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Geometrie der Spin-Feldkopplung auf der Weltlinie

Zusammenfassung

In dieser Arbeit leiten wir eine geometrische Darstellung der Kopplung von Spinfreiheits-
graden an Eichfelder im Weltlinienzugang zur Quantenfeldtheorie her. Dazu kombinieren
wir die von der Stringtheorie inspirierte Methode des Weltlinienformalismus mit der Loop-
space Formulierung von Eichtheorien. Nachdem wir die Äquivalenz zur gewöhnlichen
Darstellung von Eichtheorien gezeigt haben, leiten wir eine Ortsraumdarstellung für die
dem Krümmungstensor entsprechende Größe, der sogenannten Loopableitung ab. Damit
stellen wir eine Verbindung zwischen dem Loop Calculus und dem gewohnten Funktional-
kalkül her. Mittels dieser Darstellung ist es uns möglich einen Ableitungsoperator auf dem
Raum der Holonomien zu definieren, der seine Gültigkeit auch in der Anwendung auf die
Weltliniendarstellung der effektiven Wirkung behält. Dies gipfelt in einem Spin Faktor,
der die Information des Spins mit der “zickzack”-Bewegung des zugehörigen Feldes in der
Weltliniendarstellung verbindet. Dabei konzentrieren wir uns vornehmlich auf den Fall
der Quantenelektrodynamik im äußeren Feld, in dem wir eine rein geometrische Darstel-
lung des Pauli-Terms erhalten. Als verdeutlichendes Beispiel leiten wir die wohlbekannte
Heisenberg-Euler Wirkung aus dem Zusammenspiel von Spinfaktor und Holonomie her.

Geometry of spin-field couplings on the worldline

Abstract

We derive a geometric representation of couplings between spin degrees of freedom and
gauge fields within the worldline approach to Quantum Field Theory. For this purpose
we combine the string inspired methods of the worldline formalism with the loop-space
approach to gauge theory. After we have shown the equivalence to the familiar repre-
sentation of gauge theory we derive the coordinate representation of the so-called loop
derivative, which corresponds to the curvature tensor in ordinary gauge theory. For this
reason we associate the loop calculus with the familiar functional calculus. With the aid
of the coordinate representation we are able to define a derivative operator on the space
of all holonomies which can immediately be applied to the worldline representation of the
effective action. This results in a spin factor that associates the information about spin
with “zigzag” motion of the fluctuating field. We concentrate on the case of Quantum
Electrodynamics in external fields where we obtain a purely geometric representation of
the Pauli term. As an illustrative example, we rederive the well-known Heisenberg-Euler
action from the interplay between spin factor and holonomy.
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1 Introduction

In ordinary quantum field theory perturbative calculations are usually done in the so-called
second quantized approach which involves the techniques of Feynman diagrams. But in
addition to this approach to QFT there also exists a first quantized version where the fluc-
tuations of the quantum field are represented by random trajectories of the corresponding
particle in coordinate space. This approach is attributed to Richard Feynman who pre-
sented the formalism for the case of scalar QED as his first attempt at a general formulation
of QFT [1]. However, this line of research did not gain much attention during the following
decades, since a practicable technology for treating spinorial degrees of freedom has not
been available for a long time. Decades later it was discovered that string theory reduces
to field theory in the infinite string tension limit. It was shown that perturbative expansion
of string theories can consist of a smaller number of Feynman diagrams, since in string
perturbation theory one gets world sheet diagrams with fewer possible topologies than
ordinary Feynman diagrams. There appeared analogies between string theoretic effective
actions and representations of the effective action in Feynman’s worldline representation.
For example the Fradkin-Tseytlin path integral is a string theoretic generalization of the
effective action for a particle in an external field, with no internal photon corrections [2].
The connection to field theory was made by the observation that in the infinite string
tension limit these string diagrams reduce to Feynman’s ordinary ones [3],[4],[5],[6].

Besides these string theoretic motivations the worldline formalism is highly interesting
for its own, because it gives a first quantized approach to field theory and, connected
with this fact, some very illustrative pictures about the quantum behavior of the field
in different energy regimes. In practice, it provides for powerful tools to investigate field
theoretic problems [7],[8],[9],[10],[11],[12]. Moreover, the worldline approach in combination
with Monte-Carlo techniques offers efficient algorithms for computing quantum amplitudes
numerically [13],[14],[15],[16],[17]. It is possible to interpret the quantum fluctuations of
the field as clouds of loops which pick up information about the behavior of a background
field from the infrared to the ultraviolet modes of the fluctuating field. For our purposes in
this thesis the representation of quantum field theory in terms of the worldline is especially
useful because it offers a connection to the language of loop calculus. This makes it possible
to describe generic spin-field couplings in terms of geometry. More precisely we will present
the loop-space formulation of gauge theory, which may be considered as more fundamental
than the ordinary one, because in this approach the dynamical aspects of gauge theory
are represented as kinetic properties of an equivalence class of loops. Ordinary gauge
theory appears as a representation of this group of loops onto a special gauge group. For
example if we map the group of loops onto the gauge group U(1) we obtain the gauge
theory of electrodynamics. This alternative approach to gauge theories was developed
by Polyakov, Migdal and others [18],[19] but has not found much attention among the
physicists community. Probably one reason for this is that it is rather difficult to quantize
the classical gauge theory in the loop approach, because the space spanned by the loop
states over a continuous background is far too big to provide a basis for the (seperable)
Hilbert space of QFT. Other formulations of gauge theory emerged as more appropriate
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for the armory of quantization techniques. However, loop states are not too many or
too singular in a background independent formulation and this is the key technical point
on which, for instance, Loop Quantum Gravity relies [20],[21],[22],[23]. Indeed the loop
approach or at least some parts of it undergo directly a revival of interest in the loop
gravity approach to quantum gravity, where the states which have to be quantized are
expressed in terms of loops and the holonomy becomes a quantum operator that creates
loop states. In this approach to quantum gravity the point of view is that holonomies are
the natural variables in a gauge theory. In this thesis we will follow this point of view,
even though our focus is on quantizing the matter fields rather than the gauge field. Upon
quantizing matter fields in an external gauge field in the worldline language, the gauge-
field dependence occurs naturally in the form of the holonomy. However, if the matter
fields carry spin, additional gauge-field dependencies arise in the form of explicit spin-field
couplings. In specific examples, the spin-field coupling can be traded for a gauge-field
independent spin factor which is a geometric (and sometimes topological) quantity. As a
result, the gauge-field dependence is solely concentrated in the form of the fundamental
holonomy.

The purpose of this thesis is to derive an expression for the spin factor in the second
order formalism in contrast to the first order approach. First and second order approach
refers to a difference in the representation of the functional determinant as follows. In
the first order approach the one loop effective action is represented as a determinant of D/,
whereas in the second order formalism the effective action is written quadratically in D/. In
the first-order formalism, the first spin-factor representation was found by Polyakov [24],
further details about the Polyakov spin factor have been studied, for instance, in [25],[26].
In this thesis we are more interested in the spin factor in the second order formalism, which
has proven to be highly advantageous for both analytical as well as numerical calculations.
A first step towards the notion of a spin factor in the second-order formalism has been
performed by Karanikes and Ktorides [27],[28], who outlined the possibility of rewriting
the spin-field coupling. However, they argued that the final result is identical to the
Polyakov (first-order) spin factor, for which an ad hoc regularization seems necessary, in
order to control the singularity structure.

Since in this thesis we give an exhaustive introduction into the loop calculus, the con-
nection to the coordinate representation of the so called loop derivative and its technical
treatment we are able to derive a valid representation of the geometric spin factor in the
second order formalism, which is in fact different from the representation of the Polyakov
spin factor in the first order formalism. We analyze in detail the singularity structure of our
spin factor and develop a spin-factor calculus suitable for efficiently carrying out detailed
computations. In particular the singularity structure teaches us that the random “zigzag”
nature of worldlines in spacetime is an essential ingredient for the coupling between spin
and an external field.

The diploma thesis is structured as follows. In the second section we introduce the
notion of the effective action, which is an enormously powerful tool in quantum field the-
ory. By computing this to one-loop order, we obtain a functional determinant which gives
us an analytical expression for all one-loop Feynman diagrams. In the third chapter we
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develop the worldline calculus and represent the effective action to one loop order in this
language. Furthermore we give some physical (as mentioned above) interpretations of the
quantum behavior in the worldline approach. As an illustrative example we will calculate
the Heisenberg-Euler action with these techniques. In section 4. we introduce the loop
space formulation of gauge theory, giving a precise definition of holonomy, loop deriva-
tive and many of the connections to gauge theory in order to obtain the coordinate space
version of the loop derivative in section 5. This provides us with a definition of the loop
derivative in terms of functional calculus which is essential when dealing with path inte-
grals. In section 6, we will introduce a loop operator on the space of holonomies which is
appropriate for path integration. We show explicitly that the action of this operator on the
Wilson loop (the holonomy) can be used to reformulate the familiar spin-field connection
σµνFµν of the spinor-worldline path integral. After some formal manipulations of the path
integral we arrive at an alternative expression for the spin-field coupling which encodes the
spin field connection in a new quantity σµνωµν . We investigate the properties of our new
representation in the F → 0 limit, where F indicates the field. In section 7. we show, that
our new expression is also valid for an arbitrary field configuration and therefore is totally
equivalent to the familiar representation of the effective action. In the last section we
give an alternative derivation of the Heisenberg-Euler action [29],[30],[31], that describes
the quantum-induced nonlinear corrections to Maxwell’s electrodynamics [32],[33]. We
conclude by outlining several direct generalizations of our formalism and possible future
applications.
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2 The effective Action

We consider a quantum field theory of a field ψ in the presence of an external source
J . In this case a quantized field which is initially in the vacuum state need not stay
in that state. All physical properties of the field can be derived from the variation of
the probability amplitude for the field to remain in the vacuum state with respect to the
source. This vacuum to vacuum transition amplitude is usually called Z[J ], the generating
functional,

Z[J ] =

∫

Dψ exp[i

∫

d4x (L[ψ] + Jψ)] = 〈0|e−iHT |0〉,

where H is the Hamiltonian. This factor Z[J ] is given by the sum of all vacuum to vacuum
amplitudes in the presence of the current J , including the disconnected as well as the
connected diagrams. The functional W [J ] which generates only the connected Feynman
diagrams, is related to Z[J ] by

Z[J ] = e−iW [J ].

This can be understood by a heuristic argument. A general Feynman diagram that consists
of N connected components will contribute to Z[J ] a term equal to the product of the
contributions of these components, divided by the number N ! of permutations of vertices
that merely permute all the vertices in one connected component with all the vertices in
another. Therefore the sum of all graphs is

Z[J ] =

∞
∑

N=0

1

N !
(−iW [J ])N = exp(−iW [J ]),

where W [J ] is the sum of all connected diagrams. Another more physical interpretation of
W [J ] is, that it is the vacuum energy in static systems multiplied by the time during we are
observing the system (〈0|e−iHT |0〉 = e−iW [J ]). With the above definition of Z we also have
an equation for defining the generating functional of all connected Feynman diagrams,

W [J ] = i ln[Z].

With this definition we consider now the functional derivative of W [J ] with respect to
J(x):

δ

δJ(x)
W [J ] = i

δ

δJ(x)
ln[Z] = −

∫

Dψ ei
R

(L+Jψ)ψ(x)
∫

Dψ ei
R

(L+Jψ)
= −〈0|ψ(x)|0〉 =: −ψcl(x).

This is the vacuum expectation value in presence of a classical source J(x). We can
interpret this amplitude as the classical field ψcl. Because it is more convenient to formulate
our quantum field theory in terms of ψcl than in terms of the source J(x), we carry out a
Legendre transform of W [J ] and get,

Γ[ψcl] = −W [J ] −
∫

d4yJ(y)ψcl(y).
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We call this quantity the effective action. When we perform an approximation expanding
about the classical action we can interprete the effective action as the classical action plus
quantum corrections. It contains only the one particle irreducible (1 PI) Feyman graphs,
which implies that we have to analyze fewer kinds of graphs if we decide to reconstruct the
field theory in terms of a perturbative series. But the more physical advantage is that we
can interpret this quantity much better than the J(x) dependent generating functional. As
far as the vacuum state of the theory is concerned, in fact Γ[ψcl] plays the role of an action
governing the dynamics of ψcl in terms of equations of motion obtained by variational
calculus. To motivate this let us calculate,

δ

δψcl(x)
Γ[ψcl] = −

∫

d4y
δJ(y)

δψcl(x)

δW [J ]

δJ(y)
−
∫

d4y
δJ(y)

δψcl(x)
ψcl(x) − J(x)

= −J(x).

If we switch-off the external source this equation becomes

δ

δψcl(x)
Γ[ψcl] = 0.

This equation will be solved by the classical configuration of the field ψ. The procedure is
totally analogous to the derivation of the equations of motion in classical physics.

From the full effective action (and nonzero J) we get the full equations of motion of
the system. Since our action functional depends on ψcl we can say that Γ[ψcl] describes
the dynamics of a weighted average of ψ over all possible fluctuations. The minimization
of the effective action gives us the classical equations of motion plus quantum corrections.
In the language of perturbation theory this corresponds to all tree-level amplitudes plus
all loop corrections.
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2.1 Loop expansion of the effective action

As the above calculation shows, the extremum of Γ[ψcl] solving δ
δψcl(x)

Γ[ψcl] = 0 in the
absence of the source J , gives the exact vacuum state of the Quantum Field Theory. Next
we want compute the effective action in a loop expansion. For this, we start from an
expansion of the generating functional Z and derive the desired expression for Γ using the
Legendre transform.

Since we want to use renormalized perturbation theory, we split our bare Lagrangian
into two parts. The first part contains the renormalized parameters and the second one
contains the counterterms:

L = L1 + δL.
Because we want to calculate Γ as a function of ψcl, the functional Z[J ] however only
depends on ψcl implicitly, and we have to find a relation between J(x) and ψcl. As was
shown above we know that to lowest order in perturbation theory this relation is the
classical field equation:

δ

δψ

(
∫

d4x L
)∣

∣

∣

∣

ψ=ψcl

+ J(x) = 0.

Now we define J1(x) to be the function that solves this equation exactly,

δ

δψ

(
∫

d4x L1

)∣

∣

∣

∣

ψ=ψcl

+ J1(x) = 0. (1)

The difference J(x)−J1(x) = δJ(x) will be interpreted as a counterterm, so our expression
for the generating functional transforms to,

e−iW [J ] =

∫

Dψ ei
R

d4x(L1[ψ]+J1ψ) ei
R

d4x(δL[ψ]+δJψ).

The second exponential contains the counterterms, which we will leave aside for the mo-
ment. Now we decompose the field ψ into the classical part and one part which contains
the quantum fluctuations ψ(x) = ψcl(x) + η(x). If we expand the first exponent about ψcl

it takes the form,
∫

d4x (L1 + J1ψ) =

∫

d4x (L1[ψcl] + J1ψcl) +

∫

d4x η(x)

(

δL1

δψ
+ J1

)

+
1

2

∫

d4x d4y η(x)η(y)
δ2L1

δψ(x)δψ(y)

+
1

3!

∫

d4x d4y d4z η(x)η(y)η(z)
δ3L1

δψ(x)δψ(y)δψ(z)
+ ... .

Because of (1) the term linear in η vanishes. Therefore
∫

d4x (L1 + J1ψ) is a Gaussian
integral with correction terms. If we limit ourselves to the second order in the expansion
we can write the generating functional as

e−iW [J ] =

∫

Dη exp

[

i

(∫

d4x L1[ψcl] +
1

2

∫

d4x d4y η(x)
δ2L1

δψδψ
η(y)

)]

.
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Making use of the formula
∫

Dx e 1
2
〈x,Ax〉 = (det(−A))−

1
2 , we are guided to the expression

e−iW [J ] = exp

[

i

∫

d4x (L1[ψcl] + J1ψcl)

](

Det

[

− δ2S1

δψδψ

])− 1
2

.

This equation gives us the classical equations of motion together with the first order quan-
tum corrections (all one-loop diagrams). In the next step of our calculation we have to
consider the counterterm part of the generating functional. We expand the second expo-
nent about ψ = ψcl and get,

(δL[ψcl] + δJψcl) + (δL[ψcl + η] − δL[ψcl] + δJη).

The first term is a constant which gives an additional term in exp
[

i
∫

d4x (L1[ψcl] + J1ψcl)
]

.
If we expand the second term in η, we get counterterms which we can put in the bare
Feynman diagrams. Finally we obtain an expression for the effective action valid for all
one-loop quantum corrections:

Γ[ψcl] =

∫

d4x L1[ψcl] +
i

2
ln det

[

− δ2S1

δψδψ

]

.

We can see what we have mentioned earlier. In this representation there is a separation of
the effective action in classical and quantum terms so that we now are allowed to say that
we study a theory with quantum fluctuations spread over the average, the classical value, of
the field. Our derivation of the effective action made use of the bosonic path integration (we

have used the bosonic Gaussian path integral formula
∫

Dψ exp[−1
2
〈ψ,Aψ〉] = (DetA)−

1
2 ),

but in this thesis we are focused on the fermionic theory. That means we have to do the
above calculation with Grassmann quantities. This is no problem, because we only have to
replace the bosonic path integration by the formula for fermions

∫

Dψ̄Dψ exp[−〈ψ,Aψ〉] =
(DetA). Then our expression for the effective action transforms to:

Γ[ψcl] =

∫

d4x L1[ψcl] − i ln det

[

− δ2S1

δψδψ̄

]

.

Finally we have to do a last rewriting. Because we want to represent the quantum term
of the effective action in the worldline representation, as well as using the analogies to
statistical physics, we have to do a rotation to ”Euclidean time” t = −itE . Let us now see
what happens to the action integral under the rotation to Euclidean time. Let us consider
the simple 1-dimensional potential system,

L[q, q̇] =
1

2
(
dq

dt
)2 − V (q).

Then

iS[q] = i

∫ iT

0

(−idtE)

[

1

2

(

dq

d(−itE)

)2

− V (q)

]

= −SE [q]

SE [q] =

∫

dtE

[

1

2
(
dq

dtE
)
2

+ V (q)

]

.
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With the 4-dimensional analogon of this transformation the effective action changes to,

Γ[ψcl] =

∫

d4x LE1 [ψcl] − ln det

[

−δ
2SE1

δψδψ

]

,

where all quantities are considered to be ”Euclidean” unless stated otherwise. Also, in the
progress of this thesis, all path integrals are meant as ”Euclidean” path integrals if not
explicitly mentioned otherwise.

After we have developed the formalism in a general way, we now specialize to the QED
action

S =

∫

d4x

[

ψ̄γµ(i∂
µ + eAµ)ψ −mψ̄ψ − 1

4
FµνF

µν

]

.

We have to switch this expression to the Euclidean one and get

SE =

∫

d4x

[

ψ̄γµ(i∂
µ + eAµ)ψ +mψ̄ψ +

1

4
FµνF

µν

]

,

where we have used that γ4 = −iγ0 and A4 = iA0 after transition to the Euclidean metric.
Since we perform only the path integral over the fermion and anti-fermion field

∫

Dψ̄Dψ e−S
and not the

∫

DA integration, the quantum dynamics of the electromagnetic field is not
considered. The next step is to compute the effective action with the QED Lagrangian.
For this we have to examine the different functional derivatives of S. Following the rules
of variational calculus we get

δ2SE
δψ̄δψ

= −(iD/ +m),

with D/ = γµD
µ = γµ(∂

µ − ieAµ), where Aµ in our case is the classical background field.

δ2SE
δψδAµ

∼ ψ̄ = 0,

since we don not have a fermion background. Furthermore we get

δ2SE
δAµδAν

∼ const.

When we insert this now into the quantum part of the effective action we get:

ΓFerm = − ln det(iD/ +m).

Because we are working in the four-dimensional spacetime we know that ΓFerm is a Lorentz
scalar. This means that ΓFerm does not depend on the sign of iD/ and therefore we are
allowed to write

ΓFerm = −1

2
[ln det(iD/+m) + ln det(−iD/ +m)]

= −1

2
ln det(D/2 +m2).

This is the expression for the quantum part of the effective action, we will be working with
in the progress of this thesis.
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3 Worldline representation of the effective action

The effective action for a gauge field that couples to a fluctuating fermion field (in the

Euclidean metric) reads Γ[A] =
∫

d4xLcl[A]−ln det[ δ
2S[A]

δψ̄δψ
], where the first term by variation

gives the classical equations of motion (in the language of perturbative quantum field theory
the first part of the action will be constructed from the tree level diagrams and is therefore
identical to the classical result). The second part is constructed from the one loop graphs
in perturbation theory and can be viewed as the first-order quantum correction of the
classical action. In this thesis we are mainly interested in the quantum regime, therefore
we restrict ourselves to the second part of the effective action. We call it the fermionic
effective action ΓFerm.

ΓFerm = −1

2
ln det(D/2 +m2)

= −1

2
Tr ln(D/2 +m2), (2)

where we have used the (ln det = tr ln)-identity and D = (∂ + ieA). Let us modify the
operator D/2 in order to obtain an explicit expression in terms of the spin-field coupling.

D/2 = DµDνγ
µγµ

= DµDν

[

1

2
{γµ, γν} +

1

2
[γµ, γν ]

]

= DµDν [−gµν − i σµν ]

= −D2 − i
1

2
σµν [Dµ, Dν ]

= −D2 − e

2
σµνF

µν .

Therefore we have arrived at the quantity D/2 = − D2 − e
2
σµνF

µν , where the last term is
the so-called Pauli term that carries the information about the spin coupling to the field.
Inserting this expression into (2) we get

ΓFerm =
1

2

∫ ∞

0

dT

T
Tr e−(−D2+m2− e

2
σF )T ,

since −Tr ln (A
B

) =
∫∞

0
dT
T

Tr (e−AT − e−BT ). We have suppressed the second term
[

which
actually also appears in ΓFerm as the normalization to the free fermion theory (ΓFerm =

−1
2

Tr ln ( D/2+m2

−∂2+m2 ) )
]

. Now we can write the functional trace as

trγ

∫

dDx〈x|e−(−D2+m2− e
2
σF )T |x〉.

It is well known that we can decompose a ”time” evolution operator in terms of evolution
operators for infinitesimal time slices as

〈qa|e−HT |qa〉 =

∫ N
∏

i=1

dqi〈qa|e−Hδτ |q1〉〈q1|...|qN〉〈qN |e−Hδτ |qa〉.
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Let us calculate the propagator over a small segment in the path integral. That means

〈qjtj|qj+1tj+1〉 = 〈qj|e
−Hδτ
h̄ |qj+1〉

= 〈qj+1|1 − Hδτ

h̄
+O(δτ2)|qj〉,

Where δτ = tj − tj+1. For the rest of the calculation we will put h̄ to 1. Now the
Hamiltonian for the ”Fermionic evolution ” reads

Ĥ = −D2 +m2 − e

2
σµνF

µν

= −(∂ + ieA)2 +m2 − e

2
σµνF

µν

= (p̂+ eA)2 +m2 − e

2
σµνF

µν

= p̂2 + ep̂A(q̂) + eA(q̂)p̂+ e2A2(q̂) +m2 − e

2
σµνF

µν

where p̂ = −i∂.
In the next step we insert the identities

∫

|p〉〈p| = 1 and 〈q|p〉 = eipq and get
∫

dp 〈qj| 1 − (p̂2 + ep̂A(q̂) + eA(q̂)p̂+ e2A2(q̂) +m2 − e

2
σµνF

µν) δτ |p〉〈p|qj+1〉

=

∫

dp (1 − (p2 + 2epĀ(qj) + e2Ā2(qj) +m2 − σµνF
µν(qj)) δτ)〈qj |p〉〈p|qj+1〉

=

∫

dp (1 − (p2 + 2epĀ(qj) + e2Ā2(qj) +m2 − σµνF
µν(qj) δτ) e

ip(qj−qj+1),

Where Ā(qj) = 1
2
(A(qj) + A(qj+1)) and the terms proportional to A2 have also been ex-

pressed as Ā2 for convenience which is possible, since it is proportional to δ(qj − qj+1).

Because we know that for a small space time segment the relation 〈qj |1 − Ĥδτ |qj+1〉 is
valid, we conclude that H(qj , p) = p2 + 2epĀ(qj)) + e2Ā2(qj) +m2 − σµνF

µν(qj). It follows
that

∫

dp e(p
2+2epĀ(qj))+e2Ā2(qj)+m2−σµν F̄µν)δτeip(qj−qj+1)

=

∫

dp e−δτ p2−(2eĀ(qj)δτ−i(qj−qj+1))p−(e2Ā2(qj)+m
2− e

2
σF̄ (qj))δτ

= e−(e2Ā2(qj)+m2− e
2
σF̄ (qj))δτ

√

π

δτ
e

[(2eĀ(qj )δτ−i(qj−qj+1)2]2

4δτ ,

where we have used the Gaussian integral formula
∫

dp e−
1
2
ap2+Jp =

√

2π
a
e

J2

2a , with a = 2δτ

and J = −(2eĀ(qj)δτ − i(qj − qj+1). Let us now sum up this equation,

=

√

π

δτ
e−(e2Ā2(qj)+m2− e

2
σF (qj))δτ ee

2Ā2(qj) δτ−
(qj−qj+1)2

4δτ
−ieĀ(qj)(qj−qj+1)

=

√

π

δτ
e−m

2δτ+ e
2
σF (qj)δτe−ieĀ(qj)(qj−qj+1)e

−(qj−qj+1)2

4δτ .
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We use the discretized version of the propagator

〈q0|e−HT |qN+1〉 =

∫ N
∏

i=1

dqi〈q0|e−Hδτ |q1〉〈q1|...|qN〉〈qN |e−Hδτ |qN+1〉,

where we insert N+1-times the expression for the small path integral segment and therefore
we get

〈q0|e−HT |qN+1〉 =

∫ N
∏

i=1

dqi

√

π

δτ

N+1 N
∏

j=0

exp
(

−m2δτ +
e

2
σF (qj)δτ

)

×
N
∏

j=0

exp
(

−ieĀ(qj)(qj − qj+1)
)

exp

(−(qj − qj+1)
2

4δτ

)

.

We can conclude that
N
∏

j=0

e−m
2δτ+ e

2
σF (qj)δτ = e−m

2T Pe e2σ
PN
j=0 F (qj)δτ ,

where P indicates the path ordering which takes care of the Dirac algebra. As well, we
find

N
∏

j=0

e−ieĀ(qj)(qj−qj+1) e
−(qj−qj+1)2

4δτ = e
PN
j=0 −ieĀ(qj)(qj−qj+1) e

PN
j=0

−(qj−qj+1)2

4δτ ,

with (N + 1)δτ = T .
In the limit limN→∞ we are now lead to write

lim
N→∞

e−m
2T Pe e2σ

PN
j=0 F (qj)δτe

PN
j=0 −ieĀ(qj)(qj−qj+1) e

PN
j=0

−(qj−qj+1)2

4δτ

= lim
N→∞

e−m
2T Pe e2σ

PN
j=0 F (qj)δτ e

PN
j=0

δτ
δτ

(−ieĀ(qj)(qj−qj+1)) e
PN
j=0

δτ
δτ

(
−(qj−qj+1)2

4δτ
)

= Pe e2
R T
0 dτ σF e−ie

R T
0 dτ q̇A(q) e−

R T
0 dτ q̇

2

4 .

We get a loop integral because we just consider closed paths here (〈q0|e−HT |qN+1〉 where
|q0〉 = |qN+1〉). For this reason we finally get a path integral with periodic boundary
conditions. We can write the effective action as

ΓFerm =
1

2

∫ ∞

0

dT

T
Tr e−(−D2+m2− e

2
σF )T

=
1

2

∫ ∞

0

dT

T
trγ lim

N→∞

∫ N
∏

i=1

dqi

√

π

δτ

N+1

e−m
2T Pe e2σ

PN
j=0 F (qj)δτ

× e
PN
j=0 −ieĀ(qj)(qj−qj+1)e

PN
j=0

−(qj−qj+1)2

4δτ

=
1

2

∫ ∞

0

dT

T
e−m

2T N
∫

q(0)=q(τ)

Dq(τ) trγP e
e
2

R T
0 dτ σF e−ie

R T
0 dτ q̇A(q) e−

R T
0

q̇2

4 , (3)
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where N is the factor of normalization. This is the fermionic effective action transformed
into a worldline path integral. This representation has found a wide range of applica-
tions, such as the computation of the one-loop N-photon amplitudes, gradient expansion
of the effective action [34], higher-loop computations and β functions [35],[36],[37],[38].
The worldline representation also offers an intuitive approach for an interpretation of the
quantum processes. We are allowed to examine the fermionic action as a path integral over
an ”effective” particle moving in a background field with propertime T , this is indicated

by the kinetic term (e−
R T
0

q̇2

4 ). In addition this term ensures that the loop cloud is heaped
around a center of mass . During the motion of the particle in the backround it ”scans”
the field by its loop clouds. That means, for small propertimes the size of the ”loop cloud”
(which is meant as an ensemble of closed loops) is also small. Therefore the loop cloud
picks up small-scale information about the background field. For large propertimes the
loop clouds blows up and therefore we get information about the large scale behavior of
the background field. There are no other constraints to the loops except continuity and
closeness. This means, that the loops are allowed to be arbitrarily self-intersecting and
knotty. In this way we have a colorful picture for the ultraviolet and the infrared regime
of the observed quantum field fluctuations arranged by the worldline representation.

Let us now continue with fixing the normalization factor N . This can be determined
from the zero-field limit,

N
∫

Dq(τ) e−
R T
0 dτ q̇2

4
!
= 〈q|eT∂2|q〉 .

Into the right expression we insert two times the identity. This leads us to

〈q|eT∂2|q〉 =

∫

dDp

∫

dDṕ 〈q|p〉〈p|eT∂2|ṕ〉〈ṕ|q〉

=

∫

dDp

∫

dDṕ 〈q|p〉〈p|ṕ〉〈ṕ|q〉 e−Tp2

=

∫

dDp

∫

dDṕ
eipq

√
2π

D
δ(p− ṕ)

e−iṕq
√

2π
D
e−Tp

2

.

After performing the ṕ integral we obtain,

〈q|eT∂2|q〉 =

∫

dDp

2πD
e−Tp

2

=
1

(4πT )
D
2

.

Therefore we find

N =
1

(4πT )
D
2

∫

Dq(τ) e−
R T

0
dτ q̇2

4

. (4)

Inserting this into equation (3) leads us to the compact formula,

ΓFerm[A] =
1

2

1

(4π)
D
2

∫ ∞

0

dT

T (D
2

+1)
e−m

2T 〈Wspin[A]〉 ,
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where we have defined Wspin[A] in the following way,

Wspin[A] = exp

[

−ie
∫ T

0

dτ q̇A(q)

]

trγ Pexp

(

e

2

∫ T

0

dτ σF

)

= exp

[

−ie
∮

dqA(q)

]

trγ Pexp

(

e

2

∫ T

0

dτ σF

)

.

We recognize in the first factor the well-known Wilson loop. This one is complemented
with the spin-field coupling term (Pauli term). What we have found with this rewriting
of the fermion action is, that we no longer analyze a second quantized theory, instead in
our point of view we are studying a first quantized one (because the path integral has to
be performed over the paths of the effective particle). Of course we are still dealing with
quantum field theory, only our approach has changed.
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3.1 Heisenberg-Euler action in worldline representation

In this section we calculate the (unrenormalized) Heisenberg-Euler action [29],[30],[31] with
the formalism developed above. For this we have to review some technical developments
as put forward in [9]. First let us consider the expectation value of the spinorial Wilson
loop,

〈Wspin[A]〉 =

∫

Dx(τ) e−ie
R T
0
dτ ẋA(x) trγ e

e
2

R T
0 dτ σF e−

R T
0 dτ ẋ

2

4

∫

Dx(τ) e−
R T
0 dτ ẋ

2

4

.

We confine ourselves to a constant field strength F , but at this point the orientation of the
field is left open. Using the Schwinger-Fock gauge Aµ = 1

2
Fνµxν the Wilson loop yields,

〈Wspin[A]〉 = trγ e
e
2
σFT

∫

Dx(τ) e−i e
2

R T

0
dτ ẋ(τ) Fνµxν(τ) e−

R T

0
dτ ẋ

2(τ)
4 . (5)

The next step is to rewrite this expression in order to apply the well known Gaussian
integral formulas. For this reason we consider the exponents of the exponential functions
under the path integral,

−1

4

∫ T

0

dτẋ2 = −1

2

∫ T

0

dτ xµ [−1

2

d2

dτ 2 δµν ] xν ,

where we have integrated by parts. The first term under the integral of (5) can be treated
similarly,

−i e
2

∫ T

0

dτ ẋµFνµxν = −1

2
ie

∫ T

0

dτ xµ [Fµν
d

dτ
] xν .

Finally we substitute these expressions back into the path integral and get,

N
∫

Dx(τ) exp (−1

2

∫ T

0

dτ xµ [−1

2

d2

dτ 2 δµν + ie Fµν
d

dτ
] xν )

= N
∫

Dx(τ) exp (−1

4

∫ T

0

dτ xµ [− d2

dτ 2 δµν + 2ieFµν
d

dτ
] xν )

=
Det−

1
2 [− d2

dτ2 δµν + 2ieFµν
d
dτ

]

Det−
1
2 [− d2

dτ2 δµν ]
,

where we have used the integral formula
∫

Dx(τ) e− 1
2
〈xM̂x〉 = Det−

1
2 [M̂ ] as well as N =

Det
1
2 [− d2

dτ2 δµν ]. We have separated the factor of 1

(4πT )
D
2

from the normalization N , as it

occurs in (4). This propertime factor will always occur with the T -integration measure in
the following. In the next step of our calculation we simplify and evaluate the functional
determinant,

Det−
1
2 [− d2

dτ2 δµν + 2ieFµν
d
dτ

]

Det−
1
2 [− d2

dτ2 δµν ]
= Det−

1
2 [δµν − 2ieFµν(

d

dτ
)
−1

],
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where we have utilized the well-known identity Det(AB) = Det(A) Det(B). In the following
we use the (ln det = tr ln)-identity and get,

Det−
1
2

[

1 − 2ieF (
d

dτ
)
−1]

= exp (−1

2
Tr ln[1 − 2ieF (

d

dτ
)
−1

])

= exp (−1

2
Tr

∞
∑

n=1

(−1)

n

n+1

[−2ieF (
d

dτ
)
−1

]n

= exp (
1

2

∞
∑

n=1

(2ie)n

n
tr[F n] Tr[(

d

dτ
)
−n

].

Since tr[F n] = 0 for n odd, we are lead to

Det−
1
2

[

1 − 2ieF (
d

dτ
)
−1]

= exp (
1

2

∞
∑

n=1

(2ie)2n

2n
tr[F 2n] Tr[(

d

dτ
)
−2n

].

Let us now calculate the functional trace. With the aid of the eigenbasis of the derivative
operator {e2πim τ

T , m ∈ Z\{0}}, (here we split off the zero mode m = 0, corresponding to
a trivial shift of the center-of-mass of the worldlines)

Tr[(
d

dτ
)
−2n

] =
∞
∑

m=−∞
m6=0

(
2πim

T
)−2n

= 2

∞
∑

m=1

(
2πi

T
)−2n (

1

m
)2n

= 2(
2πi

T
)−2n ζ(2n),

where ζ(2n) denotes the Riemannian ζ function for even numbers. We insert this into the
expression for the functional determinant and get,

Det−
1
2

[

1 − 2ieF (
d

dτ
)
−1]

= exp

(

∞
∑

n=1

(2ie)2n

2n
(
2πi

T
)−2n tr[F 2n] ζ(2n)

)

.

Using the identity ζ(2n) = (2π)2n

2(2n)!
|B2n| which connects the ζ function with the Bernoulli

numbers, as well as tr[F 2n] =
∑

α

(Eα)
2n where Eα corresponds to the eigenvalues of the
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Faraday tensor, we obtain,

Det−
1
2

[

1 − 2ieF (
d

dτ
)
−1]

= exp

[

∑

α

∞
∑

n=1

1

2n

(

EαeT

π

)2n
(2π)2n

2(2n)!
|B2n|

]

= exp

[

1

2

∑

α

∞
∑

n=1

22n

(2n)(2n)!
|B2n| (eEαT )2n

]

= exp

[

−1

2

∑

α

ln

(

sin(eTEα)

eTEα

)

]

= exp

[

−1

2
tr ln

(

sin(eTF )

eTF

) ]

=

[

exp

(

ln det

(

sin(eTF )

eTF

) )]− 1
2

= det−
1
2

[

sin(eTF )

eTF

]

.

Where we have used the identity ln sinx
x

= −∑∞
n=1

22nB2n

(2n)!
x2n

2n
in the second line. This

equation is valid for an arbitrary constant field. Because we want to illustrate here the
derivation of the Heisenberg-Euler action we now focus on a special choice for the classical
field Aµ. We choose the direction of the magnetic field in the z-direction of our laboratory
frame ~B = B~ez. This will be realized through an appropriate gauge potential Aµ =
1
2
B (0,−y, x, 0)T. For this field configuration the Faraday tensor becomes,

F =









0 0 0 0
0 0 B 0
0 −B 0 0
0 0 0 0









.

That means we only have two nonvanishing matrix elements F12 = −F21 = B. Now

we investigate the matrix determinant det−
1
2

[

sin(eTF )
eTF

]

in this field. We diagonalize this

expression with respect to the Lorentz structure. For this we have to take a look at the
expansion of the sineTF

eTF
-matrix.

sin(eTF )

eTF
=

∞
∑

k=0

(−1)k
(eTF )2k

(2k + 1)!

= 1 − (eT )2

3!
F 2 +

(eT 4)

5!
F 4 − (eT )6

7!
F 6 + ...

We observe that there are only even powers of F. Therefore we get,

F 2 =









0 0 0 0
0 −B2 0 0
0 0 −B2 0
0 0 0 0









.
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With this choice we have diagonalized our operator with respect to the Lorenz structure.
Summing up the series, we can represent our diagonalized matrix as,

sin(eTF )

eTF
=









1 0 0 0

0 sinh(eTB)
eTB

0 0

0 0 sinh(eTB)
eTB

0
0 0 0 1









.

In this diagonalized form we can easily calculate the determinant

det−
1
2

[

sin(eTF )

eTF

]

=

(

sinh(eTB)

eTB

)−1

. (6)

Inserting this into the expression for our effective action we get,

ΓFerm[A] =
1

2

1

(4π)2

∫ ∞

0

dT

T 3
e−m

2T trγ e
e
2
σFT

(

eTB

sinh(eTB)

)

,

where we have inserted D = 4 for the dimension of space time. The next step of the
calculation is to evaluate the γ trace. With our choice of the classical magnetic field
Aµ = 1

2
B(0,−y, x, 0)T the γ trace of the spin-field coupling transforms to,

trγ e
e
2
σFT = 2 (eeBT + e−eBT )

= 4 cosh(eBT ).

If we insert this into our expression for the effective action we get

ΓFerm[A] =
1

8π2

∫ ∞

0

dT

T 3
e−m

2T (eBT ) coth(eBT ). (7)

This is the expression for the (unrenormalized) Heisenberg-Euler Lagrangian describing the
quantum-induced nonlinear corrections to Maxwell’s electrodynamics. We have presented
the derivation here in the worldline representation because it is a simple (and one of the
few) analytical treatments of spinor QED in a background field. The other advantage of the
worldline formalism is that it is relatively easy to be translated into a numerical algorithm
[13],[14],[15]. Such algorithms consist in averaging over an ensemble of closed worldlines
(loop clouds). As an advantage, we do not have to solve the problem by diagonalizing
the Dirac operator, calculating the trace etc., since in general it is quite difficult if not
impossible in practice to find a basis where the operator is diagonal. Doing the calculation
by the worldline algorithm avoids this complicated procedure. The present approach to
the worldline description has adopted the Dirac operator which enforces a spin-dependent
Pauli term of the form σµνF

µν into the worldline action. In the progress of this thesis we
will see, that it is possible to establish a direct connection between geometrical properties
of the worldline (more precisley the rate of change of the worldline expressed in terms of
the so called ”loop derivative ”) and the conventional spin field coupling σF .
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4 Loop space formulation of gauge theory and loop

derivative

Let us now develop the basic elements of a loop space formulation of gauge theory [39],[40].
The gauge theory is defined on a spacetime manifold M with a gauge group G. In order
to express this situation in the most economical way, we make use of the idea of fibre
bundles. Let M and G define a fibre bundle P (M, G) where at each point of the manifold
x ∈ M there is a fibre which is given by the gauge group G. Then we can interpret fields
that live on the manifold (for example matter fields) as sections of the fibre bundle in the
fundamental representation. The transport of these matter fields from one point of the
manifold to another is performed by a Lie algebra valued one-form called the connection
A. Let us begin the investigation with the definition of the notion of parallel transport in
terms of holonomies.

4.1 Holonomy and parallel transport

Definition of the holonomy: Given a connection A in a group G over a manifold M, the
holonomy is defined as follows. Let a curve Φ be a continuous, piecewise smooth map from
the interval [0, 1] into M,

Φ : [0, 1] −→ M
s 7−→ xµ(s).

The holonomy, or parallel transporter, H [A,Φ] of the connection A along the curve γ is
the element of G defined by

H [A,Φ](0) = 1,

d

ds
H [A,Φ](s) + Φ̇µ(s)Aµ (Φ(s))H [A,Φ](s) = 0

H [A,Φ] = H [A,Φ](1)

where Φ̇µ(s) ≡ dxµ(s)
ds

is the tangent to the curve. The formal solution of this equation is

H [A,Φ] = Pexp

∫ 1

o

dsΦ̇µ(s)Aiµ (Φ(s)) τi ≡ Pexp

∫

Φ

A,

where τi is a basis in the Lie algebra of the group G and the path ordering P is defined by
the power series expansion

Pexp

∫ 1

0

dsA (Φ(s)) =

∞
∑

n=0

∫ 1

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsnA (Φ(sn)) · · · A (Φ(s1)) .
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The connection A is an object, that defines the notion of parallel transporting a vector from
one point of the manifold to another point near the starting point. The holonomy of any
curve Φ is well defined even if there are finite sets of points where Φ is non-differentiable.
The reason is that we can break Φ in components where everything is differentiable and
define the holonomy of Φ as the product of the holonomies of the components, which are
well defined by continuity. As we have shown above we are enforced to write the parallel
transporting holonomy along a curve Φx

O, starting at the origin O and ending at x ∈ M,
as

H (Φx
O) = Pexp

(
∫ x

O

dyµAµ(x)

)

.

We also introduce the inverse curve (Φx
O)−1 =

(

ΦO
x

)

which runs from the point x ∈ M to
the origin O. When we consider a matter field under the gauge transformation,

ψ → gψ, g ∈ G,

the connection transforms as

Aµ → gAµg
−1 + g∂µg

−1,

and the phase factor of the holonomy transforms as

H (Φx
O) → g(x)H (Φx

O) g−1(O).

Let us now introduce an equivalence class between curves having the same starting point
as well as the same end point. We define that two curves Φx

O and Υx
O are equivalent,

Φx
O ∼ Υx

O, if they give rise to the same phase factor :

H (Φx
O) = H (Υx

O) .

In the following we will call the equivalence classes ”paths” and denote them by,

γxO = [Φx
O] .

We confine ourself to closed curves, starting and ending at the same point O.

4.2 The group of loops

Now we want to consider curves on the manifold M which are parameterized by a value s
on the manifold. Let us assume that the curves are continuous and piecewise smooth. We
can regard such a curve Φ as a map in the following form

Φ : [0, s1] ∪ [s1, s2] ∪ ... ∪ [sN−1, 1] → M.

This map is smooth in each closed interval [si, si+1] and continuous in the whole domain.
For these curves, we are able to define a composition law. If there are two smooth curves
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Φ1 and Φ2 such that the end point of Φ1 is the same as the starting point of Φ2 we define
the curve Φ1 ◦ Φ2 by

(Φ1 ◦ Φ2)(s) =

{

Φ1(2s) , s ∈ [0, 1
2
]

Φ2(2(s− 1
2
)) , s ∈ [1

2
, 1]

.

We also introduce the inverse curve by

Φ−1(s) = Φ(1 − s).

For the calculation of the phase factors of the holonomy the parameterization of the curve
is not important. Therefore we consider unparameterized curves, which we define as equiv-
alence relation by identifying all curves, differing by orientation-preserving, differentiable
reparameterizations. This means unparameterized curves are equivalence classes of param-
eterized curves. Closed curves start and end at the same point O. Another object we want
to introduce is the null-curve defined by

I(s) = O ∀s,

and all parameterizations. This null-curve is identical to the identity element. We denote
the set off all closed curves beginning and ending at O as LO. But this set is not a group,
since for a curve L ∈ LO the inverse curve L−1 is not the group inverse, so that L◦L−1 6= I.
Instead LO forms a semi-group under the composition of two curves L1,L2 → L1 ◦ L2. As
we have mentioned above, the phase factor of the holonomy is connected with the parallel
transport around a closed curve. If we have a principal fibre bundle P (M, G) with group
G over M the holonomy is defined in the following way. Take a point Ô in the fibre over
O by using the connection Aµ(x). A closed curve L in M is lifted to a curve L̂ in the fibre
bundle P (M, G) such that the starting point is

L̂(0) = Ô,

and the end point is

L̂(1) = L̂(0)H(L).

This relation defines the holonomy H(L) as right multiplication of the group. And from
the definition of the holonomy we get the following properties:

1. Composition law

H(L1 ◦ L2) = H(L1)H(L2)

2. Under a gauge transformation, that means a change in the choice of the point of the
fibre over O, replacing Ô by Ô′ = Ôg−1, the holonomy transforms as

H ′(L) = gH(L)g−1.
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As we have mentioned the set of closed curves does not form a group. When we introduce a
further equivalence relation which identifies all closed curves leading to the same holonomy
we can ”transform” LO to a group.

Definition: Let

H : LO → G

be the holonomy of a connection Aµ(x), defined on a bundle P (M, G). Two
closed curves L1,L2 ∈ LO are equivalent, L1 ∼ L2, if they have the same
holonomy,

H(L1) = H(L2),

for every bundle P (M, G) and smooth connection Aµ(x).

Let us arrange that equivalence classes under the above-defined equivalence relation are
called loops and are denoted by greek letters [L] = α. Under a loop we imagine not a closed
curve but rather the equivalence class of all closed curves that begins and ends at the same
point O and have the same holonomy. We also define that a closed curve L is called tree,
if it is equivalent to the null-curve. This kind of curves does not enclose an area. From
this statement follows directly, that two curves L1,L2 ∈ LO are equivalent if L1 ◦ L−1

2 is
tree. With these definitions the equivalence classes considered above form a group and we
call this group the group of loops or the loop space, because the equivalence classes imply
that, if α = [L1] and β = [L2], then α ◦ β = [L1 ◦ L2], and this defines the multiplication
law for loops. The equivalence relation also introduces the missing inverse element of a
group that we had missed before in form of α ◦ α−1 = i, where i = [I]. For later purposes
let us define the set of loops with base-point at O with LO. This set forms a non-abelian
group. When we regard the mapping from the group of loops LO into the gauge group G,
this map defines a holonomy associated with a generalized connection Aµ(x). This relation
will be investigated in more detail in the representation theory of loops.

4.3 The loop derivative

In this section we want to introduce the notion of a derivative operator on the loop space.
Let us consider a function of loop variables F (γ), where γ ∈ LO. We want to investigate
the variation of F (γ) when the loop γ ∈ LO which is fixed at O is varied by the addition of
an infinitesimal loop δγ attached to a point x. This means that the two loops are connected
by a path πxO, but we are also free to choose the point x on the loop γ. The variation of
the loop functional is determined by,

δF = F (πxO ◦ δγ ◦ πO
x ◦ γ) − F (γ).

Let us now explain in more detail how we realize the small variation of γ. A possible choice
is to generate the infinitesimal loop δγ as follows,

δγ = δu δv δū δv̄,
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where δuµ = ǫ1u
µ and δvν = ǫ2v

ν are infinitesimal vectors and their inverse is defined by
δū ≡ −δu. The change generated by the infinitesimal loop depends only on the vectors
δuµ = ǫ1u

µ and δvν = ǫ2v
ν , so we get the expansion

F (πxO ◦ δγ ◦ πO
x ◦ γ) =

[

1 + ǫ1u
µQµ(π

x
O) + ǫ2v

νPν(π
x
O)

+
1

2
ǫ1ǫ2(u

µvν + vµuν)Sµν(π
x
O)

+
1

2
ǫ1ǫ2(u

µvν − vµuν)Ωµν(π
x
O) +O(ǫi

2)

]

F (γ).

Q, P, S and Ω are differential operators on the space of loop functions. If ǫ1 = 0, ǫ2 = 0
or uµ, vν are co-linear, the infinitesimal path δγ is a tree. Since we have defined the loops
as equivalence classes of closed curves with the same holonomy, the loop is not changed,
because a tree does not contribute to the holonomy. Therefore it is evident that the
loop functional does not change, if our infinitesimal loop δγ is a tree. We are forced to
conclude that a number of terms on the right-hand side of the above equation have to
vanish in general : Qµ(π

x
O) = Pµ(π

x
O) = Sµν(π

x
O) = 0. Since for co-linear vectors uµ, vν we

have uµvν − vµuν = 0, the term Ωµν(π
x
O) need not vanish. To summerize we find for the

variation of the loop function under an infinitesimal change of loop

F (πxO ◦ δγ ◦ πO
x ◦ γ) =

(

1 +
1

2
sµνΩµν(π

x
O)

)

F (γ),

where we have defined the area enclosed by the infinitesimal loop δγ by

sµν = ǫ1ǫ2(u
µvν − vµuν),

with ǫ1ǫ2 infinitesimal. The quantity Ωµν(π
x
O) defines the loop derivative.

4.4 Loop deformation operator, Mandelstam derivative and the

Ricci identity

We introduce a loop-dependent operator U(α) on the space of functions of loops that
generates a finite deformation in the argument of a loop functional,

U(α)F (γ) ≡ F (α ◦ γ).

The inverse and the composition law of this operator are defined as follows:

U−1(α) = U(α−1)

and

U(α)U(β)F (γ) = U(α ◦ β)F (γ).
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We consider now a path which arises as a deformation of

γ → πxO ◦ δγ ◦ πO
x ◦ γ.

Such a valid deformation is given by

(α ◦ πxO) ◦ δγ ◦ (πO
x ◦ α−1) ◦ γ,

where πxO is deformed to α ◦ πxO and α is a loop, but α ◦ πxO is still a path. We can express
the loop derivative of this deformed path in the following way

[

1 +
1

2
sµνΩµν(α ◦ πxO)

]

F (γ) = F ((α ◦ πxO) ◦ δγ ◦ (πO
x ◦ α−1) ◦ γ). (8)

This expression can be obtained in a different way by using the operator U(α) defined
above:

U(α)F (πxO ◦ δγ ◦ πO
x ◦ α−1 ◦ γ) = U(α)

(

1 +
1

2
sµνΩµν(π

x
O)

)

F (α−1 ◦ γ)

= U(α)

(

1 +
1

2
sµνΩµν(π

x
O)

)

U(α)−1F (γ).

Comparing this expression with (8) we are lead to conclude that

Ωµν(α ◦ πxO) = U(α)Ωµν(π
x
O)U−1(α).

This relation gives us the transformation property of the loop derivative under finite de-
formation of its path dependence. In the progress of this thesis we will use this identity to
obtain the gauge invariance of the curvature tensor in the language of loops.

The next quantity to be introduced is the point derivative which is also known as the
Mandelstam derivative of loops. Let us consider a function of an open path F (πxO), a
local chart at the point x of the manifold M and a vector uµ in that chart. We define
the Mandelstam derivative by a change in the path function, if the path is extended from
point x to x+ ǫuµ:

F (πxO ◦ δu) = (1 + ǫuµDµ(x))F (πxO), δu = ǫuµ.

We denote the new path by πx+ǫuO . After this technical remarks we turn to the problem of
the Ricci identity. Let us consider an infinitesimal loop δγ, which is connected to an open
path πxO. We can realize this loop as δγ = δu δv δū δv̄. If we now use the definition of the
loop derivative, we get

F (πxO ◦ δγ) = F (πxO ◦ δγ ◦ πO
x ◦ πxO)

=

(

1 +
1

2
sµν(x) Ωµν(π

x
O)

)

F (πxO).
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It is also possible to express the functional F in terms of the Mandelstam derivative in the
following way

F (πxO ◦ δγ) ≡ F (πxO ◦ δu ◦ δv ◦ δū ◦ v̄)
= (1 + ǫ1u

µDµ(x))(1 + ǫ2v
νDν(x+ ǫ1u))

(1 − ǫ1u
κDκ(x+ ǫ1, u+ ǫ2v))(1 − ǫ2v

λDλ(x+ ǫ2v))F (πxO).

If we expand this to first order in ǫ1 and ǫ2, we observe that terms linear in ǫ1 or ǫ2 vanish.
We also recognize that the leading-order term is proportional to ǫ1ǫ2, so we get

F (πxO ◦ δγ) ≈
(

1 + ǫ1ǫ2
(

uµvνDµ(x)Dν(x) − uµvλDµ(x)Dλ(x)

−vνuκDν(x)Dκ(x) + uκvλDκ(x)Dλ(x)
))

F (πxO)

= (1 + ǫ1ǫ2u
µvν [Dµ(x), Dν(x)])F (πxO)

= (1 +
1

2
sµν [Dµ, Dν ])F (πxO),

where sµν = ǫ1ǫ2(u
µvν − uνvµ) is the infinitesimal area element. If we now compare both

expressions for F (πxO ◦ δγ) we are lead to the expression

ΩµνF (πxO) = [Dµ(x), Dν(x)]F (πxO).

This is the analogon of

[Dµ, Dν ] = Fµν ,

which is familiar from gauge theories. Later we will show that Ωµν is indeed related to the
curvature 2-form in gauge theories.

4.5 Connection derivative and its relation to the loop derivative

As we have seen in the last section, there exists a similarity between the loop derivative
Ωµν and the curvature in gauge theories. Now we introduce a derivative which corresponds
to the gauge connection. We consider a loop functional F (πxO ◦ δu ◦ πO

x+δu ◦ γ) where
πxO ◦ δu ◦ πO

x+δu means an infinitesimal loop, starting at the origin O (as the loop γ), going
to a point x, then shifted by an infinitesimal displacement δu = ǫu and running back
to the origin. If F (πxO ◦ δu ◦ πO

x+δu ◦ γ) allows an expansion in terms of the infinitesimal
displacement δu of the form

F (πxO ◦ δu ◦ πO
x+δu ◦ γ) = (1 + ǫuµΓµ(π

x
O))F (γ),

we say that F (γ) is connection differentiable and the quantity Γµ(π
x
O) ≡ Γπµ(x) is called the

connection derivative. The deformation of the loop γ which was performed above could
have been generated by the application of successive loop derivatives. So any function
which is loop differentiatble should also be connection differentiatable. We now investigate
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the relation between these two derivatives which will be similar to the relation between
connection and curvature in gauge theory. We consider an infinitesimal loop δγ

δγ = πxO ◦ δu δv δū δv̄ ◦ πO
x . (9)

Another choice for representing this loop is

δγ ≡ πxO ◦ δu ◦ πO
x+ǫ1u

◦ πx+ǫ1uO ◦ δv ◦ πO
x+ǫ1u+ǫ2v

◦πx+ǫ1u+ǫ2v
O ◦ δū ◦ πO

x+ǫ2v ◦ πx+ǫ2vO ◦ δv̄ ◦ πO
x . (10)

If we now apply the definition of the loop derivative to F (δγ ◦ γ) with δγ given in form of
equation (9) and the definition of the connection derivative of the function F (δγ ◦ γ) with
the infinitesimal loop δγ given in the form (10) we obtain

(1 + ǫ1ǫ2u
µvνΩµν(π

x
O))F (γ) = (1 + ǫ1u

µΓπµ(x))(1 + ǫ2v
νΓπν (x+ ǫ1u))

(1 − ǫ1u
κΓπκ(x+ ǫ1u+ ǫ2v))

(1 − ǫ2v
λΓπλ(x+ ǫ2v))F (γ).

If we expand all terms on the right-hand side to first order in ǫ1ǫ2 we get,

[

1 + ǫ1u
µΓπµ(x)ǫ2v

νΓπν (x) + ǫ2v
νǫ1u

µ∂µΓ
π
ν (x) − ǫ2ǫ1v

νuκΓπν (x)Γ
π
κ(x)

−ǫ1uκǫ2vν∂νΓπκ(x) + ...]F (γ)

=
[

1 + ǫ1ǫ2u
µvν
(

∂µΓ
π
ν (x) − ∂νΓ

π
µ(x) + [Γπµ(x),Γ

π
ν (x)]

)]

F (γ).

Comparing this expression with (1 + ǫ1ǫ2u
µvνΩµν(π

x
O))F (γ) we arrive at the following

relation

Ωµν(π
x
O) = ∂µΓ

π
ν (x) − ∂νΓ

π
µ(x) + [Γπµ(x),Γ

π
ν (x)].

We recognize the structural equivalence to the relation between the connection Aµ(x) and
the curvature Fµν(x) in gauge theory. Another point which we only want to mention here
without a proof is that there exists an analogue of the gauge dependence of the connection
in a gauge theory in terms of the connection derivative in loop space corresponding to a
path dependence. This culminates in the conclusion that

U(γ) = P
(
∫

γ

dyµ Γπµ(y)

)

is an operator representation of the loop γ in the space of loop functions. And from this
identity we obtain the following property of the operator U(γ),

U(γ1)U(γ2) = U(γ1 ◦ γ2),

which is easy to verify with the definition of U(γ).
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4.6 Representation of the group of loops

All the results of the above discussions are general relations in the abstract loop space.
We have recognized many formal analogies between the loop calculus and familiar gauge
theory. The next step in our investigation is to study the general relations in a particular
representation in terms of a gauge group. We will see that all kinematic structures of gauge
theories will naturally emerge if we map the group of loops onto the gauge group. More
detailed this means that gauge theories arise as representations of the group of loops. In
a certain sense we can consider the group of loop as a more fundamental object than the
gauge group. Let us consider a homomorphism of the group of loops onto a gauge group,

H : LO → G.

This homomorphism defines a mapping from a loop γ onto an element of the gauge group
H(γ) ∈ G,

H : γ → H(γ).

Because H(γ) ∈ G is a representation of the group of loops, it has to satisfy the composition
law of the loop group LO,

H(γ1)H(γ2) = H(γ1 ◦ γ2).

If we now compare the above equation with the definition of the loop operator U(γ1)F (γ2) =
F (γ1 ◦ γ2), which is valid for any loop function F (γ) and hence in particular for F (γ) =
H(γ), we conclude that H(γ) is a representation of U(γ) in the gauge group.

Let us now derive the well-known local objects which are connected with the kinematic
structure of gauge theory in the loop language. We assume that the representation H(γ) ∈
G is loop differentiable. Consider an infinitesimal loop

δγ = πxO ◦ δu ◦ πO
x+ǫu

which is attached to a given loop γ. If H(γ) is the representation of the group of loops we
get

H(πxO ◦ δu ◦ πO
x+ǫu ◦ γ) = H(πxO ◦ δu ◦ πO

x+ǫu)H(γ).

If we now use the definition of the connection derivative we have

H(πxO ◦ δu ◦ πO
x+ǫu ◦ γ) = (1 + ǫuµΓπµ(x))H(γ).

Because the infinitesimal loop δγ is close to the identity (the identity loop) and H(γ) is a
continuous differential representation that is localized in the gauge group, we must have
the expansion

H(πxO ◦ δu ◦ πO
x+ǫu) = (1 + ǫuµAπµ(x))H(γ),
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where

Aµ(x) = AaµT
a ∈ G

is some element of the algebra G of the gauge group. Using the definition of the connection
derivative we are lead (with support of the above equation) to

Γπµ(x)H(γ) = Aµ(x)H(γ).

This relation in fact implies that the connection derivative is related to the connection
of the gauge group. With an analogous discussion one shows that the loop derivative is
indeed related to the curvature:

Ωµν(π
x
O)H(γ) = Fµν(x)H(γ).

Also from the derived expression above,

Ωµν(π
x
O) = ∂µΓ

π
ν (x) − ∂νΓ

π
µ(x) + [Γπµ(x),Γ

π
ν (x)],

we find the representation of the curvature in terms of the gauge potential,

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + [Aµ(x), Aν(x)].

The path πxO in the above discussion was arbitrary. But as we have mentioned earlier,
changing the path description changes the loop derivative. To illustrate this in more detail
let us consider the transformation

πxO → χxO = α ◦ πxO, α = χxO ◦ πO
x .

Under this transformation of the path the loop derivative transforms as follows,

Ωµν(α ◦ πxO) = U(α)Ωµν(π
x
O)U−1(α).

Where we have used the results from the investigation of the loop deformation operator.
From this relation we find the transformation law of the curvature under a change of path

F ′
µν(x) = H(x)Fµν(x)H

−1(x),

where we have used

H(x) ≡ H(χxO ◦ πO
x ).

Here we recognize the usual transformation law of the curvature tensor under gauge trans-
formation. When we investigate the behaviour of the connection derivative under the above
change of the path πxO it is possible to show the validity of the following expression,

Γχµ(x) = U(x)Γπµ(x)U
−1(x) + U(x)∂µU

−1,
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with

U(x) ≡ U
(

χxO ◦ πO
x

)

.

From this relation and our discussion of the representation theory we are lead to the
transformation law of the connection under gauge transformation,

A′
µ(x) = H(x)Aµ(x)H

−1(x) +H(x)∂µH
−1.

By the definition of the loop deformation operator U(α) and the group composition law
we have

U(α)H(γ) = H(α ◦ γ) = H(α)H(γ).

Because we have mentioned earlier that it is possible to show that

U(γ) = Pexp

(
∫

γ

dyµΓπµ(y)

)

,

we observe that

U(α)H(γ) = Pexp

(
∮

dyµΓπµ(y)

)

H(γ).

If we now use the above derived relation Γπµ(x)H(γ) = Aµ(x)H(γ) we find

H(α) = Pexp

(
∮

dyµAµ(y)

)

.

We immediately recognize the familiar representation of the holonomy in terms of the gauge
potential. The above investigations show that gauge theories arise as representations of the
group of loops. All the quantities like connection and curvature can be expressed in terms of
loops. Furthermore the kinematic properties of gauge theories do not depend on the choice
of the gauge group to represent the group of loops. Or more detailed, the corresponding
generators of the group of loops are connected with curvature and connection in a more
abstract sense. Only when we investigate a particular representation of the group of loops
in terms of a gauge group these abstract quantities can be interpreted in the usual sense
of gauge theory. In this sense it is allowed to say that the loop representation of gauge
theory is more fundamental than the ordinary one.

5 Representation of the loop derivative in terms of

ordinary functional calculus

We have introduced the loop derivative in the last section in an abstract way. But because
we want to calculate with this new quantity in Quantum Field Theory we want to rep-
resent the loop derivative in a more practical manner. For our purposes the most useful
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representation for the loop derivative is the representation in terms of functional deriva-
tives which are commonly used in the QFT community. As we have used the worldline
approach to quantum field theory we have taken a first quantization approach. We have
described the quantum properties of the field with an effective particle moving on closed
curves (loops) in the background field. Due to this we can reproduce the spin-field connec-
tion upon considering the rate of change of the Wilson loop. In this approach the Wilson
loop is an element of the so called loop space (holonomy group) and therefore we have
to define a derivative operator in this space. Because we now search an expression of the
loop derivative in coordinate space we abstain from the rather abstract discussions of the
past section [19],[18]. Let us consider a closed line in coordinate space. This curve can be
described in terms of periodic functions, namely

C : xµ = Cµ(τ) = Cµ(τ + T ),

where τ is just a parameter, but in our approach it is the propertime of the particle moving
along the loops. We consider the loops as a class of periodic functions and define each loop
as a point in the loop space. We do not care about smoothness of the loops, more important
for our purposes is continuity. There is indeed the possibility that the loop intersects itself.
This happens at all points where

Cµ(τ1) = Cµ(τ2),

with τ1 6= τ2. Of course there is the possibility of more than one intersection.
The next step is to consider infinitesimal variations of a loop. Instead of the loop C

we study a product of loops C ◦ C̃. If we choose a basis in coordinate space the loops are
represented as

C : xµ = Cµ(τ), Cµ(0) = Cµ(T ) = x,

and for the other loop

C̃ : xµ = C̃µ(τ), C̃µ(0) = C̃µ(T̃ ) = x.

Our goal is to understand how we can represent the loop derivative in coordinate space.
Therefore we have to investigate variations of a loop. This is realized if we attach an
infinitesimally small loop to a ”macroscopic” one. The action of this procedure is that we
have deformed the original loop by a little ”perturbance”. This reads

C ◦ C̃ : xµ = Cµ(τ), ∀ 0 ≤ τ ≤ T,

C ◦ C̃ : xµ = C̃µ(τ − T ), ∀ T ≤ τ ≤ T + T̃ .

Therefore the connected loop C ◦ C̃ begins as the unperturbed loop C, continues as C̃ at the
common point x, circulates along the infinitesimal loop and then returns to the same point
x. We can now compare the unperturbed with the perturbed loop. This is the basis for
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the definition of a derivative. The product of the two loops is a periodic function with two
periods. We define the loop derivative as the leading part of the variation of the functional:

F (C ◦ C̃) − F (C) → sµν(C̃)
δF (C)

δsµν(x)
.

The first-order term
∫

C̃

dyγ = 0,

vanishes for our closed loops. The area element sµν is defined as

sµν(C̃) =
1

2

∫

C̃

yµ dyν,

the second order invariant. All other higher invariants also vanish because we are dealing
only with infinitesimally deformed loops. Therefore in terms of functional calculus we can
write

δF (C) = δsµν(C̃)
δF (C)

δsµν(x)
.

We mention that the area element is an antisymmetric tensor

δsµν + δsνµ =
1

2

∫

C̃

(yµdyν + yνdyµ) =
1

2

∫

C̃

d(yµyν) = 0.

If we imagine C̃ as a little plaquette in various µν planes we are able to calculate all
components of the area derivative. All the above discussions are equivalent to the comments
about the loop calculus in the last section. But as mentioned above we need a derivative in
terms of ordinary functional derivatives operating on the coordinate space representation
of the loops, because its easier to work with such expressions. Therefore we have to make
a connection between the area derivative and our familiar functional calculus. Considering
the above definition of the area derivative we want to find the functional derivative of
both sides with respect to a point xµ = C̃µ(τ) belonging to the infinitesemal loop C̃. We
differentiate sµν(C̃) and get

δsµν(C) =
1

2

∫

δCµ(τ) Ċν(τ) dτ +
1

2

∫

Cµ(τ) δĊν(τ) dτ. (11)

Where we have used that

sµν(C̃) =
1

2

∫

C̃

yµ dyν =
1

2

∫

Cµ(τ) Ċν dτ.
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After we have integrated the second term in (11) by parts we get

δsµν(C̃) =
1

2

∫

δCµ(τ) Ċν(τ) dτ −
1

2

∫

Ċν(τ) δCµ(τ) dτ.

With this expression we obtain a functional derivative with respect to the loop C

δsµν(C̃)

δC̃α(τ)
=

1

2
(δµα Ċν(τ) − δνα Ċµ(τ)).

Therefore we find

δF (C)

δCα(τ)
=

δsµν(C̃)

δC̃α(τ)
δF (C)

δsµν(τ)

=
δF

δsαβ(τ)
Ċβ(τ).

We have found a functional derivative of F with respect to the loop C. However for our
cases it is more useful to get an expression for the increment in terms of δ

δsαβ
. Therefore

we have to perform one more functional derivative and get

δ2F (C)

δCα(τ) δCβ(τ ′)
=

(

δ

δCβ(τ ′)
δF

δsαγ(τ)

)

Ċγ(τ) +

(

δĊγ(τ)
δCβ(τ ′)

)

δF

δsαβ(τ)

=

(

δ

δsαγ(τ)

δF

δCβ(τ ′)

)

Ċγ(τ) +

(

δĊγ(τ)
δCβ(τ ′)

)

δF

δsαβ(τ)

=

(

δ

δsαγ(τ)

δF

δsβη(τ ′)
Ċη(τ ′)

)

Ċγ(τ) +

(

δĊγ(τ)
δCβ(τ ′)

)

δF

δsαβ(τ)

=

(

δ

δsαγ(τ)

δF

δsβη(τ ′)

)

Ċη(τ ′) Ċγ(τ) +

(

δĊγ(τ)
δCβ(τ ′)

)

δF

δsαβ(τ)
.

In this expression we are only interested in the second, the antisymmetric part, because
our goal is to define a derivative operator in terms of the area element sαβ. As we have
shown, this one is antisymmetric, so we get

(

δ2F

δCα(τ) δCβ(τ ′)

)

antisym

= δ̇(τ − τ ′)
δF

δsαβ(τ)
.

Integrating over the small interval (τ − τ ′) with the proper weight (τ − τ ′) we arrive at the
expression

δF

δsαβ(τ)
= lim

ǫ→0

∫ ǫ

−ǫ

dρ ρ
δ2F

δCα(τ + ρ
2
) δCβ(τ − ρ

2
)
.
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We conclude that the expression for the derivative operator is

δ

δsαβ(τ)
= lim

ǫ→0

∫ ǫ

−ǫ

dρ ρ
δ2

δCα(τ + ρ
2
) δCβ(τ − ρ

2
)
.

Therefore we have an expression in terms of ordinary functional derivatives for the loop
(area) derivative. This involves on the technical side the great advantage that we can oper-
ate with well known mathematical quantities. On the other hand, with this mathematical
operator, we get a different insight into the dynamics of gauge fields, because we are now
able to study for instance the Wilson loop eie

H

Aµdxµ. As mentioned in the last section the
Wilson loop is an object of the holonomy group and the holonomoy is the parallel trans-
port matrix along a closed curve. And indeed we will calculate explicitly that, with our
notion of loop (area) derivative along a curve, it is possible to reproduce the Faraday ten-
sor. Beyond this we identify a geometrical expression for the spin-field coupling. The idea
that holonomies are the natural variables in a gauge theory can be clarified by a heuristic
argument. We can understand for example electromagnetic phenomena in terms of ”lines
of force”. Two key ideas underlie this intuition. First, the relevant physical variables fill
up space. This notion is indeed the origin of field theory. Second, the relevant variables
do not refer to what happens at a point, but rather refer to the relation between different
points connected by a line. The mathematical quantity that expresses this idea is the
holonomy of the gauge potential along the line. And in the approach followed in this thesis
the dynamics of the system is coupled to the Wilson loop.
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6 Loop derivative representation of the worldline path

integral

In this section we develop an alternative approach to the fermionic worldline integral.
In terms of the directly developed methods of ”loop-calculus” it is possible to formulate
the worldline integral in a more geometrical context. In this approach all the dynamical
entities, even the gauge field quantities like connection and curvature appear in a natural
manner. The goal of this section is to develop a worldline expression in terms of the area
derivative and to show that the obtained quantity is equivalent to the standart result of
the worldline expression. We want to show first that the loop derivative applied to the
Wilson loop gives us the familiar result for the worldline integral. The first step in this
calculation is to show that the action of the loop (area) derivative on the Wilson loop (the
holonomy) indeed gives us the spin field connection. That means we have to show that the
following relation is valid

〈Wspin[A]〉 =

∫

Dx(τ) eie
H

dxA trγPe
e
2

R

dτσF e−
R

dτ
ẋ2(τ)

4

=

∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) eie

H

dxA
]

e−
R

dτ ẋ
2(τ)
4 ,

where δ
δs(τ)

is our operator of the loop derivative and all dτ integrals are meant as
∫ T

0
dτ

in the progress of this thesis if not explicitly mentioned otherwise. In coordinate space the
above expression takes the form

δ

δsµν(τ)
= lim

ǫ→0

ǫ
∫

−ǫ

dρρ
δ2

δxµ(τ + ρ
2
) δxν(τ − ρ

2
)
.

Therefore we have to prove that the action of the exponentiated loop derivative on the
Wilson loop reproduces the spin coupling term in the path integral. In formulas

Pe− i
2

R

dτσ δ
δs(τ) eie

H

dxA = eie
H

dxA Pe e2
R

dτσF .

To obtain this identity we expand the eponential operator in terms of δ
δs(τ)

and get

(

1 +

(

− i

2

)
∫

dτσ
δ

δs(τ)
+ ...

)

exp

[

ie

∫

dτ ′ ẋµ(τ
′)Aµ(x(τ ′))

]

.

6.1 First-order calculation

At first we restrict ourselves to the action of the leading order term, the linear one, in order
to gain some experience with the calculational techniques,

(

− i

2

∫

dτ σµν
δ

δsµν(τ)

)

exp

[

ie

∫

dτ ′ ẋµ(τ
′)Aµ(x(τ ′))

]

.

42



Let us investigate the action of one of the functional derivatives, namely δ
δxν(τ−

ρ
2
)
. Applied

to the Wilson loop we obtain the following relation

δ

δxν(τ − ρ
2
)

exp

[

ie

∫

dτ ′ ẋµ(τ
′)Aµ(x(τ ′))

]

=
δ

δxν(τ − ρ
2
)

exp [K]

= exp [K] ie

∫

dτ ′
[(

δẋµ(τ
′)

δxν(τ − ρ
2
)

)

Aµ(x(τ ′)) + ẋµ(τ
′)

(

δAµ(x(τ ′))

δxν(τ − ρ
2
)

)]

= exp [K] ie

∫

dτ ′
[

δ̇
(

τ ′ −
[

τ − ρ

2

])

Aν(x(τ ′)) + ẋµ(τ
′)
∂Aµ(x(τ ′))

∂xν
δ
(

τ ′ −
[

τ − ρ

2

])

]

= exp [K] ie

∫

dτ ′
[

−δ
(

τ ′ −
[

τ − ρ

2

])

Ȧν(x(τ ′)) + ẋµ(τ
′)
∂Aµ(x(τ ′))

∂xν
δ
(

τ ′ −
[

τ − ρ

2

])

]

.

In the last line we have integrated the first term by parts. Now we perform the τ ′ integral
and get

exp [K] ie

[

ẋµ
∂Aµ(x(τ − ρ

2
))

∂xν
− Ȧν

(

x
(

τ − ρ

2

))

]

= exp [K] ie

[

dxµ

dτ

∂Aµ(x(τ − ρ
2
))

∂xν
− dxµ

dτ

∂Aν(x(τ − ρ
2
))

∂xµ

]

= exp [K] (−ie) ẋµF µν(τ − ρ

2
),

where the propertime argument always refers to all τ -dependent quantities in each term
unless stated otherwise. The next step is to perform the second derivative:

δ

δxµ(τ + ρ
2
)

(

−exp [K] ie ẋαF
αν(τ − ρ

2
)
)

=

(−δ exp [K]

δxµ(τ + ρ
2
)

)

ie ẋα(τ −
ρ

2
) F αν − exp [K] ie

(

δ[ẋα(τ − ρ
2
) F αν(x(τ − ρ

2
))]

δxµ(τ + ρ
2
)

)

= exp[K](ie)2 ẋβF
βµ(x(τ +

ρ

2
)) ẋαF

αν(x(τ − ρ

2
))

−exp[K] ie

[

δẋα(τ − ρ
2
)

δxµ(τ + ρ
2
)
F αν + ẋα

δF αν(x(τ − ρ
2
))

δxµ(τ + ρ
2
)

]

= A− exp[K]ie

[

δ̇(−ρ) δαµF αν(x(τ − ρ

2
)) + ẋα

∂F αν

∂xµ
δ(−ρ)

]

,

where we have put A = exp[K] (ie)2 ẋβF
βµ(x(τ + ρ

2
))ẋαF

αν(x(τ − ρ
2
)). Then we get

δ2 exp[K]

δxν(τ − ρ
2
)δxµ(τ + ρ

2
)

= A− (ie) exp[K]

[

δ̇(ρ) F µν(x(τ − ρ

2
)) +

(

ẋα
∂F αν

∂xµ
(τ − ρ

2
)

)

δ(ρ)

]

.
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Next we perform the integral over ρ. For this, we have to calculate

lim
ǫ→0

ǫ
∫

−ǫ

dρρ
δ2 exp[K]

δxµ(τ + ρ
2
) δxν(τ − ρ

2
)

= lim
ǫ→0

ǫ
∫

−ǫ

dρρ

(

A− (ie) exp[K]

[

δ̇(ρ) F µν(x(τ − ρ

2
)) + ẋα

∂F αν

∂xµ
(τ − ρ

2
) δ(ρ)

])

.

For the term ∼ δ(ρ), we can carry out the ρ integral and obtain

lim
ǫ→0

ǫ
∫

−ǫ

dρρ

(

−(ie) exp[K] ẋα
∂F αν

∂xµ
δ(ρ)

)

= 0.

Assuming that ẋF is sufficiently smooth immediately leads us to

lim
ǫ→0

∫ ǫ

−ǫ

dρρ A = 0. (12)

Actually, we will see later (cf. sect. with Green’s functions 6.2) that this assumption
could be too naive. Nevertheless, (12) does indeed hold also for Wick-contracted worldline
products as will become clear in the next section. So we only have to deal with the
expression

(−ie) exp[K] lim
ǫ→0

ǫ
∫

−ǫ

dρ δ̇(ρ)
(

ρ F µν(x(τ − ρ

2
)
)

.

After integration by parts we get

(ie) exp[K]

ǫ
∫

−ǫ

dρ

[

dρ

dρ
F µν(x(τ − ρ

2
)) + ρ

dF µν

dρ

]

δ(ρ) = (ie) F µν(x(τ)) exp[K].

To summarize, we finally obtain to first order in the spin-factor expansion

− i

2

∫

dτ σµν
δexp[K]

δsµν(τ)
= − i

2

(
∫

dτ σµν (ie) F µν(x(τ))

)

exp[K]

=

(

e

2

∫

dτ σµνF
µν

)

exp[K],

which in itself is an exact result. This is indeed the first-order term of the general expression
Pexp [ e

2

∫

dτσF ] exp[ie
∫

dτ ẋA]. Therefore we have shown that the action of the area
derivative gives us (at least in first order approximation ) the familiar result of the worldline
representation. This also shows that the action of the area derivative to the holonomy (the
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Wilson loop) indeed produces the field-strength tensor. So we get, with our definition of the
derivative operator, automatically the spin-field connection from the action on the Wilson
loop. Most importantly we observe that in the ǫ limit only terms survive, if they contain a
derivative of the delta function. This fact is essential for any non-zero spin-field coupling
contribution and will be frequently used in the progress of the thesis. To be precise, any
less singular term vanishes in the limit ǫ → 0, whereas more singular terms, e.g.∼ δ̈(ρ)
would be ill-defined. As will become obvious in the following sections, more singular terms
can indeed occur in various places, but we will be able to demonstrate that these ill-defined
singularities do always cancel in the total sum of all terms. As a rule of general validity,
it will turn out that we have to watch out for only those terms ∼ δ̇(ρ), as we have just
learnt from this first-order calculation. Note that this structure arises from the contraction
of terms containing one ẍ and one ẋ. The next step in our calulation for demonstrating
the equivalence between the two approaches is to enter the next orders in the expansion
of Pexp[− i

2

∫

dτσ δ
δs(τ)

]. We have to show that the resulting expression together with

the Wilson loop indeed develop the exponential series for exp [ e
2

∫

dτσF ]exp[ie
∫

dτ ẋA].
Because we need to take care of the fact that worldline monomials are subject to Wick
contractions in this demonstration, we first have to analyze the worldline propagators and
their derivatives.
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6.2 Worldline Green’s functions

To obtain the worldline Green’s function we have to calulate the quantity 〈τ1| G |τ2〉 =
G(τ1, τ2) defined by 〈 xµ(τ1) xν(τ2)〉 = −δµν G(τ1, τ2). We extract the worldline Green’s
function from the generating functional of worldline correlators (not to be confused with
the Schwinger functional)

Z[J ] =

∫

Dx(τ) e−
1
2

R

dτ xµ(τ)
h

− 1
2
d2

dτ2
δµν

i

xν(τ)+xα(τ)Jα(τ)

∫

Dx(τ) e−S

= exp

(

1

2

∫

dτ Jµ(τ1)

[

−1

2

d2

dτ 2
δµν

]−1

Jν(τ2)

)

,

where we have used the formula
∫

Dx e− 1
2
〈x,A x〉+〈J,x〉

∫

Dx e− 1
2
〈x,A x〉

= e
1
2
〈J,A−1J〉.

It is easy to derive the Green’s function from the generating functional. We can do so by
differentiating Z[J ] twice with respect to J :

δ2Z[J ]

δJµ(τ1) δJν(τ2)
=

∫

Dx(τ) xµ(τ)xν(τ) e−S
∫

Dx(τ) e−S = 〈xµ(τ1)xν(τ2)〉

=

[

−1

2

d2

dτ 2
δµν

]−1

(τ1,τ2)

= −δµν 2

[

d

dτ

]−2

(τ1,τ2)

= −δµν G(τ1, τ2).

Let us now calculate the quantity G,

G → G(τ1, τ2) = 〈τ1| G |τ2〉.

For this we consider again the eigenfunctions of the derivative operator on the circle with
circumference T , {e2πin τT , n ∈ Z\{0}}. Here we exclude the zero mode n = 0 which simply
corresponds to a global center-of-mass shift of the worldline. We can write

2 〈τ1|
[

d

dτ

]−2

|τ2〉 = 2
∑

n

〈τ1|n〉
[

d

dτ

]−2

〈n|τ2〉

= 2
∑

n

1√
T
e−2πin

τ1
T

[

d

dτ

]−2
1√
T
e2πin

τ2
T .

Because we have the eigenfunctions of the derivative operator, it is easy to calculate the
eigenvalues of the inverse derivative operator, because we know that A |n〉 = an |n〉 →

46



A−1|n〉 = an
−1|n〉. Therefore we apply the derivative operator to the eigenfunctions and

invert the corresponding eigenvalues.

[

d

dτ

]2
1√
T
e2πin

τ
T =

(

2πin

T

)2
1√
T
e2πin

τ
T .

Using the above mentioned conclusion about diagonal operators, we get

[

d

dτ

]−2
1√
T
e2πin

τ
T =

(

T

2πin

)2
1√
T
e2πin

τ
T .

Inserting this into the definition for the propagator we get

G(τ1, τ2) = 2
∑

n

1√
T
e−2πin

τ1
T

(

T

2πin

)2
1√
T
e2πin

τ2
T

= 2T

∞
∑

n=−∞
n6=0

e2πin
(τ2−τ1)

T

(2πin)2

= |τ2 − τ1| −
(τ2 − τ1)

2

T
.

Here we have suppressed a constant term that does not contribute to physical amplitudes.
The full worldline propagator reads

〈xµ(τ1)xν(τ2)〉 = −δµν G(τ1, τ2)

= −δµν |τ2 − τ1| + δµν
(τ2 − τ1)

2

T
.

This quantity describes the propagation of a particle in four-dimensional space on the
worldline. Like the use of propagators in conventional quantum field theory, the worldline
propagator pictures the quantum dynamics of the effective particle (which is as mentioned
above just another formulation for our effective action, the quantum theory of the field
under study). We also need derivatives of the Green’s function with respect to τ . In the fol-
lowing, we list a number of derivates of the worldline Green’s function Gµν = 〈xµ(τ1)xν(τ2)〉:

〈ẋµ(τ1)xν(τ2)〉 =

[

−sign(τ1 − τ2) +
2

T
(τ1 − τ2)

]

δµν ,

〈ẍµ(τ1)xν(τ2)〉 =

[

−2 δ(τ1 − τ2) +
2

T

]

δµν ,

〈ẋµ(τ1)ẋν(τ2)〉 =

[

2 δ(τ1 − τ2) −
2

T
τ2

]

δµν ,
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〈ẍµ(τ1)ẋν(τ2)〉 = 2 δ̇(τ1 − τ2) δµν , (13)

and finally

〈ẍµ(τ1)ẍν(τ2)〉 = −2 δ̈(τ1 − τ2) δµν .

Because the worldline Green’s function and their derivatives are symmetric under permu-
tation of the indices 〈xµ(τ1)xν(τ2)〉 = 〈xν(τ1)xµ(τ2)〉, other possible contractions can be
deduced from this list. As we have observed in the last section it is important to get terms
which involve a derivative of the delta function for ”surviving” the ǫ limit. Upon close
inspection of the above-calculated identities, we recognize that only the term (13) will give
us such a mathematical structure. This observation will be important later. The higher
order derivatives are not important, since induced selfcontractions will ensure that all these
terms do vanish.
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6.3 Complete loop derivative representation

We have already performed the calculation to first order in the loop derivative in subsec-
tion 6.1. The next challenge will be to prove that Pexp[− i

2

∫

dτσ δ
δs(τ)

] exp[ie
∫

dτẋA] =

Pexp[ e
2

∫

dτσF ]exp[ie
∫

dτẋA] is valid to all orders of the expansion. For the following
calculations, the path ordering does not play a role. Path ordering takes care of the proper
order of the Dirac matrices along the path. Since the following arguments do not rely
on the properties of the Dirac algebra, we simply suppress the path ordering symbol and
reinstate it, when it comes to the final and complete relations that we intend to prove. Let
us start by expanding the derivative operator

exp

[

− i

2

∫

dτσ
δ

δs(τ)

]

exp

[

ie

∫

dτẋA

]

=

(

1 +

(

− i

2

∫

dτσ
δ

δs(τ)

)

+
1

2

(

− i

2

∫

dτσ
δ

δs(τ)

)2

+ ...

)

exp

[

ie

∫

dτẋA

]

.

We calculated the first term in the subsection 6.1 and got

− i

2

∫

dτ σµν
δexp[K]

δsµν(τ)
=

(

e

2

∫

dτ σµνF
µν

)

exp[K],

where we have chosen K =
[

ie
∫

dτẋA
]

. Let us now concentrate on the second-order term
which is highly instructive to be studied in detail:

1

2

(

− i

2

∫

dτσ
δ

δs(τ)

)2

exp[K]

=
1

2

(

− i

2

∫

dτ ′′σ
δ

δs(τ ′′)

)(

− i

2

∫

dτ ′σ
δ

δs(τ ′)

)

exp

[

ie

∫

dτẋA

]

=
1

2

(

− i

2

∫

dτ ′′σ
δ

δs(τ ′′)

)[(

e

2

∫

dτ ′ σµνF
µν(x(τ ′))

)

exp[K]

]

=
e

4



− i

2
lim
ǫ→0

ǫ
∫

−ǫ

dρρ

∫

dτ ′dτ ′′ σµνσκλ
δ2 (F µν(x(τ ′)) exp[K])

δxκ(τ ′′ − ρ
2
) δxλ(τ ′′ +

ρ
2
)



 .

We have to evaluate the action of the derivative operator on the product of the field-strength
tensor and the Wilson loop. In this mathematical process we get additional terms to our
desired result. In the progress of the calculation we will show that these counterterms do
not at all contribute to our worldline path integral, leading to the expected result, namely
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our well known expression for the expectation value of the Wilson loop.

1

2

(

− i

2

∫

dτσ
δ

δs(τ)

)2

exp[K]

=
e

4



− i

2
lim
ǫ→0

ǫ
∫

−ǫ

dρρ

∫

dτ ′dτ ′′ σµνσκλ
δ

δxκ(τ − ρ
2
)





×
[

δF µν(x(τ ′))

δxλ(τ + ρ
2
)

exp[K] + F µν(x(τ ′))
δexp[K]

δxλ(τ + ρ
2
)

]

=
e

4



− i

2
lim
ǫ→0

ǫ
∫

−ǫ

dρρ

∫

dτ ′dτ ′′ σµνσκλ





×
(

δ
[

∂Fµν(x(τ ′))
∂xλ

δ
(

τ ′ −
[

τ + ρ
2

])

]

δxκ(τ − ρ
2
)

exp[K] +
∂Fµν(x(τ

′))

∂xλ
δ
(

τ ′ −
[

τ +
ρ

2

])

× δexp[K]

δxκ(τ − ρ
2
)

+
δF µν(x(τ ′))

δxκ(τ − ρ
2
)

δexp[K]

δxλ(τ + ρ
2
)

+ F µν(x(τ ′))
δ2exp[K]

δxλ(τ + ρ
2
)δxκ(τ − ρ

2
)

)

=
e

4



− i

2
lim
ǫ→0

ǫ
∫

−ǫ

dρρ

∫

dτ ′dτ ′′ σµνσκλ





(

[(

δ

δxκ(τ − ρ
2
)

∂F µν(x(τ ′))

∂xλ

)

δ
(

τ ′ −
[

τ +
ρ

2

])

]

exp[K]

+

[

∂F µν(x(τ ′))

∂xλ
δ
(

τ ′ −
[

τ +
ρ

2

])

]

δexp[K]

δxκ(τ − ρ
2
)

+

[

∂F µν(x(τ ′))

∂xκ
δ
(

τ ′ −
[

τ − ρ

2

])

]

δexp[K]

δxλ(τ + ρ
2
)

+F µν(x(τ ′))
δ2exp[K]

δxλ(τ + ρ
2
)δxκ(τ − ρ

2
)

)

.

We can see that the last term gives us the desired result for the second order in the
expansion of the exponential function. It remains to be shown that the additional terms
do not contribute to the worldline path integral. First let us have a more precisely look at
the first term of the sum. We want to determine the limit of the integral

lim
ǫ→0

ǫ
∫

−ǫ

dρρ

∫

dτ ′dτ ′′
(

δ

δxκ(τ − ρ
2
)

∂F µν(x(τ ′))

∂xλ

)

δ
(

τ ′ −
[

τ +
ρ

2

])

exp[K]

= lim
ǫ→0

ǫ
∫

−ǫ

dρρ

∫

dτ ′dτ ′′
[

∂κ∂λF
µν(τ ′)δ

(

τ ′ −
[

τ − ρ

2

])]

δ
(

τ ′ −
[

τ +
ρ

2

])

exp[K],
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where we have supressed the σ matrices and the constant coefficients. Performing the
τ ′-integral we get

∫

dτ lim
ǫ→0

ǫ
∫

−ǫ

dρρ ∂κ∂λF
µν(τ +

ρ

2
) exp[K] δ

([

τ +
ρ

2

]

−
[

τ − ρ

2

])

=

∫

dτ ∂κ∂λF
µν exp[K] lim

ǫ→0

ǫ
∫

−ǫ

dρρ δ (ρ) = 0.

The first problematic term is defused. But there still remain the other unwanted terms.
We make use of the singularity structure of derivatives of the worldline propagators. We
showed that we only get a δ̇ structure, if we contract ẋ and ẍ with corresponding arguments.
Let us show next that these contractions are absent. Therefore the other two ”disturbing”
terms also do not contribute to our worldline expression. For this reason we expand the
derivative of the Faraday tensor into a Taylor series,

[

∂F µν(x(τ ′))

∂xλ
δ
(

τ ′ −
[

τ +
ρ

2

])

]

δexp[K]

δxκ(τ − ρ
2
)

=
[

(

∂λF
µν(0) + ∂λ∂γF

µν(0)xγ(τ ′) + O(x2)
)

δ
(

τ ′ −
[

τ +
ρ

2

]) ]

×
[

(ie) exp[K] ẋµ(τ −
ρ

2
) F µκ(τ − ρ

2
)
]

,

where we have used that the functional derivative in terms of xκ of the Wilson loop obeys
the relation in the second bracket. We multiply the both brackets and get only terms of
the type xnẋ, with n ∈ N . If we consider this fact in connection with the path integral
which needs to perfomed, we see that there are no contractions that can give us a nonzero
ǫ limit. This is because we never get contractions of the type 〈ẍẋ〉 which would lead to a
δ̇ function with nonzero ǫ limit. Because of this argument the above expression and the
analogous one vanish. Incidentally, the same argument provides for the final justification
of (12). We conclude that the only term with a chance to contribute to our worldline path
integral is

e

4





∫

dτ ′dτ ′′ σµνσκλ F
µν(x(τ ′))

(

− i

2

)

lim
ǫ→0

ǫ
∫

−ǫ

dρρ
δ2exp[K]

δxλ(τ + ρ
2
)δxκ(τ − ρ

2
)



 .

The second term is of the same form as the expression that we have calculated earlier.
Therefore we get

e2

8

∫

dτ ′dτ ′′ σµνσκλ F
µν(x(τ ′)) F κλ(x(τ ′′)) exp[K] =

1

2

(

e

2

∫

dτ σF

)2

exp[K].

This is exactly the second-order term in the expansion of the spin-field term. For all higher
orders we can use the identical argument as developed in the above calulation. Only terms
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of the last type appear in the calculations, all other terms do not contribute to the worldline
path integral. Reinstating the path ordering we have therefore shown that

〈Wspin[A]〉 =

∫

Dx(τ) eie
H

dxA trγ Pe e2
R

dτσF e−
R

dτ
ẋ2(τ)

4

=

∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) eie

H

dxA
]

e−
R

dτ
ẋ2(τ)

4 ,

is indeed an alternative representation of the familiar worldline representation as was ar-
gued in [27],[28]. In principle, it is not surprising that the action of the loop derivative
on the holonomy gives an expression in terms of the Faraday tensor, with regard to our
comments on the representation theory of the loop algebra. But we had to verify this
statement by this straightforward calculation, because we work in coordinate space, which
is the basis for expressing the loop derivative. On the other hand we will exploit this
result frequently in the progress of this calculation, which is also done in coordinate space.
Moreover, we have learnt a great deal about the singularity structure of the loop derivative
which is of significant importance for the remainder of this work.

6.4 Spin factor geometry

Let us now integrate the new worldline expression by parts in order to obtain a geometric
representation of the spin coupling. We have to do the integration twice, because δ

δs(τ)
is

an operator where two derivatives in x appear. Then we get

〈Wspin[A]〉 =

∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) eie

H

dxA
]

e−
R

dτ
ẋ2(τ)

4

=

∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) e−

R

dτ ẋ
2(τ)
4

]

eie
H

dxA. (14)

We evaluate the action of the loop derivative on the kinetic term. Let us confine ourselves
again first to the leading order of the exponential series. Therefore we test the action of
δ

δs(τ)
on the kinetic term,

(

− i

2

∫

dτσ
δ

δs(τ)

)

exp

(

−
∫

dτ
ẋ2(τ)

4

)

= − i

2

∫

dτσ lim
ǫ→0

ǫ
∫

−ǫ

dρρ
δ2exp[I]

δxµ(τ + ρ
2
)δxν(τ − ρ

2
)
,
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where we have abbreviated I = −
∫

dτ ẋ
4
. We have to perform an anlagous calculation as

in the case of the loop derivative of the Wilson loop,

δ exp[I]

δxν(τ − ρ
2
)

= exp[I]

(

−1

4

)
∫

dτ ′
δ {ẋµ(τ ′)ẋµ(τ ′)}
δxν(τ − ρ

2
)

= exp[I]

(

−1

2

)
∫

dτ ′ ẋν(τ
′) δ̇

(

τ ′ −
[

τ − ρ

2

])

= exp[I]

(

1

2

)
∫

dτ ′ ẍν(τ
′) δ
(

τ ′ −
[

τ − ρ

2

])

=
1

2
exp[I] ẍν(τ −

ρ

2
),

where we have integrated by parts in the third line and used the periodic boundary condi-
tions. The second derivative to this term gives us

δ exp[I]

δxµ(τ + ρ
2
)δxν(τ − ρ

2
)

=
δ

δxµ(τ + ρ
2
)

(

1

2
exp[I] ẍν(τ −

ρ

2
)

)

=
1

2

(

δ exp[I]

δxµ(τ + ρ
2
)

)

ẍν(τ −
ρ

2
) +

1

2
exp[I]

(

δẍν(τ − ρ
2
)

δxµ(τ + ρ
2
)

)

⇒ 1

4
ẍµ(τ +

ρ

2
)ẍν(τ −

ρ

2
) exp[I].

We do not need to take the second term into account, because the contraction over Lorentz
indices ensures that this term vanishes σµνδµν δ̈(ρ) = 0. This follows from the antisymmetry
of the σ matrix (this is a trivial symmetry property of σ, beeing unrelated to the full Dirac-
algebra structure). At this point, it should be emphasized that the ǫ limit has to be taken
at the very end of a calculation as is apparent from its construction, otherwise a term ∼ δ̈
would be ill-defined. We conclude that

(

− i

2

∫

dτσ
δ

δs(τ)

)

exp[I] =

(

− i

2

∫

dτ σµν ωµν(τ)

)

exp[I],

where we have defined

ωµν(τ) =
1

4
lim
ǫ→0

ǫ
∫

−ǫ

dρρ ẍµ(τ +
ρ

2
)ẍν(τ −

ρ

2
).

It is this ω term that carries the information that was previously encoded in the field
strength tensor. At this point, it is important to stress that our ωµν is significantly different
from Polyakov’s spin factor ωPµν ∼ (ẍµẋν − ẍν ẋµ), arising in the first-order formalism. For
instance, our ωµν = 0 for any smooth loop, whereas ωPµν is generally nonzero then. The
question is now, whether equation (14) has a representation in terms of ωµν to all orders
in the expansion ? For answering this, let us go to the next order in the Taylor expansion.
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Recapitulating, we have to scrutinize if the following relation can be valid

(

1 +

(

− i

2

∫

dτσ
δ

δs(τ)

)

+
1

2

(

− i

2

∫

dτσ
δ

δs(τ)

)2

+ ...

)

exp[I]

?
=

(

1 +

(

− i

2

∫

dτ σ ω(τ)

)

+
1

2

(

− i

2

∫

dτ σ ω(τ)

)2

+ ...

)

exp[I].

As we have shown above this is indeed valid in linear order. Let us now concentrate on
the second order term,

(

− i

2

∫

dτσ
δ

δs(τ)

)2

exp[I] =

(

− i

2

∫

dτ2 σ
δ

δs(τ2)

)(

− i

2

∫

dτ1 σ
δ

δs(τ1)

)

exp[I]

=

(

− i

2

∫

dτ2 σ
δ

δs(τ2)

)(

− i

2

∫

dτ1 σ ω(τ1)

)

exp[I].

In coordinates this expression transforms into

−1

4
lim
ǫ→0

ǫ
∫

−ǫ

dη η

∫

dτ2dτ1 σλκ σµν
δ2(ωµν(τ1)exp[I])

δxλ(τ2 + η
2
)δxκ(τ2 − η

2
)
. (15)

Let us analyze the action of the derivatives,

δ2(ωµν(τ1)exp[I])

δxλ(τ2 + η
2
)δxκ(τ2 − η

2
)

=
δ

δxλ(τ2 + η
2
)

[

δωµν(τ1)

δxκ(τ2 − η
2
)

exp[I] + ωµν(τ1)
δexp[I]

δxκ(τ2 − η
2
)

]

.

When we apply the second derivative operator we get

[

δ2ωµν(τ1)

δxλ(τ2 + η
2
)δxκ(τ2 − η

2
)

exp[I] +
δωµν(τ1)

δxκ(τ2 − η
2
)

δexp[I]

δxλ(τ2 + η
2
)

+
δωµν(τ1)

δxλ(τ2 + η
2
)

δexp[I]

δxκ(τ2 − η
2
)

+ ωµν(τ1)
δ2exp[I]

δxκ(τ2 − η
2
)δxλ(τ2 + η

2
)

]

.

If we reinsert this expression into (15) we obtain

−1

4

∫

dτ2dτ1σλκσµν

[(

δωµν(τ1)

δsλκ(τ2)
+ ωµν(τ1)ωλκ(τ2)

)

exp[I]

+ lim
ǫ→0

ǫ
∫

−ǫ

dηη

(

δωµν(τ1)

δxκ(τ2 − η
2
)

δexp[I]

δxλ(τ2 + η
2
)

)(

δωµν(τ1)

δxλ(τ2 + η
2
)

δexp[I]

δxκ(τ2 − η
2
)

)]

. (16)

We can see that there indeed exists the term we would like to have (the second term in the
first line), but there are also further terms. Therefore to all orders we get always the term
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needed for building the exponential series but we also get many other derivative terms.
For the time being we can write the resulting expression in the following way,

∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) e−

R

dτ
ẋ2(τ)

4

]

eie
H

dxA

=

∫

Dx(τ)
[

trγ P
(

e−
i
2

R

dτσω + derivative terms
)

e−
R

dτ
ẋ2(τ)

4

]

eie
H

dxA.

It is important to stress that it is absolutely necessary that these derivative terms appear.
As we will see these additional terms ensure that the limit F → 0 is actually meaningful.
Let us dedicate a short subsection why this special limit (and therefore also the obtained
derivative terms) is so important:

6.5 The F → 0 limit of the spin factor representation

Here we want to investigate how the spin factor representation behaves, if we put the field
strength to zero. Because we have shown that the ”old” worldline path integral and our
new expression are equivalent, we expect that there is no distinction in the behaviour of the
two expressions if we set F to zero. We will represent this important detail in two parts.
The first one is a physically motivated approach that demands that the loop derivative
operating on the ”free” kinetic term does not contribute to the path integral. The second
statement is a pure mathematical one about the behaviour of total derivatives. We have
shown above that the following relation is valid

N
∫

Dx(τ) eie
H

dxA trγ Pe e2
R

dτσF e−
R

dτ
ẋ2(τ)

4

= N
∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) eie

H

dxA
]

e−
R

dτ ẋ
2(τ)
4 ,

where we have defined N−1 =
∫

Dx(τ) e−
R

dτ ẋ
2(τ)
4 . If we instead send F in the first line to

zero we get,

lim
F→0

∫

Dx(τ) eie
H

dxA trγ Pe e2
R

dτσF e−
R

dτ ẋ
2(τ)
4

∫

Dx(τ) e−
R

dτ ẋ
2(τ)
4

= 1 .

If we now consider the expression with the loop derivative we conclude that all powers of
δ

δs(τ)
will vanish in this limit

lim
F→0

N
∫

Dx(τ)
[

trγ e
− i

2

R

dτσ δ
δs(τ) eie

H

dxA
]

e−
R

dτ
ẋ2(τ)

4

= N
∫

Dx(τ) trγ

[

1 +

(

− i

2

∫

dτσ
δ

δs(τ)

)

+
1

2

(

− i

2

∫

dτσ
δ

δs(τ)

)2

+ ...

]

e−
R

dτ
ẋ2(τ)

4

!
= 1 ,
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where we have used the association between the Faraday tensor and the connection one
form. Additionally we have expanded the exponential function. In this representation it
is easy to see that all terms with δ

δs(τ)
have to vanish if both worldline expressions are

equivalent. That this is indeed the case can proven by the following argument. Let us
consider the total derivative of a Gaußian path integral

∫

Dx(τ)
(

δ

δxµ(τ)

)

exp[−S] = exp[−S]

∣

∣

∣

∣

+∞

−∞

−
∫

Dx(τ) 0 · exp[−S] = 0 ,

where we have integrated by parts and assumed that the exponential function vanishes at
infinity, which is the case for S =

∫

dτ ẋ
2

4
. This result can be generalized to any order in

the derivative, so we are lead to
∫

Dx(τ)
(

δ

δs(τ)

)n

exp[−S] = 0 , ∀n ∈ N.

This ensures that the limit F → 0 for both cases agrees. The question now is what happens
with this limit, if we work with the worldine integral which we obtained after integration
by parts of expression (14)

N
∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) eie

H

dxA
]

e−
R

dτ
ẋ2(τ)

4

= N
∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) e−

R

dτ ẋ
2(τ)
4

]

eie
H

dxA.

We have shown in (16) that the following relation is valid in terms of the Taylor expansion.
The expanded quantity is in each case the first factor in the square brackets,

N
∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δs(τ) e−

R

dτ
ẋ2(τ)

4

]

eie
H

dxA

= N
∫

Dx(τ)
[

trγ P
(

e−
i
2

R

dτσω + derivative terms
)

e−
R

dτ
ẋ2(τ)

4

]

eie
H

dxA .

And in the above mentioned F → 0 limit this expression transforms to

N
∫

Dx(τ) trγP
(

e−
i
2

R

dτσω + derivative terms
)

e−
R

dτ
ẋ2(τ)

4 (17)

At a first glance this expression does not seem to be equal to one, but it has to be, as the
F → 0 limit proves. This tells us that the derivative terms must exactly correspond to the
self contractions of the spinor factor,

1 =

∫

Dx(τ) trγP
(

e−
i
2

R

dτσω + derivative terms
)

e−
R

dτ
ẋ2(τ)

4

∫

Dx(τ) e−
R

dτ
ẋ2(τ)

4

≡
〈

trγP
(

e−
i
2

R

dτσω − self contractions
)〉

. (18)
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we can rephrase this fact in terms of an operator language: in order to satisfy (18), the
spin factor must be normal ordered:

N
∫

Dx(τ) trγP
(

e−
i
2

R

dτσω + derivative terms
)

e−
R

dτ
ẋ2(τ)

4

= N
∫

Dx(τ) trγ P : e−
i
2

R

dτσω : e−
R

dτ
ẋ2(τ)

4 = 1,

where N−1 =
∫

Dx(τ) e−
R

dτ
ẋ2(τ)

4 . This justifies our claim that the derivative terms ensure
the validity of the F → 0 limit. As a next step, we will confirm the identification of the
additional derivative terms with the self-contractions explicitly to lowest nontrivial order.
Though this identification is proven to all orders by the F → 0 limit, the calculation is
instructive and reassuring. To summarize, it is the set of self-contractions that takes care
of the fact that all terms which are more singular then δ̇ do indeed cancel, such that all ǫ
limits of the loop derivative remain well defined and finite.
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6.6 Explicit example:“self-contractions at work”

As we have seen in 6.5 the consistency of our approach can be checked with the limit F → 0
of the worldline integral. With our formal definition for the normalordering procedure we
have ensured that this limit is manifestly controlled. Now we want to illustrate explicitly
how this is realized by the additional derivative terms that we have recognized as the
self-contractions. Let us recall this term to second order in the Taylor expansion (16),

−1

4
P
∫

dτ2dτ1σλκσµν

((

δωµν(τ1)

δsλκ(τ2)
+ ωµν(τ1)ωλκ(τ2)

)

exp[I] (19)

+ lim
ǫ2→0

ǫ2
∫

−ǫ2

dηη

[(

δωµν(τ1)

δxκ(τ2 − η
2
)

δexp[I]

δxλ(τ2 + η
2
)

)

+

(

δωµν(τ1)

δxλ(τ2 + η
2
)

δexp[I]

δxκ(τ2 − η
2
)

)])

.

We see that this expression can be written as

[

(

− i

2

∫

dτσω(τ)

)2

+ derivative terms

]

exp[I].

Next we want to investigate what happens if we perform the path integration of this
expression in the limit F → 0. We have observed from this limit that the derivative terms
must correspond to the self-contractions of the spin factor. In the following, we intend
to confirm this by explicit computation to this order. For this we have to calculate the
functional derivatives of the derivative terms

δωµν(τ1)

δsλκ(τ2)
= lim

ǫ2→0

ǫ2
∫

−ǫ2

dηη
δ2

δxκ(τ2 − η
2
)δxλ(τ2 + η

2
)





1

4
lim
ǫ1→0

ǫ1
∫

−ǫ1

dρρ ẍµ(τ1 +
ρ

2
)ẍν(τ1 −

ρ

2
)





=
1

4
lim

ǫ1,ǫ2→0

ǫ1
∫

−ǫ1

ǫ2
∫

−ǫ2

dηdρ ρη

(

δµλ δ̈
[

τ1 +
ρ

2
− (τ2 +

η

2
)
]

δνκ δ̈
[

τ1 −
ρ

2
− (τ2 −

η

2
)
]

+ δµκ δ̈
[

τ1 +
ρ

2
− (τ2 −

η

2
)
]

δνλ δ̈
[

τ1 −
ρ

2
− (τ2 +

η

2
)
]

)

.

Let us now turn to the other terms

δωµν(τ1)

δxκ(τ2 − η
2
)

=
1

4
lim
ǫ→0

ǫ
∫

−ǫ

dρρ

(

δµκ δ̈
[

τ1 +
ρ

2
− (τ2 −

η

2
)
]

ẍν(τ1 −
ρ

2
)

+δνκ δ̈
[

τ1 −
ρ

2
− (τ2 −

η

2
)
]

ẍµ(τ1 +
ρ

2
)

)

,
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and

δωµν(τ1)

δxλ(τ2 + η
2
)

=
1

4
lim
ǫ→0

ǫ
∫

−ǫ

dρρ

(

δµλ δ̈
[

τ1 +
ρ

2
− (τ2 +

η

2
)
]

ẍν(τ1 −
ρ

2
)

+δνλ δ̈
[

τ1 −
ρ

2
− (τ2 +

η

2
)
]

ẍµ(τ1 +
ρ

2
)

)

,

as well as

δexp[I]

δxκ(τ2 − η
2
)

=
1

2
exp[I] ẍκ(τ2 −

η

2
).

In a totally analogous way we obtain

δexp[I]

δxλ(τ2 + η
2
)

=
1

2
exp[I] ẍλ(τ2 +

η

2
).

We can now insert all these quantities into the expression (19) and perform the path
integration where we also use the definition of ωµν(τ) and obtain

lim
ǫ1,ǫ2→0

ǫ1
∫

−ǫ1

ǫ2
∫

−ǫ2

dρdη ρη

∫

Dx(τ)

×
(

1

4
ẍµ(τ1 +

ρ

2
) ẍν(τ1 −

ρ

2
) ẍλ(τ2 +

η

2
) ẍκ(τ2 −

η

2
)

+ δµλ δνκ δ̈
[

τ1 +
ρ

2
− (τ2 +

η

2
)
]

δ̈
[

τ1 −
ρ

2
− (τ2 −

η

2
)
]

+ δµκ δνλ δ̈
[

τ1 +
ρ

2
− (τ2 −

η

2
)
]

δ̈
[

τ1 −
ρ

2
− (τ2 +

η

2
)
]

+
1

2

(

δµκ δ̈
[

τ1 +
ρ

2
−
(

τ2 −
η

2

)]

ẍν(τ1 −
ρ

2
)ẍλ(τ2 +

η

2
)

+ δνκ δ̈
[

τ1 −
ρ

2
−
(

τ2 −
η

2

)]

ẍµ(τ1 +
ρ

2
)ẍλ(τ2 +

η

2
)
)

+
1

2

(

δµλ δ̈
[

τ1 +
ρ

2
−
(

τ2 +
η

2

)]

ẍν(τ1 −
ρ

2
)ẍκ(τ2 −

η

2
)

+ δνλ δ̈
[

τ1 −
ρ

2
−
(

τ2 +
η

2

)]

ẍµ(τ1 +
ρ

2
)ẍκ(τ2 −

η

2
)
)

)

exp[I]. (20)

59



Now let us perform the path integration term by term. After we have calculated all integrals
we reconnect the different parts. At first let us have a look at the expression

∫

Dx(τ) 1

4
ẍµ(τ1 +

ρ

2
) ẍν(τ1 −

ρ

2
) ẍλ(τ2 +

η

2
) ẍκ(τ2 −

η

2
) exp[I]

=
1

4

〈

ẍµ(τ1 +
ρ

2
) ẍν(τ1 −

ρ

2
) ẍλ(τ2 +

η

2
) ẍκ(τ2 −

η

2
)
〉

=
1

4

[

〈

ẍµ(τ1 +
ρ

2
) ẍν(τ1 −

ρ

2
)
〉

·
〈

ẍλ(τ2 +
η

2
) ẍκ(τ2 −

η

2
)
〉

+
〈

ẍν(τ1 −
ρ

2
) ẍλ(τ2 +

η

2
)
〉

·
〈

ẍµ(τ1 +
ρ

2
) ẍκ(τ2 −

η

2
)
〉

+
〈

ẍµ(τ1 +
ρ

2
) ẍλ(τ2 +

η

2
)
〉

·
〈

ẍν(τ1 −
ρ

2
) ẍκ(τ2 −

η

2
)
〉

]

,

where we have used Wick’s Theorem. Employing 〈ẍα(τ1)ẍβ(τ2)〉 = −2δαβ δ̈(τ1 − τ2) from
section 6.2 the above expression transforms to

(

δµν δλκ δ̈
[

τ1 +
ρ

2
−
(

τ1 −
ρ

2

)]

δ̈
[

τ2 +
η

2
−
(

τ2 −
η

2

)]

+δνλ δµκ δ̈
[

τ1 −
ρ

2
−
(

τ2 −
η

2

)]

δ̈
[

τ1 +
ρ

2
−
(

τ2 −
η

2

)]

+δµλ δνκ δ̈
[

τ1 +
ρ

2
−
(

τ2 +
η

2

)]

δ̈
[

τ1 −
ρ

2
−
(

τ2 −
η

2

)]

)

.

First we notice that the first term vanishes upon contraction with σµνσλκ (or its path
ordered variant), owing to the antisymmetry of σµν . With the same argument the other
part of (20) will transform after path integration to

(

δµλδνκ δ̈
[

τ1 +
ρ

2
−
(

τ2 +
η

2

)]

δ̈
[

τ1 −
ρ

2
−
(

τ2 −
η

2

)]

+ δµκδνλ δ̈
[

τ1 +
ρ

2
−
(

τ2 −
η

2

)]

δ̈
[

τ1 −
ρ

2
−
(

τ2 +
η

2

)]

− δµκδνλ δ̈
[

τ1 +
ρ

2
−
(

τ2 −
η

2

)]

δ̈
[

τ1 −
ρ

2
−
(

τ2 +
η

2

)]

− δνκδµλ δ̈
[

τ1 −
ρ

2
−
(

τ2 −
η

2

)]

δ̈
[

τ1 +
ρ

2
−
(

τ2 +
η

2

)]

− δµλδνκ δ̈
[

τ1 +
ρ

2
−
(

τ2 +
η

2

)]

δ̈
[

τ1 −
ρ

2
−
(

τ2 −
η

2

)]

− δνλδµκ δ̈
[

τ1 −
ρ

2
−
(

τ2 +
η

2

)]

δ̈
[

τ1 +
ρ

2
−
(

τ2 −
η

2

)]

)

.

Now it is easy to see, that all the terms cancel each other and therefore the correct F → 0
limit is manifest in our version of the worldline integral. We have seen explicitly in this
example that the additional derivative terms can be identified with self-contractions of
the ”field” ωµν(τ). We have illustrated that the resulting normal ordering is essential for
ensuring the consistency of our spin-factor representation.
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7 Spin factor calculus for the effective action

We have identified in the last section the additional derivative terms arising from the spin-
factor with the self-contractions of the ”field” ωµν(τ). We are now able to write down the
full path integral (the general case with F 6= 0 ),

∫

Dx(τ)
[

trγ Pe− i
2

R

dτσ δ
δx(τ) e−

R

dτ
ẋ2(τ)

4

]

eie
H

dxA

=

∫

Dx(τ) trγP
(

e−
i
2

R

dτσω − self contractions
)

e−
R

dτ ẋ
2(τ)
4 eie

H

dxA

=

∫

Dx(τ) trγP : e−
i
2

R

dτσω : e−
R

dτ
ẋ2(τ)

4 eie
H

dxA.

Because this expression is identical to the standart one,

∫

Dx(τ) trγ Pe e2
R

dτσF eie
H

dxA e−
R

dτ
ẋ2(τ)

4 ,

we conclude that the following expressions must be the same

〈

Pe e2
R

dτσF eie
R

dτẋA
〉

!
=
〈

P : e−
i
2

R

dτσω : eie
R

dτẋA
〉

.

To summarize, we have found the following representation of one-loop contribution to the
effective action for spinor QED involving a purely geometrical spin factor:

Γ1
eff =

1

2

1

(4π)
D
2

∫ T

0

dT

T 1+D
2

e−m
2TN

∫

Dx(τ) trγP : e−
i
2

R

dτσω : e−
R

dτ
ẋ2(τ)

4 eie
H

dxA.

The obvious advantage of this representation consists in the fact that the dependence on
the external gauge field occurs solely in the form of a Wilson loop. As a disadvantage it
seems that concrete computations may be plagued by technical difficulties associated with
normal ordering. Moreover, even perturbative amplitudes to finite order in Aµ seemingly
receive contributions from terms with arbitrarily high products of worldline monomials,
〈ωnẋ...x〉 ∼ 〈(ẍẍ)nẋ...x〉, n arbitrary. However, we will demonstrate in this section that
many of these apparent high-order contributions cancel among each other. Practical calcu-
lations actually boil down to roughly the same amount of technical work as it occurs for the
formalism involving the Pauli term directly. The purpose of this section is the derivation
of a few rules for practical calculus based on the spin-factor representation. In view of the
variety of possible worldline monomials arising from the expansion of the Wilson loop, the
spin factor and the corresponding self contractions (hidden behind the normal ordering),
we do not attempt to give a full account of all possible structures and cancelation mecha-
nisms. Instead, we will pick out all those terms that, upon Wick contraction, will lead us
back to the full result for the effective action in standart representation. As a result, all
possible other terms ultimately have to cancel each other. This will lead us to the general
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recipe that the spin factor can only contribute if a factor ∼
∫

σω is Wick contracted with
a factor ∼

∮

dxA from the Wilson loop. For this reason we have to prove that

P
{(

1 +

(

− i

2

∫

dτσω

)

+
1

2

(

− i

2

∫

dτσω

)2

+ ...

)

(

1 + ie

∮

dxA+
1

2

(

ie

∮

dxA

)2

+ ...

)}

H

A

ω

(21)

gives the same result as

P
(

1 +
e

2

∫

dτσF +
1

2

(

e

2

∫

dτσF

)2

+ ...

)

(

1 + ie

∮

dxA+
1

2

(

ie

∮

dxA

)2

+ ...

)

,

where {· · ·}
H

A
ω indicates that we take only contractions between the complete spin-factor

exponent ∼
∫

σω and the Wilson loop exponent ∼
∮

dxA into account. To be precise,
both ẍ’s of one ωµν should be Wick contracted with the x dependence of one and the same
exponent

∮

dxA, any other contraction should be dropped. These contractions will turn
out to carry all available spin information, whereas all other cancel. Let us now calculate
this expression order by order. First we investigate the lowest order, which is trivial,

{

1

(

1 + ie

∮

dxA+
1

2

(

ie

∮

dxA

)2

+ ...

)}

H

A

ω

= eie
H

dxA.

Proceeding with the next order we are lead to

{

(

− i

2

∫

dτσω

)

(

1 + i

∮

dxA +
1

2

(

i

∮

dxA

)2

+ ...

)}

H

A

ω

.

The first term
{

(− i
2

∫

dτσω ) · 1
}

does not contribute because of its Lorentz structure
proportional to δµνσ

µν = 0. Therefore let us investigate the contraction

{(

− i

2

∫

dτσω

)(

ie

∫

dτẋA

)}

H

A

ω

.

For simplicity, we confine ourselves to the constant- field limit for a moment, where Aα =
1
2
Fβα(0)xβ. This will be generalized to arbitrarily inhomogeneous fields later on, where the

constant-field limit will simply correspond to the lowest-order Taylor expansion. If we use
our definition for ωµν(τ) the above expression transforms into

− e

16

∫

dτ1dτ2 Fαβ(0) σµν lim
ǫ→0

∫ ǫ

−ǫ

dρρ
〈

ẍµ(τ1 +
ρ

2
)ẍν(τ1 −

ρ

2
)ẋα(τ2)xβ(τ2)

〉

. (22)
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At first we analyze the worldline correlator with aid of Wick’s theorem
〈

ẍµ(τ1 +
ρ

2
)ẍν(τ1 −

ρ

2
)ẋα(τ2)xβ(τ2)

〉

= 〈ẍµ(τ1 +
ρ

2
)ẍν(τ1 −

ρ

2
)〉〈ẋα(τ2)xβ(τ2)〉

+ 〈ẍµ(τ1 +
ρ

2
)ẋα(τ2)〉〈ẍν(τ1 −

ρ

2
)xβ(τ2)〉

+ 〈ẍµ(τ1 +
ρ

2
)xβ(τ2)〉〈ẍν(τ1 −

ρ

2
)ẋα(τ2)〉.

Using our expressions for the worldline Green’s functions, the right-hand side of the above
equation transforms into

(

+4 δναδµβ

[

δ̇
(

τ1 −
ρ

2
− τ2

)

(

−δ
(

τ1 +
ρ

2
− τ2

)

+
1

T

)]

+4 δµαδνβ

[

δ̇
(

τ1 +
ρ

2
− τ2

)

(

−δ
(

τ1 −
ρ

2
− τ2

)

+
1

T

)])

,

where we have dropped the first term, beeing proportional to σµνδµν = 0. We insert this
expression into (22) and get

− e

16

∫

dτ1dτ2 σµν lim
ǫ→0

∫ ǫ

−ǫ

dρρ Fµν(0)

(

−4

[

δ̇
(

τ1 −
ρ

2
− τ2

)

(

−δ
(

τ1 +
ρ

2
− τ2

)

+
1

T

)]

+4

[

δ̇
(

τ1 +
ρ

2
− τ2

)

(

−δ
(

τ1 −
ρ

2
− τ2

)

+
1

T

)])

.

If we substitute

ρ 7→ −ρ,

in the second term of our expression for the contraction, the whole quantity transforms
into

e

2

∫

dτ1dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρρ σµνF
µν(0)

[

δ̇
(

τ1 −
ρ

2
− τ2

)

(

−δ
(

τ1 +
ρ

2
− τ2

)

+
1

T

)]

. (23)

From this expression we will calculate at first the second one ∼ 1
T

∫

dτ1dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρρ σµνF
µν(0) δ̇

(

τ1 −
ρ

2
− τ2

) 1

T

∼
∫

dτ1dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρρ σµνF
µν(0) δ̇

(

τ1 −
ρ

2
− τ2

)

∼
∫

dτ1dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρ σµνF
µν(0) δ

(

(τ1 − τ2) −
ρ

2

)

,

where we have integrated by parts in the last line. We are allowed to write
∫ ǫ

−ǫ

dρ Fµν(0)δ ((τ1 − τ2) + ρ) = Fµν(0) θ(ǫ− |τ1 − τ2|).
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With this relation the above equation transforms into (modulo prefactors)

lim
ǫ→0

∫

dτ1dτ2 Fµν(0) θ(ǫ− |τ1 − τ2|) =

∫

dτ2Fµν(0) lim
ǫ→0

∫

dτ1 θ(ǫ− |τ1 − τ2|)

∼
∫

dτ2 Fµν(0) lim
ǫ→0

∫

dτ ′1 θ(ǫ− |τ ′1|) ∼
∫

dτ2 Fµν(0) lim
ǫ→0

ǫ→ 0.

This term gives no contribution to the worldline correlator. Let us now turn to the first
term of (23)

−e
2

∫

dτ1dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρρ σµνF
µν(0) δ̇

(

τ1 −
ρ

2
− τ2

)

δ
(

τ1 − (τ2 −
ρ

2
)
)

.

Performing the τ1 integration we arrive at

−e
2

∫

dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρρ σµνF
µν(0) δ̇(−ρ) =

e

2

∫

dτ2 lim
ǫ→0

∫ ǫ

−ǫ

dρ σµνF
µν(0) δ(−ρ)

=
e

2

∫

dτ2 σµνF
µν(0), (24)

where we have integrated by parts in the first line. We recognize this expression as the lead-
ing part of the Taylor expansion of the standart worldline representation in the constant-
field limit. But our goal is to show the validity of our conjectured formula in (21) for an
arbitrary field configuration. Upon Taylor expansion, we have to show that we arrive at
the expression
∫

dτ σF (x(τ)) =

∫

dτ σµν

[

Fµν(0) + ∂βFµν(0)xβ(τ) +
1

2
∂βγFµν(0)xβ(τ)xγ(τ) + ...

]

=

∫

dτ σµν

∞
∑

n=0

∂ν1 · · · ∂νn
n!

Fµν(0) xν1 · · · xνn ,

instead of (24) if using an arbitrary Aµ. For this purpose, we generalize the above calcu-
lation to the case of an arbitrarly field A(x(τ)) in Schwinger-Fock gauge,

Aα(x(τ)) =
1

2
xλ(τ)Fλα(0) +

1

3
xλ(τ)xσ(τ) ∂σFλα(0) + ...

=
∞
∑

n=0

xλxν1 · · · xνn
n!(n + 2)

∂ν1 · · · ∂νnFλν .

With this general formula we repeat the previous calculation of the expectation value to
the next order in the Taylor expansion, in order to gain more intuition for the general case,

{

i

2

∫

dτσω(τ) ie

∫

dτ ẋ(τ)A(x(τ))

}

H

A

ω

=

{

−e
8

∫

dτ1σ lim
ǫ→0

∫ ǫ

−ǫ

dρρ ẍν(τ1 −
ρ

2
)ẍµ (τ1 +

ρ

2
)

∫

dτ2 ẋα(τ2)

[

1

2
xλ(τ)Fλα(0) +

1

3
xλ(τ)xσ(τ) ∂σFλα(0)

]

+ O(∂2)

}

H

A

ω

64



We recognize the familiar first term in this expression. Therefore we confine our attention
to the second term:

∫ ǫ

−ǫ

dρρ
1

3
∂σFλα(0) xσ(τ2)

{

ẍν(τ1 −
ρ

2
)ẍµ(τ1 +

ρ

2
)ẋα(τ2)xλ(τ2)

}

H

A

ω
.

According to our rule for the {...}
H

A
ω bracket, the ẍ from ωµν are Wick contracted with the

x dependence of
∮

dxA, the remaining xσ(τ2) can finally be contracted with an x from a
different term. This quantity has three different possibilities of permutation

1.

∂σFλα xσ(τ2)
{

ẍν(τ1 −
ρ

2
)ẍµ(τ1 +

ρ

2
)ẋα(τ2)xλ(τ2)

}

H

A

ω

2.

∂σFλα xλ(τ2)
{

ẍν(τ1 −
ρ

2
)ẍµ(τ1 +

ρ

2
)ẋα(τ2)xσ(τ2)

}

H

A

ω

3.

∂σFλα ẋα(τ2)
{

ẍν(τ1 −
ρ

2
)ẍµ(τ1 +

ρ

2
)xλ(τ2)xσ(τ2)

}

H

A

ω
,

where the {...}
H

A
ω brackets demand that the ẍ’s are only contracted with x or ẋ but

not with each other (the latter would anyway vanish upon contraction with σµν). Using
Wick’s theorem, it is easy to obtain the Green’s functions, but for our purposes we are
mainly interested in the Lorentz structure of the above expressions. So if we arrange the
contraction we get beside the propagators the following Lorentz structures. For the first
of the above quantities we get

1

24

∫

dτ1dτ2 σµν lim
ǫ→0

∫ ǫ

−ǫ

dρρ ∂σFλαxσ(τ)

×
(

δναδµλ 2δ̇
(

τ1 −
ρ

2
− τ2

) [

−2δ
(

τ1 +
ρ

2
− τ2

)]

+δνλδµα 2δ̇
(

τ1 +
ρ

2
− τ2

) [

−2δ
(

τ1 −
ρ

2
− τ2

)])

.

Let us investigate the Lorentz structure. We get

∂σFλαxσ δναδµλ = ∂σFµνxσ,

as well as

∂σFλαxσ δνλδµα = −∂σFµνxσ.
Therefore we are lead to

1

24

∫

dτ1dτ2 σµν

[

lim
ǫ→0

∫ ǫ

−ǫ

dρρ 4 ∂σFλαxσ(τ) δ̇
(

τ1 −
ρ

2
− τ2

)(

−δ
(

τ1 +
ρ

2
− τ2

))

+ lim
ǫ→0

∫ ǫ

−ǫ

dρρ − 4 ∂σFλαxσ(τ) δ̇
(

τ1 +
ρ

2
− τ2

)(

−δ
(

τ1 −
ρ

2
− τ2

))

]

.

65



If we substitute ρ→ −ρ in the second term we get in total

1

6

∫

dτ1dτ2 σµν lim
ǫ→0

∫ ǫ

−ǫ

dρρ 2 ∂σFλαxσ(τ) δ̇
(

τ1 −
ρ

2
− τ2

)(

−δ
(

τ1 +
ρ

2
− τ2

))

.

We have calculated an analogous expression earlier. Using the results of the calulation
which lead to (24) we get for the above expression

2

6

∫

dτ σµν ∂σFµνxσ(τ).

In correspondence to this calculation the other possible permutations contribute a factor
1
6

∫

dτσµν ∂βFµνxβ(τ) to this solution (as we will show in the discussion of the Lorentz
structure below). Therefore we get the next order of the Taylor expansion

1

2

∫

dτσµνFµν =

∫

dτσ

(

1

2
Fµν +

1

2
∂σFµνxσ + ...

)

.

The essence of this calculation lies in the analysis of the Lorentz structure. For the other
permutations the discussion is analogous. Let us condense this statement into a compact
notation.

1.

∂σFλα xσ

(

δναδµλ
∣

∣

ρ
⊕ δνλδµα

∣

∣

−ρ

)

= ∂σFλν xσ δ
µλ
∣

∣

ρ
⊕ ∂σFλµ xσ δ

νλ
∣

∣

−ρ

= −∂σFνµ xσ
∣

∣

ρ
⊕−∂σFµν xσ

∣

∣

−ρ

= ∂σFµν xσ
∣

∣

ρ
⊕ ∂σFµν xσ

∣

∣

ρ

= 2 ∂σFµν xσ
∣

∣

ρ
,

where the notation
∣

∣

ρ
and

∣

∣

−ρ
takes care of the signs of ρ in the arguments of the

δ functions, the transformation
∣

∣

−ρ
to
∣

∣

ρ
can be performed by a partial integration.

This is also the reason why we denote the addition in the Lorentz structure as ”⊕”.
The Lorentz structure of the second term is indicated as

2.

∂σFλα xλ

(

δναδµσ
∣

∣

ρ
⊕ δνσδµα

∣

∣

−ρ

)

= ∂σFλν xλ δ
µσ
∣

∣

ρ
⊕ ∂σFλµ xλ δ

νσ
∣

∣

−ρ

= ∂µFλν xλ
∣

∣

ρ
⊕ ∂νFλµ xλ

∣

∣

−ρ

= ∂µFλν xλ
∣

∣

ρ
⊕ ∂νFµλ xλ

∣

∣

ρ

= ∂λFµν xλ
∣

∣

ρ
,

where we have used the Bianchi identity

0 = ∂µFλν + ∂λFνµ + ∂νFµλ

⇒ ∂µFλν + ∂νFµλ = −∂λFνµ = ∂λFµν .

Let us now investigate the lorentz structure of the third permutation.
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3.

∂σFλα ẋ
α
(

δνλδµσ ⊕ δνσδµλ
)

= −∂σFαν ẋαδµσ ⊕ ∂νFλα ẋ
αδµλ

= −ẋα (∂µFαν ⊕ ∂νFαµ)

= −ẋα (∂µFαν ⊖ ∂µFαν)

= 0.

Where we have used that after the exchange of indices µ↔ ν the quantity σµν ∂νFαµ →
σνµ ∂µFαν and we get

σνµ ∂µFαν = −σµν ∂µFαν .

Furthermore we have neglected the sign-of-ρ dependence since the δ function combi-
nation occuring here is symmetric under ρ→ −ρ.

So far we have only analyzed the contraction of the second term beyond leading order.
Next we want show that we indeed are able to derive the right formular for the full field
strength tensor F (x(τ)). For this reason we have to analyze the expression

{

e

2

∫

dτσω(τ)

∫

dτ ẋ(τ)A(x(τ))

}

H

A

ω

=

{

e

2

∫

dτ1dτ2σµν

∞
∑

n=0

ẍν ẍµẋαxλxν1 · · · xνn
n!(n+ 2)

∂ν1 · · · ∂νnFλν(0)

}

H

A

ω

.

We have the following number of permutations:

1. terms with

∂ν1 · · · ∂νnFλν(0) xν1 · · · xνn〈ẍν ẍµẋαxλ〉

appear twice and therefore give a factor 2 ∂ν1 · · · ∂νnFλν(0) xν1 · · · xνn .

2. terms with

∂ν1 · · · ∂νnFλν(0) xλxν2 · · · xνn〈ẍν ẍµẋαxν1〉
.

.

.

∂ν1 · · · ∂νnFλν(0) xλxν1 · · · xνn−1〈ẍν ẍµẋαxνn〉

exist n times and contribute with a factor n ∂ν1 · · · ∂νnFλν(0) xν1 · · · xνn to the sum.
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3. terms with

∂ν1 · · · ∂νnFλν(0) ẋαxν2 · · · xνn〈ẍν ẍµxλxν1〉
.

.

.

∂ν1 · · · ∂νnFλν(0) ẋαxν1 · · · xνn−1〈ẍν ẍµxλxνn〉,

vanish and therefore give no contribution (note that we have used the results of the
previous calculation for this discussion).

From this investigation we can conclude that our expectation value takes the following
representation

∞
∑

n=0

(

∂ν1 · · · ∂νnFλν(0)

(n + 2)n!

)

perm(xν1 · · · xνn〈ẍν ẍµẋαxλ〉, ν1...νmαλ)

=

∞
∑

n=0

(

∂ν1 · · · ∂νnFλν(0)

(n + 2)n!
xν1 · · · xνn

)

(n+ 2)

=

∞
∑

n=0

∂ν1 · · · ∂νnFλν(0)

n!
xν1 · · · xνn = Fµν(x(τ)).

Because the last line represents the Taylor expansion of the function F (x(τ)) we can finally
write:

{

− i

2

∫

dτσω ie

∫

dτ ẋν(τ)Aν(x(τ))

}

H

A

ω

=
e

2

∫

dτσµνF
µν(x(τ)) . (25)

At this point we only dealt with the first term of the Taylor series of

P
{(

1 +

(

− i

2

∫

dτσω

)

+
1

2

(

− i

2

∫

dτσω

)2

+ ...

)

(

1 + ie

∮

dxA +
1

2

(

ie

∮

dxA

)2

+ ...

)}

H

A

ω

.

We have shown that the contraction
{(

− i

2

∫

dτσω

)(

ie

∫

dτẋA

)}

H

A

ω

,

gives indeed the linear term of the expansion
(

1 +
1

2

∫

dτσF +
1

2

(

1

2

∫

dτσF

)2

+ ...

)(

1 + ie

∮

dxA+
1

2

(

ie

∮

dxA

)2

+ ...

)

.
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Let us now investigate what happens when we go to the next order (the quadratic order
of the Wilson loop) and beyond. Considering the contraction of the spin-factor term with
the next quadratic term of the Wilson loop, we recognize that this calculation is similar
to the calculation for the linear term. The only difference is that we have to consider the
possible permutations of the contractions. Then we have the following structure

− i

2

∫

dτ1σµν ωµν
(ie)2

2

(∫

dτ2dτ3

∮

dxA

∮

dxA

)

. (26)

Because their exist two possible permutations of non vanishing contractions we get

{(

1

2

)

2

∫

dτ1 σµνFµν
ie2

2

∮

dxA

}

H

A

ω

=
e

2

∫

dτ σµνFµν ie

∮

dxA .

When we go to the next order we get an expression of the form

{

− i

2

∫

dτ1 σµν ωµν
(ie)3

3!

∮

dxA

∮

dxA

∮

dxA

}

H

A

ω

.

After contracting, this transforms into

(e

2

)

3

∫

dτ1 σµνFµν
1

3!
(ie)2

∮

dxA

∮

dxA.

When we continue this stringently we see that we construct the series of the Wilson loop
with the spin field coupling as pre-factor:

(

e

2

∫

dτσµνFµν

)

(

1 + ie

∫

dτẋA+
1

2

(

ie

∫

dτẋA

)2

+ ...

)

.

The above permutation argumentation will hold to all orders of the expansion of Pe− i
2

R

dτσω,
therefore we find that order by order the exponential series

P
(

1 +
e

2

∫

dτσF +
1

2

(

e

2

∫

dτσF

)2

+ ...

)(

1 + ie

∫

dτẋA+
1

2

(

ie

∫

dτẋA

)2

+ ...

)

= Pexp

(

e

2

∫

dτσF

)

exp

(

ie

∮

dxA

)

will be built up. We conclude that the seemingly extensive spin-factor calculus can be
summarized in a simple recipe: among the manifold contractions arising from Wick’s
theorem involving Wilson loop, spin factor and its self contractions, only those terms have
to be accounted for which arise from contractions of one σω factor with one and the same
∮

dxA factor. This excludes already many Wick contractions, in particular, these where
the two ẍ’s out of one ωµν are contracted with two different objects. All these terms of
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the latter type cancel each other or vanish by the ǫ limit. Our basic rule for spin-factor
calculus can be summarized by the formular

N
∫

Dx e−
R

dτ ẋ
2

4 trγP : e−
i
2

R

dτσω : eie
H

dxA =
〈

trγP : e−
i
2

R

dτσω : eie
H

dxA
〉

=

〈

{

trγPe−
i
2

R

dτσωeie
H

dxA
}

H

A

ω

〉

, (27)

with the {...}
H

A
ω bracket denoting the restriction to pure

∫

σω ↔
∮

dxA contractions as
detailed above. Note that this recipe also dispenses us from considering normal ordering or

a detailed analysis of the self contraction terms, since these cannot contribute to the {...}
H

A
ω

bracket by construction. The spin-factor calculus developed in this section has a physical
interpretation: the spin factor is only operating at those space-time points where the
fluctuating particle interacts with the external field. The spin of the fluctuation does not
generate self-interactions of the fluctuation with its own worldline, nor does spin interact
nonlocally with the external field at two different spacetime points simultaneously. In the
following section we demonstrate the applicability of the spin-factor calculus developed
here by rederiving the classic Heisenberg-Euler effective action with this new formalism.
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8 Heisenberg-Euler action in the loop approach

After we have developed some aspects of spin-factor calculus for our new representation
of the spinorial worldline path integral, we now calculate the Heisenberg-Euler action in
the loop approach. To obtain this action we perform the calculation in Fourier space.
Therefore we substitute all x’s and functions depending on x in the integral

N
∫

Dx(τ) trγP : e−
i
2

R

dτσω : ei
H

dxA e−
R

dτ
ẋ2(τ)

4 ,

by their Fourier representation. It is possible to write the Fourier series of xµ(τ) as follows

xµ(τ) =
∞
∑

n=−∞

1√
T
anµ e

2πinτ
T .

It is easy to compute the derivatives of this expression so we are lead to

ẋ2(τ) =

∞
∑

n,m=−∞

1

T

(

2πi

T

)2

(nm) anµ aqµ e
2πiτ(n+m)

T ,

as well as

ẍµ(τ +
ρ

2
) =

∞
∑

n=−∞

1√
T

(

2πin

T

)2

anµ e
2πin(τ+

ρ
2 )

T .

Therefore the exponential functions in the worldline integral transforms as follows

e−
i
2

R

dτσω 7→ exp

[

1

4
lim
ǫ→0

∞
∑

n=−∞

(

2πn

T

)2

a∗nµ anν σµν gn(ǫ)

]

,

with

gn(ǫ) =

(

2πn

T
ǫ

)

cos

(

2πn

T
ǫ

)

− sin

(

2πn

T
ǫ

)

,

arising from the ρ integration. We have also used the reality conditions of the Fourier
coefficients a−nµ = a∗nµ as well as the orthonormality of the plane-wave basis

∫ T

0

dτ e
2πiτ(n+m)

T = Tδn,−m.

In almost the same manner we treat the other expressions. Therefore the other quantities
can be written as follows

e−
R

dτ ẋ
2(τ)
4 7→ exp

[

−1

4

∞
∑

n=−∞

(

2πi

T

)2

(−1) n2 a∗nµ anµ

]

,
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as well as

ei
H

dxA(x(τ)) 7→ exp

[

i
∞
∑

n=−∞

(

2πi(−n)

T

)

a∗nµ Ãµ,n[x]

]

.

Considering the constant-field case only we can write the gauge field as follows

Aµ(x) = −1

2
Fµνxν(τ)

= −1

2
Fµν

1√
T

∞
∑

n=−∞

aνn e
2πinτ
T

=
1√
T

∞
∑

n=−∞

Ãµn e
2πinτ
T

⇒ Ãµn = −1

2
Fµν aνn.

Therefore we conclude that in the constant-field case the Wilson loop transforms as

ei
H

dxA(x(τ)) 7→ exp

[

−1

2

∞
∑

n=−∞

(

2πn

T

)

a∗µn Fµν aνn

]

.

If we insert these expressions into the path integral we find (Dx = Da)

N
∫

Da trγ

{

exp

[

−1

2

∑

n

a∗µn

(

1

2

(

2π

T

)2

n2δµν +
2πn

T
Fµν −

1

2

(

2πn

T

)2

σµν gn(ǫ)

)

aνn

]}

H

A

ω

,

where we have replaced the normal ordering by the rule for spin-factor calculus derived in
the last section. Note that we have also dropped the path ordering which is irrelevant in
the case of a constant electromagnetic field. If we split the Fourier coefficients as follows

aµn = bµn + icµn,

a∗µn = bµn − icµn,

with real b, c, as well as using the reality condition of the Fourier coefficients a∗n = a−n ⇒
bn = b−n, cn = −c−n, we can write M =

(

1
2

(

2π
T

)2
n2δµν + 2πn

T
Fµν − 1

2

(

2πn
T

)2
σµν gn(ǫ)

)

of

the above path integral in (b, c) components as

M =

(

1
2

(

2π
T

)2
n δµν i2π

T
Fµν − i

2

(

2πn
T

)2
σµνgn(ǫ)

−i2π
T
Fµν + i

2

(

2πn
T

)2
σµνgn(ǫ)

1
2

(

2π
T

)2
n δµν

)

.

Therefore we can use the well-known formular for calculating Gaussian integrals

N
∫

Da trγ

{

exp

[

−1

2

∑

n

a∗µn Mµν aνn

]}

H

A

ω

= trγ

{

Det−
1
2

[

M

M0

]}

H

A

ω

,
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where M0 denotes the operator M in the limit F → 0 and the formal limit gn(ǫ) → 0.
Therefore together with the above arguments we can write these funtional determinant as

Det−
1
2

[

M

M0

]

= Det−
1
2

(

δµν 2i
(

T
2πn

)

Fµν − iσµνgn(ǫ)
−2i

(

T
2πn

)

Fµν + iσµνgn(ǫ) δµν

)

=
∏

λ=+/−

Det−
1
2

[

δµν + 2λ

(

T

2πn

)

Fµν − λ σµνgn(ǫ)

]

,

where we have diagonalized the 2×2 matrix M in the last step. Using the (ln Det = Tr ln)
identity this transforms to

exp



−1

2

∑

λ=+/−

{

Tr ln

(

δµν + 2λ

(

T

2πn

)

Fµν − λ σµνgn(ǫ)

)}

H

A

ω





= exp



−1

2

∑

λ=+/−

trntrL

∞
∑

m=1

(−1)m+1

m

{

(

2λ

(

T

2πn

)

F − λ σgn(ǫ)

)m

µν

}

H

A

ω





= exp



trntrL

∞
∑

m=1

1

2m

{

(

2

(

T

2πn

)

F − σgn(ǫ)

)2m

µν

}

H

A

ω



 .

If we write
{

(

2

(

T

2πn

)

F − σgn(ǫ)

)2m
}

H

A

ω

=

2m
∑

k=0

(

2m
k

)

{

(

2

(

T

2πn

)

F

)2m−k

(σgn(ǫ))
k

}

H

A

ω

=

m
∑

k=0

(

2m
k

)(

2

(

T

2πn

)

F

)2m−k

(σgn(ǫ))
k ,

where the {...}
H

A
ω bracket by definition removes all those terms for which at least one σgn(ǫ)

term cannot be paired with an F term. This reduces the upper limit of the sum from 2m
to m. Furthermore, we have used that in the constant field case [F, σ] = 0 and therefore
F and σ can be arranged in an arbitrary order. We compose this sum further by writing
the k = 0 term separately

(

TF

πn

)2m

+

(

2m
m

)(

T

πn
Fσgn(ǫ)

)m

+
m−1
∑

k=1

(

2m
k

)(

TF

πn

)2m−k

(σgn(ǫ))
k . (28)

The first term carries no spin information, it obviously corresponds to the contribution that
we would equally encounter in scalar QED. Hence we call it the scalar part. The second
term represents a perfect pairing of spin factor and field strength contribution, it will turn
out to contain the full spinorial information. The remaining sum has always at least one
unpaired F term, even for k = m− 1. We will demonstrate below that the accompanying
factor of 1

n
inhabits a sufficiently singular behaviour of the Fourier sum over n, such that

this sum vanishes completely in the ǫ limit. Let us now compute the various pieces of (28)
separately.
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8.1 Scalar part

Let us first consider the scalar part which we calculate analogously to [12]

exp

[

trntrL

∞
∑

m=1

1

2m

(

TF

πn

)2m
]

= exp

[

∞
∑

m=1

1

2m

(

T

π

)2m

trL
(

F 2m
)

∞
∑

n=1

1

n2m

]

,

where the n sum runs only from 1 to ∞ corresponding to the independent components of
the (b, c) Fourier coefficients that we have integrated over. We recognize the definition of

the ζ function,
∑∞

n=1
1

n2m = ζ(2m) = (2π)2m

2!(2m)!
|B2m|. Therefore we can write

exp

[

∞
∑

m=1

1

2m

(

T

π

)2m

trL
(

F 2m
)

∞
∑

n=1

1

n2m

]

= exp

[

1

2

∞
∑

m=1

trL
(2FT )2m

2m(2m)!
|B2m|

]

= exp

[

−1

2
trL

∞
∑

m=1

(2iFT )2m

2m(2m)!
B2m

]

= exp

[

−1

2
trL ln

(

sin(FT )

FT

)]

= det−
1
2

(

sin(FT )

FT

)

.

For the constant B field case we have already calculated this quantity in (6), the result
was

det−
1
2

[

sin(FT )

FT

]

=

(

BT

sinh(BT )

)

.

8.2 Spinor part

We now turn to the second term of (28). The remaining sum (third term) will be discussed
after this calculation. The spinor part can be written as

exp

[

trntrL

∞
∑

m=1

(2m− 1)!

(m!)2

((

T

πn

)

Fσgn(ǫ)

)m
]

= exp

[

∞
∑

m=1

(2m− 1)!

(m!)2

(

T

π

)m

trL (Fσ)m
∞
∑

n=1

gn(ǫ)

nm

]

.

Let us discuss the different possibilities for the values of m. For this discussion we use the
explicit representation of gn(ǫ)

∞
∑

n=1

gn(ǫ)

nm
=

∞
∑

n=1

((

2πnǫ
T

)

cos2πn
T
ǫ− sin 2πn

T
ǫ
)

nm
. (29)
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Let us start with m = 1, then we have the following expression

2π

T

∞
∑

n=1

ǫ cos
2πn

T
ǫ−

∞
∑

n=1

sin 2πn
T
ǫ

n
. (30)

It is the second term that represents the basic contribution, since it exhibits the proper
singularity structure,

−
∞
∑

n=1

sin 2πn
T
ǫ

n
= −π − 2π

T
ǫ

2
.

For ǫ→ 0 this goes to −π
2
. It is possible to write the first term of (30)

∞
∑

n=1

ǫ
d

dǫ

sin 2πn
T
ǫ

n
= ǫ

d

dǫ

π − 2π
T
ǫ

2
.

If we send ǫ to zero this quantity vanishes. Therefore the spinor part (for m = 1) becomes

trγ exp

(

−T
2

trL[Fσ]

)

.

If we specialize to the constant B field case this leads to

trγ exp (−BTσ12) = 4 coshBT.

If we combine this with the result of the scalar part we get

trγ Det−
1
2

[

M

M0

]

∣

∣

∣

∣

∣

m=1

= (BT ) coth(BT ). (31)

We now turn to the other cases of (29) if m takes values > 1. For this it is more useful to
go back to the integral representation of gn(ǫ),

∞
∑

n=1

gn(ǫ)

nm
= −i2π

2

T 2

∫ ǫ

−ǫ

dρρ
∞
∑

n=1

e−( 2iπρ
T )n

nm−2
= −π

T

∫ ǫ

−ǫ

dρ
∞
∑

n=1

e−( 2iπρ
T )n

nm−1

where we integrated by parts. From this we know that any non-zero contribution requires
the n sum to result in a δ(ρ) singularity. As shown above, this is exactly the case for the
m = 1 term. However, for m ≥ 3,

∞
∑

n=1

e−( 2iπρ
T )n

nm−1
, ∀m ≥ 3,
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this corresponds to a poly logarithm of degree m− 1 ≥ 2 which is an analytic function for
ρ→ 0. Hence all m ≥ 3 terms vanish. The m = 2 term is more subtle. Here we encounter

∞
∑

n=1

e−( 2iπρ
T )n

nm−1
=

∞
∑

n=1

cos
(

2πρ
T

)

n
+ i

∞
∑

n=1

sin
(

2πρ
T

)

n
.

The second term is ∼ π−ρ
2

and vanishes under the ǫ limit. Let us discuss the first term. It
is possible to represent this term as follows

∞
∑

n=1

cos(n2πρ
T

)

n
=

1

2
ln

(

1

2(1 − cos2πρ
T

)

)

.

Therefore the ρ integral becomes

− π

2T

∫ ǫ

−ǫ

dρ ln
1

2(1 − cosρ)
≈ π

T

∫ ǫ

−ǫ

dρ lnρ→ 0.

So there is no sufficient singular structure of the integrand and we conclude that the
integral vanishes in the ǫ → 0 limit. Eventually we have to discuss the remaining sum of
(28). Concentrating on the n dependence, these can be written as

m−1
∑

k=1

Jn,

where

Jn ∼ 1

n2m−k
gkn(ǫ) ∼

∫ ǫ

−ǫ

dρρ
einρ

n2m−k
. , k = 1, ..., m− 1

For all k < m this is the same case as discussed before, hence all these terms also vanish in
the ǫ→ 0 limit. So only the expression (31) survives and together with the dT integration
and pre factors we arrive at the unrenormalized four dimensional Heisenberg-Euler action
[29],[30],[31].

Γ1
eff [A] =

1

8π2

∫ ∞

0

dT

T 3
e−m

2T (BT ) coth(BT ).

We would like to stress that the present derivation of this well-known result is formally in-
dependent of other standart calculational techniques, as far as the spinor part is concerned.
The spinor contribution arises from the subtle interplay between the purely geometric spin
factor and the Wilson loop. Non-zero contributions arise only from terms with a particular
singularity structure. Since these singularities cannot arise from smooth worldlines, we
conclude that the random zigzag course of the worldlines is an essential ingredient for the
coupling between spin and fields.
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9 Conclusions and outlook

In this thesis, we have studied the worldline approach to Quantum Field Theory with
gauge symmetry. Guided by the idea that gauge-field information can be solely covered
by holonomies, we have investigated the representation of spin-field couplings in spinorial
QED. In this example, we have shown that the familiar Pauli term can be reexpressed in
terms of a spin factor which is a purely geometric quantity. Our final representation of
the fermionic fluctuation determinant, i.e., the one-loop effective action for QED has the
following form

ΓFerm[A] =
1

2

1

(4π)
D
2

∫ T

0

dT

T 1+D
2

e−m
2TN

∫

Dx(τ) trγP : e−
i
2

R

dτσω : e−
R

dτ
ẋ2(τ)

4 eie
H

dxA,

where N indicates the factor of normalization, P denotes the path ordering and “: ... :”
represents the introduced normal ordering procedure. The quantity σµνωµν encodes the
information on the spin field coupling which is contained in σµνFµν in the ordinary repre-
sentation of the fermionic effective action. The advantage of this alternative representation
lies in the fact that the dependence on the external gauge field occurs solely in the form
of the Wilson loop, i.e., the holonomy. Furhermore we have obtained a geometrical expla-
nation of the spin field coupling in terms of the loop derivative which is closely connected
to an alternative formulation of gauge theory refering to equivalence classes of loops. This
loop approach to gauge theory is especially demonstrative for the worldline formulation of
Quantum Field Theory, because worldlines provide us with an illuminating view on the
quantum aspects in terms of “loop clouds”. Additionally loop calculus yields an impressivly
simple picture of the spin field coupling in terms of the analogon of the curvature tensor
in the loop language, the loop derivative. In the affiliation of these geometrical pictures it
is possible to get a deeper and more intuitive understanding of quantum behaviour.

It should be interesting to study the question as to whether ωµν incorporates topologi-
cal aspects of the worldlines or their dynamical elements. Maybe there is a hidden relation
to the number of windings as for the Polyakov spin factor which arises in the first order
representation of the effective action [24]. At present, we observe a number of fundamen-
tal differences between our spin factor and Polyakov’s spin factor. The most important
difference is that our spin factor is zero for smooth loops (ω = 0) and therefore it is not
evident how for instance a non-vanishing winding number can be encoded in our represen-
tation. Furthermore our worldlines have a Gaussian velocity distribution instead of the
unit velocity distribution of Polyakov’s approach that relies on the first-order formalism.
The possibility of encoded topological properties of the worldline in ωµν as well as potential
similarities of the two representations of the spin factor have to be analyzed in the future.

The developed formalism can immediately be generalized to quantum fluctuations with
higher spin as well as to non abelian gauge theories. This should be readily implementable,
because the definition of the loop derivative is independent of the chosen gauge group. As
we have shown in this thesis the analyzed gauge theory only depends on the gauge group
into which the group of loops is mapped, all geometrical and dynamical properties of the
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gauge theory like connection or curvature are encoded in the abstract loop calculus and
therefore are transfused to the resulting gauge theory.

As is standard in the worldline literature [8],[7],[12] it is also possible to represent the
Dirac algebra and the resulting effective action in terms of a Grassmanian path integral in
the following representation

ΓFerm[A] = −1

2

∫ ∞

0

dT

T
e−m

2T

∫

sym

Dx
∫

asym

Dψ e−
R T

0
dτLspin ,

with

Lspin =
1

4
ẋ2 +

1

2
ψµψ̇

µ + ie ẋµAµ − ie ψ̇µFµνψ
µ.

Starting from this representation, our line of reasoning can immediately be applied, result-
ing in the following new expression for the QED action

ΓFerm[A] = −1

2

∫ ∞

0

dT

T
e−m

2T

∫

sym

Dx
∫

asym

Dψ e−
R

dτ ẋ
2

4 eie
H

dxAe−
R

dτ ψψ̇
2 : e

R

dτ ψ̇ωψ : .

Normal ordering takes care of the removal of self contractions of the spin factor, whereas
the path ordering is automatically guaranteed by the Grassmann integral. An interesting
open question of this representation is related to the fate of Supersymmetry. Whereas the
standard representation has a worldline Supersymmety, the Supersymmety status of our
new representation remains to be investigated.

Another interesting point for future research is the question of the numerical implemen-
tation of our formalism. An immediate numerical realization is inhibited by the normal
ordering prescription. This requires the study of possible alternatives. If the nature of our
spin factor is topological, it should then be possible to classify the worldlines in terms of
their topological properties. This would facilitate the implementation of an algorithm that
performs a Monte Carlo sampling for each individual topological sector seperately.

To summarize, we have performed a first detailed analysis of spin-factor calculus in
the second-order formalism of QED. We believe that this opens the door for many further
studies of the interrelation between spin and external fields in a geometric language.
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[40] R. Gambini and J. Pullin, Loops, Knots, Gauge Theories and Quantum Gravity,
Cambridge University Press (1996)

80



Danke!
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Beistand bei Problemen mit der ”eqnarray”-Funktion danken. Auch danke ich allen an-
deren ”Insassen” des Westzimmers für die oftmals anregenden und erheiternden Diskus-
sionen, die über so manch eisigen Winterabend hinweghalfen, wenn die Heizung im West-
zimmer sich mal wieder den Außentemperaturen geschlagen geben mußte.

Ebenfalls bedanke ich mich bei meiner Familie für die motivierende Unterstützung
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