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1 Introduction
Since Einstein formulated the Special and later the General Theory of Relativity, it
has always been of great interest in physics to see if classical models and theories
need to be adapted when it comes to relativistically relevant velocities. In condensed
matter physics and especially in the discussion of metals, semi-metals and topological
insulators, the band structure of the matter is essential for its electric properties. Inter-
esting phenomena like non-Fermi liquids appear when the Fermi surface is reduced
to a point [1, 2]. This is the case for in what is called linear band crossing where the
dispersion relation in the vicinity of these Fermi points is linear in momentum. Here
the short range components of electron interactions are large, while the long range
components can be neglected [3]. This is well explained by a relativistic field theory of
the Gross-Neveu-Yukawa type [4].

Attention is also drawn to the case of quadratic band crossing (QBC) or quadratic
band touching (QBT). Here, the dispersion relation is quadratic in momentum. In the
literature the fermions are sometimes referred to as Luttinger fermions in this situation,
named after Joaquin Mazdak Luttinger for his work on so called Luttinger liquids [5]. A
non-relativistic treatment of QBC in 2 spatial dimensions can be found in [6, 7]. The sit-
uation is rather different in 3 spatial dimensions. This problem is often treated with the
use of the renormalization group [1, 8, 9]. All these models are non-relativistic. In this
work we want to show that it is also possible to construct corresponding relativistically
invariant versions of such models and of Luttinger fermions in general.

The thesis is structured as follows: In chapter 2 we recap the widely known formal-
ism of the Hamiltonian and Dirac spinors. In chapter 3, we show the construction
of the Hamiltonian for Luttinger fermions and find the general anti-commutator for
the second-rank-tensor G . Further, we see the failure of the simplest ansatz for the
spin metric. Two representations for the Clifford algebra in 2+1 and later 3+1 dimen-
sions are chosen in chapter 4. Here we find the necessary spin metric to construct
relativistically invariant actions.

1



2 THEORETICAL FOUNDATIONS

2 Theoretical Foundations

2.1 Conventions
In the following work we use the so called natural units, i.e.

ℏ= 1 = c , (2.1)

where c is the speed of light and ℏ is the reduced Plank’s constant. The used metric for
the spacetime follows the sign convention

gµν = diag(+,−,−,−) . (2.2)

If the summation is not stated explicitly, we use Einstein’s summation convention
where repeated indices are implicitly summed over. The underlined index, e.g. Gi i ,
means that there is no summation over this index. Indices in Roman letters are meant
to start counting at one, while Greek indices start at zero.

2.2 From Hamiltonian to Action
A well known way of describing a dynamical system of particles is the so called Hamil-
tonian function

H(qi , p j ) = K +V , (2.3)

where K stands for the kinetic term and V for the potential giving rise to a force acting
on the particles. The variables qi and p j are the position in space and the momentum
of the particles respectively. The time evolution of the system can be calculated through
Hamilton’s equations:

.
pi = dpi

dx
=−∂H

∂qi
;

.
qi = dqi

dx
= ∂H

∂pi
, (2.4)

where pi = ∂H
∂

.
qi

.

An equivalent description to the Hamiltonian is the Lagrangian given by

L(qi ,
.

qi ) = K −V. (2.5)

In this description, the equations of motion are the so called Euler-Lagrange-equations:

d

dt

(
∂L

∂
.

qi

)
− ∂L

∂qi
= 0. (2.6)

In the derivation of these equations time plays a special role as the principle is to keep
the action S = ∫

dtL constant at all time. Thus we cannot define a covariant Lagrangian
but we can use a Lagrangian density L instead, which is defined by

L =
∫

dx3L . (2.7)
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2.3 Dirac Formalism

Now, this yields

S =
∫

dtL =
∫

dtdx3L =
∫

dx4L . (2.8)

Instead of depending on coordinates and velocities the Lagrangian density can also
depend on fields φ(x, t ) =φ(xµ). The equations of motion now read

∂µ

(
∂L

∂(∂µφi

)
− ∂L

∂φi
= 0. (2.9)

An example of L depending on Spinors Ψ can be found in equation (2.11) and the
corresponding equation of motion in (2.12).

2.3 Dirac Formalism
The simplest representation of the Lorentz group, neglecting the trivial (0,0) represen-
tation which corresponds to a scalar field, is the (0, 1

2 ) and the complex conjugated
( 1

2 ,0) representation. The two-component so called Weyl Spinors in this representation
are split into right-handed and left-handed, where right-handed spinors have chirality
+1 and left-handed −1.

Another possible representation for the Lorentz group is described by (0, 1
2 )⊕ ( 1

2 ,0),
which describes Dirac bi-spinors. In the chiral representation they can be written as

Ψ=
(
η

.
α

ξα

)
,

where η
.
α is the two component right-handed Weyl spinor of the (0, 1

2 ) representation
and ξα is the left-handed Weyl spinor from the ( 1

2 ,0) representation of the Lorentz
group [10]. The productΨ†Ψ is not a Lorentz invariant. We therefore have to introduce
the adjoint Dirac bi-spinor Ψ̄=Ψ†h, where h is the spin metric that can be identified
with the γ0 matrix. The defining property for the Dirac γ matrices is the corresponding
Clifford algebra {

γµ,γν
}= 2δµν14x4 (2.10)

for µ,ν= 0,1,2,3. Additionally one defines

γ5 = i γ0γ1γ2γ3.

Using the Dirac spinors Ψ̄ andΨ together with the γmatrices one can built new bilinear
covariant quantities [11]:

• Ψ̄γ5Ψ is a pseudoscalar.

• Ψ̄γµΨ is a four-vector.

• Ψ̄γµγ5Ψ is a pseudo four-vector.

•
(
Ψ̄σµνΨ

)
, where σµν = i

2 (γµγν−γνγµ), is an antisymmetric tensor.
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2 THEORETICAL FOUNDATIONS

Now we can write down the Dirac action

SD =
∫

d4x
[
iΨ̄γµ∂µΨ−mΨ̄Ψ

]
. (2.11)

The first term is the kinetic term, while the second one is called mass term. From the
action principle the functional derivative of the action yields the Dirac equation

0 = δSD

δΨ̄(x)
= (iγµ∂µ−m)Ψ. (2.12)

It is convenient to abbreviate: γµ∂µ =:̸∂. Hence,

0 = (i ̸∂−m)Ψ. (2.13)

2.4 Spinor Construction
The Dirac algebra inherits a symmetry called the similarity transformations:

A −→ A′ = S AS−1 . (2.14)

Here,

AϵGL(dγ,C) and S ϵSL(dγ,C) , (2.15)

and dγ is the dimension of the Clifford-algebra.
Maintaining this symmetry of similarity transformations while keeping the action

real, as is necessary for a unitary theory, leads to the concept of Dirac conjugation. In
the following, we sketch this line of argument, as it is not well known in the standard
literature [12, 13].

Consider the standard Dirac algebra, say in D = 4,

{γµ,γν} = 2gµν . (2.16)

The algebra is invariant under

γµ −→ SγµS−1, S ϵSL(dγ,C) , (2.17)

where dγ = 4 in the standard case.
Also, the Dirac equation is invariant as long as the spinors transform as

Ψ−→ SΨ, (2.18)

since
0 = (i ̸∂−m)Ψ−→ (i S ̸∂ S−1 −m)SΨ) = S (i ̸∂−m)Ψ︸ ︷︷ ︸

=0

= 0. (2.19)

In order to construct an invariant action we postulate the existence of a conjugate
spinor Ψ̄ that transforms as:

Ψ̄−→ Ψ̄S−1, (2.20)
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2.4 Spinor Construction

such that

S =
∫

d4x Ψ̄(i ̸∂−m)Ψ (2.21)

is invariant under (2.17 & 2.18 & 2.20).
However, in order for the action to be real, Ψ̄must be linearly related to the adjoint

spinor; we use the ansatz
Ψ̄=Ψ†h, (2.22)

where h can be interpreted as a spin metric. In view of (2.18),Ψ† transforms as

Ψ† −→Ψ†S†. (2.23)

Since S† ̸= S−1 in general, the spin metric has to satisfy

S†h = hS−1, (2.24)

such that (2.20) is satisfied:

Ψ̄−→ Ψ̄S−1 (2.22)= Ψ†hS−1 (2.24)= Ψ†S†h. (2.25)

In view of (2.24), h is also called a ‘hermitizer’.
Now, consider the mass term as an example,

Sm =−m
∫

d4x Ψ̄Ψ

Sm
!= S∗

m

=−m
∫

d4xΨ†Ψ̄†

=−m
∫

d4xΨ†h†(Ψ†)†

=−m
∫

d4xΨ†h†Ψ.

(2.26)

Reality of Sm requires a hermitian spin metric

h† = h. (2.27)

Performing the same consideration for the kinetic term, we get

Skin =
∫

d4x Ψ̄i ̸∂Ψ != S∗
kin =−i

∫
d4x (∂µΨ

†)γµ
†
Ψ̄†

i .b.p.= i
∫

d4xΨ†γµ
†
h†∂µΨ

= i
∫

d4xΨ†

1︷ ︸︸ ︷
hh−1γµ

†
h†∂µΨ

=
∫

d4x Ψ̄h−1γµ
†
h†i∂µΨ,
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2 THEORETICAL FOUNDATIONS

which is real, provided

γµ = h−1γµ
†
h† (2.27)= h−1γµ

†
h. (2.28)

The last equation stresses the interpretation of a „hermitizer“. In fact, one can prove
that (2.27),(2.28) and a scale condition, e.g.

h = h†,

γµ = h−1γµ
†
h,

|deth| = 1,

(2.29)

fix the spin metric completely up to a sign [12, 14]. |deth| = 1 inhibits that h introduces
an artificial rescaling of conjugate spinors with respect to the original spinors.

For the choice of the metric convention gµν = diag(1,−1,−1,−1) and the Dirac alge-
bra

{
γµ,γν

}= 2gµν with γ0 being hermitian and γi being anti-hermitian, a solution to
(2.29) is given by the standard choice h = γ0 .

2.5 Gauge Theories and Electrodynamics
Local or global phase changes, which keep the Lagrangian invariant, are called gauge
transformations. They can in general be written as

Ψ−→Ψexp
{
iα(x)Â

}
, (2.30)

where α(x) is a real function of the space coordinates and Â is a unitary operator [11].
If α(x) = α = const ., the gauge transformation is called global otherwise it is a local
transformation. The generalization of the theory to non-Abelian groups is called Yang-
Mills-Theory. If we choose Â as one of the generators of SU (2) we deal with structures
similar to those of the model for the weak interaction. The same holds for the SU (3)
group and the strong interaction. Imposing local gauge invariance for the Lagrangian
always entails the introduction of a field called gauge field, which comes up in an
interaction term in the Lagrangian. In fact, this ‘generates’ the core of electrodynamics
and the coupling of fermions to electromagnetic fields. In turn, one can also add this
interaction term to the Lagrangian and maintain the local gauge invariance. Have a
look at [11] for a good instruction how to derive the interaction term.

Here for an example, we want to focus on the Abelian version of the gauge theory
and choose the generators of the U (1) group for the unitary operator Â = 1. For this we
take the still globally gauge invariant Lagrangian for the free Dirac particles and the
electromagnetic fields

L = iΨ̄γµ∂
µΨ−mΨ̄Ψ− 1

4
FµνFµν. (2.31)

Here Fµν = ∂µAν−∂νAµ is the electromagnetic field tensor and Aµ is the four-potential
of the electromagnetic field. We apply the minimal coupling prescription:

∂µ −→ Dµ = ∂µ+ i e Aµ. (2.32)
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2.5 Gauge Theories and Electrodynamics

Indeed, this procedure works for the Schrödinger equation and the Klein-Gordon
equation as well. This yields

L = iΨ̄γµDµΨ−mΨ̄Ψ− 1

4
FµνFµν (2.33)

= iΨ̄γµ∂
µΨ−−eΨ̄γµAµΨ−mΨ̄Ψ− 1

4
FµνFµν, (2.34)

which is indeed invariant under a local phase transformation

Ψ−→Ψe i eθ(x) (2.35)

together with a simultaneous transformation of the four-potential

Aµ −→ Aµ+∂µθ(x) , (2.36)

as can be verified easily. These interaction terms generated with the gauge invariance
condition are essential for a lot of phenomena.
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3 HAMILTONIAN FOR LUTTINGER FERMIONS

3 Hamiltonian for Luttinger Fermions

3.1 Construction
We want to construct a theory of relativistic Luttinger fermions in D spacetime dimen-
sions. For this, we start by reviewing the Hamiltonian construction of non-relativistic
Luttinger fermions in d space dimensions.

We assume:

H =
d∑

i , j=1
Gi j pi p j =

d∑
i=1

pi

(
d∑

j=1
Gi j p j

)
. (3.1)

So we need to determine the coefficients of the second-rank tensor G , which is obvi-
ously symmetric. Using the assumption H 2 = p41 one can see that H 2 only contains
even powers of pi . Therefore we can do the following calculation:

H 2 =
[

d∑
i=1

pi

(
d∑

j=1
Gi j p j

)]2

(3.2)

=
d∑

i=1
p2

i

(
d∑

j=1
Gi j p j

)2

+ ∑
i ̸=a

pi pa

(
d∑

j=1
Gi j p j

)(
d∑

j=1
Ga j p j

)
(3.3)

=
d∑

i=1


d∑

j=1
(Gi j pi p j )2 + ∑

j ̸=b
p2

i p j pbGi j Gi b︸ ︷︷ ︸
A

+ ∑
i ̸=a

pi pa

(
d∑

j=1
Gi j p j

)(
d∑

n=1
Gan pn

)
.

(3.4)

Because j ̸= b and H 2 only consists of even powers of pi the term A has to vanish. This
means that the symmetric part of Gi j Gi b vanishes, i.e.

Gi j Gi b +Gi bGi j =
{
Gi j ,Gi b

}= 0 for j ̸= b . (3.5)

The same holds for the last term. In order to get only even powers of pi , we need to
have only two non-vanishing terms: 1. j = i ,n = a and 2. j = a,n = i . The remainder
has to be zero, which means, together with (3.5),{

Gi i ,Gan
}= 0 for n ̸= a . (3.6)

The first possibility gives us the sum∑
i<a

p2
i p2

a{Gi i ,Gaa} , (3.7)

whereas the second one, using the symmetry of G , leads to the sum∑
i<a

p2
i p2

a{Gi a ,Gai } =
∑
i<a

p2
i p2

a(2Gi a) . (3.8)
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3.1 Construction

If we now combine all these leftover terms from (3.4), we get for the squared Hamilto-
nian

H 2 =
d∑

i=1
G2

i i p4
i +

∑
i< j

p2
i p2

j

(
4G2

i j +
{
Gi i ,G j j

})
. (3.9)

From this we get the third condition in order to satisfy H 2 = p41:

4G2
i j +

{
Gi i ,G j j

}
= 2 for any i ̸= j . (3.10)

So in total the assumption H 2 = p4 results in three conditions (3.5),(3.6),(3.10), and the
normalization G2

i i = 1.

Now we want to get the last missing anti-commutator of two diagonal elements of G .
If we assume that G is a traceless tensor with respect to its spacetime indices, which
means Gi i = 0, then H does not depend on the invariant p2, but only on the irreducible

tensor pµpν− p2

D gµν. This gives rise to the property

0 =
{

Gkk ,
d∑

i=1
Gi i

}
= 2+ ∑

i (̸=k)

{
Gkk ,Gi i

}
. (3.11)

Since the index k is arbitrary this holds true for every pair off diagonal elements. So we
get {

Gi i ,G j j

}
= 2

1−d
for i ̸= j . (3.12)

Combined with (3.10) we can get the squared off-diagonal elements

G2
i j = d/(2(d −1)) . (3.13)

We obtain the following four conditions for the anti-commutators:

(i ) {Gi j ,Gkl } = 0 for i ̸= j ,k ̸= l and (i j ) ̸= (kl ) (3.14a)

(i i ) {Gi i ,Gkl } = 0 for k ̸= l (3.14b)

(i i i ) {Gi i ,Gi i } = 2 (3.14c)

(i v) {Gi i ,G j j } =− 2

d −1
for i ̸= j . (3.14d)

Since the tensor structure must respect Euclidean invariance, the right-hand side
can only be spanned by the invariant tensors δi j and ϵi j k . Gi j is symmetric, Gi j =G j i ,
hence the Levi-Civita symbol, anti-symmetric in all indices, drops out. Using
δi jδkl , δi kδ j l , δi lδ j k as a basis for ansatz, we find the general form

{
Gi j ,Gkl

}=− 2

d −1
δi jδkl +

d

d −1
(δi kδ j l +δi lδ j k ) . (3.15)

A generalization to Minkowski spacetime reads{
Gµν,Gκλ

}=− 2

D −1
gµνgκλ+

D

D −1
(gµκgνλ+ gµλgνκ) . (3.16)
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3 HAMILTONIAN FOR LUTTINGER FERMIONS

Table 1: Dimension dγ of Clifford-algebra with de anti-commuting elements.
D 2 3 4 5 6
de 2 5 9 14 20
dγ 2 4 16 128 1024

Now, equation (3.14a) tells us that all off-diagonal elements must anti-commute. Since
Gµν is a D dimensional symmetric matrix with respect to theµν indices, it has 1

2 D(D−1)
off-diagonal elements.

Also, equation (3.14b) implies that all off-diagonal elements must anti-commute
with all diagonal elements. There are in total D diagonal elements. However, we can
always decompose Gµν with respect to the Lorentz indices as

GTL
µν+

1

D
gµνG , (3.17)

where G = trL Gµν ≡ gµνGµν and trL GTL
µν = 0 is the traceless part.

Since we intend to use Gµν∂
ν∂ν as a kinetic operator for the field, the trace part would

simply lead to a Klein-Gordon type operator, which we would be free to add afterwards
if desired. However, imposing additional symmetries of a chiral type can forbid the
occurance of such a trivial term. Hence, we exclude it from now on. Concentrating on

the irreducible derivative tensor structure ∂µ∂ν− gµν

D ∂2, we consider Gµν to be traceless
for the remainder, i.e.

Gµν ≡GTL
µν . (3.18)

In this condition, only D −1 diagonal elements are independent. To span the space of
all Gµν, we thus need

de = 1

2
D(D −1)+D −1 = 1

2
D2 + 1

2
D −1 (3.19)

anti-commuting elements. These are available in a dγ dimensional Clifford-algebra
listed in table 1.
If de is even, we can think of a Dirac algebra in de dimensions, where the dimensionality
of the irreducible representation of the γ matrices is dγ = 2de /2.

If de is odd, we may use the Dirac algebra in de −1 dimensions and include γ∗ as the

de th element, so dγ = 2
de−1

2 .
Now, let γa be the required dγ dimensional Dirac matrices, satisfying a (Euclidean)

Clifford algebra {
γa ,γb

}= 2δab , (3.20)

with a,b = 1,2. . . ,de . Then we can span the space of all Gµν by

Gµν = aa
µνγa , (3.21)

where aa
µν = aa

νµ being symmetric.
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3.1 Construction

Insertion of equation (3.21) into equation (3.16) yields{
Gµν,Gκλ

}= aa
µνab

κλ

{
γa ,γb

}
= 2aa

µνaa
κλ

=− 2

D −1
gµνgκλ+

D

D −1
(gµκgνλ+ gµλgνκ). (3.22)

Contracting (3.22) with gµν leads us to

2aa aa
κλ =− 2D

D −1
gκλ+

D

D −1
(2gκλ) = 0, (3.23)

where we defined

aa = gµνaa
µν . (3.24)

Equation (3.23) reflects a trivial result as it expresses the tracelessness of Gµν, i.e. also
the aa

µν have to be traceless 2nd rank Lorentz tensors.
Therefore, let us contract (3.22) with gµκ:

2aaµ
ν aa

µλ =− 2

D −1
gνλ+

D

D −1
(Dgνλ+ gνλ)

=− 2

D −1
gνλ+

D

D −1
(D +1)gνλ

= D2 +D −2

D −1
gνλ

= (D +2)(D −1)

D −1
gνλ

= (D +2)gνλ . (3.25)

Further contraction with gνλ yields:

2aaµνaa
µν = D(D +2) . (3.26)

Apart from the condition (3.22) and their consequences (3.23) to (3.26), there is a rather
large freedom of fixing the components of aa

µν. For a specific choice in the Euclidean
case see [3]. Equation (3.21) illustrates that the Gµν inherit a large further symmetry,
namely similarity transformations of the Dirac algebra:

Gµν −→G ′
µν = SGµνS−1, (3.27)

where

S ϵSL(dγ,C) . (3.28)

The symmetry in (3.27) is the same as for Dirac spinors, which we discussed in section
2.4.
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3 HAMILTONIAN FOR LUTTINGER FERMIONS

3.2 Hermiticity properties of Gµν

Let us first check the hermiticity properties of the G’s, say for the metric convention
g = diag(1,−1,−1,−1). From (3.16) we get for κ=µ, λ= ν:

2G2
µν =− 2

D −1
g 2
µν+

D

D −1
(gµµ gνν+ gµν gνµ) . (3.29)

e.g.

µ= ν : G2
µµ = 1 (3.30a)

(µ,ν) = (0, i ) : G2
0,i =−1

2

D

D −1
(3.30b)

(µ,ν) = (i , j ̸= i ) : G2
i , j ̸=i =

1

2

D

D −1
. (3.30c)

Equation (3.30a) shows a constraint for D −1 independent elements G as one of the
D elements is already fixed due to tracelessness. Equation (3.30b) is a constraint for
D −1 elements whereas the last equation (3.30c) is a constraint for 1/2(D −1)(D −2)
elements. Summing these up

D −1+D −1+ 1

2
(D −1)(D −2) = de (3.31)

shows that this fixes all de anti-commuting elements to span the space of all Gµν.
Using the representation (3.21) of the Gµν in terms of a Euclidean Dirac algebra, the

results of (3.30) also hold for the coefficients aa
µν analogously.∑

a
(aa

µµ)2 = 1,

∑
a

(aa
i j )2 = 1

2

D

D −1
, i ̸= j ,

∑
a

(aa
0i )2 =−1

2

D

D −1
.

(3.32)

The simplest choice satisfying the sign constraints of (3.32) would be

aa
µµ ϵR, aa

i j ϵR, aa
0i ϵ iR. (3.33)

In this case, Gµµ and Gi j would be hermitian, and G0i would be anti-hermitian.

3.3 Simplest Choice
Let us see how far we get with assumption (3.33). Following a similar reasoning as for
the Dirac spinors, reality of the mass term implies (c.f. (2.26) & (2.27)):

h = h†. (3.34)
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3.3 Simplest Choice

Using the constructed kinetic term of the Hamiltonian in chapter 3.1, we can now take
a closer look at the kinetic term for which we make the ansatz:

Skin =
∫

d4x Ψ̄Gµν(i∂µ)(i∂ν)Ψ (3.35)

S∗
kin =

∫
d4x

[
(−i∂µ)(−i∂ν)Ψ†

]
G†
µνΨ̄

† (3.36)

i .b.p.=
∫

d4xΨ†G†
µν(i∂µ)(i∂ν)Ψ̄† (3.37)

=
∫

d4xΨ†hh−1G†
µν(i∂µ)(i∂ν)h†Ψ (3.38)

=
∫

d4x Ψ̄h−1G†
µνh†(i∂µ)(i∂ν))Ψ. (3.39)

From the reality of S∗
kin = Skin we can conclude:

Gµν = h−1G†
µνh†, (3.40)

which again underlines the reason for the name ‘hermitizer’ for the spin metric h.
Based on assumption (3.33) we get for the anti-hermitian matrices G0i in (3.40)

G0i = h−1G†
0i h† =−h−1G0i h

⇒ hG0i =−G0i h† =−G0i h

⇒ {h,G0i } = 0. (3.41)

Any choice of h = γā for any „ā“ together with G0i = iγb with b ̸= ā would satisfy (3.41).
Now we turn to the hermitian matrices Gµµ or Gi j :

Gi j = h−1G†
i j h† = h−1Gi j h†

⇒ hGi j =Gi j h

⇒ [
h,Gi j

]= 0, (3.42a)

and similarly for [
h,Gµµ

]
= 0. (3.42b)

Assuming that there is a choice h = γā , „ā “ fixed, then (3.42a) implies

γāγb ab
i j

!= γbγā ab
i j =−γāγb ab

i j +2δāb ab
i j (3.43)

⇒ 2γāγb ab
i j = δāb ab

i j (3.44)

⇒ ab
i j = 0 for b ̸= ā . (3.45)

This contradicts the condition (3.13). Therefore the simplest assumption h = γā fails in
general.

13



4 REPRESENTATIONS

4 Representations

4.1 In 2+1 Dimensions
Before we turn back to the problem of the spin metric, let us study more concretely the
construction of an explicit representation of the G´s satisfying the Minkowski space
constraints (3.32) and of course the defining algebra (3.16).

For simplicity, we begin with D = 3 and use a Euclidean Dirac algebra{
γa ,γb

} = 2δab , a,b = 1, . . . ,5, γa = (γa)†, as building blocks. The following choice
is a representation of the defining algebra:

G00 = γ4, G11 = 1

2
γ4 +

p
3

2
γ5, G22 = 1

2
γ4 +

p
3

2
γ5

G0 j = i

p
3

2
γ j , j = 1,2 G12 =

p
3

2
γ3.

(4.1)

This is a relativistic generalization of the representation found in [3]. It is straight for-
ward to see that (4.1) satisfies the normalizing constraints (3.32) and the tracelessness
condition

gµνGµν =G00 −G11 −G22 = 0. (4.2a)

For the remaining check of the algebra (3.16) we note that{
Gµµ,Gνi

}
= 0 for ν ̸= i

{G0i ,G12} = 0,
(4.2b)

both as it should be when using the right hand side of (3.16). We see that this represen-
tation satisfies the hermiticity properties

G0i =−G†
0i , Gµµ =G†

µµ , G12 =G†
12 , (4.3)

as it corresponds to the simplest choice (3.33).
Now, using SL(4,C) spin base transformations, we can reach any other representation.

In turn any other representation can be transformed into (4.1).
In chapter 3.3 we have seen that the easiest assumption h = γā , ā fixed, fails. This

failure implies in particular that we do not know how to define the conjugate spinor Ψ̄
for which we need the spin metric h.

Let us propose a different construction. For this, we define

Ψ̃(t , x⃗) =Ψ†(t ,−x⃗) . (4.4)

Note that in 2+1 dimensions, this corresponds to a charge conjugation and a rotation
of the spatial plane by π. In 3+ 1 dimensions this would correspond to a charge
conjugation and a parity transformation.

Now, let us study

S̃kin =
∫

d3x Ψ̃(t , x⃗)Gµν(−i∂µ)(−i∂ν)Ψ(t , x⃗) . (4.5)
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4.1 In 2+1 Dimensions

For the action to be real, we need to proof S̃∗
kin = S̃kin:

S̃∗
kin =

∫
d3x (i∂µ)(i∂ν)Ψ†(t , x⃗)G†

µνΨ(t ,−x⃗)

i .b.p.=
∫

d3xΨ†(t , x⃗)G†
µν(−i∂µ)(−i∂ν)Ψ(t ,−x⃗)

=
∫

d3xΨ†(t , x⃗)
[
G†

00(−i∂0)(−i∂0)+2G†
0i (−i∂0)(−i∂i )

+G†
i j (−i∂i )(−i∂ j )

]
Ψ(t ,−x⃗)

(4.3)=
∫

d3xΨ†(t , x⃗)
[
G00(−i∂0)(−i∂0)−2G0i (−i∂0)(−i∂i )

+Gi j (−i∂i )(−i∂ j )
]
Ψ(t ,−x⃗). (4.6)

In a last step, we now substitute the integration variable

x⃗ −→−x⃗, (4.7)

i.e. ∫
d3x =

∫
dtd2x

x⃗→−x⃗=
∫

dtd2x =
∫

d3x, (4.8)

but
(−i∂0)(−i∂ j ) −→−(−i∂0)(−i∂ j ); (4.9)

all other terms keep their sign. With this substitution we get

S̃∗
kin =

∫
d3xΨ†(t ,−x⃗)

[
G00(−i∂0)(−i∂0)+2G0i (−i∂0)(−i∂i )

+Gi j (−i∂i )(−i∂ j )
]
Ψ(t , x⃗) (4.10)

≡
∫

d3x Ψ̃(t , x⃗)Gµν(−i∂µ)(−i∂ν)Ψ(t , x⃗) (4.11)

= S̃kin. (4.12)

Thus, the action S̃kin is real.
The ansatz (4.4) shows that we need the rotated spinor. Since the rotation is part of

the Lorentz group, there should be a corresponding Sl(de ,C) element that ‘does the job’
of describing this rotation.

In fact, there is one, but even without explicitly constructing this rotation in Sl(de ,C),
the spin metric can be found by realizing that it has to correspond to a rotation in the
1−2 plane. The desired spin metric is indeed given by

h := iγ1γ2. (4.13)

Let us verify its necessary properties:

h† = (iγ1γ2)† =−iγ2†
γ1† =−iγ2γ1 = iγ1γ2 = h. (4.14)
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4 REPRESENTATIONS

And using the representation (4.1),

hG0i = i

p
3

2
iγ1γ2γi =−i

p
3

2
γi iγ1γ2 =−G0i h ⇒ {h,G0i } = 0 (4.15)

satisfies (3.41).
Finally, note that Gµµ and Gi j are ∼ γa , a = 3,4,5, such that

hγa = iγ1γ2γa =−iγ1γaγ2 = γaiγ1γ2 = γah ⇒ [
h,Gi j

]= 0 =
[

h,Gµµ

]
(4.16)

satisfies (3.42a) and (3.42b).
Therefore, we have found the required conjugate spinor

Ψ̄=Ψ†h, h = iγ1γ2 , (4.17)

such that

Skin =
∫

d3x Ψ̄Gµν(i∂µ)(i∂ν)Ψ (4.18)

is the desired Lorentz invariant action for D = 2+1!

4.2 In 3+1 Dimensions
Let us now turn to the 3+ 1 dimensional case. As said before, the ansatz (4.4) in
3+1 dimensions describes a parity transformation which is not part of the space the
generators γa , a = 1, . . . ,9, span. The substitution x⃗ −→−x⃗ is similar as to before:∫

d4x =
∫

dtd3x
x⃗→−x⃗=

∫
dtd3x =

∫
d4x . (4.19)

In detail, from equation (4.6) we get:

S̃∗
kin =

∫
d4xΨ†(t , x⃗)

[
G00(−i∂0)(−i∂0)−2G0i (−i∂0)(−i∂i )

+Gi j (−i∂i )(−i∂ j )
]
Ψ(t ,−x⃗) , (4.20)

implementing the substitution x⃗ →−x⃗ yields

S̃∗
kin =

∫
d4xΨ†(t ,−x⃗)

[
G†

00(−i∂0)(−i∂0)+2G†
0i (−i∂0)(−i∂i )

+G†
i j (−i∂i )(−i∂ j )

]
Ψ(t , x⃗)

≡
∫

d4x Ψ̃(t , x⃗)Gµν(−i∂µ)(−i∂ν)Ψ(t , x⃗)

= S̃kin. (4.21)

It is easy to prove that there is no way to describe the parity transformation in terms
of γ matrices. In other words, its is not possible to find the spin metric h satisfying
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4.2 In 3+1 Dimensions

the condition (3.40) in the irreducible representation of the Clifford algebra (3.20).
If we move away from the irreducible representation of the γa , a = 1, . . . ,9, with the
dimensionality dγ = 2de /2 = 16 to a reducible representation with γa , a = 1, . . . ,11, and
dγ = 32 then we have two more anti-commuting matrices which we can use to build
the spin metric h. In this case it is always possible to find h, which is hermitian and
satisfies the commutators (3.42a) and (3.42b) as well as the anti-commutator (3.41)
such that the action

S = Sm +Skin (4.22)

=−m
∫

d4x Ψ̄Ψ+
∫

d4x Ψ̄Gµν(i∂µ)(i∂ν)Ψ (4.23)

is real and
Ψ̄=Ψ†h (4.24)

is the conjugated spinor.
Let us see how this is done in an explicit example. We can try to construct the Gµν

similarly to the one in 2+1 dimensions:

G0i = i aiγ
i where ai ϵR and i = 1,2,3 , (4.25)

with ai to be determined. We also assume

G12 = a4γ
4 G23 = a5γ

5 G13 = a6γ
6 , (4.26)

where a4,5,6 ϵR. We may set
G00 = γ7 (4.27)

and construct G11, G22, G33 from a suitable linear combination of γ7,γ8,γ9 with real
prefactors such that the Gµν algebra (3.16) and tracelessness is satisfied. This choice
fullfills the hermiticity constraints (3.33). Now, we need to find the spin metric h such
that (3.42a),(3.42b), and (3.41) are satisfied. The naive choices h = γ10 as well as h = γ11

do not comply with the commutators
[
h,Gi j

]= 0 =
[

h,Gµµ

]
.

Instead, we suggest
h = γ1γ2γ3γ10. (4.28)

First, let us check the hermiticity of h:

h† = γ10†
γ3†

γ2†
γ1† = γ10γ3γ2γ1 =−γ1γ10γ3γ2 =−γ1γ2γ10γ3 = γ1γ2γ3γ10 = h . (4.29)

Because {
h,γ1}= γ1γ2γ3γ10γ1 +γ1γ1γ2γ3γ10 = 0 (4.30)

and similarly for
{
h,γ2

}
and

{
h,γ3

}
, the anti-commutator

{h,G0i } = 0 (4.31)
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4 REPRESENTATIONS

is satisfied. To check the commutators we see that[
h,γa]= γ1γ2γ3γ10γa −γaγ1γ2γ3γ10 (4.32)

= γaγ1γ2γ3γ10 −γaγ1γ2γ3γ10 (4.33)

= 0 (4.34)

for a = 4,5,6,7,8,9. Therefore, we get[
h,Gi j

]= 0 =
[

h,Gµµ

]
(4.35)

as required. This means that h = γ1γ2γ3γ10 is indeed a spin metric for the chosen
construction of the G’s with the following coefficients:

G0i = i

p
2

3
γi , (4.36)

G12 =
p

2

3
γ4, G23 =

p
2

3
γ5, G13 =

p
2

3
γ6, (4.37)

G00 = γ7, (4.38)

G11 = 1

3
γ7 + 2

p
2

3
γ8, (4.39)

G22 = 1

3
γ7 −

p
2

3
γ8 −

√
2

3
γ9, (4.40)

G33 = 1

3
γ7 −

p
2

3
γ8 +

√
2

3
γ9. (4.41)

With this we have proven that it is possible to find the spin metric h and built the
conjugated spinor

Ψ̄=Ψ†h , (4.42)

such that

Skin =
∫

d4xΨ̄Gµν(i∂µ)(i∂ν)Ψ (4.43)

is real.
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5 Coupling to Electromagnetic-Fields
Now, we want to investigate the behaviour of the new kinetic operator when coupled
to electromagnetic fields. For this we perform the minimal coupling prescription and
obtain

L = Ψ̄Gµν(i Dµ)(i Dν)Ψ− 1

4
FµνFµν. (5.1)

Replacing Dµ = ∂µ+ i e Aµ yields

L = Ψ̄Gµν(i∂µ)(i∂ν)Ψ− Ψ̄Gµν(i∂µ)(e Aν)Ψ− Ψ̄Gµν(e Aµ)(i∂ν)Ψ (5.2)

+ Ψ̄Gµν(e Aµ)(e Aν)Ψ− 1

4
FµνFµν.

The Lagrangian indeed comprises a local gauge invariance for the simultaneous trans-
formations

Ψ−→Ψ′ = e i eθ(x)Ψ,

Aµ −→ Aµ−∂µθ(x).
(5.3)

From these, the following transformations

Ψ̄−→ Ψ̄′ = Ψ̄e−i eθ(x),

Dµ −→ D ′µ = ∂µ+ i e Aµ− i e∂µθ(x) = e i eθ(x)De−i eθ(x)

arise trivially.
To verify the local gauge invariance, we observe

FµνFµν −→FµνFµν,

Ψ̄Gµν(i Dµ)(i Dν)Ψ−→Ψ̄e−i eθ(x)Gµνe i eθ(x)(i Dµ)e−i eθ(x)e i eθ(x)(i Dν)e−i eθ(x)e i eθ(x)Ψ

= Ψ̄Gµν(i Dµ)(i Dν)Ψ.

Therefore, the Lagrangian is invariant under the local gauge transformation (5.3). The
Lagrangian shows the kinetic terms for the fermions as well as for the electromagnetic
fields, but also shows three interaction terms.

19



6 CONCLUSION

6 Conclusion
This thesis discusses the construction of relativistic field theories with Luttinger fermi-
ons.

After reviewing the Dirac formalism and the corresponding Dirac equation we took
into account how the Dirac conjugate spinor Ψ̄ is built to keep the action for fermionic
theories real. We also reminded ourselves about gauge theories and the coupling of
electro-magnetic fields to fermions.

In the next chapter we started off by constructing the Hamiltonian for Luttinger
fermions and lifting the resulting anti-commutator to the general Minkowski spacetime.
Realizing that the simplest choice for the coefficients aa

µν of the γ matrices and the
simplest ansatz for the Dirac conjugate leads to a contradiction, we saw a different way
to solve the problem and find the spin metric in 2+1 dimensions. For 3+1 dimensions
we had to move to a reducible representation of the Clifford algebra.

Furthermore, we were able to show that it is possible to find a spin metric in 3+1
dimensions and built a Dirac-like action with the new found kinetic operator:

Gµν(i∂µ)(i∂ν). (6.1)

We found that the spin metric h has to satisfy the following conditions:

h = h†, (6.2)

Gµν = h−1G†
µνh, (6.3)

|deth| = 1. (6.4)

In the last section we showed that the new action when coupled to a gauge field
comprises the same gauge invariance as known for the Dirac action and the electro-
magnetic fields.

In further research it would be interesting to treat this relativistic field theory with
the methods of the renormalization group and look out for quantum critical fix points.
Another way to go further could be to see if this construction is possible in higher
dimensions as well.
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