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Abstract

We use a functional renormalization group equation to determine the
renormalization group flow of a Higgs-Yukawa Toy Model mimicking the
Standard Model. This approach allows for treating arbitrary bare cou-
plings. We show that for a given ultraviolet cut-off a finite infrared Higgs
mass range emerges naturally from the renormalization group flow itself.
In agreement with naive expectations, the Higgs mass bounds become
more narrow for larger cut-off values. Higgs masses outside the resulting
bounds cannot be connected to any conceivable set of bare parameters in
the standard-model universality class. For our results, no further physical
assumptions have to be imposed, in contrast to many earlier investigations
that utilize validity bounds of computational techniques or unphysical in-
stability scenarios.

Zusammenfassung

Wir verwenden eine funktionale Renormierungsgruppengleichung, um den
Renormierungsgruppenfluss eines Higgs-Yukawa-Modells zu bestimmen,
das das Standardmodell imitieren soll. Dieser Zugang ermöglicht die Be-
trachtung beliebiger nackter Kopplungen. Wir zeigen, dass sich für einen
gegebenen Cut-Off ein endlicher zugänglicher Bereich für die Higgs-Masse
im Infraroten als natürliche Konsequenz aus dem Renormierungsgrup-
penfluss ergibt. Wie naiv erwartet, verengt sich der für die Higgs-Masse
zugängliche Bereich mit zunehmendem Cut-Off. Higgs-Massen ausserhalb
der resultierenden Schranken lassen sich in der Universalitätsklasse des
Standardmodells mit keinem erdenklichen Satz nackter Kopplungen ver-
knüpfen. Im Gegensatz zu vielen vorangegangenen Untersuchungen, die
Gültigkeitsgrenzen aus Rechenverfahren oder unphysikalischen Instabi-
litätsszenarien ableiten, müssen für unsere Ergebnisse keine weiteren phy-
sikalischen Annahmen gemacht werden.
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Chapter 1

Introduction

The early twentieth century saw the emergence of the theory of special rel-
ativity and quantum theory, describing the physics at high velocities and at
small length scales. Provided with the conceptual tools to understand physics
in these regions, in the following decades physicists discovered more and more
of the (supposedly) fundamental constituents of the world, the so-called el-
ementary particles. The inflationary increase of discovered particles in the
fifties and the problems of finding a sensible theoretical description, which
were accompanied by confusion and disappointment, could be resolved by a
couple of theoretical breakthroughs, which finally resulted in the formulation
of the Standard Model. The Standard Model reflects the fact that quantum
field theory provides the appropriate language to describe elementary parti-
cles, at least at energies accessible at current colliders. The Standard Model
not only has proven to be able to describe all experimental data to very high
accuracy up to now, but also has brought physicists a huge step closer to
their dream of finding a unified theory of all particles and interactions. With
the introduction of the Higgs mechanism, all interactions between the fun-
damental matter fields can be deduced from gauge symmetry. The fermionic
matter fields and the weak gauge bosons then acquire their mass through
the mechanism of spontaneous symmetry breaking within the Higgs sector
involving a fundamental scalar field.

The Standard Model as an effective theory Despite of its overwhelm-
ing success, today the Standard Model is widely believed not to be funda-
mental. On the one hand, there are arguments of aesthetics: it is considered
unsatisfactory that the Standard Model still contains so many parameters
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that have to be fixed by experiment. The hope is to find a more fundamen-
tal theory that gets by with only very few parameters that have to be set
from outside. Second, the Standard Model does not include gravitation. One
would expect from a truly fundamental theory to describe all interactions in
a unified way.
But, on the other hand, there are also more urging reasons: Already RG-
improved perturbation theory suggests that the running couplings of the
electroweak interaction and of the scalar self-interaction reach a pole at fi-
nite momenta.1 This is of course no proof of the failure of the Standard
Model, since perturbation theory ceases to be a good approximation when a
coupling becomes too large, but there are also strong hints from lattice calcu-
lations for the existence of these so-called Landau poles, or, more generally, of
scales of maximal UV extension [1–3]. We can only escape it by postulating
that the Standard Model is not valid up to arbitrarily large momenta, but
rather emerges as effective theory from a more fundamental theory, such as
string theory.2 Another way of viewing the same problem is by demanding
the Standard Model to be valid up to arbitrarily large momentum scales;
one then finds that this is only possible, when the electroweak and scalar
couplings vanish in the IR: the theory becomes trivial.

Previous investigations on the range of validity of the Standard

Model Ever since it became clear that the Standard Model cannot be
valid up to arbitrarily large momentum scales, the question for a quantita-
tive estimate of its range of validity has been raised. When accepting the
demand that a fundamental theory should include gravitation in a unified
way, an upper bound can be given by the Planck scale, since this is the scale
where gravitational effects become of the order of magnitude of the other
interactions and therefore cannot be neglected anymore.
It turned out to be possible to deduce much stronger constraints on the
threshold of new physics beyond the Standard Model when investigating the
scalar sector. The idea is to determine upper and lower bounds on the mass
of the not yet discovered Higgs particle by demanding that the scalar ef-
fective potential be physically sensible up to a given cut-off scale. Thus,

1The strong interaction on the other hand is known to be asymptotic free, therefore
allowing for a save completion in the UV.

2Actually there is one loophole left: One might think of the scenario that there exists
a non-Gaussian UV fixed point of the Standard Model, allowing for a save route to the
UV. This has indeed been investigated [4].
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the experimental verification of the existence of the Higgs particle and the
knowledge of its mass would make it possible to give an explicit estimate of
the cut-off, which might be much closer to the IR than the one mentioned
above. On the other hand, these bounds can tell us where we have to expect
the Higgs mass, at all. The upper bound to the Higgs mass at a given cut-off
is deduced from the Landau pole; it is clear that a theory which exhibits a
Landau pole is not defined beyond the pole. Hence, the scale of the pole
yields an estimate of the cut-off. So far, the investigation of the Landau pole
is based on RG-improved perturbation theory and lattice calculations [5–7].
Actually, only the latter is capable of exploring the non-perturbative regime.
Treating this issue with other, more appropriate non-perturbative methods
appears urgent.
The lower bound originally was derived from the requirement that the scalar
effective potential be stable or at least meta-stable up to the threshold of
new physics [8–18]. This approach to the lower bound was recently put into
question by Holland [19] and by Branchina and Faivre [20]. In order to illus-
trate the original line of arguments, we restrict us to a simple Higgs-Yukawa
model of a single real scalar field coupled to one Dirac fermion field, which
stands for the Top quark. In the next chapter, we will argue that this model
is indeed an acceptable first approximation to the Standard Model when fo-
cusing on the radiative corrections to the scalar effective potential. It should
at least reproduce qualitatively the effects on the full Standard Model scalar
effective potential.
Let us summarize the conventional line of argument. The seeming problem
can already be seen in a straightforward one-loop mean field calculation of
the scalar effective potential. The effective potential then reads

Ueff = V + 1/2

∫

k

ln
[
k2 + V ′′

]
− 2

∫

k

ln
[
k2 + h2 φ2

]
,

V =
m2

2
φ2 +

λ

24
φ4.

V denotes the classical scalar potential, h the Yukawa coupling. The fermion
contribution is negative due to the minus sign associated with every fermion
loop. Regulating the integrals and adding counterterms to absorb the di-
vergences in the normal fashion (MS scheme), the renormalized effective

6



potential is given by

Ueff = V +
(V ′′)2

64 π2

{
ln

[
V ′′

µ2

]
− 3

2

}
(1.1)

−h
4 φ4

16 π2

{
ln

[
h2 φ2

µ2

]
− 3

2

}
,

where µ denotes the renormalization scale. One sees easily that, according to
(1.1), the negative fermion contribution dominates for large φ, if λ2 < 16 h4.
In this case, at some point the potential bends down and runs towards −∞.
In the best case, this just means that our electroweak minumum is not the
absolute minimum, and the vacuum sooner or later tunnels into its true
vacuum (given new physics prevents the potential from growing ever more
negative). In the worst case, taking (1.1) literally, this means that our theory
is sick, since there is no vacuum. We get a cut-off estimate by demanding
that new physics prevents the potential from becoming smaller than the elec-
troweak minimum, at all. Thus, the effective theory can only be valid up to
the scale, where the potential passes the depth of the electroweak minimum.
On the other hand, when we require the potential (1.1) to be stable without
introducing new physics, which corresponds to λ2 > 16 h4, we get for a fixed
Yukawa coupling h a lower bound for λ and hence for the Higgs mass (at
tree level the relation is λ = 3m2

Higgs/v
2). Of course, since (1.1) is just a

one-loop calculation, it is not trustworthy for large φ due to the large logs,
even when the couplings are small. But it turned out that RG-improved
two-loop calculations in the Standard Model also suggest the appearance of
the instability [15, 17].
As mentioned above, recently the existence of the instability at all was put
into question. K. Holland investigated the Higgs-Yukawa model on the lattice
(which corresponds to a cut-off theory) and did not find any instability [19].
The author argues that the instability is a spurious leftover of the incorrect
sending of the cut-off to infinity; the standard renormalization procedure of
adding counter terms and removing the cut-off would fail in a trivial theory.
Only for a finite cut-off a trivial theory can have a non-trivial interaction.
He shows that the one-loop effective potential with counter terms added does
not exhibit the instability as long as the cut-off is kept finite.
Branchina and Faivre, on the other hand, argue that the instability occurs in
a region of φ, where the renormalized potential is not valid anymore. In de-
tail, they start with the bare one-loop effective potential of the Higgs-Yukawa
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Model with a cut-off and show that it is – independently of the bare parame-
ters – stable in the region where it is defined, φ < Λ. Then they reformulate it
in renormalized quantities. The resulting potential, which shows the instabil-
ity for certain choices of the renormalized parameters, is commonly believed
to be a trustworthy approximation as long as the renormalized couplings are
perturbative,

λµ ≪ 1 , hµ ≪ 1, (1.2)

and the leading log is still small,3

∣∣∣∣
h4

16 π2
ln
φ2

µ2

∣∣∣∣≪ 1. (1.3)

But the authors explicitly construct a φ that on the one hand fulfills (1.2)
and (1.3), but on the other hand also yields

φ > Λ,

which means that it is situated beyond the region of validity of the poten-
tial.4 They deduce that the requirement of (1.2) and (1.3) is not sufficient
to guarantee the validity of the approximation, but should be completed by
the additional condition5

λµ
24

φ4 +
h4 φ4

16 π2
ln
µ2

φ2
> 0.

They show that, when respecting this additional condition, no instability
occurs. Physically, this new condition can be attributed to the fact that the
renormalized couplings cannot be chosen freely, since they emerge from the
bare couplings. Branchina and Faivre then derive a new criterion for the
determination of the cut-off by arguing that new physics has to set in at the
inflection point of the potential. However, this criterion is somewhat arbi-
trary; the inflection point only marks the breakdown of the approximation,
not necessarily the onset of new physics.

3If we assume the renormalized parameters to be chosen such that the instability occurs,
we can neglect the scalar fluctuations, since then they do not influence the situation
qualitatively.

4We will give a more detailed description of this line of argument in Chapter 7 for the
simple example of the fermionically induced scalar effective potential.

5The scale dependence of h is neglected.
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Our approach We also consider the Higgs-Yukawa Toy Model. We expect
that for arbitrarily chosen (physically sensible) bare couplings at a given
cut-off the theory only allows for a finite range of renormalized couplings,
which again yields a finite range of possible Higgs masses. Thus, we do
not employ any kind of physical condition as indicator for the onset of new
physics, but rather ask which Higgs masses are possible at all for a given cut-
off. We face a naturally non-perturbative problem, since we have to probe
arbitrarily large bare couplings. We deal with this situation by applying an
exact renormalization group equation. By scanning the parameter space at
a given cut-off and determining the resulting renormalized couplings, which
then allow for the calculation of the Higgs mass, we intend to constrict the
allowed range of Higgs masses.6 Ameasurement of the Higgs mass then would
allow for an estimate of the maximum scale of validity of the Standard Model.

Outline In the second chapter we argue that the Higgs-Yukawa Toy Model
is indeed a qualitatively reasonable approximation to the Standard Model
when focusing on the scalar effective potential, which finally sets the Higgs
mass. In chapter three we introduce the renormalization group idea and
derive the exact renormalization group flow equation that we use in our ap-
proach. In the fourth chapter we motivate a truncation of the Toy Model
effective action and derive the resulting flow equations from our exact renor-
malization group flow equation. The fifth chapter deals with our way of nu-
merically implementing the previously derived flow equations. While chapter
six is dedicated to some benchmark tests of our numerical approach, in the
seventh chapter we finally investigate the issue on the Higgs mass constraint.
We conclude this work with a summary and an outlook to possible further
investigations.

6The parameters at the cut-off are constrained by the requirement that the renormalized
fermion mass and the resulting vacuum expectation value have to match the experimental
values.
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Chapter 2

From the Standard Model to

our Toy Model

In this chapter we want to motivate that the Higgs-Yukawa Toy Model we
investigate is indeed a qualitatively reasonable approximation to the Stan-
dard Model with respect to the properties of our interest, namely the scalar
effective potential and the resulting Higgs mass. We remind the reader that
this model consists of one real scalar field and one Dirac spinor field, which
stand for the Higgs particle and the top quark, respectively. The scalar
field exhibits an arbitrary self-interaction. Both fields are coupled through a
Yukawa interaction.
We proceed in two steps: First we argue that the only dominant influence
of the other sectors on the scalar sector is through the top quark; second,
we motivate that the scalar sector itself can be reduced to a real scalar field
with a discrete symmetry.

Influence of the other sectors on the scalar sector We begin by real-
izing that most sectors of the Standard Model are experimentally probed to
be in the perturbative regime at low energies;1 only the scalar sector might
turn out to be non-perturbative. Even the Yukawa couplings have to be per-
turbative in the IR, which can easily be derived when taking the SM best fit

1We are aware that the strong interaction becomes highly non-perturbative in the
IR; but this occurs only at very low energies, far below the scale of electroweak symmetry
breaking. We therefore take the viewpoint that the IR evolution of the strongly interacting
sector does not have a significant influence on the scalar effective potential, since its flow
should have already frozen out by then.

10



result for the vacuum expectation value from high precision measurements
into account.2 We therefore can follow a perturbative line of argument and
give the effective potential in terms of a loop expansion. The effective po-
tential is the sum of all 1PI graphs with vanishing external momenta (more
detailed: the nth derivative of V is the sum of all 1PI graphs with n van-
ishing external momenta). The corresponding calculation has been done for
the Standard Model to high accuracy, RG improved up to two-loop order
[13, 15–17]. For our reasoning it is sufficient to consider the one-loop result,
which reads in the ‘t Hooft-Landau gauge and the MS scheme

V = V0 + V1

= −1
2
m2(t)φ2(t) +

1

8
λ(t)φ4(t)

+
5∑

i=1

ni
64 π2

M4
i (φ)

[
log

M2
i (φ)

µ2(t)
− ci

]
+ Ω(t), (2.1)

with
M2

i (φ) = κi φ
2(t)− κ′i

and
n1 = 6, κ1 =

1
4
g2(t), κ′1 = 0, c1 =

5
6
;

n2 = 3, κ2 =
1
4
[g2(t) + g′2(t)] , κ′2 = 0, c2 =

5
6
;

n3 = −12, κ3 =
1
2
h2t (t), κ′3 = 0, c3 =

3
2
;

n4 = 1, κ4 =
3
2
λ(t), κ′4 = m2(t), c4 =

3
2
;

n5 = 3, κ5 =
1
2
λ(t), κ′5 = m2(t), c5 =

3
2
.

Ω(t) is the one-loop contribution to the cosmological constant, which will
play no role in our investigations.3 m(t) and λ(t) are the quartic coupling
and mass of the scalar field(s),4 whereas g(t), g′(t) and ht(t) are the SU(2)

2Only the top-Yukawa coupling may be viewed as being at the brink of the perturbative
validity domain. For mt = v ht, mt = 178GeV and v = 247GeV, we get ht = 0.72, which
is only slightly smaller than 1.

3Actually, we will even get rid of it by explicitly subtracting any offset at φ = 0.
4The SM scalar sector consists of an isospinor of two complex fields; but due to sym-

metry, they have the same masses and couplings. By exploiting the gauge symmetry, (2.1)
could be written as a function of a single field φ.
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gauge coupling, the U(1) gauge coupling and the top quark Yukawa coupling,
respectively. Among the Yukawa couplings the top quark Yukawa coupling
has to be by far the largest, since the Yukawa couplings are directly connected
to the fermion masses. That is why we have in a first step already neglected
in (2.1) the Yukawa couplings of all the other fermions with smaller masses;
their contributions are small compared to the contribution of the top quark.
But the same is true for the gauge couplings g(t) and g′(t): in the IR they
are known to be much smaller than the top Yukawa coupling and the SU(3)
gauge coupling. And despite of their growing with increasing momentum,
they remain smaller at least up to the GUT scale, where they intersect with
the running SU(3) coupling g3. Thus, we can also neglect the contributions
from the electroweak interaction to the scalar effective potential (and to
the β functions of the remaining couplings), which corresponds to leaving
out i = 1, 2 in (2.1). At this point, the only connection left to the other
sectors of the SM is via the top Yukawa interaction. Before we restrict us to
the top quark alone, we first check if the neglected components of the SM
make significants contributions to the flow of the top Yukawa coupling. By
inspection of the one-loop β function of the top Yukawa coupling [13],

β
(1)
ht

=
1

16 π2

(
9

2
h3t − 8 g23 ht −

9

4
g2 ht −

17

12
g′2 ht

)
,

we indeed find that the SU(3) gauge coupling g3 makes a significant contribu-
tion to the flow: for αs = g23/4 π = 0.118 and ht = 0.72, we get 8 g23 ht = 8.52,
whereas 9

2
h3t = 1.68 (the weak couplings g and g′ are negligible, as mentioned

above). In a full quantitative treatment, we would have to take it into ac-
count. But since we are only interested in the gross qualitative properties of
the scalar effective potential, we can safely omit this influence of the strong
interaction; we do not have to expect any surprising effects on the scalar
potential from it. Due to the asymptotic freedom of the strong interaction,
this contribution becomes smaller with larger momenta, anyway.

Modelling the scalar sector So far, we have boiled the SM down to
the scalar sector coupled to the top quark. If we want to end up at our Toy
Model, we still have to simplify the scalar sector itself. Actually, by neglecting
the electroweak interaction, we spoiled the original gauge invariance of the
scalar sector. But without gauge invariance and the gauge bosons, we are
left with a mere global invariance of the scalar isospinor Lagrangian. It is
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clear that we cannot leave it at this: spontaneous symmetry breaking in a
theory with global continuous symmetry inevitably results in the occurence
of Goldstone bosons, which we do not want, since in the SM they are ”eaten”
by the gauge bosons. In the case of the full SM, we saw that it is possible
to write the scalar potential as function of just one scalar field by exploiting
the gauge invariance. Thus, without gauge invariance, we just approximate
the scalar sector by a single real scalar field right from the start. Since a
theory of a single scalar field does not exhibit a continuous symmetry, we
avoid the occurrence of Goldstone bosons. Hence, the nature of the degrees
of freedom corresponds to that of the SM. The original SU(2) symmetry
then is modeled by a discrete symmetry (Z2). The symmetry is needed to
restrict the allowed spectrum of operators in the effective potential and to
simulate chiral invariance inhibiting direct fermion masses. It turns out that
the demand of parity in the case of a single scalar field suffices to simulate
the restrictions of the SU(2) symmetry on the scalar potential in the SM
case.

One loophole left . . . The argumentation above is strongly relying on
the perturbativity of all sectors of the SM. We only can be sure that our Toy
Model is a valid approximation to the SM as long as this requirement is given.
As mentioned above, we can indeed assume the SM to remain perturbative
up to the GUT scale, but only if the scalar sector itself remains perturbative
and thus controllable throughout all scales in between. Now a major point
of our investigation will be explicitely to allow for large couplings; we want
to probe the whole parameter space of bare couplings of our Toy Model. We
have to expect that a highly non-perturbative scalar sector also has strong
effects on the flow of all the other sectors – they might even be driven non-
perturbative, as well –, which in turn might have a non-negligible backlash
on the scalar sector itself; the disregard of the other components besides the
top quark would not be justified anymore. On the other hand, if strong
dynamics play a role in the SM in the UV, its qualitative mechanisms may
already be visible in its Toy-model counterpart.
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Chapter 3

The renormalization group

method

We formulate our Toy Model as a functional integral up to some maximum
momentum scale, the cut-off. The introduction of the cut-off is motivated
by the fact that the Standard Model cannot be valid up to arbitrarily large
momentum scales, anyway, and therefore should be understood as effective
theory. The functional integral formulation yields a beautiful intuitive pic-
ture of the meaning of fluctuations, since it makes manifest that the field is
not constricted to the classical configuration (which is defined as minimizing
the classical action S), but can be in arbitrary configurations that we all
have to include. The inverse cut-off then gets the physical meaning of the
minimum length scale the fluctuations can assess. But this is not the only
reason for us to favor the functional integral over the canonical formulation.
In principle, both quantization procedures are equivalent. On the level of
practical approximations, however, the functional integral approach provides
us with new powerful and intuitive approximation methods. Of course, the
functional integral formulation also allows for an expansion in small cou-
plings, making it possible to recover the results of canonical perturbation
theory. But aside from that, we will see that we can use the functional in-
tegral to get a much deeper understanding of the effect of fluctuations and
their role in quantizing a theory. The key idea due to K. Wilson [21] is not
to aim to determine the functional integral in one formal overall step, but to
proceed momentum shell by momentum shell, at each step taking the effect
on the Lagrangian into account.
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3.1 The renormalization group idea

In order to illustrate Wilson’s general idea of integrating out single momen-
tum shells best, we first separate the functional integral from the determina-
tion of a certain Green’s function. This is done by introducing a somewhat
formal, but nevertheless very useful object, the generating functional Z. For
the simplest case of a pure real scalar field φ, it is defined as

Z[J ] =

∫
Dφ e i S[φ]+ i

∫

ddx J(x)φ(x),

where we introduced the source J(x), which indeed formally acts as a source
term, as can be seen when deriving the classical equations of motion. S =∫
ddxL denotes the classical action of φ. An arbitrary Green’s function

G(x1, ..., xn) =
〈
0|Tφ(x1)...φ(xn)|0

〉
can then be recovered by functional

derivation according to

G(x1, ..., xn) = Z[J ]−1
(
−i δ

δJ(x1)

)(
−i δ

δJ(x2)

)
Z[J ]

J = 0
.

Thus, the generating functional can be considered as to represent the the-
ory in a global sense; it contains the whole theory. The generalization to
more involved theories is straightforward. We mention that the generating
functional has not only formally, but also conceptually many similarities to
the partition function in statistical physics. In both cases, the idea behind
is to perform a weighted ”sum” over all states. This connection has led to a
very fruitful exchange between the statistical physics and the particle physics
communities.
For our further argumentation we can drop the source J , J = 0. We make
the cut-off explicit by rewriting the path integral in momentum space:1

Z =

∫
[Dφ]Λ e−

∫

ddxL(φ),

where
[Dφ]Λ =

∏

|k|<Λ

dφ(k).

1From now on, we work in Euclidean space; this saves us from problems due to lightlike
momenta, which can have a small absolute value |k| even when the components of k are
very large.
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Wilson’s striking idea now is to integrate just over a single momentum shell
from Λ down to bΛ, with b < 1 very close to 1. The remaining path integral
goes only up to bΛ. The generating functional Z, of course, must remain
constant under this operation – we do not want to change the physics. Thus,
this shell integration must be accompanied by a change of the Lagrangian,
L → Leff, and our new path integral looks like

Z =

∫
[Dφ]bΛ e−

∫

ddxLeff(φ).

By iterating this procedure of integrating over infinitesimal momentum shells,
we should get a smooth flow of the Lagrangian in ”theory space”. This is
the general idea. And we can already learn a central lesson from it: that
fluctuations on different scales must be treated differently, or: preceding
fluctuations influence succeeding fluctuations, since the corresponding La-
grangians, which constitute the way the fluctuations influence the physics,
are in general different on different scales.
In order to make quantitative progress, we have to develop explicit meth-
ods for performing this shell integration – at least approximately. Coming
from canonical perturbation theory, it is most natural first to consider the
case of small couplings. Here, we can formally expand the exponential in
the small couplings and adopt the common language of Feynman diagrams
(with classical propagators) – with the only modification that this time the
loop integrations, which reflect the fluctuations in the shell, go only from bΛ
to Λ. We emphasize that this means that we do not have to bother about
any kind of divergences; all integrals are finite. The resulting flow of the
Lagrangian then corresponds to a flow of the interaction couplings and the
propagator(s). Even though we consider just like in standard perturbation
theory only contributions up to a certain order in the couplings, this backlash
of fluctuations on the way succeeding fluctuations are treated results in an
enormous improvement of our approximation compared to standard pertur-
bation theory, where the same couplings and propagators are used across all
scales. We get ”renormalization group improved” results, in analogy to the
improvement achieved when taking the running of the couplings according to
the Callan-Symanzik equation into account.2 Indeed, the Wilson β functions

2Strictly speaking, the Callan-Symanzik equation describes the change of the renormal-
ized couplings under variations of the mass scale of the theory. We use it in a more general
sense, considering variations of the renormalization scale. Originally, this was done first
by Gell-Mann and Low.
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and the Callan-Symanzik β functions are identical – at least at one-loop level.
In the Callan-Symanzik case, the running is caused by the requirement that
the Green’s functions be invariant under a change of the artificial renormal-
ization scale.3 While standard perturbation theory only catches the ”leading
logarithms” of an expansion of the running coupling in the renormalized cou-
pling, the RG improvement ”resums” these logarithms to all orders, yielding
just the running couplings. Therefore, the RG-improved results are valid as
long as the running couplings remain small, whereas the standard perturba-
tive results are only valid in the vicinity of the renormalization scale, when
the leading logs are still small.
Can we understand this close relationship between the Wilson running cou-
plings and the Callan-Symanzik running couplings, though they emerge from
completely different formal bases? Assume we measure our couplings at a
renormalization scale Λ̃. Then, roughly speaking, our measurement can only
be sensitive to fluctuations above that scale; our measurement scale effec-
tively acts as an IR cut-off. Thus, again roughly speaking, the difference of
the results when measuring the couplings at two different renormalization
scales Λ̃1 < Λ̃2 is due to the fluctuations in between those scales. But this
is just what we do in Wilson’s approach: By integrating down from Λ̃2 to
Λ̃1, we determine the change of the couplings induced by the fluctuations in
between those scales. We gain the insight that we can implement Wilson’s
idea of smoothly including the fluctuations by applying an arbitrary ”scale-
adjustable” IR cut-off, not necessarily by changing a sharp-cut-off integration
limit. We will make use of this in the next section when applying a scale
dependent additional mass as IR cut-off. It will be a particular advantage
for the analytics to use smooth cut-off functions instead of the sharp cut-off;
moreover, it avoids certain pathologies of the latter.

3.2 The exact renormalization group equa-

tion

A further important step for the usefulness of Wilson’s approach was the
derivation of an exact renormalization group equation for the action S by

3We are aware that we at first have to distinguish between the renormalized couplings,
which are determined by measurement at the renormalization scale, and the running cou-
plings, which are a consequence of solving the Callan-Symanzik equation. But since they
both obey the same β functions, we can ignore this discrepancy.
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Wegner and Houghton [22].4 They could show that when integrating over a
momentum shell of thickness t, where b = et, b < 1 and 1 − b infinitesimal
(the cut-off be normalized as 1), only tree level and one-loop ”Feynman”
graphs5 have to be taken into account, since they are the only ones that
contribute to the flow to linear order in t. The authors still stick to the
procedure of shifting a sharp cut-off integration limit. We adopt a more
modern version of an exact renormalization group equation, which allows
for a more general implementation of the IR cut-off [23]. It is based on the
effective action Γ. In order to define the effective action properly, we first
have to introduce the generating functional of connected Green’s functions
W [J ], which is determined by

W [J ] = lnZ[J ] = ln

∫
Dφ e−S[φ,J ].

The effective action then is defined as the Legendre transform of W [J ] ac-
cording to

Γ[φcl] = −W [J ] +

∫
ddy J(y)φcl(y), (3.1)

which is a functional of the ”classical” field φcl. φcl is given by the vacuum
expectation value of the field operator in the presence of the source J :

φcl(x) =
〈
Ω|φ(x)|Ω

〉
J

=

∫
Dφ φ(x) e−S[φ,J ]∫
Dφ e−S[φ,J ] =

δW

δJ(x)
.

The source J in (3.1) has to be understood as function of φcl. J and φcl can
be converted by using that

δΓ[φcl]

δφcl
= −

∫
δW [J ]

δJ

δJ

δφcl
+

∫
δJ

δφcl
φcl + J = J.

These definitons can be used to derive an explicit formulation of the effective
action as a path integral:

Γ[φcl] = − ln

∫
Dφ e−S[φ+φcl]+

∫ δΓ[φcl]

δφcl
φ
.

4Due to their statistical physics background, they related their functional integral to
the partition function, thus considering the flow of the Hamiltonian H instead of the action
S.

5We can adopt a diagrammatical language also in the general case; but this time we
have to apply the full propagator.
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This is a complicated functional integro-differential equation, but still we get
by expansion around φcl,

Γ[φcl] = S[φcl]− ln

∫
Dφ e−

∫

(

δS[φcl]

δφ
−
δΓ[φcl]

δφcl

)

φ−
∫∫

φ
δ2S[φcl]

δφ δφ
φ− ...

,

the important result that, as long as there are no fluctuations included at
all, the effective action equals the classical action S.
Similar to the generating functional Z[J ], the effective action Γ[φcl] contains
all information on the quantum system. This becomes manifest when realiz-
ing that the effective action can be used to recover all one-particle irreducible
Green’s functions.
We are looking for a differential equation that smoothly builds in the fluctua-
tions from the cut-off Λ down to zero, thus interpolating between the classical
action S and the full effective action Γ. The new idea now is that this can
equally well be done by adding an additional (momentum-dependent) mass
term to the original theory rather than shifting the integration limit of the
path integral. This mass term acts as an IR regulator to the original theory.
Changing the magnitude of this mass term thus corresponds to changing the
amount of fluctuations that contribute to the effective action.6 Effectively,
of course, we define for each choice of the additional mass term a different
theory, and consider for each choice the full functional integral to be deter-
mined. In other words: we shifted our objective from the determination of
the flow of one and the same theory due to shell-by-shell integration of the
functional integral to the determination of the ”flow” that connects the fully
integrated-out effective actions of the modified theories when smoothly low-
ering the additional mass term. Only for a vanishing additional mass term
we recover the effective action of the original theory. One may argue that we
apply both an IR and an UV cut-off in this approach. While we keep the UV
cut-off fixed, we smoothly lower the IR cut-off. Thus, we prevent potential
problems due to both UV divergencies and IR divergencies.
The action of our modified theory is defined as 7

Sk[χ] = S[χ] + ∆Sk[χ],

6We will allow for very general choices of momentum-dependent regulators, correspond-
ing to a vast variety of ways to damp the IR modes. Hence, it is too simplified to assume
that the regulator acts as a sharp cut-off. But we think that this way the idea is illustrated
best.

7For notational clearness, we denote in the remainder of this section the classical field
by φ and the fluctuating quantum field by χ.
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with

∆Sk[χ] =
1

2

∫
ddq

(2π)d
χ(−q)Rk(q)χ(q).

We see that ∆Sk takes the formal structure of a mass term. But we allow
for very general choices of the momentum dependent ”mass” Rk(q). Indeed,
we only demand that

lim
k→0

Rk(q) = 0 , lim
k→Λ

Rk(q) =∞ and lim
q2/k2→0

Rk(q) > 0,

which guarantees that we start at k = Λ with the classical action S and end
up at k = 0 at the full, unregularized effective action Γ of our original theory.
k denotes the scale of the onset of the damping of IR modes.
In accordance with the previous definitions, we get a modified generating
functional

Zk[J ] =

∫
Dχ e−Sk[χ,J ],

and a modified generating functional of the connected Green’s functions

Wk[J ] = lnZk[J ].

We can interpret these modified quantities as average values of our original
quantities, since the inclusion of the fluctuations from Λ to k effectively
corresponds to a coarse graining process to length scales of order 1/k. We
now ask for the change of Wk under an infinitesimal change of the scale k:

∂tWk = e−Wk ∂t e
Wk

= e−Wk

∫
Dχ

(
− ∂t∆Sk[χ]

)
eSk[χ,J ]

= −1
2

∫
ddq

(2π)d

(
∂tRk(q)

) 1

Zk

∫
Dχχ(−q)χ(q) e−Sk[χ,J ]

︸ ︷︷ ︸
,

with ∂t = k ∂
∂k
. So far we made only use of the definitions given above

and performed the derivative with respect to t. The underbraced term cor-
responds to the prescription for the determination of the (average) 2-point
Green’s function Gk(q) =

〈
χ(−q)χ(q)

〉
(in presence of the source J). Adding

a zero in terms of

0 = −〈χ(−q)〉 〈χ(q)〉+ 〈χ(−q)〉 〈χ(q)〉
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yields

∂tWk = −1
2

∫
ddq

(2π)d

{(
∂tRk(q)

) [〈
χ(−q)χ(q)

〉
−
〈
χ(−q)

〉〈
χ(q)

〉]

︸ ︷︷ ︸

+
(
∂tRk(q)

)〈
χ(−q)

〉〈
χ(q)

〉
}
.

This time, the underbraced term corresponds to the (average) connected
Green’s function Gc,k(q) =

〈
χ(−q)χ(q)

〉
−
〈
χ(−q)

〉〈
χ(q)

〉
. Applying φ(q) =〈

χ(q)
〉
and the definition of ∆Sk, we end up with

∂tWk = −
1

2

∫
ddq

(2π)d

[(
∂tRk(q)

)
Gc,k(q)

]
− ∂t∆Sk[φ].

Note that ∆Sk is a function of the classical field φ, now. Next, we switch to
the flow of the effective average action Γk[φ], which is defined as

Γk[φ] = −Wk[J(φ)] +

∫
ddx J(x)φ(x)−∆Sk[φ].

We get for the flow

∂t Γk[φ] = −
[
∂tWk[J(φ)] J

+

∫
ddx

δWk[J ]

δ J(x)

(
∂t J(x)

)]

+

∫
ddx

(
∂t J(x)

)
φ(x)

−∂t∆Sk[φ]

=
1

2

∫
ddq

(2π)d

[(
∂tRk(q)

)
Gc,k(q)

]
,

since δ Wk[J ]
δ J(x)

= φ(x). Last, we formulate the Greens function as functional
derivative of the effective average action:

Gk =
δ2W

δJ δJ
=
δφ

δJ
=

(
δJ

δφ

)−1
=

(
δ2Γk
δφ δφ

+Rk

)−1
.

Thus, our final result reads

∂t Γk =
1

2

∫
ddq

(2π)d
(
∂tRk(q)

) ( δΓk
δφ(−q) δφ(q) +Rk(q)

)−1
.
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∂tΓk =
1
2

Figure 3.1: Diagrammatical interpretation of the exact renormalization group
flow equation (3.2).

This is a functional differential equation. For more involved theories, for
example including fermions or fields with inner indices, we can formulate it
in a slightly symbolic, basis-independent form [23]:

∂t Γk =
1

2
STr

{(
Γ
(2)
k +Rk

)−1 (
∂tRk

)}
. (3.2)

The ”super”trace is taken over all spaces, inner and outer, where the ”super”
stands for the obligatory minus sign accompanying fermionic sectors. Equa-
tion (3.2) can be depicted by a one-loop diagram, as shown in Figure 3.1.

The double line denotes the full (average) propagator
(
Γ
(2)
k + Rk

)−1
. Γ

(2)
k is

called the (k-dependent) fluctuation matrix. The dot symbolizes the factor(
∂tRk

)
, which acts as a ”weighting factor” to the fluctuations.

Approximating the ERGE Equation (3.2) will be the starting point for
the derivations of all of our flow equations. If we think of the effective average
action in a derivative expansion (ρ = 1

2
φ2),8

Γk[φ] =

∫
ddx
{
Uk(ρ)

+
1

2
Z0
k ∂µφ ∂

µφ+ Z1
k ρ ∂µφ ∂

µφ+ ...

+
1

4
Y 0
k ∂µρ ∂

µρ+ Y 1
k ρ ∂µρ ∂

µρ+ ...

+O(∂4)
}
,

we see that (3.2) describes a set of infinitely many coupled differential equa-
tions. We do not have tools to solve such a vast system exactly. Hence, we

8We allow only for operators that are invariant under a given symmetry. In our case,
this symmetry is parity.
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have to develop methods to approximate. The most straightforward way is
just to take this expansion and truncate it, restricting oneselve to a manage-
able subset of expansion terms. This corresponds to considering a projected
flow, where we project onto the hyper plane in theory space spanned by our
truncation. However, the projected trajectory is not the projection of the
exact trajectory in ”theory space”, since we do not take the influence of the
neglected operators into account. We emphasize that the particular choice of
our truncation completely determines the structure of the fluctuation matrix
Γ
(2)
k on the RHS of (3.2); in other words: The RHS only depends on the ex-

pansion coefficients of the operators that we include in our truncation. Thus,
the set of flow equations for these coefficients is closed. We determine the
flow equation of a particular coefficient by applying the corresponding pro-
jection rule on (3.2). A projection rule imposes conditions on the fields that
effectively isolates the designated operator. We will give explicit examples
in the next chapter, when we derive the flow equations for the coefficients of
our Toy Model truncation. Of course, we could also project onto an operator
Ô that is not included in our truncation. We only have to be aware that
the resulting flow is merely a consequence of the operators in our truncation;
the flow of Ô itself has no backlash on the way succeding fluctuations are
integrated out.
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Chapter 4

Renormalization group analysis

of our Toy Model

So far, we have boiled the Standard Model down to a Toy Model convenient
for our issue, which consists merely of one self-interacting real scalar field σ
and one non-self-interacting fermionic field ψ, representing the Higgs parti-
cle and the top quark respectively. The two fields are coupled via a Yukawa
interaction. We have defined the corresponding quantum field theory in a
functional integral formulation. In the last chapter we introduced a sophisti-
cated method of how to evaluate such functional integrals, namely by exact
renormalization group equations. Now we want to apply this method to our
Toy Model.

4.1 Truncating our Toy Model

We want to determine the RG flow of the effective average action Γk[σ, ψ, ψ]
of our Toy Model1. But as mentioned before, we cannot solve (3.2) exactly.
Given we start with a non-trivial cut-off action, we have to expect all kinds of
operators to be generated in the course of the flow, resulting in an arbitrarily
complex structure.2 It is obvious that we cannot keep track of all these op-
erators. We have to restrict ourselves to a manageable amount of operators

1We denote both the original quantum fields and the classical fields in terms of which
the effective action is formulated with σ and ψ, respectively.

2More precisely, we expect all operators to be generated that are not excluded by
symmetry.
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that we take into account for the effective action or rather the fluctuation
matrix on the RHS. We emphasize that this does not necessarily mean that
we have to restrict ourselves to a finite number of operators – at least not
on the level of deriving the flow equations. Actually, we will soon motivate
that even our truncation3 should contain infinitely many operators.
So how do we establish a reasonable truncation for our Toy Model? Ideally,
we would demand that the truncated RG trajectory in ”theory space” should
be close to the exact one, or in other words: The exact RG trajectory should
run as close as possible to the hyper plane that we are projecting on. Un-
fortunately there is no a priori way of determining a good truncation. This
is closely connected to the fact that there does not exist a way of estimating
the absolute error caused by a certain truncation.4 Aside from that, in gen-
eral the exact trajectory strongly depends on the ”starting point” in theory
space, the cut-off action. Therefore, we have to follow another, more prag-
matic and robust approach. We will construct our truncation from ”bottom
up”: We start with the minimum collection of operators our truncation must
embrace in order to be able to reproduce the defining physical properties of
our Toy Model. Those properties are roughly: both bosonic and fermionic
fluctuations drive the flow of the scalar effective average potential, the first
due to its self interaction, the latter via the Yukawa interaction, which even-
tually results in the emergence of a vacuum expectation value (if there is
not already one right from the start), which in turn gives the fermion its
mass. The final shape of the scalar potential then also sets the mass of the
Higgs particle. So which ingredients do we need for this purpose? In order
to be able to flucutuate at all, we first have to make the fields dynamical by
providing propagators; the simplest realizations of them are via the classical
kinetic terms 1

2
(∂µσ(x)) (∂

µσ(x)) and ψ(x) i∂/ ψ(x). The boson may have an
arbitrary mass term m2σ(x)2, whereas the fermion acquires a mass solely via
the Yukawa interaction, when there is a vacuum expectation value. Then we
need, of course, a bosonic self-interaction and a Yukawa interaction: here the
simplest choices are λ̃ σ(x)2n with n > 1 5 and ih σ(x)ψ(x)ψ(x). Thus, the

3”Truncation” is the technical term for an approximation to the effective action for
instance by neglecting operators in a derivative expansion. We use it in the more general

sense of a ”functional that constitutes the structure of the fluctuation matrix Γ
(2)
k ”.

4Whereas relative error estimates can be gained by comparing different truncations.
5Due to the required symmetry of the model, we allow only even powers of σ. We

emphasize that we do not have to exclude operators with negative mass dimensions!
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simplest possible truncation of our Toy Model reads

Γ =

∫
ddx
[1
2
(∂µσ(x)) (∂

µσ(x)) +m2σ(x)2 + λ̃ σ(x)2n

+ψ(x) i∂/ ψ(x) + ih σ(x)ψ(x)ψ(x)
]
. (4.1)

Whether a vacuum expectation value is generated or not depends on the par-
ticular choice of the parameters m, λ̃ and h. Note that so far the truncation
is not k dependent; this does not mean that our effective average action is
independent of k, but just that fluctuations on all scales are treated in the
same way. Actually, this is just what is done in straightforward perturbation
theory. Nevertheless, it is clear that (4.1) is too rough for our issue. After
all, the decoupling of the fluctuation matrix from the actual structure of the
effective average action at a certain scale k is just an artefact of our trunca-
tion. Taking (3.2) literally, the fluctuation matrix is completely determined
by the structure of Γk at a certain scale. The fluctuations should have at least
some back-effect on the way further fluctuations are integrated out. Thus,
it is only fair to take at least the flow of the operators that constitute (4.1)
into account. By this means, the improved truncation reads

Γk =

∫
ddx
[Zσ,k

2
(∂µσ(x)) (∂

µσ(x)) +m2
k σ(x)

2 + λ̃k σ(x)
2n

+Zψ,k ψ(x) i∂/ ψ(x) + ihk σ(x)ψ(x)ψ(x)
]
.

In a last step, we want to get rid of the artificial choice of the scalar self-
interaction. Since all operators of the form σ2n can be generated or even be
there right from the start, it is not justifiable to favor one or finitely many of
them. We have to admit all of them. Our final truncation is therefore given
by

Γk =

∫
ddx

[
Uk
(
σ(x)

)
+
Zσ,k
2

(
∂µσ(x)

)(
∂µσ(x)

)

+Zψ,k ψ(x) i∂/ ψ(x) + i hk σ(x)ψ(x)ψ(x)

]
. (4.2)

We emphasize that σ denotes the deviation from the vacuum, which only in
the symmetric regime coincides with a vanishing scalar field. In general, the
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minimum of the potential can be at any value of the field; in that case we
want our truncation to display the dynamics of the field fluctuations relative
to this vacuum, which, of course, corresponds to the definition of the Higgs
particle. From this point of view, we rather should formulate our truncation
in terms of ∆σ(x), where σ(x) = σvev +∆σ(x), with σvev being the vacuum
expectation value of the scalar.
Some more remarks on the choice of our truncation: We are aware that we
have founded our truncation rather on arguments of necessity and naturalness
than on the proximity to the exact trajectory. We on purpose avoided to
argue in terms of any kind of expansion, since we just do not have any idea
of how to establish a quantitative approximation to the exact flow in the
non-perturbative regime. So, even though our truncation takes the form of
a derivative expansion, this does not mean that we have control over the
error made by our truncation in the sense that the neglected operators yield
only small corrections.6 Aside from that, an ansatz in terms of a derivative
expansion is, of course, most useful with respect to a systematic estimate of
the relative error, which is achieved by comparing the original truncation with
extended versions. This reasoning follows the logic that it can be considered
a hint for the validity of a truncation when the coefficients of later added
operators remain small in the course of the flow. Such an investigation indeed
was done for our truncation in a different physical context [24]; there it
proved to be reasonable. In contrast to other approaches like perturbation
theory, we are at least able to investigate the non-perturbative regime, at
all. And after all, our truncation is definitely a good approximation in the
small-coupling regime. Last, we mention that we can consider the anomalous
dimensions as very rough indicators for the quality of the approximations to
the true propagators. This will be the case when the anomalous dimensions
are small.

Since it proves to be convenient to derive the flow equations in momen-
tum space, we formulate our truncation in momentum space. Applying the

6Actually, the same accounts to perturbation theory: Due to the ill-definedness of the
expansion in the couplings, we cannot a priori be sure that the first neglected order only
yields a small correction.
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following conventions for the Fourier transformations:

σ(x) =

∫
ddq

(2π)d
σ(q) eiqx,

ψ(x) =

∫
ddq

(2π)d
ψ(q) eiqx,

ψ(x) =

∫
ddq

(2π)d
ψ(q) e−iqx,

we get

Γk =

∫
ddxUk

(
σ(x)

)
+

∫
ddq

(2π)d

[
Zσ,k
2

σ(q) q2 σ(−q)

−Zψ,k ψ(q)q/ ψ(q) +

∫
ddp

(2π)d
i hk σ(p− q)ψ(p)ψ(q)

]
. (4.3)

The fluctuation matrix The task will now be to derive the flow equations
for the k-dependent quantities in our truncation. For this purpose, we have

to determine the fluctuation matrix
(
Γ
(2)
k (p, q)

)
ab

(a and b denote the scalar

field and the spinor components of the fermion field) following from our
truncation (4.3). It constitutes the way we integrate out fluctuations. The
fluctuation matrix is defined by

Γ
(2)
k (p, q) :=




−→
δ

δσ(−p)
−→
δ

δψT (−p)
−→
δ

δψ(p)


Γk

( ←−
δ

δσ(q)
,

←−
δ

δψ(q)
,

←−
δ

δψ
T
(−q)

)

=




−→
δ

δσ(−p)
Γk

←−
δ

δσ(q)

−→
δ

δσ(−p)
Γk

←−
δ

δψ(q)

−→
δ

δσ(−p)
Γk

←−
δ

δψ
T
(−q)

−→
δ

δψT (−p)
Γk

←−
δ

δσ(q)

−→
δ

δψT (−p)
Γk

←−
δ

δψ(q)

−→
δ

δψT (−p)
Γk

←−
δ

δψ
T
(−q)

−→
δ

δψ(p)
Γk

←−
δ

δσ(q)

−→
δ

δψ(p)
Γk

←−
δ

δψ(q)

−→
δ

δψ(p)
Γk

←−
δ

δψ
T
(−q)


 .
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Performing the functional derivatives yields

Γ
(2)
k (p, q) =

=




Zσ,k p
2 δp,q ihkψ(q − p) −i hk ψT (p− q)

+
∫

ddxU ′′

k (σ(x)) e
i(q−p)x

−i hk ψ
T
(q − p) 0 −Zψ,k pT/ δq,p

−i hk σ(p− q)

i hk ψ(p− q) −Zψ,k p/ δp,q 0

+i hk σ(p− q)




,

(4.4)

where primes denote derivatives with respect to σ.

The regulator In order to evaluate the ERGE (3.2), we still need to know
one more ingredient, namely the regulator matrix Rk(p, q), which acts as an
IR cut-off on the fluctuations. It takes care of the shell-by-shell integration of
the fluctuations, therefore making a smooth RG flow possible. We determine
its general structure by remembering that we can implement an IR cut-off by
imposing additional, artificial, k-dependent masses on the fields. Therefore,
the matrix elements affected by the regulator should be those, which are in
charge of the masses of the fields. For the scalar field, this is the σ2 operator,

for the fermion field the ψψ and the ψTψ
T

operators. We demand that
the regulator nestles to the propagators according to a common mass term.
Thus, the structure of the regulator is given by

Rk(p, q) =




RkB(q) 0 0
0 0 −RT

kF (−q)
0 RkF (q) 0


 δp,q.

Since we will formulate the flow equations in renormalized, dimensionless
quantities, it is convenient to write

Rk(p, q) =




Zσ,k q
2 rkB(q) 0 0
0 0 −Zψ,k qT/ rkF (−q)
0 −Zψ,k q/ rkF (q) 0


 δp,q, (4.5)

where rkB and rkF are the dimensionless cut-off functions. This form makes
explicit that we do not break rescaling invariance. rk(q) = r(q2/k2) guar-
antees that k equals the IR cut-off scale. We do not specify rkB and rkF
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any further for the derivation of our flow equations, because a truncated flow
results in an unphysical dependence of the integrated-out quantities on the
particular choice of the cut-off functions. We therefore should make it our
objective to implement the flow for various choices of the cut-off functions,
to get an estimate of the error made by the choice of our regulator. A conve-
nient selection is given by the linear cut-off and the sharp cut-off functions,
which in some sense constitute the ”best” and the ”worst” choice [25].

4.2 Flow equation for the scalar potential

We begin with the derivation of the flow equation for the scalar potential
Uk
(
σ
)
. As mentioned in the previous chapter, we have to apply the cor-

responding projection rule on the ERGE (3.2). If we think of the effec-
tive action as a derivative expansion, it is easy to see that we can isolate
the scalar potential by demanding that the scalar field σ(x) be constant,
σ(x) = σ0 = const, and that the fermion field vanishes: ψ(x) = ψ(x) = 0.
Therefore, the flow equation for the scalar potential results from the following
prescription:

∂t Uk =
1

2
STr

[(
∂tRk(p, q)

) (
Γ
(2)
k (p, q) +Rk(p, q)

)−1]
σ = σ0
ψ = ψ = 0

. (4.6)

We can safely interchange the trace and the projection rules, which renders
the fluctuation matrix (4.4) diagonal in momentum space. As the regulator
(4.5) is diagonal in momentum space right from the start, we can directly
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invert
(
Γ
(2)
k (p, q) +Rk(p, q)

)
, yielding

(
Γ
(2)
k (p, q) +Rk(p, q)

)−1
=

= δp,q




1
Zσ,k P (p)+U ′′

k
(σ0)

0 0

0 0
−Zψ,k (1+rk,F (p))
Z2
ψ,k

PF (p)+h
2
kσ

2
0

p/

− ihk σ0

Z2
ψ,k

PF (p)+h
2
k σ

2
0

0
−Zψ,k (1+rk,F (p))
Z2
ψ,k PF (p)+h

2
kσ

2
0

pT/ 0

+ ihk σ0

Z2
ψ,k

PF (p)+h
2
k σ

2
0




,

(4.7)

where we have introduced the (massless) inverse average proapagators P (q) =
q2 (1 + rk,B(q)) and PF (q) = q2 (1 + rk,F (q))

2, and have used that rk,F (p) =

rk,F (−p). Multiplication of (4.7) with
(
∂tRk(p, q)

)
yields an operator, which

is diagonal in all its indices exept for the spinor indices. We perform the trace
over the inner indices, taking into account that the ”Supertrace” causes a
minus sign in the fermionic sector and using standard identities to resolve
the Dirac traces. We get

∂t Uk =
1

2
Zσ,k

∫
ddp

(2π)d

(
∂tRk,B(p)

)

P (p) + Z−1σ,k U
′′
k

−dγ Zψ,k
∫

ddp

(2π)d

(
1 + rk,F (p)

)
p2
[
∂t
(
Zψ,k rk,F (p)

)]

PF (p) + Z−2ψ,k h
2

k σ
2
0

, (4.8)

where dγ denotes the dimension of the Gamma matrices. We can write equa-
tion (4.8) in a more compact way by introducing the dimensionless threshold

functions ld0(ω; ησ) and l
(F ) d
0 (ω; ηψ), which contain all momentum integra-

tions. The definitions of the threshold functions can be looked up in Ap-
pendix A. The anomalous dimensions are defined as ησ = −∂t lnZσ,k and
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ηψ = −∂t lnZψ,k. We end up with

∂tUk = 2 vd k
d
[
ld0
(
k−2 Z−1σ,k [2 ρU ′′k + U ′k] ; ησ

)

−dγ l(F ) d
0

(
2 k−2Z−2ψ,k h

2

k ρ; ηψ

) ]
, (4.9)

where the primes denote derivatives with respect to the field invariant ρ =
1
2
σ2
0, and v

−1
d = 2d+1 πd/2 Γ(d/2). In order to be able to implement this equa-

tion numerically, we have to make it dimensionless: all quantities must be
represented by pure numbers. This is performed by dividing all dimensionful
quantities by some appropriate power of the same dimensionful quantity, for
example a typical scale of the theory. We employ two different options:

Dimensionless form by fixed-scale division The most obvious way to
make quantities dimensionless is just by dividing them by a fixed scale, for
example the cut-off Λ. We will employ this method at the onset of the
”freeze-out” of the flow, therefore naturally dividing by this freeze-out scale.
For more information on this topic we refer to Section 5.3. Here, we derive
the corresponding equation for some arbitrary fixed scale Λ. We use the
redefinition in dimensionless quantities to simultaneously renormalize them.
We define the renormalized, dimensionless field strength

ρ̌ = Zσ Λ
2−d

ρ,

the renormalized, dimensionless Yukawa coupling

ȟ 2
k = Z−1σ Z−2ψ Λ

d−4
h

2

k ,

and the dimensionless potential

ǔk = Uk Λ
−d
.

Then we get

∂tǔk = ǔ′k ρ̌ ησ

+2 vd
(
k/Λ

)d [
ld0
(
(k/Λ)−2 [2 ρ̌ ǔ′′k + ǔ′k], ησ

)
(4.10)

−dγ l(F ) d
0

(
(k/Λ)−2 2 ρ̌ ȟ2k, ηψ

) ]
,

where the term in the first line is due to the renormalization of the field
strength. Here, primes denote derivatives with respect to ρ̌.
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Dimensionless form by running-scale division Another possibility to
define dimensionless quantities is given by the regulator scale k, that we are
naturally provided with. This time, we define the renormalized, dimension-
less field strength according to

ρ̃ = Zσ k
2−dρ,

the renormalized, dimensionless Yukawa coupling according to

h 2
k = Z−1σ Z−2ψ k d−4 h

2

k ,

and the dimensionless potential by

uk = Uk k
−d.

Now, we get

∂t uk = −d uk + (d− 2 + ησ) ρ̃ u
′
k

+2 vd

[
ld0 (u

′
k + 2 ρ̃ u′′k, ησ) (4.11)

−dγ l(F ) d
0

(
2 ρ̃ h2k, ηψ

) ]
,

where the term in the first line has additional contributions due to the run-
ning of k. This time, of course, primes denote derivatives with respect to ρ̃.
By convention, we will refer to equation (4.11) in the sequel just as ’dimen-
sionless’ potential flow equation.

4.3 Flow equation for the Yukawa coupling

Second, we derive the flow equation for the (squared)7 Yukawa coupling h2k.
In order to find the corresponding projection rule, we have to take into ac-
count that only the deviation from the vacuum expectation value ∆σ(x)
dynamically results in an interaction with the fermion field, whereas the vac-
uum expectation value σvev itself acts as a mass term to the fermions. Thus,
the Yukawa coupling is attained by projecting onto the operator ∆σψψ rather

7It is a certain feature of the symmetry of our system that the Yukawa coupling appears
only in powers of its square.
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than by projecting onto σψψ. The projection rule for the Yukawa coupling
therefore reads

hk =
1

i

δ

δ∆σ(p′)

−→
δ

δψ(p)
Γk

←−
δ

δψ(q)
ψ = ψ = ∆σ = 0
p′ = p = q = 0

.

Using (3.2), the corresponding flow equation follows from

∂t hk =

= 1
2i

δ
δ∆σ(p′)

−→
δ

δψ(p)
STr

[(
∂tRk

) (
Γ
(2)
k +Rk

)−1] ←−
δ

δψ(q)

∆σ = 0

ψ = ψ = 0
p′ = p = q = 0

= 1
2i

δ
δ∆σ(p′)

−→
δ

δψ(p)
STr

[
∂̃t ln

(
Γ
(2)
k +Rk

)] ←−
δ

δψ(q) ψ = ψ = ∆σ = 0
p′ = p = q = 0

.

In the last line we have introduced the operator ∂̃t, which is defined to act
only on the t dependence of the regulator Rk. It is convenient to delay the t
derivative until the very end of the calculation, when all the other algebra is
done, because it blows up the number of terms.
This time we are not free to apply the vanishing of the fields, ∆σ = ψ =
ψ = 0, before taking the functional derivatives. Thus, we have to deal with a
fluctuation matrix that is not diagonal in its momentum indices. If we think
of the operator within the Supertrace in an expansion in the fields ∆σ, ψ and
ψ, the projection rule tells us that only those expansion terms ”survive” the
projection, which both contain each field exactly once and do not contain a
derivative of any field at all. So, we only have to regard the terms, which
fulfill these restrictions. To make them manifest, we want to expand the

operator ln
(
Γ
(2)
k +Rk

)
in powers of the fields ∆σ, ψ and ψ, keeping only

those terms, which at least provide a chance to fulfill the restrictions. For

this purpose, we isolate the fields by decomposing the operator
(
Γ
(2)
k +Rk

)

into a propagator part and a field part:

(
Γ
(2)
k +Rk

)
=
(
Γ
(2)
k,0 +Rk

)
+∆Γ

(2)
k , (4.12)
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where
(
Γ
(2)
k,0 +Rk

)
contains all components independent of the fluctuat-

ing fields ∆σ,ψ,ψ, whereas ∆Γ
(2)
k contains exclusively the field-dependent

components. By inspection of (4.4) and (4.5), and by applying σ(p) =
σvev,k δ0,p +∆σ(p), we find

(
Γ
(2)
k,0 +Rk

)
=

= δp,q




Zσ,k p
2 (1+rk,B(p)) 0 0

+U ′′

k (σvev,k)

0 0 −Zψ,k p
T/ (1+rk,F (−p))
−i hk σvev,k

0 −Zψ,k p/ (1+rk,F (p)) 0
+i hk σvev,k




(4.13)

and

∆Γ
(2)
k =




U ′′′

k
(σvev,k)∆σ(p−q) i hk ψ(q−p) −i hk ψ

T (p−q)

−i hk ψ
T
(q−p) 0 −i hk∆σ(p−q)

i hk ψ(p−q) ihk∆σ(p−q) 0



. (4.14)

We have already used here that we can neglect all terms beyond first order
in the expansion

∫
ddxU ′′k

(
σvev,k +∆σ(x)

)
ei (q−p)x

=
∫
ddx
[
U ′′k (σvev,k) + U ′′′k (σvev,k)∆σ(x) + ...

]
ei (q−p)x

= U ′′k (σvev,k) δq,p + U ′′′k (σvev,k)∆σ(p− q) + ...,

(4.15)

as higher powers of ∆σ would not survive the projection.
The propagator part (4.13) is diagonal in its momentum indices and therefore
can be inverted, which will be crucial for the expansion of the logarithm.
Actually, it is just the fluctuation matrix (4.4) with σ(x) = σvev and ψ =
ψ = 0, in analogy to the projected fluctuation matrix in the derivation of the
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flow equation for the scalar potential. Thus, we get the same inverse, except
for the replacement σ0 → σvev,k:
(
Γ
(2)
k,0 +Rk

)−1
= δp,q×




1
Zσ,k P (p)+U ′′

k
(σvev,k)

0 0

0 0
−Zψ,k (1+rk,F (p))
Z2
ψ,k

PF (p)+h
2
kσ

2
vev,k

p/

− ihk σvev,k

Z2
ψ,k

PF (p)+h
2
k σ

2
vev,k

0
−Zψ,k (1+rk,F (p))
Z2
ψ,k

PF (p)+h
2
kσ

2
vev,k

pT/ 0

+
ihk σvev,k

Z2
ψ,k

PF (p)+h
2
k σ

2
vev,k




.

(4.16)

We bring the operator ln
(
Γ
(2)
k +Rk

)
into a form suitable for expansion by

writing

STr
[
∂̃t ln

(
Γ
(2)
k +Rk

)]
= STr

[
∂̃t ln

(
Γ
(2)
k,0 +∆Γ

(2)
k +Rk

)]

= STr

[
∂̃t ln

{(
Γ
(2)
k,0 +Rk

)(
1 +

(
Γ
(2)
k,0 +Rk

)−1
∆Γ

(2)
k

)}]

= STr
[
∂̃t ln

(
Γ
(2)
k,0 +Rk

)]
+ STr

[
∂̃t ln

{(
1 +

(
Γ
(2)
k,0 +Rk

)−1
∆Γ

(2)
k

)}]
.

Next, we apply the Taylor expansion of the logarithm: ln(1+x) = x− 1
2
x2+

1
3
x3+ .... It is crucial to realize that only the term cubic in ∆Γ

(2)
k survives the

projection, as it is the only one that contains each field exactly once. Thus,
the projection rule for the flow equation simplifies to

∂t hk =

= 1
6i

δ
δ∆σ(p′)

−→
δ

δψ(p)
STr

[
∂̃t

{(
Γ
(2)
k,0 +Rk

)−1
∆Γ

(2)
k

}3
]
←−
δ

δψ(q) ψ = ψ = ∆σ = 0
p′ = p = q = 0

.
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(I)

∆σ

ψ

ψ

(II)

∆σ

ψ

ψ

σvev

(III)

∆σ

ψ

ψσvev

σvev

Figure 4.1: Diagrammatical interpretation of the contributions to the flow of
hk.

Multiplying (4.14) and (4.16) and cubing the resulting operator is tedious,
but straightforward.8 After performing the projection rule and the trace over
the inner indices,9 we end up with

∂t hk = −i
∫

ddp

(2π)d
∂̃t

{

(I) (ihk)
3 1

Zσ,k P (p) + U ′′k (σvev,k)

1

Z2
ψ,k PF (p) + h

2

k σ
2
vev,k

(II) −(ihk)3
σvev,k U

′′′
k (σvev,k)

[Zσ,k P (p) + U ′′k (σvev,k)]
2

1

Z2
ψ,k PF (p) + h

2

k σ
2
vev,k

(III) +(ihk)
5

2 σ2
vev,k

Zσ,k P (p) + U ′′k (σvev,k)

1
[
Z2
ψ,k PF (p) + h

2

k σ
2
vev,k

]2
}
.

We can interpret the three contributions to the flow of hk diagrammatically,
as shown in Figure 4.1. Be aware that those diagrams are not to be mixed
up with the common Feynman diagrams used in perturbation theory: we are
not expanding in a small coupling; the propagators in our diagrams denote
the full propagators (though truncated), not the classical ones.

For our final result, we consider the flow of h
2

k instead of the flow of hk itself,

using ∂t h
2

k = 2 hk
(
∂t hk

)
. This makes manifest that our flow equation only

depends on h
2

k. Again, we use a compact notation by introducing threshold
functions, and switch to the dimensionless, renormalized quantities h2k =

8One can simplifiy ones life by systematically neglecting terms that contain a field more
than once.

9We can also neglect terms that are linear in the momentum p, as their contributions
vanish under the integral due to the symmetry of the propagators.
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Z−1σ Z−2ψ kd−4 h
2

k, uk = Uk k
−d and κk =

1
2
Zσ k

2−d σ2
vev,k. Then, we get

∂t h
2
k = [ησ + 2 ηψ + d− 4] h2k

+8 h4k vd l
(FB) d
1,1 (ω1, ω2; ηψ, ησ) (4.17)

−
[
48 κk u

′′
k(κk) + 32 κ2k u

′′′
k (κk)

]
h4k vd l

(FB) d
1,2 (ω1, ω2; ηψ, ησ)

−32 h6k κk vd l
(FB) d
2,1 (ω1, ω2; ηψ, ησ) ,

with

ω1 = 2 κk h
2
k

ω2 = u′k(κk) + 2κku
′′
k(κk) .

The definitions of the threshold functions and of vd can be found in Appendix
A. Primes denote derivatives with respect to ρ̃ = 1

2
Zσ k

2−d σ2, and the
anomalous dimensions are defined as before: ησ = −∂t lnZσ,k and ηψ =
−∂t lnZψ,k.

We emphasize that (4.17) differs from literature, where the same model
with the same truncation was investigated in a different physical context [26].
This is due to the two additional contributions on the RHS of (4.17) that
only show up at a non-vanishing vacuum expectation value.

4.4 Anomalous dimensions

Finally, we close our set of equations by deriving the flow equations for the
field strength renormalizations Zσ and Zψ. It will turn out to be possible
to completely eliminate all explicit appearance of the field renormalizations
by introducing renormalized quantities and the anomalous dimensions, as we
did already before. The resulting equations will be purely algebraic, therefore
saving us from having to state initial conditions; in other words: the field
renormalizations influence the flow of all the other (renormalized) quantities
only via the anomalous dimensions, and those are at each scale completely
determined by the latter.

Anomalous dimension of the scalar As usual, we begin the derivation
of the flow equation for the scalar field renormalization Zσ by stating the
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projection rule onto the operator (∂σ)2:

Zσ,k =
∂

∂(p′2)

δ

δ∆σ(p′)

δ

δ∆σ(q′)
Γk ∆σ = ψ = ψ = 0

p′ = q′ = 0
.

Note that we formulate the projection rule with respect to ∆σ rather than
σ = σvev + ∆σ. Speaking in terms of σ, this means that we allow for all
operators of the form σn(∂σ)2 to contribute to the flow of Zσ, as operators
of the form σnvev(∂∆σ)

2 survive the projection rule. Thus, (∂σ)2 and (∂∆σ)2

flow differently. As in the derivation of the flow of the Yukawa coupling, we
favor the formulation with respect to ∆σ, because in the broken regime the
fluctuations relative to the vacuum expectation value constitute the dynam-
ically relevant degrees of freedom.
With (3.2), we get for the flow equation

∂t Zσ,k =

= 1
2

∂
∂(p′2)

δ
δ∆σ(p′)

δ
δ∆σ(q′)

STr

[(
∂tRk

) (
Γ
(2)
k +Rk

)−1]
∆σ = ψ = ψ = 0
p′ = q′ = 0

= 1
2

∂
∂(p′2)

δ
δ∆σ(p′)

δ
δ∆σ(q′)

STr
[
∂̃t ln

(
Γ
(2)
k +Rk

)]
∆σ = ψ = ψ = 0
p′ = q′ = 0

.

Analogous to the derivation of the flow equation for the Yukawa coupling,

we decompose the operator
(
Γ
(2)
k +Rk

)
into its propagator and field part

according to (4.12). We get exactly the same matrices for
(
Γ
(2)
k,0 +Rk

)
and

∆Γ
(2)
k as in (4.13) and (4.14).10 This time, we only have to consider the

quadratic expansion term of the logarithm, since all the others would not

10Actually, this is not absolutely correct: Strictly speaking, we would have to include the
quadratic expansion term in ∆σ in (4.15), as this term survives the functional derivatives

within the linear expansion term of the logarithm ln

{
1 +

(
Γ
(2)
k,0 +Rk

)
−1

∆Γ
(2)
k

}
; but as

the corresponding diagram is a tadpole, the loop is independent of the external momentum.
And since the scalar potential, which provides the vertex to this contribution, is also
momentum independent, the contribution is annihilated by the derivative with respect to
p′2.
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survive the projection. Thus, our projection rule simplifies to

∂t Zσ,k =

= −1
4

∂
∂(p′2)

δ
δ∆σ(p′)

δ
δ∆σ(q′)

STr

[
∂̃t

{(
Γ
(2)
k +Rk

)−1
∆Γ

(2)
k

}2
]

∆σ = 0

ψ = ψ = 0
p′ = q′ = 0

.

The matrix multiplications are quickly done when taking advantage of the
vanishing fermion fields, which can be implemented right from the start, as
we do not take derivatives with respect to them. After performing the traces
over the inner indices and taking the functional derivatives with respect to
σ, we expand the remaining integrand in p′ up to second order, since only
the term proportional to p′2 is relevant for our projection. We get

∂t Zσ,k =

= 1
d

∫
ddp
(2π)d

∂̃t

{
Z2
σ,k [U ′′′k (σvev,k)]

2 p2
( (

∂

∂p2
P (p)

)

[Zσ,k P (p)+U ′′

k
(σvev,k)]

2

)2

+2 dγ h
2

k

[
p4
(

∂
∂p2

Zψ,k

(
1+rkF (p)

)

Z2
ψ,k

PF (p)+h
2
k σ

2
vev,k

)2

−h2k σ2
vev,k p

2

(
∂
∂p2

1

Z2
ψ,k

PF (p)+h
2
k σ

2
vev,k

)2 ]}
.

In our usual dimensionless quantities and introducing threshold functions,
this reads

ησ,k = 8
vd
d

{
κk [3 u

′′
k(κk) + 2 κk u

′′′
k (κk)]

2
md

4,0 (2 κk u
′′
k(κk) + u′k(κk), 0; ησ)

+dγ h
2
k

[
m

(F ) d
4

(
2 κk h

2
k; ηψ

)
(4.18)

−2 κk h2km
(F ) d
2

(
2 κk h

2
k; ηψ

) ]
}
,

where we used that ησ,k = −∂t lnZσ,k = − 1
Zσ,k

∂t Zσ,k. The definitions of the

threshold functions can be found in Appendix A. Primes denote derivatives
with respect to ρ̃.
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Anomalous dimension of the fermion The derivation of the flow equa-
tion for the fermionic anomalous dimension ηψ follows exactly the same line
of arguments as the derivation of the flow equation for the scalar anomalous
dimension: The projection onto ψq/ ψ is given by

Zψ,k =
1

4dγ
tr γµ

∂

∂p′µ

−→
δ

δψ(p′)
Γk

←−
δ

δψ(q′)
∆σ = ψ = ψ = 0
p′ = q′ = 0

,

and according to (3.2), the projected flow equation reads

∂t Zψ,k =

= 1
8dγ

tr γµ ∂
∂p′µ

−→
δ

δψ(p′)
STr

{(
∂tRk

) (
Γ
(2)
k +Rk

)−1} ←−
δ

δψ(q′)

∆σ = 0

ψ = ψ = 0
p′ = q′ = 0

= 1
8dγ

tr γµ ∂
∂p′µ

−→
δ

δψ(p′)
STr

{
∂̃t ln

(
Γ
(2)
k +Rk

)} ←−
δ

δψ(q′) ∆σ = ψ = ψ = 0
p′ = q′ = 0

= − 1
16dγ

tr γµ ∂
∂p′µ

−→
δ

δψ(p′)
STr

{
∂̃t

[(
Γ
(2)
k,0 +Rk

)−1
∆Γ

(2)
k

]2} ←−
δ

δψ(q′)

∆σ = 0

ψ = ψ = 0
p′ = q′ = 0

,

where we employed exactly the same decomposition into a propagator and
a field part, also only having to keep the quadratic expansion term of the
logarithm. After performing the traces, taking the functional derivatives and
expanding the integrand with respect to the external momentum p′ up to first
order, we find

∂t Zψ,k =
2

d
h
2

k

∫
ddp

(2π)d
p2

× ∂̃t
{ Zψ,k

(
1 + rkF (p)

)

Z2
ψ,k PF (p) + h

2

k σ
2
vev,k

Zσ,k

(
∂
∂ p2

P (p)
)

[Zσ,k P (p) + U ′′k (σvev,k)]
2

}
,

which reads in dimensionless form

ηψ,k = 8 h2k
vd
d
m

(FB) d
1,2

(
2 κk h

2
k, 2 κk u

′′
k(κk) + u′k(κk); ηψ, ησ

)
. (4.19)
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The definition of the threshold function can be found in Appendix A. Primes
denote derivatives with respect to ρ̃.
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Chapter 5

Numerical implementation

We now have the equations at hand that we want to use to deal with our
issue. But despite of the various approximations that we have already made
so far, this set of equations is still too complex to be handled analytically.
The reason lies in the fact that we still have to deal with an infinite number
of degrees of freedom, as each value of ρ̃ constitutes a distinct degree of
freedom of the potential. More technically speaking, (4.11) is a complicated
partial differential equation, and we do not have a tool to solve it exactly.
That is why our objective must be to reduce the degrees of freedom to a
finite number, therewith boiling our original set of equations down to a set
of finitely many coupled ordinary differential equations. Now this can be
done in various ways. Most common and obvious would be just to Taylor
expand the potential u(ρ̃) up to a finite order and then considering the flow of
these finitely many expansion coefficients, neglecting the influence of higher-
order coefficients. Of course, this can only be a good approximation of the
potential in the vicinity of the expansion point. The flow of the expansion
coefficients taken into consideration would be accurate as long as it can be
guaranteed that the neglected higher-order coefficients remain small. This
may be the case in perturbation theory, but we explicitly intend to extend
our investigations into the non-perturbative regime. Moreover, the Taylor
expansion can have unsatisfactory convergence properties, such as a finite
radius of convergence in ρ̃ and insufficient stability.1 Since we are especially

1In fact, for Ising-like systems the resulting expansion of the integrated potential is an
asymptotic expansion.
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interested in the position and shape of the potential minimum,2 which in
general must not be expected to be located close to the origin, we need a
method that grasps the potential globally.

5.1 Boxing the potential

The first hurdle we have to take is to make the whole potential u(ρ̃) from
0 ≤ ρ̃ <∞ acessible to a finite number of degrees of freedom. It is clear that
this cannot be achieved by applying an approximation technique to u(ρ̃)
itself. We somehow have to compress the ρ̃ axis of infinite range to finite
range. For this purpose we impose the following transformation rule:

r = 1− e−βρ̃, (5.1)

where we denoted the transformed field variable by r, which reaches from
0 to 1. For similar reasons, as we want to record the asymptotics of the
potential, which grows towards infinity for increasing ρ̃, we also have to map
the value of the potential itself onto a finite range. This is achieved by

v = tanh(α û), (5.2)

where û = u(ρ) − u(0); the use of the subtraction u(0) will be explained
below. The transformed potential v reaches from -1 to 1. α and β are
transformation parameters, which we can choose such that the physically
relevant information of the potential, for example the vacuum expectation
value, is reflected optimally. The transformation rules are depicted in Figure
5.1 for various choices of α and β. The transformed flow equation for the
potential v can be found in Appendix B.

5.2 Chebyshev approximation

Next, we have to find an appropriate way of approximating the boxed poten-
tial. Our guidelines are given by the requirements of fast convergence, simple
computation and that the approximation be global, meaning: no expansion
around a single point, but embracing information across the whole range of r.

2Because those carry the relevant information on the vacuum expectation value and
the Higgs mass.
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Figure 5.1: ”Boxing” transformations of the field variable ρ̃ and the potential
u

More technically, we need to interpolate the potential. We decided to choose
a special polynomial interpolation technique, the Chebyshev approximation.
The Chebyshev polynomials are orthonormal and complete in the interval
[−1, 1] over a weight (1−x2)−1/2. The Chebyshev approximating polynomial
is distinguished by the fact that it is very close to the minimax polynomial,
which, among all polynomials of the same degree, has the smallest maximum
deviation from the true function. But while the minimax polynomial is very
difficult to find, the Chebyshev polynomial is very easy to compute. More
details on the definition of the Chebyshev polynomials and their explicit form
can be found in Appendix C. The Chebyshev coefficients of the (truncated)
Chebyshev approximation of the boxed potential now are the finitely many
degrees of freedom of our concern; we will numerically determine the flow of
these coefficients.

5.3 Stabilizing the flow

Though we do not want to go to much into the technical details of our
implementation, we nevertheless think that some remarks are in place. As we
intend to have our system flow over many scales, it must be expected that also
the potential experiences changes of the order of several scales. This is most
obvious for the relevant components, which even grow exponentially with the
logarithmic scale variable t = ln k/Λ. But also the marginal components can
cause a remarkable change, if the flow goes over many scales. Numerically
this poses a huge problem, as the large numbers ”swallow” the small ones,
which often carry the more important physical information. We somehow
have to make arrangements in order to limit the range of scales the potential
undergoes. More concretely, we want the flow to be dominated by the physics
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relevant to us, and not by some ”rubbish” we are not interested in.

Eliminating the cosmological constant We have already done a first
step by considering the dimensionless flow; the canonical scaling induced by
the running scale k, which we used in order to make all quantities dimen-
sionless, should at least partially compensate the flow due to strong radiative
corrections. This is especially obvious for the dimensionless mass parameter
m2
k/k

2, which we fine-tune such that it remains small over many scales. But
still we have to expect that the most divergent quantity, the cosmological
constant, grows sufficiently strong to spoil our numerics. We solve this prob-
lem by realizing that the cosmological constant does not at all play any role
with respect to the physics we are interested in, because it does not influ-
ence the flow of all the other operators, which contain the information on
the vacuum expectation value, the Higgs mass and so on. This is why we
immediately implement, as a second precaution, the flow of the difference
uk(ρ̃)− uk(0) (or rather its transformed version) instead of the flow of uk(ρ̃)
itself. On the one hand, we ignore the flow of the cosmological constant in
this way, on the other hand we protect our flow from its huge growth and its
capability to spoil our results.

Switching to fixed-scale flow As mentioned above, we fine-tune the di-
mensionless mass parameter such that it remains small over many scales.
When eventually the dimensionless mass parameter becomes of the order of
one, this means that the integration scale k is passing the mass and fluc-
tuations cease to drive the flow, since then the natural mass scale of the
theory acts as an IR cut-off. During the freeze-out process the dimensionless
mass parameter and its subsequent exponential growth starts to dominate
the flow more and more, which becomes numerically problematic. We handle
this problem by realizing that the absence of fluctuations allows us to safely
switch back to the fixed-scale flow equation, which we then solve in units of a
suitable fixed scale; in practice, we use the scale at which we switch from the
dimensionless flow to the fixed-scale flow. Of course, this fixed scale is com-
pletely auxiliary and physical scales are independent of this scale. Within
the fixed-scale flow all couplings come to a halt, resulting in a well-balanced
numerical result.
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Adjusting the transformation parameters α and β After having solved
the most urgent problems, we still have to consider that even the marginal
couplings can undergo a significant change when integrating over many scales.
In particular, this will occur in the limiting cases of large, non-perturbative
cut-off couplings, or when the φ4 coupling at the cut-off is several scales
smaller than the Yukawa coupling.3 In order to prevent that the physics is
pushed towards the edges of the box, where the resolution is bad, we make use
of the freedom to choose the transformation parameters α and β (see (5.1),
(5.2)). We adjust them in the course of the flow such that the physically
interesting regions of the potential are at each instant rendered optimally
within the box.

Fine-tuning the mass parameter One more remark on the fine-tuning
of the mass parameter: in principle we could fine-tune the component of
the the dimensionless mass parameter proportional to k−2 to such precision,4

that we could get a flow over as many scales as we want to, before the freeze-
out. Practically, the range of our fine-tuning is restricted by our numerical
accuracy, in particular that of the floating point arithmetic. At some point
the required fine-tuning becomes more subtle than the floating point reso-
lution of our machine, and a change of the mass parameter does not result
in an increase of the range of the flow anymore. We find that with opti-
mum fine-tuning we get as far as six integration scales, which is by no means
enough for our purpose. We solve this problem by adding every several scales
a small correction mass to the current potential, which is supposed to undo
the growth of the tuning parameter.

uk,new(ρ̃) = uk,old(ρ̃) + acorrection ρ̃. (5.3)

As long as this correction mass is small enough, the influence on the flow
of all the other couplings will be negligible. We want to stress that we also
do not tamper with the flow of the dimensionless mass parameter itself: by

3We will restrict our investigation to a quartic cut-off potential. This will be justified
in some detail in Chapter 7.

4We can think of the dimensionless mass parameter in an expansion in k. Its relevant
nature then is reflected by the occurence of a term proportional to k−2, which yields an
exponential growth in the logarithmic scale variable t = ln k/Λ. By suitably choosing the
cut-off mass mΛ, the coefficient of this term in principle can be made arbitrarily small;
this corresponds to fine-tuning.
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expansion of (4.11) (and assuming a linear cut-off function), we get the flow
equation for the dimensionless mass parameter:

∂tu
′
k(0) =

8 h2k dγ vd
d

(
1− ηψ

1 + d

)

+(ησ − 2) u′k(0) (5.4)

+
12 vd u

′′
k(0)

d(1 + u′k(0))
2

(
ησ

2 + d
− 1

)
.

Inspecting (5.4), we see that the first term on the RHS does not depend on
the current value of u′k and the third only to higher order, being insensitive
to small corrections. Thus, only the median term is noticeably affected by
the additive mass term. But this term just reflects the exponential growth of
the dimensionless mass parameter due to the non-vanishing tuning parame-
ter. Therefore, adding the small mass correction corresponds to retuning the
original tuning parameter. In other words, backtracking the influence of the
mass correction on the cut-off dimensionless mass parameter, we find that
due to the irrelevant character of the flow in this direction the modification
is much smaller than the original mass correction and occurs far behind the
leading digit, which justifies to consider it as a fine-tuning in first place.
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Chapter 6

Simple applications and

benchmark tests

In order to test our approach (and our implementation), we apply it to
situations, in which we know the behaviour of the system analytically, at
least in some limiting cases. Namely, those are the scaling potential for a
scalar theory due to the Wilson-Fisher fixed point in three dimensions and
the renormalisation group flow of our Toy Model truncation in the vicinity of
the Gaussian fixed point in four dimensions. However, we want to emphasize
that our approach can go far beyond those analytic results, especially in the
three-dimensional case we are able to give a global approximation to the
scaling potential 1, whereas analytically only a local approximation in the
limiting cases of small and large ρ can be made. But this is not of primary
interest in this work. In the four-dimensional case, the behavior of the Toy
Model away from the Gaussian fixed point will, of course, be a major point
of investigation in the remainder of this work.

6.1 Recovering the 3D scaling potential due

to the Wilson-Fisher fixed point

As is well known, the pure scalar theory exhibits two scaling solutions in
2 < d < 4 dimensions, which correspond to the Gaussian and the Wilson-

1At this, it must not be forgotten that the form of the scaling potential is regulator
dependent.
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Fisher fixed point, respectively [27]. This property is still maintained when
restricting oneself to the local potential approximation, which is given by the
truncation

Γk =

∫
ddx

(
1

2
∂µσ ∂

µσ + Uk(ρ)

)
, (6.1)

where ρ = 1
2
σ2. Actually, this investigation can easily be generalised to the

case of an O(N) symmetric scalar theory, but as we are only interested in a
single scalar field, we restrict ourselves to the present case.
It can easily be seen that this truncation is identical to our Toy Model trun-
cation when neglecting the Yukawa coupling and the scalar field renormal-
ization. The local potential approximation, interpreted as a derivative ex-
pansion to leading order, can be justified by taking into consideration that
the neglected higher-order corrections are proportional to the anomalous di-
mension η, which is small in our case. As the truncation of our Toy Model
respects the scalar field renormalization, we can explicitly verify the small-
ness of the anomalous dimension (see below).

In order to be able to derive the form of the scaling potential analytically,
at least in the limiting cases of small and large field strength, we now de-
termine the renormalization flow equation for the effective average potential
following from the local potential approximation. This, of course, will be
performed by applying the ERGE scheme to the truncation above. Evalu-
ating the resulting flow equation of the effective average action for constant
field (σ = const), we end up with the flow equation for the effective average
potential

∂tu+ du− (d− 2)ρ̃u′ = 2vd l(2ρ̃u
′′), (6.2)

which we have formulated in the dimensionless quantities ρ̃ = 1
2
σ2k2−d and

u(ρ̃) = Uk/k
d (v−1d = 2d+1πd/2Γ(d

2
)). The function l(ω) is given by

l(ω) =
1

2

∫ ∞

0

dy yd/2
∂tr(y)

y(1 + r) + ω
(6.3)

with y = q2/k2 and R(q2) = q2r(q2/k2).
Now we choose as regulator a linear cut-off function, given by

r(y) =

(
1

y
− 1

)
Θ(1− y), (6.4)

which is optimized in the sense that it leads to the most rapid convergence
and the highest stability of an approximated flow towards the physical theory
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[25]. Note that for approximated flows not only the trajectory but also the
end point of the flow depends on the regulator. Evaluating (6.2) using this
regulator yields the flow equation

∂tu = −du+ (d− 2)ρ̃u′ +
4

d
vd

1

1 + u′ + 2ρ̃u′′
. (6.5)

Finally, as we are only interested in the scaling potential, which is defined
as being invariant under the renormalization group transformation, we can
set the RHS equal to zero. Furthermore, we confine ourselves to the case of
three dimensions:

0 = −3u∗ + ρu′∗ +
1

6π2

1

1 + u′∗ + 2ρ̃u′′∗
. (6.6)

We are interested in non-trivial solutions of this differential equation.

Polynomial approximation at the origin As we still cannot solve equa-
tion (6.6) exactly, we have to look for ways to get at least approximate so-
lutions to it. One possibility is of course a (truncated) Taylor expansion in
the vicinity of the origin. Inserting the ansatz

u(ρ̃) =

ntrunc∑

n=0

1

n!
λnρ̃

n (6.7)

into (6.6), the differential equation is transformed into ntrunc coupled equa-
tions for the set of couplings {λn, 0 ≤ n ≤ ntrunc}. As we have only ntrunc

equations for ntrunc + 1 unknowns, we are left with one parameter, which we
choose to be λ1 (dimensionless mass term at vanishing field). Solving this
system of equations, we get

λ0 =
1

18π2
(1 + λ1)

−1

λ2 = −4π2λ1(1 + λ1)
2

λ3 =
72

15
π4λ1(1 + λ1)

3(1 + 13λ1) (6.8)

λ4 = −1728
7

π6λ21(1 + λ1)
4(1 + 7λ1)

λ5 =
768

7
π8λ21(1 + λ1)

5(2 + 121λ1 + 623λ21).

...
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The value for λ1, which corresponds to the Wilson-Fisher fixed point, is
determined by fine tuning λ1 such that the solution (6.8) reaches its maximum
radius of convergence. We find λ1∗ = −0.186... in agreement with [25].

Asymptotic behaviour for large ρ̃ In the other limit, for large fields,
ρ̃≫ 1, we can neglect in a first approximation the third term on the RHS of
(6.6) and find by a simple separation of variables that

u∗(ρ̃) = A ρ̃3, (6.9)

with A > 0. The latter condition follows already from the requirement of
stability, that any sensible physical potential has to fulfill.

Comparison with numerical results Now that we have determined the
scaling potential in the limiting cases of small and large ρ̃, we can use those
analytic results in order to test our numerics.2 We have to choose a starting
potential uΛ at the cut-off, which is in the universality class of the Wilson-
Fisher fixed point. As we do neither know the coordinates of the Wilson-
Fisher fixed point in ”theory space” nor its universality class, we cannot a
priori determine such a starting potential, but only verify properties charac-
teristic for the Wilson-Fisher fixed point for a more or less arbitrarily chosen
starting potential. In addition, one parameter of the starting potential has to
be fine-tuned, as the Wilson-Fisher fixed point exhibits one relevant eigendi-
rection. The fine-tuning guarantees that the RG trajectory passes close to
the fixed point and therefore stays there over many scale integrations, such
that the fixed-point scaling behavior in the RG flow can be identified, yield-
ing the scaling potential. A cut-off potential fulfilling all those requirements
is given by

uΛ(ρ̃) = a ρ̃+ 0.5 ρ̃2 (6.10)

with a fine-tuned at a = −0.040.... We emphasize that the value of the fine
tuning parameter is not universal, but depends also on the regulator and is
sensitive to the numerical accuracy, the chosen step width, the transforma-
tion parameters α and β,...; that is why we have only given the leading digits,

2In order to be able to compare the results of our approach best with the analytically
gained results, we neglect in our numerics the scalar field renormalization in this part of
the investigation, to match the local potential approximation; but for a later prediciton of
the anomalous dimension ησ, we will take it into account, again.
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Figure 6.1: RG flow in the vicinity of the Wilson-Fisher fixed point. The
top-left plot gives snapshots of the potential flow, approaching the fixed-point
potential from right to left.

to provide an intuition for the order of magnitude: this choice of the tuning
parameter yields a minimum of the potential at about ρ ≈ 0.04, which in
turn corresponds to a minimum in the transformed potential at r ≈ 0.04
for α = β = 1. As we restrict ourselves to a pure scalar theory, the cut-off
Yukawa coupling is, of course, set to zero: h2Λ = 0, and therewith the effective
Yukawa coupling throughout the flow, too.
The flow resulting from the starting potential (6.10) is displayed in Figure
6.1. It can be seen very nicely that the flow approaches a (non-Gaussian)
fixed point and stays very close to it over several scales, before it is pushed
away by the relevant component, again. We take the potential that is reached
after four scales of integration as our approximation to the scaling potential.
We want to compare the form of this potential to the analytic results derived
above.
Taking the data in the vicinity of the origin, transforming it back to the
original parametrisation u(ρ̃) and interpolating it, we can compare it to the
prediction of the Taylor approximation derived above. The result given in
Figure 6.2 shows that both approaches match perfectly, which gives us a great
deal of confidence that our approach is capable to reproduce even ”subtle”
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Figure 6.2: Comparison of the Taylor-approximated scaling potential to our
numerical result (it’s two lines!). This curve solves eq (6.6).

details of the (exact) flow. This is particularly remarkable, since the min-
imum of the potential is very shallow compared to the complete ”boxed”
potential; its modulus amounts to only two permille of the height of the
boxed potential.

Next, we also want to check, if our approach yields the correct asymptotic
behaviour for large ρ̃, which we derived to be proportional to ρ̃3. By fitting
our data to the transformed version of the Ansatz a ρ̃b (a and b being the
fitting parameters), we get b = 3.03 (a is not of interest here), which, again,
matches satisfactorily with the analytic prediction. The minor discrepancy
can be attributed to the fact that our data also reflects the region of small
ρ̃, where the approximation made to derive the asymptotic behaviour does
not hold anymore.

Finally, we can check, if we are able to reproduce the anomalous dimen-
sion ησ, as it is predicted by our truncation: ησ = 0.1147 3 [24]. As up till
now we neglected the influence of the scalar anomalous dimension on the flow
of the potential, we have to fine-tune once more, this time including the flow
of the scalar field renormalisation. The smallness of the predicted anomalous
dimension supports the assumption that a possible cut-off potential uΛ(ρ̃)
can be found very close to (6.10), and indeed we find a flow passing closely

3We emphasize that the actual value differs significantly from this prediction of our
truncation.
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Figure 6.3: RG flow in the vicinity of the Wilson-Fisher fixed point, including
the influence of the scalar field renormalization. As in Figure 6.1, the top-
left plot gives snapshots of the potential flow, approaching the fixed point
potential from right to left.

the Wilson-Fisher fixed point choosing uΛ(ρ̃) = −0.039... ρ̃+0.5 ρ̃2, as can be
checked in Figure 6.3. Examining Figure 6.3, the scalar anomalous dimension
in the scaling region can be read off as ησ = 0.11..., which is in good agree-
ment with the literature. The anomalous dimension is of particular interest,
because critical exponents are scheme independent.

Concluding this section, we can say that so far our approach fulfilled all
of our expectations. In the next section, we will extend this investigation to
the case of four dimensions.
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6.2 Perturbative flow in 4D

In this section, we want to test our approach in the for our purpose more
relevant case of four dimensions, this time in the vicinity of the Gaussian
fixed point. There, as we will show, our flow equations simplify to the results
obtained in 1-loop perturbation theory, which gives us a simply opportunity
to test the power of our approach at hand. A major difference between the
Wilson-Fisher fixed point in 3D and the Gaussian fixed point in 4D is that,
while in the first case the spectrum of eigendirections contains exactly one
relevant eigenvector and besides only irrelevant, in the latter the coupling
corresponding to the φ4 operator4 turns dimensionless (marginal), resulting
in a logarithmic scaling behaviour (near the Gaussian fixed point dimensional
arguments are permitted). This logarithmic scaling behaviour prevents the
potential from rapidly converging towards its fixed point, even when the RG
trajectory is fine tuned to be very close to the irrelevant submanifold. That
is why we expect that in the regime of the Gaussian fixed point the couplings
with negative mass dimension should die out rapidly, leaving over a φ4 theory
flowing logarithmically in its interaction coupling. More precisely, only the
tree-level parts of the irrelevant operators should die out, leaving over the
parts generated by the interactions. Since the latter are controlled by the
dimensionless couplings, they should therefore be small in the perturbative
limit. Again, we are mostly interested in testing the applicability of our
method of treating the scalar potential. For that purpose, we have two tests
at hand: First, we focus on the flow of the φ4 coupling. We will show that the
corresponding β function derived from our flow equation can be approximated
by the well-known β function following from one-loop perturbation theory
in (massless) φ4 theory, which can be integrated analytically and therefore
yields a basis for a comparison to our numerics. Second, we analytically solve
the ERGE for the potential as a whole in mean-field approximation to first
order and in the limit of an infinitely large scalar mass (meaning that only
fermionic fluctuations contribute to the flow of the effective potential). This
test probes the potential globally, being sensitive to all operators, including
the irrelevant ones.

4Note that we are talking about φ4 theory and the φ4 coupling: this is just to meet
conventions; of course, we still denote our classical scalar field by σ.
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6.2.1 Flow of the φ4 coupling

We consider the flow of our truncation in the limit of vanishing Yukawa
coupling and with a perturbative starting potential uΛ. We want to show
that in this case the β function for the φ4 coupling simplifies to the one-loop β
function of (massless) φ4 theory, which can be integrated analytically. In the
course of this derivation we will have to make some assumptions, which only
can be justified as being good approximations in the vicinity of the Gaussian
fixed point. This is due to the fact that our flow equations also include
higher-order effects, which can only be neglected in the perturbative limit.
This is why we have to require the starting potential to be perturbative.
Actually we could even gain exact agreement between the β functions, if
we further truncated the potential to uk = λk ρ̃

2, because all higher-order
operators (in powers of ρ̃) are only generated by higher order effects in an
expansion in λ. But this somehow would contradict the philosophy of our
approach to consider the full scalar potential. And, as we will see, we get
very good agreement, anyway. The scalar field renormalization, which also
is a higher-order effect, we will indeed neglect, just by feeding the potential
flow equation with a vanishing scalar anomalous dimension. So, effectively,
we work once more in the Local Potential Approximation.

Derivation of the β function Starting with (4.11), setting hk = 0 and
expanding in powers of ρ̃, the resulting flow equation of the coefficient of the
ρ̃2 operator reads

∂tλk = −d λk + (d− 2 + ησ) 2 λk + 2 vd
1

2

d 2ld0
(dρ̃)2

∣∣∣
ρ̃=0

, (6.11)

where we take uk = εk ρ̃+ λk ρ̃
2 + .... Inserting d = 4 and assuming ησ = 0,

which is a good approximation in the vicinity of the Gaussian fixed point,
we get

∂tλk = v4
d 2ld0
(dρ̃)2

|ρ̃=0 . (6.12)

Choosing a linear cut-off function given by ldn(ω) =
2(δn,0+n)

d
(1− ησ

d+2
) 1
(1+ω)n+1 ,

we end up with

∂tλk = v4




9
(
u′′k(ρ̃ = 0)

)2

(
1 + u′k(ρ̃ = 0)

)3 −
5 u

(3)
k (ρ̃ = 0)

2
(
1 + u′k(ρ̃ = 0)

)2


 . (6.13)
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Note that the β-function is universal to one-loop order; the special choice
of the regulator therefore does not mean a loss of generality as long as we
stay away from mass thresholds. Now, the above mentioned assumptions on
the behaviour of the potential come into play: Given a perturbative cut-off
potential uΛ that does not contain any higher-order operators beyond ρ̃ 2

(which, being tree-level components with negative mass dimension, would
rapidly die away, anyway), the ρ̃ 3 operator is completely controlled by the

φ4 coupling to a leading power of λ3Λ. Thus, u
(3)
k (ρ̃ = 0) remains small and we

can neglect its contribution to the flow of the φ4 coupling. A similar argument
accounts for u′k(ρ̃ = 0): again, the radiative corrections to the ρ̃ operator are
controlled by λΛ and thus small; the tuning parameter therefore has to be
small, as well.5 Since the cut-off mass m2

Λ is supposed to compensate the
tuning parameter, it generically has to be small, too. Hence, u′k(ρ̃ = 0)
is small as long as it is well fine-tuned and we can neglect its contribution
to (6.13). That is why in the vicinity of the Gaussian fixed point the flow
equation simplifies to

∂tλk = 9 v4
(
u′′k(0)

)2
=

18 λ2k
16 π2

. (6.14)

Within the more common definition of the φ4 coupling, which differs from the
present convention by a factor of 1/6 [28], we find that we are in agreement
with the textbook β function to one-loop order of (massless) φ4 theory [28]

∂tλk,textbook =
3λ2k,textbook

16π2
. (6.15)

Equation (6.14) can be integrated by separation of variables to become

λk =
λΛ

1− 18λΛ
16π2 ln(

k
Λ
)
. (6.16)

Comparison with numerical results We determine the flow of the po-
tential numerically starting with a perturbative cut-off potential uΛ = a ρ̃+
0.5 ρ̃ 2, where a is fine-tuned such that εk remains small over many scales,
before it starts to grow. As soon as the mass becomes important, the mass-
less β function is no longer a good approximation and the flow eventually

5If we think of the radiative corrections to the bare mass m2
Λ in an expansion in k, the

tuning parameter is the coefficient of the k0 expansion term.
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Flow of the transformed potential v(r)
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Figure 6.4: RG flow of the effective average potential in the 4D Local Po-
tential Approximation with starting potential uk = −0.0004... ρ̃+ 0.5 ρ̃ 2. As
can be seen in the bottom-right plot, the potential starts with a vacuum
expectation value, but finally ends up in the symmetric regime.

”freezes out”6 (also remember that hΛ = 0 and by hand ησ = 0). We find
that for a = −0.004... εk remains small over six scales integration. The result
of the flow can be viewed in Figure 6.4.
Finally, the comparison of the resulting numerical flow of λk with the pre-
dicted flow according to (6.16) is depicted in Figure 6.5. It can be stated
that they are in very good agreement. So far, the implementation works fine!

6.2.2 Mean-field fermionically induced scalar potential

In this test we introduce for the first time a non-vanishing Yukawa coupling.
Actually, we restrict ourselves exclusively to the effect of the Yukawa cou-
pling on the flow of the effective average potential, meaning that we consider
only the contribution of the fermionic fluctuations, leaving the scalar fluctu-
ations aside. Formally, this is achieved by assuming an infinitely large scalar
mass. We use that in this limit we can solve the ERGE for the scalar po-
tential in mean-field approximation to first order analytically. ’Mean-field’

6I.e., the massive modes decouple in the IR.

59



scale

λ

Λ 10−1Λ 10−2Λ 10−3Λ 10−4Λ 10−5Λ 10−6Λ

0.55

0.5

0.45

0.4

0.35

0.3

0.25

Figure 6.5: Comparison of the analytically predicted flow of the φ4 coupling
(solid line) with the numerically gained (dashed line).

in this context means that the (fermionic) propagator used to integrate out
fluctuations is not k dependent but the classical one throughout the whole
flow. By neglecting the bosonic threshold function (which takes care of the
scalar fluctuations) on the RHS of (4.11), artificially keeping the Yukawa
coupling constant at its cut-off value and neglecting the fermionic anomalous
dimension, we should get exact agreement between the numerics and the an-
alytical result. We want to stress that this is even true for a large Yukawa
coupling, beyond the perturbative region; physically, the mean-field approx-
imation may not be justified in this region, nevertheless, mathematically,
nothing can keep us from probing our flow in this region, as the significance
of the fluctuation effects grows with the Yukawa coupling. The advantage
of this test is that it is sensitive to the potential as a whole, not only to a
small subset of operators. As we already know that our approach is powerful
in reproducing the flow of the operators with positive or vanishing mass di-
mensions, we use the possibility to focus now on the operators with negative
mass dimension.

Analytical solution of the ERGE We want to evaluate (3.2) in mean-
field approximation in the limit of vanishing fermionic ”classical” fields (ψ =
ψ = 0) and a constant scalar classical field (σ = σ0 = const), because this
prescription obviously yields the flow equation for the scalar potential. By
’mean-field’ we mean that the underlying propagator used to integrate out
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the fluctuations is independently of the scale k the classical propagator (just
like in standard perturbation theory). In our language, we want to evaluate
the ERGE applying the following truncation:

ΓF =

∫
ddq

(2π)d

[
− ψ(q)q/ ψ(q)

+

∫
ddp

(2π)d

(
ihΛψ(p)σ(p− q)ψ(q)

)]
. (6.17)

Remember that the structure of the truncation only constitutes the form of
the propagator used to integrate out fluctuations. The actual effective action
at the scale k gained from the flow equation in general contains arbitrarily
many operators. Therefore, the absence of the scalar potential in (6.17) does
not mean that there is not generated a scalar potential. The fluctuation
matrix, that follows from (6.17) (evaluated for a constant scalar background
field), reads

Γ
(2)
F,0(p, q) =

( −→
δ

δψT (−p)
−→
δ

δψ(p)

)
Γk

( ←−
δ

δψ(q)
,

←−
δ

δψ
T
(−q)

) ∣∣∣∣∣
σ=σ0

=

(
0 −p/ − ihΛσ0

−p/+ ihΛσ0 0

)
δp,q. (6.18)

The flow equation for the scalar potential then reads

∂t Uk,F = − 1

2
Tr

(
(∂tRF,k)

Γ
(2)
F,0 +RF,k

)
, (6.19)

the minus sign comes from the ’super-trace’. We can simplify (6.19) signifi-

cantly by making use of the fact that Γ
(2)
F,0 does not depend on k, which allows

us to exchange the trace and the derivative with respect to t (without having
to introduce the operator ∂̃t, which is defined to act only on the regulator),
yielding

∂t Uk,F = − 1

2
∂t Tr ln

(
Γ
(2)
F,0 +RF,k

)
, (6.20)
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which can be integrated straightforwardly:

UΛ,F − Uk,F = − 1

2

∫
ddq

(2π)d
tr ln

(
Γ
(2)
F,0 +RF,Λ

Γ
(2)
F,0 +RF,k

)

= − 1

2

∫
ddq

(2π)d
tr

[
ln

(
(−q/+RF,Λ(q) + ihΛσ0)

(−q/+RF,k(q) + ihΛσ0)

)

+ ln

(
qT/ +RF,Λ(−q) + ihΛσ0
qT/ +RF,k(−q) + ihΛσ0

)]
. (6.21)

Here we have decomposed the symbolic trace Tr into its momentum space
and Dirac space parts. In the second line we have inserted (6.18) and
used that Tr ln is equivalent to ln det. Now, we specify the regulator as

RF,k(q) = −q/ rF,k(q) with the linear cut-off function q2
(
1 + rF,k(q)

)2
=

q2
[
1 + (k

2

q2
− 1)Θ(1 − q2

k2
)
]
. We evaluate the Dirac traces and exploit the

spherical symmetry of the integrand, while setting d = 4. Then, we get

UΛ,F − Uk,F = − 1

4π

[∫ Λ

0

dp p3 ln

(
1 +

h2Λσ
2
0

Λ2

)

−
∫ k

0

dp p3 ln

(
1 +

h2Λσ
2
0

k2

)
(6.22)

−
∫ Λ

k

dp p3 ln

(
1 +

h2Λσ
2
0

p2

)]
.

Observe that the special choice of the regulator limits the range of integration
to the cut-off Λ. Thus, the integrations can be performed without problems,
and we end up with

Uk,F = UΛ,F +
1

16π2

[
(k2 − Λ2) h2Λσ

2
0 + h4Λ σ

4
0 ln

(
Λ2 + h2Λσ

2
0

k2 + h2Λσ
2
0

)]
. (6.23)

Switching to the dimensionless quantities uk = Uk/k
4 and ρ̃ = 1

2
σ2
0/k

2, our
final result reads

uk,F =
UΛ,F

k4
+

1

16π2

[
2

(
1− Λ2

k2

)
h2Λρ̃+ 4h4Λρ̃

2 ln

(
Λ2

k2
+ 2h2Λρ̃

1 + 2h2Λρ̃

)]
. (6.24)
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It is worth the time to analyze (6.24) in a little bit more detail. If we expand
the RHS in ρ̃, assuming UΛ,F = m2

Λ ρ+ λΛ ρ
2 + ..., we get

uk,F =

(
Λ2

k2

[
m2

Λ

Λ2
− h2Λ

8π2

]
+

h2Λ
8π2

)
ρ̃+

(
λΛ −

h4Λ ln k
Λ

2π2

)
ρ̃2 + ... (6.25)

From this we can see two properties of the flow:
First, we realize that we have to fine-tune the term in the square brackets,
if we want to keep the mass parameter small over many scales. This can be

achieved by choosing
m2

Λ

Λ2 ≈ h2Λ
8π2 . More concretely speaking, if we want to end

up at the scale k with a particular mass parameter εk (uk := εk ρ̃+λk ρ̃
2+ ...),

we have to choose
m2

Λ

Λ2
=
k2

Λ2
εk +

h2Λ
8π2

. (6.26)

As our numerics should be in perfect agreement with (6.24), we expect that
our fine-tuned numerical cut-off mass parameter and the corresponding inte-
grated out mass parameter should fulfill (6.26).
Second, we can see that in the approximation under consideration the φ4

coupling λk should flow linearly in t = ln k
Λ
.

Comparison with numerics Feeding the potential flow equation with a
constant Yukawa coupling and a vanishing fermionic anomalous dimension
and neglecting the contribution of scalar fluctuations, we run the appropri-
ately fixed binary with a starting potential uΛ = a ρ + 0.5 ρ2 and a large,
non-perturbative Yukawa-coupling hΛ = 10. We use a non-free starting po-
tential uΛ for reasons of numerical stability. But we want to stress once more
that in this investigation the choice of the cut-off potential does not have
an influence on the process of integrating out the fluctuations. We choose a
large Yukawa coupling, because then the effects of the fluctuations on the ir-
relevant operators are best visible. For this setting, we find a stable ’scaling’
flow for the choice a = 0.12... (such that the flow passes several scales before
it freezes out). The result can be seen in Figure 6.6. We can see immediately
that the linear flow of the φ4 coupling is reproduced perfectly, including the
slope. We could check the flow of the relevant respectively marginal parame-
ters ε and λ in more detail, but as we are mostly interested in the behaviour
of the irrelevant components of the potential, we leave it aside. We only
point out that we get indeed very good agreement with (6.26). As the fine-
tuning is sensitive to numerical accuracy, we must not expect a priori that we
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Figure 6.6: Numerical RG flow of the fermionically induced effective av-
erage potential in Mean-Field Approximation with starting potential uk =
0.12... ρ̃+ 0.5 ρ̃ 2 and h2Λ = h2k = 10.

find the same integrated-out mass parameter, if we feed our analytic solution
(6.24) with the numerical cut-off mass parameter. The fact that our numer-
ics is in very good agreement with (6.26) therefore proves that the effects of
the limitations of our implementation are negligible. As the mass parameter
is the one most sensitive to slight deviations, it is justified to extend this
statement to the flow of the potential as a whole. We remark that in the
region between four and five integration scales the mass parameter ends to
be well fine-tuned, starting its ”escape” into the symmetric regime. This
means that the theory does not end up with a vacuum expectation value for
this particular choice of the cut-off mass parameter.
The analytical prediction of the flow of the potential according to (6.24) with
the same cut-off parameters inserted can be seen in Figure 6.7. Now we com-
pare the analytical and the numerical prediction for the potential at three
different scales: at 10−2Λ,10−4Λ and 10−5Λ. We do this by transforming our
numerical results, which are given in v(r), back to u(ρ). The superposition
can be seen in Figure 6.8. In order to see the importance of the irrelevant
operators, we included the purely quadratic part of the analytic solution, i.e.
the Taylor expansion up to second order.
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Figure 6.7: Analytical RG flow of the fermionically induced effective av-
erage potential in Mean-Field Approximation with starting potential uk =
0.12... ρ̃+ 0.5 ρ̃ 2 and h2Λ = h2k = 10.

We see that the analytical and the numerical solution match perfectly! Our
approach proves to be able to reproduce the flow of the potential globally.
The explicit error given by the discrepancy between the analytical and the
numerical solution is depicted on the right hand side in Figure 6.8. The
relative error ∆u/u is of order 10−5 and – even more importantly – remains
constant in the course of the flow.
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Figure 6.8: Comparison of the analytically and numerically gained fermioni-
cally induced effective average potential in Mean-Field Approximation with
starting potential uk = 0.12... ρ̃+0.5 ρ̃ 2 and h2Λ = h2k = 10. The plots on the
right hand side depict the difference between the numerical and the analytical
solution. As can be seen, they are in very good agreement.
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Chapter 7

Numerical evaluation

We finally come to the actual issue of this work, the determination of bounds
on the Higgs mass in our Toy Model. We show that bounds on the Higgs mass
are a direct consequence of the RG flow itself; no further physical or other
artificial assumptions have to be imposed. Before we explain our procedure
of attaining the bounds, we first demonstrate once more the cause of the
seeming instability, which was only briefly sketched in the introduction. We
make use of the fermionically induced scalar potential, which was determined
in the last chapter. For this simple example, we will give the explicit steps,
following Ref. [20]. This makes the occurrence of the seeming instability and
its falsity most transparent. After this section we describe the procedure
which we follow in order to get the bounds from our numerics. Eventually,
we will display our results.

7.1 . . . there is no instability!

Starting from the fermionically induced scalar potential (6.23), we derive the
seeming instability, which results from using the renormalized potential in
regions of σ, where it is not applicable, anymore. We remind the reader that
our Toy-SM is considered to be valid only up to a UV cut-off scale Λ. Since
we are only interested in the fully integrated-out theory, we first set k = 0.

Next, we assume UΛ =
m2

Λ

2
σ2 + λΛ

24
σ4, which is convenient, since these are

exactly the operators that correspond to counterterms, later on. Thus, we
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have

U =
m2

Λ

2
σ2 +

λΛ
24

σ4 − 1

16 π2

[
Λ2 h2Λ σ

2 − h4Λ σ4 ln

(
Λ2 + h2Λ σ

2

h2Λσ
2

)]
. (7.1)

We can immediately state that (7.1) is stable over the whole range where it
is defined. Note that the particular shape of the potential depends on the
chosen regulator, which is in our case a linear cut-off rather than a sharp
cut-off. This is of no harm, since the argument only relies on the use of a
general momentum space regulator. After expanding the RHS of (7.1) in
powers of σ

Λ
and neglecting terms which are suppressed by negative powers

of Λ, we get

U =
m2

Λ

2
σ2 +

λΛ
24

σ4 − 1

16 π2

[
Λ2 h2Λ σ

2 − h4Λ σ4 ln

(
Λ2

h2Λ σ
2

)]
+O( 1

Λ2
).

We now move from bare to renormalized perturbation theory by defining

m2
Λ = m2

µ + δm2,

λΛ = λµ + δλ.

We neglect the renormalization of the Yukawa coupling in this simple inves-
tigation, h2Λ = h2µ, since it is irrelevant for the line of argument. We get

U =
m2
µ

2
σ2+

δm2

2
σ2+

λµ
24

σ4+
δλ

24
σ4− 1

16 π2

[
Λ2 h2µ σ

2 − h4µ σ4 ln

(
Λ2

h2µ σ
2

)]
.

The divergent parts of the counterterms thus read

δm2 =
Λ2 h2µ
8 π2

+O(1),

δλ =
3 h4µ
2 π2

ln

(
µ2

Λ2

)
+O(1),

and we end up with

U =
m2
µ

2
σ2 +

λµ
24

σ4 −
h4µ σ

4

16 π2
ln

(
h2µ σ

2

µ2

)
+O(1).

Since we want to discuss the potential at its minimum, it is convenient to
choose the finite parts of δm2 and δλ such that the minimum is fixed at its
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classical value v2 = −6m2
v

λv
(Coleman-Weinberg renormalization conditions

[29]). We then have

U =
m2
v

2
σ2 +

λv
24
σ4 − h4v σ

4

16 π2

(
ln
σ2

v2
− 3

2

)
− h4v v

2

8 π2
σ2. (7.2)

(7.2) commonly is believed to be a good approximation as long as

λv ≪ 1 , hv ≪ 1, (7.3)

and ∣∣∣∣
h4v σ

4

16 π2
ln
σ2

v2

∣∣∣∣≪ 1. (7.4)

By choosing λv and hv to fulfill both (7.3) and the additional condition

λv =
3 h4v
4 π2

, (7.5)

and considering σ such that

ln
σ2

v2
= 2, (7.6)

we find from (7.2) that
U(σ) < U(v).

Since σ fulfills (7.4), one would conclude that (7.2) is still valid at σ and that
we thus have proven the existence of the instability. We now show that this
is not the case.

By application of (7.5) and (7.6) one finds that

λv +
3 h4v
2 π2

ln
v2

σ2 < 0.

This can be rewritten as inequality for the bare coupling λΛ, when remem-
bering that the bare and the renormalized coupling are connected by

λΛ = λv −
3 h4v
2 π2

ln
Λ2

v2
.

We get

λΛ +
3 h4v
2 π2

ln
Λ2

σ2 < 0. (7.7)
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But since we have to demand λΛ > 0 for the theory to be physically sensible,
(7.7) can only be valid for

Λ2

σ
6 1.

Thus, σ has to lie beyond the region of validity of our potential. We conclude
that the set of conditions (7.3) and (7.4) is not complete but has to be read
together with the constraints λΛ > 0 and σ 6 Λ. It turns out that this result
can be generalized to the stronger statement that the parameter space for
renormalized potentials that develop an instability is not connected to the
allowed parameter space of bare quantities by a valid RG evolution.

7.2 Attaining the bounds

Our numerics in general is able to determine the flow of our Toy Model trun-
cation for an arbitrarily chosen cut-off potential. Nevertheless, we restrict

us to a quartic (dimensionless) starting potential uΛ(ρ̃) =
m2

Λ

Λ2 ρ̃ + λΛρ̃
2. We

will argue later that this indeed does not mean a loss of generality, as long
as we are still in the universality class of the Gaussian fixed point. The re-
striction to a quartic potential allows for a systematic scanning of the bare
parameter space. In order to get a non-trivial flow over many scales, we have
to fine-tune the starting potential, such that the relevant component is only
slightly excited and remains small over several scales. In the vicinity of the
Gaussian fixed point, where naive dimensional analysis is valid, the RG direc-
tion corresponding to the mass parameter is known to be almost parallel to
the relevant eigendirection. It turns out that the mass parameter keeps this
property also in non-perturbative regions, at least in our model. We therefore
choose it best to be our tuning parameter. As long as the flow is still well
fine-tuned, we have the dimensionless potential flow, since then the strong
radiative corrections are at least partially compensated by the dimensional
flow of the parameters. When the relevant (masslike) component ceases to
be fine-tuned and starts to grow exponentially, the radiative corrections be-
come suppressed by the generated mass scales and the dimensional scaling
dominates the flow of the parameters. This dimensional running threatens to
spoil the numerical flow in dimensionless form. Thus, we switch at the onset
of the freeze-out to the fixed-scale flow, which then flows ever less and finally
stops. We end up at the integrated-out potential in units of the freeze-out
scale. Hence, the flow yields a mapping from the space of the bare param-
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eters mk=Λ, λk=Λ (all higher coefficients of the bare potential vanish) and
hk=Λ onto the space of the renormalized parameters ǔk=0 and hk=0.
Since we want to mimic the Standard Model, we have to make sure that
we only evaluate trajectories that end up at the correct vacuum expectation
value and the correct top mass. This yields constraints to the bare parameter
space. In addition, we also would wish to control the cut-off Λ. Actually, the
constraint on the vacuum expectation value is easy to fulfill: we just demand
the freeze-out scale Λfo to be such that the integrated-out vacuum expecta-
tion value v, which our numerics provides in units of the freeze-out scale,
comes out correctly. For κ = 1

2
v2/Λ2

fo being the position of the minimum of
the integrated-out fixed-scale potential, we have

Λfo =
v√
2κ
,

where we use the SM value v = 247 GeV. Of course, the freeze-out scale is
only an auxiliary quantity that mediates the relation between v and Λ. It
drops out of the final result and no physical quantity depends on it. By fixing
the freeze-out scale, we also determine the cut-off Λ, which follows from

Λ = 10 diS × Λfo,

where diS is the number of dimensionless integrated scales. diS is a result
of the amount of fine-tuning and thus under our control. But the freeze-out
scale, being a result of the overall flow, is no trivial function of the bare
paramaters, and therefore can only be determined a posteriori. The same
holds for the top mass, which follows from

mt = v h.

The Yukawa coupling h has to end up at h = mt/v = 178GeV/247GeV in
order to yield the correct top mass. Again, we cannot a priori determine cut-
off parameters that guarantee the correct outcome of the Yukawa coupling.

At the end of the day, we want to give the Higgs mass mH as a function
of the bare φ4 coupling λΛ for a fixed cut-off Λ and the physical top mass
mt = 178 GeV. The Higgs mass is extracted from the flow according to

mH = v
√
ǔ′′(κ),

where ǔ′′(κ) is the curvature of the integrated-out fixed-scale potential eval-
uated at its minimum κ. Since we cannot fix the outcome of the cut-off
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and the Yukawa coupling a priori, we follow the strategy to scan the bare
parameter space in the vicinity of the bare parameters that would yield the
correct top mass and the desired cut-off. If we are sufficiently close to the
desired physical parameters, say within a few percent, an interpolation of
this data yields a three-dimensional hyper surface in the space spanned by
mt, Λ, λΛ and mH , which we denote by mH(λΛ,Λ, mt). This interpolating
function then can be evaluated at the correct top mass and the desired cut-
off, yielding mH(λΛ). We make this investigation over a wide range of λΛ,
such that the asymptotic behaviour for λΛ →∞ and λΛ → 0 can be deduced
from our data. This finally yields the striven upper and lower bound to the
Higgs mass for a given cut-off Λ.1

Does the restriction to a φ4 cut-off potential mean a loss of gener-

ality? We want to consider the bounds gained from the procedure outlined
above as universally valid, for any arbitrarily chosen cut-off potential. But
how can we be sure that there does not exist any complicated non-quartic
cut-off potential that bursts our bounds gained from quartic cut-off poten-
tials? The point is that the particular composition of the cut-off potential is
not relevant for the outcoming of the flow in the IR, as long as we are still
in the universality class of the Gaussian fixed point. The latter is charac-
terized by the existence of exactly one relevant (repulsive) and one marginal
eigendirection. The only important properties of the cut-off potential are the
excitations of those two components, since all irrelevant directions die out
quickly under the flow. Thus, we only have to make sure that our cut-off po-
tential is able to reach any point in this two-dimensional subspace. But this
is just achieved by the choice of the quartic starting potential, as long as we
can be sure that the overlap of the mass operator and the φ4 operator with
the relevant and the marginal direction is still finite. One might argue that
the non-quartic operators of an arbitrary cut-off potential should in general
modify the IR result. This is surely true for a particular cut-off potential.
But we are only interested in the IR results possible at all, no matter from
which cut-off potential they emerge. Then, it can be stated that we find
for any arbitrary cut-off potential an ”equivalent” quartic potential, in the
sense that it yields the same IR results. Of course, for a finite cut-off Λ,
this holds up to corrections that are supressed by negative powers of Λ. For

1For a quartic cut-off potential, only positive values of λΛ are physically sensible. Hence,
it suffices to consider the range of positive φ4 couplings.
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instance, if new physics is just around the corner near the electroweak scale
mEW . Λ, strongly excited irrelevant directions can substantially modify the
Higgs-mass bounds. As a final caveat, let us emphasize that our study so
far rests on the assumption that only the Gaussian fixed point is related to
a physically relevant universality class. If another universality class poten-
tially connected to a strong-coupling fixed point existed, the conclusions for
the validity bounds of the SM could be very different. However, so far we
have not discovered any sign of such a universality class.

7.3 Results

We focus on three different scales for the cut-off Λ: Λ = O(106GeV),
Λ = O(107GeV) and Λ = O(108GeV). This is an interval in cut-off pa-
rameter space, which on the one hand guarantees a sufficiently long flow (in
RG ”time”) to strongly suppress irrelevant directions, and on the other hand
is numerically directly accessible by a single fine-tuning procedure. Higher
cut-off will require successive fine-tuning, as discussed in Chapter 5. For a
fixed bare φ4 coupling λΛ, we choose several bare masses and bare Yukawa
couplings such that the resulting top masses and cut-offs are in the vicinity
of the physical top mass and the considered cut-off, respectively. For the
mass parameter in the potential fine-tuning is necessary. We consider a wide
range of φ4 couplings over 5 scales, 10−3 6 λΛ 6 102. It turns out to be
problematic when trying to interpolate the collected data mH,i(λΛ,i,Λi, mt,i)
in full generality. Thus, we reduce the number of dimensions step by step.
First, we project onto the hyper plane defined by the physical top mass
by separate interpolation within each subspace of a particular φ4 coupling:
mH,j(λΛ,fixed,Λj, mt,j) → mH,k(λΛ,fixed,Λk, 178GeV). Next, we interpolate
the resulting data in its Λ dependence, again for each φ4 coupling separately:
mH,k(λΛ,fixed,Λk, 178GeV)→ mapprox

H (λΛ,fixed,Λ, 178GeV). These interpolat-
ing functions then can all be evaluated at the same cut-off values; we choose
Λ = 3.16 106GeV, Λ = 3.16 107GeV and Λ = 3.16 108GeV. The resulting
plots for the different cut-off scales are displayed in Figure 7.1. One sees
immediately the asymptotic behaviour in the limit of vanishing φ4 coupling.
The lower bounds to the Higgs mass can be read off directly:
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Figure 7.1: The Higgs mass as function of the φ4 coupling for cut-off values
Λ = 3.16 106, 3.16 107, 3.16 108GeV; the top mass is fixed to its physical value
mt = 178GeV.

Λ mH,min

3.16 106 GeV 131 GeV
3.16 107 GeV 138 GeV
3.16 108 GeV 157 GeV

For the lower bound at Λ = 3.16 108 GeV we took the Higgs mass at log λ =
−2. The slight increase of the Higgs mass at log λ = −3 is unexpected;
we account it for the numerical inaccuracy of our calculations and use the
discrepancy between the two values as error estimate: ∆mH,min ≈ 3GeV.

The upper bounds we get by extrapolating our data towards arbitrarily
large φ4 couplings. We fit the three largest λ values assuming a log-powerlike
approach towards the asymptotic value,

mH(log λ) = mH,max −
a

log λ
− b

(log λ)2
+ . . . ,

mH,max, a and b being the fitting parameters. We get:
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Figure 7.2: Upper and lower bounds to the Higgs mass as function of the
cut-off (the interpolating lines are just to guide the eye).

Λ mH,max

3.16 106 GeV 498 GeV
3.16 107 GeV 375 GeV
3.16 108 GeV 335 GeV

Eventually, we display our final result, the upper and lower bounds to the
Higgs mass as functions of the cut-off in the range of our investigation; see
Figure 7.2. In view of Figure 7.1 and Figure 7.2, we obviously reached our
goal of finding upper and lower bounds to the Higgs mass. The important
point is that we did not have to impose any kind of further physical assump-
tions, as was done in previous investigations of this issue. We showed that
the bounds emerge naturally from the RG evolution of the couplings. Un-
fortunately, so far there are no competing determinations of the Higgs mass
bounds in just the same Toy Model; Branchina and Faivre give the bounds
following from their criterion based on the inflection point only for the Stan-
dard Model itself [20], whereas Holland investigates the Toy Model on the
lattice only for NF = 8 fermion flavors [19]. We therefore do not have a base
for quantitative comparison, so far. The evaluation of the Toy Model with
the competing approaches could be the objective for further investigations.
At least, we can state that the qualitative evolution of the bounds with the
cut-off meets expectation, which can be seen by comparison with the SM
bounds depicted in [19].
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Chapter 8

Conclusions and outlook

Let us first summarize our calculations. Motivated by the need for prop-
erly deriving upper and lower bounds for the mass of the Higgs particle for
a given cut-off, we have investigated a Higgs-Yukawa Toy Model using a
functional renormalization group equation. By ”boxing” the scalar effective
potential and interpolating the transformed potential with Chebyshev poly-
nomials, we have achieved a global description of the potential. Allowing
for arbitrary cut-off parameters, but demanding that the IR results yield the
correct Standard Model vacuum expectation value and the correct top mass,
we find that the RG evolution indeed restricts the possible IR Higgs masses
to a finite interval. This finite interval represents the set of renormalized pa-
rameters accessible from RG flows which start from all possible relevant and
marginal bare parameters. The evolution of the bounds with the cut-off con-
firms qualitatively and thus justifies the evolution derived for the standard
model in previous investigations, which have partly been based on erroneous
assumptions.

Unfortunately, a quantitative comparison to competing determinations
of the Higgs mass bounds cannot meaningfully be performed at this stage
owing to the Toy-model nature of our system. Thus, it should be our most
urgent objective to extend our results from the Higgs-Yukawa Toy Model to
the Standard Model itself. This can be achieved by including the contribu-
tions from the neglected components perturbatively. So far, we can state
that, given our Toy Model is a valid approximation to the Standard Model
with respect to the qualitative properties of the scalar effective potential,
there indeed exist bounds for the SM Higgs mass. In contrast to many ear-
lier studies, these bounds follow from the RG evolution itself and do not
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have to rely on additional assumptions, validity bounds of the calculational
technique, or unphysical instability scenarios.

Another important point for further investigations, of course, should be
to extend the bounds to a wider range in cut-off parameter space. By now,
we did not make use of the procedure of successive fine-tuning, as discussed
in Chapter 5. Employing this strategy, it would be desirable to get as far as
to the Planck scale.

Also, the numerical calculations in this work are exclusively based on the
use of linear cut-off functions. Since the approximation of the ERGE causes a
regulator dependence of the results, our bounds on the Higgs mass are regu-
lator dependent and thus inherently non-universal. Within the flow equation
framework, the regulator dependence can conveniently be studied with the
aid of different regulator functions Rk. From optimization considerations, we
expect that the present results using the linear regulator mark one extreme
of the band of regulator dependencies. The other end may be given by the
”sharp” cut-off. Confirming this presumption and determining the resuling
error estimate would be desirable.

Our numerical approach is capable to deal with arbitrary cut-off poten-
tials. Nevertheless, our investigation was restricted to quartic cut-off po-
tentials. This was justified by the assumption that our flow is always gov-
erned by the Gaussian fixed point. It would be most interesting to check if
this assumption is indeed valid for arbitrarily chosen cut-off potentials. The
potential discovery of a strong-interaction non-Gaussian fixed point would
constitute a new universality class. This could offer a new route to the ”triv-
iality” and the hierarchy problem.
Finally, we could investigate cut-off potentials with multiple minima. The
non-existence of the instability scenario then should be constructively verifi-
able by showing the merging of the minima to at most one.
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Appendix A

Threshold functions

In this appendix we provide explicit expressions for the threshold integrals
introduced in the previous chapters. Our references are [30], [31] and [26].

A.1 General definitions

With the abbreviations

P (q) = q2
(
1 + rk,B(q)

)

PF (q) = q2
(
1 + rk,F (q)

)2

v−1d = 2d+1 πd/2 Γ(d/2),
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the threshold integrals read

ldn(ω; ησ) =
n+ δn,0

4
v−1d k2n−d

∫
ddq

(2π)d

×
{(

1

Zσ

∂Rk(q)

∂t

) (
P (q) + ωk2

)−(n+1)
}

l(F ) d
n (ω; ηψ) =

n+ δn,0
2

v−1d k2n−d
∫

ddq

(2π)d

×
{

PF (q)

1 + rk,F (q)

(
1

Zψ,k

∂ [Zψ,krk,F ]

∂t

) (
PF (q) + ω k2

)−(n+1)
}

l(FB) d
n1,n2

(ω1, ω2; ηψ, ησ) = −1
4
v−1d k2(n1+n2)−d

∫
ddq

(2π)2

× ∂̃t
{

1

[PF (q) + k2ω1]
n1 [P (q) + k2ω2]

n2

}

md
n1,n2

(ω1, ω2; ησ) = −1
4
v−1d k2(n1+n2−1)−d

∫
ddq

(2π)d
q2

× ∂̃t





(
∂
∂q2

P (q)
)

[P (q) + k2 ω1]
n1

(
∂
∂q2

P (q)
)

[P (q) + k2 ω2]
n1





m
(F ) d
4 (ω; ησ) = −1

4
v−1d k4−d

∫
ddq

(2π)d
q4

× ∂̃t
{

∂

∂q2
1 + rk,F (q)

PF (q) + k2 ω

}2

m
(F ) d
2 (ω; ηψ) = −1

4
v−1d k6−d

∫
ddq

(2π)d
q2

× ∂̃t





(
∂
∂q2

PF (q)
)

[PF (q) + k2 ω]2





2

m(FB) d
n1,n2

(ω1, ω2; ηψ, ησ) = −1
4
v−1d k2(n1+n2−1)−d

∫
ddq

(2π)d
q2

× ∂̃t





1 + rk,F (q)

[PF (q) + k2 ω1]
n1

(
∂
∂q2

P (q)
)

[P (q) + k2 ω2]
n2



 .
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A.2 Linear cut-off applied

For the linear cut-off functions

rlink,B(q) =
(
k2/q2 − 1

)
Θ
(
1− q2/k2

)
(
1 + rlink,B(q)

)
=

(
1 + rlink,F (q)

)2
,

the integrations can be performed analytically – an enormous advantage for
the involved numerics. We obtain

ldn(ω; ησ) =
2 (δn,0 + n)

d

(
1− ησ

d+ 2

)
1

(1 + ω)n+1

l(F ) d
n (ω; ηψ) =

2 (δn,0 + n)

d

(
1− ηψ

d+ 1

)
1

(1 + ω)n+1

l(FB) d
n1,n2

(ω1, ω2; ηψ, ησ) =
2

d

1

(1 + ω1)n1 (1 + ω2)n2
×

×
{

n1

1 + ω1

(
1− ηψ

d+ 1

)
+

n2

1 + ω2

(
1− ησ

d+ 2

)}

md
n1,n2

(ω1, ω2; ησ) =
1

(1 + ω1)n1 (1 + ω2)n2

m
(F ) d
4 (ω; ηψ) =

1

(1 + ω)4
+

1− ηψ
d− 2

1

(1 + ω)3

−
(
1− ηψ
2 d− 4

+
1

4

)
1

(1 + ω)2

m
(F ) d
2 (ω; ηψ) =

1

(1 + ω)4

m(FB) d
n1,n2

(ω1, ω2; ηψ, ησ) =

(
1− ησ

d+ 1

)
1

(1 + ω1)n1(1 + ω2)n2
.
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Appendix B

Transformed potential flow

equation

We apply our ’boxing’ transformation rules (5.1) and (5.2) to the flow equa-
tion for the potential (4.11). This yields

∂tvk = −d (1− v2k) arctanh vk − (d− 2 + ησ) (1− r) ln(1− r) v′k
+2 vd α (1− v2k)

[
ld0(ω1; ησ)− dγ l(F )d

0 (ω2; ηψ)
]

−2vd α (1− v2k)
[
ld0(ω3; ησ)− dγ l(F )d

0 (0; ηψ)
]
,

with

ω1 =
(1− r) v′k β
α (1− v2k)

− 4 vk β (1− r)2 ln(1− r) v′ 2k
α (1− v2k)2

+
2 β (1− r) ln(1− r) v′k

α (1− v2k)
− 2 β (1− r)2 ln(1− r) v′′k

α (1− v2k)

ω2 = − 2

β
h2k ln(1− r)

ω3 =
β v′k(0)

α
(
1− v2k(0)

) ,

where the primes denote derivatives with respect to r.
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Appendix C

Chebyshev polynomials

We give a short introduction into definition and fundamental properties of
the Chebyshev polynomials. Our reference is [32].

The Chebyshev polynomials Tn(x) can be defined as the set of polynomials
being orthogonal in the interval [-1,1] over the weight (1− x2)−1/2:

∫ 1

−1

Ti(x)Tj(x)√
1− x2

=





0 i 6= j
π/2 i = j 6= 0
π i = j = 0

.

They are given by the explicit formula

Tn(x) = cos(n arccosx),

which yields for the first few polynomials

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1.
...

The polynomial Tn(x) has n zeros in the interval [-1,1], and they are located
at the points

x = cos

(
π(k − 1

2
)

n

)
k = 1, 2, ..., n.
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The Chebyshev approximation of some arbitrary function f(x) in the interval
[-1,1] is given by

f(x) ≈
[
N−1∑

k=0

ckTk(x)

]
− 1

2
c0,

where the N coefficients are defined by

cj =
2

N

N∑

k=1

f(xk)Tj(xk)

=
2

N

N∑

k=1

f

[
cos

(
π(k − 1

2
)

N

)]
cos

(
πj(k − 1

2
)

N

)
.

Note that these coefficients are attained by evaluating f(x) at the zeros of
the N ’th Chebyshev polynomial.
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