
Non-perturbative access to
Casimir-Polder potentials for
nontrivial geometries in QED

Diploma Thesis

Institute of Theoretical Physics

Quantum Field Theory

submitted by: Frank Glowna

field of study: physics

student ID: 76961

advisor: Prof. Dr. Holger Gies

second advisor: Priv.-Doz. Dr. Maarten DeKieviet



Diploma thesis submitted by Frank Glowna, born in Tharand, Germany.

May 14, 2010
corrected version June 7, 2010



Abstract

A non-perturbative quantum field theoretical handling of Casimir forces in
QED for nonplanar surfaces is reviewed and applied to certain geometries.
The possible extension to general dielectrics is shown, but the main focus
lies on perfectly conducting surfaces. Boundary conditions are derived for a
non-local and local implementation into the formalism, whereby the latter
one is used. At first, Casimir’s result for two plain plates is obtained. Then,
the propagator for a sphere of arbitrary radius, which is needed within the
method, is derived, studied, and inverted analytically. Three different coor-
dinate choices are discussed, whereby the general inverse propagator for the
sphere is found. The standard Casimir-Polder result for an atom in front of
a plain plate is calculated. At last, the method is applied to a sphere in front
of a uniaxial corrugated surface. To obtain the Casimir energy for this setup,
the corresponding propagator for the corrugated surface and the numerical
method is presented.
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1 Introduction

1.1 From historical background to the actual work

The understanding of the nature of forces has, of course, a long history.
But the birth of quantum mechanics first leads to significant results in the
development of a theory of the origin of atomic and interatomic forces. One
of the big results of quantum mechanics is, for example, the change of a
classical vacuum to a quantum vacuum. In this one, thanks to Heisenberg’s
uncertainty principle, we know that energy can fluctuate over short instances
of time. Therefore the quantum vacuum has the so-called zero-point energy.
These fluctuations now lead to physical effects. In 1930 London [1,2] showed
that a force between molecules possessing electric dipole moments should fall
off with the distance d between the molecules as 1

d6 . The simple argument for
this gives the interaction energy Hint for two such dipoles which is 1

d5 for short
distances. Now taking fluctuations into account, the energy is given by the
mean value 〈Hint〉 and the first order of perturbation theory vanishes, because
the dipoles are oriented randomly. Thus, the short distance behaviour starts
with the second order which gives the 1

d6 . In 1948 Casimir [3] shifted the idea
from an action at a distance between molecules to a local action of fields.
According to that, the above phenomenon can equally be discussed in terms
of fluctuating fields.

He considered two parallel, infinitely large and ideally conducting plates
in vacuum at zero temperature, separated by a distance d. Now the idea
is that electromagnetic fields or photons that emerge between the plates
have to obey certain boundary conditions on the surfaces. Thus the allowed
number of fluctuation modes between the surfaces is restricted, whilst on the
outside the number of permissible modes is higher. This boundary conditions,
of course, are dictated by the vacuum Maxwell’s equations. In the end,
Casimir’s results for the energy and the force per unit area are

ECasimir = −~cπ2

720

1

d3
FCasimir = − ∂

∂d
ECasimir = −~cπ2

240

1

d4
. (1.1)

This change of viewpoint now opens up a new field of phenomena, which
is referred to as the Casimir effect. For an overview, see [4]. Nowadays,
forces arising from fluctuations are all called Casimir forces, and in the spe-
cial case of long-range interactions between neutral atoms or molecules due
to their common interaction with the electromagnetic radiation field, the
forces are called Casimir-Polder or van der Waals forces [5]. But also non
quantum mechanical fluctuations like density fluctuations in liquids [6] lead
to “critical Casimir forces”, which have been observed recently [7].
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So why are influences of structures that interesting to the community?
Although Casimir and Casimir-Polder forces are very small, they have been
measured with high precision for macroscopic objects [8, 9, 10, 11, 12, 13], for
mesoscopic configurations [14,15], and also indirectly for atom-atom van der
Waals interactions [16]. To compare these results with the theory, it is neces-
sary to take into account temperature, boundary effects like those from finite
surfaces or edge effects, general dielectrics and so forth. Also the corrugation
of the surfaces could be theoretically optimised to increase the intensity of
such forces. All together, Casimir forces find practice in nanoscale engineer-
ing [17,18], chemistry, biology, but also in cosmology.

1.2 Current state of research

So far, calculations for nontrivially shaped geometries in the sense of Casimir
Polder potentials were done with the so-called proximity force approximation
(PFA) [19, 20]. In this, corrugated surfaces are replaced piecewise by flat
segments and thus can be used for any configurations. But of course, Casimir
deliberately chose two parallel plates because fluctuation induced forces are
inherently non-additive. Hence, in the end, PFA is only an approximation,
which has to be used with care. Therefore, various techniques are desired
by the Casimir community [21,22,23,24,25,26,27,28,29] to describe Casimir
forces.

Another non-perturbative formalism, firstly introduced by Bordag, is a
functional approach. With this, the Casimir energy density can be calcu-
lated out of the partition function by introducing a delta functional into it,
which carries the boundary conditions on the surfaces [30]. This formalism
was extended to corrugated dielectric surfaces for abelian scalar fields [31], in
which the only approximation is that the dielectric sphere, which represents
an atom, has a very small radius compared to the mean distance to the corru-
gated surface. So the corrugation itself can be arbitrarily raised and lowered
without loss of correctness in accordance with the numerical precision.

On the experimental side, diverse measurements of Casimir forces were
done, too. For example, in Heidelberg at the atomic beam spin echo (ABSE)-
apparatus, Casimir experiments were done with 3He atoms which were quan-
tum reflected [11, 32] by the attractive Casimir Polder potential of an atom
and a structured plate [33]. For instance, a sinusoidal corrugation appears
as a surface effect of thick gold atom layers, but also a sawtooth structure
was tried out. For the latter, an interesting effect was found, which may only
be explained by short distance Casimir Polder forces. The observed power n
with which the force decreases, depends on the incident direction in the fol-
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lowing way: Along the ridges, n = 6 was found, under an angle of 45 degrees
to the ridges, the potential changes with n = 4 and orthogonal to the ridges
the n was 5. This is of course a strongly geometric sensitive effect and could
hardly be described by above methods.

1.3 Topic of this thesis

The task of this thesis is to extend the above non-perturbative technique [31]
for nontrivial geometries from scalar fields to abelian vector fields, or pre-
cisely to the electrodynamic case in QED. Thus, the scalar dielectric bound-
ary conditions become, according to Maxwell’s equations, dictated boundary
conditions, which also carry surface information, and the propagator for the
scalar fields changes to the free photon propagator, which is a matrix in the
end.
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2 Casimir forces for abelian gauge fields

2.1 Preliminaries

Quantum field theory can be formulated with the functional integral formal-
ism. In this formulation, fields are not treated as operators but as common
functionals, which have to obey Hamilton’s principle. Starting with the gen-
erating functional or partition function Z, every quantity of interest can be
obtained. In this sense, the Casimir force can be obtained by the energy
density of the fluctuating field, which is determined by the logarithm of Z.
Additionally, boundary conditions on the surfaces have to be set, which then
give restrictions on Z. For the energy altogether, lnZ will be reformulated in
a more convenient way, which also provides space for physical interpretations.

2.2 Vector field theory with boundaries

2.2.1 The “free” partition function

In QED, the partition function is defined as

Z =

∫
DAe−SE [Aµ] , (2.1)

where DA symbolises
∏

µ,x dAµ(x), the path integral over the field strength
of every component of the electromagnetic vector field potential Aµ at every
point x in space and time and SE is the Euclidean action after a Wick rotation
to imaginary time.1 This is still the “free” vacuum formulation, where no
boundary conditions are imposed. Now the action-integral in QED is the
Maxwell-Yang-Mills action S =

∫
(L0 + JµAµ)dx, where L0 = −1

4
FµνF

µν is
the Lagrangian, F µν = ∂µAν − ∂νAν is the electromagnetic field strength
tensor and Jµ are external charge and current sources which are set to zero
in the following (see section 2.2.3). This action S is constructed in that
way, that after variation of the Lagrangian, the inhomogeneous Maxwell’s
equation ∂µF

µν = Jν , or without external currents and charges:

∂µF
µν = 0 , (2.2)

is resulting. Later, the free photon propagator is needed, which is in principle
the inverse of this equation (2.2) corresponding to Aµ. Thus it is necessary

1A so-called Wick rotation is the formal transfer from a real valued time t to the pure
imaginary axis t→ −iτ of the complex plane. τ afterwards is an imaginary time, which is
usefull for calculations because the flat space Minkowski metric diag (−,+,+,+) becomes
an Euclidian metric diag (+,+,+,+).
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to insert the definition of Fµν in ∂µF
µν = 0 and the equation

(gµν�− ∂µ∂ν)Aν = 0 (2.3)

is obtained. This equation of motion also could have been obtained with a
Lagrangian of the quadratic form L = 1

2
AµLµνA

ν with Lµν = gµν� − ∂µ∂ν .
Now the inverse of Lµν would be needed, but due to a zero-eigenvalue2 the
inverse does not exist. The reason for this is that L is still invariant under
the gauge transformation Aµ → Aµ + ∂µΛ. The integral in equation (2.1)
runs over all fields and thus in particular over all configurations which differ
only by such a gauge transformation. Every gauge contains the same physics,
so they will be integrated over infinitely many gauges of the same physics,
which would result in an infinite contribution to the partition function. To
fix this problem, the gauge has to be fixed. This can be done by introducing
a gauge fixing term to the Lagrangian L = L0 +LGF . Here LGF = 1

2α
(∂µA

µ)2

is used, where α ∈ R is a free parameter parameterising an orbit in the space
of possible gauges. For example, α = 1 is known as the Feynman gauge or
α→ 0 is known as the Landau gauge. With the use of the Feynman gauge,
most calculations become very easy and therefore it will be used in this thesis.
However, with this gauge fixing, the number of degrees of freedom is still not
equal to the number of physical degrees of freedom. But QED is an abelian
gauge theory and therefore a fully fixed gauge3 is not needed. Additional
gauge freedoms will be discussed later in chapter 2.5.

The new choice of L can now easily be transformed to

L =
1

2
Aµ(gµν� + (

1

α
− 1)∂µ∂ν)A

ν , (2.4)

where the so-called “non-Maxwell-equation of motion” [34] appears.[
� + (

1

α
− 1)∂µ∂ν

]
Aν = 0 (2.5)

This one has no zero-eigenvalues and therefore can be inverted in the next
section. But before, the operator in the squared brackets in (2.5) can be
rewritten to a form in which it becomes a functional operator depending on
two points.

Lµν(x, y) = −δ4(x− y)

[
� + (

1

α
− 1)∂µ∂ν

]
(x) (2.6)

The global minus is only convention.

2Lµν∂
µΛ = (∂ν�− ∂µ∂µ∂ν)Λ = (∂ν�−�∂ν)Λ = 0

3“Fully fixed gauge” means the number of degrees of freedom equals the number of
physical degrees of freedom.
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2.2.2 Free photon propagator

The free photon propagator Gνκ is given by the functional inverse of the
operator Lµν(x, y): ∫

y

Lµν(x, y)Gνκ(y, z) = δ(z − x)δκµ , (2.7)

an analogue to the usual matrix inverse
∑

jM
−1
ij Mjk = δik. The integral

replaces the matrix product. Now inserting the definition of Lµν (2.6), the
integral (2.7) can be carried out and the above non-Maxwell-equation of
motion acting on Gνκ is obtained.

Lµν(x)Gνκ(x, z) = δ(z − x)δκµ (2.8)

Afterwards both sides have to be transformed to momentum space z−x→ p,
because Lµν(x) becomes diagonal there and can be inverted like a usual
matrix. Of course, this “free” system with no boundary conditions is still
translation invariant and therefore a change to momentum space is allowed
in all four dimensions. Now on the left side a Fourier transformation integral
appears. By partial integrations, the differential operators in L can be shifted
to act on the eipx term and thus will be replaced by ip.∫

d4p

(2π)4
e−ip(z−x)δκµ = Lµν(x)

∫
d4p

(2π)4
Gνκ(p)e−ip(z−x) (2.9)

= −
∫

d4p

(2π)4
Gνκ(p)

[
� + (

1

α
− 1)∂µ∂ν

]
e−ip(z−x) (2.10)

=

∫
d4p

(2π)4
Gνκ(p)

[
p2 + (

1

α
− 1)pµpν

]
e−ip(z−x) (2.11)

In the end,

Gνκ(p)

[
gµνp

2 + (
1

α
− 1)pµpν

]
= δκµ (2.12)

is left and the matrix inverse is

Gνκ(p) =
1

p2

[
gνκ + (α− 1)

pνpκ

p2

]
. (2.13)

After a simple back transformation to position space p → x, the resulting
Gνκ(x) becomes

Gνκ(x) =
1

(2π)2

[
1

2
(α + 1)

gνκ

x2
− (α− 1)

xνxκ

x4

]
, (2.14)
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which in Feynman gauge (α = 1) becomes the well known free photon prop-
agator

Gνκ(x) =
1

(2π)2

gνκ

x2
. (2.15)

With an Euclidian metric, gνκ = δνκ, the “scalar” propagator G(x) can be
defined:

Gνκ(x) = δνκG(x) G(x) =
1

(2π)2

1

x2
. (2.16)

2.2.3 Boundary conditions for perfectly conducting surfaces

The whole formulation and calculation is based on boundary conditions,
which have to be realised on some surfaces. In the case of QED, they are
given by Maxwell’s equations. So, in general, the boundary conditions for the
electromagnetic fields on a noncharged, nonmoving and nonrotating surface
are given by ~n × ( ~E2 − ~E1) = 0 and ~n · ( ~B2 − ~B1) = 0, where the indices
1 and 2 represent the inside and the outside of the conductor, and ~n is the
normal vector of the boundary surface. For a perfect conductor the fields
inside vanish. Therefore, in the simplest situation, the only conditions are
~n× ~E = 0 and ~n· ~B = 0 at the outside. However, in the following calculations,
it is useful to utilize the electromagnetic field tensor F µν = ∂µAν − ∂νAν ,
or better the dual electromagnetic field tensor F̃ µν = 1

2
εµναβFαβ, because

it is much more manageable and also a formulation for general coordinate
systems. In flat Minkowski space and Cartesian coordinates with the metric
(−,+,+,+), F̃ has the explicit form

F̃ µν =


0 B1 B2 B3

−B1 0 −E3 E2

−B2 E3 0 −E1

−B3 −E2 E1 0

 . (2.17)

With the help of nµ := (0, ~n), the product nµF̃
µ0 = 0 ⇔ ~n · ~B = 0 and

nµF̃
µi = 0⇔ ~n× ~E = 0 can be obtained. So the projection of F̃ on n has to

be zero on the surface of the above perfect conductor and thus, the boundary
conditions are:

nµF̃
µν = nµε

µναβ∂αAβ = 0 . (2.18)
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2.2.4 Restricted partition function for perfectly conducting
surfaces

Now having the boundary conditions and the free Euclidean action with the
invertable free photon propagator, the partition function for describing a
system of vacuum fluctuations together with surfaces that influence these
fluctuations, can be formulated. This partition function with boundary con-
ditions, now called ZBC, can be received by simply cutting out the states,
which do not fulfil the conditions. This can be done with a Dirac delta func-
tional, which has to be zero in all cases where the boundary condition (2.18)
is not achieved [30]:

ZBC =

∫
DA

∏
ν,a,xa

δ
(
naγ(xa)F̃

γν(xa)
)
e−SE(Aµ) . (2.19)

The index a labels the surfaces, so xa are the spacetime coordinates on the
surface a and na(xa) is the normal vector on the surface a at the point xa.
The product is used to place the delta functional for all 4 conditions at each
point in spacetime, where these conditions have to be fulfilled and thus Z is
restricted to a special area in the phase space. But this formulation of the
partition function is not very suitable. To get rid of the delta functional,
every delta function in the product

∏
ν,a,xa

can be replaced by its Fourier
representation

δ
(
naγ(xa)F̃

γν(xa)
)

=

∫
d (Ψa

ν(xa)) e
iΨaν(xa)naγ(xa)F̃ γν(xa) . (2.20)

Afterwards, the product of the exponential functions can be rewritten as the
exponential function of the summation of all exponents. This summation
becomes an integral in the sense of continuous summands. So ZBC becomes

ZBC =

∫
DΨDAei

P
a

R
Sa
dxaΨaνn

a
γ F̃

γν

e−SE(Aµ) , (2.21)

where the path integral DΨ =
∏

ν,a,xa

dΨa
ν(xa) appears. The integrals in this

expression have to be rewritten this way that only Gaussian integrals have
to be solved, in order to calculate them analytically. This will be done in the
next steps for the DA path integral.

To get Gaussian integrals, the exponent has to become quadratic in the
fields A and Ψ. Thus one can take the Euclidean action integral in the
non-Maxwell formulation with the help of Lµν(x, y) in (2.6). With this La-
grangian, the action integral becomes

SE(Aµ) =
1

2

∫
d4xd4yAµ(x)Lµν(x, y)Aν(y) . (2.22)
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Equation (2.22) is quadratic in A. In a next step, the dual field strength
tensor F̃ γν in (2.21) is written out in terms of A and hence replaced by
εγναβ∂αAβ. This exponent obviously becomes linear in A. Therefore all
Aµ have to be split up in this way that afterwards, “the square can be
completed”. More precisely, another delta function δ4(x−xa) and an integral∫
dx have to be inserted in the exponential term:

i
∑
a

∫
Sa

dxaΨ
a
νn

a
γF̃

γν = i
∑
a

∫
Sa

dxaΨ
a
ν(xa)n

a
γ(xa)ε

γναβ∂αAβ(xa) (2.23)

=

∫
dx
∑
a

∫
Sa

dxaiΨ
a
ν(xa)n

a
γ(xa)ε

γναβ [∂αAβ(xa)]δ
4(x− xa) , (2.24)

and Aµ(xa) becomes free of xa:∫
dx
∑
a

∫
Sa

dxaiΨ
a
ν(xa)n

a
γ(xa)ε

γναβ [∂αAβ(x)]δ4(x− xa) . (2.25)

By a partial integration, the differential operator ∂α now acts on the delta
function. Then, everything which belongs to

∫
dxa can be called a current

term Jµ(x) for simplicity:∫
dx
∑
a

∫
Sa

dxa(−i)Ψa
ν(xa)n

a
γ(xa)ε

γναβ
[
∂αδ

4(x− xa)
]

︸ ︷︷ ︸
Jβ(x)

Aβ(x) . (2.26)

In the end, the whole partition function looks like

ZBC =

∫
DΨDAe

R
d4xJβ(x)Aβ(x)− 1

2

R
d4xd4yAµ(x)Lµν(x,y)Aν(y) (2.27)

Jβ(x) =
∑
a

∫
Sa

dxa(−i)[∂αδ4(x− xa)]Ψa
ν(xa)n

a
γ(xa)ε

γναβ . (2.28)

Jβ(x) has the physical meaning of a current on the surfaces, which is induced
by the vacuum fluctuations Aµ. The complete exponential term in (2.27) now
can be rewritten in the way that Gaussian integrals appear for the DA. Here,
the superindex notation lends itself to do this in a clear way. The superindex
with capital letters combines the space-time vector x = (x0, x1, x2, x3) and
the Lorentz indices α = (0, 1, 2, 3) to A = (x, α). So, according to Einstein’s
summation convention, indices appearing twice have to be summed over and
integrated. With this, the exponent of (2.27) becomes

JAAA −
1

2
AAL

ABAB = −1

2
ÃAL

ABÃB +
1

2
JAL

−1ABJB , (2.29)



2 CASIMIR FORCES FOR ABELIAN GAUGE FIELDS 13

where ÃA stands for AA − (L−1J)A.4 At this point, the necessity for an
invertable Lµν operator becomes clear. Now the path integral for DA is
shifted to a path integral for DÃ and the Gaussian integrals for all Ã at each
point in the space-time are reached. They can be collected by a constant
Z0, because they are independent of the geometry of the problem. This
normalisation constant will cancel out later, especially when the Casimir
force will be calculated. Effectively, the partition function with imposed
boundary conditions becomes

ZBC = Z0

∫
DΨe

1
2
JAL−1

ABJ
B

. (2.30)

At this point, DΨ can be replaced by DJsurface. The appearing Jacobi deter-
minant would be independent of the distance of the objects, therefore would
not contribute to the Casimir force and could be absorbed by Z0, too. Thus,
this partition function would be finished and one could work with it. This
was done by T. Emig in [29] for example, who received this term in a different
way. But to go straight forward and also analogue to [31], a propagator for Ψ
will be obtained. Using the definition of J (2.28), the JAL−1

ABJ
B term can be

transformed by partial integrations to a more useful object with Mµν
ab (xa, yb)

being the Greens function of the problem. Mµν
ab (xa, yb) also is the propagator

of a “bounded photon” propagating from a point xa of the surface a to a
point yb of the surface b.

JAL−1
ABJ

B = −
∑
a,b

∫
Sa,Sb

Ψa
µ(xa)M

µν
ab (xa, yb)Ψ

b
ν(yb) (2.31)

Mµν
ab (xa, yb) = naγ(xa)n

b
γ′(yb)ε

γµαβεγ
′να′β′

[
∂α(x)∂′α′(y)L−1

ββ′(x, y)
]˛̨̨

x = xa
y = yb

(2.32)

Here, ∂ means the derivative for x and ∂′ is the one for y. From section 2.2.2,
L−1
ββ′ is known as the free photon propagator Gββ′ .

Because of these conditions on the surfaces, the rank of Mµν
ab is not 4.

The 3 + 1 space-time is the reason for the 4 × 4 matrix, but the normal
vector of the surface enforces M to act on a 2 + 1 subspace. Therefore the
maximal rank of M is 3. Assuming there is a coordinate system, in which the
zero eigenvalue of M is written on the diagonal, the corresponding entries
are zero and so there is no propagation of Ψ in this direction. But then the
integrals in (2.31) are not suppressed by an exponential term and therefore
become infinity. These infinities can be neglected because the Casimir force

4Of course also (L−1J)A contains a summation and integration: (L−1J)A = L−1
ACJ

C .
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only depends on differences of the energy. Another point of view is that these
infinities are also part of the free photon field and would be absorbed by the
normalization constant Z0. To avoid such problems, Mµν

ab has to be projected
onto the subspace, where the propagating fields Ψ exist.

In a last step, because the term in (2.31) is already quadratic in Ψ, the
DΨ can be carried out and the result for ZBC for any number of surfaces is

ZBC = Z0 [det(MBC)]−
1
2 . (2.33)

The 2π constants arising from this Gaussian integrals will also be absorbed
by Z0, because they cancel out when calculating the force.

This result for ZBC can be obtained by first defining the matrix MBC as
the combined super-propagator of one field Ψ(x ) where x ∈ S1 ⊗ . . . ⊗ Sn
and then integrating over Gaussian integrals of the form

∫
dΨe−

1
2
ΨMBCΨ ,

too. For the situation with only two surfaces, MBC simplifies to

MBC =

(
M11 M12

M21 M22

)
Ψ =

(
Ψ1

Ψ2

)
, (2.34)

or, for example, with three surfaces it becomes

MBC =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 Ψ =

 Ψ1

Ψ2

Ψ3

 . (2.35)

2.2.5 Extension to dielectric surfaces - the boundary conditions

The above described method is, of course, not restricted only to ideal con-
ducting surfaces. As it was pointed out in [35], boundary conditions can also
be found for general dielectrics. To obtain them, the Helmholtz equation

[~∇2 + ε(ω)ω2] ~B(ω, ~x) = 0 (2.36)

for the magnetic field ~B can be used, which directly follows from the Maxwell’s
equations. Inside a volume V with surface S the general frequency depen-
dent dielectric function ε(ω) is considered. Now including the free Green’s
function, which has to satisfy

[~∇2 + ε(ω)ω2]Gε(ω, ~x, ~x′) = δ(~x− ~x′) (2.37)

inside the medium, equations (2.36) and (2.37) can be combined due to
Green’s second identity to∫

~x′∈S
[ ~B(~x′)~∇′nGε(~x, ~x′)−Gε(~x, ~x′)~∇′n ~B(~x′)] =

{
~B(~x) , ~x ∈ V
0 , ~x /∈ V .

(2.38)
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The frequency ω is neglected, ~n′ = ~n(~x′) denotes the surface normal vector

pointing into the vacuum and ~∇′n = ~n′~∇′ is the derivative of ~x′ in normal di-
rection. With the use of vector identities, equation (2.38) can be transformed
to∫
~x′∈S

[
−iωε~n′× ~E(~x′) + (~n′× ~B(~x′))× ~∇′ + (~n′ ~B(~x′))~∇′

]
Gε(~x, ~x′) = 0 , (2.39)

where ~x is set to lie outside of V . This equation now states that the tan-
gential component of the electric field as well as the tangential and normal
components of the magnetic field have to be continuous across the boundary
surface, which is the case for a dielectric boundary without surface charges or
currents. Therefore, it can be used as a nonlocal boundary condition. That
means, even for a complex structured surface S with coordinates ~x′, a second
surface R playing the role of an auxiliary surface with coordinates ~x can be
introduced, which carries the conditions (2.39) (see Fig. 2.1).

x||

x3

L

-L

H

0
S1

S2

R2

R1

ε1(ω)

ε2(ω)

Fig. 2.1: Two dielectric media bounded by their surfaces Sa are filling two
half spaces. With each physical surface Sa comes an auxiliary surface Ra,
on which the non-local boundary conditions are implemented. This figure is
taken from [35].

However to be able to use the above formalism, equation (2.39) has to become
a condition for the electromagnetic vector field potential A and not for the
electromagnetic fields themselves. Hence, the relations5 Ei = −p0A

i− i∂iA0

and Bi = εijk∂jAk have to be inserted in (2.39) and the complete term can

5The Wick rotation has to be considered.
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be expressed as an integral∫
~x′a∈Sa

Lajµ (~x′a, ~xa)A
µ(~xa) = 0 , (2.40)

with Lajµ being an operator acting on Aµ at each point ~xa ∈ Ra, whereby
a is called the surface index. This operator can be expressed in component
notation after some simplifications:

Lajµ (~x′a, ~xa)=naγ(~x
′
a)

[
(−i)εjγαβ+

1

p0εa
ε0γσρε0σα

′jε0ραβ∂′α′

]
Gεa
βµ(~x′a, ~xa)∂α . (2.41)

The derivatives ∂′ ≡ ∂x′ and ∂ ≡ ∂x act on Gεa and A respectively. By
inserting (2.40) and (2.41) into the delta functional in ZBC of section 2.2.4 and
expanding the delta into its Fourier representation, the appearing integral
over the auxiliary surface Ra can be used to shift the derivative ∂ to act
on Gεa due to a partial integration. Then, the symmetry ∂G(x′ − x) =
−∂′G(x′ − x) can be utilised to transform the vector field potential A(~xa)
on the auxiliary surface Ra to a vector field potential A(~x′a) on the surface
Sa with the transformation

∫
~xa∈Ra G

εa
βµ(~x′a, ~xa)A

µ(~xa) = Aβ(~x′a). This step
leads to a partition function, which also could be obtained by using the local
boundary condition

naγ(~xa)

[
(−i)εjγαβ +

1

p0εa
ε0γσρε0σα

′jε0ραβ∂α′

]
∂αAβ(~xa) , ~xa ∈ Sa (2.42)

in first place. As a cross-check, by taking the limit ε → ∞, the dielectric
surface becomes an ideal conductor and thus (2.42) leads to the previously
found boundary condition6 (2.18).

Therefore, in the end, when Casimir forces have to be calculated for
nontrivial geometries, what can be chosen are, for example, a plain surface
with a complicated nonlocal boundary condition (2.40) and (2.41) or the
complicated shaped surface with a local boundary condition (2.42).

6... in Ψ0 = 0 gauge. See section 2.5.
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2.3 Obtaining the Casimir energy from the partition
function

With the above considerations, everything of the physical system is known.
For example, one can ask for the ground state energy 〈0|H|0〉 of the pho-
ton field in presence of surfaces, which is the Casimir energy. Because the
partition function also has the definition

Z = Tr
[
eitH

]
=
∑
n

e−τEn , (2.43)

where τ = −it is the complex Euclidean time, the ground state energy
E = E0 can be obtained by taking the limit τ → TE :=∞ from lnZ, whereby
TE is the “overall Euclidean timelength”.

lnZ = −ETE (2.44)

This equation is of course written in natural dimensions ~ = c = 1. Oth-
erwise, with the correct dimensions and the above partition function, the
energy is given by

E = − ~c
TE

lnZBC . (2.45)

ZBC is infinity and so the energy, too. However, due to being interested
in the Casimir force, which is minus the gradient of E, a constant can be
subtracted from the energy. This constant could be the ground state energy
of the free photon field, so ZBC just has to be divided by the free Z. But this
expression is still infinity, because of the zero eigenvalues in MBC resulting
from the surfaces. To remove those infinities, it is better to normalise ZBC by
Z∞, which has the same zero eigenvalues. Z∞ is the ZBC, where the surfaces
have infinite distance. Thus the Casimir energy is defined as

ECas = − ~c
TE

ln
ZBC

Z∞
, (2.46)

which leads to a finite energy density in the end, the energy per surface area.
The surface distance independent Z0 cancels out now.

2.4 Casimir energy in the propagator formulation

With the help of (2.33), (2.46) and using ln det = Tr ln, the Casimir energy
is given by

ECas =
~c

2TE
Tr ln

MBC

M∞
. (2.47)
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As for M∞, the surface distance goes to infinity, the free photon propaga-
tor connecting two separate surfaces, becomes zero and therefore also Mµν

ab

becomes zero for all a 6= b. Thus M∞ is

M∞ =

(
M11 0

0 M22

)
. (2.48)

Taking the product M−1
∞MBC leads to an equation of the form 1 + ∆M,

where

∆M =

(
0 ∆M12

∆M21 0

)
(2.49)

or in general

∆Mab =

{
M−1

aa Mab , a 6= b

0 , a = b
. (2.50)

Now, the logarithm can be expanded into a Taylor series at ∆M = 0. Car-
rying out the trace over the discrete surface indices leads to

ECas = − ~c
2TE

∞∑
n=2

(−1)n

n
Tr [∆Mn] . (2.51)

The first summand n = 1 is the sum of all selfinteractions and therefore
becomes zero in this formalism. For all other n, Tr [∆Mn] is the sum of all
combinations of propagations around a complete circle passing n surfaces.
Especially for two surfaces, the summands with an odd n are zero7 and the
one with an even n are 2 Tr [(∆M12∆M21)n]. Thus in this case, the Casimir
energy specialises to

ECas = − ~c
2TE

∞∑
n=1

1

n
Tr [(∆M12∆M21)n] (2.52)

and hence the force is always attractive. Such a simple result, of course,
cannot be obtained in general, as it can be seen in the case with only one more
surface. Then the first two summands are Tr[∆M12∆M21 + ∆M23∆M32 +
∆M31∆M13] + Tr[∆M12∆M23∆M31 + ∆M13∆M32∆M21].

2.5 Additional gauge freedoms

It is known that a photon has only two degrees of freedom corresponding
to the two directions transverse to the propagation direction. This holds

7There does not exist a complete circle consisting of an odd number of propagators.
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also for the “bounded photon” and thus the propagator matrices Mab only
need to have rank two. However, as mentioned before, QED is an abelian
field theory and therefore there is no need for a fully fixed gauge. Only the
invertibility of (2.3) has to be achieved to obtain a propagator. Therefore,
the Feynman gauge was introduced. On the other hand, a different gauge
may lead to different simplifications within the calculations and to a different
convergence behaviour8. Therefore, one more gauge should be found.

A0 = 0 gauge
Since there was no matter included in the setup, the Coulomb gauge could

be a good idea. This one can be obtained by setting A0 = 0 additionally to
the Feynman gauge ∂µA

µ = 0. The reason for this is the following:

The connection between electromagnetic fields ~E and ~B, and the vector
field potential Aµ is given by the well known equations

Ei = −∂iA0 + ∂0Ai Bi = εijk∂jAk . (2.53)

Therefore the vector potential Aµ has the gauge freedom A′µ = Aµ + ∂µΛ. If
A′ 0 is set to zero by a gauge fixing, Λ(~x, t) can be fixed by simply integrating
over A0(~x, t) up to an integration constant λ(~x).

Λ(~x, t) = −
∫ t

A0(~x, t′)dt′ + λ(~x) (2.54)

Feynman gauge ∂µA
µ = 0 now leads to

0
!

= ∂iA
′i = ∂iA

i + ∆Λ (2.55)

= ∂iA
i(~x, t)−

∫ t

∆A0(~x, t′)dt′ + ∆λ(~x) (2.56)

and λ gets fixed by a simple Poisson equation if (2.56) does not depend on the
time. But this is implicitly declared by the Feynman gauge. As a consistency
check the time derivative of (2.56) can be taken.

0
!

= ∂0∂iA
i − ∂0

∫ t

∆A0(~x, t′)dt′ (2.57)

∂µAµ=0
= −∂0∂

0A0 −∆A0 = −�A0 (2.58)

8As seen in (2.50), the functional inverse propagator M−1
ab will be needed. This inverse

cannot be obtained analytically, in general, and thus one will have to set restrictions or
truncations on these propagators. Here, “convergence behaviour” is meant in the sense of
this truncation.
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So A0 has to obey the vacuum equation of motion (2.5) with α = 1 as
assumed. Thus in the case of vacuum, the so-called Weyl gauge, A0 = 0,
is allowed. However, since there is no matter in the vacuum, a boundary is
introduced. At this boundary, the fields have to obey some conditions which
lead to a current term in the action. So, after changing the free action to a
bounded one, A0 = 0 is not allowed because this action can be obtained also
by introducing matter into the vacuum. The current term can be interpreted
as matter. In contrast, in the case of two parallel plates, this gauge does not
change the result because the plates are translation invariant with respect
to all three surface directions.9 But because this is not obvious, an allowed
A0 = 0 gauge will be assumed with care.

Ψ0 = 0 gauge
However, there exists a second possible gauge. For the auxiliary fields

Ψ on the surfaces similar equations hold. The electromagnetic current J
is connected to Ψ by a 4D rotation of nΨ after a partial integration in
equation (2.28).10

Jβ(x) = i
∑
a

εαγνβ∂α[naγΨ
a
ν ] (2.59)

= i
∑
a

[εαγνβ(∂αn
a
γ)︸ ︷︷ ︸

0

Ψa
ν + εαγνβnaγ∂αΨa

ν ] (2.60)

The first term vanishes because of stationarity of the surfaces: The normal
vector nγ does not depend on time and n0 = 0, so one is left with rot~n. But
this is also zero.11 Obviously a gradient term and a normal vector term can
be added to Ψ so Ψa

ν → Ψ′aν = Ψa
ν + ∂νΛ

a + nνΓ
a is a gauge freedom for

all surfaces a independent of each other. For the next considerations, the
surface index a will be neglected for simplicity.

In the following certain conditions are checked, which maybe simplify the
propagator Mab. Since Ψ is a field on the surface, nνΨ′ν = 012 and nµ∂µΨ′ν =
013 would be possible. These conditions would lead to nν∂νΛ + Γ = −nνΨν

and nµ∂µ∂νΛ +nµ∂µnνΓ = −nµ∂µΨν which are always solvable. By choosing

9See section 3.3.
10Due to the surface integral, this partial integration can only be done for the surface

derivatives. But due to the ε tensor, ∂α has to be orthogonal to the normal vector and
thus it is only a derivative of surface variables.

11~n could be expressed by a single gradient of a potential whose equipotential surface
is the surface itself. A normal vector field has no rotation.

12The normal component of Ψ can be assumed to be zero.
13There should be now flow of Ψ leaving the surface.
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nν∂νΛ = 0, Γ = −nνΨν solves the system and leaves space for a third
condition. Because n0 is zero, this solution is no restriction for Ψ0. Hence
Ψ0 can be arbitrary chosen, for instance, Ψ0 = 0 would simplify the used
Matrix propagators very much due to being able to even ignore the time
components. In addition, this gauge also lowers the rank of Mab.

Therefore, the task is to show that Λ can be found in such a way that
Ψ′0 = 0 is always satisfied. At first, Λ can be obtained up to an integration
constant by integrating over Ψ0.

Λ(~x, t) = −
∫ t

Ψ0(~x, t′)dt′ + λ(~x) (2.61)

This constant is determined by the following linear differential equation which
can be solved always, if the right-hand side does not depend on time.

∂iλ(~x) = Ψ′i −Ψi + ∂i

∫ t

Ψ0(~x, t′)dt′ (2.62)

But taking the time derivative of (2.62) leads to zero, because

iε0γiβnγ∂0

(
Ψ′i −Ψi + ∂i

∫ t

Ψ0dt
′
)

= iε0γiβnγ(∂0Ψ′i − ∂0Ψi + ∂iΨ0) (2.63)

= J ′β − Jβ = 0 . (2.64)

Thus the Weyl gauge for the Ψ is allowed always in the case of no time depen-
dend normal vectors. Of course, only a change in the boundary conditions
would lead to a change in this gauge freedom.

A physical interpretation of this gauge is this: The propagating photons
have two degrees of freedom and therefore, only two boundary conditions are
needed. For example nµF̃

µi = 0 with i = 1, 2, 3 can be chosen, which means

~n× ~E = 0. By writing out the ~E in normal and tangential components, the
surface normal vector automatically sets one of this three equations to zero
and thus they are only two conditions. Now, the Fourier transformation of
nµF̃

µi = 0 leads to a Ψ, which has no time component.14

14Another interpretation comes with the comprehension of Ψ being for the surfaces the
analogue to the vector field potential A for the vacuum. In other words, a being, living
only on the surface, does not recognise the surface. Thus, for this object, the fluctuating
field Ψ is simply the same as for us a fluctuating A field in a free vacuum. Now, in a
vacuum with no matter inside, there are no external charges or currents and therefore A0

can be set to zero. For a field on the surfaces, this means Ψ0 = 0 gauge is a result of no
external surface charges and currents.
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3 Casimir force for two parallel plates

In the year 1948, H. B. G. Casimir [3] predicted an attractive force between
two parallel perfectly conducting plain plates. This result was also reobtained
by many people afterwards and will be calculated in the following with the
above propagator formulation, too. Corresponding to (2.52), the propagator
between the surfaces therefore will be calculated.

3.1 Setup

Two parallel perfectly conducting plain plates, in the following denoted as
1 and 2, are placed at a distance H above each other. The lower one lies
on the (x1, x2) plane. The used coordinates are Cartesian ones. A figure of
this is shown in Fig. 3.1. The normal vectors on this surfaces have to face
each other by convention and thus are naγ = (−1)a+1δ3

γ, where a indicates the
surface number.

x3

n2

n1S1

S2

x1,x2

H

Fig. 3.1: Two parallel perfectly conducting plates are placed at a distance H
with n1 and n2 being the normal vectors of the plates S1 and S2. Additionally,
the Cartesian coordinates x1 and x2 are the coordinates on the plates.
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3.2 The propagator between two parallel plates

With this setup and the use of (2.32), the corresponding propagator matrix
can be calculated. But to get the Casimir energy (2.52), also the functional
inverse of this matrix is needed. Therefore, the translation invariance in
x = (x0, x1, x2) direction should be used. Because of this invariance, the
propagator M(x, x′) is diagonal in momentum space and can easily be func-
tionally inverted by calculating the usual matrix inverse of the Fourier trans-
formed propagator M(p) with x − x′ → p. This M(p) can be obtained by

transforming the free photon propagator Gββ′ =
δββ′

4π2(x−x′)2 to Gββ′(p, x3−x′3)

in momentum space and inserting it into (2.32).

Mµν
ab (xa, x

′
b)=naγn

b
γ′ε

γµαβεγ
′να′β′∂α∂

′
α′

1

(2π)3

∫
p

Gββ′(p, x
a
3 − x′b3 )e−ip(xa−x

′
b) (3.1)

=
1

(2π)3

∫
p

Mµν
ab (p, xa3 − x′b3 )e−ip(xa−x

′
b) (3.2)

With

Gββ′(p, x3 − x′3) = δββ′
1

2|p|
e−|p||x3−x′3| (3.3)

and the plate normal vectors, Mab can be obtained:

Mµν
ab (p,H) = (−1)a+bε3µαβε3να

′β′δββ′ p̃αp̃α′
1

2|p|
e−|p||H(a−b)| . (3.4)

p̃ is the modified momentum (p0, p1, p2,−i|p| sign(H(a − b))). However, its
third component p̃3 is not needed because in this case the ε tensor is zero.
After a simplification, in the case of only Feynman gauge, the M results in:

Mµν
ab (p,H) =

(−1)a+b

2|p|

(
δαα

′
p2 − pαpα′

)
⊥µα⊥να′e−|p||H(a−b)| . (3.5)

⊥µα = (δµα − δ3
αδ

µ
3 ) and ⊥να′ = (δνα′ − δ3

α′δ
ν
3 ) are two projectors on the surface.

Thus there are no propagations of Ψ leaving the surfaces. Furthermore, Mab

is rank(2). In the special case of additional Coulomb gauge15, Mab can be

15Feynman gauge ∂µAµ = 0 and A0 = 0 leads to Coulomb gauge ∂iAi = 0. This can
be realised by setting G00 to zero or restricting the summations on β and β′ in (2.32) to
go from 1 to 3.
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written out to

Mab(p,H) =
(−1)a+b

2|p|
e−|p||H(a−b)|


p1

2 + p2
2 −p0 p1 −p0 p2 0

−p0 p1 p0
2 0 0

−p0 p2 0 p0
2 0

0 0 0 0

 , (3.6)

which has rank(2), too. Also, with additional Ψ0 = 0 gauge, the time com-
ponents of (3.5) or (3.6) have to be set to zero and Mab still remains rank(2).

According to (2.52), Maa has to be inverted on the non-zero-eigenvalue
subspace so that M−1

aa Maa = 1 16. This inverse can be obtained by a prin-
cipal axis transformation of Maa, an inversion of this diagonalised matrix,
and a backtransformation afterwards. Thus it is the same like inverting the
eigenvalues or calculating the Moore-Penrose or pseudo-inverse of a Hermi-
tian matrix (see appendix D). With these methods, the inverse propagator
in the case of only Feynman gauge results in:

M−1µν
aa (p,H) =

2

|p|3
(
δαα

′
p2 − pαpα′

)
⊥µα⊥να′ , (3.7)

with additional A0 = 0 gauge:

M−1
aa (p,H) =

2

|p|3



p2
1 + p2

2 −p0 p1 −p0 p2 0

−p0 p1
p2

1p
2
2+(p2

0+p2
2)2

p2
0

−p1p2(p2
0+p2)

p2
0

−p0 p2 −p1p2(p2
0+p2)

p2
0

p2
1p

2
2+(p2

0+p2
1)2

p2
0

0

0 0 0 0

 , (3.8)

or with additional Ψ0 = 0 gauge:

M−1
aa (p) =

2

|p|p2
0


0 0 0 0

0 p2
0 + p2

1 p1 p2 0

0 p1 p2 p0
2 + p2

2 0

0 0 0 0

 , (3.9)

or with additional A0 and Ψ0 = 0 gauge:

M−1
aa (p) =

2|p|
p2

0


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 . (3.10)

16After the principal axis transformation of Maa the 1 is a rank(2) 1.
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3.3 Casimir energy for two parallel plates

With these matrices, the Casimir energy (2.52) for the parallel plates setup
can be easily calculated. Multiplying the inverse propagator matrix of one
surface with the propagator matrix from one surface to the other, ∆M12

and ∆M21 result in 1e−|p||H|. With those terms, Tr[(∆M12∆M21)n] can be
calculated, especially for all n.

Tr[(∆M12∆M21)n] = Tr[1e−|p||2nH|] (3.11)

Carrying out the trace over the matrix indices of 1 leads to an additional
factor 2. The trace over the continuous space time indices is an integral over
the surface coordinates. Thus, also the Fourier transformation of ∆M back
to position space has to be mentioned.

Tr[(∆M12∆M21)n] =

∫
x

1

(2π)3

∫
p

2e−|p||2nH|e−ip(x−x
′)
|x′=x

=

∫
x︸︷︷︸

=TEA

1

(2π)3

∫
p

2e−|p||2nH| (3.12)

=
1

4π2n3|H|3
TEA

TE is the overall length in Euclidian time direction, which cancels out after
inserting (3.12) in (2.51). A is the overall surface area. Taking (2.51) divided
by the surface area A results in the Casimir energy density for this setup.

ρCas = − ~c
23π2|H|3

∞∑
n=1

1

n4
(3.13)

In a last step the convergent sum
∑∞

n=1
1
n4 can be replaced by π4

90
, so the well

known Casimir energy density for two parallel plates [3] is obtained. Fur-
thermore, the Casimir force density is minus the gradient of the Casimir
energy density corresponding to the relative position, or more precisely
fCas = −∂HρCas.

ρCas = − π2~c
720|H|3

fCas = − π2~c
240|H|4

(3.14)

In this special case, whereMab (3.5) is translation invariant in all three surface
directions and therefore is in full momentum space, the full knowledge about
M−1

aa is not needed. The exponential term in Maa is 1 and thus the one in
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Mab remains after taking the product M−1
aa Mab. Only the rank of Maa has

to be known, which gives the factor 2 in (3.12). With that, the possibility
to calculate the right energy out of the scalar case by multiplying it with
a two [31] becomes clear. Also, this is the reason for the correct result
within the unallowed A0 = 0 gauge, since this gauge does not change the
rank of Maa.
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4 Casimir-Polder force for an atom and a

plain plate

Casimir-Polder forces are the Casimir forces for atoms or atoms including
setups. These atoms can be represented by spheres, which can be assumed
to be perfectly conducting for simplicity. Thus, they are ideal for studying
within this formalism. As mentioned in the introduction, Casimir-Polder
forces for situations like two or three atoms or an atom in front of a plain plate
are already obtained by others. Their results can be used for comparison.
Because the (inverse) propagator matrix for a perfectly conducting plain plate
is already known and to have the smallest amount of work, it is convenient to
chose the plain plate sphere setup in the following. But afterwards, also other
configurations with a sphere can be obtained. Then, the sphere part is no
problem anymore. Of course, the propagators from a sphere to other surfaces
are needed, too, but these calculations are almost easy in comparison with
obtaining the inverse propagator of any surfaces analytically. The surface
normal vectors only have to be put in equation (2.32).

4.1 Setup

In this chapter, a perfectly conducting sphere with radius R above a perfectly
conducting plain plate has to be studied. Their mean distance is denoted
by H, where “mean” means the shortest distance between the center of the
sphere and the plate. Again, Cartesian coordinates for the surfaces are used.
But additionally, the sphere implies spherical coordinates and thus their sur-
face angles ϕ and θ, abstracted by Ω, will be needed, too. This is shown in
Fig. 4.1. The plate with surface index 1 is placed in the (x1, x2) plane and
the sphere indexed by 2 has its center at the point (x0, 0, 0, H) for all times.
Again, the normal vectors have to face each other by convention, thus n2

points outside the sphere.

n1
γ = δ3

γ =


0

0

0

1

 n2
γ′(Ω) =


0

cosϕ sin θ

sinϕ sin θ

cos θ

 (4.1)
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S2

x3

n2

R

n1S1 x1,x2

H

Fig. 4.1: A plain plate and a sphere of radius R on top of it are set on a
distance H. Both are assumed to be perfect conductors. The Coordinates
for the plate are Cartesian and those for the sphere are spherical ones. x1

and x2 are the coordinates on the plate, θ and φ are the coordinates on the
sphere. n1 and n2 are the corresponding normal vectors.

4.2 Preliminaries

The change in the symmetry of the problem leads to a slightly different
strategy to achieve the Casimir energy, as it was done in chapter 3. The
sphere propagator now cannot be functional inverted in momentum space
because it is not translation invariant. At first one should recall equation
(2.52), the Casimir energy for the special case of two surfaces:

ECas = − ~c
2TE

∞∑
n=1

1

n
Tr [(∆M12∆M21)n] . (4.2)

The matrix product and the trace are an integration over all surface variables
additionally to the summation of the space-time indices. Hence, again, the
usage of a momentum space would simplify this equation. A translation
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invariance for all surfaces is only given in time direction, so it is convenient
to transform the times to frequencies. Additionally, the plate is translation
invariant with respect to x1 and x2 and therefore M−1

11 will be used in its
momentum space representation. But for the sphere, surface integrals have
to be carried out later on. They can be done for all n in equation (4.2), but
an analytical result like (3.14) does not exist. Hence, only the first dominant
contributions can be calculated. These are given by the monopole, dipole
and quadrupole order, and so forth, and thus the power of R

H
is an adapted

criterion. From the scalar case [31], it is known that the first orders are given
by the first summands in equation (4.2) and so one could restrict oneself to
the first summand. This corresponds to the propagation of a photon from one
surface to the other and back, and consequently rendering one propagation
“loop”. As a result, the 1-loop Casimir energy17 is given by

E1 loop
Cas =− ~c

2TE
Tr [∆M12∆M21] . (4.3)

Tr [∆M12∆M21] =

∫
x

∫
x′

∫
x′′

∫
x′′′

tr
[
M−1

11 (x, x′)M12(x′, x′′)M−1
22 (x′′, x′′′)M21(x′′′, x)

]
(4.4)∫

x′′
and

∫
x′′′

are meant to be surface integrals on the sphere. To simplify
this equation, the Fourier integrals (A.1) to (A.4) from appendix A can be
inserted. In accordance to the previously used convention, p ≡ (p0, p1, p2) ≡
(p0, p||) is used.

Tr [∆M12∆M21] =
1

(2π)10

∫
x

∫
x′

∫
t′′,~x′′

∫
t′′′,~x′′′

∫
p

∫
p′

∫
p′′0

∫
p′′′

tr
[
M−1

11 (p)M12(p′, ~x′′)M−1
22 (p′′0, ~x

′′, ~x′′′)M21(~x′′′, p′′′)
]

e−ip(x−x
′)e−ip

′x′+ip′0t
′′
e−ip

′′
0 (t′′−t′′′)e−ip

′′′
0 t
′′′+ip′′′x (4.5)

In the next step, some of the space time integrals have to be integrated
out, which leads to seven delta functions of momenta. Six of the momenta
integrals can be carried out, thus afterwards, the trace is determined by
only four space surface integrals on the sphere, one time integral and three
momentum integrals on the plate.

Tr [∆M12∆M21] =
R4

(2π)3

∫
Ω′′

∫
Ω′′′

∫
t′′

∫
p

(4.6)

tr
[
M−1

11 (p)M12(p,R,Ω′′)M−1
22 (p0,Ω

′′,Ω′′′)M21(R,Ω′′′, p)
]

17The term “1-loop” Casimir energy has nothing to to with the known term “1-loop”
used for describing connected Feynman diagrams with only one cycle.
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Because of stationarity, the integrand of (4.6) does not depend on the time t′′.
So the time integral can be carried out and results in the Euclidean timelength
TE, which cancels out with the one in (4.3). The same result can be obtained
for all Tr [(∆M12∆M21)n]. Therefore, TE cancels also in equation (4.2).
After including all translation symmetries, the 1-loop energy is given by

E1 loop
Cas =− ~c

2

R4

(2π)3

∫
Ω′′

∫
Ω′′′

∫
p

tr
[
M−1

11 (p)M12(p,R,Ω′′)M−1
22 (p0,Ω

′′,Ω′′′)M21(Ω′′′, p)
]
. (4.7)

With (4.7) the calculation of the propagator matrices can be started. Indeed,
the plain plate propagator M11 and its inversion has already been done and
can be found in the previous chapter or in appendix C.

4.3 The propagator between a plate and a sphere

To get the Casimir energy for the case of one (see (4.7)) or more loops, the
propagator matrices M12(p,R,Ω) and M21(R,Ω, p), describing the transition
of a photon from a point on a plate to another point on a sphere and back,
are needed. As it was done in the parallel plates case, they can be obtained
by first transforming the free photon propagator to the corresponding mo-
mentum space. Afterwards the conditions defined in (2.32) can be imposed.
To be specific, the Fourier transformation

G(x0 − x′0, x||, x3, ~Ω) =
1

(2π)3

∫
p

G(p, ~Ω)e−ip0(x0−x′0)−ip||x|| (4.8)

can be chosen for G(x−x′), with ~Ω = ~x′ being the point on the sphere. This
leads to the scalar propagator from the plate to the sphere

G(p, ~Ω) =
1

2|p|
e−|x3−x′3||p|+ix′||p|| . (4.9)

By putting (4.8) and (4.9) times δββ′ into (2.32), the Fourier integrals can
be extracted and in consequence the integrand is M12(p,Ω) in momentum
space. With the use of the normal vectors (4.1), M12 can be simplified to the
following object: In the case of pure Feynman gauge it is

M12(p,Ω) =
e−|p||R cos θ+H|+iR sin θ(cosϕp1+sinϕp2)

2|p|
× (4.10)

0BBBBBBB@

cθ(p2
1 + p2

2)− sθ(cϕp1 + sϕp2)i|p| −cθp0 p1 −cθp0 p2 sθp0 (cϕp1 + sϕp2)

p0(cϕsθi|p| − cθp1) cθ(p2
0 + p2

2)− sϕsθp2i|p| p2(cϕsθi|p| − cθp1) sϕsθp1p2 − cϕsθ(p2
0 + p2

2)

p0(sϕsθi|p| − cθp2) p1(sϕsθi|p| − cθp2) cθ(p2
0 + p2

1)− cϕsθp1i|p| cϕsθp1p2 − sϕsθ(p2
0 + p2

1)

0 0 0 0

1CCCCCCCA
,
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and together with Ψ0 = 0 on both surfaces it becomes

M12(p,Ω) =
e−|p||R cos θ+H|+iR sin θ(cosϕp1+sinϕp2)

2|p|
× (4.11)

0BBBBB@
0 0 0 0

0 cθ(p2
0 + p2

2)− sϕsθp2i|p| p2(cϕsθi|p| − cθp1) sϕsθp1p2 − cϕsθ(p2
0 + p2

2)

0 p1(sϕsθi|p| − cθp2) cθ(p2
0 + p2

1)− cϕsθp1i|p| cϕsθp1p2 − sϕsθ(p2
0 + p2

1)

0 0 0 0

1CCCCCA .

The terms cθ, sθ, cϕ and sϕ denote cos θ, sin θ, cosϕ and sinϕ respectively.
However, Coulomb gauge can be reached again by restricting β and β′ to
count from 1 to 3. In this case M12 would look like

M12(p,Ω) =
e−|p||R cos θ+H|+iR sin θ(cosϕp1+sinϕp2)

2|p|
× (4.12)

0BBBBB@
−cθ(p2

1 + p2
2) + sθ(cϕp1 + sϕp2)i|p| cθp0 p1 cθp0 p2 −sθp0 (cϕp1 + sϕp2)

p0(cθp1 − cϕsθi|p|) −cθp2
0 0 cϕsθp

2
0

p0(cθp2 − sϕsθi|p|) 0 −cθp2
0 sϕsθp

2
0

0 0 0 0

1CCCCCA ,

but this leads to a wrong Casimir energy in the end. For a clear understand-
ing of these calculations, component (0, 1) of M12 is explicitly calculated as
an example in appendix B.

Now it is an easy task to get the back propagator M21. The scalar propa-
gator from the sphere to the plate G(~Ω, p) will be the complex conjugated of

G(p, ~Ω) because of a minus in the Fourier integral. Additionally, the exchange
of the points also exchanges the fields in the product ΨMΨ. Therefore, M21

will be equal to the adjoint of M12. This can be calculated out of (2.32), too.

M21(Ω, p) = M †
12(p,Ω) (4.13)

4.4 The cl coefficients

In the following, it will be necessary to calculate the scalar expansion coeffi-
cients clml′m′ of the free scalar propagator G(p0,Ω,Ω

′) for an expansion into

spherical harmonics Ylm at both points ~Ω and ~Ω′.

G(p0,Ω,Ω
′) =

∑
lm,l′m′

clml′m′(R, p0)Ylm(Ω)Y ?
l′m′(Ω

′) (4.14)

G depends only on the distance between the two points and not on any
direction. Therefore, it can also be expanded into Legendre polynomi-
als Pl(~Ω · ~Ω′) = Pl(cosα) with α being the angle between the two points
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Ω ≡ (θ, ϕ) and Ω′ ≡ (Θ,Φ) on the sphere.

cosα = cos θ cos Θ + sin θ sin Θ cos(ϕ− Φ) (4.15)

Now the addition theorem for spherical harmonics

Pl(cosα) =
4π

2l + 1

∑
m=−l..l

Ylm(Ω)Y ?
lm(Ω′) (4.16)

shows that clml′m′ has to be diagonal in l, l′ and m,m′, and also independent
from m or m′. Thus, clml′m′ becomes δll′δmm′cl and equation (4.14) changes
to

G(p0,Ω,Ω
′) =

∑
lm

cl(R, p0)Ylm(Ω)Y ?
lm(Ω′) . (4.17)

To obtain cl coefficients, the integral

cl = 2π

∫ 1

−1

G(cosα)Pl(cosα)d(cosα) (4.18)

has to be solved. This can be done by rewriting G as an integral over T ,
which is called the “proper time” formalism. With

G(p0, ~x) =
1

4π

e−| ~p0||~x|

|~x|
(4.19)

=

∫ ∞
0

1

4
√
πT

e−~x
2T− p20

4T dT (4.20)

and ~x = R
√

2(1− cosα), the cl coefficients can be obtained for arbitrary
high l. Afterwards the T integration has to be carried out, which is always
possible. Actually, a solution up to the T integration can be given in form
of a sum formula. By using

Pl(x) =

b l
2
c∑

k=0

(−1)k(2l − 2k)!

(l − k)!(l − 2k)!k!2l
xl−2k (4.21)

and∫ 1

−1

xnerxdx = (−1)n

(
e−

1
2
rM 1

2
n, 1

2
(n+1)(r)

(n+ 1)r
1
2
n+1

+
nΓ(n,−r)− Γ(n+ 1)

rn+1

)
+
er

r
, (4.22)
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the d(cosα) integral in (4.18) can be simplified to the following expression:

λl(r)=
er

r
+

b l
2
c∑

k=0

[Γ(l − 2k,−r)(l − 2k)−Γ(l − 2k + 1, r)] Γ(l − k + 1
2
)

(−1)k+l22k−l√πrl+1−2kΓ(l − 2k + 1)Γ(k + 1)
(4.23)

cl = 2π

∫ ∞
0

λl(2R
2T )

4
√
πT

e−2R2T− p20
4T dT (4.24)

The brackets b c in (4.21) and (4.23) mean rounding down. The integral
(4.22) is given by Maple 11 , where Mk,m(x) is the Whittaker M function,
and Γ(z, a) and Γ(z) = Γ(z, 0) are the incomplete and the usual Gamma
function respectively. With (4.24) or (4.18), the first 5 coefficients are:

c0 =
1

2

(
−1 + e2|p0|R

)
e−2|p0|R

R2 |p0|
(4.25)

c1 =
1

2

(
−e2|p0|R + e2|p0|RR2p0

2 + 2 |p0|R + 1 +R2p0
2
)
e−2|p0|R

|p0|3R4
(4.26)

c2 =
1

2

(
e2|p0|RR4p4

0 − 3e2|p0|RR2p2
0 + 9e2|p0|R − 6R3 |p0|3 −R4p4

0

R6 |p0|5
(4.27)

−18R |p0| − 9− 15R2p2
0) e−2|p0|R

c3 =
1

2

(
−6e2|p0|RR4p0

4 + e2|p0|RR6p0
6 + 45e2|p0|RR2p0

2 − 225e2|p0|R

R8 |p0|7
(4.28)

+210R3 |p0|3 + 405R2p0
2 + 66R4p0

4 + 450 |p0|R + 225

+12 |p0|5R5 +R6p0
6
)
e−2|p0|R

c4 =
1

2

(
11025e2|p0|R + 135e2|p0|RR4p4

0 − 10e2|p0|RR6p6
0 + e2|p0|RR8p8

0

R10 |p0|9
(4.29)

−1575e2|p0|RR2p2
0 − 1110R5 |p0|5 − 11550R3 |p0|3 − 4335R4p4

0

−20R7 |p0|7 −R8p8
0 − 11025− 20475R2p2

0 − 22050R |p0|

−190R6p6
0) e−2|p0|R

.

At last, for some arguments later, the leading power of R for each of those
coefficients has to be determined. This is R−1 for every cl. A possible proof
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of this is given by the equations (4.22), (4.23) and (4.24): The left side of
equation (4.22) shows that their right side does not have singularities for all
finite r. This integral (4.22) was used to solve (4.18) with (4.20). Thus,
all λl(r) in (4.23) can be verified to have no singularities for finite r. With
r = 2R2T and λl(r), the integrand in (4.24) can therefore be argued to

have only one singularity of the type T−
1
2 . Thus, the dT integral leads to a

singularity of the type R−1 for all cl. That means, the leading power of a
series expansion at R = 0 starts with R−1, as can also be explicitly checked
by expanding (4.25) – (4.29).



4 CASIMIR-POLDER FORCE FOR AN ATOM AND A
PLAIN PLATE

35

4.5 Cartesian basis

The last step for receiving the Casimir energy is to calculate the functional
inverse matrix propagator for a propagation on the sphere. This inversion
cannot be done exactly like in the translation invariant case of a plain plate,
but an expansion into multipoles works in the case of a scalar field [31]. This
will be done in the following by also trying different expansion schemes.

4.5.1 Sphere-sphere propagator explicitly

Firstly, the free photon propagator G(p0,Ω,Ω
′) describing the propagation

from one point on a sphere to another point on the same sphere has to be
obtained. Only the time coordinate can be transformed to momentum space
because of stationarity. It results in

G(p0,Ω,Ω
′) =

1

4π

1

|~x|
e−|~x||p0|

|~x=~Ω−~Ω′ . (4.30)

This equation has to be inserted into (2.32) to get the propagator matrix
Mµν

22 (p0,Ω,Ω
′). Contrary to Appendix B there are 12 nontrivial summands

for each combination of µ and ν, so the expressions become very large. But
in principal, it can be written as

M22(p0,Ω,Ω
′)=

0B@ R−2 ~L ~L′? ip0R−1( ~L × ~n′)T

−ip0R−1~n× ~L′? p2
0(~n′⊗ ~n− ~n~n′13) +R−2 ~L ⊗ ~L′?

1CAG(p0,Ω,Ω
′) (4.31)

in Cartesian coordinates, where the primed variables correspond to Ω′. ~L is
the usual angular momentum operator −i~Ω× ~∇, which appears in (2.32) due

to ~nR = ~Ω. The product ⊗ means ~n′ ⊗ ~n is the matrix n′inj in components.
The evidence is given on the following pages.

However, to get the functional inverse propagator M−1
22 (p0,Ω,Ω

′), equa-
tion (4.31) needs to be expanded into a functional basis. In the scalar case [31]
this was done by expanding their scalar M22 into multipoles, or to be specific,
into Legendre polynomials Pl(cosα), where α is the angle between the points
~Ω and ~Ω′ on the sphere. But, due to (4.31) depending not only on α but also
on the direction on the sphere, this does not work in the QED case.

4.5.2 Sphere-sphere propagator expanded into spherical
harmonics

Although, there is no expansion of M22 into Legendre polynomials, which
was used in the scalar case to obtain the expansion into spherical harmonics
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by the addition theorem (4.16), a direct expansion of M22 into spherical
harmonics can be tried. The general expansion coefficient would be a matrix
S and M22 would have the representation

Mµν
22 (p0,Ω

′,Ω′′) =
∑
lml′m′

Sµνlml′m′(p0, R, {ci})Ylm(Ω′)Y ?
l′m′(Ω

′′) . (4.32)

Then the inverse propagator can be calculated by inverting the coefficient
matrix as shown in section D:

M−1µν
22 (p0,Ω,Ω

′) =
1

R4

∑
lml′m′

S−1µν
lml′m′(p0, R, {ci})Ylm(Ω)Y ?

l′m′(Ω
′) . (4.33)

Because the
∫
x′

in equation (D.1) is R2
∫

Ω′
and the delta function δ(x− x′′)

becomes R−2δ(Ω − Ω′′), the R−4 appears as a result of the dimensionality.
This is in principle the same result as for the scalar case calculated in [31],
where the coefficients of the inverse sphere-sphere propagator where calcu-
lated by dividing the inverse coefficients 1

cl
by R4.

Indeed, a direct expansion of (4.31) into this basis with the use of
Sµνlml′m′ =

∫
Ω

∫
Ω′
Mµν

22 (Ω,Ω′)Y ?
lm(Ω)Yl′m′(Ω

′) fails due to unsolvable integrals.
This problem can be circumvented with the knowledge that G can be easily
decomposed into spherical harmonics with coefficients cl (see (4.17)). All
remaining terms and operators in (2.32), which do not belong to G, act on
this expansion. Thereby, the indices of the spherical harmonics will sim-
ply be lifted and lowered. All modifications can be absorbed afterwards by
above coefficient matrix Sµνlml′m′ . Hence the task is to identify these operators,
which, in the end, are the one written in (4.31).

With the use of xaγ ≡ Rnaγ, (2.32) can be rewritten as follows:

Mµν
22 (p0,Ω,Ω

′) =

[
1

iR
xγε

µβγα∂(x)α

]
︸ ︷︷ ︸

T (x)

δββ′×

[
1

−iR
yγ′ε

νβ′γ′α′∂(y)α′

]
︸ ︷︷ ︸

T †(y)

G(x, y)˛̨̨̨
˛̨ ~x = ~Ω

~y = ~Ω′

. (4.34)

Thus, the problem can be split up symmetrically into two operators T (x)
and T †(y). Then M22 results in

Mµν
22 (p0,Ω,Ω

′) = T µβ(x)T †νβ (y)G(x, y)˛̨̨̨
˛̨ x = Ω
y = Ω′

. (4.35)



4 CASIMIR-POLDER FORCE FOR AN ATOM AND A
PLAIN PLATE

37

In a next step, T can be written out explicitly, whereby the angular momen-
tum operator ~L = −i~x × ~∇ appears in the time components. Due to the
Fourier representation of G, the time derivatives can be replaced by −ip0,
and a last simplification can be done by knowing that the time component
of the surface normal vector nγ is zero.

T µβ(pp, n1, n2, n3) =
1

iR
xγε

µβγα∂α (4.36)

=



0 ����
L1

R ����
L2

R ����
L3

R

−L1

R
0 p0n3 −p0n2

−L2

R
−p0n3 0 p0n1

−L3

R
p0n2 −p0n1 0


(4.37)

Since the wrong Coulomb gauge means counting β and β′ only from 1 to 3,
the red boxed terms have to be set to zero in this gauge. On the other hand,
the correct Ψ0 = 0 gauge can be reached by setting the green circled terms
to zero. Equation (4.35) and the operator (4.37) now lead to (4.31).

Due to nT = 0 and T n = 0, which means T projects onto the surface,
the normal derivative ∂r cancels out after replacing the Cartesian derivative
by a derivative in spherical coordinates. In the end the T operator acts only
on the spherical harmonics of G in (4.17) and not on the cl coefficients. By
defining Tlm := T Ylm, (4.35) reads

Mµν
22 (p0,Ω,Ω

′) =
∑
lm

T µβlm (p0, R,Ω)cl(p0, R)T †νβ lm(p0, R,Ω
′) . (4.38)

For calculating T explicitly, ~L and n have to be rewritten in spherical tensor
components µ̃ = {−1, 0, 1}.

L±1 = ∓ 1√
2
(Lx ± iLy)

L0 = Lz
n±1 = ∓ 1√

2
(nx ± iny)

n0 = nz

(4.39)

The action of L on Ylm is determined by the formula

Lµ̃Yl,m =(−1)l+m+µ̃+1
√
l(l + 1)(2l + 1)

×

(
l 1 l

m+ µ̃ −µ̃ −m

)
Yl,m+µ̃ (4.40)
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with the round bracket being a Wigner 3j symbol. This 3j symbol can be
found in [36] and hence (4.40) results in the form

L±1Yl,m =∓ 1√
2

√
(l ∓m)(l ±m+ 1)Yl,m±1 (4.41)

L0Yl,m =mYl,m , (4.42)

whereby the ∓ 1√
2

comes from the convention in (4.39). For nY , an analogous

expression can be obtained by knowing that nµ̃ =
√

4π
3
Y1µ̃. With the use of

the product formula for spherical harmonics, also found in [36], nY can be
expressed as

nµ̃Yl,m =(−1)l+m+µ̃+1

[
√
l + 1

(
l 1 l + 1

m µ −m− µ̃

)
Yl+1,m+µ̃

−
√
l

(
l 1 l − 1

m µ̃ −m− µ̃

)
Yl−1,m+µ̃

]
. (4.43)

This was done in [37]. After consulting [36] for these Wigner 3j symbols,
equation (4.43) becomes

n±1Yl,m =

√
(l ±m+ 1)(l ±m+ 2)

2(2l + 3)(2l + 1)
Yl+1,m±1

−

√
(l ∓m− 1)(l ∓m)

2(2l + 1)(2l − 1)
Yl−1,m±1 (4.44)

n0Yl,m =

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Yl+1,m

+

√
(l +m)(l −m)

(2l + 1)(2l − 1)
Yl−1,m (4.45)

By putting (4.41), (4.42), (4.44), (4.45) and (4.39) together in (4.38) and
calculating the sum up to a cutoff in l, a R and p0 dependent 4 × 4 matrix
is obtained, times the corresponding spherical harmonics of both points Ω
and Ω′. From this, the matrix Sµνlml′m′(p0, R, ci) can be obtained by collecting
all coefficients of Ylm(Ω)Y ?

l′m′(Ω
′) for a special l ,m ,l′ and m′. Because the

inverse of S with respect to all indices will be needed, it is usefull to combine
them to one superindex A = (µ,m, l) and B = (ν,m′, l′), counting from
1 to ∞.

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .
µ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 . . .
m 0 −1 0 1 −2 . . .
l 0 1 2 . . .

Table 1: Scheme of the used superindex notation.
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This procedure leads to the matrix SAB, plotted in the following figures:

l = 0 1
m = 0 −1 0 1

m
′=

0
−

1
0

1
l ′=

0
1

l ′=
0

1
2

m
′=

0
−

1
0

1
−

2
−

1
0

1
2

l = 0 1 2
m = 0 −1 0 1 −2 −1 0 1 2

(a) SAB with coefficients c0 (b) SAB with coefficients c0 and c1

(c) SAB with coefficients c0 to c2 (d) SAB with coefficients c0 to c3

Fig. 4.2: Scheme of matrix Sµνlm,l′m′ ≡ SAB for different expansion orders:
black means zero and white non-zero. Every matrix is divided by red lines
into separate parts corresponding to l and l′. Analogously, the green lines
separate every red boxed submatrix into parts which correspond to m and
m′. The inside of such a green boxed submatrix is a 4 × 4 matrix for the
space-time-indices µ and ν.
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The pictures show the matrix SAB for different numbers of coefficients ci. Fur-
thermore the white non-zero components are polynomial in (p2

0,
p0

R
, 1
R2 )× ci.

From the figures can be seen that the time-time components ({A,B|(A
mod 4 = 1)∪ (B mod 4 = 1)}), where only 1

R2 terms come from, are placed
on the diagonal A = B. Naturally, this results in the time-time components,
because the angular momentum operators in (4.37) are placed at µ = 0 and

the product TT † produces a product of 1
R2
~L(Ω) ~L?(Ω′). These operators only

lift and lower the m and m′ index in the spherical harmonics simultaneously.
Analogous terms appear in the space-space components due to the ~L ⊗ ~L′
there.

The p0

R
and p2

0 terms appear due to similar reasons. They come from
the time-space and space-time components, where TT † produces a product
of p0

R
~L × ~n, but also from the space-space components, where TT † produces

a product of p0ni(Ω) and p0nj(Ω
′). Not so obvious is the fact that p0

R
only

appears in the two branches where |l − l′| = 1 and p2
0 appears in the three

branches with |l − l′| = 0 or 2. Also remarkable is the fact that the outer
areas |l − l′| > 2 are all zero. That implies a band structure respectively to
the l index, which is necessary for the invertability of SAB later.

The last thing that can be told about SAB at the moment is the general
allocation of the cl coefficients showed in the following draft:

c1 c1 c1 0 0 . . .
c1 c0, c1, c2 c1, c2 c2 0 . . .
c1 c1, c2 c1, c2, c3 c2, c3 c3 . . .
0 c2 c2, c3 c2, c3, c4 c3, c4 . . .
0 0 c3 c3, c4 c3, c4, c5 . . .
...

...
...

...
...

. . .


Table 2: Scheme of the cl coefficient allocation in matrix SAB. Separated are
different l and l′ indices.

Hence, only c0 is an exception. It does not appear in (l, l′) = (0, 0), (1, 0)
and (0, 1) because mathematically, the angular momentum operators vanish

at this places due to ~LY00 = 0. Physically this could be resulting because
electromagnetic monopoles are not allowed in QED with no external electric
charges. In the scalar case [31], where the monopole order is allowed, the
corresponding energy was given by the c0 coefficient.
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4.5.3 The right truncation

SAB is a quadratic matrix with dimension ∞. To get the inverse of it, a
truncation has to be done, to make the dimension finite. One possible choice,
which was already proposed, is to cut SAB at a given number of cl coefficients,
because they determine the multipole order of the Casimir energy in the
scalar case. Other truncations would be given by the number of used spherical
harmonics or simply cutting SAB at a given dimension. All these truncations
result in the same energy by shifting the dimension to∞, but the convergence
behaviour, multipole order by multipole order, depends on the choice of the
method.

The solution of this task is the following: The energy has to be calculated
by taking the trace of a number of propagations. For example, the product
M12M

−1
22 is needed. M−1

22 has to be replaced by S−1
AB and the corresponding

spherical harmonics. On the one hand, S−1
AB is the inverse of SAB, and hence

a truncation done with SAB appears indirect in S−1
AB. On the other hand,

M12 is not expanded into this functional basis and will not be changed by
a truncation of SAB. So a discrepancy can be produced. Within the matrix
product M12M

−1
22 , the integration

∫
Ω
M12YlmS

−1
lml′m′ will be done. This is a

projection ofM12 onto the basis of SAB and thus it is in principle an expansion
of M12 into these spherical harmonics given by the truncation of SAB. If SAB
is cut, for example, at a specific number of coefficients ci, M12 will be cut at a
specific number of appearing spherical harmonics. To correct this influence,
the truncation of SAB has to be done in such a way, that, after the inversion,
no additional spherical harmonics appear. The best choice to reach this, is
to cut SAB at a given maximal Lmax like it is shown in the following figure:

S
AB
=

L
max

L
max

Fig. 4.3: Illustration of the cutting procedure. All spherical harmonics Ylm
with an index l higher than Lmax have to be excluded.
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4.5.4 Multipole analysis of the sphere-sphere propagator
expansion

It is not necessary to calculate the matrix S−1
AB, if only its dimension has to

be obtained, which is maximally needed to determine a specific multipole
energy. Because M22 only acts on the subspace of the surface, M−1

22 has to
do the same. Thus by calculating SAB, whose specific structure is basically
determined by the surface normal vector18, S−1

AB can be assumed to have the
same structure. But if it has the same structure, the leading power of R,
which determines the multipole order, can be predicted for every entry of
S−1
AB.

In the worst case, which would contribute to the leading order in the
energy, M22 has the structure

M22 ∼


1
R2

p0

R
p0

R
p0

R

p0

R
? ? ?

p0

R
? ? ?

p0

R
? ? ?

× specific ci(R)× specific Ylm (4.46)

with ? = p2
0 in the case of l, l′ = 0. Otherwise it is ? = p2

0 + 1
R2 . Hence

SAB is composed of such 4 × 4 blocks. As it was proven in section 4.4, the
series expansion in a small radius of all cl starts at 1

R
. Therefore, the series

expansion of the 4 × 4 blocks of SAB start at a known power. S−1
AB has to

have the same structure like SAB in sense of zero and non-zero components.
Thus the inverse matrix S−1

AB expanded in a small radius should be composed
of 4× 4 blocks of the structure

R3s00 R2s01 R2s02 R2s03

R2s10 ?s11 ?s12 ?s13

R2s20 ?s21 ?s22 ?s23

R2s30 ?s31 ?s32 ?s33

 (4.47)

at all |l − l′| ≤ 2. Here, in the case of l, l′ = 0 the ? equals ? = R and
otherwise it is ? = R3. The sµν are arbitrary coefficients.

Furthermore, M12(Ω) and M21(Ω′), which both are depending on R, have
to be taken into account. By multiplying (4.47) from left and right with
these matrices and expanding the whole expression for small R up to a given

18The normal vector ~n lifts and lowers the spherical harmonics and thus produces the
central branch and the one with |l− l′| = 2. In addition, ~n× ~∇ is the angular momentum
operator and therefore produces the branch with |l − l′| = 1.
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order, the integrations over the angles Ω and Ω′ together with the spherical
harmonics Ylm(Ω) and Y ?

l′m′(Ω
′) for given l, m, l′ and m′ can be carried out.

The result is a matrix whose components are depending on several powers
in R. By dereferencing with the use of sµν , whose component in SAB takes
part in producing the leading order and writing this information in a matrix
OAB(Rnmax), in the case of Feynman gauge, R3 can only be produced by the
spherical harmonics with l and l′ being 0 up to 2 (see Fig. 4.4(a)). In this
figure, all blue and green components can possibly produce R3.

(a) plot of OAB(R4) (b) plot of ÕAB(R4)

Fig. 4.4: Plotted are the components of S−1
AB taking part in producing a

given or higher power in R in the Casimir-Polder energy. Black components
do not produce an energy up to the given maximal order R4, blue ones mean
the lowest contribution of this components is R2, green ≡ R3 and red ≡ R4.
O accounts only for the sphere integrals and Õ respects additionally the p1

and p2 integration for the plain plate.

In the matrix ÕAB(Rnmax) showed in Fig. 4.4(b), the plain plate is taken
into account. There, the complete trace for the energy is calculated with
above assumed S−1

AB except for the pθ and pr integrals. Here, (pr, pθ, pφ) is
the spherical parametrisation of the plate momenta (p1, p2, p0), which will be
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used later on (see (4.54)). At last, the p0 integral cannot be carried out since
the cl are depending on it.

From M12 and M21 only trigonometric functions in form of surface nor-
mal vector components occur (see (4.11)). They can be expanded in Y1m.
Together with M−1

22 , this results in a product of n spherical harmonics, which
could be calculated out analytically.19 Therefore, only the integration over
the spherical harmonics determines, which part of S−1

AB is needed for a special
R power in the energy. This was the same mechanism in the scalar case [31],
which determined that only c0 contributes to the monopol order, even when
all ci start at 1

R
.

19For example, eq. (4.6.3) from [36] shows the product of three spherical harmonics.
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4.5.5 Inverse sphere-sphere propagator

Because the sphere-sphere propagator is expanded into a functional basis,
the needed inverse propagator can be calculated by inverting the expansion
coefficients, or in this case, by inverting the whole expansion matrix SAB.
This will be done by calculating the Moore-Penrose inverse with the method
described in D. That means the matrix will be inverted on the nonsingu-
lar subspace. This is easily done for small matrices. But for bigger ones,
technical limits will be reached.

Dimension and rank
As an overview, the dimension and the corresponding rank of SAB in two

different truncations are listed in the following table, whereby S
{i}
AB and S

[Lmax]
AB

states SAB with coefficients c0 to ci and truncated at Lmax respectively:

S
{i}
AB with coefficients c0 to ci or

S
[Lmax]
AB truncated at Lmax = i+ 1
i dim(SAB) rankSAB
0 16× 16 3
1 36× 36 11
2 64× 64 23
3 100× 100 39
4 144× 144 59
5 196× 196 83
6 256× 256 111
7 324× 324 143

Table 3: Dimension and rank of matrix SAB for “ci and Lmax truncation”.

The dimension rises with the number of spherical harmonics involved by
4(i + 1)2, and, resulting from this checkup, the rank follows the rule
3(i+ 1)2 − i2. Thus, taking the limit i → ∞ leads to a rank-dimension
ratio of 1

2
, as it should be for a rank(2) propagator. For finite dimensions,

this ratio is always greater than 1
2
. That means there are interactions be-

tween the spherical harmonic modes, which are encoded by the off-diagonal
matrix structure. These interactions can be minimised by a better choice of
the basis in chapter 4.7.
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The inverse
In the following figures, the first four inverse matrices S−1

AB are plotted,
whereby SAB was truncated at a specific cl:

l = 0 1
m = 0 −1 0 1

m
′=

0
−

1
0

1
l ′=

0
1

l ′=
0

1
2

m
′=

0
−

1
0

1
−

2
−

1
0

1
2

l = 0 1 2
m = 0 −1 0 1 −2 −1 0 1 2

(a) Moore-Penrose inverse S−1 {0}
AB of SAB

with coefficients c0
(b) Moore-Penrose inverse S−1 {1}

AB of SAB
with coefficients c0 and c1

(c) Moore-Penrose inverse S−1 {2}
AB of SAB

with coefficients c0 and c2

(d) Moore-Penrose inverse S−1 {3}
AB of SAB

with coefficients c0 and c3

Fig. 4.5: Moore-Penrose inverse of matrix SAB for different expansion orders.
Black components are zero and the white ones are not zero.
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As assumed, the (l, l′) behaviour is the same as the one of SAB. See for

example S
{3}
AB in Fig. 4.2(d) and S

−1 {3}
AB in Fig. 4.5(d). In a next step, by

knowing which parts contribute to the orders R to R4 in the energy, any
of the inverse matrices S

−1 {i}
AB can be taken as a template for the matrices

OAB(R4) and ÕAB(R4) in Fig. 4.4. This was done in Fig. 4.6.

(a) S−1 {3}
AB ∩ OAB(R4) (b) S−1 {3}

AB ∩ ÕAB(R4)

Fig. 4.6: The same plot as Fig. 4.4, but with Fig. 4.5(d) as template.

The blue and red components vanish, even for OAB(R4). That means, the
sphere geometry (especially the integrals over the sphere surface) cancels out
potential R2 contributions to the energy at the blue points and R4 at the
red points. Of course R4 can result from green components, too. But the R4

energy results correctly, if R3 is correct. However, the leading order in the
Casimir energy has to start at R3.
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4.5.6 Casimir energy for a plain plate and a sphere

With the determined propagator matrices, the Casimir energy for a plain
plate and a sphere can be calculated. An overview of these matrices can be
found in Appendix C. However, it is usefull to implement the propagator
expansion of M22 in the 1-loop Casimir energy, equation (4.7).

E1 loop
Cas =

~c
4

1

(2π)3

∫
Ω′′

∫
Ω′′′

∫
p

∑
lml′m′

Ylm(Ω′′)Y ?
l′m′(Ω

′′′)

M−1
11µν(p)M

νρ
12 (p,R,Ω′′)S−1

lml′m′ ρσ(p0, R, {ci})Mσµ
21 (R,Ω′′′, p) (4.48)

With this and the corresponding S−1
AB from section 4.5.5, the resulting Casimir

energy can be obtained to

E1 loop
Cas = − ~c

πH

∑
i=1

bi

(
R

H

)i
. (4.49)

As a checkup, results for this setup obtained by others can be taken from [38].
Their coefficients are:

b1 = 0 b2 = 0 b3 = 9
16 b4 = 0 b5 = 25

32 . (4.50)

In the following two tables, the results for the calculations in this thesis
are given. On the one hand, the case of Feynman gauge with and without
Ψ0 = 0 gauge was used, and on the other hand, “cl and Lmax truncation”
was sampled.

Truncation corresponding to cl

maximal cl b1 b2 b3 b4 b5

I - no additional gauge
0 ∞ ∞ 11

40
3
20

1087
10080

1 0 0 ∞ 0 311
224

2 0 0 29
28 ≈ 0.54 · 9

16 0 ∞
3 0 0 7881

9344 ≈ 0.67 · 9
16

II - Ψplate
0 = Ψsphere

0 = 0 gauge
0 ∞ ∞ 11

40
3
20

1087
10080

1 0 0 ∞ 0 13
7

2 0 0 17
32 ≈ 0.94 · 9

16 0 ∞
3 0 0 67

128 ≈ 0.93 · 9
16

Table 4: Results for the Casimir energy in the plain plate sphere setup. The
shown coefficients determine the energy by the use of (4.49).
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Truncation corresponding to Lmax

Lmax b1 b2 b3 b4 b5

III - no additional gauge
0 0 0 3

16 0 3
16 ≈ 0.24 · 25

32

1 0 0 9
16 0 191

960 ≈ 0.25 · 25
32

2 0 0 36043
31536 0 7448187949

2071915200 ≈ 4.60 · 25
32

IV - Ψplate
0 = Ψsphere

0 = 0 gauge
0 0 0 3

16 0 3
16 ≈ 0.24 · 25

32

1 0 0 9
16 0 69848329

355117455 ≈ 0.25 · 25
32

2 0 0 9
16 0 559

960 ≈ 0.75 · 25
32

Table 5: Results for the Casimir energy in the plain plate sphere setup. The
shown coefficients determine the energy by the use of (4.49).

The longitudinal mode corresponding to b1 and the monopole order cor-
responding to b2 vanishes, independent of the chosen gauge or truncation
method. They disappear because the integration over the sphere results in
zero and in the case without Ψ0 = 0 (case I and III) the coefficients become
zero due to the leading R power of S−1

AB is 3. In cases I and II with only c0,
b1 and b2 are divergent due to some integrals of the form

∫
p0

1
p0

. But this can

be explained with the mismatch of M12, M−1
22 and M21 due to the truncation

method. The other infinities in these cases appear for the same reason. As
it was explained, “Lmax-truncation” is the better choice.

Because R and R2 cancels out at last after the sphere surface integration,
the 1-loop and 2-loop propagators20 starts with R3 and R6 respectively. This
means b3, b4 and b5 are completely determined by one propagation loop.
Hence, the correct coefficient 9

16
at R3 is found for the “Lmax-truncation”

method. But in case III without Ψ0 = 0 gauge, b3 is not stable until Lmax = 2
due to off-diagonal interaction terms in the time components of M−1

22 . In the
situation of “cl-truncation”, the right coefficient is not reached, but again
setting Ψ0 = 0 gives the better convergence behaviour. In addition, the
next coefficient b4 = 0 is found correctly, too. But b5 does not converge
until Lmax = 2, simply because more spherical harmonic orders of M−1

22 are
needed.

Furthermore, these coefficients were calculated for the case of Coulomb
gauge, too, to show that setting A0 to zero leads to a wrong result. In

20The 1-loop propagator is 1
2∆M2 = M−1

11 M12M
−1
22 M21, which determines the 1-loop

Casimir energy by equation (4.3), and two loops are determined by ∆M4.
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contrast to the above coefficients, the stable bi for A0 = 0 gauge are:

b1 = 5
22 b2 = 25

242 b3 = 355673
1006236 ,

and together with Ψ0 = 0 they are:

b1 = 5
22 b2 = 25

242 b3 = 151808
251559 .

Obviously, A0 = 0 gauge is incompatible to Ψ0 = 0, because the b3 differ from
each other. But, of course, this gauge choice is simply wrong. As mentioned,
the Weyl gauge is allowed in the QED for the case of pure vacuum, because
there is no need of introducing a charge density A0. Although, there was
no input of matter in the setup, the boundary condition leads to a current
term in the action (2.27). Thus, the vacuum is no free vacuum anymore
and Weyl gauge results in unphysical longitudinal modes in the propagating
photon fields, since these modes are not alowed due to the propagator itself
is transversal: Mµν

22 nν = 0. Details are explained in section 2.5.
Otherwise, the correct energy up to R4 was found and becomes stable

within Ψ0 = 0 gauge and Lmax = 1 truncation, and the inverse propagator
for the sphere in case IV can be given:

Explicit calculation for Lmax = 1 and Ψ0 = 0
After calculating the Moore-Penrose inverse of SAB, truncated at Lmax = 1

in the case of Ψ0 = 0 gauge, the spherical harmonics can be added and the
following inverse propagator for the sphere can be obtained:

R4
(
M22(p0,Ω,Ω

′) +O(Y2,m(Ω)) +O(Y ?
2,m′(Ω

′))
)−1

= (4.51)

− 3R

8p2
0π

0BBBBB@
0 0 0 0

0 25(cϕ+Φ + cϕ−Φ)sθsΘ − 3 25sθsΘ(sϕ+Φ − sϕ−Φ) 50cϕsθcΘ

0 25sθsΘ(sϕ+Φ + sϕ−Φ) 25(−cϕ+Φ + cϕ−Φ)sθsΘ − 3 50sϕsθcΘ

0 50cΦcθsΘ 50sΦcθsΘ 25cθcΘ − 3

1CCCCCA

− R3

1120π

5

0BBBBB@
0 0 0 0

0 (163cϕ+Φ + 37cϕ−Φ)sθsΘ sθsΘ(163sϕ+Φ − 37sϕ−Φ) 0

0 sθsΘ(163sϕ+Φ + 37sϕ−Φ) (−163cϕ+Φ + 37cϕ−Φ)sθsΘ 0

0 0 0 −126cϕ−ΦsθsΘ

1CCCCCA

+2

0BBBBB@
0 0 0 0

0 −252− 315cθcΘ 0 500cϕsθcΘ + 315cΦcθsΘ

0 0 −252− 315cθcΘ 500sϕsθcΘ + 315sΦcθsΘ

0 500cΦcθsΘ + 315cϕsθcΘ 500sΦcθsΘ + 315sΦsθcΘ −252

1CCCCCA


+O(R4) +O(Y2,m(Ω)) +O(Y ?

2,m′(Ω
′)) .
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(θ, ϕ) and (Θ,Φ) again are represented by Ω and Ω′. Together with M12

from (C.3) in Ψ0 = 0 gauge and the corresponding M21, firstly expanded
into small R up to O(R4), the sphere surface integrals

∫
Ω

∫
Ω′
M12M

−1
22 M21 =∫ ∫

M12M
−1
22 M21 sθdθdϕ sΘdΘdΦ result in the following matrix.

M12∆M21 = R4

∫
Ω

∫
Ω′
M12(p0, p||,Ω)M−1

22 (p0,Ω,Ω
′)M21(p0, q||,Ω

′)

=
πR3

2|p||q|
e−H(|p|+|q|)


0 0 0 0

0 ?11 ?12 0

0 ?21 ?22 0

0 0 0 0

 (4.52)

?11 =
(
p2

0 + pµq
µ

+ |p||q|
) (
p2

0 + 2p2q2

)
− p2

0

(
p2

2 + q2
2 − p2q2

)
?22 =

(
p2

0 + pµq
µ

+ |p||q|
) (
p2

0 + 2p1q1

)
− p2

0

(
p2

1 + q2
1 − p1q1

)
?12 = −2

(
p1p2

(
p2

0 + q2
1

)
+ q1q2

(
p2

0 + p2
2

))
+ p2q1

(
p2

0 − 2|p||q|
)

?21 = −2
(
p1p2

(
p2

0 + q2
2

)
+ q1q2

(
p2

0 + p2
1

))
+ p1q2

(
p2

0 − 2|p||q|
)

The plate momenta (p1, p2) of M12 and (q1, q2) of M21 were distinguished for
the possibility of calculating more than one loop. But p0 = q0 can be set due
to translation invariancy in time direction. R and R2 vanished after carrying
out the sphere surface integrals. Next, the inverse plate propagator (C.5) is
needed to obtain one full loop.

1

2
∆M2 = M−1

11 M12∆M21

=
πR3

|p||q|
e−H(|p|+|q|)


0 0 0 0

0 ?11 ?12 0

0 ?21 ?22 0

0 0 0 0

 (4.53)

?11 = |p|(2p2
0 + p1q1 + 2q2

2) + |q|(p2
0 + 2p2q2 + p2

1)

?22 = |p|(2p2
0 + p2q2 + 2q2

1) + |q|(p2
0 + 2p1q1 + p2

2)

?12 = (p1 − 2q1)
(
|p|q2 + |q|p2

)
?21 = (p2 − 2q2)

(
|p|q1 + |q|p1

)
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For the Casimir energy (4.7) up to R3

H4 , only the trace of 1
2
∆M2 has to be

taken and multiplied with −1
2
~c. The “outside” momenta p and q were set

equal due to a delta function resulting from the Fourier transformation of
the trace, and a last integration over all remaining momenta has to be done.
To be specific, the spherical coordinates

p1 = |p| cosφp sin θp
p2 = |p| sinφp sin θp
p0 = |p| cos θp

dp0dp1dp2 = p2d|p| sin θpdθpdφp

(4.54)

lead to solvable integrals.

ECas =− ~c
2

1

(2π)3

∫
p

tr

[
1

2
∆M2

]
+O

(
R4
)

(4.55)

=− ~c
2

1

(2π)3

∫
6πR3pe−2|p|H p2dp sin θpdθpdφp +O

(
R4
)

(4.56)

=− 9

16

~c
π

R3

H4
+O

(
R4

H5

)
(4.57)

This is the correct result and the inverse propagator M−1
22 for the sphere

could be used to obtain M12M
−1
22 M21 for a more general configuration like a

sphere on top of a corrugated surface in position space. But there are dif-
ferent problems in calculating energy contributions of a higher order or even
in inverting bigger matrices S−1

AB. Also spherical harmonics up to Lmax = 1
could not possibly suffice to determine the correct energy for arbitrary cor-
rugated surfaces. Thus there is a need of a higher spherical harmonics order
of the sphere propagator. In principle, this can be done with the methods
described in the last sections. But there exists an easy possibility to simplify
this inversion process, where in consequence the whole M−1

22 can be obtained
explicitly up to any order (see section 4.7).



4 CASIMIR-POLDER FORCE FOR AN ATOM AND A
PLAIN PLATE

53

4.6 Rotated Cartesian basis

The idea is the following: The Cartesian basis for the matrices is the most
general one and the easiest to implement, but it imposes not all symmetries
of the problem. Precisely, it does not fit to the surface of the sphere, where
the propagator M22 lives. To install this feature, spherical coordinates as
matrix basis could be used, but they also impose metric coefficients in the
matrix products, which then have to be taken into account at the functional
inversion. Thus, a Cartesian basis for each point on the sphere is needed,
where for example x1 and x2 are tangential to the surface and x3 always
points in the normal direction.

4.6.1 Sphere-sphere propagator explicitly

As already used in the last sections, the surface coordinates are represented
in the best way by spherical coordinates.

~Ω = R


0

cosϕ sin θ

sinϕ sin θ

cos θ

 = R~n ~Ω′ = R


0

cos Φ sin Θ

sin Φ sin Θ

cos Θ

 = R~n′ (4.58)

~n is the surface normal vector at the point ~Ω, described by the angles
Ω ≡ (θ, φ) and the sphere radius R. In this case |~x| in (4.30) becomes
R
√

2(1− cosα) and especially G(p0,Ω,Ω
′) depends only on α, the angle

between the two vectors ~Ω and ~Ω′, 0 ≤ α ≤ π.

cosα = cos(Φ− ϕ) sin θ sin Θ + cos θ cos Θ (4.59)

sinα = +
√

1− cos2 α (4.60)

It is usefull to rewrite ~Ω and ~Ω′ in terms of rotation matrices R, so ~Ω = RΩ~ez
and ~Ω′ = RΩ′~ez with RΩ = Rz(ϕ)Ry(θ). Ry and Rz means rotation around
the y- and z-axis respectively.

Ry(θ)=


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 Rz(ϕ)=


1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 (4.61)

The rotation which connects ~Ω and ~Ω′ will be named Rαβ, so RΩ′ = RΩRαβ.

α again describes the angle between ~Ω and ~Ω′ and β is the angle describing the
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direction of the propagation. The coordinates described by α and β should
be chosen in such a way that M22 equals its Hermitian transposed with ex-
change of Ω and Ω′. Therefore, Rαβ has to satisfy the relation Rαβ = RT

αβ.
A definition, which solves this problem, is Rαβ = Rz(β)Ry(α)Rz(π − β).
With this RT

αβ = Rz(β − π)Ry(−α)Rz(−β) and hence is the same as
Rz(β)Rz(π)Ry(−α)Rz(−β) = Rz(β)Ry(α)Rz(π)Rz(−β) = Rαβ. With
this, β can be calculated as a function of Ω and Ω′.

cos β =
cos θ sin Θ cos(Φ− ϕ)− sin θ cos Θ

sinα
(4.62)

sin β =
sin(Φ− ϕ) sin Θ

sinα
(4.63)

Equipped with this system of rotation matrices, M22 can be simplified in
such a way that it can be written out explicitly. For example, by rotating
the coordinate system at the points ~Ω and ~Ω′ with the use of RT

ΩM22RΩ′ , the
local z-axis points in normal direction (see Fig. 4.7).

x'

z'

y'

x

y

z

Ω'

Ω

(a) M22

Ω'

Ω

z'

x'

y'

z

x

y

(b) RTΩM22RΩ′

Fig. 4.7: Matrix axes of M22 rotated by different rotation matrices

RT
ΩM22RΩ′ = G(p0, R, cα)p2

0× (4.64)0BBBBBBBBBBBBB@

2R2p2
0s

2
α+(3−cα)

“
1+R|p0|

√
2(1−cα)

”
4R2p2

0(1−cα)

−isαcβ
“
R|p0|

√
2(1−cα)+1

”
2Rp0(1−cα)

−isαsβ
“
R|p0|

√
2(1−cα)+1

”
2Rp0(1−cα) 0

isαcβ

“
R|p0|

√
2(1−cα)+1

”
2Rp0(1−cα) ?11 ?21 0

isαsβ

“
R|p0|

√
2(1−cα)+1

”
2Rp0(1−cα) ?12 ?22 0

0 0 0 0

1CCCCCCCCCCCCCA
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?11 = (2p2
0R

2s2βc
2
α−((−8p2

0R
2+1)c2β−1+4p2

0R
2)cα−(6p2

0R
2+5)c2β+3+2p2

0R
2)
√

2(1−cα)−2p0(1−cα)(s2βcα+5c2β−3)R

4
√

2(1−cα)(1−cα)R2p2
0

?22 = ((2p2
0R

2c2α+(1−8p2
0R

2)cα+5+6p2
0R

2)cβ2−2+4p2
0cαR

2−4p2
0R

2)
√

2(1−cα)+2R(1−cα)p0((cα+5)c2β−2)

4
√

2(1−cα)(1−cα)R2p2
0

?12 = ?21 = ((−2p2
0R

2c2α+(8p2
0R

2−1)cα−6p2
0R

2−5)
√

2(1−cα)−2p0R(cα+5)(1−cα))cβsβ
4
√

2(1−cα)(1−cα)R2p2
0

The new z-components in the matrix are zero, which means, there is no prop-
agation leaving the surface. It was mentioned that β represents a direction
on the sphere. That can be easily seen by a second rotation around the new
z-axis in such a way, that the x-axis points in the direct direction to the
other point.

Ω'

Ω

z'

z

x'

y'

x y

Fig. 4.8: Matrix axes of M22 rotated by RT
z (β)RT

ΩM22RΩ′Rz(β)

In this case, M22 becomes independent of β, because the physics in this setup
only depends on the distance between the two points.

RT
z (β)RT

ΩM22RΩ′Rz(β) = G(p0, R, cα)p2
0× (4.65)

2R2p2
0s

2
α+(3−cα)

“
1+R|p0|

√
2(1−cα)

”
4R2p2

0(1−cα)

−isα
“
R|p0|
√

2(1−cα)+1
”

2Rp0(1−cα)
0 0

isα
“
R|p0|
√

2(1−cα)+1
”

2Rp0(1−cα)
?11 0 0

0 0 ?22 0

0 0 0 0


?11 = 1

2R2p2
0(1−cα)

+ 1

R|p0|
√

2(1−cα)
+ 1

?22 = 1
4

2R|p0|(1−cα)(3+cα)+
√

2(1−cα)(2R2p2
0(1+c2α)+(1−4p2

0R
2)cα+3)

R2p2
0(1−cα)

√
2(1−cα)
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To calculate the Casimir energy in a setup with a sphere, the functional
inverse of the corresponding propagator matrix M22 for the auxiliary fields Ψ
on the surface is needed. Thus, one could say, (4.65) only depends on cosα
and therefore could be expanded into Legendre polynomials Pl(cosα) to get
the inverse M−1

22 . Therefore, (4.65) has to be multiplied with Pl(cosα) and
the integral over cosα leads to the expansion coefficient, analogue to the way
it was done in the scalar case [31]. Afterwards, every Pl(cosα) can be replaced
with spherical harmonics 4π

2l+1

∑
m=−l..l Ylm(Ω)Y ?

lm(Ω′) and the expansion of
M22 into spherical harmonics would be obtained. With the time-time and
the space-space components of (4.65), this can be done. But the integrals

at the time-space component diverge due to an integral of the type
∫ 1

0
1
x
dx.

The reason for this is, in the end, a mistake in the assumption itself.
The inverse is defined in equation (D.1):∫

Ω

M−1
22 (Ω′,Ω)M22(Ω,Ω′′) = 1δ(Ω′ − Ω′′) . (4.66)

Next, arbitrary rotation matrices like RΩ′′ and RΩ′ can be attached to (4.66),
which do not depend on the integrand Ω. In addition, in-between M−1

22 and
M22, a representation of 1 like for example RΩR

†
Ω can be inserted. But

the transformation used in (4.65) is not allowed, because Rz(β) intrinsically
depends on both points Ω and Ω′, and the integration in (D.1) has to be
done over one of these points. The best transformation which is allowed to
be done is (4.64).

4.6.2 Sphere-sphere propagator expanded into spherical
harmonics

With the transformation RT
ΩM22RΩ′ → M̃22, equation (4.66) becomes:∫

Ω

M̃−1
22 (Ω′,Ω)M̃22(Ω,Ω′′) = 1δ(Ω′ − Ω′′) . (4.67)

Together with the expansion method described in chapter 4.5.2, this trans-
formation can be translated into a transformation of the boundary conditions
including operator T (4.36): T (Ω) = RΩT̃ (Ω). T̃lm can be obtained by cal-
culating the action of T on a given spherical harmonic Ylm(Ω), and then
multiplying it with RΩ. This T̃lm has to be expanded into spherical harmon-
ics a second time to follow the formalism in chapter 4.5.2 and furthermore
to get the expansion S̃AB of M̃22.

This procedure was applied to the transformed M̃22 in (4.64). A plot of
the resulting coefficient matrix S̃AB is shown in figure Fig. 4.9.
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(a) S̃AB with coefficients c0 to c2 (b) S̃AB with coefficients c0 to c3

Fig. 4.9: Matrix S̃AB for different expansion orders, black means zero and
white non-zero

These matrices now consist of 3× 3 submatrices corresponding to the space
time indices. The radial component is zero and therefore not plotted here.
But as it can be seen, this matrix is not diagonal and there is no chance
to obtain the exact inverse for a given subspace. In addition, the cl are
placed everywhere between Y00 and Yll. Thus, with the use of more and more
coefficients, the inverse changes everytime in every component. This inflation
is caused to the fact that the normalised tangential vectors of the surface,
which come into play at the second expansion of T̃lm, are not expandable into
a finite number of spherical harmonics. Therefore, this way was not assumed
to work right. Otherwise, if an orthonormal basis would be found which fulfils
the above explained requirements, this scheme could be a possible method
to calculate the Casimir energy, too.



4 CASIMIR-POLDER FORCE FOR AN ATOM AND A
PLAIN PLATE

58

4.7 Vector spherical basis

Until now, all matrix expansions were done in Cartesian coordinates. A
change of the coordinate axes in a way that they lie on the surface is possible,
but does not result in some well behaved propagator matrices. However, in
the case of a sphere, a change of the functional basis Ylm → Vlm can be done,
too. The Vlm are vector spherical harmonics or vector multipoles, which are
orthonormalized vector functions for the scalar product of the space L2

1(S2).
One possible definition can be found in the article [39], equation (24a - 24c),
in the case of a sphere with radius R and normal vector ~n.

ET
lm = V1

lm = γ−1
l R~∇Ylm (4.68)

MT
lm = V2

lm = γ−1
l
~LYlm (4.69)

EL
lm = V3

lm = ~nYlm (4.70)

They satisfy the orthogonality relation
∫
Ω

V? silm (Ω)Vs′i l′m′(Ω) = δss
′
δll′δmm′ ,

whereby the space indices i = 1 . . . 3 has to be summed up. s and s′ la-
bel the sort of the vector multipoles and γl is a normalisation constant by
construction.

γl =
√
l(l + 1) (4.71)

Within this definition, they are called transverse electric ET
lm, transverse

magnetic MT
lm and longitudinal electric EL

lm modes respectively.
But in this work, the matrices are of the dimension 4× 4. Thus, a fourth

orthonormal vector multipole has to be found. This one is

V0
lm = etYlm . (4.72)

With V0
lm the four vector spherical harmonics are optimised for a 3D sphere

surface S2 in a 4D spacetime, which all satisfy the orthogonality relation∫
Ω

V? sµlm (Ω)Vs′µ l′m′(Ω) = δss
′
δll′δmm′ . (4.73)

Now s, s′ and µ count from 0 to 3.
Because these harmonics fit well into the setup, M22, which expanded

into them, may have coefficients that do not depend on m and which are
diagonal in l (l′ = l). Thus, a method analogue to the scalar case [31] could
be used to expand Mµν

22 (R~n−R~n′) into the “tensorial Legendre Functions”

Pss
′ µν

l (~n− ~n′) =
4π

2l + 1

∑
m

Vs µlm (~n)V? s′ νlm (~n′) . (4.74)
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These functions are the generalisation of the Legendre Functions in the sense
of changing scalar fields to vector fields or Ylm → Vsµlm. As it will turn out,
this assumption is correct. But without a proof, M22 still has to be expanded
into vector multipoles.

4.7.1 Propagator invertion with vector spherical basis

At first, the expansion into vector multipoles has to result in a matrix coef-
ficient, which can be inverted afterwards. Thus, the representations

Mµν
22 (p0,Ω,Ω

′) =
∑

l = 0 . . .∞
m = −l . . . l
l′ = 0 . . .∞
m′ = −l′ . . . l′

Vsµlm(Ω)Css′ lm l′m′V? s
′ν

l′m′ (Ω
′) (4.75)

= VAµ(Ω)CABV?Bν(Ω′) (4.76)

and

M−1µν
22 (p0,Ω,Ω

′) = VAµ(Ω)BABV?Bν(Ω′) (4.77)

are assumed to be analogous to (4.32). Again, Ω and Ω′ represent the angles
of the two points on the sphere. Css′

lm l′m′ corresponds to the object Sµνlm l′m′

from section 4.5.2 and therefore has the same superindex notation CAB. This
time, such a superindex combines s, l and m to a capital letter A. Afterwards,
the inversion can be done by inverting the coefficient matrix CAB due to the
relation

δ(~Ω− ~Ω′)1µκsphere =R4

∫
Ω′
M−1µ

22 ν(Ω,Ω
′)Mνκ

22 (Ω′,Ω′′)

=R4VAµ(Ω)BAB

∫
Ω′
V?Bν(Ω′)VCν(Ω′)︸ ︷︷ ︸

=δBC

CCDV?Dκ(Ω′′) (4.78)

=VAµ(Ω)R4BABC
B
DV?Dκ(Ω′′) . (4.79)

The left hand side can be replaced by 1̃ss′′
∑

lm V
sµ
lmV? s

′′κ
lm , where the 1̃ has

a zero on the sort indices s = s′ = 3 for no longitudinal electric modes EL.
The propagator actually has rank 2 and therefore a diagonalisation of the
coefficient matrix results in a second zero. For example in Ψ0 = 0 gauge, this
zero lies on the s = 0 axis. But, again, this problem can be avoided by using
the Moore-Penrose inverse, because due to the definition (4.76) CAB has to
be Hermitian. Thus, only the inversion of CAB has to be done to obtain BAB:

BAB =
C−1
AB

R4
. (4.80)
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4.7.2 Sphere-sphere propagator expanded into vector spherical
basis

The following task is to expand the propagator matrix M22 for a sphere
into vector spherical harmonics. Using the orthogonality relation (4.73) and
(4.75), the coefficient C can be obtained by

Css′

lm l′m′ =

∫
Ω,Ω′
V?slmµ(Ω)Mµν

22 (Ω,Ω′)Vs′l′m′ν(Ω′) . (4.81)

This direct expansion is not such an easy task as it was in chapter (4.5.2)
with SAB. But again, the following representation (4.38) of M22 can be used:

Mµν
22 (p0,Ω,Ω

′) =
∑
lm

T µβlm (p0, R,Ω)cl(p0, R)T †νβ lm(p0, R,Ω
′) . (4.82)

Here T µβlm is T µβYlm, whereby the T is the operator in (4.36), which can be
written in the following compact form:

T =
1

R

 0 ����
~LT

− ~L p0(~ei × ~x)T

 (4.83)

The ~ei×~x symbolises the cross product between the unit vector in Cartesian
coordinates ~ei and ~x. It has to be read in the following way: T ij = p0

R
εijkxk.

Again, the green circled angular momentum operator ~L = −i~x × ~∇ has to
be set to zero in the case of Ψ0 = 0 gauge, and ~x is R~n. Inserting (4.82) into
(4.81) leads to integrals of the kind

tsβlm l′m′ =

∫
Ω

V?slmµ(Ω)T µβl′m′(Ω) . (4.84)

Afterwards C can be obtained through

Css′′

lm l′′m′′ =
∑
l′m′

tsβlm l′m′cl′t
?s′′

l′m′ l′′m′′ β . (4.85)

The summation over l′ goes in principle from 0 to ∞ and m′ runs from −l′
to l′, but as it turns out, there are only at most three possibilities for l′ for
a given l or l′′, where the summand is not zero. Thus, the tsβlm l′m′ matrix can
be calculated, component by component.
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For β = 0, this is an easy task, because in this case T µ0
l′m′ = −R−1 ~LYl′m′

= −R−1γl′V2µ
l′m′ and the integral (4.84) gives

ts0lm l′m′ = −R−1γl′δ
s2δll′δmm′ . (4.86)

In the other cases, where β is a spacelike i, different integrals for each s has
to be carried out.

In the case of s = 0, the integral

t0ilm l′m′ = R−1

∫
Y ?
lmLiYl′m′ (4.87)

has to be solved. This can be done by using the decomposition of ~LYlm into
Ylm with the coefficients of (4.41) and (4.42).

The next component is s = 1, where the integral
∫
γ−1
l (~∇Ylm)?p0(~ei×~x)Yl′m′

has to be calculated. The cross product can be permutated to
γ−1
l p0

∫
(~x× ~∇Ylm)?~eiYl′m′ , thus an angular momentum operator appears,

which acts on Y ?
lm. Therefore, this component becomes

t1ilm l′m′ = −ip0γ
−1
l

∫
(LiYlm)?Yl′m′ , (4.88)

which is the same as −ip0Rγ
−1
l (−1)m+m′t0il′,−m′, l,−m. Because of this symme-

try, the coefficients later obtain rank 2 and not 3. Ψ0 = 0 gauge, of course,
easily sets t0il′m′ lm to zero.

By going further with s = 2, the integral
∫
γ−1
l p0( ~LYlm)?(~ei× ~x)Yl′m′ has

to be solved. The cross product can be permutated between ~x and ~L and a
term ~x× (~x× ~∇) arises. This one is the same as (~x~x)~∇− ~x(~x~∇) and hence

can be simplified to R2~∇. The second term is zero, because it vanishes under
the integral:∫

~x︸︷︷︸
∝~n

( ~x︸︷︷︸
∝~n

~∇Ylm︸ ︷︷ ︸
∝ETlm

)?Yl′m′ ∝
∫

~nYl′m′︸ ︷︷ ︸
∝Yl′±1,m′+m′′

(~nET?
lm) ∝

∫
~nYl′±1,m′+m′′︸ ︷︷ ︸
∝EL

l′±1,m′+m′′

ET?
lm.(4.89)

This integral vanishes due to the orthogonality relation (4.73). Therefore,
the first term above is left and t2i becomes

t2ilm l′m′ = −ip0γ
−1
l

∫
(R∇iYlm)?Yl′m′ . (4.90)



4 CASIMIR-POLDER FORCE FOR AN ATOM AND A
PLAIN PLATE

62

To solve this integral, again, the paper [37] can be used. There, the authors

give the action of ~∇ on a spherical harmonic in form of Wigner 3j symbols

R∇µ̃Yl,m =(−1)l+m+µ̃

[
l
√
l + 1

(
l 1 l + 1

m µ̃ −m− µ̃

)
Yl+1,m+µ̃

+(l + 1)
√
l

(
l 1 l − 1

m µ̃ −m− µ̃

)
Yl−1,m+µ̃

]
, (4.91)

with µ̃ being the spherical tensor component index counting from −1 to 1.

∇±1 =∓ 1√
2

(∇x ± i∇y) (4.92)

∇0 =∇z (4.93)

These 3j symbols are already known from (4.43) and hence (4.91) becomes

R∇±1Yl,m =− l

√
(l ±m+ 1)(l ±m+ 2)

2(2l + 3)(2l + 1)
Yl+1,m±1

− (l + 1)

√
(l ∓m− 1)(l ∓m)

2(2l + 1)(2l − 1)
Yl−1,m±1 (4.94)

R∇0Yl,m =− l

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Yl+1,m

+ (l + 1)

√
(l +m)(l −m)

(2l + 1)(2l − 1)
Yl−1,m . (4.95)

With this, the integral (4.90) and consequently t2ilm l′m′ can be obtained.
In the last component s = 3, the integral of a longitudinal electric

mode EL with something tangential to the surface has to be determined:∫
p0R

−1(~xYlm)?(~ei × ~x)Yl′m′ . Therefore it is zero and

t3ilm l′m′ = 0 . (4.96)

In the end, tsβlm l′m′ at most connects a given l with l′ = l − 1, l, l + 1 and
equation (4.85) can be written as

Css′′

lm l′′m′′ =
l+1∑

l′=max(0,l−1)

∑
m′

tsβlm l′m′cl′t
?s′′

l′m′ l′′m′′ β . (4.97)

But that means CAB has a band structure with |l−l′| ≤ 2 like in the Cartesian
case and additional zero rows and columns for the longitudinal electric modes
like in the rotated Cartesian case. Calculating CAB now gives the surprising
result shown in the following figure Fig. 4.10.
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Fig. 4.10: Expansion of M22 into the coefficient matrix CAB with the trun-
cation Lmax = 3.

The matrix Css′

lm l′m′ is diagonal in the sense of δll′ and δmm′ , which means the
coefficients in (4.97) cancel within. Additionally, every Css′

lm l′m′ = Css′

lm δ
l
l′δ

m
m′

is the same for a given l, does not depend on m, and therefore can be rewrit-
ten as Css′

l = Css′

lm . This was tested by the above expansion scheme up to
Lmax = 7. So M22 can be decomposed into above tensorial Legendre Func-
tions (4.74).

Mµν
22 (~x− ~x′) =

2l + 1

4π
Css′lPss

′ µν
l (~n− ~n′) (4.98)

M−1µν
22 (~x− ~x′) =

1

R4

2l + 1

4π
C−1
ss′lP

ss′ µν
l (~n− ~n′) (4.99)

This behaviour can be assumed to be a feature of a more general class of
functions. Hence, whenever a propagator matrix depending on the difference
of two points living on a sphere has to be expanded in some functional basis,
there should exist a system of Tensor Legendre Functions in which the prop-
agator becomes diagonal. But this is only an assumption and not prooven.
Back to Css′

l :
Monopole order l = 0 is cancelled out completely, as it can be seen in
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Fig. 4.10. The fourth component is zero which responds to no longitudinal
electric modes.

Also, the summation (4.97) seems to be not easy, Maple 11 is able to give
an explicit sum formula for the diagonal components, which can be simplified
afterwards. From this one, the coefficient matrices for l ≥ 1 can be calculated
by

Css′

l =



l(l+1)cl
R2

i
√
l(l+1)clp0

R
0 0

− i
√
l(l+1)clp0

R
p2

0cl 0 0

0 0
p2

0((l+1)cl−1+lcl+1)

2l+1
+ l(l+1)cl

R2 0

0 0 0 0


. (4.100)

The first coefficients are the following:

Css′

0 = 0 (4.101)

Css′

1 =


2c1
R2

i
√

2c1p0

R
0 0

− i
√

2c1p0

R
p2

0c1 0 0

0 0
2p2

0c0R
2+6c1+p2

0c2R
2

3R2 0

0 0 0 0

 (4.102)

Css′

2 =


6c2
R2

i
√

6c2p0

R
0 0

− i
√

6c2p0

R
p2

0c2 0 0

0 0
3p2

0c1R
2+30c2+2p2

0c3R
2

5R2 0

0 0 0 0

 (4.103)

Css′

3 =


12c3
R2

i2
√

3c3p0

R
0 0

− i2
√

3c3p0

R
p2

0c3 0 0

0 0
4p2

0c2R
2+84c3+3p2

0c4R
2

7R2 0

0 0 0 0

 . (4.104)

This matrix Css′ is an analogy to (4.65). In (4.65), M22(Ω,Ω′) was rotated in
the way that the new x-axis local to the point Ω faces in the direct direction
to Ω′. The z-axis points in normal direction and the y-axis is orthogonal to
x and z. Here, the same result is received by using the ~∇ “direction” as x-,
~n as z- and ~L as y-axis, because ~∇ gives something like a flow direction from
one point to the other.
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By knowing C up to any order, the inverse coefficient can be calculated,
too. For the case of only Feynman gauge, this is

C−1 ss′

l =



R2l(l+1)

cl(p
2
0R

2+l(l+1))2

i
√
l(l+1)R3p0

cl(p
2
0R

2+l(l+1))2 0 0

− i
√
l(l+1)(p)R3p0

cl(p
2
0R

2+l(l+1))2

R4p2
0

cl(p
2
0R

2+l(l+1))2 0 0

0 0 R2(2l+1)

l(l+1)(2l+1)cl+R2p2
0((l+1)cl−1+lcl+1)

0

0 0 0 0


(4.105)

and with an additional Ψ0 = 0 gauge, it simplifies to

C−1 ss′

l =


0 0 0 0

0 1
p2

0c1
0 0

0 0 R2(2l+1)

l(l+1)(2l+1)cl+R2p2
0((l+1)cl−1+lcl+1)

0

0 0 0 0

 . (4.106)

The cl are known to start at R−1 in a series expansion for small R. Con-
sequently, all C−1 ss′

l with Ψ0 = 0 start in component (1, 1) at R and in
component (2, 2) they start at R3. But the C−1 ss′

l without this gauge all
have R3 as their lowest contribution. By consideration of M12 and M21, the
energy has to start at least at R3, because it does not depend on the chosen
gauge.
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4.7.3 Casimir energy for a plain plate and a sphere

With the new basis (4.68) to (4.72), the Casimir energy for a plain plate and
a sphere can be simply calculated also for higher orders than only R4. But
at first, it is useful to implement the propagator expansion (4.99) into the
equation for the 1-loop propagator 1

2
∆M2(p0, p||, q||) = ∆M12∆M21 and the

energy. Altogether,

1

2
∆M2 =R4

∫
Ω,Ω′
M−1

11 (p)M12(p,R,Ω)M−1
22 (p0,Ω,Ω

′)M21(Ω′, p0, q||) (4.107)

1

2
(∆M2) κµ =

∑
l≥1

2l + 1

4π
M−1

11µνC
−1
ss′l

∫
Ω,Ω′
Mνρ

12 (Ω)Pss′l ρσ(~Ω− ~Ω′)Mσκ
21 (Ω′) (4.108)

can be obtained, with p|| and q|| being the corresponding surface momenta on
the plate. Again, this object can be calculated, if M12 (and M21) is expanded
into a series for small R, and of course a truncation like l = 1 . . . Lmax is set.
To get the N -loop energy, the Nth power of ∆M2 has to be taken, always
including the Fourier integrals for the connecting surface momenta21. These
integrals can all be calculated by using polar coordinates

q1 =|q||| cosφq|| (4.109)

q2 =|q||| sinφq|| (4.110)

and the substitution
√
p2

0 + q2
|| = q̃||. For this reason, the Casimir energy up

to arbitrary numbers of loops can be calculated analogue to section 4.2 by
the following equation:

ECas =− ~c
2

1

(2π)3

∫
p0,p||

∑
n≥1

1

n

1

(2π)2n−2

∫
n︷ ︸︸ ︷

q||, q
′
||, . . . , q

′′
||

∆M2ν
µ (p0, p||, q||)∆M2ρ

ν (p0, q||, q
′
||) . . .∆M2µ

σ (p0, q
′′
||, p||)︸ ︷︷ ︸

n

. (4.111)

With this, the following results can be obtained. Again, the energy can be
expressed as

E1 loop
Cas = − ~c

πH

∑
i=3

bi

(
R

H

)i
. (4.112)

In addition for the 1-loop calculations, a lower cutoff l ≥ Lmin was used.

21The appearing (2π)2 has to be taken into account.
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N -loop− Lmin − Lmax b3 b4 b5 b6 b7

1− 1− 1 9
16 0 0 45

64 0
1− 2− 2 0 0 25

32 0 385
1152

1− 3− 3 0 0 0 0 7007
7200

2− 1− 1 143
4096 0∑

9
16 0 25

32
3023
4096

12551
9600

Table 6: Results for the Casimir energy in the plain plate sphere setup. The
shown coefficients determine the energy by the use of (4.112).

All the coefficients in the last line are the same as the one in [38]. Also, the
chosen gauge did not influence these results. In this calculations Lmax = 1
sufficed to determine b3. Thus, the vector spherical basis seems to be the
correct one and l = 1 could be called the dipole order. With R3 as the first
contribution in the matrix ∆M2, also b4 and b5 are determined by this one
propagation loop. But again, R4 cancels out completely even in the matrix
∆M2, and therefore the coefficient b7 is determined by only one loop, too.
But for b6, one more propagation loop ∆M4 is needed.

The following results for the energy are obtained:

• R3 is determined by one loop of dipole order l = 1

• R5 is determined by one loop of quadrupole order l = 2

• R6 is determined by two loops of dipole order l = 1

• R7 is determined by one loop of quadrupole and hexapole order l = 2, 3.

From the inverse propagator M−1
22 to the R3 energy

The full R3 energy is given by only l = 1. Therefore, the complete inverse
propagator M−1

22 up to this order can be given. In Feynman gauge without
Ψ0 = 0, M−1

22 up to dipole order is:

R4M−1
22 (p0,Ω,Ω

′) = −9R3

16π
× (4.113)0BBBBB@

2sθsΘc(ϕ−Φ) + 2cθcΘ 0 0 0

0 cθcΘ + sϕsθsΦsΘ −sϕsθsΘcΦ −cθsΘcΦ

0 −sθcϕsΦsΘ cθcΘ + sθcϕsΘcΦ −cθsΘsΦ

0 −cΘcϕsθ −cΘsθsϕ sθsΘc(ϕ−Φ)

1CCCCCA
+O(R4) +O(Pl=2) ,
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and with additional Ψ0 = 0 gauge it becomes:

R4M−1
22 (p0,Ω,Ω

′) = − 9R

8p2
0π
A− 9R3

80π
B +O(R4) +O(Pl=2) (4.114)

with

A1,1= (1− s2θc
2
ϕ)(1 + cΘ)(cΘ − 1)c2Φ + cϕ(sϕsΦ(cθ − 1)(cθ + 1)c2Θ + cθsθcΘsΘ + sϕsΦ − c2θsϕsΦ)cΦ + 1− s2θc

2
ϕ

A2,2= (cΘ + 1)(cΘ − 1)(sΦsϕ(cθ − 1)(cθ + 1)cϕcΦ − (s2θc
2
ϕ + c2θ)c2Φ) + cΘ(cΘ(s2θc

2
ϕ + c2θ) + sθsΘcθsϕsΦ)

A3,3= −s2θc
2
Θ + cθsΘsθ(cϕcΦ + sϕsΦ)cΘ + s2θ

A2,1= (cθ − 1)(cθ + 1)(cϕsϕ − (cΘ − 1)(cΘ + 1)(cϕsϕc
2
Φ − cΦsΦc

2
ϕ)) + cθ(s2ΘsΦcθ + sθsΘcΘsϕ)cΦ

A1,2= (cΘ − 1)(cΘ + 1)(cΦsΦ − (cθ − 1)(cθ + 1)(cΦsΦc
2
ϕ − cϕsϕc

2
Φ)) + cΘ(s2θsϕcΘ + sΘsθcθsΦ)cϕ

A3,1= sΘcΦcΘc
2
θ − ((cϕc

2
Θ − cϕ)c2Φ + sΦsϕ(cΘ − 1)(cΘ + 1)cΦ + cϕ)cθsθ − sΘcΦcΘ

A1,3= sθcϕcθc
2
Θ − ((cΦc

2
θ − cΦ)c2ϕ + sϕsΦ(cθ − 1)(cθ + 1)cϕ + cΦ)cΘsΘ − sθcϕcθ

A3,2= sΘcΘc
2
θsΦ + ((sϕs

2
Φ + cϕsΦcΦ)s2Θ − sϕ)sθcθ − sΘsΦcΘ

A2,3= sθcθc
2
Θsϕ + ((sΦs

2
ϕ + cΦsϕcϕ)s2θ − sΦ)sΘcΘ − sθsϕcθ

B1,1= 4((1− s2θc
2
ϕ)(cΘ + 1)(cΘ − 1)c2Φ + (sΦsϕ(cθ − 1)(cθ + 1)c2Θ + cθsθcΘsΘ + s2θsϕsΦ)cϕcΦ − s2θc

2
ϕ + 1)

+ 5(sθsΘsϕsΦ + cθcΘ)

B2,2= 4((sΦsϕ((cθ − 1)(cθ + 1)c2Θ + s2θ) + 5
4 sθsΘ)cϕcΦ − (cΘ + 1)(s2θc

2
ϕ + c2θ)(cΘ − 1)c2Φ

+ cΘ(cΘs
2
θc

2
ϕ + cθ(cθcΘ + sθsΘsϕsΦ + 5

4 )))

B3,3= 4(cθsΘsθ(cϕcΦ + sΦsϕ)cΘ − c2θ − s
2
θc

2
Θ + 1) + 5sθ(cϕcΦ + sΦsϕ)sΘ

B2,1= 4(((cθ − 1)(cθ + 1)(cΘ − 1)(cΘ + 1)(cΦcϕsϕ − sΦc2ϕ) + cθ(−s2ΘsΦcθ + sθsΘcΘsϕ))cΦ − cϕ( 5
4 sθsΘsΦ + sϕs

2
θ))

B1,2= 4(((cΘ − 1)(cΘ + 1)(cθ − 1)(cθ + 1)(cϕcΦsΦ − sϕc2Φ) + cΘ(−s2θsϕcΘ + sΘsθcθsΦ))cϕ − cΦ( 5
4 sΘsθsϕ + sΦs

2
Θ))

B3,1= 4sΘcΦcΘc
2
θ − 4sθ(−cϕs2Θc

2
Φ + sΦsϕ(cΘ − 1)(cΘ + 1)cΦ + cϕ)cθ − 4sΘcΦcΘ − 5sθcΘcϕ

B1,3= 4sθcϕcθc
2
Θ − 4sΘ(−cΦs2θc

2
ϕ + sϕsΦ(cθ − 1)(cθ + 1)cϕ + cΦ)cΘ − 4sθcϕcθ − 5sΘcθcΦ

B3,2= −4cθsθ(cϕsΦcΦ + sϕs
2
Φ)c2Θ − (5sθsϕ + 4s2θsΘsΦ)cΘ + 4cθsθcΦ(cϕsΦ − sϕcΦ)

B2,3= −4cΘsΘ(cΦsϕcϕ + sΦs
2
ϕ)c2θ − (5sΘsΦ + 4s2Θsθsϕ)cθ + 4cΘsΘcϕ(cΦsϕ − sΦcϕ) .

Matrix (4.113) or (4.114) together with the corresponding M−1
11 (C.2) or

(C.5), the M12 from (C.3) and the corresponding M21 determine the correct
Casimir energy for a plain plate and a sphere up to dipole order. In the next
step, the product M12M

−1
22 M21 ≡ R4

∫
Ω,Ω′

M12(Ω)M−1
22 (Ω,Ω′)M21(Ω′) has to

be carried out by first expanding M12 and M21 up to O(R4), and afterwards
solving the Ω and Ω′ integrals. By multiplying the result with M−1

11 (p0, p||),
the 1-loop propagator 1

2
∆M2(p0, p||, q||) is obtained. In the case of Ψ0 = 0

gauge, this is exactly the same as equation (4.53) in section 4.5.6 and hence
the Casimir energy results correctly, too. In contrast, without Ψ0 = 0 gauge,
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the 1-loop propagator becomes more complicated:

1

2
∆M2 =

πR3

p2|q|
e−H(|p|+|q|)


?00 ?01 ?02 0

?10 ?11 ?12 0

?20 ?21 ?22 0

0 0 0 0

 (4.115)

?00 = (|p||q|+ 2p2
0)(p1q1 + p2q2) + (p2

1 + p2
2)(q2

1 + q2
2)

?11 = (|p||q|+ p1q1)(p2
0 + 2p2q2) + 2(p2

0 + q2
2)(p2

0 + p2
2)

?22 = (|p||q|+ 2p2q2)(p2
0 + p1q1) + |p||q|p1q1 + 2(p2

0 + p2
1)(p2

0 + q2
1)

?10 = −((|p||q|+ 2(p2
0 + p2

2))p0q1 + (q2
1 + q2

2 − 2p2q2)p0p1)

?01 = −((|p||q|+ 2(p2
0 + q2

2))p0p1 + (p2
1 + p2

2 − 2p2q2)p0q1)

?20 = −((|p||q|+ 2(p2
0 + p2

1))p0q2 + (q2
1 + q2

2 − 2p1q1)p0p2)

?02 = −((|p||q|+ 2(p2
0 + q2

1))p0p2 + (p2
1 + p2

2 − 2p1q1)p0q2)

?21 = −((|p||q|+ p1q1 + p2q2)2p1q2 + 2(p1p2 + q1q2 − q1p2)p2
0)

?12 = −((|p||q|+ p1q1 + p2q2)2q1p2 + 2(p1p2 + q1q2 − p1q2)p2
0)

But of course, taking the trace of (4.115) and using the spherical coordinates
(4.54) to solve the appearing integral results in the same energy

ECas =− ~c
2

1

(2π)3

∫
p

tr

[
1

2
∆M2

]
+O

(
R4
)

(4.116)

=− ~c
2

1

(2π)3

∫
6πR3pe−2|p|H p2dp sin θpdθpdφp +O

(
R4
)

(4.117)

=− 9

16

~c
π

R3

H4
+O

(
R4

H5

)
. (4.118)



5 CASIMIR-POLDER FORCE FOR AN ATOM AND A
UNIAXIAL STRUCTURED PLATE

70

5 Casimir-Polder force for an atom and a uni-

axial structured plate

Meanwhile, the propagator matrix and its inverse for a perfectly conducting
plain plate and a perfectly conducting sphere is already known. The next
step is to implement the corresponding calculations numerically and compare
them with known results. At the same time, a deformation of the plate in
one direction with an arbitrary amplitude is assumed.

5.1 Setup

A perfectly conducting sphere with radius R above a perfectly conducting
uniaxial structured plate is assumed. The mean distance between them shall
be denoted by H, where “mean” means the shortest distance between the
center of the sphere and the midaxis of the plate. See Fig. 5.1.

S2

x3

n2

R

n1S1

x1

H

h(
x 1
)

Fig. 5.1: One uniaxial corrugated plate and a sphere of radius R above are
set on a distance H. Both are assumed to be perfect conductors. Coordinates
for the plate are Cartesian and those for the sphere are spherical ones. x1, x2

and x3 = h(x1) are the coordinates on the plate, θ and φ are the coordinates
on the sphere. n1 and n2 are the normal vectors.
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The plate S1 is described by the Cartesian coordinates x1 and x2. In x3

direction it is shaped by a height function h(x1). Furthermore, the sphere S2

with its center at the point (x0, 0, 0, H) implies spherical coordinates ϕ and
θ, which are abstracted by Ω. Again the normal vectors have to face each
other by convention, thus n1 points in positive x3 direction and n2 points
outside the sphere. Within this parametrisation, the surface normal vectors
are given by

n1
γ = δ3

γ =
1
√
g


0

−h′

0

1

 n2
γ′(Ω) =


0

cosϕ sin θ

sinϕ sin θ

cos θ

 (5.1)

√
g =
√

1 + h′2 . (5.2)

The h′ represents the derivative ∂x1h(x1). On the one hand,
√
g is the nor-

malisation of n1, and on the other hand it is the square root of the induced
surface metric, which will be needed for the surface integral∫

x1

f(x1) =

∫ ∞
−∞

√
g(x1)f(x1)dx1 . (5.3)

5.2 Preliminaries

Again, the change in the symmetry of the problem leads to a slightly different
strategy to achieve the Casimir energy. As usual, propagators between the
surfaces have to be calculated and functionally inverted. The sphere propa-
gator M22 fits best in the vector spherical basis (4.68) to (4.72), in which its
inverse up to dipole order can be given by (4.113) or in the case of Ψ0 = 0
gauge results in (4.114). In addition, the two propagators M12 and M21 be-
tween the plate and the sphere, and the one connecting two points on the
plate M11 can be calculated analytically. However, the inverse of M11 in the
case of a nontrivial structure can only be obtained numerically, because there
is no known functional basis in which it can be expanded analytically. Also,
if a periodic structure could be assumed to fit well into Fourier modes, the
appearing coefficients would intrinsically depend on one of both points as it
is already discussed in [31], and therefore this method is not considered for
now. Otherwise, the uniaxial structure implies a translation invariance in x2

direction, of which naturally advantage has to be taken. With this, even if
the four sphere surface integrals can be calculated analytically, the Casimir
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energy up to dipole order is determined by four integrals, one for the surface
coordinate x′1 in the product M−1

11 M12, and three for the trace: x1 and the
momenta p0 and p2.

Analogue to section 4.2, the 1-loop Casimir energy is given by

E1 loop
Cas =− ~c

2TE
Tr [∆M12∆M21] (5.4)

=− ~c
2

R4

(2π)2

∫
p0,p2,x1

∫
x′1

∫
Ω

∫
Ω′

tr
[
M−1

11 (p0, p2, x1, x
′
1)

M12(p0, p2, x
′
1,Ω)M−1

22 (p0,Ω,Ω
′)M21(p0, p2,Ω

′, x1)
]
. (5.5)

Now M−1
22 has to be inserted, but instead of using (4.113), (4.114) or (4.99)

and the tensorial Legendre polynomials, it is more convenient to first multiply
M12 with the vector spherical basis of M−1

22 and to carry out one Ω integral.

(MV)µs12 lm =

∫
Ω

Mµ
12 ν(Ω)Vsνlm(Ω) (5.6)

Afterwards, the corresponding object (VM)21 =
∫
V?M21 can be obtained

by simply adjoining (MV)12: (VM)21 = (MV)†12. The energy now reads

E1 loop
Cas =− ~c

2

1

(2π)2

∫
p0,p2,x1

∫
x′1

∑
lm

tr
[
M−1

11 (p0, p2, x1, x
′
1)

(MV)12 lm(p0, p2, x
′
1)C−1

l (p0, R)(MV)†12 lm(p0, p2, x1)
]
. (5.7)

From this point, it is convenient to choose the pure Feynman gauge without
Ψsphere

0 = 0 on the sphere side and the one with Ψplate
0 = 0 on the plate side.22

On the one hand, in this case, the coefficients Css′−1
l in (4.105) have R3 as

their lowest contribution. Hence, to reach R3 in the energy, M12 and M21

only have to be expanded up to O(R), which can be obtained by simply
setting R = 0. Then, the full R dependence up to R3 can be factored out
from equation (5.7) and in addition, the integral (5.6) becomes analytically
solvable. Otherwise, the R dependence would have to be considered and (5.6)
has to be solved numerically. On the other hand, Ψplate

0 = 0 simply lowers
the number of terms in M11, which have to be inverted numerically.

22In chapter 2.5, the Ψ0 = 0 gauge was found to be allowed for each surface sepa-
rately. That means, instead of using a “global” Ψ0 = 0 for all surfaces, this gauge can
be separately switched on and off for each surface. This can be done by simply setting
the time components of the corresponding inverse propagators M−1

aa to zero. In principle,
also the propagators between the surfaces have to be changed, but by taking the product
tr[M−1

11 M12M
−1
22 M21], the chosen gauge automatically applies to them.
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So far, everything except the M−1
11 can be obtained analytically. By re-

striction to the dipole order, only the C−1
l=1 contributes to the energy and

therefore the lm summation only runs for m from −1 to 1. The C−1
1 ex-

panded up to O(R4) is

C−1
1 =

3R3

2


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

+O(R4) . (5.8)

Next, the integrals have to be discretised and replaced by summations like
for example∫ b

a

f(x)dx = ∆x

[
1

2
f(a) +

imax−1∑
i=1

f(xi) +
1

2
f(b)

]
(5.9)

∆x =
b− a
imax

, xi = ∆x i+ a , i = 0 . . . imax .

Hence, the plate has to get a finite size in x1 direction and the infinite large
case can only be obtained as a limit. But this opens up the possibility to
study edge effects. The same problem exists for the momenta integrals, too.
Thus, a cut-off for high momenta has to be introduced. In the scalar case,
only

√
p2

0 + p2
2 terms appeared under the integrals and therefore a change to

polar coordinates

p0 = |
˜
p| cos pφ (5.10)

p2 = |
˜
p| sin pφ (5.11)

dp0dp2 = |
˜
p|d|

˜
p|dpφ (5.12)

led to only one integral of the type 2π
∫∞

0
|
˜
p|f(|

˜
p|)d|

˜
p|. However, in the QED

case, such a simplification cannot be done and both momenta integrals have
to be carried out numerically. Nevertheless, polar coordinates are used, too,
because they give the possibility to choose a symmetrically cut-off pmax and
a lower one pmin to avoid divergences at |

˜
p| = 0.

5.3 The propagator between a corrugated plate and a
sphere

To obtain the Casimir energy from equation (5.7), the propagator M12(x−x′)
between the corrugated plate and the sphere is needed, which is additionally
transformed to momentum space in the following way: x0 − x′0 → p0 and
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x2 → p2. Therefore, the free propagator G has to be transformed in this
way, too:

G(
˜
p, x1−x′1, x′2, x3−x′3) =

∫
x0−x′0,x2

G(x− x′)ei((x0−x′0)p0+x2p2) (5.13)

=
eip2x′2

2π
K0

(
|
˜
p|
√

(x1−x′1)2 + (x3−x′3)2
)

(5.14)

G(x− x′) =
1

(2π)2

∫
˜
p

G(
˜
p, x1−x′1, x′2, x3−x′3)e−i((x0−x′0)p0+x2p2) (5.15)

with
˜
p = (p0, p2). Equation (5.15) and the normal vectors (5.1) have to be

put in (2.32), which leads to M12. After inserting the surface coordinates,

M12(
˜
p, x1,Ω) =

1√
g(x1)

[
DG(

˜
p, x1−x′1, x′2, x3−x′3)

]˛̨̨̨
˛̨ x3 = h(x1)
x′ = x′(Ω)

(5.16)

can be obtained, whereby D is the following operator in components:

D0,0 = h′ (x1) cϕsθ∂
2
x3

+ (cϕsθ − h′ (x1) cθ) ∂x1∂x3 − cθ∂2
x1

+p2 (ih′ (x1) sϕsθ∂x1 − isϕsθ∂x3 + p2 (cθ − h′ (x1) cϕsθ))
D1,0 = ip0 (cϕsθ∂x3 − cθ∂x1)
D2,0 = p0 (isϕsθ∂x3 − ih′ (x1) sϕsθ∂x1 + p2 (h′ (x1) cϕsθ − cθ))
D3,0 = ih′ (x1) p0 (cϕsθ∂x3cθ∂x1)
D0,1 = p0 (h′ (x1) sϕsθp2 − icθ∂x1 − ih′ (x1) cθ∂x3)
D1,1 = cθ

˜
p2 − isϕsθp2∂x3

D2,1 = h′ (x1) sϕsθp
2
0−icθp2∂x1−(ih′ (x1) cθp2+sϕsθ(∂x1 +h′ (x1))∂x3) ∂x3

D3,1 = h′ (x1)
(
cθ

˜
p2 − isϕsθp2∂x3

)
D0,2 = p2p0 (h′ (x1) cϕsθ − cθ)
D1,2 = ip2 (cϕsθ∂x3 − cθ∂x1)
D2,2 = (cϕsθ − h′ (x1) cθ) ∂x1∂x3 + cθ(p

2
0 − ∂2

x1
) + h′ (x1) cϕsθ(∂

2
x3
− p2

0)
D3,2 = ih′ (x1) p2 (cϕsθ∂x3 − cθ∂x1)
D0,3 = p0sθ (icϕ∂x1 + sϕp2 + ih′ (x1) cϕ∂x3)

D1,3 = sθ

(
isϕp2∂x1 − cϕ

˜
p2
)

D2,3 = sθ
(
sϕ(∂2

x1
+ h′ (x1) ∂x1∂x3 − p2

0) + icϕp2∂x1 + ih′ (x1) cϕp2∂x3

)
D3,3 = h′ (x1)

(
isϕp2∂x1 − cϕ

˜
p2
)
sθ .

(5.17)

The derivatives ∂x1 and ∂x3 in (5.17), which act on the free propagator G in
equation (5.16), have to be carried out before x3 is set to h(x1).
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5.4 The propagator for a corrugated plate

In a next step, the propagator M11(
˜
p, x1, x

′
1) has to be calculated. Therefore,

the following free photon propagator has to be inserted in (2.32):

G(x− x′) =
1

(2π)2

∫
˜
p

G(
˜
p, x1−x′1, x3−x′3)e−i((x0−x′0)p0+(x3−x′3)p2) (5.18)

with

G(
˜
p, x1−x′1, x3−x′3) =

∫
x0−x′0,x2−x′2

G(x− x′)ei((x0−x′0)p0+(x2−x′2)p2) (5.19)

=
1

2π
K0

(
|
˜
p|
√

(x1−x′1)2 + (x3−x′3)2
)
. (5.20)

Together with the normal vectors for the plate, n1
γ(x) and n1

γ(x
′) from (5.1),

M11 can be obtained.

M11(
˜
p, x1, x

′
1) =

1√
g(x1)

√
g(x′1)

[
DG(

˜
p, x1−x′1, x3−x′3)

]˛̨̨̨
˛̨ x3 = h(x1)
x′3 = h(x′1)

(5.21)

D is the following operator in components:

D0,0 = p2
2 − (h′(x1) + h′(x′1)) ∂x1∂x3 − ∂2

x1
+ h′(x1)h′(x′1)

(
p2

2 − ∂2
x3

)
D1,0 = −ip0 (∂x1 + h′(x′1)∂x3)
D2,0 = −p2p0 (1 + h′(x1)h′(x′1))
D3,0 = −ih′(x1)p0 (∂x1 + h′(x′1)∂x3)
D0,1 = −ip0 (∂x1 + h′(x1)∂x3)
D1,1 =

˜
p2

D2,1 = −ip2 (∂x1 + h′(x1)∂x3)
D3,1 =

˜
p2h′(x1)

D0,2 = −p2p0 (1 + h′(x1)h′(x′1))
D1,2 = −ip2 (∂x1 + h′(x′1)∂x3)
D2,2 = p2

0 − (h′(x1) + h′(x′1)) ∂x1∂x3 − ∂2
x1

+ h′(x1)h′(x′1)
(
p2

0 − ∂2
x3

)
D3,2 = −ih′(x1)p2 (∂x1 + h′(x′1)∂x3)
D0,3 = −ih′(x′1)p0 (∂x1 + h′(x1)∂x3)
D1,3 =

˜
p2h′(x′1)

D2,3 = −ih′(x′1)p2 (∂x1 + h′(x1)∂x3)
D3,3 =

˜
p2h′(x1)h′(x′1) .

(5.22)
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5.5 The numerical implementation for obtaining the
Casimir energy for a uniaxial corrugated plate and
a sphere

With the use of (5.7), (5.8), (5.16) and (5.21) the Casimir energy can be ob-
tained numerically within the numerical accuracy for arbitrary height func-
tions h and arbitrary distances H up to dipole order. The remaining task
is to invert M11 numerically, collecting everything together and carrying out
all remaining integrals. But before, one last simplification can be done: To
obtain an algorithm, which is independent from the used scale, every dimen-
sionful variable has to be rescaled by H. This means

x = [eV −1] = Hx̂ M12 = [eV 2] = H−2M̂12

p = [eV ] = H−1p̂ M11 = [eV 2] = H−2M̂11

h = [eV −1] = Hĥ M−1
11 = [eV 0] = M̂−1

11

R = [eV −1] = HR̂ .

(5.23)

The hatted variable is dimensionless. With this, the energy in (5.7) can be
rewritten by the dimensionless energy coefficient Σ

E1 loop
Cas =− 3~c

4(2π)2

R3

H4
Σ . (5.24)

Σ =

∫
˜
p̂,x̂1,x̂′1

1∑
m=−1

tr

24M̂−1
11 (

˜
p̂, x̂1, x̂′1)(M̂V)l=1

12m(
˜
p̂, x̂′1)

0BB@
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1CCA(M̂V)† l=1
12m (

˜
p̂, x̂1)

35 (5.25)

From now on, the hats, the index “1” from x1 and x′1, the index “11” from
M̂11 and M̂−1

11 , and the index “l = 1” and “12” from (M̂V)l=1
12m are removed for

simplicity. Additionally, the momenta are expressed in the polar coordinates
p0 = |

˜
p| cosφ

˜
p and p2 = |

˜
p| sinφ

˜
p, and hence “|

˜
p|” is renamed with “p”. Also,

the index “
˜
p” from φ

˜
p is removed. In a next step, the following discretisation

can be done:

x→ xu = ∆xu− L+ ε , u = 0 . . . Nx , ∆x =
2L

Nx

(5.26)

x′ → x′v = ∆x′ v − L− ε , v = 0 . . . Nx , ∆x′ =
2L

Nx

(5.27)

p→ pi = ∆p j + pmin , i = 0 . . . Np , ∆p =
pmax − pmin

Np

(5.28)

φ→ φj = ∆φ j , j = 0 . . . Nφ , ∆φ =
2π

Nφ

(5.29)
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M(p, φ, x, x′)→M ijuv = M(pi, φj, xu, x
′
v) (5.30)

(MV)m(p, φ, x′)→ (MV)ijvm = (MV)m(pi, φj, x
′
v) (5.31)

√
g(x)→ √gu =

√
g(xu) , (5.32)

whereby the plate is placed at x ∈ [−L,L], pmin and pmax are the lower and
the higher cutoff of p, and Nx, Np and Nφ are resolution parameters. The
ε parameter is included because it is the easiest possibility to circumvent the
divergent behaviour of M(p, φ, x, x′) at x = x′ [31].23 In the following, i and
j are called the “momentum indices”, and u and v are the “position indices”.
The next step is to combine the space-time index µ and the position index
u to a super index A = (µ, u), whereby the A counts from 1 to 4(Nx + 1).
The B is analogue. Only the integrals are left and have to be discretised like
it was done in (5.9) by considering (5.12). Thus, the

∫
has to be replaced

by a
∑

. The ∆x becomes a ∆xA, which includes the factors 1
2

at u = 0
and u = Nx. This is the same for ∆p. Only ∆φ can remain ∆φ due to the
periodicity in φ. Within this discretisation, the energy coefficient Σ from
(5.25) reads

Σ =
∑

i=0...Np
j=0...Nφ−1
m=−1...1
A,B

∆pi∆φ pi

h√
gA∆xAM

−1 ij
AB ∆xB

√
gB(MV)ij Bsm (δ1sδ1s′ + δ3sδ3s′ )(MV)ij †s

′A
m

i
. (5.33)

M−1 ij
AB is the discretisation of the functional inverse M−1(

˜
p, x, x′) and not the

matrix inverse of M ij
AB. This becomes clear by writing out the discretised

equation (D.1): ∑
B

M−1 ij
AB ∆xB

√
gBM

ij
BC =

1

∆xA
√
gA
δAC . (5.34)

Hence, the complete object (
√
gA∆xAM

−1 ij
AB ∆xB

√
gB) can be obtained by

inverting M ij
AB. This matrix inverse of M ij

AB is named M ij−1
AB and can be cal-

culated within the numerical precision since M ij
AB is only a matrix of numbers.

The energy coefficient Σ now reads

Σ =
∑

i=0...Np
j=0...Nφ−1
m=−1...1

∆pi∆φ pi

h
M ij−1
AB (MV)ij Bsm (δ1sδ1s′ + δ3sδ3s′ )(MV)ij †s

′A
m

i
. (5.35)

23In [31], also a regularisation of the divergent Bessel function in M is proposed,
whereby ε can be set to zero. But this second method becomes more complex when
it is applied to the matrix valued propagators of this thesis.
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This is one possibility to obtain the first order of the Casimir energy for a
sphere in front of a uniaxial shaped surface.

An enhancement to arbitrary 2D corrugated surfaces is possible, too.
Then, there is no translation invariance in x2 direction, which has to be
considered. Thus, the utilised free photon propagator is (4.9). In addition,
the used normal vectors and

√
g changes by a derivative of h in x2 direction.

Therefore, the propagators M11 and M12 have to be recalculated. Next,
the momentum integral

∫
p2

changes to a surface integral
∫
x2

, which has to
be discretised. Thus, the plate becomes finite in this direction, too. The
superindex A combines both discretisation indices u and u′ and the matrix
index µ to (µ, u, u′). It might be the case that the combination of u and u′

has to be done in an elegant way for reaching maximal numerical stability
within the algorithms. But, in the end, that should not be a problem and
the energy coefficient Σ will be given by

Σ =
∑

i=0...Np
m=−1...1

∆pi

h
M i−1
AB (MV)i Bsm (δ1sδ1s′ + δ3sδ3s′ )(MV)i †s

′A
m

i
. (5.36)

The real task would be to invert a bigger matrix M i
AB, whose dimension d

grows up quadratically with the discretisation parameters d ∝ Nx1Nx2 . That
means, finally, only the numerical cost grows.
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6 Résumé

The aim of this thesis was to extend the non-perturbative calculation scheme
for Casimir-Polder potentials induced by scalar fields [31] in the case of
arbitrarily structured surfaces to abelian gauge fields and to apply this to
the quantum-electrodynamic case.

Hence, the method for the quantum field theoretical handling of fluc-
tuating gauge fields in the presence of boundaries was derived within the
functional integral formalism. For the generating functional Z the Euclidian
Maxwell-Yang-Mills action was utilised and the free photon propergator G
was obtained due to the usage of the gauge breaking term 1

2α
(∂A)2 in the

Lagrangian. For reasons of simplicity, Feynman gauge was chosen for the
calculations afterwards.

Then, boundary conditions for perfectly conducting surfaces, which are
dictated by Maxwell’s equations, were reviewed. However, also non-local
conditions for general frequency dependent dielectrics were obtained in the
way described by [35] and ascribed to local ones clearly arranged in index
notation.

From these, the constraints for perfectly conducting surfaces were chosen
and inserted via a delta functional into Z. Due to a Fourier transformation
of this delta constraint, a set of auxiliary vector fields Ψ, defined only on the
surfaces, was introduced, which led to a current term in the action. This term
broke the concept of an external current- and charge-free vacuum, so Weyl
gauge for the vector field potential A (which in combination with Feynman
gauge leads to Coulomb gauge) was discussed to be allowed only for plain
surfaces, which therefore are translation invariant in all directions tangential
to the surfaces. In addition, an analogue to this gauge but for the fields Ψ
was proven. This was called the Ψ0 = 0 gauge, which can be applied to each
surface separately.

The constrained action was transformed in a way that Gaussian integrals
for the physical and the auxiliary fields could be evaluated and the known
trace-log formula for the Casimir energy and force was obtained. The loga-
rithm of the appearing normalised super-propagatorMBC for all Ψ fields on
all surfaces resulted through a Taylor expansion around the self-interaction
contribution in a sum of every possible propagation circle, which passes all
surfaces.

Afterwards, this method was applied to two parallel perfectly conducting
plain plates in momentum space and the well-known Casimir force for this
setup was obtained.

Then, the main focus was shifted to Casimir-Polder type problems. Thus,
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one of the above plates was exchanged with a perfectly conducting sphere for
representing an atom in front of a plain plate. Hence, the above propagator
for a plain plate was used. For the sphere, a propagator had been calculated
and functionally inverted, so the time was transformed to momentum space.
Since the inversion can become arbitrarily complicated, three different coor-
dinate systems were discussed and utilised for explicit calculations, whereby
for the first two, spherical harmonics were used:

After firstly introducing a scheme for decomposing the corresponding
propagator into spherical harmonics, Cartesian coordinates led to a sophisti-
cated expansion matrix. But in the end, the standard Casimir-Polder result
up to dipole order was obtained. Because this expansion matrix is infinite-
dimensional, for the inversion of it, the right truncation had to be found.
Also, the needed dimension before the inversion was estimated. In addition,
due to the arithmetic costs, the Moore-Penrose inverse was introduced as an
effective way of inverting Hermitian singular matrices with a large dimension
analytically.

Obtaining the energy within rotated Cartesian coordinates, whose axes
lies tangential and normal to the sphere surface, failed due to the requirement
of calculating the complete inverse propagator at once. But thirdly, a vector
spherical basis was introduced, which fitted best to a S2-sphere symmetry
in a 4D spacetime. Thus, a well-behaving coefficient matrix was obtained,
which yielded in the full expression for the inverse sphere propagator up to
any multipole order and sphere radius. Also, tensorial Legendre functions
were found and interpreted as the naturally basis for matrix valued 2-point-
functions when changing from scalar to vector fields. With the latter basis,
the next four correct energy contributions compared to [38] were calculated
and decomposed to the corresponding multipole order.

At last, the method was applied to a sphere in front of a uniaxial corru-
gated surface. Therefore the corresponding propagators for the corrugated
surface and the numerical method was presented. It was shown that for the
case of using no Ψ0 = 0 gauge on the sphere side, the sphere surface inte-
grals needed for the Casimir energy in the leading order R3

H4 can be derived
analytically and hence only the integrations over the plate-side remain.
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7 Outlook

A sequel to the presented work is possible in several directions: Consequently,
the above numerical implementation of the corrugated surface setup has to
be applied, customised and improved. But an implementation of two dimen-
sional corrugated surfaces is possible, too, which only goes along with an
increased numerical work. Also the study of edge effects is possible.

A still remaining problem upon discretisation is the divergent behaviour
of the propagators as it was described. Therefore, several regularisation
methods can be checked. Also, if there is no functional basis in which the
corrugated plate propagator can be decomposed analytically, this possibly
can be done numerically with high precision. Then, only the coefficient ma-
trix would have to be inverted, but the divergent behaviour of the propagators
could be circumvented.

Furthermore, an analytical extension with the above boundary conditions
for general dielectric functions is feasible. This would provide the possibility
to compare the calculations with existing experimental measurements. Finite
temperature can be included to the method [40], as well as other geometrical
objects like a cylinder or a torus. Instead of corrugating the plate by a height
function h, also the sphere surface can possibly be structured and inverted
within the vector spherical basis. And, of course, also other fluctuating gauge
fields could be studied by this method.



A DIMENSIONAL CHECKUP 82

A Dimensional checkup

In natural dimensions } = c = 1, the scalings of space, time and momentum
can be expressed as eV . Meter and second become eV −1 and the momentum
has dimension eV . With respect to the dimension, the propagator matrix M
for the auxiliary fields Ψ (cf. section 2) is only twice the derivative of the
free photon propagator M ∝ ∂∂G. G is one over the distance squared and
therefore has the dimension eV 2. Thus M , or better M(x, x′), in position
space becomes eV 4. By taking the Fourier transformations into account, the
dimension of M is lowered by one power of eV for each change to momentum
space. In this thesis the following Fourier transformations were used for a
plain plate (index 1) and a sphere (index 2).

M11(x, x′) =
1

(2π)3

∫
p

M11(p)e−ip(x−x
′) → M11(p) ∝eV 1 (A.1)

M12(x, x′) =
1

(2π)3

∫
p

M12(p, ~x′)e−ipx+ip0x′0 → M12(p, ~x′) ∝eV 1 (A.2)

M22(x, x′) =
1

2π

∫
p0

M22(p0, ~x, ~x
′)e−ip0(x0−x′0) →M22(p0, ~x, ~x

′) ∝eV 3 (A.3)

M21(x, x′) =
1

(2π)3

∫
p

M21(~x, p)e−ip0x0+ipx′ → M21(~x, p) ∝eV 1 (A.4)

With a short look on (D.1), having in mind
∫

Ω′
is dimensionless,

∫
t′
∝ eV −1,

and R ∝ eV −1, the inverse propagators can be seen to have the dimensions

M−1
11 (x, x′) ∝ eV 2 (A.5)

M−1
11 (p) ∝ eV −1 (A.6)

M−1
22 (x, x′) ∝ eV 2 (A.7)

M−1
22 (p0, ~x, ~x

′) ∝ eV 1 . (A.8)

Now with the use of equation (2.51), a cross checkup can be done.

ECas = − ~c
2TE

∞∑
n=2

(−1)n

n
Tr [∆Mn] ∝ eV (A.9)

With } = c = 1, the Euclidean timelength TE got the dimension eV −1, so
the trace Tr[∆Mn] has to be dimensionless.

B Calculation of the plate-sphere-propagator

As it turns out, the propagator matrices between a plate and a plate or a plate
and a sphere are easy expressions and can be calculated out by hand. But for
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two spheres, the very amount of terms makes this calculation a little bit of a
nasty job. Therefore, a computer algebra system like Maple or Mathematica
should be used. By using the example of component (µ, ν) = (0, 1) of the
propagator matrix M12 for a plain plate and a sphere, the calculation, which
in principle needs to be done, can easily be understood. Considering equation
(2.32) and L−1

ββ′ = δββ′G, this term becomes

M01
12 = n1

γn
2
γ′ε

γ0αβεγ
′1α′β′δββ′∂α∂

′
α′G . (B.1)

Because the normal vector of the plate only points along the x3 axis, γ can
be set to 3 and n1

3 to 1. Also, β can neither be 0 due to µ = 0, nor 1, because
of β = β′ and ν = 1. Therefore, the first ε tensor is only for α = 1 and β = 2
nonzero. {3012} is an odd permutation of {0123}, so this tensor is −1.

M01
12 = 1n2

γ′(−1)εγ
′1α′2∂1∂

′
α′G (B.2)

But now, the second ε tensor can give only nonzero contributions with α′ = 0,
γ′ = 3 and α′ = 3, γ′ = 0. However, γ′ is the component of the normal
vector and thus n2

0 is zero. Consequently, only ε3102 = 1 contributes to this
component. In fact, the complicated looking expression (B.1) above has only
one nontrivial summand.

M01
12 = −n2

3∂1∂
′
0G = − cos θ(−ip1)(ip0)G = − cos θp0p1G (B.3)

But, in the case of the sphere-sphere-propagator, both normal vectors have
three components. Therefore, there are much more nontrivial contributions.
In component (1, 1), (2, 2) and (3, 3), there are only two summands, and
component (1, 2), (1, 3) and (2, 3) even got only one term. But in (0, 1),
(0, 2) and (0, 3), there are four terms left and in (0, 0), there are 12 of them.
Now keeping in mind the derivatives of G and the normal vectors in spheri-
cal coordinates, the expressions will become slightly complex and computer
algebra programs will be the tool of choice.

C Propagator matrices

In every case, Feynman gauge α = 1 is assumed. In the case of Ψ0 = 0
Mab can be obtained by simply setting the time components to zero and
therefore only M−1

aa will be shown here. (0, n1, n2, n3) is the normal vector
on the sphere, which is positioned at the distance H above the plate in the
origin. M21 = M †

12.
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C.1 Feynman gauge

plain plate → plain plate

Mab(p,H) =
(−1)a+b

2|p|
e−|p||H(a−b)|


p2

1 + p2
2 −p0 p1 −p0 p2 0

−p0 p1 p2
0 + p2

2 −p1 p2 0

−p0 p2 −p1 p2 p0
2 + p2

1 0

0 0 0 0

 (C.1)

M−1
aa (p) =

2

|p|3


p2

1 + p2
2 −p0 p1 −p0 p2 0

−p0 p1 p2
0 + p2

2 −p1 p2 0

−p0 p2 −p1 p2 p0
2 + p2

1 0

0 0 0 0

 (C.2)

plain plate → sphere

M12(p,Ω) =
eiR(n1p1+n2p2+|n3+H

R | i|p|)

2|p|
× (C.3)

0BBBBB@
n3(p2

1 + p2
2)− (n1p1 + n2p2) i|p| −n3p0 p1 −n3p0 p2 p0 (n1p1 + n2p2)

p0(n1i|p| − n3p1) n3(p2
0 + p2

2)− n2p2i|p| p2(n1i|p| − n3p1) n2p1p2 − n1(p2
0 + p2

2)

p0(n2i|p| − n3p2) p1(n2i|p| − n3p2) n3(p2
0 + p2

1)− n1p1i|p| n1p1p2 − n2(p2
0 + p2

1)

0 0 0 0

1CCCCCA

sphere → sphere

M22(p0,Ω,Ω
′) =

 R−2~L~L′? ip0R
−1(~L× ~n′)T

−ip0R
−1~n× ~L′? p2

0(~n′⊗ ~n− ~n~n′13) +R−2~L⊗ ~L′?

G (C.4)

C.2 Feynman gauge and Ψ0 = 0

plain plate → parallel plate

M−1
aa (p) =

2

|p|p2
0


0 0 0 0

0 p2
0 + p2

1 p1 p2 0

0 p1 p2 p0
2 + p2

2 0

0 0 0 0

 (C.5)
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D Inversion of singular Hermitian matrices

During this thesis, it is necessary to get the functional matrix inverse of a
given propagator, whose definition is∫

x′
M−1(x, x′)M(x′, x′′) = 1δ(x− x′′) . (D.1)

Because M has to be a physical propagator, its eigenvalues have to be real.
Also, M is a propagator for a photon coming from a surface a and flying
to the same surface. Thus it is quadratic, too, or in the complex case it
has to be Hermitian. But, because it is a matrix acting on a surface, it has
zero eigenvalues corresponding to the normal direction, for instance. Thus,
M is a singular matrix. In such a case, the 1 in (D.1) has to be an iden-
tity matrix living on the same surface a. But this can become a problem,
because the 1 and M would have to be diagonalised. Later on, when the
inverse of the corresponding propagator for a plain plate is needed,M can be
Fourier transformed to momentum space and hence the functional inversion
becomes a usual matrix inversion of such a singular and Hermitian matrix
with dimension 4× 4. Here, it is no big task to apply a principal axis trans-
formation onM, but for a corrugated surface, such a momentum space does
not exist except in time direction because of stationarity, and the matrix ba-
sis needs to be changed to a functional basis. In this one, M is expanded in
infinitely many orthonormal functions, for example spherical harmonics for
a sphere, and this expansion coefficients can be combined to a singular and
Hermitian matrix with dimension ∞ ×∞. Therefore, an inversion cannot
be given up to any order in general, but truncations can be found to make
the dimension finite. Thus there are big matrices, which have to be inverted
on the subspace, where no eigenvalue is zero. One possibility of solving this
problem is to diagonalise the coefficient matrix later on called SAB. There-
fore, eigenvalues λA and normalised eigenvectors v

{λA}
B =: vBA have to be

calculated in a way, that SAB = v†AC diag(λi|i = 1 . . .∞)CDv
D
B. In this case

the subspace inverse S−1
AB is

S−1
AB = v†AC diag({ 1

λi
|λi 6= 0} ∪ {0|λi = 0}|i = 1 . . .∞)CDv

D
B . (D.2)

But here technical limits will be reached. This work mainly was done with
the computer algebra system Maple 11 on a desktop PC with 8GB working
memory. After the truncation is shifted and SAB becomes bigger, in this
configuration Maple 11 is able to calculate the first 59 eigenvalues. Even-
tually, it is able to calculate the corresponding eigenvectors, too. But then
the expressions become that big that in this example Maple 11 is not able
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to handle and simplify the expressions, because the working memory is full.
Thus, another way has to be found.

A method that works well also for big matrices is based on the so-called
Moore-Penrose or Pseudo inverse. This is defined by∫

x′

∫
x′′
M−1(x, x′)M(x′, x′′)M−1(x′′, x′′′) =M−1(x, x′′′) (D.3)∫

x′

∫
x′′
M(x, x′)M−1(x′, x′′)M(x′′, x′′′) =M(x, x′′′) (D.4)∫

x′
M−1(x, x′)M(x′, x′′) =

[∫
x′
M−1(x, x′)M(x′, x′′)

]†
(D.5)∫

x′
M(x, x′)M−1(x′, x′′) =

[∫
x′
M(x, x′)M−1(x′, x′′)

]†
. (D.6)

(D.3) and (D.4) do not suffice to determine M−1, therefore the Hermiticity
conditions (D.5) and (D.6) are needed. Then this method becomes the same
as inverting the nonzero eigenvalues. In the sense of the coefficient matrix
SAB, this inverse is consequently defined as

S−1
ABSBCS

−1
CD = S−1

AD (D.7)

SABS
−1
BCSCD = SAD (D.8)

S−1
ABSBC =

[
S−1
ABSBC

]†
(D.9)

SABS
−1
BC =

[
SABS

−1
BC

]†
. (D.10)

Hence there is no need of explicitly calculating eigenvalues and eigenvectors.
Only a matrix has to be found which determines the above four conditions.
One possibility to get such a matrix is by using the LU-decomposition of SAB.
Assuming, a square matrix S of dimension n×n and with rank k ≤ n is given,
it can be split up into two matrices A and B of dimension n×k and k×n with
both having rank k in this way, that afterwards S{n×n} equals A{n×k}B{k×n}.
Maple 11 LU-decomposes the matrix into three matrices called p, L and U ,
where p is a permutation matrix, L a lower triangular matrix and U an upper
triangular matrix. Especially U collects the row space of S and therefore has
the form

U =


? . . . ?

0 . . .
...

...
. . . ? . . . ?

0 . . . 0 . . . 0


{n×n}

(D.11)
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with k non-zero rows. Putting the zero rows aside, A and B can be calculated
by A{n×k} = p{n×n}L{n×k} and B{k×n} = U{k×n}. Now the inverse of S is given
by

S−1 = B†(BB†)−1(A†A)−1A† , (D.12)

where the only task is to invert two nonsingular k × k matrices by a simple
Gauss algorithm. This Moore-Penrose inverse now has the same relationships
as equations (D.7) to (D.10).
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[31] B. Döbrich. Non-perturbative access to Casimir-Polder potentials in
nontrivial geometries. Diplomarbeit, Universitaet Heidelberg, 2008.

[32] V. Droujinina. On Quantum Reflection and The Casimir Effect. Disser-
tation, University of Heidelberg, 2003.

[33] U. Warring. Auf der Suche nach dem perfekten Quantenreflex. Diploma
thesis, University of Heidelberg, 2006.

[34] L. H. Ryder. Quantum Field Theory. Cambridge University Press, 2
edition, 1996. p.146.
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