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1 Einleitung

1 Einleitung
Die Quantenfeldtheorie stellt eine wichtige Methode der Physik dar, um Theorien zu entwi-
ckeln, welche Quantenmechanik und spezielle Relativitätstheorie vereint. Unter anderem ist
eine wichtige Anwendung, die Beschreibung von Elementarteilchen, welche nun als Anregung
eines quantisierten Feldes interpretiert werden können. Auch in der Physik der kondensierten
Materie oder Kosmologie, sowie bei der Beschreibung von Vielkörpersystemen, wird die Quan-
tenfeldtheorie genutzt [1, 2].
In dieser Arbeit soll die Feldtheorie der relativistischen Luttinger-Fermionen in verschiedenen
Dimensionen beschrieben werden.
Die Luttinger-Theorie wurde zuerst von J. M. Luttinger vorgestellt. Dieser suchte dabei nach
einem nicht-relativistischen Hamiltonian zur Beschreibung der Anregung von Halbleitern in ei-
nem Magnetfeld [3].
Indem die Algebra dieser Theorie relativistisch verallgemeinert wird, können störungstheore-
tisch renormierbare Quantenfeldtheorien konstruiert werden, womit sich neue Möglichkeiten
im Bereich der Hochenergiephysik ergeben [4]. Ein interessantes Phänomen der Teilchenphy-
sik liegt in der asymptotischen Freiheit, für die es bislang für rein fermionische Materie in 4
Dimensionen kein Beispiel gab. Besonders selbstwechselwirkende Luttinger-Fermionen liefern
einen neuen Ansatz, Theorien mit solchen Eigenschaften zu konstruieren [5].
Anwendung hat die ursprüngliche nicht-relativistische Variante dieser Teilchen bereits in der
Festkörperphysik zur Beschreibung von Spin-Bahn-gekoppelten Materialien mit quadratischen
Bandberührungen [6, 7, 8, 9, 10, 11, 12]. Besonders interessant ist dabei der Fall der Band-
Inversion in Halbleitern bei sehr starker Spin-Bahn-Kopplung [13]. Auch bei der Untersuchung
von Quanten-Spin-Flüssigkeiten ist die eichsymmetrische Luttinger-Theorie von Bedeutung [14].
In dieser Arbeit wird die Theorie der relativistischen Luttinger-Fermionen näher beleuchtet. Da-
für wird zu Beginn auf wichtige theoretische Grundlagen eingegangen, welche nötig sind, um
mit dem Luttinger-Formalismus arbeiten zu können. Es werden zudem die Dirac-Gleichung und
analoge wichtige Eigenschaften dieser erläutert.
Für die Luttinger-Theorie wird zunächst die Konstruktion des Hamiltonians und wichtige Ei-
genschaften des Tensors Gµν sowie der Spinmetrik beschrieben. Auch die vorausgesetzte Inva-
rianz der Theorie unter Lorentz- und Spin-Basen-Transformation wird beschrieben. Auf die-
sen Grundlagen können im Anschluss Repräsentationen der Abrikosov-Algebra-erfüllenden Ele-
mente von Gµν berechnet und die Spinmetrik für d = 2, ..., 5 Dimensionen bestimmt werden.
Während die relativistische Version der Abrikosov-Algebra prinzipiell durch geeignete komple-
xifizierende Wick-Rotation der nicht-relativistischen Algebra [9, 10, 11, 12] gefolgert werden
kann, ist die Spinmetrik ein neues Element. Diese ist für die Konstruktion von relativistischen
Theorien von Fermionen wesentlich.
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2 Theoretische Grundlagen

2 Theoretische Grundlagen

2.1 Notation
In dieser Arbeit werden die natürlichen Einheiten benutzt, mit

ℏ = c = 1. (2.1)

Für die kovariante Ableitung wird die Notation

∂

∂xµ
≡ ∂µ (2.2)

verwendet. Zudem besitzt die Metrik der Minkowski-Raumzeit die Signatur

gµν = diag(+,−,−, ...). (2.3)

Es sei zu beachten, dass nach der Einsteinschen Summenkonvention über doppelte Indizes
summiert wird, sodass

ai · bi ≡
∑
i

aibi (2.4)

gilt, wobei über fett gedruckte Indizes nicht summiert wird.

2.2 Variationsprinzip klassischer Felder
Um relativistische Feldgleichungen untersuchen zu können, wird zunächst das Variationsprinzip
für klassische Felder näher betrachtet. Das Funktional S ist eine Funktion des Feldes und hat
folgende Form

S[ϕ] =

∫
V

ddxL(ϕ, ∂µϕ), (2.5)

Wobei ϕ das Feld und V das Integrationsvolumen im Minkowski-Raum ist. L ist die Lagrange-
Dichte. Diese ist die Dichte der Lagrangefunktion

L =

∫
dd−1xL(ϕ, ∂µϕ). (2.6)

Somit ist
S =

∫
dtL. (2.7)
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2 Theoretische Grundlagen

Mit der Forderung, die Wirkung extremal werden zu lassen, kann die Euler-Lagrange-Gleichung
aufgestellt werden

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0. (2.8)

Besitzt das Feld mehrere Komponenten lautet diese

∂L
∂ϕi

− ∂µ
∂L

∂(∂µϕi)
= 0, (2.9)

mit i = 1, .., N [1, 15].

2.3 Lorentztransformation
Als Lorentztransformation wird die Transformation von Raum-Zeit-Koordinaten bezeichnet.
Die Transformationsmatrix erfüllt dabei

gµν → gµνΛ
µ
ρΛ

ν
σ = gρσ, (2.10)

bzw. in Matrixnotation:
ΛT gΛ = g. (2.11)

Raum-Zeit-Vektoren vµ werden damit dergestalt transformiert, dass

vµ → vµ′ = Λµ
νv

ν (2.12)

gilt. Lorentztransformationen erhalten das Skalarprodukt

v · w = gµνv
νwµ = vµwµ (2.13)

im Minkowski-Raum.
Alle Lorentztransformationen, die die Gleichung (2.10) erfüllen, bilden die Gruppe der homo-
genen Lorentztransformationen O(3, 1).
Für ein mehrkomponentiges Feld ϕi mit i = 1, .., N gilt

ϕ′i(x
′) = D(Λ)i

j
ϕj(x), (2.14)

mit D(Λ) ∈ O(3, 1). D(Λ) ist dabei eine Darstellung der Lorentztransformation Λ in Form
einer N ×N Matrix, welche auf Felder wirkt.
Lorentztransformationen, deren 00-Komponente Λ0

0 ≥ 1 ist, werden orthochron und analog
jene mit Λ0

0 ≤ −1 nicht orthochron genannt.
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2 Theoretische Grundlagen

Wird die Determinante von Gleichung (2.11) gebildet, ergibt sich

detΛT det g detΛ = det g, (2.15)

sodass
detΛ = ±1 (2.16)

gelten muss.
Die Gruppe der Lorentztransformationen SO(3, 1) sind damit alle Transformationen mit
detΛ = 1. Jene Transformationen mit detΛ = 1 und Λ0

0 ≥ 1 bilden die Gruppe der ei-
gentlichen Lorentztransformationen, auf welche sich üblicherweise beschränkt wird, da diese
die Richtung der Zeit und die Händigkeit des Koordinatensystems beibehalten.
Generell können endliche Lorentztransformationen in Form von Elementen einer Lie-Gruppe
dargestellt werden, deren Erzeugende eine Lie-Algebra erfüllen [1, 2, 16].

2.4 Spinor

2.4.1 Grundlagen

Spinoren sind wichtig, um Felder und damit Elementarteilchen zu beschreiben.
Ein Spinor ξ ist ein komplexes zwei-komponentiges Objekt, das wie folgt transformiert [17]:

ξ → ξ′ = D(Λ)ξ, (2.17)

wobei D(Λ) zu einer Darstellung der Lorentz-Gruppe mit halbzahligem Spin gehört.
Für eine Spin- 12 Darstellung der Lorentz-Gruppe mit (0, 12 ), kann die Repräsentation der Lor-
entztransformation in drei Dimensionen mit

D(Λ) = exp
[µ
2
(θ⃗ · σ⃗ − ω⃗ · σ⃗)

]
(2.18)

gefunden werden. −θ⃗ := (ϵ23, ϵ31, ϵ12) und −ω⃗ = (ϵ10, ϵ20, ϵ30) sind Vektoren der Parameter
ϵµν der Lorentztransformation und σ⃗ die Pauli-Matrizen. ϵµν ist dabei eine antisymmetrische
Matrix. Hierbei bilden derartige Matrizen aus Gleichung (2.18) die SL(2,C) Gruppe.
Das Feld ξ wird damit SL(2,C)-Spinor genannt.
Spinoren, die mit einer Transformationsmatrix vom Typ

D(Λ) = exp
[µ
2
(θ⃗ · σ⃗ + ω⃗ · σ⃗)

]
(2.19)

transformieren, werden als η bezeichnet und gehören der ( 12 , 0)-Darstellung an, d.h. der komplex
konjugierten Repräsentation der Spin 1

2 -Darstellung der Lorentz-Gruppe. [1, 2, 18, 19].
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2 Theoretische Grundlagen

2.4.2 Dirac-Spinor

Da die spätere Konstruktion der Luttinger-Theorie in Teilen analog zur Dirac-Theorie verläuft,
wird diese vorerst genauer betrachtet, um jene Parallelen aufzuzeigen. Dazu wird zunächst der
Dirac-Spinor eingeführt:

ψ(x) =

(
ηα̇(x)

ξα(x)

)
, (2.20)

wobei α, α̇ = 1, 2 ist. Der Dirac-Spinor gehört damit zur ( 12 , 0)⊕ (0, 12 )-Darstellung der Lorentz-
Gruppe.
In chiraler Darstellung können die chiralen Projektionsoperatoren PR und PL

PR =
1 + γ5

2
PL =

1− γ5
2

, (2.21)

definiert werden, wobei γ5 eine Dirac-Matrix ist. Der rechtshändige und linkshändige Spinor
ψR und ψL, lassen sich also als

ψR := PRψ =

(
0

ξα

)
ψL := PLψ =

(
ηα̇

0

)
(2.22)

schreiben, sodass

ψ(x) =

(
ψL(x)

ψR(x)

)
(2.23)

ist. Zusätzlich werden für die Dirac-Theorie, die γ- bzw. Dirac-Matrizen benötigt. Wiederum
in chiraler Darstellung können diese als

γi :=

(
0 σi

−σi 0

)
(2.24)

geschrieben werden, wobei i = 1, 2, 3 ist. Zwei weitere Dirac-Matrizen γ0 und γ5, können als

γ0 :=

(
0 1

1 0

)
(2.25)

und
γ5 := iγ0γ1γ2γ3 (2.26)

definiert werden.
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2 Theoretische Grundlagen

Die γ-Matrizen erfüllen die sogenannte Clifford-Algebra im Minkowski-Raum mit

{γµ, γν} = γµγν + γνγµ = 2gµν · 1 µ, ν = 0, 1, 2, 3. (2.27)

Die Clifford-Algebra ist invariant unter Lorentztransformation

γµ → γµ′ = Λµ
νγ

ν , (2.28)

da
{γµ, γν} → {Λµ

νγ
ν ,Λν

µγ
µ} = Λµ

νγ
νΛν

µγ
µ + Λν

µγ
µΛµ

νγ
ν

= Λµ
νΛ

ν
µ{γµ, γν}

= 2Λµ
νΛ

ν
µg

µν1

= 2gνµ1 = 2gµν1 = {γµ, γν}

(2.29)

ist, wobei Λµ
ν ∈ SO(1, 3) ist.

Es können noch weitere Darstellungen der γ-Matrizen gefunden werden, welche die Clifford-
Algebra erfüllen. Der Wechsel zwischen diesen Darstellungen wird als Spin-Basen-Transformation
bezeichnet mit

γµ → γ̃µ
′
= S−1γµS, (2.30)

wobei S ∈ SL(dγ ,C) ist.
Unter Spin-Basen-Transformation gilt für die Clifford-Algebra:

{γµ, γν} → {S−1γµS, S−1γνS} = S−1γµSS−1γνS + S−1γνSS−1γµS

= S−1(γµγν + γνγν)S

= S−1{γµ, γν}S

= 2gµνS−11S = 2gµν1 = {γµ, γν},

(2.31)

sodass diese ebenfalls invariant unter Spin-Basen-Transformation ist. Zusätzlich zu erwähnen
sei, dass γ5 mit allen anderen Dirac-Matrizen antikommutiert:

{γ5, γµ} = 0 µ ̸= 5. (2.32)

Da das Skalarprodukt aus ψ†ψ nicht lorentzinvariant ist, wird der Dirac-konjugierte Spinor
eingeführt:

ψ̄ = ψ†h, (2.33)

wobei h die Spinmetrik ist. Für die Dirac-Theorie entspricht diese der Dirac-Matrix γ0 [1, 2,
19].
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2 Theoretische Grundlagen

2.5 Dirac-Gleichung

Zunächst entwickelten Oskar Klein und Walter Gordon eine relativistische Verallgemeinerung
der Schrödingergleichung, die Klein-Gordon-Gleichung

(∂µ∂
µ +m2)ϕ(x) = 0. (2.34)

Jedoch ergab sich das Problem der negativen Energielösung aufgrund der quadratischen
Energie-Impuls-Beziehung

E(p⃗) = ±
√
p⃗2 +m2. (2.35)

Um dieses Problem zu lösen, forderte Paul Dirac die Linearität der Zeitableitung [2].
Die Wirkung kann wie folgt aufgestellt werden:

SD =

∫
d4x(iψ̄γµ∂µψ −mψ̄ψ). (2.36)

Mit der Variation dieser Wirkung kann die Dirac-Gleichung gefunden werden:

δ

δψ̄
SD

!
= 0

→ (iγµ∂µ −m)ψ(x) = 0.

(2.37)

Damit die Dirac-Theorie forminvariant unter Wechsel des Bezugssystems mit konstanten Dirac-
Matrizen ist, wird gefordert, dass bei einer Lorentztransformation Λ gleichzeitig auch eine Spin-
Basen-Transformation S durchgeführt wird. D.h. es wird zunächst eine Lorentztransformation
(LT) durchgeführt und im Anschluss eine Spin-Basen-Transformation (SBT) angewendet, so-
dass die Dirac-Matrizen in jedem Lorentzsystem die gleiche Form haben:

γµ
LT→ γµ′ = Λµ

νγ
ν SBT→ γ̃µ′ = S−1Λµ

νγ
νS

!
= γµ. (2.38)

Damit kann auch
SγµS−1 !

= Λµ
νγ

ν (2.39)

geschrieben werden, wobei auch die Notation

S−1
Lorγ

µSLor
!
= Λµ

νγ
ν (2.40)

verwendet werden kann, mit SLor = S−1 und SLor ∈ SL(2,C). SLor sind dann jene Lorentztrans-
formationen, welche die Dirac-Matrizen wieder zurück in die originale Form transformieren.
Gleichung (2.40) definiert implizit eine Einbettung von SL(2,C) in SL(4,C).
Gleiche Überlegung kann nun auch mit den Spinoren durchgeführt werden. Es ergibt sich für ψ
folgende Transformation:

ψ
LT→ ψ′ SBT→ ψ̃′ = SLorψ. (2.41)

Folglich transformiert ψ† wie

ψ† LT→ ψ′† SBT→ ψ̃′† = [SLorψ]
† = ψ†S†

Lor. (2.42)
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2 Theoretische Grundlagen

Für die Dirac-Gleichung gilt dann mit ∂µ LT→ ∂′ν = Λν
λ∂

λ:

0 = (iγµ∂µ −m)ψ = (iγµgµν∂
ν −m)ψ

LT→ (iγµgµν∂
′ν −m)ψ′

= (iγµgµνΛ
ν
λ∂

λ −m)SLorψ

= SLor(iS
−1
Lorγ

µSLorgµνΛ
ν
λ∂

λ −m)ψ

(2.40)
= SLor(iΛ

µ
κγ

κgµνΛ
ν
λ∂

λ −m)ψ

= SLor(i[gµνΛ
µ
κΛ

ν
λ]γ

κ∂λ −m)ψ

= SLor(igκλγ
κ∂λ −m)ψ

= SLor (iγ
κ∂κ −m)ψ︸ ︷︷ ︸

=0

= 0,

(2.43)

womit diese invariant unter Lorentztransformation ist.
Damit auch die Wirkung invariant bleibt, muss

ψ̄
LT→ ψ̄′ SBT→ ˜̄′

ψ = ψ̄S−1
Lor (2.44)

gelten. Dafür wird die Spinmetrik benötigt, welche für allgemeine Spin-Basen-Transformationen

(S†)−1h = hS (2.45)

erfüllen muss - wobei im Allgemeinen S† ̸= S−1 ist - sodass

ψ̄ → ψ̄S−1
Lor = ψ†hS−1

Lor
(2.45)
= ψ†S†

Lorh
(2.42)
= ψ†h = ψ̄ (2.46)

gelten kann. Damit kann gezeigt werden, dass auch die Wirkung invariant bleibt:

SD =

∫
d4x(iψ̄γµ∂µψ −mψ̄ψ) =

∫
d4x(iψ̄γµgµν∂

νψ −mψ̄ψ)

LT→
∫
d4x(iψ̄′γµgµν∂

′νψ′ −mψ̄′ψ′)

=

∫
d4x(iψ̄S−1

Lorγ
µgµνΛ

ν
λ∂

λSLorψ −mψ̄S−1
LorSLorψ)

=

∫
d4x(iψ̄S−1

LorS
−1
Lorγ

µSLorgµνΛ
ν
λ∂

λSLorψ −mψ̄ψ)

=

∫
d4x(iψ̄S−1

LorΛ
µ
κγ

κgµνΛ
ν
λ∂

λSLorψ −mψ̄ψ)

=

∫
d4x(iψ̄S−1

LorSLorgκλγ
κ∂λψ −mψ̄ψ)

=

∫
d4x(iψ̄γκ∂κψ −mψ̄ψ) =

∫
d4x(iψ̄γµ∂µψ −mψ̄ψ).

(2.47)

Letztlich ist auch das Skalarprodukt ψ̄ψ invariant unter Spin-Basen-Transformation, ebenso
wie Lorentzinvariant:

ψ̄ψ = ψ†hψ → ψ†S†
LorS

†
Lor

−1
hS−1

LorSLorψ = ψ†hψ = ψ̄ψ. (2.48)
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Dies ist wichtig zur Berücksichtigung der Freiheitsgrade der Fermionen in der Wirkung [1, 2,
19, 20].

2.6 Spinmetrik

Die Spinmetrik wurde bereits in Abschnitt 2.5 verwendet, um die Forminvarianz der Dirac-
Theorie mit Gleichung (2.45) zu gewährleisten.
Mit weiteren Anforderungen an die Dirac-Theorie können zusätzliche Eigenschaften der Spin-
metrik gefunden werden.
Neben der Invarianz von ψ̄ψ muss dieses Skalarprodukt reell sein, damit die resultierende Wir-
kung eine unitäre Zeitevolution ermöglicht. Dafür wird der Massenterm der Wirkung der Dirac-
Gleichung untersucht. Da dieser ebenfalls reell sein soll, kann folgende Betrachtung gemacht
werden:

Sm
(2.36)
= −m

∫
d4xψ̄ψ

= −m
∫
d4xψ†hψ

Sm
!
= S∗

m

=

[
−m

∫
d4xψ†hψ

]∗
= −m

∫
d4xψ†h†ψ,

(2.49)

womit gezeigt ist, dass für einen reellen Massenterm der Wirkung, die Spinmetrik hermitesch
sein muss:

h = h†. (2.50)

Mit dieser Bedingung ist auch ψ̄ψ reell:

[ψ̄ψ]∗ = [ψ†hψ]∗ = ψ†h†ψ = ψ†hψ = ψ̄ψ. (2.51)

Gleiche Betrachtung kann mit dem kinetischen Term der Wirkung gemacht werden, da auch
dieser reell sein soll:

Skin
(2.36)
= i

∫
d4xψ̄γµ∂µψ

= i

∫
d4xψ†hγµ∂µψ

Skin
!
= S∗

kin

=

[
i

∫
d4xψ†hγµ∂µψ

]∗
= −i

∫
d4x∂µψ

†γµ†h†ψ

p.I.
= −i

∫
∂Ω

dσµψ
†γµ†h†ψ︸ ︷︷ ︸

=0

+i

∫
d4xψ†γµ†h†∂µψ

⇒ hγµ
!
= γµ†h†

(2.50)
= γµ†h.

(2.52)
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Der Oberflächenterm über den Rand ∂Ω des Raum-Zeit-Volumens Ω fällt dabei weg, da die
Wirkung im Unendlichen verschwinden soll.
Somit muss

γµ = h−1γµ†h (2.53)

gelten. Zusätzlich wird angenommen, dass

|deth| = 1 (2.54)

ist, damit eine Skalierung von ψ̄ relativ zu ψ vermieden wird. Mit Gleichungen (2.50), (2.53) und
(2.54) ist die Spinmetrik bis auf ein Vorzeichen eindeutig bestimmt. Insbesondere Gleichungen
(2.53) und (2.54) werden durch h = γ0 erfüllt [16, 19, 20, 21, 22, 23].
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3 Relativistische Luttinger-Fermionen

In der Quantenfeldtheorie gibt es das Phänomen der asymptotischen Freiheit. Dabei gibt es
eine Änderung der Wechselwirkungsstärke bei verschiedenen Energien. Während bei niedrigen
Energien starke Wechselwirkung vorliegt, werden Teilchen bei hohen Energien frei und intera-
gieren immer schwächer.
Für fermionische Materie lag bislang keine Theorie vor, welche in 4 Dimensionen asymptotische
Freiheit liefert. Luttinger-Fermionen können ein erstes Beispiel für asymptotische Freiheit in
einer reinen fermionischen Theorie sein [24, 25, 26].

3.1 Konstruktion des Hamiltonian

Der folgende Abschnitt basiert auf der Konstruktion von I. Herbut und L. Janssen [9], siehe
auch [5, 19, 20, 23].
Die nicht-relativistische Luttinger-Theorie kann mit der Annahme, dass der Hamiltonian qua-
dratisch vom Impuls abhängt, wie folgt konstruiert werden:

H2 = p41. (3.1)

Damit kann der Ansatz

H =

d∑
i,j=1

Gijpipj (3.2)

gewählt werden. In Gleichung (3.1) eingesetzt, folgt somit

H2 =

d∑
i=1

 d∑
j=1

(Gijpipj)
2 +

∑
j,a
j ̸=a

p2i pjpaGijGia

+
∑
i,j,k,l
i ̸=k

pipkpjplGijGkl. (3.3)

Gij ist dabei ein symmetrischer Tensor zweiter Stufe. Da H2 nur aus geraden Ordnungen von
p besteht, müssen die zweite und dritte Summe unter bestimmten Bedingungen verschwinden.
Die zweite Summe muss damit für j ̸= a und die Dritte für i = j ∧ k ̸= l

und i ̸= j ∧ k ̸= l∧ (i, j) ̸= (k, l) verschwinden. Zusätzliche Bedingungen an Gij sind zum einen
die Normierung mit G2

ii = 1 und zum anderen die verschwindende Spur mit Gi
i = δijGij , wobei

δij das Kronecker-Delta ist. Über fett gedruckte Indizes wird hierbei nicht summiert.
Durch Umformungen können folgende Antikommutatoren gefunden werden:

{Gii, Gkl} = 0 k ̸= l (3.4a)

{Gij , Gkl} = 0 i ̸= j ∧ k ̸= l ∧ (i, j) ̸= (k, l) (3.4b)

{Gii, Gjj} = − 2

d− 1
δiiδjj i ̸= j (3.4c)

{Gii, Gii} = 2. (3.4d)
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3 Relativistische Luttinger-Fermionen

Es gilt zudem, dass Gµν symmetrisch mit Gµν = Gνµ ist.
Für den nicht-relativistischen Fall kann eine Algebra, die sogenannte Abrikosov-Algebra

{Gij , Gkl} = − 2

d− 1
δijδkl +

d

d− 1
(δikδjl + δilδjk), (3.5)

gefunden werden [27, 28].
Für den relativistischen Fall in der Minkowski-Raumzeit folgt mit Gij → Gµν , µ, ν = 0, .., d− 1

{Gµν , Gκλ} = − 2

d− 1
gµνgκλ +

d

d− 1
(gµκgνλ + gµλgνκ). (3.6)

Hier gelten die gleichen Eigenschaften der Normierung, Symmetrie und Spurbedingung, wobei
diese nun als Gµ

µ = gµνGµν geschrieben wird.
Der kinetische Term des Luttinger-Operators kann also letztlich als

Gµν∂
µ∂νψ = 0 (3.7)

geschrieben werden, was eine Feldgleichung für freie Luttinger-Fermionen darstellt.
Eine Bedingung an diesen Operator ist, dass dessen Quadrat dem quadrierten Klein-Gordon-
Operator entspricht:

(Gµν∂
µ∂ν)2

(2.34)
= (∂µ∂µ)

2. (3.8)

3.2 Eigenschaften von Gµν

3.2.1 Dimension

Da Gµν ein d-dimensionaler, symmetrischer Lorentz-Tensor ist, gibt es 1
2d(d− 1) unabhängige,

nicht-diagonale Elemente. Auf der Diagonalen gäbe es d Elemente, da Gµν jedoch spurlos ist,
sind es nur d− 1 Elemente. Somit braucht es genau

de =
1

2
d(d− 1) + (d− 1) = (d− 1) ·

(
1

2
d+ 1

)
(3.9)

unabhängige, anti-kommutierende Elemente, die die Algebra (3.6) erfüllen und den Raum der
Gµν-Matrizen aufspannen.
Da Gleichung (3.6) eine Clifford-Algebra darstellt, können die Elemente von Gµν mit den γ-
Matrizen konstruiert werden. Die Dimensionalität der γ-Matrizen dγ gibt die Dimension der
Elemente der Clifford-Algebra an und lässt sich damit wie folgt darstellen:

dγ = 2⌊
de
2 ⌋, (3.10)

wobei ⌊·⌋ der Abrundungsoperator ist, mit [29]

⌊r⌋ := max{n ∈ Z : n ≤ r} ∈ Z. (3.11)

Damit gibt es bspw. für d = 3, de = 5 unabhängige, anti-kommutierende Elemente. Die Dimen-
sion der γ-Matrizen ist damit dγ = 4 [4, 19, 20, 29].
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3 Relativistische Luttinger-Fermionen

3.2.2 Konstruktion

Da der Raum der Gµν-Matrizen mit den γ-Matrizen aufgespannt werden kann, kann der Ansatz

Gµν = aAµνγ
A (3.12)

gewählt werden, wobei aAµν ein symmetrischer Vorfaktor in Form eines Tensors zweiter Stufe,
mit aAµν = aAνµ und A = 1, ..., de, ist. Die γ-Matrizen erfüllen die euklidische Clifford-Algebra
{γA, γB} = 2δAB . Um die Vorfaktoren der einzelnen Elemente von Gµν zu bestimmen, können
folgende Fälle mit Hilfe der Algebra (3.6), mit κ = µ und λ = ν betrachtet werden:

µ = ν : {Gµµ, Gµµ} = 2G2
µµ = − 2

d− 1
g2µµ + 2 · d

d− 1
g2µµ = 2 (3.13a)

(µ, ν) = (0, j) : {G0j , G0j} = 2G2
0j = − d

d− 1
(3.13b)

(µ, ν) = (i, j ̸= i) : {Gij , Gij} = 2G2
ij =

d

d− 1
. (3.13c)

Da G2
0j < 0, kann G0j antihermitesch und die Vorfaktoren aA0j imaginär gewählt werden. Wird

Gleichung (3.12) in Gleichung (3.13) eingesetzt, folgt für aAµµ:

{Gµµ, Gµµ} = {aAµµγ
A, aAµµγ

A} = (aAµµ)
2{γA, γA} = 2

∑
A

(aAµµ)
2 = 2. (3.14)

Für G0j wird eine Kontraktion von aA0j durchgeführt, indem µ = A gesetzt wird. Zusätzlich sei
zu beachten, dass aA0j imaginär sein muss, sodass G0j = iajγ

j ist. Damit ergibt sich

{G0j , G0j} = {iajγj , iajγj} = −2
∑
j

a2j = − d

d− 1
. (3.15)

Analoges Vorgehen kann für Gij verwendet werden, sodass die Vorfaktoren für alle Einträge
von Gµν zusammengefasst folgend gewählt werden können [4, 5, 19, 20, 23]:

µ = ν :
∑
A

(aAµµ)
2 = 1 (3.16a)

(µ, ν) = (0, j) :
∑
A

(aA0j)
2 =

∑
j

(iaj)
2 = − d

2(d− 1)
(3.16b)

(µ, ν) = (i, j ̸= i) :
∑
A

(aAij)
2 =

∑
i

a2i =
d

2(d− 1)
. (3.16c)

13



3 Relativistische Luttinger-Fermionen

3.3 Symmetrien der Luttinger-Theorie
Die kinetische Wirkung in d Dimensionen kann nach der Konstruktion des Hamiltonians in
Abschnitt 3.1 als

Skin =

∫
ddx[ψ̄Gµν(i∂

µ)(i∂ν)ψ] (3.17)

geschrieben werden.
Auch die Luttinger-Theorie soll analog zur Dirac-Theorie unitär und invariant unter Spin-Basen-
und Lorentztransformation sein. Somit kann das gleiche Vorgehen wie in Abschnitt 2.5 gewählt
werden, um dies zu gewährleisten.
Es kann gezeigt werden, dass die Algebra in Gleichung (3.6) separat invariant unter Lorentz-
transformation

Gµν → G′
µν = GκλΛ

κ
µΛ

λ
ν , (3.18)

mit Λ ∈ SO(1, d− 1) und Spin-Basen-Transformation

Gµν → SGµνS
−1, (3.19)

mit S ∈ SL(dγ ,C), ist:

{Gµν , Gκλ} → {GκλΛ
κ
µΛ

Λ
ν , GµνΛ

µ
κΛ

ν
ν}

= GκλΛ
κ
µΛ

Λ
νGµνΛ

µ
κΛ

ν
ν +GµνΛ

µ
κΛ

ν
νGκλΛ

κ
µΛ

Λ
ν

= {Gµν , Gκλ}Λκ
λΛ

λ
νΛ

µ
κΛ

ν
ν

=

[
− 2

d− 1
gµνgκλ +

d

d− 1
(gµκgνλ + gµλgνκ)

]
Λκ

λΛ
λ
νΛ

µ
κΛ

ν
ν

= − 2

d− 1
gκλgµν +

d

d− 1
(gκµgλν + gκνgλµ)

= − 2

d− 1
gµνgκλ +

d

d− 1
(gµκgνλ + gµλgνκ) = {Gµν , Gκλ},

(3.20)

sowie

{Gµν , Gκλ} → {SGµνS
−1, SGκλS

−1}

= SGµνS
−1SGκλS

−1 + SGκλS
−1SG−1

µν

= S{Gµν , Gκλ}S−1

= S

[
− 2

d− 1
gµνgκλ +

d

d− 1
(gµκgνλ + gµλgνκ)

]
S−1

=

[
− 2

d− 1
gµνgκλ +

d

d− 1
(gµκgνλ + gµλgνκ)

]
SS−1 = {Gµν , Gκλ}.

(3.21)

Es wird auch hier wieder zunächst eine Lorentztransformation und folgend eine Spin-Basen-
Transformation durchgeführt, sodass

Gµν
LT→ G′

µν = GκλΛ
κ
µΛ

λ
ν

SBT→ SGκλΛ
κ
µΛ

λ
νS

−1 !
= Gµν (3.22)

gilt.
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3 Relativistische Luttinger-Fermionen

Auch hier kann S−1 = SLor definiert werden, damit sich

SLorGµνS
−1
Lor = GκλΛ

κ
µΛ

λ
ν (3.23)

schreiben lässt. Die Menge aller SLor, welche Gleichung (3.22) erfüllen und die lorentztrans-
formierte Matrix Gµν wieder zurück transformieren, bilden eine SO(1, d− 1)-Untergruppe von
SL(dγ ,C). Damit geht also auch die Transformation von ψ → SLorψ und ψ̄ → ψ̄S−1

Lor einher,
sowie die Transformation der Spinmetrik äquivalent zu Gleichung (2.45). Damit kann ana-
log zu Abschnitt 2.5 gezeigt werden, dass die Bewegungsgleichung massebehafteter Luttinger-
Fermionen forminvariant bleibt:

0 = (−Gµν∂
µ∂ν −m2)ψ = (−Gµνg

µα∂αg
νβ∂β −m2)ψ

LT→ (−Gµνg
µα∂′αg

νβ∂′β −m2)ψ′

= (−Gµνg
µαΛρ

α∂ρg
νβΛφ

β∂φ −m2)SLorψ

= SLor(−SLorGµνS
−1
Lorg

µαgνβΛρ
α∂ρΛ

φ
β∂φ −m2)ψ

= SLor(−GκλΛ
κ
µΛ

λ
νg

µαgνβΛρ
α∂ρΛ

φ
β∂φ −m2)ψ

= SLor (−Gκλ∂
κ∂λ −m2)ψ︸ ︷︷ ︸
=0

= 0.

(3.24)

Gleiches gilt für die Wirkung:

SL =

∫
ddx[ψ̄Gµν(i∂

µ)(i∂ν)ψ −m2ψ̄ψ]

= −
∫
ddx[ψ̄′Gµνg

µα∂αg
νβ∂βψ

′ −m2ψ̄′ψ′]

LT→ −
∫
ddx[ψ̄S−1

LorGµνg
µαgνβΛρ

α∂ρΛ
φ
β∂φSLorψ −m2ψ̄S−1

LorSLorψ]

= −
∫
ddx[ψ̄S−1

LorSLorGµνS
−1
Lorg

µαgνβΛρ
αΛ

φ
β∂ρ∂φSLorψ −m2ψ̄ψ]

= −
∫
ddx[ψ̄S−1

LorGκλΛ
κ
µΛ

λ
νg

µαgνβΛρ
αΛ

φ
β∂ρ∂φSLorψ −m2ψ̄ψ]

= −
∫
ddx[ψ̄S−1

LorSLorGκλ∂
κ∂λψ −m2ψ̄ψ]

= −
∫
ddx[ψ̄Gκλ∂

κ∂λψ −m2ψ̄ψ].

(3.25)
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3 Relativistische Luttinger-Fermionen

Analog zu Abschnitt 2.6 können nun wichtige Eigenschaften der Spinmetrik bestimmt werden.
Da der Massenterm der Wirkung reell sein soll, kann an folgender Rechnung, äquivalent zur
Dirac-Theorie, erkannt werden, dass h hermitesch sein muss, mit:

Sm = −m2

∫
d4xψ̄ψ

= −m2

∫
d4xψ†hψ

Sm
!
= S∗

m

=

[
−m2

∫
d4xψ†hψ

]∗
= −m2

∫
d4xψ†h†ψ,

⇒ h = h†.

(3.26)

Es können neben dem hier genutzten Massenterm noch weitere Massenterme konstruiert werden
[5]. Für die weitere Betrachtung sind diese jedoch nicht wichtig.
Auch der kinetische Term der Wirkung soll die gleiche Bedingung erfüllen, sodass:

Skin =

∫
ddx(ψ̄Gµν)((i∂

µ)(i∂ν)ψ)

= −
∫
ddx((ψ̄Gµν)(∂

µ∂νψ))

Skin
!
= S∗

kin

S∗
kin =

[
−
∫
ddx((ψ̄Gµν)(∂

µ∂νψ))

]∗
= −

∫
ddx((∂µ∂νψ†)(G†

µνψ̄
†))

p.I.
=

∫
ddx((∂νψ†)(G†

µν∂
µψ̄))

= −
∫
ddx(ψ†G†

µν∂
µ∂νψ̄†)

= −
∫
ddx(ψ†G†

µν∂
µ∂νh†ψ)

= −
∫
ddx(ψ†G†

µνh
†∂µ∂νψ)

⇒ G†
µνh

† !
= hGµν ,

(3.27)

wobei die Oberflächenterme aufgrund der Randbedingungen an die Felder verschwinden. Wei-
terhin können damit wichtige (Anti-)Kommutator-Regeln gefunden werden. Dafür werden er-
neut die Elemente von Gµν einzeln betrachtet. Wie bereits in Abschnitt 3.2.2 erwähnt, soll G0j

antihermitesch sein, d.h. G†
0j = −G0j .
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3 Relativistische Luttinger-Fermionen

Damit folgt aus Gleichung (3.27):

G0j = h−1G†
0jh

† = −h−1G0jh
† = −h−1G0jh

⇒ {h,G0j} = 0,
(3.28)

sowie
Gij = h−1G†

ijh
† = h−1Gijh

⇒ [h,Gij ] = 0
(3.29)

und
Gµµ = h−1G†

µµh
† = h−1Gµµh

⇒ [h,Gµµ] = 0,
(3.30)

wobei Gij und Gµµ hermitesch sind. [4, 5, 16, 19, 20, 23].

3.4 Physikalische Bedeutung der Spinmetrik

Gesucht ist eine Repräsentation des Paritätoperators im Spinor-Raum.
Eine Paritätstransformation entspricht einer Raumspiegelung, wobei Spinoren folgendermaßen
transformieren:

ψ′(x⃗′, t) = ψ(−x⃗, t) = SPψ(x⃗, t). (3.31)

SP ist dabei die gesuchte Matrix-Repräsentation des Paritätoperators.
Allgemein kann eine Raumspiegelung von Vektoren als uneigentliche Lorentztransformation

P = Λµ
ν = diag(1,−1,−1,−1) (3.32)

dargestellt werden. Somit kann

GκλΛ
κ
µΛ

λ
ν = SPGµνS

−1
P

aAκλΛ
κ
µΛ

λ
νγ

A = aBµνSPγ
BS−1

P

(3.33)

geschrieben werden. Für G0j gilt dann

iajΛ
κ
µΛ

λ
νγ

j = −iajγj = −G0j = SPG0jS
−1
P

⇒ {SP, G0j} = 0,
(3.34)

sowie analog für Gij und Gµµ:

[SP, Gij ] = 0 = [SP, Gµµ]. (3.35)

SP erfüllt dabei die gleichen Bedingungen, die auch für die Spinmetrik gelten (Gleichung (3.28),
(3.29) und (3.30)). Somit kann P als Linearkombination möglicher Spinmetriken in d Dimen-
sionen, dargestellt werden. Unter anderem kann auch P = h gesetzt werden, sodass deutlich
wird, dass die Spinmetrik die Parität des Spinors in d = 4 ändert [23].
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4 Repräsentationen der Spinmetrik und Elemente von Gµν

4 Repräsentationen der Spinmetrik und Elemente

von Gµν

In Abschnitt 3.2 sind die Eigenschaften von Gµν aufgezeigt, sodass diese nun für verschiedene
Dimensionen genauer bestimmt werden können und damit die Algebra (3.6) konstruiert werden
kann.
Für die Konstruktion der Elemente von Gµν wird Gleichung (3.12) verwendet. Damit kann als
Ansatz

µ = ν : Gµµ =
∑
A

aAµµγ
A (4.1a)

(µ, ν) = (0, j) : G0j = i
∑
j

ajγ
j (4.1b)

(µ, ν) = (i, j ̸= i) : Gij =
∑
n

anγ
n (4.1c)

gewählt werden.
Um eine geeignete Spinmetrik zu finden, welche dafür sorgt, dass sowohl der kinetische Term, als
auch der Massenterm der Wirkung reell ist, müssen folgende Eigenschaften erfüllt sein, welche
in Abschnitt 3.3 genauer beschrieben sind:

h = h†, (4.2)

sowie

µ = ν : [h,Gµµ] = 0 (4.3a)

(µ, ν) = (0, j) : {h,G0j} = 0 (4.3b)

(µ, ν) = (i, j ̸= i) : [h,Gij ] = 0. (4.3c)
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4 Repräsentationen der Spinmetrik und Elemente von Gµν

4.1 (1+1) Dimensionen
Für d = 2 ergeben sich de = 2 unabhängige, anti-kommutierende Elemente um die Algebra
(3.6) aufzuspannen.
Für G01 kann der Vorfaktor a1 = 1 gewählt werden, da nach Gleichung (3.16)

1∑
j=1

(iaj)
2 = −a21 = − 2

2(2− 1)

(3.16b)
= −1 (4.4)

gilt. Aufgrund der Symmetrie von Gµν ist folglich auch G10 gefunden.
Für die Diagonalelemente kann mit µ = 0

∑
A=2

(aA00)
2 = (a200)

2 (3.16a)
= 1

⇒ a00 = 1

(4.5)

ohne Beschränkung der Allgemeinheit gewählt werden, sodass G00 = γ2 ist. Da Gµν spurlos
sein soll, gilt

gµνGµν = G00 −G11 = 0

⇒ G00 = G11.
(4.6)

Zusammengefasst ist eine mögliche Repräsentation der Algebra (3.6) gefunden mit

G01 = G10 = iγ1 (4.7a)

G00 = G11 = γ2. (4.7b)

Diese Darstellung entspricht der Wick-rotierten Version der nicht-relativistischen Algebra [9].
Die Spinmetrik kann als h = γ2 gewählt werden. Es lässt sich zeigen, dass Gleichungen (4.2)
und (4.3) erfüllt sind:

h† = (γ2)† = γ2 = h (4.8a)

[h,Gµµ] = [γ2, γ2] = γ2γ2 − γ2γ2 = 0 (4.8b)

{h,G0j} = {γ2, iγ1} = i(γ2γ1 + γ1γ2) = 2iδ211 = 0, (4.8c)

wobei γA = (γA)† bei Gleichung (4.8a) genutzt wird.
Es ist also eine Spinmetrik gefunden, welche für die Forminvarianz der Luttinger-Theorie in
d = 1 + 1 Dimensionen sorgt.
Es kann somit festgestellt werden, dass die Spinmetrik, ähnlich wie in der Dirac-Theorie, in den
Raum der de = 2 Elemente der Abrikosov-Algebra hinein passt.
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4 Repräsentationen der Spinmetrik und Elemente von Gµν

4.2 (2+1) Dimensionen
Analog zu Abschnitt 4.1 kann eine Repräsentation in d = 3 Dimensionen gefunden werden.
Nach Gleichung (3.9) gibt es de = 5 unabhängige, anti-kommutierende Elemente von Gµν .
Für die Elemente G0j , kann der Vorfaktor aj wie folgt gewählt werden:

∑
j=1,2

(iaj)
2 = −

∑
j=1,2

a2j
(3.16b)
=

3

4

aj =

√
3

2
.

(4.9)

Für G12 kann analog ∑
n=3

a2n = a23
(3.16b)
=

3

4

⇒ a3 =

√
3

2

(4.10)

gefunden werden.
Zur Bestimmung der Diagonalelemente wird zunächst betrachtet, dass Gµν spurlos sein soll.
Dafür wird der Ansatz G00 = γ4 verwendet:

gµνGµν = G00 −G11 −G22

= γ4 − (a411γ
4 + a511γ

5)− (a422γ
4 + a522γ

5)

= γ4(1− a411 − a422)− γ5(a511 + a522) = 0

(4.11a)

⇒ (1− a411 − a422)
!
= 0 und a511

!
= −a522. (4.11b)

Somit folgt
a411 = a422 =

1

2
. (4.12)

Mit Gleichung (3.16) kann a511 und damit auch a522 bestimmt werden:∑
A=4,5

(aA11)
2 = (a411)

2 + (a511)
2 = 1

(4.12)
=

1

4
+ (a511)

2 = 1

⇒ a511 =

√
3

2
= −a522.

(4.13)
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4 Repräsentationen der Spinmetrik und Elemente von Gµν

Zusammengefasst ergeben sich die Algebra-erzeugenden Elemente zu

G0j = i

√
3

2
γj j = 1, 2 (4.14a)

G12 =

√
3

2
γ3 (4.14b)

G00 = γ4 (4.14c)

G11 =
1

2
γ4 +

√
3

2
γ5 (4.14d)

G22 =
1

2
γ4 −

√
3

2
γ5. (4.14e)

Zur Überprüfung von G00, G11 und G22 kann der Antikommutator

{Gµµ, Gνν} = 2GµµGνν = 2aAµµa
A
νν = − 2

d− 1
gµµgνν = −1 (4.15)

verwendet werden. Exemplarisch folgt für G11 und G22:

{G11, G22} = 2

(
1

2
· 1
2
+

√
3

2
·

(
−
√
3

2

))
= −1

(4.15)
= −1. (4.16)

Analog kann dies auch für alle anderen Diagonalelemente durchgeführt werden, wobei deutlich
wird, dass diese Repräsentation alle Bedingungen erfüllt. Diese Darstellung entspricht wieder-
um einer Wick-rotierten Version der euklidischen Abrikosov-Algebra [9].
Es kann nun auch die Spinmetrik h in d = 3 bestimmt werden. Es fällt auf, dass diese nicht
aus lediglich einer Dirac-Matrix bestehen kann, da damit entweder die Anti- oder die Kom-
mutatorbedingung mit den Elementen von Gµν nicht erfüllt wäre. Eine weitere Idee ist es, die
Spinmetrik aus dem Produkt von γ1 und γ2 zu konstruieren, wobei schnell auffällt, dass dieses
nicht hermitesch ist. Um dies zu garantieren, wird die imaginäre Einheit i an das Produkt mul-
tipliziert, sodass gezeigt werden kann, dass h = iγ1γ2 die Bedingungen (4.2) und (4.3) erfüllt:

h† = (iγ1γ2)† = −i(γ2)†(γ1)† = −iγ2γ1 = iγ1γ2 = h (4.17a)

[h,Gµµ] ∝ [iγ1γ2, γA] = iγ1γ2γA − γAiγ1γ2 = i(γ1γ2γA − γ1γ2γA) = 0 (4.17b)

{h,G01} ∝ {iγ1γ2, γ1} = i(γ1γ2γ1 + γ1iγ1γ2) = i(−γ2 + γ2) = 0 (4.17c)

[h,G12] ∝ [iγ1γ2, γ3] = i(γ1γ2γ3 − γ3iγ1γ2) = i(γ1γ2γ3 − γ1γ2γ3) = 0, (4.17d)

wobei A = 4, 5 ist und gleiche Rechnung von (4.17c) analog für G02 gilt.
Auch in d = 3 passt die Spinmetrik in einen durch die Abrikosov-Algebra aufgespannten Raum
in irreduzibler Darstellung hinein. Aus der Konstruktion wird deutlich, dass h bis auf ein Vor-
zeichen eindeutig ist.
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4.3 (3+1) Dimensionen
Mit d = 4 und de = 9 ergibt sich folgende Darstellung der Elemente von Gµν [4]:

G0j =

√
2

3
γj j = 1, 2, 3 (4.18a)

G12 =

√
2

3
γ4 (4.18b)

G23 =

√
2

3
γ5 (4.18c)

G31 =

√
2

3
γ6 (4.18d)

G00 = γ7 (4.18e)

G11 =
1

3
γ7 + 2 ·

√
2

3
γ8 (4.18f)

G22 =
1

3
γ7 −

√
2

3
γ8 +

√
2

3
γ9 (4.18g)

G33 =
1

3
γ7 −

√
2

3
γ8 −

√
2

3
γ9. (4.18h)

Erkennbar ist nun, dass nach Gleichung (3.10), dγ = 16 ist. Wird nun eine geeignete Spinme-
trik gesucht, fällt auf, dass {h,G0j} = 0 nur erfüllt sein kann, wenn die Spinmetrik aus einem
Produkt von γ-Matrizen aufgebaut wird, welches ungerade ist und nur γ4, ..., γ9 enthält, damit
dieses mit γ1, ..., γ3 antikommutiert. Sobald jedoch eine der genannten Dirac-Matrizen nicht im
Produkt vertreten ist, wird der Kommutator [h,Gij ] = [h,Gµµ] = 0 nicht erfüllt. Da γ4, ..., γ9

jedoch eine gerade Anzahl an Dirac-Matrizen ist, tritt ein Widerspruch auf und es wird deutlich,
dass keine Spinmetrik in einer dγ = 16-Darstellung gefunden werden kann.
Damit muss eine andere Repräsentation gefunden werden, wobei die Kleinste dγ = 32 entspricht,
was damit die irreduzible Darstellung der relativistischen Theorie in d = 4 Dimensionen dar-
stellt. Damit ergibt sich sowohl γ10 als verwendbare Dirac-Matrix, als auch γ11, da auch de = 11

in Gleichung (3.10) eingesetzt, dγ = 32 liefert.
Es kann nun eine geeignete Spinmetrik mit

h = γ1γ2γ3γ∗ (4.19)

gefunden werden. Auch
h̄ = iγ4γ5γ6γ7γ8γ9γ∗ (4.20)

ist möglich, wobei γ∗ = γ10, γ11 ist.
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Exemplarisch kann für h mit γ∗ = γ10 auch hier gezeigt werden, dass alle Bedingungen (4.2)
und (4.3) erfüllt sind:

h† = (γ1γ2γ3γ10)† = γ10γ3γ2γ1 = γ1γ2γ3γ10 = h (4.21a)

[h,Gµµ] = [h,Gij ] ∝ [γ1γ2γ3γ10, γA] = γ1γ2γ3γ10γA − γAγ1γ2γ3γ10

= γAγ1γ2γ3γ10 − γAγ1γ2γ3γ10 = 0, A = 4, ..., 9
(4.21b)

{h,G01} ∝ {γ1γ2γ3γ10, γ1} = γ1γ1γ2γ3γ10 + γ1γ2γ3γ10γ1

= γ2γ3γ10 − γ2γ3γ10 = 0.
(4.21c)

Gleichung (4.21c) gilt analog für G02 und G03.
Jede Linearkombination von h und h̄ erfüllt (4.2) und (4.3) ebenfalls mit h′ = αh+ βh̄, wobei
α2 + β2 = 1 ist, mit α, β ∈ R [23, 4].

4.4 (4+1) Dimensionen
Da de = 14 ist, gibt es in d = 5 Dimensionen 14 unabhängige, anti-kommutierende Elemente
von Gµν . Die Dimension der γ-Matrizen ergibt sich dann zu dγ = 128.
Auch hier können die Vorfaktoren aAµν berechnet werden, um eine mögliche Darstellung von
Gµν zu erhalten. Für G0j gilt ∑

j=1,2,3,4

(iaj)
2 (3.16b)

= −5

8

⇒ aj =

√
5

8

(4.22)

und analog für Gij : ∑
n=5,...,10

(an)
2 (3.16c)

=
5

8

⇒ an =

√
5

8
.

(4.23)

G00 wird hier als γ11 gewählt. Da auch hier die Spur verschwinden soll, können folgende Be-
dingungen gefunden werden:

gµνGµν = G00 −G11 −G22 −G33 −G44 (4.24a)

⇒ (1− a1111 − a1122 − a1133 − a1144)
!
= 0 (4.24b)

(a1211 + a1222 + a1233 + a1244)
!
= 0 (4.24c)

(a1311 + a1322 + a1333)
!
= 0 (4.24d)

(a1411 + a1422)
!
= 0. (4.24e)

Damit ist a1111 = a1122 = a1133 = a4411 = 1
4 . Mit der Normierungsbedingung (3.16a), folgt für G11:

∑
A=11,12

(aA11)
2 = (a1111)

2 + (a1211)
2 =

1

16
+ (a1211)

2 (3.16a)
= 1

⇒ a1211 =

√
15

4
.

(4.25)
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Damit kann weiterhin
a1222 + a1233 + a1244 = −a1211

⇒ a1211 = a1222 = a1233 = −1

3

√
15

4
= −

√
15

12

(4.26)

gefunden werden, sodass für G22∑
A=11,12,13

(aA22)
2 = (a1122)

2 + (a1222)
2 + (a1322)

2 =
1

16
+

15

144
+ (a1322)

2 = 1

⇒ a1333 =

√
5

6

(4.27)

gilt. Analog wird für G33 und G44 vorgegangen, sodass die Elemente von Gµν insgesamt

G0j = i

√
5

8
γj j = 1, 2, 3, 4 (4.28a)

G12 =

√
5

8
γ5 G13 =

√
5

8
γ6 G14 =

√
5

8
γ7 (4.28b)

G23 =

√
5

8
γ8 G24 =

√
5

8
γ9 G34 =

√
5

8
γ10 (4.28c)

G00 = γ11 (4.28d)

G11 =
1

4
γ11 +

√
15

4
γ12 (4.28e)

G22 =
1

4
γ11 −

√
15

12
γ12 +

√
5

6
γ13 (4.28f)

G33 =
1

4
γ11 −

√
15

12
γ12 −

√
30

12
γ13 +

√
5

8
γ14 (4.28g)

G44 =
1

4
γ11 −

√
15

12
γ12 −

√
30

12
γ13 −

√
5

8
γ14 (4.28h)

sind. Auch hier kann die Probe mit {Gµµ, Gνν} = 2aAµµa
A
νν = − 1

2gµµgνν durchgeführt werden,
wobei sich zeigt, dass die gefundenen Elemente auch diese Bedingungen erfüllen.
Gleichungen (4.28a - 4.28h) repräsentieren erstmals eine explizite Darstellung der Abrikosov-
Algebra in einer d = 5 dimensionalen Raumzeit auf Basis einer euklidischen Dirac-Algebra.
Als Spinmetrik kann das Produkt h = γ1γ2γ3γ4 gefunden werden. Hierbei sind alle Forderungen
an die Spinmetrik erfüllt:

h† = (γ1γ2γ3γ4)† = γ4γ3γ2γ1 = γ1γ2γ3γ4 = h (4.29a)

[h,Gµµ] = [h,Gij ] ∝ [γ1γ2γ3γ4, γA] = γ1γ2γ3γ4γA − γAγ1γ2γ3γ4

= γAγ1γ2γ3γ4 − γAγ1γ2γ3γ4 = 0
(4.29b)

{h,G01} ∝ {γ1γ2γ3γ4, γ1} = γ1γ1γ2γ3γ4 + γ1γ2γ3γ4γ1

= γ2γ3γ4 − γ2γ3γ4 = 0,
(4.29c)

wobei A = 5, ..., 14 ist. {h,G0j} kann analog für j = 2, 3, 4 gezeigt werden. Ähnlich wie in d = 3,
wird aus der Konstruktion deutlich, dass die Spinmetrik bis auf ein Vorzeichen eindeutig ist,
sofern sich auf den durch Gµν aufgespannten Raum beschränkt wird.
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Die Matrix γ15, welche ebenfalls in der dγ = 128-dimensionalen euklidischen Dirac-Algebra
enthalten ist, wird für die Spinmetrik nicht benötigt.
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5 Zusammenfassung

In dieser Arbeit konnten fundamentale Eigenschaften der relativistischen Luttinger-Theorie
aufgezeigt werden. Insbesondere wurde der wichtige kinetische Term und die zugrundeliegende
Abrikosov-Algebra in d = 2, 3, 4, 5 Raumzeit-Dimensionen explizit konstruiert.
Dafür wurden zunächst wichtige quantenfeldtheoretische Grundlagen näher betrachtet. Unter
anderem wurden die Lorentztransformationen und damit die Lorentz-Gruppe erläutert und die
Spinor-Felder eingeführt. Damit war es möglich, vorerst die Dirac-Theorie genauer zu betrach-
ten, da viele Rechnungen und Methoden ähnlich auf den Luttinger-Formalismus angewendet
werden können. Es wurde deutlich gemacht, dass die vorausgesetzte Lorentz- und Spin-Basen-
Symmetrie wichtige Bedingungen an die Dirac-Matrizen und die Spinoren stellen. Besonders
wichtig ist die Erkenntnis, dass erst dann ein lorentzinvariantes Skalarprodukt vorliegt, wenn
ein Dirac-konjugierter Spinor ψ̄ = ψ†h eingeführt wird, wobei h die Spinmetrik darstellt.
Die Spinmetrik wurde daraufhin näher erläutert, da diese Gegenstand der Berechnungen im
Rahmen der Luttinger-Theorie sein wird. Es konnte festgestellt werden, dass h hermitesch sein
muss, damit ein reeller Massenterm der Dirac-Wirkung vorhanden ist. Analog muss auch der
kinetische Term reell sein, sodass sich Kommutator- und Antikommutator Relationen mit den
Dirac-Matrizen ergaben.
Mit diesen Grundlagen konnte also die relativistische Luttinger-Theorie betrachtet werden. Da-
für wurde die aus dem nicht-relativistischen Hamiltonian gefolgerte Abrikosov-Algebra (3.6)
relativistisch verallgemeinert. Es konnte festgestellt werden, dass diese, analog zur Clifford-
Algebra, invariant unter Lorentz- und Spin-Basen-Transformation ist. Folgend wurde die rela-
tivistische Wirkung der freien Theorie konstruiert. Es konnte gezeigt werden, dass auch diese,
sowie die Bewegungsgleichung gleiche Symmetrien aufweisen, wenn Gµν entsprechend transfor-
miert. Dieser symmetrische Tensor konnte im Anschluss genauer untersucht und wesentliche
Eigenschaften aufgezeigt werden. Mit Hilfe der Symmetrie, der Bedingung einer verschwinden-
den Spur und der Algebra, konnten mit dem AnsatzGµν = aAµνγ

A, die Vorfaktoren für d = 2, .., 5

Dimensionen explizit bestimmt und somit die de unabhängigen, anti-kommutierenden Elemente
von Gµν konstruiert werden. Auch konnten hier, analog zur Dirac-Theorie, Kommutator und
Antikommutator Relationen von Gµν und der Spinmetrik gefunden werden. Letztlich konnte
erkannt werden, dass die Spinmetrik in d = 4 die Parität der Spinoren ändert, auf welche diese
wirkt, was eine wesentliche physikalische Bedeutung darstellt.
Ziel der Arbeit war es, die Spinmetrik in verschiedenen Dimensionen zu berechnen, da diese
ein wesentliches zusätzliches Element der relativistischen Theorie darstellt, das nicht aus einer
nicht-relativistischen euklidischen Theorie gefolgert werden kann. Die Spinmetrik definiert ein
inneres Produkt auf dem Raum der Felder, mit dessen Hilfe reelle Wirkungen im Minkowski-
Raum definiert werden können, was Voraussetzung für eine unitäre Zeitevolution ist. Es ergibt
sich, dass es für d = 2 Dimensionen nur eine Dirac-Matrix braucht, um eine geeignete Spinmetrik
zu konstruieren. Für d = 3 Dimensionen muss h ein geeignetes Produkt von Algebra-Elementen
sein, damit h hermitesch bleibt. Besonders interessant ist der Fall in d = 4 Dimensionen. Hier-
bei ergibt sich, dass es keine Spinmetrik in einer dγ = 16 dimensionalen Repräsentation geben
kann, wobei dγ=16 zwar die irreduzible Darstellung der Abrikosov-Algebra, jedoch nicht der
relativistischen Luttinger-Theorie ist. Die kleinste mögliche irreduzible Darstellung ist somit



dγ = 32. Damit ergeben sich zwei zusätzliche Matrizen: γ10 und γ11. In d = 5 Dimensionen
konnte dann wieder eine Spinmetrik in einer dγ = 128 dimensionalen Darstellung gefunden wer-
den. Insbesondere die Resultate für die d = 5 dimensionalen Raumzeit sind originäre Ergebnisse
dieser Arbeit. Es kann erkannt werden, dass die Spinmetrik in den durch Gµν aufgespannten
Raum hinein passt und ein weiteres anti-kommutierendes Element γ15 übrig bleibt, was für den
kinetischen Term nicht benötigt wird. Dieses kann genutzt werden, um Wechselwirkungsterme
oder Symmetrien zu konstruieren. Damit zeigt der d = 5 dimensionale Fall Ähnlichkeiten zum
d = 4 dimensionalen Fall der Dirac-Theorie, wobei γ5 ein solches zusätzliches Element der
Algebra darstellt.
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