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Abstract

A Quantum Field Theoretical treatment of �uctuating �elds in the
presence of boundaries is reviewed and applied to Casimir-Polder type
problems. The focus of the investigations lies on the calculation of the
�uctuation-induced potential for the case of arbitrarily shaped sur-
faces. We discuss two possible non-perturbative calculation schemes.
First, the standard Casimir-Polder result for an atom in front of a
conducting plane is rederived within the �eld theoretical treatment
through the use of a thinning process, and possible extensions to struc-
tured surfaces are discussed. The second approach considers the in-
duced potentials of a Dirichlet scalar �eld in the case of a sphere-surface
con�guration. We calculate the potential in the limit of a �at plane
and derive an expression for the Casimir energy that allows for an easy
numerical evaluation of the potential in cases of uniaxially corrugated
surfaces. Finally we present numerical results on the Casimir-Polder
potential for a one-dimensional sinusoidal corrugation.

Ein Überblick über die Beschreibung �uktuierender Felder unter
Ein�uss externer Randbedingungen wird gegeben und auf die Behand-
lung von Casimir-Polder Problemen angewendet. Der Schwerpunkt der
Betrachtungen liegt auf der Berechnung �uktuationsinduzierter Poten-
ziale für nichtplanare Ober�ächen. Wir betrachten zwei nichtpertur-
bative Berechnungsschemata. Zunächst wird die gewöhnliche Casmir-
Polder Formel für ein Atom vor einer �achen Leiterober�äche im Rah-
men des Formalismus durch einen Ausdünnungsprozess hergeleitet und
die Erweiterung auf strukturierte Ober�ächen wird diskutiert. An-
schliessend werden die induzierten Energien für ein skalares Dirichlet
Feld in einer Kugel-Platte Anordnung besprochen. Wir berechnen das
Potenzial im Falle einer �achen Platte und leiten einen Ausdruck her,
der eine einfache Bestimmung der Casimir-Polder Kräfte für uniaxial
strukturierte Ober�ächen erlaubt. Zuletzt präsentieren wir numerische
Resultate für den Fall einer eindimensionalen, sinusoidalen Korruga-
tion.
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1 Introduction

The general notion of vacuum is just a volume purged of particles. In classical
physics, nothing interesting is expected to happen there.

In contrast, when speaking of a quantum vacuum, basically two e�ects
come into play that belong to the cornerstones of modern physics. Roughly
spoken we know, thanks to Heisenberg, that energy can �uctuate consid-
erably over short instances of time. These �uctuations can, according to
Einstein, manifest themselves as particles, which previously were not there.
It is possible to disturb these �uctuations systematically in order to test
and extend our knowledge of the physical laws that hold in these systems.
Thus, the classical notion of vacuum is overthrown and a vast �eld of new
phenomena opens up for inspection.

Consider, for example, two in�nitely large and ideally conducting sur-
faces that are aligned in parallel in vacuum at zero temperature. Photons
that emerge between the plates have to obey certain boundary conditions
dictated by Maxwell's equations. The allowed number of �uctuation modes
is thus restricted in between the surfaces whilst on the outside the number
of permissible modes is higher.

For these reasons, we expect an attractive force between two plates sep-
arated by a distance of H. The �rst analytical computation for this con�gu-
ration was performed by the Dutch physicist Hendrik Brugt Casimir in 1948
[1]. He predicted that those plates attract each other with a force per unit
plate area of1

F = − π2

240

~c
H4

. (1.1)

What preceded this ground-breaking result was a calculation that Casimir
had done together with Dirk Polder earlier in the same year [4]. Inspired
by a disagreement between experimental results and theoretical predictions
in context of the interaction between colloidal particles, Casimir and Polder
accounted for the e�ect of retardation in the London-van der Waals forces. By
means of perturbative Quantum Electrodynamics they found that a neutral
atom located at a distance r in front of a perfectly conducting plane is subject
to an interaction potential ∼ 1

r3
in the non-retarded regime, whereas in the

retarded regime the interaction falls of more quickly ∼ 1
r4
. The limit of both

regimes is included in an empirical formula for the Casimir-Polder potential

1Note that though this force quickly decreases with larger distances, for parallel plates
F amounts to an equivalent of approximately one atmospheric pressure at a separation of
about ten nanometers. The �rst experimental veri�cations of the Casimir force, however,
were done in the easier accessible con�guration of a sphere and a �at plate [2, 3].
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which can be written as

V (r) = − C4

r3(r + l)
, (1.2)

with l being the wavelength of the dominant dipole transition of the atom
and C4 a potential strength parameter.

Motivated by a discussion2 with Niels Bohr, Casimir then rederived his
result in a notably simpler way through the consideration of the shift in zero
point energy induced by the sheer presence of the atom and the plane [6].
Later he published his famous prediction for the case of parallel conducting
planes as described above and thereby founded a whole new area of research.

Nowadays forces that arise when quantum or classical3 �uctuations are
restricted by boundaries generally run under the name of Casimir forces.
Those forces play a role in very distinct research areas ranging from cos-
mology to biology and on to engineering4. They therefore invoke increasing
interest among experimentalists and theoreticians.

Extensive research on the subject of Casimir and Casimir-Polder forces
is now done on the correction and extension of Eqs. (1.1) and (1.2) for more
realistic conditions including e.g. non-zero temperature, �nite conductivity,
edge e�ects, and so forth. For general reviews on the subject, see for example
[5, 10, 11, 12, 13, 14].

In particular, the aim of this thesis is to get a better quantitative handle
on the geometrical implications of Casimir-Polder forces.

However, one should not be lead by the beautifully simple expressions of
(1.1) and (1.2) to believe that a generalization of these results to nontrivially
shaped boundaries is an easy task. Since the forces for �at segments are
well-known, it would seem to be a good starting point to just divide the
arbitrarily shaped objects into small segments and sum over the forces that
act between them when the curvature of the objects is small compared to
their separation.

Yet in fact �uctuation induced forces are inherently non-additive. There-
fore this is an approximation which often does not do justice to the exper-
imental results. Going beyond this method known as Proximity Force Ap-

2Discussion maybe is not quite the right word. It is passed down from Casimir's notes
that Bohr only mumbled something about the connection to zero point energy [5]. But
already this put Casimir on the right track.

3A classical Casimir force can for example emerge from density �uctuations in liquids
[7] and has only recently been directly observed [8].

4Since at the nano scale Casimir interactions become the dominant force for uncharged
conductors, a good understanding of these forces is needed in the fast-developing �eld of
Micro-Electro-Mechanical Systems (MEMS) [9].
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proximation (PFA) [15, 16] is therefore desired and advanced by the Casimir
community by the use of various techniques [17, 18, 19, 20, 21, 22, 23, 24, 25].

In particular, recent experimental results on Casimir-Polder potentials for
nano-structured surfaces induced us to study the possibilities of predicting
these interactions for nontrivial geometries.

In the Atomic Beam Spin Echo (ABSE)-apparatus here in Heidelberg,3He-
atoms were quantum re�ected [26, 27] from the attractive Casimir-Polder
potential between an atom and a structured plate [28]. Of particular interest
are the empirical potentials thus found for an aluminum sawtooth structure.

Adapting the notation of Eq. (1.2), the potentials could be written as

V (r) = − Cn
rn−1(r + l)

, (1.3)

which were extracted for three di�erent orientations of the incident beam
with respect to the periodic structure.

It was observed that the power n with which the potential decreases
depends on the incident angle of the atomic beam in the following way:

• along the ridges n = 6

• orthogonal to the ridges n = 5

• under a 45 degree angle with respect to the ridges n = 4 .

So far, there are no theoretical predictions ready to be compared to these re-
sults. In order to consider geometrical implications of Casimir-Polder forces,
methods of pairwise summation [29] or perturbative approximations [30] can
be used.

However, in the ABSE-scattering experiments interaction regions are
probed where the distance between the atom and the plate becomes com-
parable to the height of the sawteeth. Casimir-Polder calculations based
on perturbative approximations are therefore inapt for comparison with this
data and non-perturbative methods have to be reviewed and extended.
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2 Casimir forces for scalar �elds

2.1 Scalar �eld theory with boundaries

In the functional integral formulation of a Quantum Field Theory, almost all
quantities of interest can be extracted from a generating functional Z. This
is also true for Casimir forces between surfaces. Let us elaborate on this �rst
in the simplest scenario of a real-valued massless scalar �eld.

2.1.1 Casimir energy from a restricted partition function

In Euclidean QFT, Z for a massless scalar �eld φ in the absence of external
sources is de�ned as

Z =

∫
Dφ exp(−SE[φ]) , (2.1)

where after a Wick rotation5 to imaginary time the Euclidean action reads
SE = 1

2

∫
d4x (∂φ(x))2. Basically, in order to �nd the Casimir energy of a

system containing �uctuation boundaries, we have to calculate the ground
state energy of this system with the respective �uctuation restrictions ac-
counted for. Since this energy is in�nite, the �uctuation-induced energy of
the system without boundaries has to be subtracted to obtain a �nite-valued
result.

For these reasons, the Casimir energy of a system bounded by two plates
at (mean) separation H is obtained by solving

Ecas(H) = − ~c
TE

ln
ZB.C.
Z∞

, (2.2)

where ZB.C. stands for the generating functional of the �uctuating �eld obey-
ing the system's boundary conditions, whereas Z∞ represents the case of
in�nite separation between the objects (i.e. H → ∞). TE is the overall
length in Euclidean time direction which drops out upon the evaluation of
the logarithm as we will see shortly.

The force between the surfaces is consequently given by

Fcas(H) =
~c
TE
∂H ln

ZB.C.
Z∞

. (2.3)

The implementation of the boundary conditions for the �elds can be
achieved via the insertion of a δ-functional into Z which forces the �elds to
behave correctly on the surfaces. This method was �rst applied to Casimir-
type problems in [31].

5This implies for the time variable a rotation of t → tE/ı, where tE is called the
Euclidean time.



6 2 CASIMIR FORCES FOR SCALAR FIELDS

2.1.2 Dirichlet boundary conditions

Consider, for example, the most simple case of a �uctuating scalar �eld
obeying Dirichlet (D) boundary conditions on the surfaces. The Dirichlet
boundary conditions are simply φ (xα) = 0 for a 4-vector xα pointing onto a
surface Sα, with α labeling di�erent disjoint surfaces.

Hence, ZB.C. in the case of two plates case is given by

ZD =
1

Z0

∫
Dφ

2∏
α=1

∏
xα

δ (φ(xα)) exp (−SE) , (2.4)

where Z0 is a normalization factor of which we will make use later.
Now, in order to evaluate the integral over the �elds, the δ-functional can

be rewritten as its functional Fourier transform with the help of auxiliary
�elds ψα �living� on the plates [31, 32, 33, 34, 35]. This implies that they
vanish for all space-time points that do not lie on the plates .

Thus, using∏
xα

δ (φ (xα)) =

∫
Dψα exp

(
ı

∫
Sα

dxαψα(xα)φ(xα)

)
, (2.5)

Eq. (2.4) now reads:

ZD =
1

Z0

∫
Dφ

2∏
α=1

∫
Dψα exp

(
ı

∫
Sα

dxαψα(xα)φ(xα)

)
× exp

(
−1

2

∫
d4x(∂φ(x))2

)
. (2.6)

After rewriting the integral over the surfaces in the exponential in terms of
a 4-volume integral via∫

Sα

dxαψα(xα)φ(xα) =

∫
d4x

[∫
Sα

dxαδ
(4)(x− xα)ψα(xα)

]
φ(x) , (2.7)

the square in φ(x) in the exponential function can be completed and the
Gaussian integration

∫
Dφ can be carried out. The numerical value of the

integral is absorbed into the normalization Z0, which accounts for the value
of the integral over the unrestricted �elds.

The physics of the system is then contained in

ZD =
2∏

γ=1

∫
Dψγ(xγ) exp

[
−1

2

∑
α,β

∫
Sα

∫
Sβ

dxαdxβψα(xα)G(xα, xβ)ψβ(xβ)

]
,

(2.8)
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where G(xα, xβ) is the functional inverse of ∂2 evaluated on the plates. For
four-vectors x and x′, it is simply given by

G(x, x′) =
1

4π2

1

(x− x′)2
. (2.9)

Now all that remains is another Gaussian integration in terms of the
auxiliary �elds on the plates. De�ning a matrixM with elements

Mαβ = G(xα, xβ) , (2.10)

ZD becomes

ZD = (detM)−
1
2 (2.11)

and thus one �nds

lnZD = −1

2
tr lnM . (2.12)

Note that the determinant and the trace in Eqs. (2.11) and (2.12) have to be
evaluated with respect to the discrete plate indices as well as the continuous
space-time variables. Furthermore it should be emphasized that the space-
time integration still runs over the surfaces6.

Now consider again the expressions for the Casimir potential and force:
Eqs.(2.2) and (2.3). One sees that �uctuations not contributing to the
Casimir force are removed by the subtraction of the generating functional
for in�nite plate-plate separation Z∞.

By the calculations of the previous lines we now know that we can rewrite
the ratio of the restricted and unrestricted generating functionals as

ln
ZB.C.
Z∞

= −1

2
tr ln

M
M∞

. (2.13)

Thus, combining the result of Eq. (2.13) with (2.2) and (2.3), the Casimir
energy and force are �nally given by

Ecas(H) =
~c
TE

1

2
tr ln

M
M∞

Fcas(H) = − ~c
TE

∂H
1

2
tr ln

M
M∞

. (2.14)

In a system with only two surfaces as we will consider in the following,
the matrices determining the force explicitly read:

M =

 M11 M12

M21 M22

 (2.15)

6Note that this de�nition thus for example deviates from the quantity Γ as used in [32].
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and

M∞ =

 M11 0

0 M22

 . (2.16)

Note that the same calculational steps in principle also apply for Neu-
mann boundary conditions. The functional δ enforcing appropriate boundary
condition then reads

δ (∂nφ(xα)) = 0 , (2.17)

and the matrix elements of (2.14) are then given in terms of derivatives of
the Green's functions along the normal vectors of the surfaces:

Mαβ = ∂nα∂nβG(xα, xβ) . (2.18)

2.2 The �at plate scenario

2.2.1 Prerequisites

To get acquainted with the calculational steps that will be applied throughout
the thesis, we want to elaborate on the simplest thinkable scenario. We
present the case of two ideally conducting plates that are aligned in parallel
and separated by a distance H in order to reproduce Casimir's celebrated
result as given in Eq. (1.1).

This result of course considers the e�ect of electromagnetic interactions,
but for the case of two translationally invariant spatial directions, namely
the directions along the plates, the calculation can be performed in terms
of two scalar �elds obeying Dirichlet and Neumann boundary conditions,
respectively. This remains true even for only one translationally invariant
direction, i.e. uniaxially corrugated, ideally conducting surfaces.

To see this, one has to check that due to the symmetry of the problem the
initially six independent components of the electric and magnetic �eld in fact
can all be expressed in terms of two �eld components. This phenomenon is
well known from cylindrical waveguides [36]. As in the context of waveguides,
the independent �eld components are called transversal electric (TE) and
transversal magnetic (TM) modes and consequently the �elds are labeled
φTE and φTM.

Furthermore we note that for the case of �at plates the TE and TM modes
contribute equally to the Casimir force due to the symmetry of the setup.
Therefore the result of the calculation for only one scalar �eld just has to
be multiplied by a factor of two in order to obtain the correct value of the
force. This, however, is not longer true for non-planar surfaces and makes
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the calculation for uniaxially corrugated surfaces hard, though a calculation
in terms of scalar �elds is allowed.

In order to be able to evaluate the trace of the logarithm as given in Eq.
(2.14), we expand the logarithm into a series. For the trivial case of parallel
plates it will - as one expects - turn out, that the series terms are resummable
after the trace has been evaluated and yield the well-known analytical result.
For nontrivial geometries this will not be possible and in principle in�nitely
many terms would have to be taken into account in order to obtain exact
results.

For Casimir-Polder type problems though, the calculation will break down
to the evaluation of just one term of the logarithmic series. This obviously
reduces the calculational e�ort immensely. We will come to this in the next
chapters and explain how this comes about.

Now, as a �rst step in order to expand the logarithm in the expression
for the Casimir energy (2.14), we rewrite its argument as

MM−1
∞ =

 1 M−1
11M12

M−1
22M21 1

 = 1 + ∆M , (2.19)

where we de�ne the quantities:

∆M≡

 0 ∆M12

∆M21 0

 ≡
 0 M−1

11M12

M−1
22M21 0

 . (2.20)

We can thus rewrite the trace log expression appearing in (2.14) as

1

2
tr ln

M
M∞

= tr

(
∞∑
n=1

(−1)n−1

2n
∆Mn

)
. (2.21)

Obviously, due to the o�-diagonal structure of ∆M, terms with odd n do
not contribute since the trace vanishes there.

Note again that the trace is to be understood as the trace over the matrix
elements and the trace over the internal indices of the matrices ∆M12 and
∆M21 .

Consequently, it remains to evaluate

1

2
tr ln

M
M∞

=
∞∑
n=1

−1

4n
tr
(
(∆M)2n

)
, (2.22)

where (∆M)2 by de�nition is a diagonal matrix:

(∆M)2 =

 ∆M12∆M21 0

0 ∆M21∆M12

 . (2.23)
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Therefore Eq. (2.14) now reads

Ecas(H) = − ~c
TE

∞∑
n=1

1

4n
tr
(
(∆M)2n

)
Fcas(H) =

~c
TE

∞∑
n=1

1

4n
∂Htr

(
(∆M)2n

)
. (2.24)

Taking into account the cyclicity of the trace we see that the necessary
ingredient for the calculation of the Casimir energy and force is given by the
term

tr (∆M12∆M21) = tr
(
M−1

11M12M−1
22M21

)
(2.25)

and the corresponding traces of higher powers.

We would like to mention that this expression furthermore provides a
nice physical picture of what actually is computed to obtain the �uctuation-
induced forces: Starting from a generic point y on surface S1, it is summed
over all possible propagations on the surface itself, followed by all possible
propagations to the second surface S2, then generic propagations on S2 itself
and all thinkable ways back to S1 again. At last it is summed over all possible
starting points y. A cycle of induced propagations so to say7.

To see this more clearly one should not forget that the products in (2.25)
are only short-hand notation for the value of the integrations over the two
surfaces. Thus, Eq. (2.25) in the case of two �at surfaces reads∫

x

∫
x′

∫
x′′

∫
x′′′

× M−1
11 (x, x′)M12(x′, x′′)M−1

22 (x′′, x′′′)M21(x′′′, x)
∣∣
x3,x′3=0;x′′3 ,x

′′′
3 =H

. (2.26)

Here and from here on, we have changed the notation from xα to x =
(x0, x1, x2, x3) = (x, x3) and are thus suppressing the surface index on the
four-vectors for clarity. We have done this in order to not confuse the sur-
face index with the index referring to the component of the four-vector. The
x3-component is evaluated on the surfaces and only an integration over the
time direction and the two directions along the plates remain (i.e. along x).

7In Casimir problems, any order of successive cycles contributes to the overall potential.
However, as already mentioned, we will see that for Casimir-Polder problems the calcula-
tion of only one of these cycles su�ces. This is related to the fact that in a Casimir-Polder
problem the dimensionality of one surface is reduced and therefore propagations on this
surface do not contribute.



2.2 The �at plate scenario 11

2.2.2 Position space

Let us now derive the expressions needed for the calculation of the propa-
gation cycle in Eq. (2.25) explicitly. Even though the calculation is by far
easier in momentum space (see section 2.2.3), the coordinate space calcula-
tion generalizes more straight forwardly to non-planar surfaces. Therefore
the expressions derived here will come in handy in section 4, where we will
consider the propagators in the setup of a planar surface and a sphere.

The functional inverse of M11 and M22 on a �at surface is just the
operator D which, for x = (x0, x1,, x2), satis�es:

D
(

1

4π2x

)
= δ(x) . (2.27)

The solution to Eq. (2.27) is

D = 2
√
−∇2 , (2.28)

where ∇ = (∂0, ∂1, ∂2).

WithM−1
11 given and the propagator between the plates

M12(x− x′) =
1

4π2

1

(x− x′)2 +H2
, (2.29)

we can now easily calculate

∆M12(x− x′) =
1

π2

H

(H2 + (x− x′)2)2
. (2.30)

Integrating now over the coordinates on the second surface we �nd the
following expression for a full cycle of propagations:

[∆M12∆M21] (x− x′) =
2

π2

H

(4H2 + (x− x′)2)2
(2.31)

and thereby, upon further integrations, in principle tr (∆M2n) for all n.
For an explicit demonstration of the derivation of Eqs. (2.28 - 2.31),

please refer to Appendix A.
The respective terms of the sum

∞∑
n=1

1

4n
tr
(
∆M2n

)
=

1

4
tr(∆M2) +

1

8
tr(∆M4) +

1

12
tr(∆M6) + . . . , (2.32)



12 2 CASIMIR FORCES FOR SCALAR FIELDS

can now, using (2.31), be explicitly evaluated. One �nds

∞∑
n=1

1

4n
tr
(
∆M2n

)
=

1

4

(
1

4

1

π2H3
TEA

)
+

1

8

(
1

32

1

π2H3
TEA

)
+

1

12

(
1

108

1

π2H3
TEA

)
+ . . . , (2.33)

with surface area A and length in Euclidean time direction TE.
The numerical factors can then be regrouped in the following way:

∞∑
n=1

1

4n
tr
(
∆M2n

)
=

(
1 +

1

16
+

1

81
+ ...

)(
1

16

1

π2H3
TEA

)
, (2.34)

where the convergent sum
∑∞

n=1
1
n4 = π4

90
appears as can be proved by induc-

tion.
Thus we arrive at

∞∑
n=1

1

4n
tr
(
∆M2n

)
=
TEA

1440

π2

H3
. (2.35)

Finally, using (2.24), we �nd for the contribution of the transversal electric
modes to the Casimir force between the plates FTE = −~cA

480
π2

H4 . Remembering
that we have to take into account also the transversal magnetic modes of the
�uctuating �eld which contribute by the same amount, we �nally arrive at
the force density:

Fcas = − π2

240

~c
H4

, (2.36)

as expected (cf. Eq. (1.1)).

2.2.3 Momentum space

In cases where translational symmetry is given along one or more directions
of x, though, it is favourable to perform the calculation in momentum space
with respect to those components. The reason for this is the well-known fact
that the matrix elementsMαβ become diagonal in their momentum if they
depend only on the di�erence of their arguments in position space.

Here, apparently the time direction and the two lateral space-directions
are translationally invariant.

We again start with the force as given in Eq. (2.14):

Fcas(H) = − ~c
TE

∂H
1

2
tr ln

M
M∞

. (2.37)
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Using the Fourier transform of (2.31):

[∆M12∆M21] (|p|) = exp(−2Hp) , (2.38)

where p = |p|, we �nd that we do not even have to expand the logarithm to
obtain the analytical value for the force.

This can be seen as follows: As before we de�ne

1

2
tr ln

M
M∞

=
1

2
tr ln(1 + ∆M) . (2.39)

Considering now that due to the o�-diagonal structure of the matrices
∆M as de�ned in (2.20), the traces over odd powers of ∆M vanish and it
therefore holds that

1

2
tr ln(1 + ∆M) =

1

4
tr ln(1−∆M2) =

1

2
tr ln(1−∆M12∆M21) , (2.40)

we can write the trace log expression as

1

2
tr ln

M
M∞

=
1

2
tr ln(1−∆M12∆M21) . (2.41)

Inserting now the momentum space representation as given in Eq. (2.38), we
easily evaluate the trace8

1

2
tr ln

M
M∞

=
ATE
(2π)3

1

2

∫
ζ

∫
p‖

ln(1− exp(−2Hp)) = −ATE

(
π2

1440H3

)
.

(2.42)
Thus we arrive again, with (2.37), at the TE-mode contribution to the force
FTE = −~cA

480
π2

H4 . By adding the TM contribution we �nally �nd for the force
density:

Fcas = − π2

240

~c
H4

. (2.43)

We have seen here that the trace expression of Eq.(2.14) determining the
Casimir force can be evaluated analytically for the plane surface scenario.
As previously noted, for corrugated surfaces this is not the case and thus
approximate methods have to be adopted.

However, as already mentioned in footnote 7 on page 10, the calculation
of Casimir-Polder potentials as investigated in the following is considerable
facilitated due to the fact that only one cycle of propagations has to be
considered.

8Note that throughout this thesis the integral over momentum components
∫
p
should

be understood as
∫∞
−∞ dp , i.e. particularly without a factor of 1

2π



14 2 CASIMIR FORCES FOR SCALAR FIELDS



15

3 Casimir-Polder forces for electromagnetic �elds

In the previous section we presented a way in which Casimir forces for �uc-
tuating scalar �elds can be obtained, and accounted for a compact derivation
of the famous result for the �at plate scenario. In order to tackle the atom-
plate situation we now turn to a formulation that treats �uctuations of the
electromagnetic �eld.

The outline of this section is as follows: First we will review a formalism
for the calculation of �uctuation-induced forces between corrugated surfaces
of materials with dielectric constants εα. We will then derive the potential
energy for an atom placed in front of an ideally conducting �at plane and
thus obtain the well-known result of Casimir and Polder [4].

This will be achieved by taking the dielectric constant to in�nity for
the �rst surface S1 (i.e. make it a conductor) and expanding the dielectric
constant of the second surface S2 in terms of the atomic number density. By
this process, basically S2 is rare�ed until only one atom remains.

At last we will discuss principle extensions of this formulation to the case
of non-planar surfaces and discuss why this method is not well suited for
such purposes.

3.1 Gauge �eld �uctuations and dielectric surfaces

3.1.1 Preliminaries

The formalism we review and apply here was developed in Refs. [37, 38].

The steps in the derivation of the equations for the Casimir energy and
force are in principle the same as described in section 2.1.

The system's energy is found to be given in terms of the logarithm of
the ratio between the restricted and unrestricted generating functionals. In-
serting the proper boundary conditions into the generating functional via an
appropriate δ functional allows for all functional integrals over the �elds to
be carried out and the expression for the Casimir energy again becomes a
trace log formula as seen in section 2.

Naturally, though, the matrix entries Mαβ in the generalized case have
a considerably more complicated form. First of all, here the full electromag-
netic �eld Aµ is used instead of just scalar �elds. Secondly, general dielectric
materials are considered which of course also implies more involved boundary
conditions for the �elds.

A short review of the derivation of the trace log formula and the associated
matricesMαβ for corrugated dielectric surfaces is given in Appendix B.
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3.1.2 General result for non-planar dielectric surfaces

Analogously to the previous section (cf. Eq.(2.14)), the Casimir energy in
the case of zero temperature is given by

Ecas(H) =
~c
TE

1

2
tr ln

M
M∞

, (3.1)

whereM∞ again stands for the propagator matrix in the case of in�nite
plate-plate separation.

As in the previous section, the setup should be such that the surfaces S1

and S2 are located at y3 = Hα with H1/2 = 0, H, respectively.

However, at �rst we allow for deformations along the lateral coordinates
~y‖ = (y1, y2) which can be parametrized by height functions hα(~y‖).

The entries ofM are here given by:

Mjl
αβ(ζ,~k‖; ζ

′, ~k′‖) = 2πδ(ζ − ζ ′)
∫
~y∈Sα

∫
~y′∈Sβ

× eı~k‖~y‖−ı~k
′
‖~y
′
‖e−[(−1)αPα(ζ,~k‖)y3+(−1)βPβ(ζ′,~k′‖)y′3]

× n̂αkn̂
′
βs[L̂

k
α(ζ,~k‖)L̂

′†s
β (ζ ′, ~k′‖)]jlG(ζ; ~y − ~y′) . (3.2)

As before, the trace of Eq.(3.1) is to be taken over the discrete and the
continuous indices. The discrete indices for this generalized setup are again
the surface indices (α , β) and the additional indices labeling the three bound-
ary conditions (j , l) for the �uctuating �elds.

The continuous variables are the frequency ζ and the momenta ~k‖ =
(k1, k2) along the directions of two �at auxiliary surfaces Rα. For the meaning
of the extra surfaces Rα, please consult Appendix B.

The spatial integrations in (3.2) are performed over the surfaces and there-
fore explicitly read ∫

~y∈Sα
=

∫
√
gαdy1dy2|y3=Hα , (3.3)

with the square root of the induced surface metric

√
gα =

√
1 + (∂1h(y‖))2 + (∂2h(y‖))2 . (3.4)

Moreover, new expressions have been de�ned: Pα(ζ,~k‖) ≡
√
εα(ıζ)ζ2 + ~k2

‖,

with εα being the dielectric constant of the material corresponding to the re-
spective surface Sα.
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Furthermore, the normal vectors n̂α with respect to the surfaces Sα are
given as

n̂α =
(−1)α
√
gα


∂1h(y‖)

∂2h(y‖)

−1

 . (3.5)

The three operator matrices L̂kα of Eq. (3.2) implement the boundary
conditions on the surfaces. There, the index k labels the components of the
normal vector on the surfaces Sα . The three rows essentially incorporate the
three boundary conditions, whereas the four rows re�ect the fact that the
boundary conditions are applied to the components of the electromagnetic
4-vector potential Aµ .

The operator matrices are given as9:

L̂1
α(ζ,~k‖) =

0 − [(−1)αPα∂2+ık2∂3]
ζεα

[−ık1∂3+(−1)αPα∂1]
ζεα

[ık1∂2+ık2∂1]
ζεα

ı∂3
ık1∂3
ζεα

−ık2∂3
ζεα

ζ − [ık1∂1−ık2∂2]
ζεα

−ı∂2
−ık1∂2
ζεα

−ζ + [(−1)αPα∂3+ık1∂1]
ζεα

− (−1)αPα∂2
ζεα

 (3.6)

L̂2
α(ζ,~k‖) =
−ı∂3

ık1∂3
ζεα

− ık2∂3
ζεα

−ζ + [ık2∂2−ık1∂1]
ζεα

0 [ık2∂3−(−1)αPα∂2]
ζεα

[ık1∂3+(−1)αPα∂1]
ζεα

− [ık2∂1+ık1∂2]
ζεα

ı∂1 ζ − [(−1)αPα∂3+ık2∂2]
ζεα

ık2∂1
ζεα

(−1)αPα∂1
ζεα

 (3.7)

L̂3
α(ζ,~k‖) =

ı∂2
−ık1∂2
ζεα

ζ + [ık1∂1+(−1)αPα∂3]
ζεα

− (−1)αPα∂2
ζεα

−ı∂1 −ζ − [ık2∂2+(−1)αPα∂3]
ζεα

ık2∂1
ζεα

(−1)αPα∂1
ζεα

0 [(−1)αPα∂2−ık2∂3]
ζεα

[ık1∂3−(−1)αPα∂1]
ζεα

[ık2∂1−ık1∂2]
ζεα

 (3.8)

9It should be noted that the matrices of Eqs. (3.6-3.8) are obtained from their pendants
in Appendix B (cf. Eqs. (B.11-B.13)) through the substitutions (∂̄1, ∂̄2)→ −ı(k1, k2) and
∂̄3 → (−1)αPα.
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and their corresponding adjoint matrices of the primed coordinates.
The Green's function G in (3.2) is the free photon propagator in Feynman

gauge; its representation in momentum space reads

G(ζ,~k) = (ζ2 + ~k2)−1 . (3.9)

In the following a representation of the Green's function will be useful
where only the third component of the function is transformed to position
space. Making use of the residue formula upon integration, it can be obtained
from (3.9) and yields

G(ζ;~k‖, x3) =
e−P (ζ,~k‖)|x3|

2P (ζ,~k‖)
, (3.10)

with the abbreviation

P (ζ,~k‖) =
√
ζ2 + ~k2

‖ . (3.11)

3.2 Casimir-Polder result through thinning of one plate

3.2.1 The limit of �at surfaces

In the limit of �at surfaces, the general expression of Eq. (3.2) can be sim-
pli�ed considerably.

As in section 2.2, we choose our setup such that the two surfaces Sα are
located at y3 = Hα, where H1 = 0 and H2 = H.

Again, the problem is translationally invariant along the lateral coordi-
nates and the time direction and therefore it is convenient to work in mo-
mentum space with respect to those coordinates.

Also for planar surfaces it holds that their normal vector takes a very
simple form. For the two plates in our setup we �nd with the de�nition (3.5)
that n̂1 = (0, 0, 1) and n̂2 = (0, 0,−1) since the height functions vanish.

Therefore in this setup, only the last matrix as given in Eq.(3.8) is of
relevance.

We now make use of the partially transformed photon propagator as given
in Eq.(3.10). Applying the representation of the Green's function

G(ζ; ~y − ~y′) =

∫
dq‖

(2π)2

e−P (ζ,~q‖)|y3−y′3|

2P (ζ, ~q‖)
e−ı~q‖~y‖ , (3.12)

in Eq. (3.2), we can execute the partial derivatives ∂1,∂2 appearing in the
operator matrix (3.8) yielding ∂1 → −ıq1 and ∂2 → −ıq2. Thereafter the
integrals over ~y‖ , ~y

′
‖ and ~q‖ can be carried out implying ∂1 → −ık1 and

∂2 → −ık2.
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Equation (3.2) now acquires a very simple form:

Mαβ(ζ,~k‖; ζ
′, ~k′‖) = (2π)3δ(ζ − ζ ′)δ(2)(~k‖ − ~k′‖)ηαβ

×[L̂3
α(ζ,~k‖)L̂

′†3
β (ζ ′, ~k′‖)]jl

e−P (ζ,~k‖)|y3−y′3|

2P (ζ,~k‖)

∣∣∣∣∣
y3=Hα,y′3=Hβ

. (3.13)

The factor ηαβ ≡ (−1)α+βe−[(−1)αPα(ζ,~k‖)Hα+(−1)βPβ(ζ′,~k′‖)Hβ ] will drop out in
the calculation of the Casimir-Polder potential as we will show at the end of
this section and we will therefore omit this factor temporarily.

3.2.2 Plane metallic and plane dielectric surface

We now want to choose S1 as an ideal conductor and therefore let ε1 → ∞.
S2 shall remain a general dielectric since this is the side where the atom will
be located.

First, we want to write down the explicit form of the remaining opera-
tor matrices for the surfaces, respectively. Equation (3.8) in the limit of a
diverging dielectric function ε1 of the material bounded by S1 reduces to

L̂3
1(ζ,~k‖) =


k2 0 ζ 0

−k1 −ζ 0 0

0 0 0 0

 , (3.14)

whilst the matrix for the surface S2 is obtained from (3.8) through the sub-
stitutions (∂1, ∂2)→ (−ık1,−ık2):

L̂3
2(ζ,~k‖) =

k2 −k1k2
ζε2

ζ + 1
ζε2

[k2
1 + P2∂3] ık2P2

ζε2

−k1 −ζ − 1
ζε2

[k2
2 + P2∂3] k1k2

ζε2
− ık1P2

ζε2

0 − ık2
ζε2

[P2 + ∂3] ık1
ζε2

[P2 + ∂3] 0

 . (3.15)

Next we note, that in (3.15) the third row is in fact linearly dependent
on the �rst two rows, because for the rows L̂3

2,i it holds that −ıp2L̂
3
2,3µ =

k1L̂
3
2,1µ + k2L̂

3
2,2µ, where µ numbers the columns.

This is expected since for �at surfaces only two boundary conditions for
the electric �eld remain independent and the problem can again be formu-
lated in terms of one transversal electric and one transversal magnetic �eld
component (cf. [37], Appendix A). We can therefore work in the subspace of
linearly independent entries.
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By applying the last remaining derivatives ∂3 and ∂′3 in (3.15) onto the
Green's function of Eq.(3.13)

G(ζ;~k‖, x3) =
e−P (ζ,~k‖)|y3−y′3|

2P (ζ,~k‖)
, (3.16)

and evaluating the 3-component on the respective surfaces, we obtain all
propagator matricesMαβ. Since they are all diagonal in their momenta, the
inversion of the propagatorsM22 andM11 is an easy task.

As we know from section 2.2, the expansion of the logarithm in the for-
mula for the Casimir energy leads to an expression that demands the eval-
uation of the traces of propagation cycles. Following the same steps as in
the derivation for scalar �elds, we �nd that the energy (3.1) between the
dielectric (D) and the metal (M) plate is given by

EDM = −
∞∑
n=1

1

2n

~c
TE

tr[(M−1
11M12M−1

22M21)n] . (3.17)

From here on we omit the factors of (2π)3δ(ζ−ζ ′)δ(2)(~k‖−~k′‖) in Eq.(3.13),
since the factors of (2π)3 appear twice in the nominator and twice in the
denominator in (3.17) and therefore cancel; the distributions δ(ζ − ζ ′) and

δ(2)(~k‖ − ~k′‖) just kill the integrals over the primed variables and from here

on we set ζ = ζ ′ and ~k‖ = ~k′‖.
The associated inverse propagators on the surfaces and the propagator

between the surfaces now read explicitly:

M−1
11 (ζ,~k‖) =

2

ζ2P

 k2
1 + ζ2 k1k2

k1k2 k2
2 + ζ2

 (3.18)

M12(ζ,~k‖) =
1

2P
e−PH (3.19)

×

 k2
2 + ζ2 + 1

ε2
[k2

1 − PP2] −
(
ε2−1
ε2

)
k1k2

−
(
ε2−1
ε2

)
k1k2 k2

1 + ζ2 + 1
ε2

[k2
2 − PP2]


M−1

22 (ζ,~k‖) =
2Pε22[

(ε2 − 1)P2((1 + ε2)~k2
‖ + ε2ζ2)

] (3.20)

×

 (1 + ε2)k2
1 + k2

2 + ε2ζ
2 ε2k1k2

ε2k1k2 (1 + ε2)k2
2 + k2

1 + ε2ζ
2

 ,
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withM21(ζ,~k‖) =M12(ζ,~k‖) as the setup obviously is symmetric.
It should be mentioned that the propagators (3.18-3.20) together with the

log det formula for the Casimir free energy (cf. Eq. (B.24) in Appendix B)
yield the Lifshitz formula for the interaction energy between a plane metallic
and a plane dielectric surface [5, 39]. This is shown in [37] for the general
case of two planar dielectrics.

3.2.3 Making an atom out of the dielectric surface

Now we will argue that considering only the �rst series term in Eq. (3.17)
su�ces to obtain the exact Casimir-Polder result.

In order to calculate the energy of just one atom near the metal wall, we
expand the dielectric permittivity ε2 corresponding to the surface S2 in terms
of the number of atoms per unit volume and preserve only the contribution
of �rst order, since the higher-order contributions account for the atom-atom
interaction inside the dielectric [39, 40].

The dielectric constant of S2 hence is expanded as

ε2 = 1 + a(ıζ)N +O(N2) , (3.21)

where we have set a(ıζ) = 4πχ(ıζ) with χ(ıζ) being the dynamical polariz-
ability of just one atom.

Upon expansion in N we �nd for the propagators of Eqs. (3.18-3.20) on
and in between the two plates the following expressions10:

M−1
11 (ζ,~k‖) =

2

ζ2P

 k2
1 + ζ2 k1k2

k1k2 k2
2 + ζ2

 (3.22)

M12(ζ,~k‖) =
a(ıζ)Ne−2PH

2P

 k2
2 + ζ2

2
−k1k2

−k1k2 k2
1 + ζ2

2

+O(N2) (3.23)

M−1
22 (ζ,~k‖) =

2

a(ıζ)NP

1

(2k2
1 + 2k2

2 + ζ2)
(3.24) 2k2

1 + k2
2 + ζ2 k1k2

k1k2 k2
1 + 2k2

2 + ζ2

+O(1) .

As we see, the productM−1
11M12M−1

22M21 already is of order N .

10The inverse propagator on the metal plane M−1
11 of course does not contain ε2. We

just repeat it in order to have all the relevant matrices in one place.
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Thus, only the �rst cycle of �uctuations contributes and with Eq.(3.17)
the energy density between the rare�ed dielectric and the metal can be writ-
ten as

EDM = −1

2

~c
ATE

tr(M−1
11M12M−1

22M21) +O(N2) , (3.25)

where higher order traces are irrelevant for the Casimir-Polder limit.
Using the propagators as given in Eqs.(3.22-3.24), we �nd that Eq.(3.25)

becomes

EDM = −~c
2

1

(2π)3

∫
ζ

∫
~k‖

a(ıζ)N

2
e−2H
√
ζ2+~k‖ +O(N2) . (3.26)

One can now put in the de�nition a(ıζ) = 4πχ(ıζ), and evaluate the integra-

tions over the lateral momenta ~k‖.
The energy density then reads

EDM = −N ~c
8πH

∫ ∞
0

dζ(1 + 2Hζ)e−2Hζχ(ıζ) +O(N2) . (3.27)

In the limit of large separations, the dominant frequencies correspond to a
wavelength of order H. Hence, only the static polarizability is relevant and
one can approximate χ(ıζ) ≈ χ(0). The integration over the frequency can
then be performed and yields

EDM = −Nχ(0)
~c

8πH3
+O(N2) . (3.28)

The energy of this dilute dielectric in front of a metal plane can be viewed
as being composed out of the required energy for bringing N atoms from
distance H to in�nity. Therefore, the energy of one atom in front of a metal
wall is obtained by solving

EDM(H) = N

∫ ∞
H

EAM(y3)dy3 +O(N2) (3.29)

for EAM and taking the limit N → 0.
Thus we get the well-known formula �rst derived by Casimir and Polder

in Ref. [4]:

EAM(H) = − 3~c
8πH4

χ(0) . (3.30)

It accounts for the potential energy of the atom-plate con�guration in the
retarded limit.

At last, we come back to the omitted factor of ηαβ introduced below
Eq.(3.13).

In the matrix product of M−1
11M12M−1

22M21 appearing in Eq. (3.25)
it contributes with a factor of (1) · (−e−P2H) · (−e−P2H) · (e2P2H) = 1 and
therefore ignoring ηαβ was justi�ed in our calculation.
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3.3 Extension to corrugated surfaces

As elaborated in section 3.1.2, the formulation of the theory for dielectric
surfaces from the outset is valid for biaxially corrugated surfaces whose de-
formations along the lateral coordinates can be parametrized by height func-
tions h(~y‖). Therefore a transfer of the thinning technique as used in the
previous section onto structured surfaces seems to bear no principle obstruc-
tion, though the calculations become of course considerably more involved:
The introduction of non-planar surfaces renders the matrices of Eq. (3.2)
non-diagonal and makes their inversion a cumbersome task.

Although the method of expanding the dielectric constant in terms of the
atomic number density provides a very intuitive access to a Casimir-Polder
setup, it has its �aws in the context of nontrivially shaped surfaces.

Roughly spoken, the translational invariance of the dielectric plate which
is thinned out also passes into a translational invariance of the atom with
respect to the plate. This is �ne in the case of planar surfaces, but poses
a problem for the case of corrugated surfaces since translational invariance
in the spatial components is not given anymore when the metallic plate is
structured.

Therefore, by the thinning of the dielectric surface one looses the infor-
mation of where exactly the atom is located along the line of corrugation
and cannot extract the desired potential function. Considering e.g. a surface
uniaxially structured along the direction x1, this means that one cannot ob-
tain the local information V (x1, H) but only an average potential which is
integrated over the variable x1.

A possible way out of this dilemma would be to work with a formulation
allowing for a spatially dependent dielectric function ε2(x1) in order to break
the translational invariance along S2. However, this choice disproportionately
complicates the formulation, since already the determination of the Green's
function inside the material is a nontrivial task (cf. Eq.(B.8)).

We therefore seek a di�erent way of calculating the Casimir-Polder po-
tential for arbitrarily structured surfaces. In the following, instead of the
thinning process, we will approximate the atom as a sphere located at de-
�ned lateral coordinates above the surface.

We will see that this setup overcomes the de�ciency of the thinning
method as described above and perfectly allows for the local information
of the potential to be extracted.
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4 Scalar Casimir-Polder potential for planar sur-

faces

What we want to elaborate on here is a calculation of the Casimir potential
for a massless scalar �eld between a Dirichlet sphere and a �at plate. The
plate - as in the previous sections - should be considered as in�nitely extended
along the directions x1 and x2.

We label the plate as surface S1 positioned at x3 = 0 and the sphere as
surface S2 with the centre of the sphere being located at x3 = H. Let the
radius of the sphere be r. See Figure 1.

x3

x2

x
1

r

H

Figure 1: A sphere of radius r is placed atop a planar surface. The mean
distance between the surface and the sphere be H.

The outline of this section is as follows:
First of all, we will give explicit representations of the relevant propa-

gators Mαβ for this setup. We will then derive the Casimir potential for a
�at surface-sphere con�guration up to O

(
r
H2

)
in the Casimir-Polder limit

r
H
� 1. This calculation will be performed in position space with respect to

the spatial components since translational invariance in all spatial directions
is broken by the introduction of the sphere.
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Considering the trace expression for the Casimir energy and force (cf.
(2.24)), this implies that we start from an outset of nine integrations: one
integration over the frequency, since the matrices are still diagonal in the time
component, and four times two integrations over the spatial components of
the two-dimensional surfaces.

However, as we perform the calculation we will �nd that in the desired
approximation all angular integrations over the sphere become trivial. This
will then allow us to deduce a notably simpli�ed formula for the Casimir-
Polder potential which only demands the integrations over the frequency and
the coordinates on the plane.

Furthermore, similar to the previous section, we will see that in the order
O
(
r
H2

)
only the �rst expansion term of the logarithm of the trace log formula

contributes to the energy in the Casimir-Polder potential.
These two properties, namely the vanishing of the atom-side integrals and

the negligibility of higher order trace terms will then be of great use when
nontrivial geometries are considered and allow for a compact and e�cient
numerical computation of the potentials for corrugated surfaces (see section
5).

4.1 Propagators in the sphere-plane setup

At �rst we want to introduce the propagators on and between the surfaces
as needed for the computation of the potential.

Consider again the Green's function of this problem for four-vectors x, x′

as presented in the previous section (cf. Eq. (2.9)):

G(x, x′) =
1

4π2

1

(x− x′)2
(4.1)

The functional inversion of this propagator for coordinates x,x′ on a �at
plate is an easy task because of its diagonality in momentum space. Clearly
this property is lost with respect to the spatial components of the four-vectors
when x and x′ are evaluated on the sphere. We will therefore at �rst only
Fourier transform the time-like component of the propagators to frequency
space, i.e. we calculate

Mαβ(ζ, ~x− ~x′) =

∫
x̃0

Mαβ(x̃0, ~x− ~x′)eıζx̃0 , (4.2)

where x̃0 is shorthand for the di�erence of the time components x̃0 = x0−x′0.
For calculational convenience we choose a proper time representation such

that the spatial dependence factorizes.
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The matrix elements ofM then read:

Mαβ(ζ, ~x− ~x′) =

∫ ∞
0

dT
1√
4πT

× exp
(
−4π2(~x− ~x′)2T

)
exp

(
− ζ2

16π2T

)
, (4.3)

with ~x = (x1, x2, x3).
As in the �at plate scenario we will need all propagators on and in between

the surfaces. Let us �rst consider the inverse propagator on the sphere.

4.1.1 Inverse propagator on a sphere

With the representation of Eq.(4.3), the inverse of M22 can be determined
by solving∫

~x′∈S2

M−1
22 (ζ, ~x, ~x′)M22(ζ, ~x′, ~x′′) = δ(3)(~x− ~x′′)

∣∣
~x,~x′′∈S2

, (4.4)

where the spatial integration is performed over the surface of the sphere S2.
In order to solve this equation forM−1

22 we �rst rewrite Eq. (4.4) in polar
coordinates:

r2

∫
Ω′
M−1

22 (ζ,Ω,Ω′)M22(ζ,Ω′,Ω′′) =
1

r2
δ(φ− φ′′)δ(cos θ − cos θ′′) , (4.5)

with the usual de�nition
∫

Ω′
=
∫ 2π

0
dφ′
∫ 1

−1
d(cos θ′).

We now see that the dynamical variables of the propagator are just the po-
lar and the azimuthal angles and thusM22(ζ,Ω′,Ω′′) as well asM−1

22 (ζ,Ω,Ω′)
can be expanded in terms of spherical harmonics:

M22(ζ,Ω′,Ω′′) =
∞∑
l=0

l∑
m=−l

cl(ζ)Ylm(Ω′)Y ?
lm(Ω′′) (4.6)

M−1
22 (ζ,Ω,Ω′) =

∞∑
l′=0

l′∑
m′=−l′

bl′(ζ)Yl′m′(Ω)Y ?
l′m′(Ω

′) (4.7)

with the expansion coe�cients cl, bl ofM22 andM−1
22 , respectively.

On the right hand side of the determining equation (4.5) we can insert
the representation of the δ functions in terms of spherical harmonics.
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Equation (4.4) then reads

∫
Ω′

∞∑
l′=0

l′∑
m′=−l′

∞∑
l=0

l∑
m=−l

bl′(ζ)Yl′m′(Ω)Y ?
l′m′(Ω

′)cl(ζ)Ylm(Ω′)Y ?
lm(Ω′′) =

1

r4

∞∑
l=0

l∑
m=−l

Ylm(Ω)Y ?
lm(Ω′′) . (4.8)

Subsequently, making use of the completeness relation for spherical har-
monics ∫

Ω′
Y ?
l′m′(Ω

′)Ylm(Ω′) = δl′lδm′m , (4.9)

the expansion coe�cients of M−1
22 can be determined to arbitrary order by

comparison of coe�cients. For the expansion coe�cients of the inverse prop-
agator it holds that

bl(ζ) =
1

r4

1

cl(ζ)
. (4.10)

In order to determine the coe�cients cl(ζ), we write the propagatorM22 of
Eq.(4.3) as

M22(ζ,Ω′,Ω′′) =

∫ ∞
0

dT
1√
4πT

exp

[
− ζ2

16π2T

]
× exp

[
−8π2r2T (1− cosα)

]
(4.11)

where α is the angle between the vectors ~x′ and ~x′′ and thus cosα is de�ned
as cosα = sin θ′ sin θ′′ cos(φ′ − φ′′) + cos θ′ cos θ′′.

We see now the advantage of the proper time representation: The angular
contribution factorizes and the exponential function in Eq. (4.11) carrying
the angular part can be expanded in terms of Legendre polynomials Pl(cosα):

exp
[
−8π2r2T (1− cosα)

]
=
∞∑
l=0

c̃lPl(cosα) , (4.12)

where c̃l = 2l+1
2

∫ π
0

dα exp [−8π2r2T (1− cosα)]Pl(cosα) sin(α) .

Making use of the addition theorem for the spherical harmonics

Pl(cosα) =
4π

2l + 1

l∑
m=−l

Y ?
lm(Ω′)Ylm(Ω′′) , (4.13)
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we �nally �nd that the expansion coe�cients cl(ζ) of the propagator on the
sphere are given by

cl(ζ) =

∫ ∞
0

dT

√
π

T
exp

(
− ζ2

16π2T

)
×
∫ π

0

dα exp
[
−8π2r2T (1− cos(α))

]
Pl(cosα) sin(α) . (4.14)

Thus, using the relation (4.10), one �nds that Eq. (4.7) reads up to dipole
order:

M−1
22 (ζ, φ, θ;φ′, θ′) =

1

4π

|ζ| exp(r|ζ|)
r2 sinh(r|ζ|)

+
3

2π

exp(2r|ζ|)|ζ|5 [cos θ cos θ′ + ı sin θ sin θ′ sin(φ− φ′)]
ζ2 (1 + r2ζ2 + exp(2r|ζ|)[ζ2r2 − 1] + 2r|ζ|)

. (4.15)

In the limit of r
H
→ 0, the dominant contribution is determined by the

monopole order. We will therefore restrict ourselves to the �rst term in
(4.15) and work with

M−1
22 (ζ) =

1

4π

|ζ| exp(r|ζ|)
r2 sinh(r|ζ|)

. (4.16)

Note, thatM−1
22 in this approximation is independent of the angles Ω,Ω′ as

we are considering monopole order.

4.1.2 Propagators between sphere and surface

As far as the other propagators are concerned, we now bene�t from the
expressions which were already derived in the context of two �at plates in
section 2.2.2. Rewriting our result for the combination of a propagation on a
�at surface with the propagation to a surface at distance H (cf. Eq. (2.30)),
we get ∆M12 for the sphere-plane setup.

We use it again in a proper time representation:

∆M12(ζ, ~x‖; Ω) =
1

π
3
2

(H + r cos θ)

∫ ∞
0

dS
√
S exp

(
− ζ

2

4S

)
× exp

(
−
[
(x1 − r cosφ sin θ)2 + (x2 − r sinφ sin θ)2 + (H + r cos θ)2

]
S
)
,

(4.17)

where the vector pointing onto the surface is given in terms of polar coordi-
nates.
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The missing ingredient for a full cycle of propagations is M21 which is
determined through Eq.(4.3) as presented in the beginning of this section.

It reads

M21(ζ,Ω; ~x‖) =

∫ ∞
0

dT
1√
4πT

exp

(
− ζ2

16π2T

)
exp

(
−4π2

[
(r cosφ sin θ − x1)2 + (r sinφ sin θ − x2)2 + (H + r cos θ)2

]
T
)
.

(4.18)

With the associated propagators of Eqs. (4.16-4.18) at hand we can now
calculate the potential energy of the sphere-plane con�guration.

4.2 Potential energy in the sphere-plane setup

4.2.1 Exact energy in the Casimir-Polder limit

As argued in section 2.2, the value of the Casimir energy is essentially deter-
mined by the trace over a cycle of �uctuation propagations:

tr
[(
M−1

11M12M−1
22M21

)n]
= tr

[(
∆M12M−1

22M21

)n]
(4.19)

with n indicating the number of cycles. For a potential of O
(
r
H2

)
though,

we will see in a moment that one cycle su�ces, i.e. traces of order n > 1 are
not needed in this limit.

As a side remark we note that in this setup it is not only convenient
to work with the combined propagator ∆M12 = M−1

11M12 as indicated in
Eq. (4.19) but also highly advisable. Trying to perform the inner integra-
tions over the surfaces inM−1

11M12M−1
22M21 in any other order signi�cantly

complicates the remaining integrals and makes them substantially harder to
evaluate.

Now, with the expressions for the propagators known from the previous
subsection, we can write out the trace for the �at surface - sphere con�gura-
tion with its explicit dependencies on the frequency ζ, the angular variables
Ω on the sphere, and the lateral coordinates ~x‖ on the plate:

tr
(
∆M12M−1

22M21

)
=

TE
2π

∫
ζ

∫
~x‖

∫
Ω

∫
Ω′
r4∆M12(ζ, ~x‖; Ω)M−1

22 (ζ)M21(ζ,Ω′; ~x‖) . (4.20)

As mentioned in the outline of this section, the propagators of Eq.(4.20) do
not depend on the solid angle in the desired approximation and therefore the
angular integrations over the sphere become trivial.
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To see this, we �rst rescale the dimensionful integration variables of Eq.
(4.20) with H, such that all integration parameters become dimensionless.

We do this in order to extract the dimensionful dependency of the trace
and thereby deduct a formula that points out the physical scaling of the
energy within this con�guration. The factor that contains just dimensionless
quantities is separated and provides only for the numerical factor of the
scaling.

In particular this means that we rewrite the lateral coordinates and the

imaginary frequency through ~x‖ → ~̃x‖H and ζ → ζ̃
H
with new dimensionless

tilded variables. Additionally one should not forget to rescale also the di-
mensionful auxiliary integration variables in the proper time representations
of ∆M12 andM21 via the substitutions S → S̃

H2 and T → T̃
H2 .

To see that the auxiliary integration variables T and S bear a spatial di-
mension of [−2] please refer to Eqs.(4.17) and (4.18). There, the exponential
carrying the spatial dependencies becomes dimensionless if T as well as S
are of dimension [−2].

Again we initially consider the properties of the propagator on the sphere.
After rescaling, Eq. (4.16) reads

M−1
22 (ζ̃) =

1

4π

|ζ̃|
H

exp( r
H
|ζ̃|)

r2 sinh( r
H
|ζ̃|)

. (4.21)

Assuming the limit of r
H
� 1 we see that the hyperbolic sine in (4.21) can

be approximated by its argument while the exponential is approximated by
1, i.e. we have

M−1
22 (ζ̃) =

1

4π

1

r3
+O

( r
H
|ζ̃|
)
. (4.22)

Furthermore upon rescaling, Eqs. (4.17) and (4.18) now read:

∆M12(ζ̃ , ~̃x‖; Ω) =
1

π
3
2

(1 +
r

H
cos θ)

∫ ∞
0

dS̃
√
S̃ exp

(
− ζ̃

2

4S̃

)
×exp

(
−
[
(x̃1 −

r

H
cosφ sin θ)2 + (x̃2 −

r

H
sinφ sin θ)2 + (1 +

r

H
cos θ)2

]
S̃
)
,

(4.23)

and

M21(ζ̃ ,Ω′; ~̃x‖) =

∫ ∞
0

dT̃
1√
4πT̃

exp

(
− ζ̃2

16π2T̃

)
×exp

(
−4π2

[
(
r

H
cosφ′ sin θ′ − x̃1)2 + (

r

H
sinφ′ sin θ′ − x̃2)2 + (1 +

r

H
cos θ′)2

]
T̃
)
.

(4.24)
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Next, we keep only terms such that the trace in (4.20) is of O
(
r
H2

)
.

Considering Eqs. (4.23) and (4.24), one sees that ∆M12 and M21 become
independent of Ω and Ω′ in this approximation, and therefore the two inte-
grations over the solid angles just contribute a factor of 16π2.

Summing all these steps up, we can now write the trace formula of Eq.
(4.20) in the desired fashion:

tr
(
∆M12M−1

22M21

)
= TE

r

H2
2

∫
ζ̃

∫
~̃x‖

∆M̃12(ζ̃ , ~̃x‖)M̃21(ζ̃ , ~̃x‖) +O
(
r2

H3

)
.

(4.25)
The only dimensionful quantities in this equation are now TE, r and H and
the integral provides just the numerical value for the scaling. The propagators
of the dimensionless tilded variables read in proper time representation

∆M̃12(ζ̃ , ~̃x‖) =
1

π
3
2

∫ ∞
0

dS̃
√
S̃ exp[−(1 + ~̃x2

‖)S̃] exp

[
− ζ̃

2

4S̃

]

M̃21(ζ̃ , ~̃x‖) =
1

2
√
π

∫ ∞
0

dT̃
1

T̃
exp[−4π2(1 + ~̃x2

‖)T̃ ]

× exp

[
ζ̃2

16π2T̃

]
. (4.26)

The twiddle sign over the matrix elements both indicates that they have
become dimensionless through the rescaling with H as well as the fact that
their trace in (4.25) only contributes the numerical constant to the order
O
(
r
H2

)
of the potential energy.

The remaining integrations in the trace expression can now be performed
easily. The integral over ζ̃ is purely Gaussian and the integral over ~̃x‖ is
facilitated by the use of planar polar coordinates. At last, we perform the
integration over the variables of the proper time representation T̃ and S̃.

The result is

tr
(
∆M12M−1

22M21

)
= TE

1

4π

r

H2
+O

(
r2

H3

)
. (4.27)

The energy of the con�guration which is given by

Ecas(H) = − ~c
TE

1

2
tr
(
∆M12M−1

22M21

)
, (4.28)

consequently yields

Ecas(H) = −~c
8π

r

H2
+O

(
r2

H3

)
. (4.29)
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The lowest order expansion coe�cient agrees with recent results that were
obtained by the use of di�erent calculational techniques [24, 41].

Note that higher order terms could also be included in this formalism. To
this end, higher order coe�cients of the expansion of M−1

22 (cf. Eq.(4.15))
and higher order propagator traces have to be included.

Nevertheless we will restrict ourselves here to the lowest order term which
is the only relevant term in the Casimir-Polder limit. Note that the Casimir-
Polder limit of r

H
� 1 is contrary to the limit accessible to the Proximity

Force Approximation (PFA) [15, 16], since the PFA approximates the sphere
by in�nitesimally small �at segments and thus demands r

H
� 1.

4.2.2 Arrangements for uniaxially corrugated surfaces

As we have shown, the spatial integrations over the surface of the sphere
S2 become trivial in the Casimir-Polder limit and thus contribute only a
numerical factor. Due to this fact, the integrations over the remaining lateral
coordinates ~x‖ on the plate (cf. Eq. (4.25)) could also be performed in
momentum space since the plate itself is translationally invariant along these
directions. However, in the next section we will extend our investigations to
surfaces which are uniaxially structured along the direction x1.

For this purpose it is feasible to rewrite Eqs.(4.25) and (4.26) with the
2-component p2 in momentum space.

We get

tr
(
∆M12M−1

22M21

)
=
TE
π

r

H2

×
∫
ζ̃

∫
p̃2

∫
x̃1

∆M̃12(ζ̃ , p̃2, x̃1)M̃21(ζ̃ , p̃2, x̃1) +O
(
r2

H3

)
, (4.30)

with the associated propagators given in terms of modi�ed Bessel functions
of the second kind:

∆M̃12(ζ̃ , p̃2, x̃1) =
1

π

√
p̃2

2 + ζ̃2√
1 + x̃2

1

K1

(√
1 + x̃2

1

√
p̃2

2 + ζ̃2

)
M̃21(ζ̃ , p̃2, x̃1) =

1

2π
K0

(√
1 + x̃2

1

√
p̃2

2 + ζ̃2

)
, (4.31)

after the execution of the integrals over S̃ and T̃ .
Due to the simple structural dependency of the propagators on ζ̃ and p̃2,

we can even further simplify the set of equations.
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De�ning q̃ =
√
p̃2

2 + ζ̃2, we get (4.30) as

tr
(
∆M12M−1

22M21

)
= TE

2r

H2

×
∫ ∞

0

dq̃

∫ ∞
−∞

dx̃1 q̃∆M̃12(ζ̃ , p̃2, x̃1)M̃21(ζ̃ , p̃2, x̃1) +O
(
r2

H3

)
, (4.32)

where the propagators now read

∆M̃12(q̃, x̃1) =
1

π

q̃√
1 + x̃2

1

K1

(
q̃
√

1 + x̃2
1

)
M̃21(q̃, x̃1) =

1

2π
K0

(
q̃
√

1 + x̃2
1

)
. (4.33)
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5 Scalar Casimir-Polder potential for corrugated

surfaces

In the following section we will discuss how the Casimir energy can be ob-
tained for a situation where the plate is not planar anymore but rather uni-
axially structured along the direction x1.

We choose the setup such that the structured surface still lies parallel to
the x1 − x2 plane at x3 = 0 (cf. Fig. 2).

Let h(x1) be a height function parametrising the structure such that a
four-vector pointing onto the structured surface reads x = (x0, x1, x2, h(x1)).
Again the plate should be considered as being in�nitely extended along the
directions x1 and x2.

x3

x2

x
1

r

H

Figure 2: Sphere of radius r above a surface which is uniaxially structured
along x1. The mean distance between the centre of the sphere and the struc-
ture be H.
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5 SCALAR CASIMIR-POLDER POTENTIAL FOR CORRUGATED

SURFACES

5.1 Setup

5.1.1 Inverse propagator on uniaxial structure

The main obstacle in the extension of the previous calculations to corrugated
surfaces is the determination of the inverse propagator on the structured sur-
face,M−1

11 . The result for �at surfaces as given in Eq. (2.28) is easily obtained
sinceM11 is translationally invariant along x = (x0, x1, x2) and therefore di-
agonal in momentum space. M11 can thus be inverted in momentum space
and transformed back to position space without major di�culties.

By contrast, a structured surface does not exhibit the translational in-
variance of the system in the direction of corrugation and the determination
of the functional inverse of M11 becomes a di�cult task even for the most
simple case of scalar �elds.

One could be lead to believe, though, that for periodically corrugated
surfaces a similar recipe as for the evaluation of the inverse propagator on the
surface of the sphere would apply. There, the expansion of the propagator in
a complete set of functions together with the completeness relation for these
functions allowed the evaluation of the expansion coe�cients of the inverse
propagator.

In a similar manner, one could think, it would hold that for a periodically
corrugated surface an expansion ofM11 as a Fourier sum and the usage of the
completeness relation for the Fourier modes would provide us with coe�cients
ofM−1

11 . Unfortunately this is not the case.
Consider a surface structured along x1, with a height function h(x1)

parametrizing the structure. Then, taking into account only the relevant
space dependencies, we have:

M11 =M11 (h(x1)− h(x′1), x1 − x′1) . (5.1)

If we demand a periodic height function h(x1) = h(x1 + λ) with a period
λ and de�ne new coordinates x̄ = 1

2
(x1 + x′1) and z̄ = 1

2
(x1 − x′1) then also

the surface propagator is periodic in the new coordinate x̄, i.e.

M11 (x̄, z̄) =M11 (x̄+ λ, z̄) . (5.2)

Thus the function can be expanded in Fourier modes with respect to the
coordinate x̄:

M11 (x̄, z̄) =
∞∑

k=−∞

ck(z̄) exp(ıkωx̄) , (5.3)

with ω = 2π
λ
and ck(z̄) = 1

λ

∫ λ
0
M11 (x̄, z̄) exp(−ıkωx̄)dx̄.
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Using a similar reasoning scheme as below Eq. (4.4) does, however, not
apply since the expansion coe�cients ck(z̄) are intrinsically dependent on
the coordinates x1 and x′1 and therefore the orthogonality relation for the
exponential functions cannot be utilized.

For this reason, we choose a numerical approach in determiningM−1
11 on

the corrugated plate.
This is still highly nontrivial owing to the fact thatM−1

11 is distribution-
valued. For a stable numerical algorithm, the inversion strategy as well as
the order of integrations have to be chosen with great care.

5.1.2 Potential for general uniaxial deformations

As argued in the previous section it is advisable not to determine M−1
11 di-

rectly for a structured plate, but rather calculate again the combined prop-
agator ∆M12.

To this end consider �rst the pendant of Eq. (4.4), which is the general
equation determiningM−1

11 :∫
~x∈S1

M11(ζ, ~x′; ~x)M−1
11 (ζ, ~x; ~x′′) = δ(~x′ − ~x′′)

∣∣
~x′,~x′′∈S1

. (5.4)

The integration over the surface in this case is de�ned as∫
~x∈S1

=

∫
x1

∫
x2

√
g(x1)

∣∣∣∣
x3=h(x1)

, (5.5)

with the determinant of the induced metric g(x1) = 1 + (∂1h(x1))2.
Thus (5.4) explicitly reads∫

~x‖

√
g(x1)M11(ζ, ~x′‖; ~x‖)M−1

11 (ζ, ~x‖; ~x
′′
‖) =

1√
g(x′1)

δ(~x′‖ − ~x′′‖) . (5.6)

We now multiply this equation from the left with a factor of√
g(x′′1)M12(ζ, ~x′′‖; ~x

′′′
‖ , x

′′′
3 )

and integrate both sides of Eq. (5.6) over the lateral components ~x′′‖ . One
�nds that∫

~x‖

√
g(x1)M11(ζ, ~x′‖; ~x‖)∆M12(ζ, ~x‖; ~x

′′′
‖ , x

′′′
3 ) =M12(ζ, ~x′‖; ~x

′′′
‖ , x

′′′
3 ) , (5.7)

where ∆M12 explicitly includes the metric factor of the respective structure,
i.e.

∆M12(ζ, ~x‖; ~x
′′
‖, x

′′
3) =

∫
~x′‖

√
g(x′1)M−1

11 (ζ, ~x‖; ~x
′
‖)M12(ζ, ~x′‖; ~x

′′
‖, x

′′
3) . (5.8)
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Since the matrix elements in the considered setup of uniaxial structures are
still diagonal in p2, we Fourier-transform Eq.(5.7) to position space in its
2-component. Dropping one ′ , Eq. (5.7) �nally reads

∫
x1

√
g(x1)M11(ζ, p2, x

′
1;x1)∆M12(ζ, p2, x1;x′′1, x

′′
3) =

M12(ζ, p2, x
′
1;x′′1, x

′′
3) . (5.9)

As argued before, we cannot obtain the propagator ∆M12 analytically.
Yet we know M11 and M12 , and thus Eq. (5.9) can be used in order to
determine ∆M12 for a structured surface numerically. Note, though, that
the equation is still given in terms of dimensionful variables.

Following the same lines as in the previous section, we want to consider
the dimensionless contribution of the propagator ∆M12 . Equation (5.9) is
therefore rescaled and reads in terms of the dimensionless tilded variables11:∫

x̃1

√
g(x̃1)M̃11(q̃, x̃′1; x̃1)∆M̃12(q̃, x̃1) = M̃12(q̃, x̃′1) , (5.10)

where now

M̃11(ζ̃ , p̃2, x̃
′
1; x̃1) =

1

2π
K0

q̃
√

(x̃′1 − x̃1)2 +

(
h(x̃′1H)− h(x̃1H)

H

)2
 ,

(5.11)

M̃12(q̃, x̃′1) =
1

2π
K0

q̃
√

(x̃′1)2 +

(
h(x̃′1H)

H
− 1

)2
 , (5.12)

and the metric factor

√
g(x̃1) =

√
1 + (∂1h(x̃1H))2 . (5.13)

Thus through rescaling, all distances are now given as multiples of H.

From our considerations of the plane-sphere scenario we know that the
�uctuation-induced potential between the sphere and the corrugated surface

11Here we have included the factor of H appearing on the left hand side of Eq. (5.10)
upon rescaling of the integration variable into the de�nition of the trace expression, see
Eq. (5.14).
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is obtained by evaluating12

tr
(
∆M12M−1

22M21

)
=

TE
2r

H2

∫ ∞
0

dq̃

∫ ∞
−∞

dx̃1

√
g(x̃1)q̃∆M̃12(q̃, x̃1)M̃21(q̃, x̃1) +O

(
r2

H3

)
. (5.14)

The potential energy between the corrugated surface and the sphere will
again be given by

Ecas(H) = − ~c
TE

1

2
tr
(
∆M12M−1

22M21

)
. (5.15)

Equation (5.10) with its associated propagators (5.11) and (5.12) together
with the trace expression (5.14) are now the starting point for our investi-
gations of the two following section, where we will determine the induced
potential in the cases of a sinusoidally shaped surface numerically.

We use Eq.(5.10) to extract the unknown propagator ∆M̃12 and apply
our result in Eq.(5.14) in order to determine the trace over all propagators
and thereby the energy of the con�guration.

Let us stress that though the method applied here is valid only for r
H
� 1,

it is non-perturbative. Thus there is no need to assume that the amplitude of
the corrugation is small compared to the distance between sphere and plate
as required in other approaches (e.g. [30]).

Also we stress again that the method probes parameter ranges inaccessible
to the Proximity Force Approximation (PFA) [15, 16] since the latter is only
reliable in the limit of r

H
� 1.

5.2 Sinusoidally structured surfaces

5.2.1 Prerequisites

As an exemplary application of our method we want to consider the �uctuation-
induced potential between a sphere and a sinusoidally corrugated surface.

We parametrize the structure by the one-dimensional height function

h(x1) = A sin(ω(x1 + φ)) , (5.16)

and thus have the means of varying the structure amplitude A as well as its
frequency ω. Since in our formulation the location of the centre of the sphere
with respect to the direction of corrugation is �xed, a phase φ is introduced

12Again, due to the symmetry of the problem we have M̃21 = M̃12 and therefore the
structure of M̃21 can be read o� Eq. (5.12) .
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to simulate the movement of the sphere through a continuous displacement
of the structure itself.

With the height function h(x1) of the corrugation we can now give explicit
representations of the propagators and the metric factor of Eqs. (5.11-5.13).

In terms of the rescaled variables we have the propagators

M̃11(q̃, x̃′1; x̃1) =

1

2π
K0

q̃
√√√√(x̃′1 − x̃1)2 +

(
Ã sin(ω̃(x̃′1 + φ))− Ã sin(ω̃(x̃1 + φ))

H

)2
 (5.17)

and

M̃12(q̃, x̃′1) =
1

2π
K0

q̃
√√√√(x̃′1)2 +

(
Ã sin(ω̃(x̃′1 + φ))

H
− 1

)2
 . (5.18)

The metric factor of the surface integration reads

√
g(x̃1) =

√
1 + [Ãω̃ cos(ω̃(x̃1 + φ))]2 . (5.19)

Note that all tilded variables again indicate that they are given in units of
the mean distance H.

In the following we will discuss a possible discretization of these functions
in order to obtain the Casimir energy of the setup numerically.

5.2.2 Numerical implementation

In this section, we drop the �∼� marking the dimensionless quantities in order
not to clutter up the notation. Since the space between surface and sphere
along the direction x3 is denoted by the mean distance H in the formulation,
we can also drop the index of x1 without danger of confusion and thus set
x1 ≡ x from now on.

For the numerical evaluation of the unknown propagator ∆M12, �rst of
all Eq.(5.10) is discretized in its spatial arguments x′ and x. To this end we
approximate the integral over the spatial variable through a left Riemann
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sum which is de�ned as13:∫ ∞
−∞

dxf(x) ≈
N−1∑
i=0

∆xf(xi) ,

where Nx is the number of nodes and ∆x = xi+1 − xi the step size of the
discretization, respectively.

Naturally the integration over x originally running from −∞ to +∞ must
be cut o� at some �nite value. Since the sphere is located at the position
x = 0 above the surface, we choose a symmetric cuto� at the positive variable
Lx. With xi = −Lx + i∆x, we have for the left and the right interval limits
x0 = −Lx and xN−1 = Lx −∆x and thus for the step size ∆x = 2Lx

Nx
.

Note that since in experiments the plate extension of course is not in�nite,
the parameter Lx can even be associated with a physical quantity.

We thus write Eq.(5.10) as

Nx−1∑
i=0

∆x
√
giM11,ji(q)∆M12,i(q) =M12,j(q) , (5.20)

where the variables x and x′ have been replaced by the subscript indices i and
j, respectively, whereas the momentum variable q remains continuous for the
time being. The subscript indices have been introduced for easier readability
and should be understood asMαβ,ji = Mαβ(xi, xj), Mαβ,i = Mαβ(xi) and√
gi =

√
g(xi), with the de�nition of xi as given above.

Thus, through the process of discretization, M11 now acquires a matrix
structure containing the respective nodes along x′ and x in its row and column
entries, whilstM12 and

√
g assume the form of a vector.

Yet, one has to be careful with the choice of discretization points in x and
x′ due to the fact that the zeroth Bessel function appearing in the de�nition
ofM11 diverges at the origin (cf. Eq. (5.17)). Therefore we choose the nodes
in x′ and x such that they are separated by an o�set ∆s. This o�set should
then of course not be a multiple of the chosen discretization step size in order
not to hit the pole.

Also, in order to avoid a bias towards too high or too low numerical values
ofM11 due to the o�set, the complete evaluation of ∆M12 is done once with
a positive and once with a negative o�set ∆s. Finally we work with the mean
value of both results.

13Replacing the integration over x through a left Riemann sum is admittedly a fairly
crude approximation to the integral and there exists of course an abundance of more
sophisticated methods. Nevertheless already a simple Riemann sum yields rather accurate
results as we will see shortly. Therefore this approximation shall su�ce for our �rst
numerical studies.
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Now, in order to obtain ∆M12,i, the discretized propagator M11,ji to-
gether with the metric factor

√
gi is inverted numerically and multiplied by

the vectorial term M12,j on the right hand side of Eq. (5.20). This quan-
tity needs to be computed for all possible positive values of the momentum q.
Thus, the propagator ∆M12 itself assumes a matrix form upon discretization
of the continuous momentum variable.

With ∆M12 given, now the potential energy of the con�guration is com-
puted.

The discretized version of Eq. (5.14) reads

tr
(
∆M12M−1

22M21

)
=

TE
2r

H2

Nk−1∑
k=0

qk ∆q
Nx−1∑
i=0

∆x
√
gi ∆M12,ikM21,ik . (5.21)

The approximation of the momentum integration is carried out analogously
to the spatial case (i.e. we use a left Riemann sum) except for the fact that
the momentum integration only runs over positive values. We label the lower
cuto� of the momentum integration as Lq and the upper cuto� as Rq. The

step size ∆q is consequently given as ∆q = Lq+Rq
Nq

, where Nq is the number

of nodes along q.
Yet, again owing to the fact that the Bessel function K0 diverges at the

origin, we cannot choose the value 0 itself as the smallest node Lq in the
discretization of the momentum integration.

Finally, using Eq.(5.15), we see that the Casimir energy of the con�gura-
tion is given by

Ecas(H) = −~ c r
1

H2

Nk−1∑
k=0

qk ∆q
Nx−1∑
i=0

∆x
√
gi ∆M12,ikM21,ik . (5.22)

Note that this formula holds for general uniaxial deformations.

5.2.3 Parameter choice and validity limits

As a check on the validity and precision of the numerical implementation we
have the limiting case of a �at surface as presented in section 4, since this
limit is known analytically. We thus use the comparison to the planar case
in order to tune our parameters of the discretization and test their range of
validity.

Equations (5.20) and (5.22) for a �at surface S1 read

Nx−1∑
i=0

∆xM11,ji(q) ∆M12,i(q) =M12,j(q) (5.23)
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and

Ecas(H) = −~ c r
1

H2

Nq−1∑
k=0

qk ∆q
Nx−1∑
i=0

∆x∆M12,ikM21,ik . (5.24)

As outlined before, an o�set ±∆s between the nodes x and x′ is intro-
duced to circumvent divergencies, thus �rst of all the e�ect of this o�set is
studied.

One should not forget, though, that the most adequate choice of ∆s is not
unique but rather depends on the used step size ∆x. Choosing ∆s too small
with respect to the step size ∆x amounts to high values along the diagonal
ofM11,ji and thus to small values for ∆M12,i since ∆M12,i is proportional
to the inverse ofM11,ji (cf. Eq. (5.23)).

On the other hand, choosing ∆s too big with respect to ∆x consequently
yields too high values for ∆M12,i. As it turns out, the most suited14 choice
for ∆s is about 1

2
of the used step size ∆x , since it yields the best agreement

with the analytical values of ∆M12.
Among all parameters of the discretization, the choice of Lx and ∆x

depends for the most part on the available computing power. This is due
to the fact that the values for Lx and ∆x determine the size of the matrix
M11,ji which needs to be inverted for the computation of the potential. For
our studies using Mathematica 6.0, we restrict ourselves to a maximum
precision involving at most a 126× 126 matrix inM11,ji.

As already mentioned earlier, the introduction of a seemingly unwanted
cuto� Lx is not inconvenient. In fact one can associate the parameter Lx with
the �nite extension of the plate and tune it in order to study boundary e�ects.
At �rst, however, we aim at minimizing the in�uence of the boundaries.

For �xed values of H and ∆x it turns out to be a good compromise to
choose the upper and lower bounds of the spatial integration ±Lx around the
value of the maximal separation between surface and sphere. This assures
that the sphere is always closer to the centre of the structure than to its edges.
With the selected maximal dimension of the matrixM11,ji, this immediately
�xes the step size ∆x as well.

At last, in order to �nd a reasonable choice for the step size of the q-
integration as well as its upper and lower cuto�s, it is suitable to consider

14As a side remark we note that very small step sizes ∆x result in too high values for
the potential Ecas. In a way this countervails the e�ect of small o�sets ∆s. This is an
unwanted e�ect since it makes it impossible to check if the chosen combination of ∆s
and ∆x indeed is the one yielding the best numerical results. It is therefore desirable to
circumvent the introduction of ∆s in the �rst place by an appropriate regularization of the
Bessel function appearing in M11 itself. This option will be further discussed in section
5.3.1.
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the potential of Eq. (5.24) without performing the momentum integration.
De�ning the expression

f(q) = q

Nx∑
i=0

∆x
√
gi∆M12,i(q)M21,i(q) , (5.25)

we study the behaviour of f(q) to �nd appropriate lower and upper cuto�s
Lq and Rq. For given parameters of the spatial discretization, f(q) is peaked
around some momentum q and thus values for Lq, Rq as well as the step size of
the momentum integration ∆q can be picked depending on the desired degree
of precision15. In the following, we always choose as dimensionless parameters
for the momentum integration Lq = 0.01, Rq = 4 and ∆q = 0.04. The
parameters corresponding to the spatial discretization are adjusted according
to the investigated setup.

Now, with reasonable values for the discretization parameters at hand,
we check on the agreement of our numerics with the analytical result for the
energy in the limit of a �at surface. For a vanishing structure amplitude
A, the numerical results should reproduce the value of the potential for the
sphere (S) - plane (P) con�guration as given in Eq.(4.29):

ESP(H) = − 1

8π

~cr
H2
≈ −0.03979

~cr
H2

. (5.26)

It is reasonable to assume that the degree of agreement achieved in the planar
case approximately transfers to the case of non-planar surfaces, since no
further discretization parameters come into play. The degree of congruence
achieved by the parameters as used in the following section is discussed in
Appendix C.2.

At last we would like to note that a further test on the implementation
results from the fact that for a diverging structure frequency ω the sphere
does not �see� the slots of the structure. Thus for separations H ∼ A the
structured surface must behave like a planar surface at reduced mean height
H ′ = H − A in the limit of ω →∞ .

5.2.4 Results

As argued in section 5.2.1, we introduce a phase φ in the de�nition of the
height function in order to extract the value of the potential for each point
above the structure. For a sinusoidally shaped surface, it makes sense to
consider the parameter range φ ∈ (−π, π].

15An exemplary graph showing the qualitative behaviour of f(q) is given in Appendix
C.1
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Note that through the variation in φ, the actual shape of the structure
is continuously modulated while the sphere itself stays �xed at the position
x = 0. Therefore the boundary e�ects resulting from the �nite plate size
contribute by the same amount for every value of φ. Thus, for the case of
vanishing boundary e�ects, the variation of φ can be associated with the
movement of the sphere above an in�nitely extended structure along the
direction x.

In the following we want to study the shape of the potential along the
direction of corrugation as well as the behaviour of the potential for varying
separation between the surface and the sphere. Modulated frequencies of the
structure function will also be accounted for.

Note, however, that to the end of studying the behaviour of the potential
for varying mean separation it is no longer favourable to choose the mean
distance H as a scale since we want the structure amplitude as well as the
frequency to be �xed for decreasing H. Instead, the structure amplitude A
is the relevant scale for the frequency ω, whilst the edges of the plate Lx and
the step size ∆x scale with16 H−A sin(ωφ). This assures that the steps along
x are adjusted reasonably: for small separations between sphere and plate
the nodes along x lie close, whereas for bigger distances the discretization
points are spread more coarsely. The edges of the corrugated plane converge
as H → 0, assuring that the sphere always �sees� the same number of nodes
Nx.

In order to present our numerical results clearly, we write Eq. (5.22) as

Ecas(H) = −~ c r
1

H2

Nq−1∑
k=0

qk ∆q
Nx−1∑
i=0

∆x
√
gi ∆M12,ikM21,ik

≡ ~ c r α , (5.27)

where we have introduced a parameter α characterizing the potential strength17.

16When scaling Lx and ∆x with the distance between surface and sphere, also the scaling
of the parameters of the momentum integration Lq, Rq and ∆q has to be adapted.

17Note, that the de�nition of α explicitly includes the minus sign appearing in Ecas.
This makes it easier to combine the height function and α in one plot.
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Figure 3: Lines of equal potential α inside a minimum of the sinusoidal
structure, i.e. around x = −π

2
are shown as a function of the mean distance

H scaled with the amplitude A of the corrugation. The value of the potential
strength parameter α as de�ned in Eq. (5.27) is given at the respective
contours and is graded graphically in between from lighter colours (high α)
to darker colours (low α). The step size in spatial direction ∆x is 0.5 in units
of A, while the total size of the surface is 2Lx = 2π in multiples of A. The
values along the direction of corrugation lie between −2π

3
≤ x/A ≤ −π

3
. The

frequency of the considered sinusoidal corrugation is chosen as ω/A = 1. One
can see that the equipotential lines resemble the shape of the structure trough
itself and that the gaps between the contours widen for increasing ratios
of H/A, highlighting the strong distance dependency of the Casimir force.
However, in the contour plot only a very small number of nodes Nx = 12 can
be used within a reasonable frame of computing time. The small number
of discretisation nodes also causes the slight asymmetry of the equipotential
lines. Thus the graph shows only the qualitative behaviour of α and for
quantitative studies the lines have to be investigated separately (cf. Figs. 4
and 5).
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In Figure 3, equipotential lines for several ratios of mean distance to am-
plitude inside a structure trough are shown along the direction of corrugation
x. It can be seen that the potential varies only moderately for greater ratios
H/A and diversi�es stronger when H becomes very small with respect to
the corrugation amplitude. For H/A > 1 the gaps between the equipotential
lines become continuously wider and are thus not shown in the graph for
the sake of lucidity. Around H/A = 0.28 above the absolute minimum at
x = −π

2
, the value of α ≈ 0.04 is assumed which corresponds to the value of α

for a planar surface (cf. Eq. (5.26)). The slight asymmetry in the uppermost
equipotential lines in the graph is ascribed to the use of a left Riemann sum
within the discretization (cf. section 5.2.2).

Since the calculation of the lines of equal potential as presented in Fig. 3
is very time-consuming with Mathematica, it can only be done for a rather
low number of discretization nodes Nx and therefore yields only qualitative
results.

In Figs. 4 and 5 we thus give the value of α along the x-direction for two
selected ratios of A/H with a relatively high number of nodes Nx = 80. For
easier readability, the shape of the structure function itself is included in the
plot.

In Fig. 4, the mean distance H between the centre of the sphere and
the structure is chosen to be twice as large as the structure amplitude A.
One sees that the shape of the potential in this case resembles the shape
of the structure function. However, it is already well recognizable that the
energy between structure and sphere grows rapidly for shorter separations.
This becomes even more obvious in Fig. 5, where the maximal amplitude A
becomes 0.9 in units of H.
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Figure 4: The potential strength parameter α as de�ned in Eq.(5.27) is given
for every point above a sinusoidal structure with x/H ∈ [−π, π] and ω/H = 1
(upper line in red, scale on the left hand side), where H denotes the mean
distance between surface and sphere. Since α cannot become smaller than 0,
the scale on the right hand side does not show negative values. The course of
the structure itself is depicted by the blue shaded area at the bottom. The
corresponding height of the structure in units of H can be read o� the blue
scale on the right hand side. In this �gure, the ratio of structure amplitude
and mean distance is chosen as A/H = 0.5. The parameters of the spatial
integration amount to Lx = 2 and ∆x = 0.05 in units of H, respectively. The
curve depicting the values of α resembles a slightly deformed sinusoidally
shape, indicating that the sphere locally sees an almost �at plate.
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Figure 5: The potential strength parameter α as de�ned in Eq.(5.27) is
given for every point above a sinusoidal structure with x/H ∈ [−π, π] and
ω/H = 1 (upper line in red, scale on the left hand side) with H denoting
the mean distance between surface and sphere. The course of the structure
itself is depicted by the blue shaded area at the bottom. The corresponding
height of the structure in units of H can be read o� the blue scale on the
right hand side. The ratio between amplitude and mean separation in this
�gure is A/H = 0.9. The parameters of the spatial integration amount to
Lx = 2 and ∆x = 0.05 in units of H. The curve depicting the course of α
deviates drastically from a sinusoidal shape, accentuating the strong distance
dependency of the Casimir force. Note the scale for the parameter α in this
graph di�ers by a factor of 10 with respect to the scale as used in Fig. 4.
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Next, we study the behaviour of the Casimir potential for varying mean
separation between structure and sphere and compare it to the analytically
known value for a sphere and a planar surface (cf. section 4). In particular
we consider the potential values above a structure trough and an in�exion
point of the structure along vertical lines with respect to the structure.

Above the structure trough, we expect the potential to approach the value
of the corresponding planar case in the limits H � A and H � A. In the
�rst case, the alteration of the structure function becomes arbitrarily small
and thus the sphere sees an almost �at plate. In the second case, the in�uence
of the corrugation diminishes due to the strong decline of the Casimir force
with the distance. For the same reason the normalized potential parameter
should become 1 for H � A above the point of in�exion.

Figure 6 depicts the deviation of the potential strength parameter α above
an in�exion point of the structure with respect to the potential parameter
αP for a planar surface laid through the point of in�exion. The ratio α/αP is
given for three di�erent values with respect to the frequency of the structure
function. The setup is chosen such that at the upper limit of the curve
corresponding to H/A = 3, the half length of the plate Lx = π in units of
A, assuring that the mean separation between surface and sphere is smaller
than the distance between the sphere and the edges of the plate. This secures
that edge e�ects are small. One can see that the potential induced by the
structure begins to deviate considerably from the planar case as H/A → 0.
Also one �nds that the degree of discrepancy increases drastically for greater
ω since the gradient of the structure function increases with ω and thus the
structure comes closer to the sphere. Since in the limit H/A → 0 the space
between the corrugated surface and the sphere at the in�exion point is always
smaller than the distance between the sphere and a planar surface through
the point of in�exion, the normalized potential parameter actually becomes
considerably larger than α/αp = 1.

Figure 7 shows the potential strength parameter α normalized to its value
for a �at plate located at the minimum of the structure. Again, the ratio
is given with respect to three di�erent frequencies of the height function.
All in all this can be looked upon as the sphere approaching the surface
from a vertical direction and moving into a structure minimum. One sees
that the maximum of the deviation is reached for H ∼ A and further that
the deviation advances rapidly for higher modulation frequencies. This is
ascribed to the fact that the vertical components of the forces induced in
the setup increase for higher ω. Note that the variation in ω also shifts the
position of the maximum of α/αP to lower values of H/A. This is due to the
fact that the sphere �sees� the limit of a planar surface later for higher values
of ω.
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Figure 6: This graph shows the Casimir-Polder energy for a sinusoidally
structured surface relative to the planar case above an in�exion point (i.e.
φ = 0) of the structure with amplitude A within the range of a dimensionless
mean separation 3 ≥ H/A ≥ 0.1. The potential strength parameter α is
normalized to the value of the parameter for a planar surface located at mean
distance H = 0, called αP . The red (bottom), magenta (middle) and blue
(top) curves show α/αP as a function of the fraction H/A for ω/A = 1, 2, 3,
respectively. The step size ∆x along the spatial direction and the spatial
cuto� Lx are 0.1 and π in units of H, respectively. Thus the edges of the
surface as well as the discretization nodes converge with decreasing separation
between surface and sphere. In the graph one sees that the value of α/αP
increases articulately for higher values of ω. As H/A → 0, the normalized
potential strength parameter assumes values that are considerably larger
than 1 since the gap between corrugated surface and sphere is smaller than
the distance between the sphere and a planar surface through the in�exion
point.
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Figure 7: This graph shows the deviation of the Casimir-Polder energy for a
sinusoidally shaped surface from the planar case above a structure trough for
dimensionless mean separations 5.5 ≥ H/A ≥ −0.9, where A is the amplitude
of the structure. The potential strength parameter α is normalized to the
value of the parameter for a planar surface αP located at H = −A. The
red (bottom), magenta (middle) and blue (top) curves refer to ω/A = 1, 2, 3,
respectively. The step size ∆x along the spatial direction is 0.5 and the spatial
cuto� Lx = 2π in units ofH+A, respectively. Thus the edges of the surface as
well as the discretization nodes converge with decreasing separation between
surface and sphere. The maximal deviation with respect to the planar case
is met when H and A become of the same order of magnitude. For greater
frequencies ω, the trough becomes narrower and thus the potential deviates
from the planar case more drastically. Also the point of maximal deviation
is shifted towards smaller H/A as ω/A increases, since the sphere perceives
the limit of the �at plane at a later point. For H/A→ −1, the alteration of
the structure function becomes arbitrarily small and thus α/αP → 1.
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5.3 Improvements and extensions in the scalar and gauge

�eld context

5.3.1 Alternative discretization

As mentioned in footnote 14 on page 43, the introduction of the shift ∆s
between the discretization nodes along the spatial direction is not favourable.
There we argued, that ∆s can not be chosen arbitrarily with respect to the
step size ∆x. However, within the discretization using ∆s, the analytic value
for the Casimir-Polder potential is expected to be obtained in the limit of an
in�nite number of discretization nodes Nx →∞, whilst ∆s→ 0. In practice
this amounts to the necessity of choosing some factor c = Nx ∆s as a working
basis for the calculations of the potential. But though c can be tuned such
that the analytically known value for the planar case is reproduced to an
arbitrarily high degree of precision, it remains always unclear if the chosen
combination of Nx and ∆s is ideal or if an even better one can be found.

Thus we want to present an alternative discretization that circumvents
this �aw. Instead of shifting the nodes of x and x′ relative to each other in
order to assure a non-vanishing argument of the Bessel function inM11, one
can instead regularize the Bessel function itself.

In the limit of small arguments z, it holds for the modi�ed Bessel function
K0 that K0(z) ∼ − ln(z) [42]. Therefore it seems to be an apt regularization
to set

M11(z) =

{
1

2π
K0(z) , z > ε

− 1
2π

ln(z + ε) , z ≤ ε
, (5.28)

where z now refers to the whole argument of the propagator as given in Eq.
(5.11). By this, the nodes in x and x′ can be chosen on top of each other
and the new parameter ε > 0 takes the role of the o�set ∆s.

With (5.28), now the analytical value of the discretized propagatorM11

and the Casimir-Polder potential is again obtained in the limits Nx → ∞
and ε → 0. However, in contrast to the discretization using the o�set ∆s,
the behaviour of M11 can be studied for arbitrary �xed values of ε in the
limit Nx →∞. The optimal value of ε with respect to the choice of a �nite
Nx can then be extrapolated from these studies.

5.3.2 Arbitrarily corrugated surfaces and modi�ed boundary con-

ditions

The evaluation scheme of section 5.2 is now in principle valid for any periodic
uniaxial deformation. Arbitrary periodic structure functions can be decom-
posed into their Fourier modes and thereby the problem is reduced again to
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the setup of sinusoidal shapes as already considered in section 5.2.
However, for non-smooth structure functions such as sawtooth or step

functions the available numerical precision becomes crucial. There, an ade-
quately small step size for the spatial discretization has to be chosen to avoid
the occurrence of discretization artifacts at the points of large gradients.
Within the frame of an implementation in Mathematica, investigations of
this kind therefore yield only qualitative results.

As a side remark we want to mention that our method can also be gen-
eralized to the case of biaxially corrugated surfaces. Two-dimensional de-
formations, however, demand considerably more numerical e�ort since the
matrix inversion needed for the computation of ∆M12 has to be performed
with respect to two spatial variables. Furthermore, 2D corrugations imply a
further integration over the second lateral coordinate in the trace expression
(cf. Eq. (4.25)). But besides the increased numerical e�ort no principle
obstruction is met.

Also an extension of this method to pure Neumann boundary conditions
as well as interpolations18 between Dirichlet and Neumann or even unlike19

boundary conditions is possible. With the Green's function for the Neumann
problem (cf. Eq. (2.18)), the inverse of the propagators on the surfaces and
the respective propagators between the surfaces can be evaluated along the
lines of this section and the potential energies can consequently be evaluated.

5.3.3 Full gauge �eld

In this chapter we have presented a simple and e�cient way of how to cal-
culate �uctuation-induced forces for a Dirichlet scalar �eld between a sphere
and a uniaxially corrugated surface with a general periodic structure func-
tion.

However, in order to obtain classical Casimir-Polder potentials in the
sense of �uctuation-induced potentials between actual atoms and a surface,
a calculation for �uctuating scalar �elds does not su�ce. As argued in the
beginning of section (2.2.2), a calculation in terms of one Dirichlet and one
Neumann scalar �eld delivers the potential for the full electromagnetic �eld
if and only if the setup is translationally invariant in at least one spatial
direction. Since the choice of a sphere as one of the surfaces in the setup
breaks the invariance in all spatial directions, scalar �elds cannot account

18Interpolations between Dirichlet and Neumann boundary conditions are also referred
to as Robin boundary conditions.

19By unlike boundary conditions we refer to the cases where Dirichlet boundary condi-
tions are implemented on the sphere while Neumann boundary conditions are used on the
surface and vice versa.
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anymore for the behaviour of the full gauge �eld.
Moreover, studying the characteristics of an actual atom in front of a

structured surface and thereby the explicit comparison with the experimental
results [28] as described in the introduction of this thesis demands the use of
proper boundary conditions of the electromagnetic �elds on the atom.

It is thus desirable to use the techniques of this section in a formulation for
�uctuating electromagnetic �elds with general dielectric surfaces similar to
the one reviewed in Appendix B. However the expressions for the propagators
derived within this formulation are not applicable for our formulation since
they only apply to surfaces whose corrugation can be parametrized by a
height function of the lateral coordinates. A sphere unfortunately does not
match this classi�cation.
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6 Résumé and outlook

In this analysis we aimed at the development of a simple, non-perturbative
calculational scheme for Casimir-Polder potentials in the case of arbitrarily
structured surfaces.

To this end we �rst reviewed the Quantum Field Theoretical treatment
of �uctuating scalar �elds with boundaries. Essentially, the �uctuation con-
straints are inserted via a δ functional into the generating functional Z of the
theory. Through the Fourier transformation of the δ functional constraint,
a set of auxiliary �elds is introduced which is only de�ned on the surfaces
themselves. Evaluating the Gaussian integrations over the physical and the
auxiliary �elds then yields a trace log formula for the Casimir energy and
force of the system. The determination of the �uctuation-induced energy
is therefore reduced to the evaluation of the propagators of the respective
theory on and in between the surfaces. Thus, the Casimir energy itself is
essentially given by the sum of every possible propagation cycle. As a �rst
application of this method we deduced the well-known Casimir force between
two parallel conducting planes in position as well as in momentum space.

Transferring our considerations to Casimir-Polder problems, we then ex-
plained the �eld theoretical treatment for a �uctuating electromagnetic �eld
bounded by arbitrarily structured dielectric surfaces. We showed that the
result of Casimir and Polder [4] for the potential energy of an atom in front
of a plane with diverging dielectric constant can be derived by the thinning
of a dielectric surface. In this context we deduced that the trace log formula
of the Casimir energy simpli�es considerably in the case of Casimir-Polder
type problems, since only one cycle of �uctuation propagations has to be
evaluated.

For the desired setup of corrugated surfaces, though, we argued that the
thinning of one plate is not a favourable technique since the information of
the position of the atom with respect to the ridges cannot be extracted. Still,
the method could be of use in the consideration of surface roughness e�ects
since there only the averaged potential induced by the presence of the plate
is of relevance.

For the purpose of extracting the exact position of the atom with re-
spect to the direction of the surface corrugation, we then substituted one of
the surfaces by a sphere in our two surface setup. In this context, we �rst
studied the potential induced by a scalar Dirichlet �eld for a sphere-plane
con�guration in the Casimir-Polder limit and con�rmed recent results on the
Casimir-Polder force that were obtained by the use of di�erent calculational
techniques [24, 41]. In the process of this calculation we showed that the
integrations necessary for the evaluation of the potential become trivial for
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the atom-side in the Casimir-Polder limit and derived an expression for the
Casimir-Polder energy where only the integrations over the plate-side remain.

We then applied our result to the case of nontrivially shaped surfaces and
derived a simple expression allowing for the numerically exact computation
of the scalar Dirichlet Casimir-Polder potential for uniaxially corrugated sur-
faces. We argued that the formulation is non-perturbative in nature and can
therefore probe regions that are arbitrarily close to the surface.

Consequently, we presented a possible numerical implementation and ap-
plied it exemplarily to the situation of a sinusoidal corrugation. The be-
haviour of the Casimir-Polder potential was studied for varying ratios be-
tween mean separation and corrugation amplitude along the direction of cor-
rugation. Moreover, we considered the deviation of the potential strength for
the corrugated surface with respect to the planar situation above a structure
trough and above an in�exion point of the structure. These studies were
performed for three di�erent frequencies of the structure function.

Improvements of the presented work and extensions to it are possible in
several directions.

First of all, a customized numerical implementation of the presented for-
mulae for arbitrary corrugations can circumvent the limitations that are
met within our implementation using Mathematica. A faster algorithm
could then be used to study more elaborate structure functions or even two-
dimensional corrugations. As outlined, also the study of edge e�ects is pos-
sible within the formulation.

Furthermore several analytical extensions seem feasible. As already men-
tioned, an upgrade to scalar Neumann �elds faces presumably no principle
obstruction. Also it would evidently be of great interest to extend the calcu-
lations to the situation of a �uctuating gauge �eld in the presence of surfaces
with arbitrary dielectric functions. This would provide the means of an
explicit comparison to existing experimental data as outlined in the intro-
duction of this thesis. Moreover, the inclusion of �nite temperature e�ects
in the considered sphere-surface con�guration seems to be a worthwhile task
[43].

All in all it is fair to say that even sixty years after Casimir's seminal
prediction [1] the �eld of �uctuation-induced phenomena still harbours many
unanswered questions.
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A Propagators for the �at surface scenario

A.1 Inverse propagator on a plane

In order to proof Eq. (2.28), we have to show that

2
√
−∇2G(x) = δ(x) (A.1)

is solved by the Green's function for ∂2 with the x3-component evaluated on
a plane.

By transforming (A.1) to momentum space we �nd G(p) = 1
2|p| and there-

fore

G(x) =

∫
d3p

(2π)3

1

2|p|
e−ıpx . (A.2)

Using a proper time representation for G(p), we can write (A.2) as

G(x) =

∫
d3p

(2π)3

(
1

2
√
π

∫ ∞
0

dT√
T
e−p

2T

)
e−ıpx . (A.3)

Upon completion of the square in p in the exponential, the integrations over
the momenta can be performed and one gets

G(x) =

∫ ∞
0

dT
1

16π2T 2
exp

[
− x

2

4T

]
. (A.4)

Evaluating the T -integration yields

G(x) =
1

4π2x2
, (A.5)

which in fact is the propagator on a �at surface parallel to the x1− x2 plane
(cf. Eq. (2.9)).

A.2 Half and full propagation circles

For the evaluation of the combined propagator M−1
11M12, it is feasible to

choose M11 again in its Fourier representation. We thus have to evaluate
the expression

∆M12(x− x′) =

∫
p

∫
x′′

1

(2π)3

1

4π2
2|p|e−ıp(x−x′′) 1

(x′′ − x′)2 +H2
. (A.6)

After a shift in the integration variable x′′ → x′′ + x′, the propagator reads

∆M12(x− x′) =
1

16π5

∫
p

|p|e−ıp(x−x′)
∫
x′′
eıpx

′′ 1

(x′′)2 +H2
, (A.7)



60 A PROPAGATORS FOR THE FLAT SURFACE SCENARIO

and now allows for the spatial integration to be carried out. One �nds that

∆M12(x− x′) =
1

8π3

∫
p

e−|p|He−ıp(x−x
′) , (A.8)

which upon integration over p reduces to

∆M12(x− x′) =
1

π2

H

(H2 + (x− x′)2)2
, (A.9)

as given in Eq. (2.30).
At last, we want to evaluate the expression for one full propagation cycle

∆M12∆M21 between plane surfaces. Using (A.9), we have to evaluate

[∆M12∆M21] (x− x′′) =

∫
x′

1

π4

H

(H2 + (x− x′)2)2

H

(H2 + (x′ − x′′)2)2
.

(A.10)
With a shift in the integration variable x′ → x′ + x, one �nds

[∆M12∆M21] (x− x′′) =

∫
x′

1

π4

H

(H2 + x′2)2

H

(H2 + (x′ + y)2)2
, (A.11)

where y ≡ x − x′′. The integral over the three components of x′ can be
rewritten as:

[∆M12∆M21] (x− x′′) =
2H2

π3

∫ ∞
0

x′2

(H2 + x′2)2
dx′

×
∫ 1

−1

1

(H2 + x′2 + y2 + 2|x||y|u)2
du . (A.12)

Upon evaluation of the two remaining integrations and the resubstitution
y → x− x′′ we get the expression as given in Eq.(2.31)

[∆M12∆M21] (x− x′′) =
2

π2

H

(4H2 + (x− x′′)2)2
. (A.13)
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B Field theory for dielectric boundaries

This appendix follows closely Refs. [37, 38]. Note, though, that a di�erent
sign convention is used regarding the Fourier transforms. Throughout this
thesis we choose:

f(x) =

∫
dp

2π
f̃(p)e−ıpx

f̃(p) =

∫
dxf(x)eıpx (B.1)

B.1 Restriction of the partition function

Similar to the calculations of section 2.1, a partition function for �uctuating
electromagnetic �elds can be installed, where the required boundary con-
ditions on the dielectric surfaces are implemented through a δ functional
constraint. The main di�erence of the formulation for dielectric surfaces as
compared to the treatment for scalar �elds is - besides of course the extra �eld
degrees of freedom coming with the vector potential Aµ - that the boundary
conditions here are set up non-locally. This means that besides the arbitrar-
ily shaped physical surfaces Sα, two �at auxiliary surfaces Rα are introduced
on which the boundary conditions for the �eld components are implemented.

The setup is as follows: The surface S1 of the dielectric medium with
dielectric constant ε1 is located at x3 = 0, whereas the surface S2 of the
second dielectric medium sits at x3 = H. The space between them is assumed
to be vacuum (i.e. ε = 1).

The con�guration of both20 surfaces should be such that their exten-
sions in x3-direction are parametrized by height functions hα(~x‖) with ~x‖ =
(x1, x2). The two corresponding auxiliary surfaces Rα are placed at a dis-
tance ±L with L su�ciently large such that there is no intersection with the
physical surfaces (see Figure B.1). The �nal result for the Casimir energy
will of course not depend on the choice of L.

The derivation of the three non-local boundary conditions for the �uctu-
ating �eld on the dielectric surfaces is given in B.2.

The starting point of the formulation is the generating functional for free

20Note, that the setup as chosen here is therefore not straightly conferable to the case
where one of the surfaces is assumed to be a sphere (cf. section 4)
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Figure 8: The two dielectric media bounded by their surfaces Sα are �lling
two half spaces. Their mean separation is H. With each physical surface
Sα comes an auxiliary surface Rα on which the boundary conditions are
implemented. This �gure is taken from [37].

�elds. For a complex-valued21 gauge �eld Aµ it reads

Z2
0 =

∫
D (A?A) e−SE(A?,A) . (B.2)

As before, it is convenient to work in a Euclidean time formulation. In
Minkowski space one initially has the action

S(A?, A) = −1

2

∫
x

(F ?
µνF

µν)(x)− 1

ξ

∫
x

(∂µA
?µ)(∂µA

ν)(x) , (B.3)

with four-vectors x = (t, ~x‖, x3). The terms in (B.3) di�er by a factor of
1
2
from the usual QED Lagrangian for real valued �elds and thereby assure

that the correct photon propagator is obtained. The second term arises from
the Fadeev-Popov gauge �xing procedure with the parameter ξ allowing for
a switch between di�erent gauges. In Feynman gauge (i.e. ξ = 1), the
Euclidean action corresponding to Eq. (B.3) reads in momentum space

SE(A?, A) =
1

β

∞∑
n=−∞

1

(2π)3

∫
~k

A?µ(ζn, ~k)GE,µν(ζn, ~k)Aν(ζn, ~k) , (B.4)

where �nite temperature is accounted for by the introduction of bosonic
Matsubara frequencies ζn = 2πn

β
and β = 1

T
. The associated Euclidean

Green's function is given by GE,µν(ζ,~k) = δµνG(ζ,~k) = (ζ2 + ~k2)−1.

21The complex-valued �eld is introduced for calculational convenience and has no phys-
ical implications.
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With these prerequisites, the restricted functional integral is given by

Z2
B.C.(H) =

1

Z2
0

∫
D(A?A)

∏
α,j

∏
ζn

∏
~x∈Rα

× δ
[∫

~x′∈Sα
Lαjµ(ζn; ~x, ~x′)Aµ(ζn, ~x

′)

]
e−SE(A?,A) , (B.5)

where Z0 again is the value of the integral over the unrestricted �elds. The
operator matrices Lαjµ implement the three j = (1, 2, 3) boundary conditions
on the vector potential that are induced by the properties of the two dielectric
media bounded by their surfaces Sα. Their actual form is derived in B.2.

As this formulation allows for �nite temperature, the Casimir free energy
per unit area is given by

F(H) = − ~c
Aβ

ln
[
ZB.C.(H)Z−1

∞ (H)
]
. (B.6)

B.2 Implementation of the boundary conditions

In order to implement the boundary conditions for the electric and magnetic
�eld on the dielectric surfaces, an equivalent reformulation of the optical
extinction theorem is considered [44] which enforces the proper dielectric
boundary conditions non-locally.

Inside a dielectric medium with a general frequency-dependent dielectric
function ε(ω) occupying a volume V with surface S, the magnetic �eld ~B
obeys the Helmholtz wave equation reading[

∇2 + ε(ω)ω2
]
~B(ω, ~x) = 0 , (B.7)

as follows directly from Maxwell's equations.
The free Green's function inside the dielectric medium consequently sat-

is�es [
∇′2 + ε(ω)ω2

]
Gε(ω; ~x, ~x′) = δ(3)(~x− ~x′) . (B.8)

Equations (B.7) and (B.8) can then be combined into one equation and in-
tegrated over ~x′ in a manner that Green's theorem can be applied to Gε and
the components of ~B.

One �nds that the following has to hold:

∫
~x′∈S

[
Gε(ω; ~x, ~x′)(n̂′∇′) ~B(ω, ~x′)− ~B(ω, ~x′)(n̂′∇′Gε(ω; ~x, ~x′))

]
=

{
~B(ω, ~x) , ~x ∈ V
0 , ~x 6∈ V

, (B.9)
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where the normal unit vector n̂ of the surface points into the vacuum. This
equation is considered for the case where the coordinate vector ~x is located
outside of the medium and therefore the integral on the left hand side of
Eq. (B.9) has to vanish. This condition can now be rewritten into a form
suitable for the derivation of the operators in Eq. (B.5) through a succession
of vector identities [36].

Finally one has

∫
~x′∈S

[
−ıωε(ω)(n̂′ × ~E(ω, ~x′)) + (n̂′ ~B(ω, ~x′))∇′ + (n̂′ × ~B(ω, ~x′))×∇′

]
×Gε(ω; ~x, ~x′) = 0 . (B.10)

Now the argument goes as follows: the general continuity conditions for
an electromagnetic �eld at a dielectric boundary without surface charges or
surface currents state, that the tangential component of the electric as well
as the normal and tangential component of the magnetic �eld are continuous
across the surface. Therefore, Eq.(B.10) can be used as a boundary condition
for the vacuum side of the surface (note that Eq. (B.10) does not contain
the normal component of the electric �eld ).

The condition (B.10) now determines the form of the operators Lαjµ(ζ, ~x, ~x′)
appearing in the restricted partition function of Eq. (B.5). Since the opera-
tors Lαjµ(ζ, ~x, ~x′) act on the components of the vector potential and not the
electromagnetic �elds themselves, we have to express the condition (B.10) in
terms of the gauge �eld.

The relation between the electric and magnetic �eld components with the
components of the vector potential reads in Euclidean space:

Ej = −ζAj − ı∂jA0 and Bj = εjkl∂kA
l.

After a decomposition of the operators Lαjµ(ζ, ~x, ~x′) = n̂αk(~x
′)Lkαjµ(ζ, ~x, ~x′)

with respect to the components normal vectors of the surfaces Sα one �nds:

L1
α(ζ, ~x, ~x′) =

0 − 1
ζεα

[∂̄3∂2 − ∂̄2∂3] 1
ζεα

[∂̄1∂3 + ∂̄3∂1] − 1
ζεα

[∂̄1∂2 + ∂̄2∂1]

ı∂3 − 1
ζεα
∂̄1∂3

1
ζεα
∂̄2∂3 ζ − 1

ζεα
[∂̄2∂2 − ∂̄1∂1]

−ı∂2
1
ζεα
∂̄1∂2 −ζ + 1

ζεα
[∂̄3∂3 − ∂̄1∂1] − 1

ζεα
∂̄3∂2


×Gεα

E (ζ; ~x− ~x′) (B.11)
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L2
α(ζ, ~x, ~x′) =
−ı∂3 − 1

ζεα
∂̄1∂3

1
ζεα
∂̄2∂3 −ζ + 1

ζεα
[∂̄1∂1 − ∂̄2∂2]

0 − 1
ζεα

[∂̄2∂3 + ∂̄3∂2] − 1
ζεα

[∂̄1∂3 − ∂̄3∂1] 1
ζεα

[∂̄2∂1 + ∂̄1∂2]

ı∂1 ζ − 1
ζεα

[∂̄3∂3 − ∂̄2∂2] − 1
ζεα
∂̄2∂1

1
ζεα
∂̄3∂1


×Gεα

E (ζ; ~x− ~x′) (B.12)

L3
α(ζ, ~x, ~x′) =
ı∂2

1
ζεα
∂̄1∂2 ζ − 1

ζεα
[∂̄1∂1 − ∂̄3∂3] − 1

ζεα
∂̄3∂2

−ı∂1 −ζ + 1
ζεα

[∂̄2∂2 − ∂̄3∂3] − 1
ζεα
∂̄2∂1

1
ζεα
∂̄3∂1

0 1
ζεα

[∂̄3∂2 + ∂̄2∂3] − 1
ζεα

[∂̄3∂1 + ∂̄1∂3] − 1
ζεα

[∂̄2∂1 − ∂̄1∂2]


×Gεα

E (ζ; ~x− ~x′) (B.13)

with the barred partial derivatives acting on the spatial components of
the Euclidean Green's function inside the dielectric media (cf. Eq.(B.8)),
while the unbarred partial derivatives act on the gauge �eld itself.

B.3 Derivation of the trace log formula

Resembling the derivation in the scalar case (cf. section (2.1)), now three
auxiliary �elds ψαj(ζ, ~x‖), (j = 1, 2, 3) corresponding to the three boundary
conditions are introduced in order to perform the functional integral over
the gauge �elds. However, the auxiliary �elds here are complex-valued since
the arguments of the δ functions are complex-valued in this formulation.
Furthermore, owing to the fact that the positions of the boundary conditions
are located outside of the physical surfaces Sα, the auxiliary �elds are de�ned
on the surfaces Rα at x3 = Lα = (−1)α−1L.

The functional constraints for �xed α and j now read

∏
ζn

∏
~x∈Rα

δ

[∫
~x′∈Sα

Lαjµ(ζn; ~x, ~x′)Aµ(ζ, ~x′)

]
=

∫
D[ψ?αjψαj]

× exp

[
ı
∑
n

∫
~x‖

∫
~x′∈Sα

(
ψ?αj(ζn, ~x‖)Lαjµ(ζn; (~x‖, Lα), ~x′)Aµ(ζn, ~x

′) + c.c.
)]

.

(B.14)

Upon insertion of the representation (B.14) into Eq.(B.5), the squares in the
gauge �elds can be completed and the integration

∫
D(A?A) over the vector
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potential can be performed. The value of the integral over the free �elds is
absorbed into Z2

0 . Eq. (B.5) then reads

Z2
B.C.(H) =

∫ ∏
αj

D
[
ψ?αjψαj

]
e−S̃[ψ?αj ,ψαj ] (B.15)

with the action

S̃[ψ?αj, ψαj] =
∑
n,n′

∫
~x‖

∫
~x′‖

ψ?αj(ζn, ~x‖)M
jl
αβ(ζn, ~x‖; ζn′ , ~x

′
‖)ψβl(ζn′ , ~x

′
‖) . (B.16)

Due to the diagonality of GE,µν in its Lorentz indices, the matrix entries can
be written as

Mjl
αβ(ζ, ~x‖; ζ, ~x

′
‖) = 2πδ(ζ − ζ ′)

×
∫
~y∈Sα

∫
~y′∈Sβ

Lαjµ(ζ; (~x‖, Lα), ~y)L†βµl(ζ
′; (~x‖, Lβ), ~y′)G(ζ; ~y − ~y′) , (B.17)

where G(ζ, ~y) is the photon propagator in vacuum. Since the auxiliary sur-
faces are chosen to be �at, this expression can further be simpli�ed. Separat-
ing the Green's functions in the operators of Eqs. (B.11), (B.12) and (B.13)
through Lkα(ζ; ~x, ~y) ≡ Lkα(ζ)Gεα

E (ζ; ~x− ~y) , Eq. (B.17) reads

Mjl
αβ(ζ, ~x‖; ζ, ~x

′
‖) = 2πδ(ζ − ζ ′)

∫
~y∈Sα

∫
~y′∈Sβ

n̂αkn̂
′
βs[L

k
αL

′†s
β ]jl

×Gεα
E (ζ; ~x− ~y)|x3=LαG

εβ
E (ζ ′; ~x′ − ~y′)|x′3=LβG(ζ; ~y − ~y′) . (B.18)

Now the diagonality of the material Green's functions in their lateral coor-
dinates is utilized. With the partially Fourier transformed propagator

Gεα
E (ζ;~k‖, z) =

exp[−Pα(ζ,~k‖)|z|]
2Pα(ζ,~k‖)

(B.19)

where Pα(ζ,~k‖) =
√
εα(ıζ)ζ2 + ~k2

‖, the barred derivatives acting on the spa-

tial components of the propagators inside the materials can be performed
and the operators Lkα now take the form as given in Eqs. (3.6-3.8). The
propagators of Eq. (B.18) then read

Mjl
αβ(ζ,~k‖; ζ

′, ~k′‖) = 2πδ(ζ − ζ ′)
∫
~y∈Sα

∫
~y′∈Sβ

eı
~k‖~y‖−ı~k′‖~y

′
‖

× e−Pα(ζ,~k‖)|Lα−y3|

2Pα(ζ,~k‖)

e−Pβ(ζ′,~k′‖)|Lβ−y′3|

2Pβ(ζ ′, ~k′‖)

× n̂αkn̂
′
βs[L̂

k
α(ζ,~k‖)L̂

′†s
β (ζ ′, ~k′‖)]jlG(ζ; ~y − ~y′) , (B.20)
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with the surface normal vectors given as

n̂α =
(−1)α
√
gα


∂1h(y‖)

∂2h(y‖)

−1

 . (B.21)

The factor in the denominator is the square root of the induced surface
metric:

√
gα =

√
1 + (∂1h(y‖))2 + (∂2h(y‖))2.

The physical quantities should of course not depend on the choice of the
distance L where the auxiliary surfaces are located. Rewriting |Lα − y3| =

(−1)α−1(Lα−y3) , one sees that the matrix entriesMjl
αβ(ζ,~k‖; ζ

′, ~k′‖) factorize.
One has

Mjl
αβ(ζ,~k‖; ζ

′, ~k′‖) = ηα(ζ,~k‖)M̃jl
αβη

β(ζ ′, ~k′‖) , (B.22)

with the functions ηα(ζ,~k‖) = exp
(
−Pα(ζ,~k‖)L

)
/2Pα(ζ,~k‖) and the modi-

�ed propagator matrix

M̃jl
αβ(ζ,~k‖; ζ

′, ~k′‖) = 2πδ(ζ − ζ ′)
∫
~y∈Sα

∫
~y′∈Sβ

× eı~k‖~y‖−ı~k
′
‖~y
′
‖e−[(−1)αPα(ζ,~k‖)y3+(−1)βPβ(ζ′,~k′‖)y′3]

× n̂αkn̂
′
βs[L̂

k
α(ζ,~k‖)L̂

′†s
β (ζ ′, ~k′‖)]jlG(ζ; ~y − ~y′) . (B.23)

Since the action is quadratic in the auxiliary �elds (cf. Eq.(B.16)), one

sees immediately that Z(H) = det−
1
2 M, with the determinant running over

the continuous momenta (ζ,~k‖) and the discrete indices labelling the plates
α = (1, 2) as well as the three boundary conditions j = (1, 2, 3). Since the

factors ηα(ζ,~k‖) are independent of the mean surface distance H, they drop
out in the ratio of the restricted and unrestricted partition functions and
therefore in the calculation of the free energy and force of the system.

The free energy per surface area now reads

F(H) =
~c

2Aβ
ln det

(
M̃M̃−1

∞

)
. (B.24)

As we are performing our calculations for zero temperature, we work with

Ecas(H) =
1

2

~c
TE

tr lnMM−1
∞ , (B.25)

where we have dropped the ∼ for notational convenience.
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Equation (B.25) together with the expression for the propagators

Mjl
αβ(ζ,~k‖; ζ

′, ~k′‖) = 2πδ(ζ − ζ ′)
∫
~y∈Sα

∫
~y′∈Sβ

× eı~k‖~y‖−ı~k
′
‖~y
′
‖e−[(−1)αPα(ζ,~k‖)y3+(−1)βPβ(ζ′,~k′‖)y′3]

× n̂αkn̂
′
βs[L̂

k
α(ζ,~k‖)L̂

′†s
β (ζ ′, ~k′‖)]jlG(ζ; ~y − ~y′) (B.26)

are now the starting point for our investigations in section 3.
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C Numerical discretization parameters

C.1 Discretization parameters of the momentum inte-

gration

Figure 9 shows the course of f(q) as de�ned in Eq.(5.25) corresponding to
the set of spatial discretization parameters as chosen in Figs. 4 and 5. The
dominant contribution of f(q) to the Casimir-Polder energy for this set of
parameters approximately lies at the value q/H ≈ 0.4. Similar graphs are
obtained when f(q) is plotted with respect to the spatial parameters as used
in Figs. 3, 6 and 7. Due to this behaviour we choose the parameters of the
q-integration as Lq = 0.01, Rq = 4 and ∆q = 0.04.

For precise numerical calculations of the Casimir-Polder potential, the
values for the discretization parameters of the momentum integration have
to be picked according to each used combination of the parameters of the
spatial discretization. Also, Fig. 9 shows, that the choice of equidistant
nodes Nq is not ideal. Here, obviously an adaptive algorithm selecting the
nodes Nq according to the respective course of f(q) for each set of spatial
parameters would be desirable.

1 2 3 4 5
qH

0.005

0.010

0.015

0.020

0.025

0.030

0.035

fHqL

Figure 9: In this �gure, the course of f(q) as de�ned in Eq.(5.25) is shown
for the parameters A/H = 0.01, ω/H = 1, Lx = 2, ∆x/H = 0.05 and
∆s/H = 0.025 in the regime 0.01 ≤ qH ≤ 5. It can be seen that the
dominant contributions of f(q) are peaked around q/H ≈ 0.4 and decline
quickly as q/H → ∞. On the basis of this �gure we use the following
dimensionless parameters for our considerations of section 5.2.4: Lq = 0.01,
Rq = 4 and ∆q = 0.04.
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C.2 Validity limits

In Table 1 we give an overview of the relative deviation of the Casimir-
Polder potential as presented in Figures 4-7 from the corresponding analytical
value in the �at surface limit. The agreement with the analytical result for
planar structures is tested by choosing the amplitude of the corrugation small
compared to the mean distance. To this end, we choose A = 0.01H. The
relative deviation as given in the last row of Table 1 gives the combined error
that is caused by the numerical implementation as presented in section 5.2.2.

Note, that the stated deviations hold for all distances between sphere and
corrugated surface. In Figs. 4 and 5, where the value of α is studied along
the direction of corrugation x, the displacement of the sphere is achieved
by a continuous modulation of the structure function itself. Thus the error
induced by the �nite plate size Lx and the �nite number of nodes Nx is equal
for every point along x. In Figs. 6 and 7, where the behaviour of α is studied
for a varying distance between surface and sphere, the edges of the surface
Lx as well as the number of nodes Nx scale with the separation between
surface and sphere such that the sphere always retains the same distance to
the edges and always �sees� the same number of spatial discretization nodes
as it approaches the corrugated surface.

Figure Nx α/αanalytic deviation from the planar surface limit

4,5 80 1.005 0.5%

6 63 0.962 3.8%

7 126 0.960 4%

Table 1: This table states the deviation of the value for the potential strength
parameter α as de�ned in Eq.(5.27) from the analytical value αanalytic in the
planar case. The deviation is considered with respect to the number Nx

of discretization nodes as used in the studies within Figs. 4-7. Note, that
the obtained degree of deviation is not always lower for a higher number of
discretization nodes Nx. This is due to the used discretization scheme as
explained in section 5.2.2. An alternative discretization scheme that avoids
this unwanted oscillatory behaviour is discussed in section 5.3.1.
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