42 -\  FRIEDRICH-SCHILLER-

2 ) UNIVERSITAT

Physikalisch-Astronomische Fakultéat
Theoretisch-Physikalisches Institut

Bachelorarbeit

Jessica Schron

Relativistische Luttinger-Fermionen in

verschiedenen Dimensionen

Betreuer: Prof. Dr. Holger Gies

Jena, 30.09.2025






Erstgutachter:

Zweitgutachterin:

Prof. Dr. Holger Gies

Physikalisch- Astronomische Fakultat
Theoretisch-Physikalisches Institut

M. Sc. Marta Picciau
Physikalisch-Astronomische Fakultét
Theoretisch-Physikalisches Institut






Inhaltsverzeichnis

1 Einleitung

2 Theoretische Grundlagen

2.1 Notation . . . . . . . . e e
2.2 Variationsprinzip klassischer Felder . . . . . . . ... .. .. ... .
2.3 Lorentztransformation . . . . . . . .. ... oL
2.4 SpInor . ... e

2.4.1 Grundlagen
2.4.2 Dirac-Spinor

2.5 Dirac-Gleichung . . . . . . . . ..
2.6 Spinmetrik . . ...
3 Relativistische Luttinger-Fermionen

3.1 Konstruktion des Hamiltonian . . . . . . . .. ... ... ... L.
3.2 Eigenschaften von G, . . . . . . .o

3.21 Dimension . . . . . . . oL Lo e e

3.2.2 Konstruktion . . . . . ...
3.3 Symmetrien der Luttinger-Theorie . . . . . .. ... ... ... ... .......
3.4 Physikalische Bedeutung der Spinmetrik . . . . . . . ... ... ... ...

4 Reprasentationen der
4.1 (1+1) Dimensionen

4.2 (2+1) Dimensionen
4.3 (3+1) Dimensionen
4.4 (4+1) Dimensionen

5 Zusammenfassung

Literatur

Spinmetrik und Elemente von G,

11
11
12
12
13
14
17

18
19
20
22
23

27

29






1 Einleitung

1 Einleitung

Die Quantenfeldtheorie stellt eine wichtige Methode der Physik dar, um Theorien zu entwi-
ckeln, welche Quantenmechanik und spezielle Relativitdtstheorie vereint. Unter anderem ist
eine wichtige Anwendung, die Beschreibung von Elementarteilchen, welche nun als Anregung
eines quantisierten Feldes interpretiert werden konnen. Auch in der Physik der kondensierten
Materie oder Kosmologie, sowie bei der Beschreibung von Vielkdrpersystemen, wird die Quan-
tenfeldtheorie genutzt [1, 2].

In dieser Arbeit soll die Feldtheorie der relativistischen Luttinger-Fermionen in verschiedenen
Dimensionen beschrieben werden.

Die Luttinger-Theorie wurde zuerst von J. M. Luttinger vorgestellt. Dieser suchte dabei nach
einem nicht-relativistischen Hamiltonian zur Beschreibung der Anregung von Halbleitern in ei-
nem Magnetfeld [3].

Indem die Algebra dieser Theorie relativistisch verallgemeinert wird, kénnen storungstheore-
tisch renormierbare Quantenfeldtheorien konstruiert werden, womit sich neue Moglichkeiten
im Bereich der Hochenergiephysik ergeben [4]. Ein interessantes Phinomen der Teilchenphy-
sik liegt in der asymptotischen Freiheit, fiir die es bislang fiir rein fermionische Materie in 4
Dimensionen kein Beispiel gab. Besonders selbstwechselwirkende Luttinger-Fermionen liefern
einen neuen Ansatz, Theorien mit solchen Eigenschaften zu konstruieren [5].

Anwendung hat die urspriingliche nicht-relativistische Variante dieser Teilchen bereits in der
Festkorperphysik zur Beschreibung von Spin-Bahn-gekoppelten Materialien mit quadratischen
Bandberiithrungen [6, 7, 8, 9, 10, 11, 12]. Besonders interessant ist dabei der Fall der Band-
Inversion in Halbleitern bei sehr starker Spin-Bahn-Kopplung [13]. Auch bei der Untersuchung
von Quanten-Spin-Fliissigkeiten ist die eichsymmetrische Luttinger-Theorie von Bedeutung [14].
In dieser Arbeit wird die Theorie der relativistischen Luttinger-Fermionen néher beleuchtet. Da-
fir wird zu Beginn auf wichtige theoretische Grundlagen eingegangen, welche nétig sind, um
mit dem Luttinger-Formalismus arbeiten zu konnen. Es werden zudem die Dirac-Gleichung und
analoge wichtige Eigenschaften dieser erlautert.

Fiir die Luttinger-Theorie wird zunéchst die Konstruktion des Hamiltonians und wichtige Ei-
genschaften des Tensors G, sowie der Spinmetrik beschrieben. Auch die vorausgesetzte Inva-
rianz der Theorie unter Lorentz- und Spin-Basen-Transformation wird beschrieben. Auf die-
sen Grundlagen kénnen im Anschluss Repréasentationen der Abrikosov-Algebra-erfiillenden Ele-
mente von G, berechnet und die Spinmetrik fiir d = 2,...,5 Dimensionen bestimmt werden.
Wihrend die relativistische Version der Abrikosov-Algebra prinzipiell durch geeignete komple-
xifizierende Wick-Rotation der nicht-relativistischen Algebra [9, 10, 11, 12| gefolgert werden
kann, ist die Spinmetrik ein neues Element. Diese ist fiir die Konstruktion von relativistischen

Theorien von Fermionen wesentlich.
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2 Theoretische Grundlagen

2.1 Notation

In dieser Arbeit werden die natirlichen Einheiten benutzt, mit
h=c=1 (2.1)

Fiir die kovariante Ableitung wird die Notation

0

dah

Oy (2.2)
verwendet. Zudem besitzt die Metrik der Minkowski-Raumzeit die Signatur
G = diag(+,—,—,...). (2.3)

Es sei zu beachten, dass nach der Einsteinschen Summenkonvention iiber doppelte Indizes

summiert wird, sodass

a; - bl = Z aibi (24)

gilt, wobei iiber fett gedruckte Indizes nicht summiert wird.

2.2 Variationsprinzip klassischer Felder

Um relativistische Feldgleichungen untersuchen zu kénnen, wird zunéchst das Variationsprinzip
fiir klassische Felder ndher betrachtet. Das Funktional S ist eine Funktion des Feldes und hat

folgende Form

Slé] = /V 2L (6,0,0), (2.5)

Wobei ¢ das Feld und V' das Integrationsvolumen im Minkowski-Raum ist. £ ist die Lagrange-
Dichte. Diese ist die Dichte der Lagrangefunktion

L= /dd71x£(¢,6ﬂq§). (2.6)

Somit ist

S— / dtL. 2.7)
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Mit der Forderung, die Wirkung extremal werden zu lassen, kann die Euler-Lagrange-Gleichung

aufgestellt werden

oL oL
&y, 2= . 2.8
36~ 50,0 28)

Besitzt das Feld mehrere Komponenten lautet diese

oL oL
o0~ a0, " .

mit i =1,..,N [1, 15].

2.3 Lorentztransformation

Als Lorentztransformation wird die Transformation von Raum-Zeit-Koordinaten bezeichnet.

Die Transformationsmatrix erfiillt dabei

gp,l/ — guyAMpAya - gpg', (210)

bzw. in Matrixnotation:

ATgA =g. (2.11)
Raum-Zeit-Vektoren v* werden damit dergestalt transformiert, dass
vh — o = AP Y (2.12)
gilt. Lorentztransformationen erhalten das Skalarprodukt
vew = g w! = vtw, (2.13)

im Minkowski-Raum.
Alle Lorentztransformationen, die die Gleichung (2.10) erfiillen, bilden die Gruppe der homo-
genen Lorentztransformationen O(3,1).

Fiir ein mehrkomponentiges Feld ¢; mit i = 1,.., N gilt
#i(a') = D(A) ;(x), (2.14)

mit D(A) € O(3,1). D(A) ist dabei eine Darstellung der Lorentztransformation A in Form
einer N x N Matrix, welche auf Felder wirkt.
Lorentztransformationen, deren 00-Komponente A% > 1 ist, werden orthochron und analog

jene mit A% < —1 nicht orthochron genannt.
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Wird die Determinante von Gleichung (2.11) gebildet, ergibt sich
det AT det gdet A = det g, (2.15)

sodass
det A = +1 (2.16)

gelten muss.

Die Gruppe der Lorentztransformationen SO(3,1) sind damit alle Transformationen mit
det A = 1. Jene Transformationen mit det A = 1 und A% > 1 bilden die Gruppe der ei-
gentlichen Lorentztransformationen, auf welche sich iiblicherweise beschrinkt wird, da diese
die Richtung der Zeit und die Héndigkeit des Koordinatensystems beibehalten.

Generell kénnen endliche Lorentztransformationen in Form von Elementen einer Lie-Gruppe

dargestellt werden, deren Erzeugende eine Lie-Algebra erfiillen [1, 2, 16].

2.4 Spinor

2.4.1 Grundlagen

Spinoren sind wichtig, um Felder und damit Elementarteilchen zu beschreiben.

Ein Spinor ¢ ist ein komplexes zwei-komponentiges Objekt, das wie folgt transformiert [17]:
= ¢ =D, (2.17)

wobei D(A) zu einer Darstellung der Lorentz-Gruppe mit halbzahligem Spin gehort.
Fiir eine Spin—% Darstellung der Lorentz-Gruppe mit (0, %), kann die Représentation der Lor-

entztransformation in drei Dimensionen mit
_ T
D(A) =exp [5(0 0= a)} (2.18)

gefunden werden. -0 = (€23, €31, €12) und — = (€0, €20, €30) sind Vektoren der Parameter
e*” der Lorentztransformation und & die Pauli-Matrizen. e*” ist dabei eine antisymmetrische
Matrix. Hierbei bilden derartige Matrizen aus Gleichung (2.18) die SL(2,C) Gruppe.

Das Feld ¢ wird damit SL(2, C)-Spinor genannt.

Spinoren, die mit einer Transformationsmatrix vom Typ

D(A) = exp [g(ef G+ 5)} (2.19)

transformieren, werden als ) bezeichnet und gehéren der (4,0)-Darstellung an, d.h. der komplex

konjugierten Repréasentation der Spin %—Darstellung der Lorentz-Gruppe. [1, 2, 18, 19].
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2.4.2 Dirac-Spinor

Da die spéatere Konstruktion der Luttinger-Theorie in Teilen analog zur Dirac-Theorie verlauft,

wird diese vorerst genauer betrachtet, um jene Parallelen aufzuzeigen. Dazu wird zunéchst der
% (2)
P(x) = , (2.20)
£al2)
1

wobei a, & = 1,2 ist. Der Dirac-Spinor gehért damit zur (3,0) @ (0, %)—Darstellung der Lorentz-

Dirac-Spinor eingefiihrt:

Gruppe.

In chiraler Darstellung kénnen die chiralen Projektionsoperatoren Py und Py,

1 1-—-
Pr = Sl b, = 775, (2.21)

2 2

definiert werden, wobei 75 eine Dirac-Matrix ist. Der rechtshéndige und linkshéndige Spinor

1r und 11,, lassen sich also als

YR = Prtp = (2) YL =Py = <n5> (2.22)

$(z) = (Ww)> (2.23)

ist. Zusétzlich werden fiir die Dirac-Theorie, die v- bzw. Dirac-Matrizen benétigt. Wiederum

schreiben, sodass

in chiraler Darstellung kénnen diese als

e (_(;i 2) (2.24)

geschrieben werden, wobei i = 1,2, 3 ist. Zwei weitere Dirac-Matrizen v° und +°, kénnen als

A0 = G ;) (2.25)

7 =iy (226)

und

definiert werden.
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Die v-Matrizen erfiillen die sogenannte Clifford-Algebra im Minkowski-Raum mit
{4 =y At =2¢M" - 1 p,v=0,1,2 3. (2.27)
Die Clifford-Algebra ist invariant unter Lorentztransformation
Y= = AN, (2.28)

" ") = {A AT A ) = A YA A A
= A" N {7}
= 20", AY 9" 1
=2¢""1=2¢""1 = {+",7"}

(2.29)

ist, wobei A, € SO(1,3) ist.
Es kénnen noch weitere Darstellungen der «-Matrizen gefunden werden, welche die Clifford-
Algebra erfiillen. Der Wechsel zwischen diesen Darstellungen wird als Spin-Basen- Transformation
bezeichnet mit

O T N (2.30)

wobei S € SL(d,, C) ist.
Unter Spin-Basen-Transformation gilt fiir die Clifford-Algebra:

{7#,7"} = {57198, 57197 S} = STI1SS 19 S + S S5 ImS
=57y +4Y9)S
=S5y "}S
= 29" 5711 = 291 = {47},

(2.31)

sodass diese ebenfalls invariant unter Spin-Basen-Transformation ist. Zusétzlich zu erwdhnen

sei, dass 4® mit allen anderen Dirac-Matrizen antikommutiert:

{7’} =0 p# 5. (2.32)

Da das Skalarprodukt aus 'y nicht lorentzinvariant ist, wird der Dirac-konjugierte Spinor
eingefiihrt:

¢ =T, (2.33)

wobei h die Spinmetrik ist. Fiir die Dirac-Theorie entspricht diese der Dirac-Matrix 7% [1, 2,
19].
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2.5 Dirac-Gleichung

Zunéchst entwickelten Oskar Klein und Walter Gordon eine relativistische Verallgemeinerung

der Schrodingergleichung, die Klein-Gordon-Gleichung
(0,0 +m*)¢(x) = 0. (2.34)
Jedoch ergab sich das Problem der negativen Energielosung aufgrund der quadratischen

E(p) = £V7? + m2. (2.35)

Um dieses Problem zu 16sen, forderte Paul Dirac die Linearitét der Zeitableitung [2].

Energie-Impuls-Beziehung

Die Wirkung kann wie folgt aufgestellt werden:

S = [ da(it¥0,0 — mi). (2.36)

Mit der Variation dieser Wirkung kann die Dirac-Gleichung gefunden werden:

5o
25,10
5" (2.37)

= (i7"0, — m)Y(x) = 0.

Damit die Dirac-Theorie forminvariant unter Wechsel des Bezugssystems mit konstanten Dirac-
Matrizen ist, wird gefordert, dass bei einer Lorentztransformation A gleichzeitig auch eine Spin-
Basen-Transformation S durchgefiithrt wird. D.h. es wird zunéchst eine Lorentztransformation
(LT) durchgefiihrt und im Anschluss eine Spin-Basen-Transformation (SBT) angewendet, so-

dass die Dirac-Matrizen in jedem Lorentzsystem die gleiche Form haben:
D A = Ay BB i = STIA S & (2.38)
Damit kann auch
SyrSTL L M4 (2.39)

geschrieben werden, wobei auch die Notation

Sy Stor = Ayr” (2.40)
verwendet werden kann, mit Sp; = S~ und S,; € SL(2,C). Spo; sind dann jene Lorentztrans-
formationen, welche die Dirac-Matrizen wieder zuriick in die originale Form transformieren.
Gleichung (2.40) definiert implizit eine Einbettung von SL(2,C) in SL(4, C).

Gleiche Uberlegung kann nun auch mit den Spinoren durchgefiihrt werden. Es ergibt sich fiir ¢

folgende Transformation:

5 B = S, (2.41)
Folglich transformiert ' wie
ot Bt Bt gt = utS) (2.42)
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Fiir die Dirac-Gleichung gilt dann mit O* o = pv 2O

0= (iv"9, — m)Y = (V" g, 0" — m)y W (i7" g, 0" — m)y’
= (ifyuguuAV)\aA - m>SLorw

= SLor(Z.SITolr'Y#SLorguuAy)\a)\ - m)l/}

(2.40) . v
= SLor(@Aum’YKguVA /\a)\ - m)w (243)

- SLOT(Z.[QMVA#&AVA]VK(?A — m)z/)

= SLor(ignAfyﬁa)\ — m)ﬂz

= Stor (170 —m)) =0,
—

=0

womit diese invariant unter Lorentztransformation ist.

Damit auch die Wirkung invariant bleibt, muss
I L O (2.44)
gelten. Dafiir wird die Spinmetrik benétigt, welche fiir allgemeine Spin-Basen-Transformationen
(S "th=hsS (2.45)

erfiillen muss - wobei im Allgemeinen ST # S~1 ist - sodass

b — S = pinst G2V ytgl p B2 ytp = g (2.46)

gelten kann. Damit kann gezeigt werden, dass auch die Wirkung invariant bleibt:
So = [ dta(itn By — miw) = [ da(it"9,,0"0 — miv)
T [ ata(ii g0 0 - mi'v)
- / B2 (DS Gy A 2O Stonth — mBSTLSpor)
= [ DS ST S A O Sarts — i) (2.47)
— [ A0S A 7 N0 St — i)
= [ Al Srangern 0 — i)
— [ dtatiiro - miv) = [ da(ioy 0, - mi).

Letztlich ist auch das Skalarprodukt v1) invariant unter Spin-Basen-Transformation, ebenso

wie Lorentzinvariant:

Dy =t — otST ST TIRSTLS oap = ot hep = o, (2.48)
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Dies ist wichtig zur Beriicksichtigung der Freiheitsgrade der Fermionen in der Wirkung [1, 2,
19, 20].

2.6 Spinmetrik

Die Spinmetrik wurde bereits in Abschnitt 2.5 verwendet, um die Forminvarianz der Dirac-
Theorie mit Gleichung (2.45) zu gewéhrleisten.

Mit weiteren Anforderungen an die Dirac-Theorie kdnnen zusétzliche Eigenschaften der Spin-
metrik gefunden werden.

Neben der Invarianz von 1)1 muss dieses Skalarprodukt reell sein, damit die resultierende Wir-
kung eine unitére Zeitevolution ermoglicht. Dafiir wird der Massenterm der Wirkung der Dirac-
Gleichung untersucht. Da dieser ebenfalls reell sein soll, kann folgende Betrachtung gemacht

werden:

Sm 2 _m / d*ziip

=—-m / d*zpThap
S = S, (2.49)
= [—m / d4wThw]*
=—m / d*zpThiey,
womit gezeigt ist, dass fiir einen reellen Massenterm der Wirkung, die Spinmetrik hermitesch
sein muss:
h = hi. (2.50)
Mit dieser Bedingung ist auch 1) reell:
[y]* = [The]" = o hTY = $Thy = . (2.51)

Gleiche Betrachtung kann mit dem kinetischen Term der Wirkung gemacht werden, da auch

dieser reell sein soll:

S 271 [ ateiro,u
= / d*zpThyt 0,0
Skin = Siin
= |i [ d*zyThy*0
[l/ Ty “w] (2.52)
= —i/d4$8#1/1T’y“ThTw

P _i/ dowW”hWH/d‘*wa“ThT@uw
[219]

=0

= hyt L ,yuThT (2§0) ’y”Th.
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Der Oberflichenterm iiber den Rand 002 des Raum-Zeit-Volumens ) fillt dabei weg, da die
Wirkung im Unendlichen verschwinden soll.
Somit muss

AH = bk (2.53)

gelten. Zusétzlich wird angenommen, dass
|deth| =1 (2.54)

ist, damit eine Skalierung von 4 relativ zu ¢ vermieden wird. Mit Gleichungen (2.50), (2.53) und
(2.54) ist die Spinmetrik bis auf ein Vorzeichen eindeutig bestimmt. Insbesondere Gleichungen
(2.53) und (2.54) werden durch h = 4 erfiillt [16, 19, 20, 21, 22, 23].

10
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3 Relativistische Luttinger-Fermionen

In der Quantenfeldtheorie gibt es das Phénomen der asymptotischen Freiheit. Dabei gibt es
eine Anderung der Wechselwirkungsstirke bei verschiedenen Energien. Wihrend bei niedrigen
Energien starke Wechselwirkung vorliegt, werden Teilchen bei hohen Energien frei und intera-
gieren immer schwécher.

Fiir fermionische Materie lag bislang keine Theorie vor, welche in 4 Dimensionen asymptotische
Freiheit liefert. Luttinger-Fermionen konnen ein erstes Beispiel fiir asymptotische Freiheit in

einer reinen fermionischen Theorie sein [24, 25, 26].

3.1 Konstruktion des Hamiltonian

Der folgende Abschnitt basiert auf der Konstruktion von I. Herbut und L. Janssen [9], siehe
auch [5, 19, 20, 23|.
Die nicht-relativistische Luttinger-Theorie kann mit der Annahme, dass der Hamiltonian qua-

dratisch vom Impuls abhéngt, wie folgt konstruiert werden:

H? = p*1. (3.1)
Damit kann der Ansatz .
H= ) Gipip; (3.2)
i,j=1

gewihlt werden. In Gleichung (3.1) eingesetzt, folgt somit

a [ d
H? = Z Z(Gijpipj)2 + ZP?PjPan'ij + Z PipkpiP1Gij G- (3.3)
im1 | =1 ja igkl
Jj#a i#k

G,j ist dabei ein symmetrischer Tensor zweiter Stufe. Da H? nur aus geraden Ordnungen von
p besteht, miissen die zweite und dritte Summe unter bestimmten Bedingungen verschwinden.
Die zweite Summe muss damit fiir j # a und die Dritte fiir i = j A k # 1

und i # jAk £ 1A (1, 5) # (k,1) verschwinden. Zusétzliche Bedingungen an G;; sind zum einen
die Normierung mit G%, = 1 und zum anderen die verschwindende Spur mit G%; = §% G, j» wobei
8% das Kronecker-Delta ist. Uber fett gedruckte Indizes wird hierbei nicht summiert.

Durch Umformungen kénnen folgende Antikommutatoren gefunden werden:

{Gii, G} =0 k#1 (3.4a)
(G, G} = 0 i Ak £ LA G g) # (k1) (3.4D)
{Gii,Gj5} = —%5“5]7 1#] (3.4c)
(G, G} = 2. (3.4d)

11
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Es gilt zudem, dass G, symmetrisch mit G, = G, ist.

Fiir den nicht-relativistischen Fall kann eine Algebra, die sogenannte Abrikosov-Algebra

2 d
{Gij, G} = *m%ﬁkz + m(éikéjl +0udjk), (3.5)
gefunden werden [27, 28].

Fiir den relativistischen Fall in der Minkowski-Raumzeit folgt mit G;; — G, p,v =0,..,d—1

2 d
{G;w; Gnk} = _mg;wgm)\ + m(g;mgl/)\ + gu)\gw@)' (3'6)

Hier gelten die gleichen Eigenschaften der Normierung, Symmetrie und Spurbedingung, wobei
diese nun als G*,, = g"”G,,,, geschrieben wird.

Der kinetische Term des Luttinger-Operators kann also letztlich als
Gl 019"1h = 0 (3.7)

geschrieben werden, was eine Feldgleichung fiir freie Luttinger-Fermionen darstellt.
Eine Bedingung an diesen Operator ist, dass dessen Quadrat dem quadrierten Klein-Gordon-
Operator entspricht:

2 (2.34)

(G 0"0") (949,)2. (3.8)

3.2 Eigenschaften von G,

3.2.1 Dimension

Da G, ein d-dimensionaler, symmetrischer Lorentz-Tensor ist, gibt es %d(d — 1) unabhéngige,
nicht-diagonale Elemente. Auf der Diagonalen gébe es d Elemente, da G, jedoch spurlos ist,

sind es nur d — 1 Elemente. Somit braucht es genau
1 1
de - §d(d - 1) + (d - 1) = (d — 1) . <2d + 1) (39)

unabhéngige, anti-kommutierende Elemente, die die Algebra (3.6) erfiillen und den Raum der
G ~-Matrizen aufspannen.

Da Gleichung (3.6) eine Clifford-Algebra darstellt, konnen die Elemente von G, mit den ~-
Matrizen konstruiert werden. Die Dimensionalitdt der y-Matrizen d, gibt die Dimension der

Elemente der Clifford-Algebra an und lésst sich damit wie folgt darstellen:
d, =2L%), (3.10)
wobei || der Abrundungsoperator ist, mit [29]

r| ==max{ne€Z:n<r}eZ (3.11)

Damit gibt es bspw. fiir d = 3, d. = 5 unabhéngige, anti-kommutierende Elemente. Die Dimen-
sion der -Matrizen ist damit d, = 4 [4, 19, 20, 29].

12
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3.2.2 Konstruktion

Da der Raum der G,,-Matrizen mit den y-Matrizen aufgespannt werden kann, kann der Ansatz
G =alty" (3.12)

gewdhlt werden, wobei a?, ein symmetrischer Vorfaktor in Form eines Tensors zweiter Stufe,

v
mit afu = af# und A = 1,...,d., ist. Die y-Matrizen erfiillen die euklidische Clifford-Algebra
{74,748} = 264B. Um die Vorfaktoren der einzelnen Elemente von G, zu bestimmen, kénnen

folgende Félle mit Hilfe der Algebra (3.6), mit x = g und A = v betrachtet werden:

2 d
p=v: (G G =26 = =7 0au + 2+ 70 =2 (3.13a)
. d
C d
(NaV> = (ZJ # @) : {GijaGij} = 2G?j = 11 (3.13C)

Da ng < 0, kann G; antihermitesch und die Vorfaktoren aé‘j imaginér gewéhlt werden. Wird
Gleichung (3.12) in Gleichung (3.13) eingesetzt, folgt fiir aj,,:

{Gup, Gy = {af, v a7y = (0, )1 v =2 (aph,) =2. (3.14)
A

Fiir Go; wird eine Kontraktion von a(‘;‘j durchgefiihrt, indem p = A gesetzt wird. Zusétzlich sei

zu beachten, dass aglj imaginér sein muss, sodass Go; = iaj'yj ist. Damit ergibt sich

d

{Goj, Goj} = {ia;y iajn'} = —QXj:af = (3.15)

Analoges Vorgehen kann fiir G;; verwendet werden, sodass die Vorfaktoren fiir alle Eintrage

von G, zusammengefasst folgend gewéhlt werden konnen [4, 5, 19, 20, 23

LW=v: Z(aﬁH)Q =1 (3.16a)
A
(1, v) = (0,7) : D (agy)? = (ia;)* = —2(;_1) (3.16b)
A J
(wov)= (3£ Y (a)*=>af = —Q(d{ T (3.16¢)
A i
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3 Relativistische Luttinger-Fermionen

3.3 Symmetrien der Luttinger-Theorie

Die kinetische Wirkung in d Dimensionen kann nach der Konstruktion des Hamiltonians in
Abschnitt 3.1 als
S — / [5G (1) (i0” )] (3.17)

geschrieben werden.

Auch die Luttinger-Theorie soll analog zur Dirac-Theorie unitér und invariant unter Spin-Basen-
und Lorentztransformation sein. Somit kann das gleiche Vorgehen wie in Abschnitt 2.5 gewéhlt
werden, um dies zu gewahrleisten.

Es kann gezeigt werden, dass die Algebra in Gleichung (3.6) separat invariant unter Lorentz-

transformation
Guv = G,y = G A" A, (3.18)

mit A € SO(1,d — 1) und Spin-Basen-Transformation
G — SG,S™1, (3.19)
mit S € SL(d,, C), ist:

{G/,LV7 Gm)\} — {GK)\AH/,LAAI/7 G/,LVAMKAVV}
= GaAN" AL G AP A+ Gl A A G AT A,
= {G;wa GKA}ANAA)\VAHKAVV

2 d
= |~ g 79w 9 + 77 (Gungor + gurgun) | A" AN AR LAY, (3.20)

2

d
- _ﬁg’iAg/“’ + ﬁ(gﬁﬂg)\l/ + gm/g/\p,)

2 d
= — 779w Ix + 777 (Gungor + gurgun) = {Gpus Gird,

sowie

{Guv,Gir} = {SG . S™, SG S}
= 8G, S SGST + 8GSTHSG)
= 5{Gpuv, Ger}S™!

(3.21)

2 d -1
=5 |:d_19}u/grcA + m(gltﬁgv)\ + g/LAg”K)] S

2 d _
- |:_d—1-guugm)\ + m(gunguk + gu)\gw@):l 55 t= {Gulﬁ GH}\}'

Es wird auch hier wieder zunéchst eine Lorentztransformation und folgend eine Spin-Basen-

Transformation durchgefiihrt, sodass
G,UJ/ L—FI; G;u/ = Gn/\AN#A/\V SE)T SGH)\AN#A/\V‘S’_I ; Gl»“’ (322)

gilt.
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3 Relativistische Luttinger-Fermionen

Auch hier kann S~ = Sp, definiert werden, damit sich
SLorGuusiolr = GK}\AN[LAAI/ (323)

schreiben ldsst. Die Menge aller Sio;, welche Gleichung (3.22) erfiillen und die lorentztrans-
formierte Matrix G, wieder zuriick transformieren, bilden eine SO(1, d — 1)-Untergruppe von
SL(d,C). Damit geht also auch die Transformation von ¢y — Spo¢ und P — &Sﬂolr einher,
sowie die Transformation der Spinmetrik dquivalent zu Gleichung (2.45). Damit kann ana-
log zu Abschnitt 2.5 gezeigt werden, dass die Bewegungsgleichung massebehafteter Luttinger-

Fermionen forminvariant bleibt:
0= (—-G0"0" — m?) = (—ng““aag'fﬁaﬁ —m?)Y
=3 (fGWg”aagg”ﬁa/ﬁ —m?)y
= (=G g"* N’ 40,9"" A? 30, — m?) SLort)

= SLor(_SLorGuuSiolrglLagyﬁApaapAwﬁaw - m2)1/) <324)
= Stor(—G A" A, g" g"P AP ,0,A? 50, — M)
= Stor (—Gra0"0* —m?)1h = 0.
=0
Gleiches gilt fiir die Wirkung;:
S — / A2 [ DG (10)(i0” )b — m> T

- / [ G g D g"® O — m)

L / (DS G g™ 7P AP oD, A? 50, Storth — MBS L Sport]

- / A [ ST S Lo Gy SpL g VP AP WA 30,0, S1orth — M) (3.25)

T /ddmwsﬂoermAKuA/\VQWQVBApaAwﬂapasOSLorw - m%ﬁw]
= — /ddx[ﬁsgolrSLoer/\aﬂaAw - m2z/;w]

T / Az (PG or 0" 0Mp — mP Y],
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3 Relativistische Luttinger-Fermionen

Analog zu Abschnitt 2.6 kdnnen nun wichtige Eigenschaften der Spinmetrik bestimmt werden.
Da der Massenterm der Wirkung reell sein soll, kann an folgender Rechnung, dquivalent zur

Dirac-Theorie, erkannt werden, dass h hermitesch sein muss, mit:
Sm = me/d‘lm/_zw
= —m? / d*zpThay
S = S
= {—m2 / d%qﬂthr
= —mz/d4wahT¢,

= h=hl

(3.26)

Es kénnen neben dem hier genutzten Massenterm noch weitere Massenterme konstruiert werden
[5]. Fiir die weitere Betrachtung sind diese jedoch nicht wichtig.
Auch der kinetische Term der Wirkung soll die gleiche Bedingung erfiillen, sodass:

San = [ A (09 107)0)
— -~ [ da((56,) 0 0" 0)

Skin = Siin

St = |- [ dte((@G )@ 0 0)

*

zf/WﬂW%WU@LWD
(3.27)

28 / dz((0" )G, 0m))

- / (TG, om0 )

= _/ddx(z/}TGL,,aﬂa”hW)

__ / (TG, b or e )

= GLVhT ; hG;J,VJ

wobei die Oberflichenterme aufgrund der Randbedingungen an die Felder verschwinden. Wei-
terhin kénnen damit wichtige (Anti-)Kommutator-Regeln gefunden werden. Dafiir werden er-
neut die Elemente von G, einzeln betrachtet. Wie bereits in Abschnitt 3.2.2 erwéhnt, soll Gy;

antihermitesch sein, d.h. ng = —Go;.
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3 Relativistische Luttinger-Fermionen

Damit folgt aus Gleichung (3.27):

G()j = h_ngL)th = _h_lG()th = _h_lGojh

(3.28)
= {h, Goj} = 0,
sowie
Gij = K 'GLht = h71Gyjh
(3.29)
= [h, Gij] =0
und
Guu =h™'Gt ht =h7'GLuh
s s s (3.30)

= [h,Gpup] =0,

wobei G;; und Gy, hermitesch sind. [4, 5, 16, 19, 20, 23].

3.4 Physikalische Bedeutung der Spinmetrik

Gesucht ist eine Représentation des Paritdtoperators im Spinor-Raum.
Eine Paritétstransformation entspricht einer Raumspiegelung, wobei Spinoren folgendermafien

transformieren:

(T, t) = (=T, t) = Sp(Z,t). (3.31)

Sp ist dabei die gesuchte Matrix-Représentation des Paritdtoperators.

Allgemein kann eine Raumspiegelung von Vektoren als uneigentliche Lorentztransformation
P = A", =diag(l,—-1,-1,-1) (3.32)
dargestellt werden. Somit kann

GoaN" A, = SpG L, Sp !

A AR AN A B Bg-1 (3.33)
al{)\A' ILA v = a’,uySP’y SP
geschrieben werden. Fiir Go; gilt dann
ia; A" ANy = —iajn? = —Goj = SpGo;Sp (3.34)
= {SP,GQJ‘} =0,
sowie analog fiir G;; und G p:
[Sp, Gij] = 0 = [Sp, Gppl- (3.35)

Sp erfiillt dabei die gleichen Bedingungen, die auch fir die Spinmetrik gelten (Gleichung (3.28),
(3.29) und (3.30)). Somit kann P als Linearkombination moglicher Spinmetriken in d Dimen-
sionen, dargestellt werden. Unter anderem kann auch P = h gesetzt werden, sodass deutlich

wird, dass die Spinmetrik die Paritét des Spinors in d = 4 dndert [23].

17



4 Représentationen der Spinmetrik und Elemente von G,,,,

4 Reprasentationen der Spinmetrik und Elemente

von G,

In Abschnitt 3.2 sind die Eigenschaften von G, aufgezeigt, sodass diese nun fiir verschiedene
Dimensionen genauer bestimmt werden kénnen und damit die Algebra (3.6) konstruiert werden
kann.

Fiir die Konstruktion der Elemente von G, wird Gleichung (3.12) verwendet. Damit kann als

Ansatz
w=v: Gup = ZaﬁﬂvA (4.1a)
A
(n,v) =(0,5) : Goj =i» ay (4.1b)
J
(mv)=@@j#4i): Giy=> apny" (4.1¢)

gewahlt werden.
Um eine geeignete Spinmetrik zu finden, welche dafiir sorgt, dass sowohl der kinetische Term, als
auch der Massenterm der Wirkung reell ist, miissen folgende Eigenschaften erfiillt sein, welche

in Abschnitt 3.3 genauer beschrieben sind:

h = hf, (4.2)
sowie
w=v: [h, Guul =0 (4.3a)
(u,v) = (0,7) : {h,Go;} =0 (4.3b)
(w,v)=(i,5 #14): [h,Gs5] =0. (4.3c)
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4 Représentationen der Spinmetrik und Elemente von G,,,,

4.1 (1+1) Dimensionen

Fiir d = 2 ergeben sich d. = 2 unabhéngige, anti-kommutierende Elemente um die Algebra
(3.6) aufzuspannen.

Fiir Go1 kann der Vorfaktor a; = 1 gewéhlt werden, da nach Gleichung (3.16)

1 (4.4)

! 2 (3.16b)
> (iaj)2:_a%:_m = —

=1

gilt. Aufgrund der Symmetrie von G, ist folglich auch G gefunden.

Fiir die Diagonalelemente kann mit p =0

3 (ath)? = (a30)? P21
et (4.5)

= agp = 1

ohne Beschrinkung der Allgemeinheit gewihlt werden, sodass Gog = v? ist. Da G spurlos

sein soll, gilt
gm/G,uu = GOO - Gll =0

(4.6)
= Goo = G11.
Zusammengefasst ist eine mdgliche Représentation der Algebra (3.6) gefunden mit
Go1 = Gio = iv' (4.7a)
Goo = G11 =7°. (4.7b)

Diese Darstellung entspricht der Wick-rotierten Version der nicht-relativistischen Algebra [9].
Die Spinmetrik kann als h = v2 gewihlt werden. Es ldsst sich zeigen, dass Gleichungen (4.2)
und (4.3) erfiillt sind:

[h, Gupl = VY1 =72 =7 =0 (4.8b)
{h,Go;} = {7*,in'} =i(v*+" ++'9%) = 2i6>'1 =0, (4.8¢c)

wobei v4 = (yv4)! bei Gleichung (4.8a) genutzt wird.

Es ist also eine Spinmetrik gefunden, welche fiir die Forminvarianz der Luttinger-Theorie in
d =1+ 1 Dimensionen sorgt.

Es kann somit festgestellt werden, dass die Spinmetrik, &hnlich wie in der Dirac-Theorie, in den

Raum der d, = 2 Elemente der Abrikosov-Algebra hinein passt.
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4 Représentationen der Spinmetrik und Elemente von G,,,,

4.2 (2+1) Dimensionen

Analog zu Abschnitt 4.1 kann eine Représentation in d = 3 Dimensionen gefunden werden.
Nach Gleichung (3.9) gibt es do = 5 unabhéngige, anti-kommutierende Elemente von G,,,.
Fiir die Elemente Gy;, kann der Vorfaktor a; wie folgt gewéhlt werden:

ICTEED WA

j=1,2 j=1,2 (4.9)

Fiir G152 kann analog

n=3 (4.10)

gefunden werden.
Zur Bestimmung der Diagonalelemente wird zunéchst betrachtet, dass G, spurlos sein soll.

Dafiir wird der Ansatz Gop = v* verwendet:
9" G = Goo — G11 — G2

=" = (@' + a}7°) = (ag7" + a37°) (4.11a)

=1 = aly —a3,) —7°(afy +ad,) =0

= (1 —af, —a3y) 20 und a < —a5y. (4.11b)
Somit folgt
1
aqy = a = 5. (4.12)

Mit Gleichung (3.16) kann a3; und damit auch a3, bestimmt werden:

3 (@fh)? = (ah)? + (a3))? =1

A=4,5
412) 1
(4.12) T+ (@h)?=1 (4.13)
V3
= a?l = 7 = — 22
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4 Représentationen der Spinmetrik und Elemente von G,,,,

Zusammengefasst ergeben sich die Algebra-erzeugenden Elemente zu

Goj = iT’y" j=1,2 (4.14a)
3 3
Goo = 7* (4.14c¢)
1 3
G = 574 + gv” (4.14d)
1 3 5
Gz 574 - gv‘? (4.14e)

Zur Uberpriifung von Ggg, G11 und Gas kann der Antikommutator

2
{Gpuu. G} =2GuuGoy = 24,00, = — o = —1 (4.15)

verwendet werden. Exemplarisch folgt fiir G1; und Gas:

{G11,Ga} =2 (; ; + \gg : <_\/§>> R (4.16)

Analog kann dies auch fiir alle anderen Diagonalelemente durchgefiihrt werden, wobei deutlich
wird, dass diese Repréisentation alle Bedingungen erfiillt. Diese Darstellung entspricht wieder-
um einer Wick-rotierten Version der euklidischen Abrikosov-Algebra [9].

Es kann nun auch die Spinmetrik A in d = 3 bestimmt werden. Es fillt auf, dass diese nicht
aus lediglich einer Dirac-Matrix bestehen kann, da damit entweder die Anti- oder die Kom-
mutatorbedingung mit den Elementen von G, nicht erfiillt wére. Eine weitere Idee ist es, die
Spinmetrik aus dem Produkt von ' und 42 zu konstruieren, wobei schnell auffillt, dass dieses
nicht hermitesch ist. Um dies zu garantieren, wird die imaginére Einheit ¢+ an das Produkt mul-

tipliziert, sodass gezeigt werden kann, dass h = iy'y? die Bedingungen (4.2) und (4.3) erfiillt:

W= (iv'y*) = =i(3»)T (V)T = —in*y =ir'y* =h (4.17a)
[h, Gup] o< [iv'9%, 4] = in'y*y* = tin'? = i(y = 4"%%) =0 (4.17b)
{h,Gor} o< {iv'v? 7'} =i(v' Yy + 4Ny =i(— +4%) =0 (4.17¢)
[h, G12] o [iv'9?, %] = i(v'4*7° — YPiv'y?) = i(v'%? — ') =0, (4.17d)

wobei A = 4,5 ist und gleiche Rechnung von (4.17¢) analog fiir G gilt.
Auch in d = 3 passt die Spinmetrik in einen durch die Abrikosov-Algebra aufgespannten Raum
in irreduzibler Darstellung hinein. Aus der Konstruktion wird deutlich, dass h bis auf ein Vor-

zeichen eindeutig ist.
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4 Représentationen der Spinmetrik und Elemente von G,,,,

4.3 (3+1) Dimensionen

Mit d = 4 und d. = 9 ergibt sich folgende Darstellung der Elemente von G, [4]:

2
Goj = \/;,},J j=1,2,3 (4.18a)

2
G2 = 574 (4.18b)
2 5
G23 = g’}/ (418(3)
2 6
G31 = g’y (418d)
Goo =7" (4.18e)
1 2
Gy = 577 +92. ?78 (4.18f)
1 V2 2
Gop = —~7 — Y28 249 4.18
22 = 37 37 + 37 (4.18g)
1 V2 2
Gan = AT Y28 [Z2.9 4.18h
33 3’7 3 Y 37 ( )

Erkennbar ist nun, dass nach Gleichung (3.10), d, = 16 ist. Wird nun eine geeignete Spinme-
trik gesucht, féllt auf, dass {h, Go;} = 0 nur erfiillt sein kann, wenn die Spinmetrik aus einem
Produkt von y-Matrizen aufgebaut wird, welches ungerade ist und nur ~%, ...,7° enthalt, damit
dieses mit !, ..., v? antikommutiert. Sobald jedoch eine der genannten Dirac-Matrizen nicht im
Produkt vertreten ist, wird der Kommutator [k, G;;] = [h, Guu) = 0 nicht erfiillt. Da 4, ...,~°
jedoch eine gerade Anzahl an Dirac-Matrizen ist, tritt ein Widerspruch auf und es wird deutlich,
dass keine Spinmetrik in einer d, = 16-Darstellung gefunden werden kann.

Damit muss eine andere Reprasentation gefunden werden, wobei die Kleinste d., = 32 entspricht,
was damit die irreduzible Darstellung der relativistischen Theorie in d = 4 Dimensionen dar-
stellt. Damit ergibt sich sowohl ' als verwendbare Dirac-Matrix, als auch '!, da auch d, = 11
in Gleichung (3.10) eingesetzt, d, = 32 liefert.

Es kann nun eine geeignete Spinmetrik mit
h=~'y2y%y* (4.19)

gefunden werden. Auch
h = iv*y°0y 8y (4.20)

ist moglich, wobei v* = 10 11 ist.
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4 Représentationen der Spinmetrik und Elemente von G,,,,

Exemplarisch kann fiir A mit v* = !0 auch hier gezeigt werden, dass alle Bedingungen (4.2)
und (4.3) erfiillt sind:

ht = (Y2210 = 19932y =412y =k (4.21a)

[, G = [hy Giz) o< [V 273910, 4] = 71929371094 — 44414243410 o)
:’YA7172’73710_7A’71’7273710:07 A:4779

{h, Gor} o {7 7*7*71% 4"} = v 192210 + 4120 10 1210

— 243810 L 1203010 _

Gleichung (4.21c¢) gilt analog fiir Goz und Gos.
Jede Linearkombination von h und h erfiillt (4.2) und (4.3) ebenfalls mit A’ = ah + Bh, wobei
a? + % =1 ist, mit a, B € R [23, 4].

4.4 (4+1) Dimensionen

Da d. = 14 ist, gibt es in d = 5 Dimensionen 14 unabhéngige, anti-kommutierende Elemente
von G,,. Die Dimension der «-Matrizen ergibt sich dann zu d, = 128.

Auch hier kénnen die Vorfaktoren afl, berechnet werden, um eine méogliche Darstellung von

.2 (3.160) _§
Z (ia;)” = 3

§=1,2,3,4

G zu erhalten. Fiir Go; gilt

(4.22)
Say =y
7V
und analog fiir Gj;:
Z (an)? (3.16¢) 5
8
=010 (4.23)
S an =)

Goo wird hier als 4! gewiihlt. Da auch hier die Spur verschwinden soll, kénnen folgende Be-

dingungen gefunden werden:

9" Gy = Goo — G11 — Gaa — G33 — Gy (4.24a)
= (1-all —al} —all —al}) =0 (4.24b)

(a2 + as3 + al? + al?) = 0 (4.24c)

(alf + ad} +al3) = 0 (4.24d)

(al} +add) = 0. (4.24e)

Damit ist a}} = ad} = a1} = a}{ = 1. Mit der Normierungsbedingung (3.16a), folgt fiir G1:

1 (3.16a)
> (af)? = (@) + (al})? = 55 + (@fd)? U=
A=11,12 (4.25)
12 _ V15

a;r = 4
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4 Représentationen der Spinmetrik und Elemente von G,,,,

Damit kann weiterhin

a3 + a3 + ag3 = —ar}
4.26
:>a12:a12:a12:—1\/15:—v15 (426)
11 22 33 371 19
gefunden werden, sodass fiir G
A2 11,2 1212 13v2 _ 1 15 1312
Z (ag2)” = (ag2)” + (az3)” + (a3)” = 6 + 111 + (agz)” =1
A=11,12,13 (4.27)
)
13
=ad=4/=
%=
gilt. Analog wird fiir G33 und G44 vorgegangen, sodass die Elemente von G, insgesamt
.15 .
Goj =i/ 57 j=1,2,3,4 (4.28a)

5 4 \/3 6 \F .
— .12 — ]2 =4/ = 4.28b
G2 3 G13 g7 G 3 (4.28b)
_ |58 _ 99 \/E 10
G23 = 8"}/ G24 = \/;’}/ G34 = 8’}/ (428(3)

Goo = 7! (4.28d)
Gueziv“—%XEEVH (4.28¢)
Gaz = 3711 - \{71;5712 + %713 (4.28f)
G%==i7“-—fgaf2—\ﬁ?vm+-vgv“ (4.28g)
Gas = iv” - gwu - gvm - \/gv” (4.28h)
sind. Auch hier kann die Probe mit {G .y, Guu} = 241,08, = — 39,900 durchgefiihrt werden,

wobei sich zeigt, dass die gefundenen Elemente auch diese Bedingungen erfiillen.

Gleichungen (4.28a - 4.28h) représentieren erstmals eine explizite Darstellung der Abrikosov-
Algebra in einer d = 5 dimensionalen Raumzeit auf Basis einer euklidischen Dirac-Algebra.
Als Spinmetrik kann das Produkt h = 'y243y% gefunden werden. Hierbei sind alle Forderungen

an die Spinmetrik erfiillt:

Wt = (V23T = %% ="y = h (4.292)

Gl = .Gl ox b7t a ) = ot =ttt
— A2 A2 84

{h,Gor} o {(v'27°7 12 = 12t Py (4.29¢)

=77’y =%y =0,

wobei A =5, ..., 14 ist. {h, Go;} kann analog fiir j = 2, 3,4 gezeigt werden. Ahnlich wie in d = 3,
wird aus der Konstruktion deutlich, dass die Spinmetrik bis auf ein Vorzeichen eindeutig ist,

sofern sich auf den durch G, aufgespannten Raum beschrénkt wird.
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4 Représentationen der Spinmetrik und Elemente von G,,,,

Die Matrix v'®, welche ebenfalls in der d, = 128-dimensionalen euklidischen Dirac-Algebra

enthalten ist, wird fiir die Spinmetrik nicht benétigt.
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5 Zusammenfassung

In dieser Arbeit konnten fundamentale Eigenschaften der relativistischen Luttinger-Theorie
aufgezeigt werden. Insbesondere wurde der wichtige kinetische Term und die zugrundeliegende
Abrikosov-Algebra in d = 2, 3,4, 5 Raumzeit-Dimensionen explizit konstruiert.

Dafiir wurden zunéchst wichtige quantenfeldtheoretische Grundlagen n&her betrachtet. Unter
anderem wurden die Lorentztransformationen und damit die Lorentz-Gruppe erldutert und die
Spinor-Felder eingefiihrt. Damit war es moglich, vorerst die Dirac-Theorie genauer zu betrach-
ten, da viele Rechnungen und Methoden &hnlich auf den Luttinger-Formalismus angewendet
werden konnen. Es wurde deutlich gemacht, dass die vorausgesetzte Lorentz- und Spin-Basen-
Symmetrie wichtige Bedingungen an die Dirac-Matrizen und die Spinoren stellen. Besonders
wichtig ist die Erkenntnis, dass erst dann ein lorentzinvariantes Skalarprodukt vorliegt, wenn
ein Dirac-konjugierter Spinor ¢ = ¥h eingefiihrt wird, wobei h die Spinmetrik darstellt.

Die Spinmetrik wurde daraufhin néher erldutert, da diese Gegenstand der Berechnungen im
Rahmen der Luttinger-Theorie sein wird. Es konnte festgestellt werden, dass h hermitesch sein
muss, damit ein reeller Massenterm der Dirac-Wirkung vorhanden ist. Analog muss auch der
kinetische Term reell sein, sodass sich Kommutator- und Antikommutator Relationen mit den
Dirac-Matrizen ergaben.

Mit diesen Grundlagen konnte also die relativistische Luttinger-Theorie betrachtet werden. Da-
fiir wurde die aus dem nicht-relativistischen Hamiltonian gefolgerte Abrikosov-Algebra (3.6)
relativistisch verallgemeinert. Es konnte festgestellt werden, dass diese, analog zur Clifford-
Algebra, invariant unter Lorentz- und Spin-Basen-Transformation ist. Folgend wurde die rela-
tivistische Wirkung der freien Theorie konstruiert. Es konnte gezeigt werden, dass auch diese,
sowie die Bewegungsgleichung gleiche Symmetrien aufweisen, wenn G, entsprechend transfor-
miert. Dieser symmetrische Tensor konnte im Anschluss genauer untersucht und wesentliche
Eigenschaften aufgezeigt werden. Mit Hilfe der Symmetrie, der Bedingung einer verschwinden-
den Spur und der Algebra, konnten mit dem Ansatz G, = a;‘lﬁA, die Vorfaktoren fiird = 2,..,5
Dimensionen explizit bestimmt und somit die d, unabhéngigen, anti-kommutierenden Elemente
von G, konstruiert werden. Auch konnten hier, analog zur Dirac-Theorie, Kommutator und
Antikommutator Relationen von G, und der Spinmetrik gefunden werden. Letztlich konnte
erkannt werden, dass die Spinmetrik in d = 4 die Paritét der Spinoren dndert, auf welche diese
wirkt, was eine wesentliche physikalische Bedeutung darstellt.

Ziel der Arbeit war es, die Spinmetrik in verschiedenen Dimensionen zu berechnen, da diese
ein wesentliches zusétzliches Element der relativistischen Theorie darstellt, das nicht aus einer
nicht-relativistischen euklidischen Theorie gefolgert werden kann. Die Spinmetrik definiert ein
inneres Produkt auf dem Raum der Felder, mit dessen Hilfe reelle Wirkungen im Minkowski-
Raum definiert werden kénnen, was Voraussetzung fiir eine unitére Zeitevolution ist. Es ergibt
sich, dass es fiir d = 2 Dimensionen nur eine Dirac-Matrix braucht, um eine geeignete Spinmetrik
zu konstruieren. Fiir d = 3 Dimensionen muss h ein geeignetes Produkt von Algebra-Elementen
sein, damit h hermitesch bleibt. Besonders interessant ist der Fall in d = 4 Dimensionen. Hier-
bei ergibt sich, dass es keine Spinmetrik in einer d, = 16 dimensionalen Représentation geben
kann, wobei d,=16 zwar die irreduzible Darstellung der Abrikosov-Algebra, jedoch nicht der

relativistischen Luttinger-Theorie ist. Die kleinste mogliche irreduzible Darstellung ist somit



d, = 32. Damit ergeben sich zwei zusétzliche Matrizen: 7% und 4. In d = 5 Dimensionen
konnte dann wieder eine Spinmetrik in einer d, = 128 dimensionalen Darstellung gefunden wer-
den. Insbesondere die Resultate fiir die d = 5 dimensionalen Raumzeit sind originére Ergebnisse
dieser Arbeit. Es kann erkannt werden, dass die Spinmetrik in den durch G, aufgespannten
Raum hinein passt und ein weiteres anti-kommutierendes Element ~'° iibrig bleibt, was fiir den
kinetischen Term nicht bend6tigt wird. Dieses kann genutzt werden, um Wechselwirkungsterme
oder Symmetrien zu konstruieren. Damit zeigt der d = 5 dimensionale Fall Ahnlichkeiten zum
d = 4 dimensionalen Fall der Dirac-Theorie, wobei 4° ein solches zusitzliches Element der
Algebra darstellt.
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