 2rR′(r)(

w′
∗ +R(r)

) [
w′

∗ + w′′
∗F̃ +R(r)

]dr =
1�

0

r
d
2

η∗ (1 − r) − 2(
1 − ω(1)r

)(
1 − ω(2)r

)dr

= − 1
w′′

∗F̃

4
d+ 2

[
ω(1)

2F1

(
1, d2 + 1; d2 + 2; ω(1)

)
− ω(2)

2F1

(
1, d2 + 1; d2 + 2; ω(2)

)]

+ 1
w′′

∗F̃

4η∗

(d+ 2)(d+ 4)

[
ω(1)

2F1

(
1, d2 + 1; d2 + 3; ω(1)

)

−ω(2)
2F1

(
1, d2 + 1; d2 + 3; ω(2)

)]
.

(3.63)

The results (3.61)-(3.63) are written in terms of the hypergeometric function 2F1, where we
have used its Euler integral representation to rewrite the integrals. A collection of properties
concerning this special function and also further representations of it can be found in app. C.
It should be made transparent, that using the Euler integral formula for 2F1 is accompanied
with the extra assumption that both ω(1) and ω(2) are strictly smaller than one, such that we
dont leave the principal branch of 2F1. This implies w′

∗ > 0 and w′′
∗F̃ > 0 as two non-trivial

impositions on w∗ that we can consult later to evaluate the validity of SFE and LFE results.
Now that we have finished our preparations we can try to construct a globally-existing fixed

point potential by combining small-field and large-field analytical methods that were described
in sec. 2.3. For this, we adhere to the three-step procedure which we have formulated in the
same section and whose individual steps were numbered as (S1)-(S3). Before we begin, it just
becomes necessary to now decide on a number of spacetime dimensions, such that concrete
results can be extracted. Since so far we considered d = 4 − ϵ, let us now take the limit ϵ → 0,
i.e. d → 4, and with this focus on the natural case. From eq. (3.59) and using (3.61)-(3.63) we
derive the equation of interest for w∗:

w∗ = 1
128π2

(
1 − η∗

6

)
+
(

1 + η∗

4

)
w′

∗F̃

+ 3
128π2 2F1

(
1, 2; 3; ω(1)

)
− η∗

256π2 2F1
(
1, 2; 4; ω(1)

)

+ ω(1)η∗

1 536π2 2F1
(
1, 3; 5; ω(1)

)
− ω(1)

192π2 2F1
(
1, 3; 4; ω(1)

)

+ ω(2)

192π2 2F1
(
1, 3; 4; ω(2)

)
− ω(2)η∗

1 536π2 2F1
(
1, 3; 5; ω(2)

)
.

(3.64)
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B. Fixed Point Potential: Small-Field Expansion

Basically without specifying any explicit form for w∗, we can derive a power expansion
formulation of eq. (3.64) by expressing the hypergeometric function in terms of its Gauss series
representation (cf. app. C):

w∗ = 1
32π2

(
1 − η∗

6

)
+
(

1 + η∗

4

)
w′

∗F̃ + 1
64π2

∞∑
n=1

6 + 2n− η∗

(n+ 2)(n+ 3)

[(
ω(1)

)n
+ 1

2
(
ω(2)

)n
]
. (3.65)

Focusing on small field amplitudes, i.e. small F̃ values, a power series expansion of w∗ is justly
feasible:

wSFE
∗

(
F̃
)

=
∞∑

J=0

σJ

J ! F̃
J = σ0 + F̃ + 1

2σ
2
2F̃

2 + . . . (3.66)

It is important to note that σ1 = 1. That is because of the field normalisation established
in eq. (3.41). Alternatively, we could have also omitted this renormalisation procedure and
instead just defined a dimensionless quantity, e.g. F̂ ··= k−dF , but then the field strength
renormalisation Zk would still appear explicitly in our equations and in this case we would have
had identified the kinematic coefficient σ1 with Zk. In contrast, introducing a field normalisation
as in eq. (3.41) we do not lose any information, but rather re-adjust the flow effects which
originate from Zk to a non-trivial coupling of its relative RG time change through the anomalous
dimension ηk.

We can now give concrete formulas for ω(1) and ω(2) using eq. (3.66):

ω(1)
(
F̃
)

= −
∞∑

J=1

σJ+1

J ! F̃ J & ω(2)
(
F̃
)

= −
∞∑

J=1

σJ+1

J ! (J + 1)F̃ J . (3.67)

Let us adapt the strategy from the Wilson-Fisher example in sec. 2.3 and assign σ2 → µ as a
free parameter, such that all other coefficients σJ with J ̸= 2 can be expressed in terms of µ.
An order by order scan of the system (3.65) reveals a sequence of prefactors similar to (2.44).
Here, we present its first few coefficients (skipping over the trivial cases σ1 = 1 and σ2 ≡ µ):

σ0(µ) = 1
32π2

(
1 − 4

3
µ

µ+ 96π2

)
,

σ3(µ) = µ

800π2

(
30 720π4 + 3 040π2µ+ 3µ2

)
,

σ4(µ) = µ

5

(
12 288π4 + 2 880π2µ+ 2 074

15 µ2 + 71
240π2µ

3 + 3
12 800π4µ

4
)
,

...

(3.68)

In addition, the anomalous dimension satisfies:

η∗(µ) = 8µ
96π2 + µ

. (3.69)

There are basically two options open to us for further investigation. On the one hand, we can
adopt the “Wilson-Fisher perspective” according to sec. 2.3 and prescribe a truncation order n̂
to the system (3.68) which renders it uniquely solvable. The extra input σn̂(µ) = 0 yields a set
of zeros {µ |σn̂(µ) = 0} whose evolution with respect to n̂ needs to be sampled for a stabilising
behaviour as one tends to larger truncation orders. In this sense we follow the SFE procedure
from the Ising model example in sec. 2.3. Once a value for µ has been found, the anomalous
dimension is determined by eq. (3.69).
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Alternatively, we can also specify the anomalous dimension η∗ initially, in order to fix the
free parameter µ by means of the inverse relation of eq. (3.69). All further coefficients σJ follow
from the system (3.68). However, we will first concentrate on the Wilson-Fisher perspective as
it is more familiar to us.

A visualisation of the set {µ |σn̂(µ) = 0} ≡ Mn̂ for different truncation orders n̂ is given in
fig. 3.1.

(a) (b)

Figure 3.1: Plots that illustrate the evolution of Mn̂ with respect to the truncation order
n̂, depending on the system (3.68). Part (a) shows a fork-shaped structure that consists of
several bifurcations, initiating around µ ≃ −100. The shaded region contains further solutions
of σn̂(µ) = 0 for n̂ > 15, but because of computational limitations it is omitted, except for the
outermost branches which are displayed until truncation order n̂ = 30. Besides the Gaussian
fixed point at µGFP = 0, indicated by the red dashed line, we can identify another stabilising
behaviour, approximately approaching µ ≃ −300 which could indicate a non-Gaussian fixed
point. In addition, part (b) portrays another, separated branch of zeros which only continues
at odd truncation orders.

As it can be seen from part (a) of fig. 3.1, the cardinality of Mn̂ increases as we go to larger
truncation orders, which is lucid at least up to order n̂ = 15. Structurally, the formation
of two-pronged forks initiates for every odd truncation order beginning from n̂ = 3, each
with an upper and lower branch. New forks bifurcate approximately at the red solid middle
line , i.e. for µ ≃ −100. For computational capacity reasons, the evolution from n̂ = 15
onwards is only traced for the branches of the outermost fork up to and including n̂ = 30.
This has been done by means of a bisection procedure, whereby the shaded area certainly
contains further zeros extending the inner forks. Unfortunately, it is difficult to judge from
our numerical perspective whether the branches of the outermost fork actually converge. For
a better illustration, a logarithmic representation of the upper and lower branches is therefore
presented in fig. 3.2. Here, it becomes visible that the upper branch arranges around a linear,
falling behaviour. Supposing that this behaviour is maintained as n̂ increases, this branch
converges towards the Gaussian fixed point at µGFP = 0. The lower branch, on the other hand,
is much more difficult to assess using the information from fig. 3.2. For this reason, the absolute
ratios of successive branch points are plotted in fig. 3.3 (lower course). We can infer that the
ratio | µn

succ(µn) | presumably approaches the constant value 1, such that convergence of the lower
branch becomes likely. Hence, the limit value for the lower branch - if it really exists - can
graphically be estimated and is marked as a red solid line at µ ≃ −300 in part (a) of fig. 3.3.

When comparing successive forks, it becomes noticeable that the successor branches approach
on their predecessor branches for increasing truncation order on both sides of the bifurcation
line at µ ≃ −100. In order to formalise this statement, let fn̂ denote the fork that bifurcates at
order n̂. Thus, the outermost fork is f3 and its successor f5, or more generally: succ (fn̂) = fn̂+2.
Let us further identify the upper and lower branch of fn̂ with f ↑

n̂ and f ↓
n̂ respectively. Note that

fn̂ describes a set of certain solutions to σn(µ) = 0, where N ∋ n ≥ n̂.
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Figure 3.2: Logarithmic plot of Mn̂ that includes only the outermost fork according to part (a)
of fig. 3.1. The upper branch indicates a linearly decreasing behaviour that ultimately converges
onto the Gaussian fixed point, provided the falling course is maintained for higher truncation
orders. Variations of the lower branch are hard to resolve within this illustration, instead cf.
fig. 3.3.

Figure 3.3: Ratios of consecutive solutions µn, i.e. σn (µn) = 0, for different SFE orders
n. Dotted points correspond to the lower branch of the outermost fork in part (a) of fig. 3.1,
whereas boxes correspond to the separated branch which is displayed in part (b) of the same
figure. Both courses apparently approach the value 1 as one tends to increasing SFE orders.

Therefore it is meaningful to consider f ↑
n̂ ∋ f ↑

n̂(n) ··= µ↑
n[fn̂] for which σn(µ↑

n[fn̂]) = 0, and
analogously for f ↓

n̂(n). In other words, µ↑
n[fn̂] denotes the point that one arrives at, when

following the upper branch of fn̂ until order n, and the same holds for µ↓
n[fn̂].

The last preparation that we need concerns restrictions. The set fn̂|N with N > n̂ is defined
as the proper subset of fn̂ that contains all points of the fork that bifurcates at order n̂, except
for those at orders n̂ ≤ n < N . Analogous definitions also hold for the branches f ↑

n̂ and f ↓
n̂.

50



3.2 Global Fixed Points: Results and Discourse

Finally, we can formulate the following SFE-conjecture:

Conjecture (SFE). In the situation of fig. 3.1 part (a), it is true that:

∀n̂ ∈ N \ 2N, n̂ ≥ 3 : succ (fn̂) |N = fn̂|N for N → ∞.

In this case we write succ (fn̂) → fn̂.

If we suppose the validity of this conjecture, then from f7 → f5 and f5 → f3 it follows
f7 → f3 by means of transitivity. More generally we can say, that fn̂ → f3 for all n̂ ∈ N \ 2N
with n̂ > 3. Consequently, the fork structure in part (a) of fig. 3.1 admits only two stabilising
solutions at all, namely µ = µGFP = 0 and µ ≃ −300. However, this assumption cannot be
conclusively substantiated within the framework of this thesis due to the limited computational
and temporal capacities. A final and unambiguous clarification is in any case only possible by
analytical means, which, however, is expected to require a great amount of effort due to the
considerable complexity of the problem. Numerically, on the other hand, one can only collect
further indications in favor or against the above mentioned conjecture by continuing the fork
structure from part (a) of fig. 3.1 to truncation orders beyond n̂ = 30.

There is yet another, separated branch which is presented in part (b) of fig. 3.1. The pecu-
liarity here is that there is a solution only for every odd truncation order starting at n̂ = 3.
Nevertheless, we include also this branch in our considerations and first analyse its convergence
behaviour. Fig. 3.3 again serves for this purpose - now focusing on the upper course - in which
the ratios of successive branch points are shown. Once again, a tendency for | µn

succ(µn) | → 1
apparently occurs, which makes convergence of this branch seem possible. The limit value can
be determined graphically and is estimated at µ ≃ −4200.

In order to summarise our findings, we note that, first of all, the Wilson-Fisher perspective
reveals a trivial fixed point solution, that is for µ = µGFP = 0 which implies η∗ = 0 and the only
non-vanishing coefficient, besides σ1 = 1, is σ0 = 1

32π2 . The dimensionless Gaussian fixed point
potential is therefore given by: wGFP

∗ = 1
32π2 +F̃ . In addition, we seemingly have two non-trivial

fixed point solutions available; one at µ ≃ −300 ≡ µ
(1)
∗ , and another at µ ≃ −4200 ≡ µ

(2)
∗ . The

corresponding anomalous dimensions follow according to eq. (3.69):

η∗
(
µ(1)

∗

)
= −3.7067 & η∗

(
µ(2)

∗

)
= 10.3305. (3.70)

The fact that η∗ becomes negative at µ = µ
(1)
∗ is basically without any inconsistency, since by

definition, eq. (3.36), this just implies that ∂t|Zk| > 0 at the fixed point. However, at µ = µ
(2)
∗ ,

the anomalous dimension η∗ gets exceedingly large and should therefore be treated with care.
If we insert µ = µ

(1)
∗ and µ = µ

(2)
∗ in (3.68) and (3.69), we can graphically illustrate and

contrast the fixed point potentials wSFE
∗ for small field amplitudes according to eq. (3.66). This

is done in fig. 3.4, from which the radii of convergence, rSFE(µ), can be read off to:

rSFE
(
µ(1)

∗

)
≃ 0.00235 & rSFE

(
µ(2)

∗

)
≃ 0.000125. (3.71)

Let us now recall the conditions ω(1) < 1 & ω(2) < 1, ensure the applicability of Euler’s
integral representation of the hypergeometric function within its principal branch. In order
to verify that both conditions hold within the radii of convergence given in (3.71), let us take
a look at fig. 3.5. As it becomes visible, the situation µ = µ

(1)
∗ with rSFE(µ(1)

∗ ) ≃ 0.00235 is
compatible with ω(1) < 1, but not with ω(2) < 1, since ω(2)

(
rSFE(µ(1)

∗ )
)
> 1. In contrast,

the case µ = µ
(2)
∗ with rSFE(µ(2)

∗ ) ≃ 0.000125 even does neither account for one nor the other
condition. Thus, we need to restrict both solutions further on their radii of validity, rval

SFE, which
are given by:

rval
SFE

(
µ(1)

∗

)
≃ 0.00209 & rval

SFE

(
µ(2)

∗

)
≃ 0.000103. (3.72)
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(a) (b)

Figure 3.4: Graphs of the fixed point potential wSFE
∗ , according to eq. (3.66) for µ = µ

(1)
∗ (part

(a)) and µ = µ
(2)
∗ (part (b)). Both plots show wSFE

∗ as a function of F̃ in the small-field
amplitude regime. The estimated radii of convergence are indicated by red solid vertical lines.

(a) (b)

Figure 3.5: Plots of ω(1) and ω(2) as functions of F̃ according to (3.67) for µ = µ
(1)
∗ (part

(a)) and µ = µ
(2)
∗ (part (b)). The conditions ω(1) < 1 & ω(2) < 1 determine the radius of

validity of the SFE. Its boundaries are marked by vertical dashed red lines. Within the radii of
convergence, rSFE(µ(1)

∗ ) & rSFE(µ(2)
∗ ), at least one condition is violated in some region. Thus, the

radius of validity supplants the radius of convergence as the relevant parameter that evaluates
the domain of applicability of the SFE.

With these results, let us stop at this point and switch from the Wilson-Fisher perspective
to an alternative point of view that makes use of the inverse relation of eq. (3.69); instead of
truncating the system (3.68) and subsequently solving it for the parameter µ, we can initially
specify a value for η∗ and compute µ from eq. (3.69), i.e.:

µ (η∗) = 96π2 η∗

8 − η∗
. (3.73)

In principle, any value η∗ ̸= 8 can be inserted into eq. (3.73), but one might ask wether this
approach is even meaningful and worth a deeper illumination at this point of the analysis,
since we actually already found concrete results from the Wilson-Fisher perspective. Because
the ansatz (3.73) is conceptually not different from the Wilson-Fisher perspective, we do not
expect to find new results or stabilisation patterns, which means that the answer to the question
above is basically negative, unless there exists a preferred choice for η∗.

52



3.2 Global Fixed Points: Results and Discourse

In fact, the anomalous dimension of the pure photon field, ηph, can serve as such a choice. It
has been derived to first order in perturbation theory in ref. [ 45 ]:

ηph = 2α
3π ≃ 0.00155, (3.74)

in which α ≃ 1
137 denotes the fine-structure constant. It should be noted that in ref. [ 45 ], one

assumes the QED Lagrangian (3.1) with massless leptons, i.e. m → 0. Therefore we should be
aware of the fact, that ηph, as it appears in the form (3.74), includes only effects which arise
from the kinetic term F that contributes solely to the photon Lagrangian. Nevertheless, let
us consider η∗ ≡ ±ηph and evaluate its consequences on the fixed point potential. Firstly, from
eq. (3.73) it follows:

µ± ≡ µ (±ηph) = 96π2 (±ηph)
8 ∓ ηph

≃


0.1836 +

−0.1835 −
. (3.75)

The fixed point potential wSFE
∗ for both options µ± is depicted in fig. 3.6 for various truncation

orders.

Figure 3.6: Plots of the fixed point potential wSFE
∗ for small field amplitudes F̃ and for different

SFE truncation orders n under initial specification of the anomalous dimension η∗. Red solid
lines indicate graphs of wSFE

∗ for η∗ = +ηph, whereas black solid lines correspond to η∗ = −ηph.
As one chooses larger SFE truncation orders n, the transition from the domain of convergence
to the ill-behaving region becomes progressively sharper in both cases.

The radii of convergence can approximately and collectively be found in the interval [0.0075, 0.01].
The radii of validity, corresponding to the conditions ω(1) < 1 & ω(2) < 1, can be inferred from
fig. 3.7. Here we can see that these conditions are not violated even beyond F̃ = 0.01, such
that the radii of convergence do not need to be restricted as it was the case in the Wilson-Fisher
perspective. A more precise determination of rSFE(µ±) follows from the ratio test, cf. eq. (2.41).
For instance, the first few elements of the sequence (n+ 1)| σn

σn+1
| with n ∈ N, assuming µ = µ+,

are presented up to order n = 39 in fig. 3.8. We find rSFE(µ+) ≃ 0.00718 for η∗ = ηph, provided
the course in fig. 3.8 stabilises for higher truncation orders beyond n = 39. Comparing this
result with (3.71) shows that rSFE(µ+) > rSFE(µ(1)

∗ ) > rSFE(µ(2)
∗ ), i.e. a (considerably) larger

domain of convergence than that which the Wilson-Fisher perspective was able to reveal.
However, these findings could actually be anticipated, which can be seen as follows; the

anomalous dimension η∗ vanishes in the limit µ → 0, as it is clear from eq. (3.69).
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3.2 Global Fixed Points: Results and Discourse

Figure 3.7: Plots of the quantities ω(1) and ω(2) for η∗ = ±ηph according to (3.67). Red solid
lines correspond to η∗ = +ηph and black solid lines to η∗ = −ηph. The conditions ω(1) < 1 &
ω(2) < 1 hold throughout the plotted range.

Figure 3.8: Continuous course of the ratio test sequence that serves as an estimation aid for
the radius of convergence rSFE of wSFE

∗ , assuming η∗ = +ηph. Sequence elements are shown up
to order n = 39. The red solid line estimates the suspected limit value which corresponds to
rSFE.

Hence, as µ → 0 we simultaneously approach the Gaussian fixed point, where the solution of
the fixed point equation becomes exact, namely wGFP

∗ = 1
32π2 + F̃ , supposing an optimised

regularisation R = Rop. In this sense, we basically expect an increasing radius of convergence
as we tend closer to the GFP, which happens precisely for decreasing values of µ. We conclude,
that the observed increase of rSFE is more a consequence of choosing smaller values for µ rather
than a “natural” choice for the anomalous dimension.

With this, let us finish our studies of the small-field regime and turn to large field amplitudes
now.
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3.2 Global Fixed Points: Results and Discourse

C. Fixed Point Potential: Large-Field Expansion

The large-field sector is describable by an ansatz of the form (2.39), which adapted to our
model reads:

wLFE
∗

(
F̃
)

= λF̃ N +
∞∑

n=0
λnF̃ −n = λF̃ N + λ0 + λ1

F̃
+ λ2

F̃ 2
+ . . . . (3.76)

Therefore, the LFE exhibits a set of parameters {λn}n∈N0 ∪{λ} yet to be determined, for which
the fixed point equation can be applied. Similar to the Ising model example from sec. 2.3,
the “asymptotic parameter” λ could turn out to be a free parameter of the LFE, which can
be fixed by including an additional condition that demands an optimised transition between
the SFE and LFE domains, cf. eq. (2.42). Furthermore, in the limit of arbitrarily large field
amplitudes, the LFE ansatz is either dominated by the zeroth order parameter λ0, or the leading
term λF̃ N . According to eq. (2.38), the former happens to be the case for N < 0, which is
equivalent to η∗ < 2 − d, where d denotes the number of spacetime dimensions. Since the
anomalous dimension, evaluated at a (viable) fixed point, usually turns out to be a small and
positive number, this situation is rather the exception for d ≥ 2. Commonly, the inequality
η∗ > 2 −d, or equivalently N > 0, holds instead for d ≥ 2. Then, the LFE fixed point potential
follows a power law with N being the corresponding “asymptotic exponent”.

For reasons of convenience it is useful to introduce a new variable χ ··= F̃ −1 as we also did
for the LFE concerning the Ising model in sec. 2.3. In this way, we effectively switch from the
large-field to a small-field sector since χ → 0 as F̃ accepts large values in the realm of the LFE.

During our previous investigations, we have often encountered the first and second derivative
of w∗ with respect to its argument, i.e. F̃ . These derivatives now need to be expressed in
terms of the variable χ, for which we use the chain rule. For the derivative operator, this
means: d

dF̃
= dχ

dF̃
d

dχ
≜ −χ2 d

dχ
. Assuming w∗ ≡ wLFE

∗ , it thus follows:

wLFE
∗ (χ) = λχ−N +

∞∑
n=0

λnχ
n,

(
wLFE

∗

)′ (
F̃ (χ)

)
= −χ2

(
wLFE

∗

)′
(χ) = λNχ1−N −

∞∑
n=1

nλnχ
n+1,

(
wLFE

∗

)′′ (
F̃ (χ)

)
= 2χ3

(
wLFE

∗

)′
(χ) + χ4

(
wLFE

∗

)′′
(χ)

= λN (N − 1)χ2−N +
∞∑

n=1
n(n+ 1)λnχ

n+2.

(3.77)

With these relations, we are in position to express the important quantities ω(1) and ω(2) as
functions of χ:

ω(1)(χ) = 1 − λNχ1−N +
∞∑

n=1
nλnχ

n+1,

ω(2)(χ) = 1 − λN2χ1−N −
∞∑

n=1
n2λnχ

n+1.

(3.78)

Now, let us leave some further comments on the “asymptotic exponent” N . First of all,
its value is determined by eq. (2.38). In d = 4 spacetime dimensions and provided that the
anomalous dimension at a fixed point is known, we find:

N (η∗) = 4
2 + η∗

. (3.79)
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From the SFE results we already have several, explicit options for η∗ at hand. The “standard
procedure”, which is supposed to be the Wilson-Fisher perspective as it does not depend on a
rather randomly and externally prescribed value for the anomalous dimension η∗, yielded two
stabilising values which are given in (3.70). Because η∗

(
µ

(2)
∗
)

≃ 10 is extraordinarily large and
hence not expected to represent a viable fixed point, we will concentrate on the alternative
option: η∗

(
µ

(1)
∗
)

≃ −3.7067, such that N becomes:

N ≃ −2.3437. (3.80)

It follows that the “asymptotic exponent” for our present U(1) gauge theory appears as a real-
valued decimal number, which explicitly differs from the d = 3 dimensional Ising model where
N = 3 was found to be an integer as a consequence of the local potential approximation. As
soon as we allow for a scale-dependent field strength renormalisation, this generally changes as
eq. (3.79) demonstrates. Indeed, since N < 0 and η∗ is comparatively large, we basically deviate
significantly from customary, reliable results, but regarding the lack of better alternatives, we
nonetheless continue with the present configuration.

The first step consists in finding a suitable starting point for the LFE, i.e. a formulation of the
fixed point equation that is mathematically compatible with the LFE ansatz (3.76). What this
means becomes clear after we have enumerated the available representations of the fixed point
equation and recall the conditions leading from one to another representation. First, we refer
to eq. (3.59) as the integral representation of the FPE, for which we actually should decide on
our first trial, because the only preceding assumptions at this point are pure F̃ dependencies
of the fixed point potential and self-dual field configurations, which are both independent
of any specific field amplitude sector. If we instead aim to begin with the hypergeometric
representation of the FPE, eq. (3.64), we need to argue that the Euler integral formulation of
the hypergeometric function is reconcilable with the LFE, i.e. that ω(1) < 1 and ω(2) < 1
hold simultaneously. This is then automatically consistent with the Gauss representation of
the FPE, which is given by eq. (3.65) (cf. app. C). In the following, we are going to present an
analysis for the integral and the Gauss representation, beginning with the former.

In eq. (3.59), we again agree on the optimised regulator R = Rop and reuse the intermediate
results in (3.60)-(3.63) for d = 4 spacetime dimensions. After rearranging terms, the fixed point
equation reads:

w∗(χ) = 1
128π2

(
1 − η∗

6

)
+
(

1 + η∗

4

) w′
∗

(
F̃ (χ)

)
χ

− 3
128π2

1�

0

r
η∗(1 − r) − 2
1 − ω(1)(χ)r dr

+ ω(1)(χ)
128π2

1�

0

r2η∗(1 − r) − 2
1 − ω(1)(χ)r dr − ω(2)(χ)

128π2

1�

0

r2η∗(1 − r) − 2
1 − ω(2)(χ)r dr.

(3.81)

The next step is to compare coefficients of equal powers in χ on both sides of eq. (3.81) which
yields a set of relations among the unknown parameters {λn}n∈N0 ∪ {λ}. For this, we need to
express the integral terms on the RHS of eq. (3.81) in powers of χ, which is feasible by means
of a MacLaurin series expansion under the integrals for the terms 1

1−ω(1)(χ)r and 1
1−ω(2)(χ)r , both

considered as functions of χ, where r now plays the role of a parameter. In order to gain
first insights, let us start with the simplest case and read off the first relation arising from
eq. (3.81) by setting w∗ ≡ wLFE

∗ following (3.76) and equating the coefficients of the constant
contributions on both sides.
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Using (3.78) we note that ω(1)(0) = 1 = ω(2)(0) and find:

128π2λ0 = 1 − η∗

6 − 3
1�

0

r
η∗(1 − r) − 2
1 − ω(1)(0)r dr +

1�

0

r2η∗(1 − r) − 2
1 − ω(1)(0)r dr

−
1�

0

r2η∗(1 − r) − 2
1 − ω(2)(0)r dr

= 1 − η∗

6 − 3
1�

0

r
(
η∗ − 2

1 − r

)
dr = −5 − 5

3η∗ − 6 lim
Λ→0+

ln (Λ) .

(3.82)

Here, the new quantity Λ - which essentially corresponds to a sharp momentum cutoff - arises
from taking the integral over r

1−r
with respect to r. Hence, it turns out that a (logarithmic)

divergence already appears at the level of the constant LFE term; λ0 → ∞ as soon as the UV
momentum modes, defined with respect to the fixed point momentum scale, are fully integrated
out. As a consequence, the LFE fixed point potential wLFE

∗ diverges logarithmically at zeroth
order and thus for all possible values of χ. Therefore, it fails to be a reasonable candidate for the
large field amplitude sector of a global fixed point action, since it is obviously not combinable
with the SFE results.

One could continue with this process and, for instance, collect coefficients that correspond
to χ−N and to linear order in χ on both sides of eq. (3.81). Since d

dχ

[
1

1−ω(1)(χ)r

] ∣∣∣
χ=0

= 0 =
d

dχ

[
1

1−ω(2)(χ)r

] ∣∣∣
χ=0

, the following relations hold:

λ =
(

1 + η∗

4

)
Nλ & λ1 = −

(
1 + η∗

4

)
λ1. (3.83)

Because N ̸= 0 and η∗ ̸= −4, this implies that λ = 0 = λ1, i.e. λ does not appear as a
free parameter, like it was the case for the Ising model, but instead is forced to vanish due to
the structure of the fixed point equation. We refrain from continuing with higher order terms
and directly conclude, that a proper LFE of the form (3.76) (or of a similar kind) does not
seem to be constructable under our present conditions. If we relax the assumption N < 0, but
instead suppose a positive N > 1 (which implies η∗ ∈ (−2, 2)), ω(1)(χ) and ω(2)(χ) diverge
at χ = 0. Thus, all integral expressions in (3.82) are totally suppressed and we get a finite
λ0 = 1

128π2

(
1 − η∗

6

)
. However, we are not aware of any such appropriate η∗ that has emerged

from the SFE Wilson-Fisher perspective. Therefore, our conclusion remains unchanged: the
integral representation of the FPE does not seem to allow for a well-behaving LFE of the fixed
point potential.

From the previous considerations it is highly expected that the LFE also fails when performing
an anlogous analysis that starts from the Gauss series representation (3.65), since here the set
of conditions includes at least all aspects that already led to the integral representation of the
FPE which we just have discussed. Nevertheless, for reasons of completeness we now give a
more detailed explanation of this statement and show that λ0 diverges exactly as before. We
start by collecting all constant contributions on the RHS of eq. (3.65) for w∗ ≡ wLFE

∗ . Here
we note, that the Gauss series contributes a constant term that arises from the expression(
ω(1)

)n
+ 1

2

(
ω(2)

)n
for each summation index value n ∈ N. Both, ω(1)(χ) and ω(2)(χ), can be

written as 1 − χf1(χ) and 1 − χf2(χ) respectively, with some functions f1 and f2 that can, in
principle, be read off from (3.78).
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Thus, we can separate the constant term explicitly by means of the binomial theorem:
(
ω(1)(χ)

)n
+ 1

2
(
ω(2)(χ)

)n
=
(
1 − χf1(χ)

)n
+ 1

2
(
1 − χf2(χ)

)n

=
n∑

k=0

(
n

k

)
(−1)kf1(χ)kχk + 1

2

n∑
k=0

(
n

k

)
(−1)kf2(χ)kχk

=
n∑

k=0

(
n

k

)
(−1)k

[
f1(χ)k + 1

2f2(χ)k
]
χk

=
(
n

0

) [
1 + 1

2

]
+ . . . = 3

2 + . . . .

(3.84)

Therefore we arrive at:

128π2λ0 = 4
(

1 − η∗

6

)
+ 23

2

∞∑
n=1

6 + 2n− η∗

(n+ 2)(n+ 3) = 10 − 5
3η∗ + 6

∞∑
n=1

n

(n+ 2)(n+ 3) . (3.85)

For the remaining series we find:
∞∑

n=1

n

(n+ 2)(n+ 3) =
∞∑

n=1

n

n+ 2 −
∞∑

n=1

n

n+ 3 = 1
3 +

∞∑
n=2

n

n+ 2 −
∞∑

n=2

n− 1
n+ 2

= 1
3 +

( ∞∑
n=2

n

n+ 2 −
∞∑

n=2

n

n+ 2

)
+

∞∑
n=2

1
n+ 2

=
∞∑

n=1

1
n

− 3
2 = lim

n→∞
Hn − 3

2 = ∞,

(3.86)

where Hn denotes the n-th partial sum of the (divergent) harmonic series. This shows, that
also by means of the Gauss series representation, the LFE fixed point potential diverges at
zeroth order, like it was initially predicted.
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4

Review: Final Remarks & Outlook

The aim of this work was to investigate the global existence of fixed point actions - which
often serves as an important criterion of viable fixed points - for a theory technically adjacent
to gravity. Taking tensor structures and local symmetries into account, the choice fell on a
generic, but self-interacting U(1) gauge theory, the details of which were provided by an in-
depth explanation that is part of ch. 3. The structural proximity to gravitational theory should
reveal further indications to the asymptotic safety hypothesis, the final evaluation of which is a
central concern of the asymptotic safety programme.

This final chapter now serves the orderly disclosure as well as evaluation of all findings that
have emerged from this work. Furthermore, central problems are enumerated and the additional
conditions generated by them are critically evaluated. Finally, we finish our considerations with
a classification of the results produced in the context of this work, measured against the above
formulated goal, and subsequently provide open issues as well as unresolved questions for a
potentially consecutive investigation.

A. Chronology: from the initial to the final theory

We begin with a non-judgemental and chronologically structured presentation of the key
steps leading from the initially formulated to the finally investigated U(1) gauge theory. In
other words, this paragraph can be understood as a minimal summary of sec. 3.1 and para-
graph A of sec. 3.2. In parallel, we provide an overview of the assumptions/conditions induced
by each step, with the aim of increasing the level of transparency.

(A1). The Lagrangian of the initial theory was motivated by the locally U(1) invariant La-
grangian of QED, cf. eq. (3.1); the quantum field theory of the electromagnetic interaction.
The FRG suggests to start with the most general expression of the effective action Γ, or rather
the scale-dependent EAA Γk, that is compatible with a set of imposed symmetry conditions
and then solve the Wetterich equation to determine the interesting flow trajectories within the
corresponding theory space T . For this, one often uses a derivative expansion of the underlying
effective average Lagrangian, which is defined by Γk ∼

�
Lk, and restricts the theory space

further if it becomes necessary in order to obtain explicit results, e.g. to regulate technical
barriers. In our case, we have decided to exclude all matter degrees of freedom from our consid-
eration (ψ → 0) and only keep the massless, bosonic degrees of freedom, which physically could
correspond to photons for instance. Furthermore, the bosonic sector of LQED was enlarged by
a maximal collection of locally U(1) invariant expressions that were built from the fundamen-
tal invariants FM and GM, defined against a four dimensional Minkowskian background. A
schematic summary of this step is presented at the top of the next page.
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LQED
(
AM, ψ

)
= −FM − ψ̄

(
ı /D −m

)
ψ

↙ ↘
enlarged excluded

↘ ↙

LM
(
FM,GM

)

However, from a more physical point of view, one can also interpret the resulting non-linear
theory as being generated by fluctuations of matter degrees of freedom, which is precisely the
inverse process of matter created by sufficiently strong electromagnetic fields [ 47 ].

(A2). For an application of the FRG formalism, the gauge-fixed effective action ΓM =�
LMd4x + (Γgf)M, which is additionally equipped with a gauge-fixing action (Γgf)M that ac-

counts for gauge redundancies (cf. sec. 2.4), was modified with a continuous momentum scale
dependence k, i.e. ΓM → (ΓM)k, such that LM → (LM)k and (Γgf)M → (Γgf,k)M. Moreover,
we have generalised the number of spacetime dimensions from 4 to d, but under the restriction
d = 4 − ϵ with |ϵ| ≪ 1.

In preparation for upcoming calculations we performed a Wick rotation in coordinate and
field space, such that the Minkowskian background geometry was replaced by a Euclidean
background. The Euclidean counterparts of all previously introduced quantities are essentially
designated as before, but omitting the subscript “M”, e.g. ΓM → Γ, or FM → F . One of the
key aspects of the field space Wick rotation is given by the relation between the purely kinetic
Minkowskian and Euclidean Lagrangian: −

(
L kin

M

)
k

= L kin
k , where

(
L kin

M

)
k

∼ L kin
M ≡ −FM.

In the next step, we have implemented the first far-reaching assumption into our model,
which we referred to as the homogeneity condition. This means, that the field strength tensor
is supposed to be constant throughout spacetime. It does not imply that also the fundamental
degree of freedom, i.e. the gauge field A, is constant as well, but rather is such, that the com-
bination ∂µAν − ∂νAµ vanishes for all pairs of indices (µ, ν) when taking further derivatives.
According to the definitions of F and G , the homogeneity condition implies constancy also
for these invariants. Another direct consequence of the homogeneity condition manifests in the
fact, that all derivative terms, for example by means of a derivative expansion of Lk, vanish
identically. The remnant of this process consists of all non-derivative terms, which we have
summarised in an effective average potential Wk, i.e. Lk → Wk. An illustration of this step can
be found below.

ΓM [AM]
↓

d4x → ddx + Wick rotation + Γ → Γk + homogeneity

⇃⇂

Γk [A] =
�

Wk

(
F ,G

)
ddx+ Γgf,k [A]
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(A3). From the EAA Γk ⊜ Γk [A], we were able to give an explicit expression for the Wet-
terich equation (2.15), especially for its RHS where we were calculating the regularised full
propagator

(
Γ(2)

k + Rk

)−1
and have performed the trace operation Tr. The regulator Rk was

supposed to be expressible by a general combination of the perpendicular and parallel projector :
Rk ∼ ZkR

[
P⊥ + κ−1P∥

]
, in which R denotes a shape function not specified in more detail at

this point, and κ is a gauge-fixing parameter. We point out, that in contrast to the Ising
model, where we have established a local potential approximation, we instead refrained from
this restriction in the locally U(1) invariant theory by allowing for a non-constant field strength
renormalisation, i.e. ∂kZk ̸= 0 in general. In this way, the anomalous dimension ηk becomes a
non-trivial flow-dependent quantity with in general non-vanishing fixed point values.

The list of further assumptions made during the derivation of the flow equation are limited
to firstly a choice of a gauge condition needed for the gauge-fixing action Γgf,k, and secondly a
limitation of theory space T by excluding odd powers of the invariant G . The latter has already
been justified in ch. 3 and will be taken up again in the following paragraph. The gauge-fixing
was realised by the technically easy to handle Lorenz gauge condition; ∂µA

µ = 0. Finally, the
explicit scale dependencies of the flow equation (3.40) were eliminated as a consequence of in-
troducing dimensionless quantities, e.g. F → F̃ ,G → G̃ ,Wk → wk etc., which has ultimately
led to the autonomous ERGE (3.50).

(A4). The interest of this work is primarily directed towards fixed point structures. For this
reason, the fixed point equation (3.52) was derived starting from the autonomous ERGE (3.50)
and using the fixed point condition; ∂twk = 0 at a fixed point. Due to high technical require-
ments needed to fully solve the FPE, we had to restrict the structure of the FPE considerably
in order to obtain first results in view of the elementary scope of this work. For this, the PDE
character of the FPE was disintegrated by the assumption of sole F̃ dependencies of the dimen-
sionless fixed point effective average potential w∗, i.e. ẇ∗ = ẅ∗ = ẇ′

∗ = 0. In consequence, the
FPE has reduced to an ODE for w∗ ⊜ w∗

(
F̃
)
. Lastly, we have resolved the remaining angular

dependencies ∼
(
F̃s
)2

appearing in eq. (3.52) under consideration of (3.54). This was done by

restricting to self-dual field configurations, for which F̃ = ⋆F̃ holds, implying
(
F̃s
)2

∼ s2. As
a consequence, the integral representation (3.59) of the FPE was obtained, which has recently
served as our starting point for the LFE, cf. sec. 3.2. Under one more assumption, namely that
w′

∗

(
F̃
)
> 0 ∧ w′

∗ > −w′′
∗

(
F̃
)
F̃ is true for all (relevant) F̃ , the FPE could be transferred to

a more compact formulation by means of Euler’s integral representation of the hypergeomet-
ric function and its corresponding Gauss series. This was then used to investigate small field
amplitudes in the realm of the SFE.

B. Evaluation and alternative paths

In this paragraph, we will take a critical eye on some of the assumptions listed in paragraph
A, which were formerly introduced in the course of ch. 3. We aim to give qualitative judge-
ments and evaluations on their significance and restrictive potential. In individual cases, it is
worthwhile to examine whether alternative ways exist that can restore the degree of generality
while weighing up the increased effort. Thus, there will also be further comments on this aspect
at appropriate points.

(B1). Exclusion of matter : In step (A1), we have explained by which aspects the research
object of this work, which is the self-interacting locally U(1) invariant theory, was inspired.
The origin of its construction is allocated to QED, but with the matter sector being totally
suppressed. It is already this initial assumption, which should be classified as a harsh restric-
tion.
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All results based on this premise, in particular regarding the global existence of fixed point
actions, can shift significantly as soon as matter degrees of freedom are incorporated in the
theory.

The effect of such inclusions in FRG approaches to gravity is an issue of current research
and is being phenomenologically and quantitatively investigated, for example in ref. [ 48 ].
In the results of this publication, the requirement for the existence of a suitable fixed point
in the scope of the Einstein-Hilbert truncation restricts the underlying matter model in the
number of its different particle species. A similar effect could also occur for isolated systems
of massless bosons, as in the case of this work. Thus, conversely to Einstein-Hilbert gravity,
global existence of fixed point actions might only be realised when different sorts of matter
are taken into account. Progress in this direction can for instance be achieved by re-including
Dirac particles (fermionic matter) ψ into the theory. For instance, one can start to consider
purely self-interacting contributions, e.g. an action of the form

Smat,k
[
ψ, ψ̄

]
∼ Zmat,k

�
ψ̄(x)

(
ı /D −m

)
ψ(x)ddx, (4.1)

in which Zmat,k denotes the scale-dependent spinor field strength renormalisation. Further con-
tributions can describe also interactions between vector bosons and spin-1/2 fermions etc., as
long as one takes care ensuring local U(1) invariance for every additional term which is added to
the full effective action. In the context of this work, however, such an analysis was deliberately
dispensed, firstly to reduce the technical complications and secondly to get a first access to a
predominantly still little studied theory.

(B2). Homogeneity: Our theory ignores all field strength kinematical contributions, e.g. in-
cluding terms of the form Fµν□nF µν for n ∈ N and where □ ≡ ∂µ∂

µ means the d’Alembert oper-
ator. For definiteness, let us gather all possible locally U(1) invariant combinations that contain
derivatives of the field strength tensor within the symbol K . Then, the full Lagrangian would
read; L = W + K , where W denotes the effective potential that was considered throughout
ch. 3 (or more precisely, its scale-dependent modification Wk). However, since we are interested
in globally-existing fixed point actions, i.e. fixed point action functionals which are defined for
any value of the field amplitude, it suffices to consider the Lagrangian as a function of the field
amplitude as the independent variable and choose Fµν = const. for all pairs of indices (µ, ν),
rather than describing its variations with respect to an extra dependency on spacetime points;
F ⊜ F(x). In other words, we are only interested in the values of the field amplitude, and not
in its fluctuations over spacetime, implying that the homogeneity condition can essentially be
understood as a priority alignment as it automatically neglects the irrelevant kinetic sector;
K → 0. Therefore, the homogeneity condition can ultimately be seen as a mild assumption
for our purposes.

(B3). Elimination of G̃ dependencies: Restricting a fixed point potential w∗ which depends
on both field variables

(
F̃ , G̃

)
to a single field dependency in F̃ is indeed an approximation.

It was originally established in order to render the fixed point equation as an ODE instead
of working with a much more complicated PDE that contains derivatives of w∗ up to second
order in both field variables. In this way, an analytical treatment became more accessible.
However, further investigations that refrain from this constraint and repeat sec. 3.2 starting
from the full FPE (3.52) would be a fruitful extension to the current status of this work. Since
the FPE consequently turns to a PDE again, SFE and LFE approaches accordingly need to
be adjusted for both field arguments of the fixed point potential, i.e. that one has to combine
individual small- and large-field expansions for each argument. Although this clearly leads to
a modification of the equations, it is unclear whether this is sufficient to establish a working
LFE for the F̃ sector. We will come back to this in paragraph D, where we refer to this as an
open issue.
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(B4). Self-duality: We have seen that self-duality is a powerful tool to simplify structures
of relevant equations like the FPE; for example avoiding complicated angular dependencies
over which we would need to integrate otherwise. Oppositely, the problem that comes with
self-dual field configurations is the indistinguishability between the invariant quantities F̃ and
G̃ . That is, because the electric and magnetic field are now equivalent, Ẽ = B̃, and thus
F̃ = 1

2

(
Ẽ2 + B̃2

)
= B̃2 = Ẽ · B̃ = G̃ . However, there are several alternative options which

provide for both; simplifying structures while restoring the distinguishability of F̃ and G̃ . For
example, in the situation of eq. (3.55), one can consider pure magnetic field configurations, i.e
Ẽ = 0 while keeping B̃ arbitrary. As a consequence, one arrives at

(
F̃s
)2

= B̃2s2 sin(ϑ)2, where
ϑ denotes the angle enclosed by the magnetic field B̃ and the dimensionless spatial momentum
s. Indeed, angular terms obviously remain, but are much more easy to handle than working
with the full expression given in (3.55).

Though not presented here, first calculations show that the structure of the FPE for either
purely magnetic or self-dual field configurations basically hardly differ from each other. Fur-
thermore, numeric SFE results for the former case seem to deviate from self-duality only by
individual factors for the coefficients, but which do not entail substantial changes in how wSFE

∗
behaves when plotted against the field amplitude F̃ . At this point, it is still unclear whether
this is also true for the LFE.

C. Conclusion

The declared aim of this work was to contribute further indications that serve for the clar-
ification of the asymptotic safety hypothesis, which involves the search for a non-trivial fixed
point of the gravitational renormalisation flow. Our focus was thereby placed on an important
property of fixed point actions which is known as global existence and provides a criterion for
sifting out physically viable fixed points. However, we refrained from conducting a direct FRG
analysis for gravitational systems and chose an implicit strategy instead. In particular, we have
decided in favour of a self-interacting locally U(1) invariant theory, which is structurally related
to central features of gravity, such as a dynamical metric tensor and diffeomorphism invariance,
for which corresponding counterparts are given by a dynamical field strength tensor and U(1)
gauge symmetry. Our model takes into account all locally U(1) invariant terms of zeroth order
with respect to a derivative expansion of the underlying effective Lagrangian.

In other words, the initially described objective now specifies on scanning our theory for
globally-existing fixed point actions, for the progress of which the relevant quantities of the
Wetterich equation were calculated and the flow equation - and with this also the fixed point
equation - were derived in a momentum-scale-autonomous formulation.

For the explicit construction of a globally-existing fixed point action, proven analytical meth-
ods were used, in particular small- and large-field expansions while taking into account the
conditions listed in paragraph A and subsequently evaluated in paragraph B of this chapter.
Following this procedure, it provides for a piecewise composition of the sought-for fixed point
potential connecting solutions of the FPE for small and large field amplitudes.

It was shown that, in the scope of the SFE, non-trivial fixed point solutions emerge contin-
uously from the trivial fixed point at wGFP

∗ = 1
32π2 + F̃ . However, these solutions do not find

a connection to partner solutions for large field amplitudes within the limit of their radius of
convergence. This manifests in a divergent large field behaviour of w∗ in the realm of the LFE,
which thus prevents the construction of a globally-existing fixed point potential.

In conclusion, it is still unclear whether these hurdles can be removed by softening the pre-
viously met conditions under which we deduced all our results. However, due to the structural
similarities of the restricted system considered here to the general situation, the expectation
for this does not turn out in favour of global existence. It remains the assumption that the
latter might only be achieved if additional matter degrees of freedom are taken into account.
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D. Open Issues

Let us finish with a short list of unresolved problems which could provide for consecutive
questionings.

As often noted before, it is unknown to what extent the results presented here differ from
the results that follow from the full fixed point equation. An analysis in this direction requires
the application of methods from the mathematical theory of partial differential equations and
their solutions.

Another interesting issue that we have mentioned several times before is the effect of matter
particles such as scalar or spinor fields as additional degrees of freedom.

Furthermore, the question of a meaningful expansion of the fixed point potential for large
field amplitudes can alternatively be pursued by means of a flow linearisation around the fixed
point under consideration. Here, a so far completely neglected detailed investigation of the
stability matrix and its eigenvalues - the critical exponents - can yield a fruitful extension to
the previous results.

Correspondingly to the last mentioned point, further insights about the fixed point sector,
but also of the renomalisation flow as a whole, can be inferred from considerations of finite
dimensional truncations of the underlying theory space T . Enlarging these truncations step-
by-step can provide important information on fixed point truncation artifacts and help to
distinguish them from possibly viable fixed points. In this way, also a variety of regulator
functions can be tested and compared with each other, which yields a thriving contrast to the
structure of this thesis that relies exclusively on the optimised regulator.
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—– Appendix —–



A

Field Strength in Minkowskian and Euclidean
Geometry

The field strength tensor F is mainly known from electrodynamics where it is formed from
the four potential A. However, its construction extends over a much more general scope. For
instance, besides the field strength tensor from Maxwell’s theory, there is an additional field
strength in Yang-Mills theory which differs from the usual definition especially in the case of
non-Abelian gauge theories when structure constants do not vanish in general (see our discussion
from sec. 2.4). In this thesis, however, we are primarily concerned with Abelian gauge theories
with vector-like gauge fields as the fundamental degrees of freedom and where we do not have
to worry about non-trivial structure constants. Furthermore, our considerations will initially
take place in d dimensions, though at some points this will be specified in what follows.

The simplest construction rule that applies to the components of the field strength tensor in
the Abelian case reads [ 51 ]:

Fab ··= ∂aAb − ∂bAa. (A.1)
In order to calculate the invariants F and G , which belong to the key objects of ch. 3 where
they serve as the functional arguments for the EAA, we do not only need the field strength
tensor itself, but in addition the dual field strength tensor, ⋆F, which is the so-called Hodge
dual to F. Based on the definition (A.1), this is obtained by applying the Hodge star operator,
⋆, to F and is likewise designated by ⋆F.

In order to summarise some details on the Hodge star operator, let us consider a (pseudo-
)Riemannian manifold M ≡ (X,g), that consists of a set X together with a metric tensor g,
and let us further consider an open subset U ⊆ M. Moreover, let {ea}d

a=1 be a local frame of
1-forms for U . Then, we can expand any p-form αp in terms of that frame [ 54 ]:

αp ⊜
1
p!αi1...ipe

i1 ∧ · · · ∧ eip . (A.2)

Here, the αi1...ip are smooth component functions for αp with respect to the frame {ea}d
a=1.

Finally, the Hodge dual to αp is given by the following definition [ 54 ]:

⋆αp ··=
1

p!(d− p)!
√

|det(g)|αi1...ipg
i1j1 . . . gipjpεj1...jpjp+1...jd

ejp+1 ∧ · · · ∧ ejd . (A.3)

Again, the components gab are defined with respect to the local frame {ea}d
a=1, i.e. g ⊜ gabe

a∧eb.
By common conventions, upper indices gab indicate components of the inverse of g. From
eq. (A.3) we can observe that ⋆αp is a (d − p)-form, but we refrain from indicating this by an
adjusted subscript, instead the ⋆ symbol gives the information about the dual character.

In this Appendix, we give concrete representations for F and ⋆F according to the eqs. (A.1)-
(A.3) in d = 2, 3 and d = 4 dimensions and for both Minkowskian and Euclidean geometry.
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The case d = 1, i.e. spacetime consists of only a single time direction and no spatial degrees of
freedom at all, is trivial since F ≡ 0. This becomes immediately lucid from eq. (A.1).

We further assume the metric signature σ (η) = (3, 1) for the Minkowski metric tensor η, and
σ (δ) = (4, 0) for the Euclidean metric tensor δ. At the end of this Appendix, we eventually
give a direct derivation of the identities (3.29) in d = 4 dimensions.

A. Field Strength in Minkowski Space

In this paragraph, we have g ≡ η and |det (η) | = 1 in any number of spacetime dimensions.
Let us now go through the various options for d.

⌊d = 2⌋ The field strength tensor can be represented by a 2 × 2-matrix with only a single inde-
pendent component. As in the familiar case of four spacetime dimensions, we interpret
this component as the electric (scalar) field, whereas a magnetic field does not exist.

There are two generally non-vanishing entries F01 ≡ −E and F10 = −F01 = E, i.e. in
covariant indices we have:

(Fab) ⊜ E

(
0 −1
1 0

)
, (A.4)

or alternatively in contravariant indices:

(
Fab

)
=
(
ηacηbdFcd

)
⊜ E

(
0 1

−1 0

)
. (A.5)

From eqs. (A.4) & (A.5) we can compute the quantity F :

F ≜
1
4FabF

ab = −1
2E

2. (A.6)

For the dual field strength we can use eq. (A.3) with d = 2 = p:

⋆F = 1
2!(2 − 2)!

√
|det(η)|Fabη

acηbdεcd

= 1
2F01η

00η11ε01 + 1
2F10η

11η00ε10

= −E.

(A.7)

In the last step we have considered ε01 = −1 according to our conventions (i.e. from
ε01 = 1 it follows that ε01 = η0aη1bε

ab = η00η11ε
01 = −1).

⌊d = 3⌋ In this situation, the information carried by the field strength tensor can be arranged
within a 3 × 3-matrix, such that the electric field counts two independent components,
i.e. E ⊜ (E1, E2)T . Moreover, also a magnetic (scalar) field, B, is now present. In
summary, we obtain in covariant indices:

(Fab) ⊜

 0 −E1 −E2
E1 0 B
E2 −B 0

 , (A.8)

or in contravariant indices:

(
Fab

)
=
(
ηacηbdFcd

)
⊜

 0 E1 E2
−E1 0 B
−E2 −B 0

 . (A.9)
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As we have done in the two-dimensional case, the quantity F is obtained by a simple
computation which uses eqs. (A.8) & (A.9):

F ≜
1
4FabF

ab = 1
2
(
B2 − E2

)
. (A.10)

Finally, the dual field strength 1-form follows from eq. (A.3) with d = 3 and p = 2:

⋆F = 1
2!(3 − 2)!

√
|det (η) |Fbcη

bmηcnεmnae
a

= 1
2Fbcη

bmηcnεmnae
a

= F12ε120e
0 − F02ε021e

1 − F01ε012e
2

=
(
F12e

0 + F02e
1 − F01e

2
)
ε012

= −Be0 + E2e
1 − E1e

2.

(A.11)

From this result, we can read off a vector representation for ⋆F by choosing a Cartesian
coordinate frame, first in contravariant indices and then also in covariant indices by using
the Minkowski metric:

(⋆Fa) ⊜

−B
E2

−E1

 & (⋆Fa) ⊜

 B
E2

−E1

 . (A.12)

⌊d = 4⌋ We conclude this paragraph with the natural case of three spatial plus one temporal
dimension, in which both the electric and magnetic field appear as vector fields. That
means respectively E ⊜ (E1, E2, E3)T and B ⊜ (B1, B2, B3)T . The field strength tensor
is explicitly represented by a 4 × 4-matrix:

(Fab) ⊜


0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

 ,

(
Fab

)
=
(
ηacηbdFcd

)
⊜


0 E1 E2 E3

−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0

 .
(A.13)

Again, a direct calculation yields:

F = 1
4FabF

ab = 1
2
(
B2 − E2

)
. (A.14)

We could obtain the Hodge dual to F in the same manner as for d = 2 and d = 3 spacetime
dimensions, but instead we take a shortcut and use the results that can be found in the
standard electrodynamics literature, e.g. [ 51 ].
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In contravariant as well as covariant indices we find:

(⋆Fab) ⊜


0 −B1 −B2 −B3
B1 0 −E3 E2
B2 E3 0 −E1
B3 −E2 E1 0

 ,

(
⋆Fab

)
⊜


0 B1 B2 B3

−B1 0 −E3 E2
−B2 E3 0 −E1
−B3 −E2 E1 0

 .
(A.15)

A special feature which is exclusive to the present case of four spacetime dimensions
relies on the fact that the dual field strength tensor has the same degree as the field
strength tensor, because d − p = 2 = p. Accordingly, we can construct an analog to F
by combining F and ⋆F to:

G ≜
1
4Fab

(
⋆F ab

)
= −E · B. (A.16)

B. Field Strength in Euclidean Space

This paragraph is basically a repetition of the analysis from paragraph A, but with the
difference that we now assume an Euclidean background and thus have g ≡ δ. It is lucid that
|det (δ) | = 1.

Before we begin to list the relevant information in different dimensions we should emphasise
that the electric and magnetic field need to be considered with respect to the Euclidean back-
ground. From a physical perspective , they must be interpreted accordingly, that is by means
of a Wick rotation which connects Minkowskian and Euclidean geometry. More precisely, the
electric field in Euclidean space is related to its counterpart in Minkowski space by a factor of
ı, whereas the magnetic field coincides in both situations. However, the matrix representations
for F in different dimensions are structurally analogous to the Minkowskian case.

Lastly, it is notable, though obvious, that there is no distinction in covariant and contravari-
ant indices in Euclidean space.

⌊d = 2⌋ Let us begin with two dimensions. The field strength tensor is essentially given by
eq. (A.5), although the quantity E is now the Euclidean electric scalar field:

(Fab) =
(
Fab

)
⊜ E

(
0 1

−1 0

)
. (A.17)

For F it follows:
F ≜

1
4FabF

ab = 1
2E

2. (A.18)

Finally, eq. (A.3) yields:

⋆F = 1
2!(2 − 2)!

√
|det (δ) |Fabδ

acδbdεcd

= 1
2F

cdεcd = F 01ε01

= E.

(A.19)
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⌊d = 3⌋ The field strength tensor can be copied from eq. (A.9):

(Fab) =
(
Fab

)
=

 0 E1 E2
−E1 0 B
−E2 −B 0

 . (A.20)

Hence, for F we find:
F ≜

1
4FabF

ab = 1
2
(
B2 + E2

)
, (A.21)

where E ⊜ (E1, E2)T . Next, we calculate the dual field strength tensor:

⋆F = 1
2!(3 − 2)!

√
|det (δ) |Fabδ

acδbdεcdae
a

= 1
2F

cdεcdae
a

= F 12ε120e
0 + F 02ε021e

1 + F 01ε012e
2

= Be0 − E2e
1 + E1e

2.

(A.22)

In Cartesian coordinates the dual field strength can be represented in vector format:

(⋆Fa) = (⋆Fa) ⊜

 B
−E2
E1

 . (A.23)

⌊d = 4⌋ In the four-dimensional case, we can adopt F from eq. (A.13):

(Fab) =
(
Fab

)
⊜


0 E1 E2 E3

−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0

 . (A.24)

Thus we obtain:
F ≜

1
4FabF

ab = 1
2
(
B2 + E2

)
, (A.25)

in which B ⊜ (B1, B2, B3)T and E ⊜ (E1, E2, E3)T are the magnetic and electric field
respectively. The dual field strength 2-form is given by:

⋆F = 1
2!(4 − 2)!

√
|det (δ) |Fabδ

acδbdεcdmne
m ∧ en

= 1
4F

cdεcdmne
m ∧ en

= 1
2
(
F 23ε2301e

0 ∧ e1 + F 13ε1302e
0 ∧ e2 + F 12ε1203e

0 ∧ e3

+F 23ε2310e
1 ∧ e0 + F 13ε1320e

2 ∧ e0 + F 12ε1230e
3 ∧ e0

+F 03ε0312e
1 ∧ e2 + F 02ε0213e

1 ∧ e3 + F 01ε0123e
2 ∧ e3

+F 03ε0321e
2 ∧ e1 + F 02ε0231e

3 ∧ e1 + F 01ε0132e
3 ∧ e2

)

(A.26)
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= 1
2B1

(
e0 ∧ e1 − e1 ∧ e0

)
+ 1

2B2
(
e0 ∧ e2 − e2 ∧ e0

)

+ 1
2B3

(
e0 ∧ e3 − e3 ∧ e0

)
+ 1

2E3
(
e1 ∧ e2 − e2 ∧ e1

)

− 1
2E2

(
e1 ∧ e3 − e3 ∧ e1

)
+ 1

2E1
(
e2 ∧ e3 − e3 ∧ e2

)
.

From this result we can infer the matrix representation of ⋆F in a local Cartesian coordi-
nate frame:

(⋆Fab) =
(
⋆Fab

)
⊜


0 B1 B2 B3

−B1 0 E3 −E2
−B2 −E3 0 E1
−B3 E2 −E1 0

 . (A.27)

In d = 4 spacetime dimensions we can once again exclusively compute the quantity G
using eq. (A.16):

G ≜
1
4Fab

(
⋆F ab

)
= E · B. (A.28)

C. Algebraic Identities

During sec. 3.1 we make use of two algebraic identities which relate F and ⋆F with F and
G in d = 4 spacetime dimensions. Now that we have concrete matrix representations for F
and ⋆F in both Minkowskian and Euclidean space, and under consideration of eqs. (A.14) &
(A.16) together with eqs. (A.25) & (A.28), it is an elementary exercise to prove these identities
by direct matrix multiplication. But before we do so, let us first formulate them.

Proposition A.1. Let M ≡ (X,g) be a four-dimensional (pseudo-)Riemannian manifold
that consists of a set of points X and a metric tensor g. Moreover, let F be the field strength
2-form and ⋆F its Hodge dual. Then, the following relations hold:

(a) For g ≡ η it is:

(i) F µλF ν
λ − (⋆F )µλ (⋆F )ν

λ = 2Fηµν

(ii) F µλ (⋆F )ν
λ = (⋆F )µλ F ν

λ = G ηµν

(b) For g ≡ δ it is:

(i) F µλF ν
λ + (⋆F )µλ (⋆F )ν

λ = 2F δµν

(ii) F µλ (⋆F )ν
λ = (⋆F )µλ F ν

λ = G δµν

Proof. We begin with case (a) no. (i) and consider the LHS:

F µλF ν
λ − (⋆F )µλ (⋆F )ν

λ = F µληνσFσλ − (⋆F )µλ ηνσ (⋆F )σλ

=F µλF T
λση

σν − (⋆F )µλ (⋆F )T
λσ η

σν =
[(

F•FT
• − (⋆F•) (⋆F•)T

)
η
]µν

,

in which F• and F• indicate the field strength tensor in contravariant and covariant indices
respectively, where the same is true also for the dual field strength tensor. Using eqs. (A.13) &
(A.15), the matrix products can be calculated explicitly in a local Cartesian frame by elementary
algebraic principles. The result reads:

F•FT
• − (⋆F•) (⋆F•)T =

(
B2 − E2

)
1 = 2F1.
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In the last line we have used eq. (A.14). Consequently, we arrive at:[
F•FT

• − (⋆F•) (⋆F•)T
]
η = 2Fη.

Case (b) no. (i) works similar; here, we do not have to distinguish between covariant and
contravariant indices since we work on an Euclidean background, i.e. F• = F• ≡ F and
analogously for the dual field strength. In this way, a similar calculation as for case (a) no. (i)
above gives:

F µλF ν
λ + (⋆F )µλ (⋆F )ν

λ =
[(

FFT + (⋆F) (⋆F)T
)

δ
]µν

.

Again, we can perform the matrix multiplication explicitly using eqs.(A.24) & (A.27). Together
with eq. (A.21) the result is:(

FFT + (⋆F) (⋆F)T
)

δ =
(
B2 + E2

)
δ = 2Fδ.

Now let us concentrate on case (a) no. (ii). First, a simple restructuring of the LHS yields:

F µλ (⋆F )ν
λ = F µλ (⋆F )T

λσ η
σν =

[
F• (⋆F•)T η

]µν

.

With eqs. (A.13) & (A.15) we find:

F• (⋆F•)T η = −E · Bη = G η.

To perform the last step we have used eq. (A.16). Since η is symmetric, so must F• (⋆F•)T η
and hence:

F• (⋆F•)T η =
[
F• (⋆F•)T η

]T

= η (⋆F•) (F•)T = η
(
η (⋆F•) η

)(
ηF•η

)T
= (⋆F•) FT

• η.

This can be expressed in components as:[
F• (⋆F•)T η

]µν

=
[
(⋆F•) FT

• η
]µν

= (⋆F )µλ F T
λση

σν = (⋆F )µλ F ν
λ ,

which proves the first equality of case (a) no. (ii), and with F• (⋆F•)T η = G η we also have
successfully showed the whole equality sequence. The proof for case (b) no. (ii) works analo-
gous and is thus not presented here explicitly.
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B

Dimensional Analysis

In search of fixed points for a given renormalisation flow within the FRG framework, it is
necessary to find suitable solutions to the fixed point equation (2.22). In order to simplify
calculations, it often might be beneficial to perform a transition to dimensionless generalised
couplings. In this way, the ERGE becomes autonomous and the fixed point equation takes a
concise form, which we have already extensively discussed in sec. 2.2. A successful accom-
plishment of this step requires a careful dimensional analysis of the underlying field operators
beforehand. Since the focus of this work aims on vector particles which are described by a
gauge field A and a set of two U(1) group action invariant quantities, F and G , we deduce a
collection of basic information about the mass units of these and closely related objects in the
course of this Appendix.

Before we begin, it is worth recalling our conventions, according to which we work in natural
units where both the speed of light c and the reduced Planck constant ℏ acquire the numerical
value 1 and are therefore considered to be dimensionless.

Actions. Now that ℏ carries the same physical unit as an action, this implies that all action
functionals are dimensionless in natural units, e.g. the bare action S, the effective action Γ, or
the effective average action Γk:

[S] = [Γ] = [Γk] = 0. (B.1)

The same is indeed also true for the gauge-fixing action Sgf as well as the cutoff action ∆Sk.
Fields. Let us consider a general theory, characterised by an action S, that in principle can

contain several degrees of freedom which we summarise in a collective field Φ ⊜ (ϕ1, ϕ2, . . .)
defined with respect to coordinate space. It is rather common to assume that each theory
exhibits a kinetic contribution of the generic form ∼ (∂µΦn) (∂µΦn), where summation over the
index n is understood. Recalling that action functionals are dimensionless, it follows:

0 = [S] =
[
(∂µΦn) (∂µΦn) ddx

]
=
[
∂2
]

+
[
ddx

]
+
[
Φ2
]

= 2 − d+ 2 [Φ] , (B.2)

where we have used the fact that [x] = −1, which directly follows from choosing natural units1.
Hence

[
ddx

]
= −d and [∂] = 1. Solving for [Φ] yields:

[Φ] = d

2 − 1. (B.3)

However, instead of integrating over coordinate space, we can alternatively switch to momentum
space by means of a Fourier transformation; Φ 7→ Φ̃; Φ̃(p) ≜

�
Φ(x)e−ıp·xddx, ∂µ 7→ −ıpµ.

1Since c = 1, temporal and spatial distances are measured by equal units. The same is true for energies
and masses according to E = mc2, as well as for inverse energies and temporal distances because of ℏ = 1. It
follows, that lengths and times each carry one inverse mass unit.
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Here, we agree on an exception to our conventions and explicitly indicate the momentum space
representation of Φ by an extra symbol Φ̃. From eq. (B.3) we get:

[
Φ̃
]

=
[
Φddx

]
= [Φ] +

[
ddx

]
= d

2 − 1 − d = −d

2 − 1. (B.4)

Combining the eqs. (B.3) & (B.4), we find a useful formula:[
Φ̃
]

= − [Φ] − 2. (B.5)

We see, that dynamical field variables do in general not agree in different representations in
terms of their units. For example, in d = 4 spacetime dimensions, we have [Φ] = 1 ̸= −3 =

[
Φ̃
]
.

Regulator. A key object of the FRG formalism is clearly the regulator function Rk, as it
combines Wilson’s idea of the renormalisation group with the concept of the effective action.
In order to determine the number of mass units for the regulator function, we adhere to eq. (2.9)
where we first have mentioned the regulator in relation to the cutoff action ∆Sk. Since [∆Sk] =
0, the same must hold for the integral expression on the RHS. Though (2.9) is formulated in
terms of a scalar field theory, the structure in which ∆Sk appears is quite common and usually
also used for a wide spectrum of theories. Therefore, supposing a cutoff action as presented in
eq. (2.9), we can directly infer that2:

0 = [∆Sk] =
[
Φ̃RkΦ̃ddp

]
= 2

[
Φ̃
]

+
[
ddp

]
+ [Rk] = −d− 2 + d+ [Rk] , (B.6)

in which eq. (B.5) was used. Solving for [Rk] gives:

[Rk] = 2. (B.7)

Hence it useful to define a dimensionless regulator by factoring out a squared momentum,
Rk ∼ p2R, which ultimately introduces the shape function R with [R] = 0 per construction.

Potential. In ch. 3 we primarily work with the effective average potential Wk, whose integral
over some spacetime volume essentially leads to the effective average action. What is more,
not only Wk, but basically all Lagrangian-like objects that yield action-like quantities by means
of their spacetime integration must carry the same number of mass units as the number of
considered spacetime dimensions. This is because the integration measure, ddx, brings −d
mass units, which we have to compensate to render the action dimensionless. In particular we
have:

[Wk] = d. (B.8)
Invariants. As it was mentioned in ch. 3, F represents the (Euclidean) Lagrangian for

freely propagating spin-1 bosons, thus [F ] = [Wk]. In addition, F is constructed from the
total contraction of the field strength tensor, F, with itself. Since the Levi-Civita tensor is
dimensionless, F and its Hodge dual, ⋆F, must agree on their units. Hence, we can pithily
state that G ∼ F2 ∼ F in terms of units. In summary, our findings are:

[F ] = d = [G ] . (B.9)

Field strength und dual field strength. From eq. (B.9) and the fact that, for instance, F ∼ F2,
we immediately find the number of mass units for the field strength and dual field strength
tensor:

[F] = d

2 = [⋆F] . (B.10)

Gauge field. If we go back one more step starting from the field strength tensor, we finally
arrive at the fundamental degree of freedom, i.e. the gauge field A. As it is well known, it is

2Here we note, that momenta are defined as products of mass and velocity. Since c = 1, it immediately
follows: [p] = [mass] = 1.
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related to the field strength according to F ∼ ∂A. Using eq. (B.10) and recalling that [∂] = 1,
we find:

[A] = d

2 − 1, (B.11)

which coincides with eq. (B.3).
Generalised couplings. The effective average potential Wk can be interpreted as the zeroth

order contribution of a derivative expansion of the full effective average Lagrangian Lk, that,
besides non-derivative terms, can also contain derivative structures applied on the field strength
tensor F. Since Wk only depends on the invariants F and G , we can suppose the following
formulation:

Wk (F ,G ) =
∑

(n,m)∈Z2
unm(k)F nG m, (B.12)

where unm denotes the generalised (scale-dependent) coupling belonging to the pair of indices
(n,m). We are interested in its unit. For this we make use of eqs. (B.8) & (B.9), from which
we find for all (n,m) ∈ Z2:

[Wk] = [unmF nG m] ⇒ d = n [F ] +m [G ] + [unm] = (n+m)d+ [unm] . (B.13)

This finally leads to:
[unm] = (1 − n−m) d. (B.14)

Potential derivatives. Another set of useful relations concern different derivative structures
over Wk. They can be obtained by combining the eqs. (B.8) & (B.9) and read:

[W ′
k ] =

[
∂Wk

∂F

]
= d− d = 0, [W ′′

k ] =
[
∂2Wk

∂F 2

]
= d− 2d = −d,

[
Ẇk

]
=
[
∂Wk

∂G 2

]
= d− 2d = −d,

[
Ẅk

]
=
[
∂2Wk

∂ (G 2)2

]
= d− 4d = −3d.

(B.15)

Moreover, for a mixed derivative we have:

[
Ẇ ′

k

]
=
[
∂2Wk

∂F∂G 2

]
= d− d− 2d = −2d. (B.16)

Field strength renormalisation. Let us turn to another quantity that first gains relevance
during ch. 3. There, we are often confronted with the field strength renormalisation Zk. As
the name suggests, Zk can be understood as a normalisation factor for field operators that
respects dimensional settings. This means that field operators exhibit the same unit as before
renormalisation, hence Zk must be dimensionless:

[Zk] = 0. (B.17)

Anomalous dimension. Finally, from the definition of the anomalous dimension, ηk ≜
−∂t ln (Zk), and after recalling that the RG time parameter is dimensionless per construction,
we deduce:

[ηk] = 0. (B.18)

This completes our list of basic information about the dimensional settings of this thesis.
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C

The Hypergeometric Function

During sec. 3.2 we are confronted with so-called threshold functions which are build upon
the choice of an optimised regulator. The former are structurally closely related to a special
mathematical function that is known as the hypergeometric function. In order to prepare for
an appropriate treatment, let us collect basic facts about this function and list some identites
for it in what follows.

Differential equation. The hypergeometric function serves to express solutions for second-
order ordinary differential equations that exhibit at most three regular singular points [ 53 ].
Differential equations of this type can always brought into a generic form which is known as
the hypergeometric differential equation. A solution to this equation, that is a complex function
w : G → U ⊆ C which is defined for some region G ⊆ C, satisfies [ 53 ]:

z (1 − z) d2w(z)
dz2 +

[
c− (a+ b+ 1) z

]dw(z)
dz − abw(z) = 0, for all z ∈ G. (C.1)

There exists two fundamental solutions to eq. (C.1). One of them is the hypergeometric function
itself, which is often denoted as 2F1 (a, b; c; z) with complex valued parameters a, b ∈ C and
c ∈ C \ Z≤0.

Gauss series. A useful series representation of 2F1, properly defined on the unit disk where
|z| < 1 holds, is provided by the so-called Gauss series [ 49 ]:

2F1 (a, b; c; z) = Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)n! zn . (C.2)

Here, Γ denotes the Gamma function, which can be explicitly calculated for instance using
Euler’s integral formula:

Γ (z) =
∞�

0

tz−1e−tdt, (C.3)

for all z ∈ C with ℜ [z] > 0.
Principal branch. In many applications and formulas regarding the hypergeometric function

2F1, one presupposes their validity only on the principal branch, which is the complex subset
{z ∈ C | |arg (1 − z) | ≤ π}. It is topologically obtained by cutting the interval (1,∞) ⊂ R
from the complex plane. Like it was said before, a majority of the identities for the hypergeo-
metric function are only valid in the region of the principal branch. This circumstance should
be taken with care during explicit computations that include different representations of the
hypergeometric function.

81



Figure C.1: Four examples that show concrete realisations of the hypergeometric function over
the symmetric unit interval on R. The chosen parameter values are motivated through the fixed
point equation derived in sec. 3.2, where here we have set the number of spacetime dimensions
to four. In this context, the real variable x is either referred to 1 −w′

∗ or 1 −w′
∗ −w′′

∗F̃ . As it
can be seen from eq. (C.5), the blue and green curve suggest to develop an irregular behaviour
as x → 1, because c− a− b = 0 holds in both cases and Γ(0) is ill-defined.

Integral representation. Beside the Gauss series representation, we can express the hyperge-
ometric function by its Euler type integral representation which is of particular interest for our
purposes. It is valid on the principal branch excluding the branch point z = 1 and given by the
following formula [ 53 ]:

B (b, c− b) 2F1 (a, b; c; z) =
1�

0

rb−1 (1 − r)c−b−1

(1 − zr)a dr, for ℜ (c) > ℜ (b) > 0. (C.4)

Here, B denotes the Euler beta function. It is defined by the following integral:

B(u, v) =
1�

0

tu−1(1 − t)v−1dt, (C.5)

for all u, v ∈ C with ℜ[u],ℜ[v] > 0.
Beta function. The central result regarding the theory of Euler’s beta function is its famous

relation to the Gamma function, given by:

B (u, v) = Γ(u)Γ(v)
Γ(u+ v) , for u, v ∈ C with ℜ[u],ℜ[v] > 0. (C.6)

Conclusively, a selection of sample plots for some triples (a, b, c) are depicted in fig. C.1. They
correspond to solutions of threshold functions with which we are dealing during the fixed point
analysis in sec. 3.2 (cf. eq. (3.64)).



D

Proof & Computation History

During chs. 2 & 3, we have stated some results but deliberately omitted corresponding
reasonings due to their rather large extent. This happened with the intention to prevent
undesired disruptions of the text flow. The purpose of this Appendix is now to catch up
on these technical details and provide proofs of individual results. We will referencing each
calculation to its corresponding equation number or position in the main text.

Lemma D.1 (Field expectation value, eq. (2.5)).
For a scalar field theory, with field operators φ̂ and effective action Γ ⊜ Γ [ϕ], the following
relation holds:

ϕ(x) =
[

1
Z [J ]

δZ [J ]
δJ(x)

] ∣∣∣∣∣
J=J̃

, (D.1)

where J̃ denotes the sorce function which fulfills the supremum condition for Γ.

Proof. First, we recall the definition of the effective action from eq. (2.4):

Γ [ϕ] ≜ sup
J

(�
ϕ(x)J(x)ddx− W [J ]

)
,

where W is defined in eq. (2.2). When evaluating the LHS of eq. (D.1) at the source J = J̃ for
which the supremum is accepted, we arrive at an extremum of the corresponding expression by
means of its least upper bound when considered as a functional of the source J . That means,
the (functional) derivative of the supremum argument with respect to J(x) must vanish when
evaluated at J = J̃ :

0 =
[

δ

δJ(x)

(�
ϕ(y)J(y)ddy − W [J ]

)] ∣∣∣∣∣
J=J̃

=
[�

ϕ(y)δJ(y)
δJ(x)ddy − δW [J ]

δJ(x)

] ∣∣∣∣∣
J=J̃

=
�
ϕ(y)δ(d)(x, y)ddy︸ ︷︷ ︸

=ϕ(x)

−
[
δW [J ]
δJ(x)

] ∣∣∣∣∣
J=J̃

.

Rearranging terms and using W = ln (Z) finally yields:

ϕ(x) =
[
δW [J ]
δJ(x)

] ∣∣∣∣∣
J=J̃

≜

[
1

Z [J ]
δZ [J ]
δJ(x)

] ∣∣∣∣∣
J=J̃
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Side note: according to eq. (2.3), we can declare the 1-point correlation function, i.e. the
vacuum expectation value ⟨·⟩vac of the field operator φ̂ in presence of a source term:

⟨φ̂J̃(x)⟩vac ··=
[

1
Z [J ]

δZ [J ]
δJ(x)

] ∣∣∣∣∣
J=J̃

≡ ϕ(x).

This reproduces eq. (2.5) in total.

Lemma D.2 (Regularisation operator, eq. (2.9)).
In the framework of the functional renormalisation group, let Rk be the regulator which im-
plements the infrared momentum mode suppression and let ∆Sk denote the cutoff action built
upon Rk. Furthermore, let φ be the underlying dynamical field variable. The operator repre-
sentation of Rk can be written by means of ∆Sk as:

∆Sk [φ] = 1
2

�
φ(x)Rk

(
−∂2

)
φ(x)ddx, (D.2)

and is equivalent to eq. (2.9). Here, ∂2 ≡ □ means the d’Alembert operator.

Proof. Since we know, that the cutoff action ∆Sk in its form of eq. (2.9) is already well-
constructed, we start with eq. (D.2) and show that eq. (2.9) follows directly from it. Using
the Fourier decomposition of φ and noting that eıp·x is an eigenvector of −∂2 with the corre-
sponding eigenvalue being p2, we get:

�
φ(x)Rk

(
−∂2

)
φ(x)ddx =

�
φ(x)Rk

(
−∂2

)(�
φ(p)eıp·x ddp

(2π)d

)
ddx

=
� �

φ(x)
(
Rk

(
−∂2

)
eıp·x

)
︸ ︷︷ ︸

=Rk(p2)eıp·x

φ(p)ddx
ddp

(2π)d

=
� (�

φ(x)eıp·xddx

)
︸ ︷︷ ︸

=φ(−p)

Rk(p2)φ(p) ddp

(2π)d

≡
�
φ(−p)Rk(p)φ(p) ddp

(2π)d

≡ 2∆Sk [φ] .

This proves that eq. (2.9) is indeed equivalent to eq. (D.2).

Theorem D.3 (Quantum equations of motion, sec. 2.1; par. A).
The effective action Γ satisfies the so-called quantum equations of motion:

δΓ [ϕ]
δϕ(x) = J̃(x). (D.3)

Here, J̃ denotes the source function which matches the supremum condition on the LHS of
eq. (2.4).
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Proof. We use the supremum definition of the effective action, evaluate at J = J̃ and perform
a functional derivative with respect to ϕ:

δΓ [ϕ]
δϕ(x) ≜

δ

δϕ(x)

(�
ϕ(y)J̃(y)ddy − W

[
J̃
])

=
�

δ

δϕ(x)
(
ϕ(y)J̃(y)

)
ddy −

δW
[
J̃
]

δϕ(x)

=
� (

δϕ(y)
δϕ(x)

)
J̃(y)ddy +

�
ϕ(y)

(
δJ̃(y)
δϕ(x)

)
ddy −

� δW
[
J̃
]

δJ̃(y)
δJ̃(y)
δϕ(x)ddy,

where we took into account that J̃ ⊜ J̃(ϕ) implicitly depends on the variable ϕ, since it is the
supremum of a ϕ dependent expression. Furthermore, we have used the chain rule of functional
calculus for the last term δW

[
J̃
]
/δϕ(x) in the last line. According to Lemma D.1, we can

replace δW
[
J̃
]
/δJ̃(y) by the field expectation value ϕ(y) and obtain:

δΓ [ϕ]
δϕ(x) =

�
J̃(y)δ(d)(x, y)ddy+

�
ϕ(y)

(
δJ̃(y)
δϕ(x)

)
ddy −

�
ϕ(y)

(
δJ̃(y)
δϕ(x)

)
ddy︸ ︷︷ ︸

=0

= J̃(x).

This finishes the proof.

Corollary D.4 (Regulated quantum equations of motion).
Let Γk be the smooth interpolation between a bare action S and an effective action Γ, for which
a regulator Rk is chosen. Then, the quantum equations of motion (D.2) extend to:

δΓk [ϕ]
δϕ(x) = J̃(x) − (Rkϕ) (x). (D.4)

Proof. We start with the definition of the effective average action Γk, given by eq. (2.11):

Γk [ϕ] ≜ sup
J

(�
ϕ(x)J(x)ddx− Wk [J ]

)
− ∆Sk [ϕ] ,

in which ∆Sk denotes the cutoff action from eq. (2.9), and Wk is the scale dependent Schwinger
functional, defined with respect to eq. (2.8) by Wk ≡ ln (Zk). With Theorem D.3, we find:

δΓk [ϕ]
δϕ(x) = δ

δϕ(x)

(�
ϕ(y)J̃(y)ddy − Wk

[
J̃
])

︸ ︷︷ ︸
=J̃(x)

−δ∆Sk [ϕ]
δϕ(x) ,

where we have used the scale dependent version of Lemma D.1, which follows by an analogous
proof1 and states that ϕ(x) = δWk

[
J̃
]
/δJ̃(x). Let us now concentrate on the functional

derivative of the cutoff action with respect to ϕ. Under consideration of Lemma D.2 it follows:

δ∆Sk [ϕ]
δϕ(x) ≜

1
2

δ

δϕ(x)

�
ϕ(y)Rk

(
−∂2

)
ϕ(y)ddy

= 1
2

[�
δϕ(y)
δϕ(x)Rk

(
−∂2

)
ϕ(y)ddy +

�
ϕ(y)Rk

(
−∂2

) δϕ(y)
δϕ(x)ddy

]
.

1The only new aspect appears by taking the functional derivative of ∆Sk [ϕ] with respect to the source
function J (not the “supremum source” J̃ !), which obviously vanishes.
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Now we use that δϕ(y)/δϕ(x) = δ(d)(x, y), upon which the first integral directly collapses
on y = x. The second integral is more subtle, since the operator Rk (−∂2) acts on the Dirac
distribution. Nevertheless, we can circumvent any problems in this context by using integration
by parts to transfer the (derivative) operator Rk (−∂2) in front of ϕ(y) and then solve the
integral straightforwardly. For this we need the assumption of considering only situations
where boundary terms can be neglected, what is, however, often done. In total, we have to
perform two integration by parts, because Rk (−∂2) is considered as a second order differential
operator. As an intermediate result, we find:

�
ϕ(y)Rk

(
−∂2

) δϕ(y)
δϕ(x)ddy =

�
δ(d)(x, y)Rk

(
−∂2

)
ϕ(y)ddy = Rk

(
−∂2

)
ϕ(x).

Altogether we arrive at:

δ∆Sk [ϕ]
δϕ(x) = 1

2
[
Rk

(
−∂2

)
ϕ(x) + Rk

(
−∂2

)
ϕ(x)

]
= Rk

(
−∂2

)
ϕ(x) ≡ (Rkϕ) (x).

Going back to the functional differentiation of Γk we finally obtain:

δΓk [ϕ]
δϕ(x) = J̃(x) − δ∆Sk [ϕ]

δϕ(x) = J̃(x) − (Rkϕ) (x),

which completes the proof.

Theorem D.5 (Wetterich equation, eq. (2.15)).
Let S be the bare action of a scalar field theory with φ being the field variable. Let Γk denote
the effective average action that corresponds to S and a given regulator function Rk. Then, Γk

satisfies the Wetterich flow equation:

∂tΓk [ϕ] = 1
2Tr

[(
Γ(2)

k [ϕ] + Rk

)−1
∂tRk

]
. (D.5)

Here, t ≡ ln (k/k0) with k0 being an arbitrary reference scale, ϕ means the vacuum expectation
value of φ in presence of the source function J̃ that satisfies the supremum condition for Γk,
and Γ(2)

k is a shortcut for the second functional derivative of Γk with respect to its argument ϕ.

Proof. We start with the scale-dependent version of Lemma D.1, which we recently used to
prove Corollary D.4 (cf. footnote on the previous page) and take an additional functional
derivative:

δϕ(x)
δJ̃(y)

= δ

δJ̃(y)

δW
[
J̃
]

δJ̃(x)

 =
δ2W

[
J̃
]

δJ̃(x)δJ̃(y)
≡ Gk (x− y) .

In the last step, we have introduced the scale dependent connected propagator Gk (cf. para-
graph B of sec. 2.1). On the other hand, we can also take on more derivative of the source J̃
with respect to the field ϕ using Corollary D.4:

δJ̃(x)
δϕ(y) = δ

δϕ(y)

(
δΓk [ϕ]
δϕ(x) + (Rkϕ) (x)

)
= δ2Γk [ϕ]
δϕ(x)δϕ(y)︸ ︷︷ ︸
≡Γ(2)

k
[ϕ](x,y)

+ δ

δϕ(y)Rk

(
−∂2

)
ϕ(x)

= Γ(2)
k [ϕ] (x, y) + Rk

(
−∂2

)
δ(d)(x, y) ≡ Γ(2)

k [ϕ] (x, y) + Rk(x, y).
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Here we have defined a shortcut; Rk(x, y) ≡ Rk (−∂2) δ(d)(x, y). With these results we can now
derive eq. (2.13):

δ(d)(x, y) = δϕ(x)
δϕ(y) =

�
δϕ(x)
δJ̃(u)

δJ̃(u)
δϕ(y) ddu =

�
Gk(x− u)

(
Γ(2)

k [ϕ] + Rk

)
(u, y)ddu.

The last expression represents the (x, y) component of the operator product between Gk and
Γ(2)

k [ϕ] + Rk, which is normalised and non-vanishing only for x = y. In operator notation, this
implies that Gk ·

(
Γ(2)

k [ϕ] + Rk

)
must be equal to unity. We can express this by:

Gk =
(
Γ(2)

k [ϕ] + Rk

)−1
.

Before we continue, it is important to note that the “supremum source” J̃ does not only exhibit
an implicit ϕ dependence, but since it chosen in such a way, that the scale-dependent expression�
ϕ(x)J(x)ddx− Wk [J ] evaluated for J = J̃ approaches its supremum, there is also an implicit

k dependence for J̃ . We can make this clear by writing J̃ ⊜ J̃k [ϕ], though we will not adhere
to this notation and use J̃ further on, but keeping this aspect in mind. Conclusively, the t
derivative of Γk follows from its definition, eq. (2.11), and reads:

∂tΓk [ϕ] ≜ ∂t

(�
ϕ(x)J̃(x)ddx− Wk

[
J̃
]

− ∆Sk [ϕ]
)

=
�
ϕ(x)

(
∂tJ̃(x)

)
ddx− ∂t

(
Wk

[
J̃
])

− ∂t∆Sk [ϕ]

=
�
ϕ(x)

(
∂tJ̃(x)

)
ddx− ∂tWk

[
J̃
]

−
� δWk

[
J̃
]

δJ̃(x)
(
∂tJ̃(x)

)
ddx− ∂t∆Sk [ϕ] .

In the last line, we considered to use the chain rule when differentiating Wk

[
J̃
]

with respect to
t, since Wk

[
J̃
]

depends explicitly on k per construction (indicated by the k subscript), but in
addition depends also implicitly on k via its argument J̃ . With the scale-dependent extension
of Lemma D.1, we can replace δWk

[
J̃
]
/δJ̃(x) with ϕ(x) and thus the first and third term in

our last result cancel with each other. The remaining expression reads:

∂tΓk [ϕ] = −∂tWk

[
J̃
]

− ∂t∆Sk [ϕ] .

Now we need to evaluate the explicit t derivative of the scale-dependent Schwinger functional.
For this, we refer to eq. (2.8) and use the definition of Wk by means of the scale-dependent
partition functional:

∂tWk

[
J̃
]

= ∂t ln
(
Zk

[
J̃
])

= 1
Zk

[
J̃
]∂tZk

[
J̃
]

= 1
Zk

[
J̃
]∂t

�
exp

(
−S [φ] − ∆Sk [φ] +

�
φ(x)J̃(x)ddx

)
[Dφ]

= − 1
Zk

[
J̃
] � e−S[φ]−∆Sk[φ]+

�
φ(x)J̃(x)ddx∂t∆Sk [φ] [Dφ]

= −1
2

�  1
Zk

[
J̃
] � φ(−p)φ(p)e−S[φ]−∆Sk[φ]+

�
φ(x)J̃(x)ddx [Dφ]

 ∂tRk(p) ddp

(2π)d
.
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In the last step, we have used eq. (2.9) in order to express ∆Sk in terms of the regulator function
Rk. The term in paranthesis is per definition precisely the vacuum expectation value of the
operator product φ̂(−p)φ̂(p) in presence of the source J̃ , i.e:

1
Zk

[
J̃
] � φ(−p)φ(p)e−S[φ]−∆Sk[φ]+

�
φ(x)J̃(x)ddx [Dφ] ≡ ⟨φ̂(−p)φ̂(p)⟩J̃ .

In order to proceed, we first compute the second functional derivative of the scale dependent
Schwinger functional with respect to its argument:

δ2Wk [J ]
δJ(x)δJ(y) = δ

δJ(y)

(
δ ln (Zk [J ])
δJ(x)

)
= δ

δJ(y)

(
1

Zk [J ]
δZk [J ]
δJ(x)

)

= − 1
Zk [J ]2

δZk [J ]
δJ(x)

δZk [J ]
δJ(y) + 1

Zk [J ]
δ2Zk [J ]

δJ(x)δJ(y)

= 1
Zk [J ]

δ2Zk [J ]
δJ(x)δJ(y) −

(
1

Zk [J ]
δZk [J ]
δJ(x)

)(
1

Zk [J ]
δZk [J ]
δJ(y)

)

≡ ⟨φ̂(x)φ̂(y)⟩J − ⟨φ̂(x)⟩J⟨φ̂(y)⟩J

= ⟨φ̂(x)φ̂(y)⟩J − ϕ(x)ϕ(y),

where Lemma D.1 was applied in the last step. It follows:

⟨φ̂(−p)φ̂(p)⟩J̃ =
δ2Wk

[
J̃
]

δJ̃(−p)δJ̃(p)︸ ︷︷ ︸
≡Gk(p)

+ϕ(−p)ϕ(p) = Gk(p) + ϕ(−p)ϕ(p).

Turning back to our calculation of ∂tWk

[
J̃
]

we arrive at:

∂tWk

[
J̃
]

= −1
2

� (
Gk(p) + ϕ(−p)ϕ(p)

)
∂tRk(p) ddp

(2π)d

= −1
2

�
∂tRk(p)Gk(p) ddp

(2π)d
− ∂t

(
1
2

�
ϕ(−p)Rk(p)ϕ(p) ddp

(2π)d

)
︸ ︷︷ ︸

≜∆Sk[ϕ]

= −1
2

�
∂tRk(p)Gk(p) ddp

(2π)d
− ∂t∆Sk [ϕ] .

Inserting this expression in our last intermediate result of ∂tΓk [ϕ] we finally obtain:

∂tΓk [ϕ] = −∂tWk

[
J̃
]

− ∂t∆Sk [ϕ]

= 1
2

�
∂tRk(p)Gk(p) ddp

(2π)d
+ ∂t∆Sk [ϕ] − ∂t∆Sk [ϕ]

= 1
2

� (
Γ(2)

k [ϕ] + Rk

)−1
(p)∂tRk(p) ddp

(2π)d
.
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Here, we now integrate (or sum) over all diagonal values of the operator
(
Γ(2)

k [ϕ] + Rk

)−1
∂tRk

in its momentum space representation, which is equivalent to a continuous version of the trace
operator. In this sense, we accordingly abbreviate the last expression and obtain the Wetterich
equation (for a scalar field theory):

∂tΓk [ϕ] = 1
2Tr

[(
Γ(2)

k [ϕ] + Rk

)−1
∂tRk

]
.

With this, we have shown what was claimed.

Proposition D.6 (Integral-determinant relation, eq. (2.65)).
Let V be an n-dimensional complex vector space and Λ (V ) be its exterior algebra with respect
to a basis B of V . Let further θ be a vector with Grassmann-valued components θk ∈ Λ (V ),
where k ∈ {1, . . . , N}, then the determinant of a Hermitian N ×N matrix M with eigenvalues
{µk}N

k=1 can be represented by the following integral relation:

det (M) =
�

e−θ†Mθdθ̄dθ. (D.6)

Proof. Let us begin to calculate an ordinary one-dimensional Gaussian integral including a
complex constant µ ∈ C: �

Λ(V )2

e−θ̄µθdθ̄dθ.

As usual, we can expand the exponential function in terms of a power series:

e−θ̄µθ =
∑

n∈N0

(−1)n

(
θ̄µθ

)n

n! = 1 − µθ̄θ + 1
2 θ̄µθθ̄µθ︸ ︷︷ ︸

=−θ̄2θ2=0

+ . . . ,

where we have used the characteristic anticommutation property of Grassmann numbers; θ2 = 0
for all θ ∈ Λ (V ). Since all higher order terms include at least two factors θ and θ̄, the whole
power series expansion terminates after first order. This means:

e−θ̄µθ = 1 − µθ̄θ.

Recalling the basic rules of integral calculus over exterior algebras, in particular
�

Λ(V ) dθ = 0
and

�
Λ(V ) θdθ = 1, the Gaussian integral computes to:

�

Λ(V )2

e−θ̄µθdθ̄dθ =
�

Λ(V )2

(
1 − µθ̄θ

)
dθ̄dθ =

�

Λ(V )


�

Λ(V )

dθ̄

 dθ

︸ ︷︷ ︸
=0

−
�

Λ(V )


�

Λ(V )

θ̄θdθ̄

 dθ

= µ

�

Λ(V )

θ


�

Λ(V )

θ̄dθ̄


︸ ︷︷ ︸

=1

dθ = µ

�

Λ(V )

θdθ

︸ ︷︷ ︸
=1

= µ.

Consider now a Hermitian N × N matrix M for which there exists a unitary matrix U, such
that D ≡ U†MU is a diagonal matrix with Dkk = µk. Here, U† ≡ ŪT denotes the Hermitian
conjugate of U. From these observations we deduce:

−θ†Mθ = −θ†UDU†θ = −
(
U†θ

)†
D
(
U†θ

)
.
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Define a new variable of integration θ̃ ··= U†θ. Since U describes a unitary transformation, the
integration measure does not change. Thus:

�
e−θ†Mθdθ̄dθ =

�
e−(U†θ)†

D(U†θ)dθ̄dθ =
�

e−θ†Dθdθ̄dθ

=
�

e−
∑N

i=1 θ̄iµiθi

 N∏
j=1

dθ̄jdθj

 =
N∏

i=1

�
e−θ̄iµiθidθ̄idθi

=
N∏

i=1
µi = det (D) = det

(
U†MU

)
= det

(
UU†M

)
= det (M) .

In the penultimate step we took advantage of the fact, that the factors of the matrix product
within a determinant can be arbitrarily shifted. This finishes the proof.

Proposition D.7 (Parallel alignment of electric and magnetic fields, sec. 3.2; par. A).
Let (E,B) be a pair of an electric and magnetic field with respect to a frame of reference Σ,
considered in d = 4 dimensional Minkowski space. If E · B ̸= 0, then there exists a Lorentz
transformation Σ → Σ̃ with a new frame of reference Σ̃ in which the transformed fields

(
Ẽ, B̃

)
are parallel.

Proof. The electric and magnetic field, E and B respectively, are covariantly summarised in the
field strength tensor F. Its contravariant matrix representation in d = 4 spacetime dimensions
is given in (A.13):

(Fµν) ⊜


0 E1 E2 E3

−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0

 .

We consider a general Lorentz boost with velocity vector v ∈ Σ, and define the dimensionless
transformation parameter2 β ··= v/c, where c is the speed of light (during this proof, we will
exceptionally work in SI units). In a Cartesian coordinate frame, a general Lorentz boost B
can be represented in matrix form as:

B (β) ⊜


γ −γβx −γβy −γβz

−γβx 1 + (γ − 1) β2
x

β2 (γ − 1) βxβy

β2 (γ − 1) βxβz

β2

−γβy (γ − 1) βyβx

β2 1 + (γ − 1) β2
y

β2 (γ − 1) βyβz

β2

−γβz (γ − 1) βzβx

β2 (γ − 1) βzβy

β2 1 + (γ − 1) β2
z

β2

 ,

where β ⊜ (βx, βy, βz)T and γ ≡ 1
1−β2 denotes the Lorentz factor. This matrix can, for

instance, be obtained by performing three individual Lorentz boosts along each axis of a
Cartesian coordinate frame, i.e. multiplying three special Lorentz boost matrices; B (β) =
Bz (βz) By (βy) Bx (βx). The field strength tensor in Σ̃ can now be computed via an ordinary
matrix product:

F̃ = BT FB.

2Note that β should not be confused with the beta vector introduced in sec. 2.2.
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From the result of this calculation, we can read off the transformed fields Ẽ and B̃:

Ẽ = γ (E + β × B) − γ2

γ + 1 (β · E) β,

B̃ = γ (B − β × E) − γ2

γ + 1 (β · B) β.

Since we exclude the case E · B = 0, both field vectors are not vanishing. Therefore, we can
consider Ẽ × B̃ != 0 as a necessary and sufficient condition for showing that two vectors are
parallel. Explicitly, this means:

0 = Ẽ × B̃

=
[
γ (E + β × B) − γ2

γ + 1 (β · E) β

]
×
[
γ (B − β × E) − γ2

γ + 1 (β · B) β

]

= γ

[
E × B − E × (β × E) − γ

γ + 1 (β · B) (E × β) + (β × B) × B

− (β × B) × (β × E) − γ

γ + 1 (β · B) (β × B) × β − γ

γ + 1 (β · E) (β × B)

+ γ

γ + 1 (β · E) β × (β × E) +
(

γ

γ + 1

)2

(β · E) (β · B) (β × β)
 .

Obviously, the last term ∼ β × β vanishes. For the numerous double cross products we can use
the Grassmann identity; a × (b × c) = b (a · c) − c (a · b), or (a × b) × c = b (a · c) − a (b · c)
for some vectors a,b, c ∈ R3. In addition, many terms contain an inner product; either β · E
or β · B. Therefore, we can highly simplify the last intermediate result by supposing an ansatz
of the form β = αE × B, where β ≡ |β|, such that β is perpendicular to both E and B. In
this way, all terms ∼ β · E and ∼ β · B vanish identically. The proportionality factor α is yet
to be determined. Dividing by γ ̸= 0 on both sides of our last expression we obtain:

0 = E × B − β (E · E) + E (E · β)︸ ︷︷ ︸
=0

+B (β · B)︸ ︷︷ ︸
=0

−β (B · B) − (β × B) × (β × E)

= E × B − β
(
E2 +B2

)
− α2

[
(E × B) × B

]
×
[
(E × B) × E

]
= E × B − β

(
E2 +B2

)
− α2

[
B (E · B) − E (B · B)

]
×
[
B (E · E) − E (B · E)

]
= E × B − β

(
E2 +B2

)
− α2

[
− (E · B)2 B × E − E2B2E × B

]

=
[
1 − α

(
E2 +B2

)
− α2

(
(E · B)2 − E2B2

)]
E × B.

As we have argued above, neither of the field vectors E or B vanish. If E ∥ B, then E × B = 0
and there is nothing to do. The sought for Lorentz transformation is simply the identity. Thus,
let us concentrate on the situtation where E and B are not parallel (and also not perpendicular
by assumption).
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Then, the prefactor of the our last intermediate result must vanish, which yields a quadratic
equation for α. It reads:

0 = 1 − α
(
E2 +B2

)
+ α2

(
E2B2 − (E · B)2

)

= 1 +
α√E2B2 − (E · B)2 − E2 +B2

2
√
E2B2 − (E · B)2

2

−

 E2 +B2

2
√
E2B2 − (E · B)2

2

.

Here we note that E2B2 ≥ (E · B)2 = E2B2 cos (ϑ)2, with the angle ϑ enclosed by E and B.
The two solutions for α are:

α = 1
|E × B|2

E2 +B2

2 ±

√√√√(E2 −B2

2

)2

+ (E · B)2

 ,
where we have compactified the root expression as follows: E2B2−(E · B)2 = E2B2 (1 − cos(ϑ)2) =
E2B2 sin(ϑ)2 = |E × B|2. It obvious that α ∈ R for both signs and hence β = αE × B a valid
transformation parameter that exists for all non-perpendicular and initially non-parallel field
configurations. The corresponding proper Lorentz transformation is given by B (αE × B).
This is what we intended to show.

Remark: Even if E and B are perpendicular and hence E · B = 0, α would still be a real
number and describes a proper Lorentz transformation by means of β = αE × B. However,
the assumption that E · B ̸= 0 is nevertheless necessary. One can see this, by calculating the
inner product of the transformed fields, i.e. Ẽ · B̃. After some elementary algebra, one finds
that the inner product is indeed a Lorentz invariant: Ẽ · B̃ = E · B. Thus, if both fields are
perpendicular to each other in one frame of reference, then they are perpendicular in all frames.
Therefore, there would be no possibility to make them appear parallel by means of a proper
Lorentz transformation.

Theorem D.8 (Basis of local U(1) invariants, sec. 3.1; par. A).
In the situation of ch. 3, the set {F ,G } forms a basis in the space of all locally U(1)- and
Lorentz invariant non-derivative scalar quantities.

Sketch of a proof. Let us consider an arbitrary locally U(1)- and Lorentz invariant scalar quan-
tity S ⊜ S (X). Within the tuple X we collect all possible objects from which we can construct
manifestly U(1)- and Lorentz invariant expressions. The first task is to characterise the tuple
X and enumerate the individual objects of which it consists. One can be convinced that the
only such objects are the field strength tensor F, the totally antisymmetric Levi-Civita tensor
ε, and the metric tensor g, whereby g is chosen to be either the Minkowski- or the Euclidean
metric. Instead of the Levi-Civita tensor, we can also include the dual field strength tensor ⋆F,
which is a manifestly locally U(1) invariant combination of ε and F. It follows:

S (X) = S (g,F, ⋆F) .

Since S is supposed to be a Lorentz scalar, it must be constructed from terms which are
proportional to a full contraction of g,F and ⋆F. However, the metric g has the effect of
shifting index positions, so full contractions can be reduced between F and ⋆F only.
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Now, three different situations can occur:

(i) Full contractions of F with itself either yield 0 (∼ F µ
µ ), or, per construction, factors of

F (∼ FµνF
µν).

(ii) Full contractions between F and ⋆F lead to factors G , either by definition (∼ Fµν ⋆ F
µν),

or by employing Proposition A.1 of app. A (∼ F µλ ⋆ F ν
λ = G δµν).

(iii) Full contractions of ⋆F with itself can be expressed in terms of contractions of F with
itself plus a term proportional to F , using again Proposition A.1 of app. A.

Since in all three cases we are able to reduce arbitrary contractions on factors of F and G , the
scalar S depends only on these invariants:

S ⊜ S (F ,G ) .

Except for some more detailed argumentations on the characterisation of X and some formal
statements on the cases (i)-(iii), this essentially completes the proof.
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