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WELTLINIENNUMERIK UND NICHTABELSCHE
EICHTHEORIEN

Abstract

In dieser Arbeit wird die Methode der Weltliniennumerik zum ersten Mal auf nichtabelsche
SU(2)-Hintergrundfelder angewandt. Das pseudoabelsche Feld wird in zwei Eichungen un-
tersucht. Wir können zeigen, dass Weltliniennumerik für diese Felder in der Lage ist,
sowohl die Eichinvarianz, als auch die Pfadordnung zu berücksichtigen. Zum ersten Mal
wird für ein konstantes nichtabelsches Feld, das wir PNA Feld nennen, die renormierte ef-
fektive Ein-Schleifen-Lagrange-Dichte berechnet. Untersuchungen des Erwartungswertes
des Wegner-Wilson-Loops für das Instanton ergeben, dass die Eichinvarianz gebrochen
ist. Das Problem wird dann auf eine Eigenschaft des BPST-Instantons zurückgeführt:
Die Summe bestimmter Beiträge zum numerisch ausgewerteten Ausdruck für tr[GµνGµν ]
muss mit sehr hoher Genauigkeit verschwinden, um richtige Ergebnisse zu ermöglichen.
Um die erforderliche Genauigkeit zu erreichen, wird eine Methode zur Verbesserung der
Rotationsinvarianz des diskretisierten Weltlinienensembles vorgeschlagen. Erste Betrach-
tungen legen den Schluss nahe, dass die weltliniennumerischen Ergebnisse sehr langsam
konvergieren. Wir folgern daraus, dass Felder, die hinsichtlich der numerischen Auswer-
tung von tr[GµνGµν ] ein ähnliches Verhalten wie das BPST-Instanton zeigen, für Standard-
Weltliniennumerik eine große Herausforderung darstellen. Des Weiteren wird Weltlinien-
numerik verwendet, um die Auswirkungen einer Störung der Art δa cos(kx1) cos(kx2) auf
das effektive Potential der 0-Komponente eines konstanten SU(2) Eichfeldes im thermi-
schen Gleichgewicht, deren Erwartungswert als Confinement-Ordnungsparameter dienen
kann, zu bestimmen. Die numerischen Daten deuten an, dass das veränderliche Feld
gegenüber dem konstanten Feld begünstigt ist. Sollte unser Resultat von weiteren Studien
bestätigt werden, könnte es von großer Bedeutung für die Untersuchung von Hochtem-
peratureigenschaften des Quark-Gluon-Plasmas sein.

WORLDLINE NUMERICS AND NON-ABELIAN
GAUGE THEORIES

Abstract

In this thesis worldline numerics is for the first time used to treat non-abelian SU(2) back-
ground fields. Investigating the pseudo-abelian field in two gauges, we are successful in
showing that worldline numerics is, for these fields, able to preserve gauge invariance as
well as to respect path ordering. For the first time the one-loop effective action for a con-
stant non-abelian field, which we call PNA field, is calculated. Evaluating the Wilson loop
expectation value for the instanton, we find gauge invariance to be broken. A detailed
analysis enables us to track the problem down to the distinct feature of the BPST instanton
that a very precise cancellation of contributions to the numerically evaluated expression for
tr[GµνGµν ] is necessary to allow for correct results. To achieve this precision, a method to
improve the rotational invariance of the discretised worldline ensemble is proposed. First
numerical tests, however, indicate that, also using this method, the worldline numerical re-
sults converge very slowly. It is concluded that gauge fields that require such cancellations
pose a serious challenge to standard worldline numerics. Furthermore, worldline numerics
is used to investigate the effect that a perturbation of the kind δa cos(kx1) cos(kx2) has on
the one-loop effective potential of the zero-component of a constant SU(2) gauge field in
thermal equilibrium, whose expectation value can serve as an order parameter for confine-
ment. The numerical data indicates a varying field to be favoured over the constant field.
Should further studies confirm our result, this could be of high relevance to the study of
high temperature properties of the quark-gluon plasma.
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“When the going gets weird,
the weird turn pro.”

Hunter S. Thompson
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1 Introduction

The calculation of one-loop effective actions for given background gauge fields has
been of great interest to physicists for a long time. The first calculations were
performed in 1936 by Heisenberg and Euler [1] and Weisskopf [2], who computed
the renormalised one-loop effective action of a background field of constant field
strength in spinor and scalar QED respectively, in order to investigate how a con-
stant external field changes the properties of the vacuum. This is most remarkable
since at the time the formal framework that justifies subtracting divergent terms
to get finite results, which is now known as charge-renormalisation, did not exist.
They were able to quantify how quantum fluctuations cause non-linear interac-
tions between electro-magnetic fields. The study of effective actions of constant
background fields, which are today called Heisenberg-Euler actions, has become
prototypical for a wide physical field, which computes fluctuation induced effects in
background fields using effective actions as computational tools.

To calculate a one-loop effective action, one needs to evaluate a functional deter-
minant of a partial differential operator. This is a highly delicate task (see e.g. [3]).
Apart from the constant field case, there are only very few field configurations for
which one was able to perform an analytical computation of the one-loop effective
action (see e.g. [4]). For a long time the discretisation of space-time on a lattice was
the only method to compute the one-loop effective action that was not restricted to
highly symmetric background fields. Therefore one very often had to rely on ap-
proximation schemes like the semi-classical approach (see e.g. [4–7]) and the heat-
kernel expansion (see e.g. [8–11]) to learn about the effective action for a given
background field.

In 2002 a method called worldline numerics was proposed [12, 13] and in the
following years developed into a useful and elegant tool for the computation of one-
loop effective actions for a wide class of background fields. Since its introduction,
the worldline numerical method has been used on a variety of problems such as the
pair production in inhomogeneous fields [14], the Casimir effect [15–20] and chiral
fermions [21]. It is based on the worldline formalism that had its first appearance
in Feynman’s seminal paper in which he laid the foundations of modern QED [22].
After its invention, the worldline formalism was only rarely used for actual calcula-
tions, and it took until the 1990s for it to be rediscovered and used to do numerous
computations (see e.g. [23–27]). For a review on the worldline formalism see [8].

Worldline numerics is a Monte Carlo method to evaluate a worldline expression
for the one-loop effective action. Instead of a functional determinant, the worldline
expression contains an integral over an auxiliary parameter called the proper time
and a one-dimensional path integral over closed loops. Using Monte Carlo tech-
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Chapter 1. Introduction

niques to evaluate this path integral, it suffices to only discretise a one-dimensional
space, which is associated with the proper time. Uniformly distributed numbers can
analytically be mapped onto the necessary Monte Carlo ensembles, which makes
the Monte Carlo evaluation of the path integral very efficient. Of course also a
lattice implementation of the path integral is possible and was actually used to
investigate matter determinants in background Yang-Mills fields [28].

In this thesis we perform a first test of the ability of worldline numerics to cope
with non-abelian gauge theories, i.e. to calculate the one-loop effective action for
SU(2) background fields. We thereby investigate the effect of fluctuations of a mat-
ter field up to one-loop order. This is done for three background field configurations:
the pseudo-abelian field, a non-abelian field, which does not depend on space-time
and is called the PNA field, and the instanton background field. The first two were
chosen in order to gain experience with the behaviour of the method when it is used
on fields of very different structure. The instanton was chosen because it is physi-
cally interesting (see [29–31]; for a compilation of important publications [32]), and
because there exists an analytical result [33]. This gives us the luxury to com-
pare an outcome of the worldline numerical computation with analytically correct
results.

Additionally to matter determinants in a given background field, we calculate the
one-loop effective potential for an SU(2) gauge field at finite temperature in order
to derive an upper bound for the Polyakov loop expectation value, that can serve as
an order parameter for confinement [34, 35]. The Polyakov loop expectation value
being zero signals confinement; it being unequal to zero signals deconfinement.
Here there are no matter fluctuations to take into account but the fluctuations of
the gauge field, which makes it necessary to evaluate a gluon as well as a ghost
determinant. For a constant field there exists an analytical solution to the problem
[36], and going from there we consider the field a(x) = a+δa cos(kx1) cos(kx2), which
is a constant field a that is perturbed in two space-time directions.

1.1 Outline

In chapter 2 the key quantities and concepts of the thesis are introduced. The
worldline representation of the one-loop effective action is derived and then worked
on in order to simplify its numerical implementation. To introduce the notations
used, a short summary of the most important properties of an SU(2) gauge theory
is given. Furthermore, the renormalisation of the one-loop effective action is ex-
plained.

In chapter 3 we focus on the numerical aspects of the computation of the one-loop
effective action. First the Monte Carlo evaluation of the one-loop effective action
is explained. Then a method to implement the renormalisation and a method to
test the quality of the numerical results using the inverse mass expansion are de-
scribed. A summary of the numerical method is also given.

2



1.1. Outline

In chapter 4 the application of the worldline numerical method to two simple back-
ground fields, the pseudo-abelian background field and a constant field, which we
call the PNA field, is presented. In order to learn how well worldline numerics can
reproduce the gauge invariance of the Wilson loop expectation value, we calculate
the Wilson loop expectation value for the pseudo-abelian background field in two
gauges. Both results are then compared to the inverse mass expansion. For the
PNA field, we compute the Wilson loop expectation value and compare it to the in-
verse mass expansion. Then the renormalised effective Lagrangian density of the
PNA field is computed.

In chapter 5 we investigate how useful worldline numerics is to calculate the one-
loop effective action of an instanton background field. First the necessary instanton
related quantities are introduced and an approximation to the one-loop effective ac-
tion, which is called the derivative expansion, is explained. The Wilson loop expec-
tation value is computed in two gauges, the regular gauge and the singular gauge.
We find that the worldline numerical results for the Wilson loop expectation value
are not gauge invariant. The problem is pinned down to not sufficiently precisely
computed worldline correlation functions. We then propose a method to improve
how well worldline numerics reproduces the Lorentz structure of worldline correla-
tion functions by rotating the loop cloud. Afterwards, it is explained that also with a
rotated loop cloud today’s computers do not allow for the computation of the Wilson
loop expectation value to a precision that would make a sensible calculation of the
one-loop effective action for the regular instanton possible.

In chapter 6 we compute of the one-loop effective potential of the zero-component
of an SU(2) gauge field in thermal equilibrium. The first two sections are devoted
to the explanation of how one can investigate a QFT at finite temperature and how
we have to amend the worldline numerical method in order to do so. Then the rela-
tion between the Polyakov loop expectation value, confinement and the expectation
value of the zero-component of the gauge field is explained. We prepare the one-
loop effective potential of the zero-component of the gauge field for the numerical
implementation which is undertaken afterwards.

In the last chapter a summary of the results that are obtained in this thesis is given
and possibilities for future work are outlined.
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2 The effective action and the worldline

In this chapter the key quantities and concepts of the thesis are introduced. The
worldline representation of the one-loop effective action is derived and then worked
on in order to simplify its numerical implementation. To introduce the notations
used, a short summary of the most important properties of an SU(2) gauge the-
ory is given. Furthermore, the renormalisation of the one-loop effective action is
explained.

2.1 The effective action

One of the main tasks in quantum field theory is to calculate correlation or Green’s
functions as they contain the complete physical information about a QFT. They are
the vacuum expectation values of the time-ordered products of field operators, i.e.

G(n)(x1, x2, ..., xn) = 〈0|T (φ(x1)φ(x2)...φ(xn))|0〉 . (2.1)

Connected Green’s functions can always be composed using free two point Green’s
functions and the sum of all one particle irreducible (1PI) Green’s functions, which
are Green’s functions whose Feynman graph cannot be cut into two pieces by cutting
only one internal line. The hard part is to calculate the sum of all one particle
irreducible Green’s functions Γ(n)(x1, x2, ..., xn). This can be done differentiating
the effective action Γ. The effective action can in a Legendre transformation like
manner be obtained from the generating functional for connected Green’s functions
W , which is given by

W = −i ln Z[J ] , (2.2)

where

Z[J ] =

∫

Dφ e iS +i
R

dx J†φ+i
R

dx Jφ†
(2.3)

is the generating functional. S is the action of the system, J and φ denote vectors,
whose properties depend on the theory under consideration. J is called the source
term or the current. If we now introduce a new variable φc(x) = δW

δJ(x) , we can define
the effective action

Γ[φc] := W −
∫

dxJ†φc −
∫

dxJφ†
c . (2.4)

After spending some time differentiating one will find that

Γ(n)(x1, x2, ..., xn) =
δnΓ

δφc(x1) . . . δφc(xn)
. (2.5)
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Chapter 2. The effective action and the worldline

Throughout this thesis we work in an Euclidean setting. This means that the
time axis is rotated clockwise in the complex plane by ninety degrees. One calls
this a Wick rotation. Then the action

S =

∫

d4xL =

∫ ∞

−∞
dx0

∫

d3xL (2.6)

becomes
∫ −i∞

i∞
dx0

∫

d3xL = −i

∫ ∞

−∞
dx̃0

∫

d3xL(ix̃0) = i

∫

d4xE LE =: iSE . (2.7)

For the other quantities defined so far, we find the correspondences

Z =⇒ ZE =
∫
Dφ e−SE +

R

dx J†φ +
R

dx Jφ†

W =⇒ WE = ln ZE

Γ =⇒ ΓE = −WE +
∫

dxJ†φc +
∫

dxJφ†
c .

(2.8)

Working in an Euclidean space makes life much easier. The path integral in Z does
not have to be taken over a vigorously oscillating expression but a nice exponential
function of a real action.

Since we will only deal with Euclidean quantities, the subscript E will be omitted
from now on.

2.2 The one-loop effective action

To derive the one-loop effective action, we will now employ the steepest-descent-
method, which means that we are going to expand the exponential in the path
integral that was used to define Z about a stationary point, where −S +

∫
dxJ†φ +

∫
dxJφ† has an extremum, because one hopes the region close to this point to dom-

inate the whole integration. This point will be called φ0 and it meets the require-
ments

δ

δφi
[−S +

∫

dxJ†φ +

∫

dxJφ†]
∣
∣
φ=φ0

= 0 (2.9)

δ

δφ∗
i

[−S +

∫

dxJ†φ +

∫

dxJφ†]
∣
∣
φ=φ0

= 0 . (2.10)

Neglecting every contribution of order higher than one, we now expand the expo-
nent about φ0. Had one not set ~ = 1, we would see that ~ is the small parameter of
the expansion. We find that

Z ≈

∫

Dφ e
−S[φ0,φ†

0] +
R

dx J†φ0 +
R

dx Jφ†
0− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj

= e−S[φ0,φ†
0] +

R

dx J†φ0 +
R

dx Jφ†
0

∫

Dφ e
− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj

. (2.11)
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2.3. A little on SU(2) gauge theories

Because of the extremality conditions (2.9) and (2.10) all the linear terms have
dropped out. For W and Γ we find that

W ≈ −S[φ0, φ
†
0] +

∫

dxJ†φ0 +

∫

dxJφ†
0 + ln

∫

Dφ e
− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj

(2.12)

and

Γ ≈ S[φ0, φ
†
0] − ln

∫

Dφ e
− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj −

∫

dxJ†φ0 −
∫

dxJφ†
0

+

∫

dxJ†φc +

∫

dxJφ†
c . (2.13)

For φc this means that

φc = φc(x) =
δW

δJ(x)
≈ φ0 , (2.14)

and finally we get

Γ ≈ S[φ0, φ
†
0] − ln

∫

Dφ e
− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj

. (2.15)

The one-loop correction to the classical action is therefore given by

Γ(1) = − ln

∫

Dφ e
− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj

. (2.16)

It is the contribution to the effective action that is generated by all one-loop dia-
grams and is called the one-loop effective action. For a free theory the effective
action Γ is equal to the classical action S. The one-loop effective action therefore
has to be zero. In a free theory there just are no loops that could contribute to the
effective action.

2.3 A little on SU(2) gauge theories

In this thesis we deal with an SU(2) gauge theory. It is therefore worthwhile to
review some of the most important properties of this theory. This will serve us to
introduce the necessary notations and conventions.

Let us suppose we have a free complex scalar field of isospin one half, i.e. a free
two-component complex scalar field φ = (φ1, φ2), with which we want to deal in a
quantum field theoretical way. We would choose the Lagrangian density to have the
form

L = φ†(−∂µ∂µ + m2)φ . (2.17)

The Lagrangian density and therefore everything observable is invariant under a
global unitary transformation U of the fields as

L(φ′) = φ′†(∂µ∂µ + m2)φ′ = φ†
U

†(∂µ∂µ + m2)Uφ = φ†(∂µ∂µ + m2)U†
Uφ = L(φ) ,

(2.18)

7



Chapter 2. The effective action and the worldline

where, as in the rest of the section, gauge transformed quantities are indicated by
a dash, and we used that U is unitary and therefore U

† = U
−1. Throughout this

thesis bold symbols are used for matrix-valued quantities.
We will work with SU(2) transformations. This means that in the fundamental

representation all the Us can be written as an exponential of elements of the Lie
algebra of the Hermitian matrices of two dimensions:

U = exp[−iΘa
T

a] , (2.19)

or with U depending on x:

U(x) = exp[−iΘa(x)Ta] , (2.20)

where a = 1, 2, 3 , Θa are real numbers and the T
a are the basis of the real vector

space of the Hermitian 2 × 2 matrices. We choose

T
a =

σ
a

2
, (2.21)

where the σ
a are the Pauli matrices, which has the consequences that

tr[Ta
T

b] =
1

2
δab , [Ta,Tb] = i ǫabc

T
c (2.22)

and

T
a
T

b =
1

4

[
δab

1 + i ǫabc
σ

c
]

. (2.23)

We will also use another representation of SU(2): the adjoint representation. In this
representation the generators of the group T

a are given by the structure constants
of the algebra in the following way:

T a
jk = i ǫakj . (2.24)

We now require the gauge transformations to be locally possible as well, i.e.

S[φ] = S[U(x)φ] . (2.25)

In order to make equation (2.25) correct, we have to amend the Lagrangian density.
It is the derivatives which cause the problem, but we can solve it by introducing the
gauge field Aµ so that

S =

∫

d4xφ†(−DµDµ + m2)φ =

∫

d4xφ†(−(∂µ + Aµ)(∂µ + Aµ) + m2)φ . (2.26)

The Dµ are called covariant derivatives. Of course Aµ has to transform in a special
way to make the action locally gauge invariant. We want

φ′†(∂µ + A
′
µ)(∂µ + A

′
µ)φ′ = φ†

U
†(∂µ + A

′
µ)U U

†(∂µ + A
′
µ)Uφ

= φ† (∂µ + Aµ) (∂µ + Aµ)φ (2.27)

8



2.3. A little on SU(2) gauge theories

to hold. It follows that

U
†(∂µ + A

′
µ)Uφ = U

−1(∂µ + A
′
µ)Uφ = (∂µ + Aµ)φ (2.28)

and therefore that
A

′
µ = UAµU

−1 − [∂µU]U−1 . (2.29)

Equation (2.29) tells us how Aµ behaves under a gauge transformation. In analogy
to the U(1) case, the electro-magnetic field, we assume that the gauge field can be
written as Aµ = −igAa

µT
a, where we call the Aa

µ the components of the field. The
strength of the gauge field interaction is governed by the coupling constant g.

There is another very useful quantity: the field-strength-tensor

Gµν = ∂µAν − ∂νAµ + [Aµ,Aν ] . (2.30)

Just as the field, Gµν can be written as a linear combination of the T
a:

Gµν = −igGa
µνT

a . (2.31)

Plugging in the definition of the gauge field, one finds that

Gµν = − ig∂µAa
νT

a + ig∂νAa
µT

a − g2[Aa
µT

a, Aa
νT

a]

= − ig
[

∂µAa
ν − ∂νA

a
µ + gǫabcAb

µAc
ν

]

T
a , (2.32)

where in the last line the second equation in (2.22) was used. The components of
the field strength tensor are therefore given by

Ga
µν = ∂µAa

ν − ∂νA
a
µ + gǫabcAb

µAc
ν . (2.33)

Under gauge transformations it behaves according to

G
′
µν = ∂µA

′
ν − ∂νA

′
µ + [A′

µ,A′
ν ]

= UGµνU
−1 . (2.34)

With equation (2.34), it is easy to show that tr[GµνGµν ] is gauge invariant as

tr[G′
µνG

′
µν ] = tr[UGµνU

−1
UGµνU

−1] = tr[GµνGµν ] . (2.35)

In terms of the components Ga
µν we can write

tr[GµνGµν ] = g2tr[iGa
µνT

aiGb
µνT

b]

= −g2tr[Ga
µνGb

µνT
a
T

b]

= −g2

4
Ga

µνGb
µνtr[δab

1 + iǫabc
σ

c]

= −g2

2
(Ga

µν)2 , (2.36)

9



Chapter 2. The effective action and the worldline

where we used (2.23) and the vanishing trace of the Pauli matrices. We therefore
have found another possible building block for a locally gauge invariant action,
which could, for example, look like

SYM =

∫

d4x

[
1

2g2
tr[GµνGµν ] + φ†(−D

2 + m2)φ

]

=

∫

d4x

[

−1

4
(Ga

µν)2 + φ†(−D
2 + m2)φ

]

. (2.37)

It is also customary to work with rescaled components of the gauge potential and
the field strength tensor so that

Aa
µ → 1

gAa
µ and Ga

µν → 1
gGa

µν . (2.38)

We will do so when investigating the instanton and the Polyakov loop expectation
value.

2.4 Deriving a worldline expression

Using the content of the last section, we can now proceed to investigate the one-loop
effective action. This time in the special case of an SU(2) theory. Equation (2.16)
tells us that

exp[−Γ(1)] = N
∫

Dφ e
− 1

2
φ∗

i
δ2S

δφ∗
i

δφj
φj

, (2.39)

where N serves to normalise Γ(1) such that

Γ(1)[A = 0] = 0 , (2.40)

which must hold because for a free theory (in our case a theory without a back-
ground field) the effective action is equal to the classical action and any correction
of S must therefore vanish. Inserting the action SYM, which is given in (2.37), yields

exp[−Γ(1)] = N
∫

Dφ e−
1
2

R

d4x φ†(D2+m2)φ . (2.41)

Because

N
∫

Dφ e−
1
2

R

d4x φ†(D2+m2)φ = N ′ det(−D
2 + m2)−1 , (2.42)

we can write
exp[−Γ(1)] = N ′ det(−D

2 + m2)−1 . (2.43)

The exponent of det(−D
2 + m2) is not −1/2 because φ is a complex field. This

requires us to integrate over all the φi and φ∗
i . The equations (2.40) and (2.43) give

Γ(1) = − lnN ′ + ln det(−D
2 + m2)

= ln
det(−D

2 + m2)

det(−∂2 + m2)
. (2.44)
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2.5. Making the one-loop effective action suit numerical evaluation

Using the ln det = Tr ln rule, this takes the form

Γ(1) = Tr ln(−D
2 + m2) − Tr ln(−∂2 + m2) , (2.45)

or in proper time representation (which is explained in section A.1)

Γ(1) = −tr

∫ ∞

0

dT

T
Tr(e−(−D

2+m2)T − e−(−∂2+m2)T ) . (2.46)

We divided the trace into two traces; the colour trace tr, which takes care of the fact
that the Lagrangian density is a 2 × 2 matrix, and Tr, which is the trace of the dif-
ferential operator. The integration variable T is called the proper time. Traces can
be calculated in any coordinate frame since they are invariant under a coordinate
change. As the basis, we choose the eigenvectors of the space operator, which are
well known from quantum mechanics. We get that

Γ(1) = −tr

∫ ∞

0

dT

T

∫

dDx
[

〈x|e−(−D
2+m2)T |x〉 − 〈x|e−(−∂2+m2)T |x〉

]

, (2.47)

where D is the number of space-time dimensions of the system that is scrutinised.
The matrix element 〈x|(e−(−D

2+m2)T |x〉 is very similar to a transition amplitude in
ordinary quantum mechanics and one can find a path integral expression for the
matrix element in very much the same way one does it in a quantum mechanics
course to introduce the Feynman path integral. As one can retrace in section A.2,
the result is:

Γ(1) = −tr

∫ ∞

0

dT

T
e−m2T

∫

dDx

[
∫ x(T )=x

x(0)=x
Dx

[

Pe−
R T
0 dτ [ ẋ2

4
+ẋµAµ] − e−

R T
0 dτ [ ẋ2

4
]

]]

.

(2.48)
The P denotes path ordering. It is necessary because in general the gauge fields
A(x) do not commute and eA(x1)eA(x2) 6= eA(x1)+A(x2). It is defined by

PeA(t1)+A(t2)+···+A(tn) := eA(t1)eA(t2) . . . eA(tn) ,

with t1 > · · · > tn . (2.49)

2.5 Making the one-loop effective action suit numerical

evaluation

What we have found for the one-loop effective action is already quite nice, but it
can be made much nicer (for a numerical analysis) with only a few manipulations.
First we realise that

∫ x(T )=x

x(0)=x
Dx e

−
R T
0 dτ

h

ẋ2

4

i

= 〈x|T∂2|x〉 =
1

(4πT )
D
2

. (2.50)
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Chapter 2. The effective action and the worldline

After factoring out
∫ (T )=x
x(0)=x Dx e−

R T
0 dτ

[
ẋ2

4

]

and using (2.50), equation (2.48) becomes

Γ(1) = − 1

(4π)
D
2

tr

∫ ∞

0

dT

T 1+ D
2

e−m2T

∫

dDx
[

N
∫ x(T )=x

x(0)=x
Dx

[
Pe−

R T

0
dτ [ ẋ2

4
+ẋµAµ]

]
− 1

]

,

(2.51)

where

N =

[
∫ x(T )=x

x(0)=x
Dx e−

R T
0 dτ [ ẋ2

4
]

]−1

, (2.52)

and 1 is the 2 × 2 unit matrix. Now we rearrange the integration itself. Because

∫

dDx

∫ x(T )=x

x(0)=x
Dx =

∫

x(0)=x(T )
Dx =

∫

dDxcm

∫

x̃(0)=x̃(T )
Dx̃ , (2.53)

where ∫ T

0
dτ x̃(τ) = 0 , (2.54)

we find for the one-loop effective action:

Γ(1) = − 1

(4π)
D
2

tr

∫ ∞

0

dT

T 1+ D
2

e−m2T

∫

dDxcm

[

N
∫

Dx̃
[
Pe−

R T

0
dτ [

˙̃x2

4
+ ˙̃xµAµ(xcm+x̃)]

]
− 1

]

.

(2.55)

The path integral has to be taken over closed loops with "centre of mass" zero.
Instead of integrating over the common starting (and end) points of the loops, over
which the path integral is taken, we now integrate over the common "centre of
mass" of the loops.

To derive the promised nice expression, we only have to scale the parametrisation
of the loops so that the integral in the exponent runs from zero to one by changing
the integration variable from τ to t = τ

T and to introduce unit loops y(t) = 1√
T

x(Tt).

The new integration variable t is called the proper time parameter. We find that

∫ T

0
dτ

ẋ2

4
=

∫ T

0
dτ

1

4

(√
T

d

dτ
y
( τ

T

))2
=

∫ T

0
dτ

1

4

(√
T

d

dτ
y
( τ

T

))2

=

∫ 1

0
dt

ẏ2

4
(2.56)

and
∫ T

0
dτ ẋµAµ(xcm + x) =

∫ T

0
dτ

(√
T

d

dτ
y
( τ

T

))

Aµ

(

xcm +
√

Ty
( τ

T

))

=
√

T

∫ 1

0
dt ẏµ Aµ(xcm +

√
T y(t)) , (2.57)
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2.6. The proper time T seen as a “zooming” parameter

where the dot denotes differentiation with respect to the integration variable.
Thanks to the use of unit loops, the weight exp

[ ∫ 1
0 dt ẏ2/4

]
, with which the loops

contribute to the path integral, is now T independent. This makes a sensible (time
efficient) numerical treatment of the one-loop effective action possible.

Introducing the Wilson loop W := tr P exp
[
−

∮
dxµ Aµ(x)

]
and its gauge invariant

expectation value

〈W 〉 =





∫

y(0)=y(1) Dy e−
R 1
0

dt ẏ2

4 W

∫

y(0)=y(1) Dy e−
R 1
0

dt ẏ2

4



 , (2.58)

we can write down a neat expression for the one-loop effective action:

Γ(1) = − 1

(4π)
D
2

∫ ∞

0

dT

T 1+ D
2

e−m2T

∫

dDxcm [〈W 〉 − 2] . (2.59)

Equation (2.59) is the starting point of the numerical analysis.

2.6 The proper time T seen as a “zooming” parameter

Writing out all the dependencies, we find the Wilson loop expectation value to be

〈W 〉 =

∫
Dy e−

R 1
0 dt ẏ2

4 trPe−
√

T
R 1
0 dt ẏµ Aµ(xcm+

√
T y(t))

∫
Dy e−

R 1
0 dt ẏ2

4

, (2.60)

where the path integral is taken over all closed loops of a common “centre of mass”
xcm. The Wilson loop expectation value depends on xcm and the proper time T .
Every loop contributes to the path integral according to its weight exp

[
−

∫ 1
0 dt ẏ2/4

]
.

Loops who stay close to the origin dominate the path integration. One can therefore
think of the loops that affect the result of the integration as a cloud surrounding
xcm. The gauge field Aµ is evaluated at xcm +

√
T y(t). How far away from xcm a

loop of given weight collects information about the gauge field is therefore governed
by T . A small T means that the main contribution to 〈W 〉 comes from Aµ evaluated
close to xcm, while for very big T also the remote behaviour of the gauge field is of
importance. Thinking of the loops as a cloud, this means that the cloud swells as
one makes T bigger. One could call T a “zooming” parameter which controls how
far away from xcm the gauge field contributes to the Wilson loop expectation value.

2.7 Renormalisation

The T -integration in equation (2.59) deserves some more consideration. Making
use of the inverse mass or heat-kernel expansion (see e.g. [8–11]), we can write the

13



Chapter 2. The effective action and the worldline

one-loop effective action as

Γ(1) = − 1

(4π)
D
2

∫

dDxcm

∫ ∞

0

dT

T 1+ D
2

e−m2T [
T 2

12
tr[(Gµν)2] + O(T 4)]

= − 1

(4π)
D
2

∫

dDxcm

∫ ∞

0

dT

T
D
2
−1

e−m2T [
1

12
tr[(Gµν)2] + O(T 2)] . (2.61)

In the small T limit the integrand in (2.61) is proportional to T 1−D
2 . For D ≥ 4

the integral therefore diverges; the one-loop effective action is infinite. As we saw,
T is a "zooming" parameter. For small T we look at small distances and large
momentum scales. The integrand is therefore UV-divergent. In order to deal with
this UV-divergence, we have to regularise and renormalise Γ(1). Because all our
calculations are done in 4 space-time dimensions, we will set D = 4.

The regularisation is done by imposing a cutoff on our integration, i.e. by choosing
a lower boundary of our integration interval that is nonzero to make the one-loop
effective action finite. We take it to be 1/Λ2. The regularised one-loop effective
action in four dimensions reads

Γ(1)
reg = − 1

(4π)2

∫

d4xcm

∫ ∞

1
Λ2

dT

T 3
e−m2T [〈W 〉 − 2] . (2.62)

For the divergent term, which we will call ∆Γ
(1)
Λ , we find with the aid of the expo-

nential integral, which is given in equation (A.3), that

∆Γ
(1)
Λ = − 1

12(4π)2

∫

d4xcm

∫ ∞

1
Λ2

dT

T
e−m2T tr[(Gµν)2]

=
1

12(4π)2

(

CE + ln

(
m2

Λ2

)

+ O

(
m2

Λ2

))∫

d4xcmtr[(Gµν)2]

= − g2

392π2

(

CE + ln

(
m2

Λ2

)

+ O

(
m2

Λ2

))∫

d4xcm(Ga
µν)2 . (2.63)

This means that adding a term of the kind

∆Γ̃
(1)
Λ =

g2

392π2

(

CE + ln

(
µ2

Λ2

))∫

d4xcm(Ga
µν)2 (2.64)

to Γ
(1)
reg yields a result that does not diverge as Λ goes to infinity. We name this

result Γ
(1)
Λ . The µ that appears in (2.64) parametrises different renormalisation

schemes, and one has the freedom to identify it with the renormalisation point.
The renormalisation is then done by adding and subtracting ∆Γ̃(1) to the classical
action and letting Λ go to infinity. After addition and subtraction of ∆Γ̃(1), the Λ
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dependent effective action, up to one loop order, reads

ΓΛ =

∫

d4x

[

−1

4
(Ga

µν)2 + φ†(−D
2 + m2)φ − ∆Γ̃

(1)
Λ + ∆Γ̃

(1)
Λ + Γ(1)

reg

]

=

∫

d4x

[

−1

4

(

1 +
g2

98π2

(

CE + ln

(
µ2

Λ2

)))

(Ga
µν)2

+φ†(−D
2 + m2)φ + Γ

(1)
Λ

]

. (2.65)

We now define the renormalised field AR and the renormalised coupling gR by

A
2
R = ZA

2 and g2
R = Z−1g2 , (2.66)

where

Z = 1 +
g2

98π2

(

CE + ln

(
µ2

Λ2

))

. (2.67)

The definition of AR and gR makes sure that all terms of the form gA do not change
when using the renormalised quantities instead of the bare ones. The equations
(2.66) and (2.67) allow us to derive the beta function at one-loop order:

β(g2
R) = µ ∂µg2

R = − g4
R

49π2
, (2.68)

where the well known minus sign signals asymptotic freedom. Expressing every-
thing in renormalised quantities and letting Λ go to infinity, we find the, up to
one-loop order, renormalised effective action Γren to be

Γren = lim
Λ→∞

∫

d4x

[

−1

4
(Ga

µν)2ren + φ†(−D
2 + m2)φ + Γ

(1)
Λ

]

. (2.69)

For the renormalised one-loop effective action we get that

Γ(1)
ren = lim

Λ→∞

∫

d4x Γ
(1)
Λ

=Γ(1) + lim
Λ→∞

1

12(4π)2

∫

d4xcm

∫ ∞

1
Λ2

dT

T
e−µ2T tr[(Gµν)2]

= − 1

(4π)2

∫

d4xcm

∫ ∞

0

dT

T 3

[

e−m2T (〈W 〉 − 2) − T 2

12
e−µ2T tr[(Gµν)2]

]

. (2.70)

Setting µ = m (on-shell renormalisation) we find the key result of this section:

Γ(1)
ren = − 1

(4π)2

∫

d4xcm

∫ ∞

0

dT

T 3
e−m2T

[

〈W 〉 − 2 − T 2

12
tr[(Gµν)2]

]

. (2.71)
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3 The worldline-numerical method

In this chapter we focus on the numerical aspects of the computation of the one-
loop effective action. First the Monte Carlo evaluation of the one-loop effective
action is explained. Then a method to implement the renormalisation is described.
A summary of the numerical method is also given.

3.1 Worldline numerics and the Wilson loop

The only tricky part of a quantitative evaluation of the one-loop effective action,
as it is given in equation (2.59), is the computation of the Wilson loop expectation
value. We use Monte Carlo techniques to overcome this problem. In order to do so,
we have to generate an appropriate loop ensemble EnL

with nL loops jyµ(t), which
are distributed according to their weight in the path integral exp

[
−

∫ 1
0 dt ẏ2/4

]
,

calculate the Wilson loop Wj for every loop and then compute the Wjs’ arithmetic
mean. Increasing the number of loops will make such an estimate of the Wilson
loop expectation value more accurate:

〈W 〉 = lim
nL→∞

[∑nL

j=1 Wj

nL

]

. (3.1)

Because of the finite performance of modern day computers, we sadly cannot gen-
erate continuous loops. Therefore an ensemble of discretised loops will have to do
and the proper time parameter to be discretised. Such an ensemble will be called
the loop cloud. This is the only discretisation necessary; space-time remains contin-
uous. The continuous four-dimensional loops yµ(t) become a 4×np matrix y = {yk

µ},
with np being the number of points used to discretise the loop. For notational con-
venience we will also use y0 ≡ ynp and ynp+1 ≡ y1. The probability distribution of
the loops can then be written as

P [{yi}] = δ(y1 + · · · + ynp) exp
[

− np

4

np∑

k=1

(yk − yk−1)
2
]

, (3.2)

where we omitted the normalisation because it is not relevant to our purpose. The
delta function serves to make sure that the “centre of mass” is zero. We also sup-
pressed the space-time coordinates since the probability distribution factorises for
different directions in the Euclidean space. To get one four-dimensional loop, we
can therefore generate four one-dimensional loops as the rows of y.
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Chapter 3. The worldline-numerical method

The discretised loops are obtained using the v-loop algorithm (as proposed in [15],
where one can also find other methods), which maps Gaussian distributed numbers
onto just such loops we need for our calculation. The v-loop algorithm is given
in section A.3. The Gaussian distributed numbers are generated with the Box-
Müller method [37], which requires uniformly distributed numbers. The uniformly
distributed numbers are generated with the random number generator ranlxd.
That we can analytically map uniformly generated random numbers onto our loops,
without costly additional means (required by many other Monte Carlo algorithms,
e.g. the Metropolis acceptance-rejection decision), makes loop generation using the
v-loop algorithm very efficient.

The loop cloud consists of nL loops. Its entries jyµ
k carry three indices: j denotes

on which loop we are, k which point on the loop we are dealing with and µ which
space-time component of the point is addressed.

Having generated the loop cloud, we can estimate the Wilson loop expectation
value according to

〈W 〉 =
1

nL

nL∑

j=1

Wj

=
1

nL

nL∑

j=1

tr
[ np∏

k=1

U
j
k

]

=
1

nL

nL∑

j=1

tr
[ np∏

k=1

e−
√

T ( jyµ
k+1− jyµ

k
) Aµ

(
xcm+

√
T

( jyk+1+ jyk
2

))]

. (3.3)

Note that it is essential to perform the multiplications of the phases Uk in (3.3) in
the correct order, e.g.

U1U2 . . . Unp or UnpUnp−1 . . .U1 , (3.4)

but not
U2U1U3 . . .Unp . (3.5)

In doing so we take care of the path ordering, which is required because we are
dealing with a non-abelian gauge field and the Uks in general do not commute.
Additionally to the freedom the cyclic invariance of the trace gives us, we have
the freedom to choose one of the two directions given in (3.4). The reason is that
because of the probability distribution (3.2) only the squared difference of adjacent
points determines the probability of a loop to be part of the loop cloud. Relabelling
the points on a loop as indicated in (3.4), leaves the squared differences of adjacent
points unchanged. The relabelled loop is just as good a part of the loop cloud as the
loop we started with.

The quality of our estimate of the Wilson loop expectation value depends on the
two parameters np (the number of points per loop) and nL (the number of loops).
Discretising the proper time parameter results in a systematic error, while only
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3.1. Worldline numerics and the Wilson loop

using a finite number of loops causes a statistical one. Provided that we have chosen
np large enough for the systematic error to be much smaller than the statistical
error, a sensible error SWEV of our Monte Carlo calculation is given by the standard
error

SWEV =
1

√

nL(nL − 1)

√
√
√
√

nL∑

k=1

(Wk − 〈W 〉)2 . (3.6)

How large np should be depends on the background gauge field. To ensure that
the error caused by discretising the proper time parameter is small, most of the dis-
tances between adjacent points

√
T |yk −yk+1|, at which the gauge field is evaluated,

should be smaller than any characteristic length scale of the field. The distance of
adjacent points on a loop d = yk − yk+1 is distributed according to

P [yk − yk+1 = d] =
1

N

∫

dyk−1

∫

dyk

∫

dyk+1

∫

dyk+2

[

δ(d − yk + yk+1)

× e−
np
4

Pk+1
j=k−1(yj−yj+1)2

]

=
1

N

∫

dyk−1

∫

dyk

∫

dyk+2 e−
np
4 ((yk−1−yk)2+d2+((d−yk)−yk+2)

2)

=
1

N ′ e−
np
4

d2
, (3.7)

where N ′ normalises the probability distribution to one. This is a normal distribu-
tion with variance σ2 = 2/np, centred at 0. The distance between about 68% of the
adjacent points on a loop of the loop cloud is therefore smaller than σ =

√
2/np. Tak-

ing into account that the gauge field is evaluated at
√

T (
yk+yk+1

2 ) and not yk+yk+1

2 ,
we find that np should be chosen such that for values of T that dominate the proper
time integral σT =

√

2T/np is smaller than the characteristic length scales of the
background gauge field.

3.1.1 The multiplication of the phases

As can be seen in (3.3), the worldline numerical method to calculate the Wilson loop
expectation value requires us to multiply np matrices

Uk = e−
√

T (yµ
k+1−yµ

k
) Aµ

(
xcm+

√
T

(
yk+1+yk

2

))

, (3.8)

which are elements of SU(2). This means that they can be written as

Uk = eiΘa
kT

a

, (3.9)

where as before

T
a =

σ
a

2
(3.10)

and σ
a are the Pauli matrices. Multiplying the Uks by brute force, we would have

to calculate exponential functions of matrices to obtain the Uks and then perform
np multiplications of 2 × 2 matrices.
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Chapter 3. The worldline-numerical method

Although this would certainly work, we recommend using a different method,
which is more elegant, easier to implement numerically and much more efficient.
We make use of the fact that a matrix A ∈ SU(2) satisfies:

A = eiΘa
T

a

= cos
( |Θ|

2

)

1 + i
Θa

σ
a

|Θ| sin
( |Θ|

2

)

= a0
1 + iaj

σ
j , (3.11)

where 1 again denotes the 2 × 2 unit matrix,

a0 = cos
( |Θ|

2

)

and aj =
Θj

|Θ| sin
( |Θ|

2

)

. (3.12)

(3.13)

Multiplying A,B ∈ SU(2), we therefore find that

AB =
[
a0

1 + iaj
σ

j ]
[
b0

1 + ibl
σ

l
]

= a0b0
1 + ib0aj

σ
j + ia0bl

σ
l − ajbl

σ
j
σ

l

= a0b0
1 + i(b0aj + a0bj)σj − ajbl

σ
j
σ

l , (3.14)

where the bµ are defined analogously to the aµ in (3.11). Because

σ
j
σ

l = δjl
1 + iǫjli

σ
i , (3.15)

we can write

AB = a0b0
1 + i(b0aj + a0bj)σj − ajbl(δjl

1 + iǫjli
σ

i)

= (a0b0 + ajbj)1 + i(b0aj + a0bj − ǫiljaibl)σj . (3.16)

In (3.3) we are only interested in the trace of the product of the Uks. By repeti-
tive application of (3.16) we can calculate the product of the Uks bypassing matrix
multiplications entirely. After the multiplication the trace is also easy to derive.
The Pauli matrices are traceless and the only contribution comes from the term
containing the unit matrix. The trace is therefore just two times the real number
the unit matrix is multiplied with. Another numerical advantage of this method is
that all the quantities necessary for the calculation are real.

3.2 Numerical implementation of the renormalisation

A sensible numerical implementation of the renormalisation is also not trivial. As
explained in section 2.7 the renormalised one-loop effective action is given by

Γ(1)
ren = − 1

(4π)2

∫

d4xcm

∫ ∞

0

dT

T 3
e−m2T

[

〈W 〉 − 2 − T 2

12
tr[(Gµν)2]

]

. (3.17)
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3.2. Numerical implementation of the renormalisation

The Wilson loop expectation value is calculated using worldline techniques. The
value we get for 〈W 〉 therefore differs from the analytic "true" value, which we will
call 〈W 〉anal, by some value ∆〈W 〉, i.e.

〈W 〉 = 〈W 〉anal + ∆〈W 〉 . (3.18)

For the one-loop effective action this means that

Γ(1)
ren = − 1

(4π)2

∫

d4xcm

∫ ∞

0

dT

T 3
e−m2T

[

〈W 〉anal − 2 − T 2

12
tr[(Gµν)2]

]

− 1

(4π)2

∫

d4xcm

∫ ∞

0

dT

T 3
e−m2T ∆〈W 〉 . (3.19)

The first line in (3.19) is the value we want to calculate; the integral in the second
line is the error we have to face as a result of the Monte Carlo character of the com-
putation. Because of the factor T−3, even the smallest ∆〈W 〉 results in an artificial
UV divergence. The error becomes uncontrollable and the result of (3.17) unusable.

This problem can be circumvented by fitting 〈W 〉 to a polynomial P . In this con-
text the inverse mass expansion provides us with two important pieces of informa-
tion:

• The first two coefficients of even order are known.

• All the coefficients of odd order vanish.

P can therefore be chosen as:

P = a0 + a1T
2 + a2T

4 + a3T
6 + . . . , (3.20)

where

a0 = 2 and a1 =
1

12
tr[(Gµν)2] . (3.21)

(3.22)

Close to T = 0 one expects the polynomial to follow the behaviour of the Wilson loop
expectation value quite well and substitutes 〈W 〉 by P . As one can see in (3.17), the
first two coefficients in P are subtracted because of the renormalisation. We can
integrate over a polynomial P ′, that starts with a2:

P ′ = a2T
4 + a3T

6 + a4T
8 + . . . . (3.23)

After the whole fitting procedure, we end up with the following expression for the
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Chapter 3. The worldline-numerical method

renormalised one-loop effective action:

Γ(1)
ren = − 1

(4π)2

∫

d4xcm

∫ T0

0

dT

T 3
e−m2T P ′

− 1

(4π)2

∫

d4xcm

∫ ∞

T0

dT

T 3
e−m2T [〈W 〉 − 2 − T 2

12
tr[(Gµν)2]

= − 1

(4π)2

∫

d4xcm

∫ T0

0
dTe−m2T [a2T

1 + a3T
3 + a4T

5 + . . . ]

− 1

(4π)2

∫

d4xcm

∫ ∞

T0

dT

T 3
e−m2T [〈W 〉 − 2 − T 2

12
tr[(Gµν)2] . (3.24)

The polynomial must of course be truncated and T0 chosen small enough to ensure
the error one makes to remain small.

It is by no means indispensable to use the knowledge of the inverse mass expan-
sion. One could also fit to a general polynomial and then omit all the terms of order
smaller than 3 to ensure a finite result (taking the renormalisation into account).

3.2.1 The fitting procedure as a quality check

Because there is only very little analytical knowledge of the Wilson loop expectation
value that one could compare the algorithm’s outcomes to, opportunities to test
how well the algorithm can deal with the background field under investigation are
of high value to us. The fitting procedure can be used as such a test. Setting
a0 = 2 and fitting 〈W 〉 to P , we expect the fit to give us a1 ≈

1
12tr[(Gµν)2]. Anything

else would not only be a big surprise but also a reason to mistrust the algorithm’s
results. Because the data points we use for the fit are correlated, the usual means
to estimate the errors and the quality of the fitted parameters and the fit itself are
not applicable in this case. To get an estimate of the error of a1, we therefore have to
resort to the jackknife method, which means to divide the loop cloud into a number
of sub ensembles, calculate a1 for every sub ensemble and finally determine the
standard error treating the different a1s as independent results. For the fit we used
the routine svdfit from [38].

3.3 Summary of the numerical method

The expression we want to evaluate numerically is

Γ(1)
ren = − 1

(4π)2

∫

d4xcm

∫ T0

0
dTe−m2T [a2T

1 + a3T
3 + a4T

5]

− 1

(4π)2

∫

d4xcm

∫ ∞

T0

dT

T 3
e−m2T [〈W 〉 − 2 − T 2

12
tr[(Gµν)2] , (3.25)

where the ai are obtained using a fitting procedure (see section 3.2) and we believe
the polynomial, that was the result of the fit, to be a good approximation of the
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3.3. Summary of the numerical method

Wilson loop expectation value for T < T0. The Romberg integration routine qromo
implemented with midpnt and midinf from [38] was used for the integration. For
every x requested by the routines that perform the x-integration, we have to per-
form a T -integration, picking up information about the UV- and the IR-behaviour
of the background field, while scaling the loop cloud from very small to very big.
For very small T , this procedure does not work and we need to fit the Wilson loop
expectation value to a polynomial in order to determine a2, a3, a4. To evaluate the
Wilson loop expectation value, we first of all need to generate the loop cloud. For
this we use the v-loop algorithm (see section A.3). The loop cloud jyµ

k is an object
equipped with three indices:

• the number of the loop: j

• the number of the point on loop j: k

• the coordinate of the point k on loop j: µ .

The Wilson loop expectation value can then be calculated employing equation (3.3):

〈W 〉 =
1

nL

nL∑

j=1

tr
[ np∏

k=1

e−
√

T ( jyµ
k+1− jyµ

k ) Aµ

(
xcm+

√
T

( jyk+1+ jyk
2

))]

, (3.26)

performing the product as explained in section 3.1.1.
With a fixed number of points np, the mean distance of adjacent points grows as

T becomes bigger. Integrating over all T > 0 with a fixed np, we could have to face
some trouble since for a good resolution of our method we need the values of the
background field evaluated at adjacent points to differ only slightly. Physically rel-
evant background fields, however, have to fall off quickly because their contribution
to the action

∫
d4x 1

2tr[GµνGµν ] has to be finite, which means that tr[GµνGµν ] has
to vanish faster than x−4 as one approaches infinity. This causes the majority of
the values of the background field evaluated at adjacent points on the loop to differ
only slightly, even if the adjacent points do not, because at a big T the loop cloud is
huge. Furthermore, the factor T−3 in the integrand damps contributions of a big T .
These two effects justify the use of a loop cloud of fixed np in the integration.
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4 Application to two simple fields

In this chapter the application of the worldline numerical method to two simple
background fields, the pseudo-abelian background field and the PNA field, is pre-
sented.

4.1 The pseudo-abelian background field

While quite some experience with the worldline numerical method has been gained
treating Abelian background fields, there has only been one attempt to use a world-
line numerical method in the non-abelian case [28], employing random walk world-
line loops on a hyper cubic lattice (and not as proposed here loops generated by the
v-loop algorithm). As a first go we therefore chose a background field configuration,
that is essentially Abelian: the pseudo-abelian field. Its only nonzero components
are given by

A3
2 = −Hx3 and A3

3 = Hx2 , (4.1)

with H being real and H > 0. The choice of name is now obvious. Because the back-
ground field Aµ is just the third Pauli matrix times some real number, it commutes
with itself everywhere in the four-dimensional Euclidean space. The path ordering
can be dropped and the integration in the exponent can be performed. The only
remaining effect of the non-abelian decent of the problem is the trace, which has to
be taken after performing the product. It is an SU(2) gauge field; just an Abelian
one. Inserting (4.1) into the definition of the Wilson loop and using what we just
said, we find that

Wps = tr P exp
[

−
∮

dt ẋµ Aµ(x)
]

= tr P exp
[ ∮

dt igH[ẋ3x2 − ẋ2x3]T
3
]

= exp
[ igH

2

∮

dt [ẋ3x2 − ẋ2x3]
]

+ exp
[

− igH

2

∮

dt [ẋ3x2 − ẋ2x3]
]

= 2cos
[gH

2

∮

dt [ẋ3x2 − ẋ2x3]
]

, (4.2)

and for the Wilson loop expectation value (defined in equation (2.58)) that

〈Wps〉(gH) = 2






∫

y(0)=y(1) Dy e−
R 1
0

dt ẏ2

4 cos
[

gHT
2

∫ 1
0 dt [ẏ3y2 − ẏ2y3]

]

∫

y(0)=y(1) Dy e−
R 1
0 dt ẏ2

4




 . (4.3)
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Chapter 4. Application to two simple fields

The subscript ps indicates the pseudo-abelian case. The xcm dependency has been
omitted as the 〈Wps〉 does not depend on xcm because all the contributions contain-
ing xcm are loop integrals over a total derivative and therefore zero.

4.1.1 Γ(1) of the pseudo-abelian background field

For the pseudo-abelian background field we cannot only utilise the knowledge gained
using worldline numerics on Abelian fields but also compare to an analytically
known result. A closed expression for the one-loop effective Lagrangian density for
a scalar particle in an electro-magnetic background field of constant field strength
has been derived by Victor Weisskopf as early as 1936 [2]. A special case of an
electro-magnetic field of constant field strength, the constant magnetic field, corre-
sponds to the pseudo-abelian background field. The one-loop Lagrangian density of
a constant magnetic field of field strength B > 0 has been calculated to be:

L(1)
km(eB) =

1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

[ eBT

sinh(eBT )
− 1 +

(eB)2

6
T 2

]

, (4.4)

where e is the electromagnetic charge and the subscript km shall indicate quantities
corresponding to the constant magnetic field. As is derived in the remainder of this
section, we find for the renormalised one-loop Lagrangian density of the pseudo-
abelian field L(1)

ps that

L(1)
ps (gH) = 2L(1)

km(gH)

=
1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

[

2
gHT

sinh(gHT )
− 2 +

(gH)2

3
T 2

]

. (4.5)

To start the derivation we remember that vector potential Akm of a constant mag-
netic field of field strength B > 0 that points into the x1 direction can be chosen
to be Akm = (0,−B

2 x3,
B
2 x2, 0). With some caution all the formulae that we have

derived in this thesis are applicable to a U(1) as well as to an SU(2) gauge the-
ory, for which they were originally derived. The expression for the renormalised
Lagrangian density in a constant magnetic background field for example reads

L(1)
km(eB) =

1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

[

〈W 〉km − 1 +
1

12
e2(Fµν)2 T 2

]

, (4.6)

where Fµν is field strength tensor and the traces have disappeared because in U(1)
gauge field theories there are no colour indices one could trace over. Fµν ’s only
nonzero components are F23 = −F32 = B. For the squared field strength we can
write (Fµν)2 = FµνFµν = 2B2. With (4.6) and (4.4), we find that

L(1)
km(eB) =

1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

[

〈W 〉km − 1 +
(eB)2

6
T 2

]

=
1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

[ eBT

sinh(eBT )
− 1 +

(eB)2

6
T 2

]

. (4.7)

26



4.1. The pseudo-abelian background field

By comparison of the two lines in (4.7), we find the analytic expression for the
Wilson loop expectation value of a constant magnetic field to be

〈W 〉km =
eBT

sinh(eBT )
. (4.8)

Using the definition of the Wilson loop expectation value, we get that

〈W 〉km =

∫

y(0)=y(1) Dy e−
R 1
0

dt ẏ2

4 exp
[

ieBT
2

∫ 1
0 dt [ẏ3 y2 − ẏ2 y3]

]

∫

y(0)=y(1) Dy e−
R 1
0 dt ẏ2

4

=

∫

y(0)=y(1) Dy e−
R 1
0

dt ẏ2

4 cos
[

ieBT
2

∫ 1
0 dt [ẏ3 y2 − ẏ2 y3]

]

∫

y(0)=y(1) Dy e−
R 1
0 dt ẏ2

4

− i

∫

y(0)=y(1) Dy e−
R 1
0

dt ẏ2

4 sin
[

ieBT
2

∫ 1
0 dt [ẏ3 y2 − ẏ2 y3]

]

∫

y(0)=y(1) Dy e−
R 1
0 dt ẏ2

4

. (4.9)

As we have already seen several times, the paths contribute to the path integral
according to their weight exp

[
−

∫ 1
0 dt ẏ2/4

]
, which only depends on the squared

derivative of the loop. Paths of opposite direction have the same weight. Let us
consider some path y+ which gives the phase

α :=

∫

y+

dt [ẏ3 y2 − ẏ2 y3] (4.10)

to the cosine and sine functions in (4.9). Parameterising y+ in the opposite direction
we end up with a path y−of the same weight, which contributes

∫

y−
dt [ẏ3 y2 − ẏ2 y3] = −

∫

y+
dt [ẏ3 y2 − ẏ2 y3] = −α . (4.11)

This does not bother the cosine terms in (4.9), but the sine terms cancel each other:

cos(α) + i sin(α) + cos(−α) + i sin(−α) = 2 cos(α) . (4.12)

Hence the Wilson loop expectation value in a constant magnetic field is:

〈W 〉km(eBT ) =

∫

y(0)=y(1) Dy e−
R 1
0 dt ẏ2

4 cos
[

ieB
2

∫ 1
0 dt [ẏ3 y2 − ẏ2 y3]

]

∫

y(0)=y(1) Dy e−
R 1
0 dt ẏ2

4

=
1

2
〈W 〉ps(eBT ) , (4.13)

where in the last line (4.3) was used. With (4.8) this yields that

〈W 〉ps = 2
gHT

sinh(gHT )
, (4.14)

which concludes the derivation of equation (4.5).
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Figure 4.1: Comparison of the analytical and the worldline numerical results for
the Wilson loop expectation value in a pseudo-abelian background
field. 2500 loops of 1001 points were used for the computation.

4.1.2 Comparison to the worldline numerical calculation

As we can see in figure 4.1, the worldline numerical method to calculate the Wilson
loop expectation value in a pseudo-abelian background field reproduces the analyti-
cal results nicely. This is, however, hardly surprising because the worldline numer-
ical method has been successfully used for the treatment of QED background gauge
fields several times [12–14] and the actual calculations of the Wilson loop expecta-
tion value in a pseudo-abelian field and a magnetic field of constant field strength
are very similar. The non-abelian nature of the background field was not expected
to cause any difficulties. Because we are using the same loop cloud for every point,
the numerical data lies on a smooth curve. The results we obtain for different gHT
are highly correlated.

4.1.3 The non-abelian pseudo-abelian background field

By calculating the Wilson loop in a pseudo-abelian background field, we have gained
some trust in the worldline method. However, the pseudo-abelian case is essentially
Abelian. To really test the worldline method on a non-abelian background field, we
should use a field where the Aµ do not commute. Of course we still want to be able
to compare to an analytically correct result. Making use of the gauge invariance
of the Wilson loop, we can easily find such a field and still know the Wilson loop
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Figure 4.2: Wilson loop expectation value in a pseudo-abelian field and a gauge
transformed pseudo-abelian field. The analytical result is also shown.
2500 loops of 1001 points were used for the computation.

expectation value. We perform a gauge transformation on the pseudo-abelian gauge
field to ensure the gauge field to be properly non-abelian. The gauge transformation
U that we use is

U = eixa
T

a

. (4.15)

With (2.29) and after a lengthy but straightforward calculation, we find the gauge
transformed field A

′
µ to be

A
′
µ = − iA′a

µ T
a = −i[Aa

µ cos(x) − ǫujax̂uAj
µ sin(x) + 2Au

µx̂ux̂a sin2
(x

2

)

+ x̂µx̂a +
1

x
sin(x)(δa

µ − x̂µx̂a) +
2

x
sin2

(x

2

)

ǫua
µ x̂u]Ta , (4.16)

where x = |x| and x̂µ =
xµ

x . Inserting the pseudo-abelian field (4.1), we end up
with a properly non-abelian background field, whose Wilson loop expectation value
is analytically known.

In figure 4.2 we see the result of the worldline numerical calculation of the pseudo-
abelian and the gauge transformed pseudo-abelian field together with the analyti-
cal result. We again find that the worldline method reproduces the analytical result
nicely. The gauge transformation does not impair our ability to use the worldline
method. We also see that our algorithm is capable of dealing with the path ordering
necessary for a non-abelian background field. It actually looks like using the gauge
transformed field yields exactly the same results as using the untransformed field.
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Chapter 4. Application to two simple fields

This, however, is not the case as can be very nicely seen comparing both cases to
the inverse mass expansion.

4.1.4 Comparison to the inverse mass expansion

As explained in subsection 3.2.1, we have another way of testing the worldline nu-
merical method using the knowledge of the first two coefficients of the inverse mass
expansion:

〈W 〉 = 2 +
T 2

12
tr[(Gµν)2] + O(T 4) . (4.17)

With the definition of the pseudo-abelian field (equation (4.1)), we find for the field
strength tensor that

Gµν = ∂µAν − ∂νAµ + [Aµ,Aν ]

= −igG3
µνT

3 , (4.18)

with

G3
µν = 2H







0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0







. (4.19)

Equation (2.36) allows us to easily calculate the second coefficient in the inverse
mass expansion. It is given by

T 2

12
tr[(Gµν)2] = −g2T 2

24
(G3

µν)2

= −1

3
g2H2T 2 (4.20)

Fitting the polynomial P = 2 + a1(gHT )2 + a2(gHT )3 + a3(gHT )4 + a4(gHT )6 +
a5(gHT )8 to the numerical data for the Wilson loop expectation value, the resulting
a1 should be close to −1

3 .
In figure 4.1.4 we have a plot of a1 for the transformed pseudo-abelian and the

untransformed pseudo-abelian field. The Wilson loop expectation value was evalu-
ated at ten different values of gHT ranging from gHT0/10 to gHT0. The coefficient
a1 is plotted against gHT0. As we can see in 4.1.4 (a), the numerical result agrees
with the expected value of −1/3 in the untransformed as well as the transformed
case. In figure 4.1.4, however, we find differences between the two cases; while
choosing a bigger interval between the ten points that we use for the fit almost does
not affect the result for a1 in the untransformed pseudo-abelian case, in the trans-
formed case the result becomes worse quite fast. The deviation from the analytical
expectations is, however, very small. Both gauge fields are equally well treatable
with the worldline numerical method.
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Figure 4.3: The coefficient a1 given by a fit of the Wilson loop expectation value
to the polynomial P for different T0. The gauge transformed and the
untransformed pseudo-abelian gauge field are shown. 2500 loops of
1001 points were used for the computation.

4.2 The PNA field

We have now seen an example of a successful use of worldline numerics in a prop-
erly non-abelian background field. To gain some more experience with non-abelian
background fields, we now turn the PNA field, whose one-loop effective potential
in a pure SU(2) theory was calculated in [39], and compute its one-loop effective
Lagrangian density.

The PNA field has no coordinate dependence at all. In some sense it is a purely
non-abelian field (hence the name Purely Non-Abelian). The components of the
PNA field are:

Ai
j = aδi

j and Ai
0 = 0 , (4.21)

where j, i = 1, 2, 3 and a > 0.

4.2.1 The Wilson loop expectation value

Since the zero-component of the PNA field is zero, the problem is essentially three-
dimensional. A three-dimensional loop cloud therefore suffices to calculate the Wil-
son loop expectation value. In figure 4.4 we have a plot of the Wilson loop expecta-
tion value. It seems well behaved and trustworthy. Instead of showing an exponen-
tial decrease of the Wilson loop expectation value, the worldline numerical method
gives us a quantity that oscillates irregularly around zero. The result is compatible
with an exponential decrease. In the integration necessary to calculate the one-
loop effective Lagrangian density, these oscillations do not worry us because they
are damped by the factor T−3. We can, however, learn something about the effect
of different loop clouds. We know that the Wilson loop expectation value should
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Figure 4.4: The Wilson loop expectation value in a PNA field. 3000 loops of 1001
points were used for the computation.

decrease and almost be zero for large g2a2T . We thus have a parameter range in
which we have knowledge of an expected outcome.

Because the oscillations are an artefact of the discretisation of the loops, one
would expect them to become smaller as one chooses loops with more points. This
has only a minor effect as can be seen in figure 4.5 (a)-(c). What is effective is to
increase the number of loops. This can be seen in figure 4.5 (c)-(e). The computation
of the Wilson loop expectation value for the loop cloud used in figure 4.5 (a) takes
about 10 times longer than for the loop cloud used in figure 4.5 (e). We see that
there is no point in wasting precious computing time in using a large number of
points per loop np.

4.2.2 Comparison with the inverse mass expansion

To learn how reliable the results close to T = 0 are, we again employ the inverse
mass expansion. Because the field is independent of x, the partial derivatives of the
field are zero and the field strength tensor is given by

Gµν = [Aµ,Aν ] . (4.22)

For µ or ν being zero we find that

Gµν = 0 . (4.23)
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Figure 4.5: The Wilson loop expectation value in a PNA field at high g2a2T com-
puted with a variety of loop clouds.
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For µ = i and ν = j, with i, j = 1, 2, 3, we find that

Gµν = Gij

= [Ai,Aj ]

= −(ga)2δb
jδ

a
i [Ta,Tb]

= −i(ga)2δb
jδ

a
i ǫabc

T
c

= −i(ga)2ǫijc
T

c . (4.24)

We have thus found the components of the field strength tensor as defined in (2.31):

Ga
µν = 0 if µ = 0 or ν = 0 ,

Ga
µν = ga2ǫµνa otherwise . (4.25)

For the second coefficient in the inverse mass expansion is this means that

T 2

12
tr[(Gµν)2] = −g2T 2

24
Ga

µνGa
µν

= −(a2g2T )2

24
ǫijaǫija

= −(a2g2T )2

24
(δjjδaa − δjaδaj)

= −(a2g2T )2

24
(9 − 3)

= −(a2g2T )2

4
. (4.26)

Fitting to the polynomial P = 2 + a1T
2 + a2T

4 + a3T
6 + a4T

8, we therefore expect
a1 ≈ −(ga)4/4.

For the fit we again calculated the Wilson loop expectation value at T = T0/n,
where n = 1, . . . , 10. In figure 4.6 we can see that using T0 very close to zero yields
the desired result.

4.2.3 The one-loop effective Lagrangian density

We have seen that the worldline numerical method gives us reasonable results for
the PNA field and are therefore able to calculate the one-loop effective Lagrangian
density L(1). It is given by:

L(1) = − 1

(4π)2

∫ ∞

0

dT

T 3
e−m2T [〈W 〉 − 2 − T 2

12
tr[(Gµν)2] . (4.27)

Our findings, which were computed following the recipe given in section 3.3, with
ten points at T0/n, where n = 1, . . . , 10 and T0 = 0.1, used for the fit, are shown
in figure 4.7. To compute the errors, we used the jackknife method, which was
explained in the context of the fitting procedure in subsection 3.2.1.
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Since this is the first time this matter determinant has been calculated we have
no means to compare it to any previous work. It is, however, possible to derive an
analytical result for the one-loop effective Lagrangian density computed by us [40].
Once this calculation has been performed it will be possible to assess the quality
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of the worldline numerical result, but since there are no indications of numerical
problems we are confident that the numerical data is accurate.
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5 The instanton

The instanton is a background field that is physically interesting (see [29–31]; for
a compilation of important publications [32]), and the one-loop effective action in
a one instanton background field has been derived in [33]. It is therefore a case
in which we have both: a physically interesting background field and a way to see
whether or not a result for the one-loop effective action is correct. We will use
the instanton in two different gauges: the regular gauge (BPST instanton) and the
singular gauge (singular instanton). The numerical results are compared to an
approximation of the Wilson loop expectation value, which is called the derivative
expansion. We find that the worldline numerical results for the Wilson loop expec-
tation value are not gauge invariant. The problem is pinned down to not sufficiently
precisely computed worldline correlation functions. We then propose a method to
improve how well worldline numerics reproduces the Lorentz structure of worldline
correlation functions by rotating the loop cloud. Afterwards, it is explained that also
with a rotated loop cloud today’s computers do not allow for the computation of the
Wilson loop expectation value to a precision that would make a sensible calculation
of the one-loop effective action for the regular instanton possible.

5.1 Non-numerical preliminaries

In this section the necessary quantities are introduced and some instanton specific
analytic work is done. The instanton is given in two gauges and the derivative
expansion is explained.

5.1.1 The BPST instanton

Working with the instanton background field, we will use rescaled components of
the gauge potential and the field strength tensor:

Aa
µ → 1

gAa
µ and Ga

µν → 1
gGa

µν . (5.1)

Belavin et al. [41] found what is called the BPST instanton solution. It is given by

A
a
µ(x) =

2ηaµνxν

x2 + ρ2
, (5.2)

where x2 = xµxµ and the ’t Hooft symbol ηaµν is given by:

ηaµν =







ǫaµν µ, ν = 1, 2, 3,
δaµ ν = 0,

−δaν µ = 0 .
(5.3)
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The parameter ρ corresponds to the size of the instanton. The components of the
field strength tensor are

G
a
µν = − 4ρ2ηaµν

(x2 + ρ2)2
, (5.4)

and the trace of the squared field strength is

tr[GµνGµν ] = − 96ρ4

(x2 + ρ2)4
. (5.5)

Because Aµ falls off like x−1, one would expect the components of the field strength
tensor to show a x−2 behaviour. As we can see in (5.4), this is not the case and the
Gµν fall off like x−4. Writing tr[GµνGµν ] in terms of Aµ, we find that

tr[GµνGµν ] =tr
[
∂µAν − ∂νAµ + [Aµ,Aν ]

][
∂µAν − ∂νAµ + [Aµ,Aν ]

]

=2 tr
[
∂µAν∂µAν − ∂νAµ∂µAν

]

+ 2 tr
[
AµAν [Aµ,Aν ]

]
− 4 tr

[
(∂µAν)[Aµ,Aν ]

]
, (5.6)

where all the derivatives act only on the field next to them. The large-x-behaviour
depends very strongly on the precise balance between the three terms on the right
hand side of equation (5.6).

5.1.2 The instanton in singular gauge

Using the singular instanton, in equation (5.6) no non-trivial cancellation of terms
that vanish slower than x−4 takes place. It can be obtained from the BPST instan-
ton by performing the gauge transformation U = i

xµ

x T
+
µ , where T

+
µ = (−i1,Ta)

(see [42], [43]). For the components of the singular instanton one finds that

Aa
µ(x) = 2

xν

x2

ηaµνρ2

x2 + ρ2
. (5.7)

The definition of ηaµν is the same as the definition of ηaµν (equation (5.3)), with the
last two equations multiplied by −1. Because it is gauge invariant, tr[GµνGµν ] is
the same for the singular instanton as for the regular instanton, but all contribu-
tions to tr[GµνGµν ] as given in equation (5.6) fall off as x−4. Its large-x-behaviour
does not depend very sensitively on the balance between the terms on the right
hand side of (5.6). The non-trivial behaviour the BPST instanton shows for large
x has been traded for a non-trivial behaviour of the singular instanton close to the
origin. The singular instanton diverges as one approaches the origin. We therefore
do not expect the straightforward worldline numerical analysis to be of any value
close to the origin. The standard discretisation will run into the same difficulties
as are known from the path integral formulation of the hydrogen problem in quan-
tum mechanics (see [44]). Further away from the origin, however, we expect the
numerical results to be reliable and comparisons between the BPST instanton and
the singular instanton to be meaningful.
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5.1. Non-numerical preliminaries

5.1.3 The derivative expansion

The numerical results are not only compared to each other but also to a quantity
that behaves similarly to the Wilson loop expectation value and is motivated by the
derivative expansion approximation.

In Abelian gauge theories the derivative expansion approach enables one to get
an approximate value of the one-loop effective action even if the background field is
inhomogeneous, which in most cases renders the analytical derivation of the one-
loop effective action impossible. The idea is to expand the one-loop effective action
about a field of constant field strength tensor. The first coefficient of the series is
then just the one-loop effective action corresponding to that field. In many cases
(scale of variation of the background field larger than Compton wave length of the
electron) taking only the first coefficient into account yields surprisingly good re-
sults (see e.g. [4]).

In [45] Dunne et al. propose an approximate solution for the one-loop effective
action in an instanton background field, which is motivated by the derivative ex-
pansion used for Abelian fields. They argue, that because the instanton field is
self dual a good choice for a background field to expand about would be a covari-
antly constant self dual field that points into one direction in colour space:

Aa
µ = na Aµ and Ga

µν = na Gµν , (5.8)

with na being a normalised three-dimensional vector. The one-loop effective La-
grangian of such fields is analytically known. It is (see [46]) given by

L(1) = tr
1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

(
sT n̂

sinh(sT n̂)

)D
2

, (5.9)

where n̂ = na
σ

a, s2
1 = 2 tr[(Gµν)2], σ

a are the Pauli matrices and D is the number
of dimensions. Setting D = 4 we find that

L(1) =
1

(4π)2

∫ ∞

0

dT

T 3
e−m2T

(
sT

sinh(sT )

)2

. (5.10)

Now an assumption is made that this solution can also be utilised for the instanton
field, and one uses the s of the instanton:

s =

√

192ρ4

(r2 + ρ2)4
. (5.11)

This yields what we will call the derivative expansion approximation of the one-loop
effective Lagrangian density:

L(1)
DE =

1

(4π)2

∫ ∞

0

dT

T 3
e−m2T 2





√
12ρ2

(r2+ρ2)2
T

sinh(
√

12ρ2

(r2+ρ2)2
T )





2

. (5.12)
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The result of a calculation of the one-loop effective action with this Lagrangian
agrees surprisingly well with the known analytical result [45]. Keeping in mind
that the derivative expansion approximation is by no means in a strict sense de-
rived, but rather guessed and found to be useful, we will compare the worldline
numerical results of the Wilson loop expectation value to the analogous quantity in
(5.12)

〈W 〉DE = 2





√
12ρ2

(r2+ρ2)2 T

sinh(
√

12ρ2

(r2+ρ2)2
T )





2

. (5.13)

We of course do not expect actual agreement of 〈W 〉DE and 〈W 〉 but think that
since the integration over 〈W 〉DE gives an almost correct result they should behave
similarly. Moreover, the derivative expansion should become reliable at large r,
where the field varies slowly.

5.1.4 Renormalisation

The unrenormalised (and unregularised) one-loop effective action in an BPST in-
stanton background field is given by (see equation (2.59)

Γ(1) = − 1

(4π)2

∫

d4x

∫ ∞

0

dT

T 3
e−m2T [〈W 〉 − 2]

= − 1

(4π)2

∫

d4x

∫ ∞

0

dT

T 3
e−m2T

[

tr

∫
Dy e−

R 1
0 dt ẏ2

4 Pe−
√

T
R 1
0

dt ẏµ Aµ(x+
√

T y(t))

∫
Dy e−

R 1
0 dt ẏ2

4

− 2
]

= − 1

(4π)2

∫

d4x

∫ ∞

0

dT

T 3
e−m2T

[

tr

∫
Dy e−

R 1
0 dt ẏ2

4 Pe
i
√

T
R 1
0 dt ẏµ

2ηaµν (x+
√

Ty)ν

(x+
√

T y)2+ρ2 ,

∫
Dy e−

R 1
0 dt ẏ2

4

− 2
]

.

(5.14)

A change of variables T → ρ2T and xµ → ρxµ yields that

Γ(1) = − 1

(4π)2

∫

d4x

∫ ∞

0

dT

T 3
e−m2ρ2T

[

tr

∫
Dy e−

R 1
0 dt ẏ2

4 Pe
i
√

T
R 1
0 dt ẏµ

2ηaµν (x+
√

T y)ν

(x+
√

Ty)2+1

∫
Dy e−

R 1
0 dt ẏ2

4

− 2
]

= − 1

(4π)2

∫

d4x

∫ ∞

0

dT

T 3
e−m2ρ2T [〈W 〉(ρ = 1) − 2] , (5.15)

where 〈W 〉(ρ = 1) is the Wilson loop expectation value in an instanton background
with ρ = 1. We find that

Γ(1)(ρ,m) = Γ(1)(mρ) . (5.16)
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Using what we found for the renormalised one-loop effective action in section 2.7,
we can, in the instanton case, write:

Γ(1)
ren = lim

Λ→∞

[

Γ(1)
reg(mρ) +

1

(4π)2

∫

d4x

∫ ∞

1
Λ2

dT

T
e−µ2ρ2T 1

12
tr[(Gµν(ρ = 1))2]

]

= lim
Λ→∞

[

Γ(1)
reg(mρ) +

1

12(4π)2
(
− CE + ln(Λ2) − ln(µ2ρ2)

)
∫

d4x tr[(Gµν(ρ = 1)2]
]

.

(5.17)

Because

1

12(4π)2

∫

d4x tr[(Gµν(ρ = 1))2] =
1

12(4π)2

∫

d4x
96

(x2 + 1)4

=

∫

dx
x3

(x2 + 1)4

=
1

12
, (5.18)

it is possible to divide Γ
(1)
ren in a part that only depends on mρ, and a part that only

depends on µρ:

Γ(1)
ren =

1

6
ln(µρ) + Γ̄(1)(mρ) . (5.19)

Γ̄(1)(mρ) is called the modified one-loop effective action. Since Γ̄(1) depends only on
mρ, there is no loss of generality if we set ρ = 1. We do that if not stated otherwise.

5.2 Worldline numerical results and problems

In this section the numerical results are presented and the problems that have been
discovered are explained.

5.2.1 Wilson loop expectation value

For an instanton field every rotation can be undone by a gauge transformation (see
e.g. [30]). Together with the gauge invariance of the Wilson loop expectation value
(see e.g. [47]), this makes the Wilson loop expectation value even rotationally in-
variant. The Wilson loop expectation value then depends only on two variables: the
proper time T and the distance x of the “centre of mass” of the loop cloud from the
origin.

The results of the worldline numerical computation of the Wilson loop expecta-
tion value and the corresponding quantity associated with the derivative expansion
〈W 〉DE are shown in the figures 5.1 and 5.2. We can see that the results of the
worldline computation of the Wilson loop expectation value for the BPST instanton
and the singular instanton do not agree. In figure 5.1 the Wilson loop expectation
value 〈W 〉 is plotted as a function of x and T , in figure 5.2 as a function of T at
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Figure 5.1: Estimates of the Wilson loop expectation value of a BPST instanton
(a), the singular instanton (b) and the derivative expansion (c). 1000
loops of 301 points were used for the computation.

several values of x. For small x (figure 5.2 (a)), where we do not expect any sen-
sible results for the singular instanton, the singular instanton goes to zero almost
instantaneously while the BPST instanton shows a behaviour, which is somewhat
similar to the behaviour of 〈W 〉DE. At x = 1 (figure 5.2 (b)) both instantons agree
with 〈W 〉DE within their errors. For larger x (figure 5.2 (c)-(d)) it is the BPST in-
stanton Wilson loop expectation value that goes to zero much more rapidly than the
Wilson loop expectation value of the singular instanton as well as 〈W 〉DE.

We see that worldline numerics applied in the proposed way is not able to com-
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Figure 5.2: The Wilson loop expectation value of a BPST instanton, a singular
instanton and the derivative expansion evaluated at a variety of x
values. 3000 loops of 1001 points were used for the computation.

pute the correct Wilson loop expectation value for either the singular or the BPST
instanton. For both background fields the Wilson loop expectation value should be
equal since they are on the same gauge orbit, which means that one field is just
a gauge transform of the other, and the Wilson loop expectation value is gauge in-
variant. That the singular instanton agrees with the 〈W 〉DE if we leave the region
of its divergence lets us suspect the BPST instanton of being not easily treatable
with standard worldline numerics. A comparison to the inverse mass expansion
substantiates this suspicion.

5.2.2 Comparison to the inverse mass expansion

We again fit the Wilson loop expectation value evaluated at fixed x and T = 0.01n
with n = 1, . . . , 10 to the polynomial P = 2 + a1T

2 + a2T
4 + a3T

6 + a4T
8. As above
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Figure 5.3: The coefficient a1 obtained by a fit to P for the singular instanton
together with the analytically expected value of a1 with 0.5 < x < 5
(a) and 4.5 < x < 5 (b). 3001 loops of 501 points were used for the
computation.

we expect (setting ρ = 1) that

a1 ≈
1

12
tr[GµνGµν ] = − 8

(x2 + 1)4
. (5.20)

In figure 5.3 we find the results of the numerical computation for the singular in-
stanton together with the analytically expected second coefficient in the inverse
mass expansion. As can be seen on figure 5.3 (a), for small x the singular instanton
really is pretty useless for a straightforward worldline numerical treatment, but
the results become better as we go further away form the origin. At about x = 2
the numerical data fits the analytic expectation very well. Figure 5.3 (b) is a mag-
nification of the upper right corner of figure 5.3 (a). We see that worldline numerics
yields impressively good results for the singular instanton as long as we stay away
from the origin.

In the case of the BPST instanton things look differently. Figure 5.4 (a) shows
a1 plotted against x ranging from zero to five. Only close to x = 0 the numerically
obtained value agrees with the analytical expectation. If we go away from the ori-
gin, the deviation from the expected value has a maximum at about x = 1 and then
it becomes small again. Although the absolute value of the deviation decreases for
larger x, the numerical results are still very far away from the expected ones. As
can be seen on the double logarithmic plot figure 5.4 (b), they differ by several or-
ders of magnitude. The numerical a1 agrees with the analytical expectation only
very close to x = 0 within its errors. Away from x = 0 the worldline numerical
results are a mess.

That the statistical errors are quite small hints at a systematic problem of some
kind that is not solely caused by the use of a finite number of loops. Increasing the
number of loops nL or the number of points per loop np, indeed does not improve the
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Figure 5.4: The coefficient a1 obtained by a fit to P for the BPST instanton to-
gether with the analytically expected value of a1 with 0 < x < 5 (a)
and with inverted sign double logarithmically with 10 < x < 100 (b).
3001 loops of 501 points were used for the computation.

results notably as is shown on figure 5.5 and figure 5.6, for which several different
loop clouds were used.

In figure 5.6 (a) we see the worldline numerical a1 calculated at x = 100, with
a fixed number of points np = 101, plotted as a function of the number of loops
nL that were used in the computation. A logarithmic plot of 5.6 (a) is shown in
figure 5.6 (b). It tells us that while increasing the nL improves the result, it does so
at terrible speed. Trying to reduce the error to a reasonable size by brute force, i.e.
by enlarging the loop cloud, therefore does not work in practice.

In figure 5.7 we have an amended replot of figure 5.4 (b), in which we left out the
error and added the function f(x), which was obtained by fitting the function f(x) =
c (x − a)b onto the Wilson loop expectation value in a BPST instanton background.
The fit gave us: c = 18.0748, b = −4.02788 and a = −0.21048. The a1 computed using
worldline numerics does not fall off like x−8 as we would have expected (and the
singular instanton Wilson loop expectation value does), but like x−4.

5.2.3 The problem

The Wilson loop expectation value of two instanton background fields behave very
differently. While the singular instanton behaves as expected, i.e. gives useless
results close to x = 0 and sensible results for x > 2.5, the BPST instanton does not
agree with any analytic knowledge we have. It deviates from the 〈W 〉DE to a large
extent and the second coefficient obtained by a fit matches the analytical one only
very close to x = 0.

Because our method works as well (and badly) as expected for the singular in-
stanton, it is clear that the problem does not affect every non-abelian field. In ad-
dition to that, such a difficulty has not yet been observed in any of the calculations
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Figure 5.5: The analytically expected and the numerical value of a1 for the BPST
instanton computed with various loop clouds.
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Figure 5.6: The worldline numerical a1 as a function of the number of loops nL

at fixed x = 100. In (b) a logarithmic plot of the a1 and the analytic
expected value is show. 101 points were used for the computation.
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Figure 5.7: Double logarithmic plot of a1, the analytically expected value and the
function f(x) = 18.0748 (x + 0.21048)−4.02788, which was the result of a
fit. 3000 loops of 501 points were used for the computation.
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involving Abelian fields.

The unfavourable behaviour of the Wilson loop expectation value in a BPST in-
stanton background field is certainly a non-abelian effect.

5.3 The inverse mass expansion in terms of the gauge field

To get a better idea of what is being calculated, we have a closer look at a1, which is
the coefficient of O(T 2) in the inverse mass expansion, expressed entirely in terms
of the gauge fields, as the computer calculates it, i.e. with a discretised proper
time parameter. While this is certainly not the expression one can most easily
digest, it clarifies the calculation performed by the computer a great deal, making
it possible for us to track down possible weaknesses of the method. As is derived in
section A.4.2, a Monte Carlo estimate of a1, which we call aMC, is given by

aMC = tr
〈
−1

6
∂ν∂α∂βAµ(x)

np∑

n=1

y′nµ ỹn
ν ỹn

αỹn
β

+
1

2
∂ν∂αAµ(x)Aβ(x)

np∑

n=1

y′nβ y′nµ ỹn
ν ỹn

α

+
1

2
∂νAµ(x)∂βAα(x)

np∑

n=1

y′nα y′nµ ỹn
β ỹn

ν

−1

2
∂νAµ(x)Aα(x)Aβ(x)

np∑

n=1

y′nµ y′nα y′nβ ỹn
ν

+
1

24
Aµ(x)Aα(x)Aν(x)Aβ(x)

np∑

n=1

y′nµ y′nα y′nν y′nβ

+
1

2
∂ν∂αAµ(x)Aβ(x)

np∑

n=1

n−1∑

j=1

y′jβ y′nµ ỹn
ν ỹn

α

+
1

2
Aβ(x)∂ν∂αAµ(x)

np∑

n=1

n−1∑

j=1

y′nβ y′jµ ỹj
ν ỹ

j
α

− ∂νAµ(x)Aβ(x)Aν(x)

np∑

n=1

n−1∑

j=1

y′jν y′nµ y′nβ ỹn
ν

−Aν(x)∂νAµ(x)Aβ(x)

np∑

n=1

n−1∑

j=1

y′nν y′jµ y′jβ ỹj
ν

+
1

6
Aµ(x)Aα(x)Aβ(x)Aν(x)

np∑

n=1

n−1∑

j=1

y′jν y′nβ y′nα y′nµ
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+
1

6
Aν(x)Aµ(x)Aα(x)Aβ(x)

np∑

n=1

n−1∑

j=1

y′nν y′jβ y′jα y′jµ

+∂νAµ(x)∂αAβ(x)

np∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα ỹj

β

−1

2
∂νAµ(x)Aβ(x)Aα(x)

np∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα y′jβ

−1

2
Aβ(x)Aα(x)∂νAµ(x)

np∑

n=1

n−1∑

j=1

y′jµ ỹj
νy

′n
α y′nβ

−Aµ(x)Aα(x)∂βAν(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′rν ỹr
β

−Aµ(x)∂βAν(x)Aα(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′rα y′jν ỹj
β

−∂βAν(x)Aµ(x)Aα(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′jµ y′rα y′nν ỹn
β

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′rβ y′rν

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′jβ y′rν

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′nα y′jβ y′rν

+Aµ(x)Aα(x)Aβ(x)Aν(x)

np∑

n=1

n−1∑

j=1

j−1
∑

r=1

r−1∑

l=1

y′nµ y′jα y′rβ y′lν
〉

, (5.21)

where

y′nµ = (yn
µ − yn−1

µ ) and ỹn
µ =

yn
µ + yn−1

µ

2
, (5.22)

where np is the number of points on a loop used to perform the calculation. The
〈. . . 〉 accounts for the fact that we have to calculate the expectation value as we
are used to: by summing over all the loops in the loop cloud. Being derived by a
Taylor expansion of the Monte Carlo estimate of the Wilson loop expectation value,
aMC given in (5.21) is the best result of the numerical evaluation of a1 through the
fitting procedure that we can hope for. This is because the fitting procedure does
not give us an estimate of a1 but of aMC. In the limit np, nL → ∞, both, aMC, which
is the best possible outcome of the fitting procedure, and a1, which is obtained the
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usual way using the Schwinger-Fock gauge, should of course be equal, i.e.

lim
np,nL→∞

aMC =
1

12
tr[(Gµν)2]

=
1

12

{
2 tr

[
∂µAν∂µAν − ∂µAν∂νAµ

]

+ 2 tr
[
AµAν [Aµ,Aν ]

]
− 4 tr

[
(∂µAν)[Aµ,Aν ]

]}
. (5.23)

The expectation value of a sum like (5.21) can be found by calculating the expecta-
tion value of every term. We thus are left with a whole bunch of expectation values
of the kind 〈∑ . . . 〉 . In the continuum limit we find that

np y′nµ = np (yn
µ − yn−1

µ ) → ẏµ(t = n/np) (5.24)

and

ỹn
µ =

yn
µ + yn−1

µ

2
→ yµ(t = n/np) . (5.25)

The sums therefore become

〈
np∑

n

n−1∑

j

. . . 〉 →〈
∫ 1

0
dt

∫ t

0
dt′ . . . 〉

=

∫ 1

0
dt

∫ t

0
dt′ . . . 〈. . . 〉 . (5.26)

For the 14th summand in (5.21) we for example find that

lim
np,nL→∞

〈 ∂νAµ(x)∂αAβ(x)

np∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα ỹj

β 〉 =

∂νAµ(x)∂αAβ(x)

∫ 1

0
dt

∫ t

0
dt′ . . . 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 .

(5.27)

Equation (5.23) requires the various terms containing worldline correlation func-
tions in (5.21) to cancel each other in a very specific manner. How well these cor-
relation functions are numerically calculated therefore governs how well (5.23) is
realised by the computer and the correct result produced by worldline numerical
calculations. In the case of the BPST instanton all the combinations of the field in
(5.21) for big x fall off like x−4, but the analytic a1 falls off like x−8. If the worldline
correlation functions are not computed with sufficient accuracy, we are necessar-
ily left with a term which shows the wrong large-x-behaviour that we see for a1

obtained by the fitting procedure for the BPST instanton (see figure 5.7).
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5.4 Worldline correlation functions

In this section we focus on the worldline numerical calculation of worldline cor-
relation functions. As has been explained in the preceding section, being able to
compute worldline correlation functions well enough is expected to make it possible
to compute the Wilson loop expectation value and therefore the effective action.

5.4.1 Inverse mass expansion for an Abelian gauge theory

As is explained in section A.4.1, in the case of an Abelian gauge field a1 is given by

a1 = ∂ν∂α∂βAµ(x)

∫ 1

0
dt 〈 ẏµ(t)yν(t)yα(t)yβ(t) 〉

+
1

2
∂νAµ(x) ∂βAα(x)

∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 . (5.28)

We see that a1 has two contributions. They are build out of two parts: One involving
the gauge field and its derivatives and one involving a worldline correlation func-
tion. These correlation functions are about to be evaluated. But first we need to
learn how.

5.4.2 How to calculate worldline correlation functions

To be able to calculate worldline correlation functions analytically, we need to know
how to Wick contract as well as the solution of the worldline 2-point function

〈 yµ(t)yν(t′) 〉 =
1

N

∫

Dy e−
R 1
0 dt ẏ2

4 yµ(t)yν(t
′)

=
1

N

∫

Dy e−
R 1
0 dt 1

4
y(− d2

dt2
)y yµ(t)yν(t′) , (5.29)

where N serves to normalise the integral and a partial integration was performed
in the exponent. Expression (5.29) does not only look like the 2-point function in
a free quantum field theory, with −

∫ 1
0 dt 1

4y d2

dt2
y serving as action, but can also be

evaluated the same way. All we need is the inverse of the differential operator
appearing in the exponent (acting on closed loops with common “centre of mass”
zero, parametrised by a parameter ∈ [0, 1]):

〈t′| d2

dt2

−1

|t′′〉 =
1

2
G(t′, t′′) , (5.30)

with G(t′, t′′) being the worldline Green’s function. It is given by

G(t′, t′′) = |t′ − t′′| − (t′ − t′′)2 − 1

6
. (5.31)
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Its derivatives with respect of the first variable are

Ġ(t′, t′′) = sign(t′ − t′′) − 2(t′ − t′′) (5.32)

and

G̈(t′, t′′) = 2δ(t′ − t′′) − 2 . (5.33)

With the second derivative of G(t′, t′′) it is easy to show that the given Green’s func-
tions really satisfy (5.30). We simply have to plug (5.30) into the definition of an
inverse operator. We see that the function on which both operators act is repro-
duced:

d2

dt2

∫ 1

0
dt′

1

2
G(t, t′)y(t′) =

∫ 1

0
dt′

1

2
G̈(t, t′)y(t′)

=

∫ 1

0
dt′δ(t − t′)y(t′) −

∫ 1

0
dt′y(t′)

= y(t) , (5.34)

where y(t) is a function defined on a circle of circumference one, with a “centre of
mass” of zero

( ∫ 1
0 dt y(t) = 0

)
. For the 2-point correlation function we therefore find

that

〈 yµ(t)yν(t
′) 〉 = − δµν G(t, t′)

= − δµν

(
|t − t′| − (t − t′)2 − 1

6

)
, (5.35)

and for the 2-point function involving derivatives that

〈 ẏµ(t)yν(t′) 〉 = − 〈 yµ(t)ẏν(t
′) 〉

= − δµν Ġ(t, t′)

= sign(t − t′) − 2(t − t′) (5.36)

and

〈 ẏµ(t)ẏν(t′) 〉 = − 〈 ÿµ(t)yν(t
′) 〉

= δµν G̈(t, t′)

= 2δ(t − t′) − 2 . (5.37)

5.4.3 Inverse mass expansion for an Abelian gauge theory (revisited)

The first summand in (5.28) contains an integration over a worldline correlation
function. It looks like ∫ 1

0
dt 〈 ẏµ(t)yν(t)yα(t)yβ(t) 〉 . (5.38)
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To evaluate it, we have to perform Wick contractions. The “fields”, of which the
expectation value is to be taken, are grouped in pairs and the resulting 2-point
functions are multiplied. We do this in all possible ways and sum.

Equation (5.38) is particularly easy to evaluate. If cyclic permutations of ν, α and
β are taken into account, all possible Wick contractions are given by

〈 ẏµ(t)yν(t) 〉〈 yα(t)yβ(t) 〉 = − δµν Ġ(t, t)〈 yα(t)yβ(t) 〉
= sign(t − t) − 2(t − t)〉〈 yα(t)yβ(t) 〉
= 0 , (5.39)

where we have used (5.36). We therefore find that
∫ 1

0
dt 〈 ẏµ(t)yν(t)yα(t)yβ(t) 〉 = 0. (5.40)

The evaluation of the other integral in (5.28)

∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 (5.41)

is less boring. By the same argument as above, all but two Wick contractions are
zero. This yields that

∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 =

∫ 1

0
dt

∫ 1

0
dt′

[
〈 ẏµ(t)ẏα(t′) 〉〈 yν(t)yβ(t′) 〉

+ 〈 ẏµ(t)yβ(t′) 〉〈 yν(t)ẏα(t′) 〉
]

, (5.42)

and with (5.35) and (5.36) this is

= −
∫ 1

0
dt

∫ 1

0
dt′ δµα G̈(t, t′)δνβ G(t, t′)

−
∫ 1

0
dt

∫ 1

0
dt′ δµβ Ġ(t, t′) δναĠ(t, t′) . (5.43)

Now we perform the integrations to get

∫ 1

0
dt

∫ 1

0
dt′ G̈(t, t′)G(t, t′) =

∫ 1

0
dt

∫ 1

0
dt′

[

2δ(t − t′) − 2

][

|t − t′| − (t − t′)2 − 1

6

]

=

∫ 1

0
dt

∫ 1

0
dt′

[

2δ(t − t′)|t − t′| − 2δ(t − t′)(t − t′)2 − 2δ(t − t′)
1

6

− 2|t − t′| + 2(t − t′)2 + 2
1

6

]

=2

∫ 1

0
dt

[

|t − t| − (t − t)2 − 1

6
+

1

6

]
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+ 2

∫ 1

0
dt

∫ 1−t

−t
dx [x2 − |x|]

=2

∫ 1

0
dt

[
1

3

(
(1 − t)3 + t3

)
+

∫ 0

−t
dx x −

∫ 1−t

0
dx x

]

=2

∫ 1

0
dt

[
1

3

(
(1 − t)3 + t3

)
− 1

2
(t2 + (1 − t)2)

]

=2

[
1

12
(1 + 1) − 1

6
(1 + 1)

]

= − 1

3
(5.44)

and

∫ 1

0
dt

∫ 1

0
dt′ Ġ(t, t′)Ġ(t, t′) =

∫ 1

0
dt

∫ 1

0
dt′

[
sign(t − t′) − 2(t − t′)

]2

=

∫ 1

0
dt

∫ 1

0
dt′

[
1 − 4(t − t′)sign(t − t′) + 4(t − t′)2

]

=1 +

∫ 1

0
dt

∫ 1−t

−t
dx x2 − 4

∫ 1

0
dt

∫ 1−t

−t
dx |x| . (5.45)

We have already solved these integrals in (5.44) and can therefore write that

∫ 1

0
dt

∫ 1

0
dt′ Ġ(t, t′)Ġ(t, t′) =1 − 4

6

=
1

3
. (5.46)

Putting it all together,
∫ 1
0 dt

∫ 1
0 dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 turns out to be

∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 =

1

3
(δµαδνβ − δµβδνα) . (5.47)

For the coefficient of order T 2 this means that

a1 =
1

2
∂νAµ(x) ∂βAα(x)

1

3
(δµαδνβ − δµβδνα)

=
1

6

[(
∂νAµ(x)

)2 − ∂νAµ(x)∂µAν(x)
]

=
1

12
[∂µAν(x) − ∂νAµ(x)

]2

=
1

12
tr[(Gµν)2] , (5.48)

just as we would have expected.
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5.4.4 Numerical results for a worldline correlation function

We are now going to investigate how well worldline numerics is able to reproduce
the results of integrations over worldline correlation functions. This is done for the
only one that in the Abelian case gives a nonzero contribution to a1:

∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 =

1

3
(δµαδνβ − δµβδνα) . (5.49)

A sample of the results of a straightforward implementation is shown in table 5.1.
The complete list of the numerical results can be found in section A.5 on table A.1.
The combinations of µ, ν, α and β can be divided into three classes.

µ ν α β worldline result µ ν α β worldline result

0 1 0 1 0.274591 0 1 0 2 -0.046134
0 1 0 3 0.00285352 0 1 1 0 -0.274591
0 1 1 2 -0.00971428 0 1 1 3 -0.0339902
0 1 2 0 0.046134 0 1 2 1 0.00971428
0 1 2 3 -0.00776091 0 1 3 0 -0.00285352
0 1 3 1 0.0339902 0 1 3 2 0.00776091
0 2 0 1 -0.046134 0 2 0 2 0.277747
0 2 0 3 -0.0207131 0 2 1 0 0.046134
0 2 1 2 0.0284149 0 2 1 3 -0.0131166
0 2 2 0 -0.277747 0 2 2 1 -0.0284149
0 2 2 3 -0.0555001 0 2 3 0 0.0207131
0 2 3 1 0.0131166 0 2 3 2 0.0555001
0 3 0 1 0.00285352 0 3 0 2 -0.0207131
0 3 0 3 0.319711 0 3 1 0 -0.00285352
0 3 1 2 -0.0687531 0 3 1 3 0.0299561
0 3 2 0 0.0207131 0 3 2 1 0.0687531
0 3 2 3 0.00385483 0 3 3 0 -0.319711
0 3 3 1 -0.0299561 0 3 3 2 -0.00385483

Table 5.1: Table with the numerical results for
∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉;

only components with µ = 0 that are bigger than 10−15 are shown. 100
loops of 101 points were used for the computation

• Combinations for which δµαδνβ − δµβδνα 6= 0 :

Worldline numerics gives an estimate of the expected value, which is (±)
1

3
.

• Combinations where the indices of two loops depending on the same integra-
tion variable are equal (not shown in table 5.1):
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The expected value of zero is reproduced to a very high degree of precision.
Only rounding errors contribute to the deviation from zero. Starting from the
double sum, of which the computer calculates the mean value, we can quite
easily see why this is the case:

n∑

n=1

np

np∑

j=1

y′nµ ỹn
µy′jα ỹj

β =

np∑

n=1

y′nµ ỹn
µ

np∑

j=1

y′jα ỹj
β

︸ ︷︷ ︸

=C

,

which is, with the definitions of y′ and ỹ given in (5.22),

=
C

2

np∑

n=1

(yn
µ − yn−1

µ )(yn
µ + yn−1

µ )

=
C

2

np∑

n=1

(yn
µ)2 − (yn−1

µ )2

=
C

2
[

np∑

n=1

(yn
µ)2 −

np∑

n=1

(yn−1
µ )2]

and finally since because of the periodicity of the loops both sums are equal

= 0 , (5.50)

up to computer precision.

• Other combinations:

The expected value zero is reproduced with Monte Carlo precision. The de-
viation from the analytical result is about as big as in the first case, where
δµαδνβ − δµβδνα = 1.

The numerical results show two possible problems: the first is that, like always with
Monte Carlo calculations, the numerical results match the analytic results only up
to an error. The second is that the numerical results do not exhibit the analyti-
cally expected Lorentz structure. Both contribute to the error of the computation of
a1. These errors can be reduced by enlarging the loop cloud. Improving how well
the Lorentz structure is reproduced can, however, be done by a more efficient and
elegant method: making the loop cloud Lorentz invariant.

5.4.5 The Lorentz invariant loop cloud

The Lorentz structure of the results is not reproduced by the numerical method be-
cause the loop cloud itself is not Lorentz invariant although the probability distribu-
tion according to which the cloud was generated is. We are working in a Euclidean

56



5.4. Worldline correlation functions

space and Lorentz invariance for us means nothing but invariance under rotations.
One can force the loop cloud to be Lorentz invariant by rotating it in all possible
ways. In three dimensions this can very conveniently be done by parametrising the
group off all rotations SO(3) using the well known Euler angles and then integrat-
ing over the three angles. The Romberg integration routine qromo implemented
with midpnt from [38] is used. We confine ourselves to three integration steps for
each integration which results in 33 = 27 evaluations of the correlation functions
because midpnt triples the number of evaluations every step. With rotations about
three angles the program is slowed down by a factor of 273 ≈ 20, 000. A sample of
the results can be seen on table 5.2. The table A.2, which contains the complete
results, is shown in section A.5.

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 -1.8102e-20 0 0 0 1 -7.89111e-19
0 0 0 2 -2.49021e-19 0 0 1 0 -7.33227e-19
0 0 1 1 5.9163e-20 0 0 1 2 5.87649e-19
0 0 2 0 -7.10149e-19 0 0 2 1 -1.54681e-19
0 0 2 2 1.44158e-20 0 1 0 0 -1.06692e-20
0 1 0 1 0.317984 0 1 0 2 1.8443e-19
0 1 1 0 -0.317984 0 1 1 1 -5.10855e-20
0 1 1 2 9.41701e-18 0 1 2 0 -8.24743e-19
0 1 2 1 -8.79056e-18 0 1 2 2 -8.06524e-20
0 2 0 0 -1.57299e-20 0 2 0 1 -3.21263e-18
0 2 0 2 0.317984 0 2 1 0 1.09507e-17
0 2 1 1 9.52551e-21 0 2 1 2 7.30153e-18
0 2 2 0 -0.317984 0 2 2 1 -3.42136e-18
0 2 2 2 2.68142e-20

Table 5.2: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions; only components with µ = 0 are shown. 273 Monte
Carlo evaluations (corresponding to 273 rotated copies of one loop cloud)
using 100 loops of 101 points were done.

Comparing the tables 5.2 and 5.1, we see that we have successfully restored the
Lorentz structure of the analytical result. For example with µ = 0, ν = 1, α = 0
and β = 2, the result without rotation was −0.046134. Using the modified method
we get 1.8443 × 10−19, which is a lot closer to zero. For this better result we paid a
quite high price: the program is about 20, 000 times slower.

This brings up the question whether or not enlarging the loop cloud could have
done the same thing, maybe even without such a big impact on the performance.
On the tables 5.3 and 5.4 we see samples of the results obtained with loop clouds
which have sizes that also slow down the program by factor of about 20, 000, without
any rotations involved. The complete results can again be found in the appendix.
For table 5.3 a loop cloud with nL = 2× 106 loops and np = 101 points was used. For
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µ ν α β worldline result µ ν α β worldline result

0 0 0 0 -3.50847e-20 0 0 0 1 -5.50973e-19
0 0 0 2 4.71693e-19 0 0 1 0 8.19679e-19
0 0 1 1 5.8455e-20 0 0 1 2 3.70387e-19
0 0 2 0 -4.3467e-19 0 0 2 1 4.04886e-19
0 0 2 2 -5.17888e-20 0 1 0 0 1.82786e-20
0 1 0 1 0.331451 0 1 0 2 -0.000203934
0 1 1 0 -0.331451 0 1 1 1 -8.80596e-21
0 1 1 2 -8.31337e-05 0 1 2 0 0.000203934
0 1 2 1 8.31337e-05 0 1 2 2 -6.76788e-20
0 2 0 0 -5.69572e-20 0 2 0 1 -0.000203934
0 2 0 2 0.331186 0 2 1 0 0.000203934
0 2 1 1 1.99144e-20 0 2 1 2 -0.000298953
0 2 2 0 -0.331186 0 2 2 1 0.000298953
0 2 2 2 3.69985e-20

Table 5.3: Table of the numerical results for
∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions; only components with µ = 0 are shown. 2,000,000
loops of 101 points were used for the computation

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 -9.74435e-17 0 0 0 1 1.14381e-15
0 0 0 2 -9.3336e-15 0 0 1 0 -9.42832e-15
0 0 1 1 4.2262e-17 0 0 1 2 -1.26645e-15
0 0 2 0 2.81632e-15 0 0 2 1 -5.02664e-16
0 0 2 2 7.94665e-17 0 1 0 0 -1.34598e-17
0 1 0 1 0.297909 0 1 0 2 0.0333473
0 1 1 0 -0.297909 0 1 1 1 -1.70299e-17
0 1 1 2 -0.023779 0 1 2 0 -0.0333473
0 1 2 1 0.023779 0 1 2 2 -3.01939e-17
0 2 0 0 -8.18568e-17 0 2 0 1 0.0333473
0 2 0 2 0.318283 0 2 1 0 -0.0333473
0 2 1 1 -3.72052e-17 0 2 1 2 -0.0514883
0 2 2 0 -0.318283 0 2 2 1 0.0514883
0 2 2 2 5.93328e-17

Table 5.4: Table of the numerical results for
∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions; only components with µ = 0 are shown. 100 loops of
14,241 points were used for the computation
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table 5.4 a loop cloud with nL = 100 loops and np = 14, 241 ≈
√

2 × 104 points was
used. Because of the double sum that has to be evaluated, the time it takes to run
the program is of order n2

p. We see that in both cases the degree suppression of the
nonzero results is not even close to the degree of suppression one finds rotating the
loop cloud. Trying to obtain the correct Lorentz structure of worldline correlation
functions using worldline numerics in three dimensions, to rotate the loop cloud is
the method of choice. It should be noted that in three dimensions a rotation about
one axis is enough to restore the Lorentz structure. We believe this to be a special
feature of the worldline correlation function that is evaluated. There is no reason to
assume that this also works for correlation functions with a much more complicated
Lorentz structure.

In higher dimensional spaces, however, rotating the loop cloud might not be the
method of choice because more and more rotations have to be performed. The di-
mension of the rotation group’s algebra grows quickly as the dimension of the space,
in which we want to rotate, grows. In four dimensions there are six generators. Six
integrations are therefore necessary to make the loop cloud Lorentz invariant. Do-
ing it with the same precision as for three dimensions (three integration steps),
would need 276 ≈ 3.9 × 108 Monte Carlo evaluations. With the computers that we
have at our disposal this would render a sensible numerical treatment impossible.
We have to be content with two integration steps and the resulting worse suppres-
sion of the undesirable nonzero components. Doing so, 96 ≈ 5.4 × 105 Monte Carlo
evaluations need to be performed. A sample of the results of this procedure is listed
in tab 5.5 (the rest of the calculated results can be found in the appendix on tab A.5).

5.5 The a1 of the BPST instanton and the rotated loop cloud

As we stated at the end of section 5.3, the bad results for a1 are believed to have
two possible sources

• Worldline correlation functions are computed poorly where they should not be
zero, which disturbs the detailed balance of all the terms contributing to a1.

• The Lorentz structure is computed poorly, which has the same effect.

The only cure we know for the first problem is to enlarge the loop cloud. As we have
already seen in figure 5.5 and figure 5.6, this does not help much. In the previous
section we saw that how well the Lorentz structure is reproduced can be improved
by rotating the loop cloud. To test whether or not this helps us with the a1 of the
BPST instanton, we again fit the Wilson loop expectation value evaluated at fixed x
and T = 0.01n, where n = 1, . . . , 10, to the polynomial P = 2 + a1T

2 + a2T
4 + a3T

6 +
a4T

8 and expect that

a1 ≈
1

12
tr[GµνGµν ] = − 8

(x2 + 1)4
. (5.51)
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µ ν α β worldline result µ ν α β worldline result

0 0 0 0 3.1331e-18 0 0 0 1 -3.02033e-17
0 0 0 2 -1.63548e-17 0 0 0 3 -4.86273e-19
0 0 1 0 -3.69468e-17 0 0 1 1 6.36205e-18
0 0 1 2 -1.93687e-17 0 0 1 3 1.30484e-18
0 0 2 0 3.55469e-17 0 0 2 1 8.6476e-18
0 0 2 2 5.01795e-18 0 0 2 3 -1.2988e-18
0 0 3 0 4.16456e-18 0 0 3 1 4.31963e-19
0 0 3 2 1.78885e-18 0 0 3 3 -9.52311e-21
0 1 0 0 -6.03821e-18 0 1 0 1 0.274591
0 1 0 2 0.0152587 0 1 0 3 -1.74607e-05
0 1 1 0 -0.274591 0 1 1 1 9.36357e-18
0 1 1 2 -0.0136663 0 1 1 3 -1.521e-05
0 1 2 0 -0.0152587 0 1 2 1 0.0136663
0 1 2 2 6.45227e-18 0 1 2 3 1.21264e-05

Table 5.5: Table of the numerical results for
∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

four dimensions; only components with µ = 0 are shown. 96 Monte
Carlo evaluations with 100 loops of 101 points were used for the com-
putation

Because of performance issues, we tried this only for one point with x = 100. In ta-
ble 5.6 we can compare the results of a worldline numerical computation of a1 with
and without rotations for a loop cloud with 100 loops of 101 points. The rotation was
done about all six angles and two integration steps were used. 10 × 96 ≈ 5.3 × 106

(we use ten points for the fit) evaluations of the Wilson loop expectation value had
to be performed.

method a1

analytic computation −7.9968 × 10−16

without rotations −1.364102437 × 10−07

with rotations −1.364226246 × 10−07

Table 5.6: Table of the analytic value and the numerical results for a1 obtained
with and without rotations. A loop cloud of 100 loops of 101 points and,
in the rotated case, 96 rotated copies of the same loop cloud were used
for the computation.

It is plain to see that the result is not improved at all and we have no means to
numerically extract the correct results for the a1 of the BPST instanton within a
reasonable time span.

60



6 The effective potential and the
Polyakov loop

Worldline numerics can also be used to calculate finite temperature effects. In this
chapter it is applied to the computation of the one-loop effective action of an SU(2)
background gauge field at finite temperature. We will then be able to derive the
effective potential of the background field, whose expectation value can be used
to calculate an upper bound for the Polyakov loop expectation value. This is in-
teresting because the Polyakov loop expectation value is interpreted as an order
parameter for confinement (see [34,35]). The Polyakov loop expectation value being
zero signals confinement; it being unequal to zero signals deconfinement. Rescaled
components of the gauge field as defined in section 2.3 will be used in this chapter.
The basics of the necessary method are now briefly explained.

6.1 QFT at finite temperature

A statistical treatment of quantum fields at finite temperature can be done using
the imaginary-time formalism. The basic quantity necessary for a statistical treat-
ment of a D-dimensional quantum system in thermal equilibrium is the partition
function

Z = tr e−βH =
∑

n

〈n|e−βH |n〉 , (6.1)

where the set of all |n〉 is a basis of the Hilbert space under consideration. Having
knowledge of it, all macroscopic physical quantities can be derived; the problem of
the statistical description of the system can be considered solved. A path integral
expression for a quantity looking very similar to the matrix elements in (6.1) is well
known. It is the probability amplitude to find a system that is in the state |n〉 at
time zero to be found in the same state |n〉 at time T , which is given by

〈n|e−iHT |n〉 =

∫

Dφ 〈n|φ(0)〉 〈φ(T )|n〉 ei
R T
0 dτ

R

dDxL(φ) , (6.2)

where L is the Lagrangian density of the system. Setting T = −iβ (hence the name
imaginary-time formalism), we can use (6.2) to replace the matrix elements of the
Hamiltonian in (6.1) and end up with

Z =

∫

Dφ e−
R β
0 dτ

R

dDxL(φ) , (6.3)
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Chapter 6. The effective potential and the Polyakov loop

where the integration has to be taken over all φ that satisfy periodic boundary
conditions in the case of bosons or anti-periodic boundary conditions in the case of
fermions. A comparison with (2.8) shows that this is nothing else but the Euclidean
generating functional (with the current J = 0) defined for a theory with one dimen-
sion compactified to a circle of circumference β. The space of this theory then looks
like a cylinder. The whole machinery developed for the treatment of the generating
functional can therefore be used for the study of finite temperature phenomena as
well. The statistical quantity we will use in this thesis is the free energy density.
Remembering the definition of the free energy

F = −β−1 ln Z , (6.4)

we see with the aid of section 2.1 that a quantity proportional to the free energy
is given with the effective action (calculated with compactified time and as long
as J=0). To get the free energy density, we can therefore compute the effective
Lagrangian density (again with compactified time).

6.2 Worldline numerics at finite temperature

Worldline numerics can be used to investigate configurations of finite temperature,
too. This brings about a new feature of the loops used in the worldline calculations:
The loops x that the path integral is to be taken about can wind around the space-
time cylinder. For this we have to accommodate the worldline numerical approach.
We do this by separating every path into a part with winding number n0 = 0 and a
part with its original winding number n:

xµ(τ) = x̃µ(τ) − δµ0
τ

T
nβ . (6.5)

For the worldline path integration this means that
∫

Dx e−
1
4

R T

0
dτ ẋ2

=

∫

Dx e−
1
4

R T

0
dτ ( ˙̃xµ−δµ0

nβ
T

)2

=

∫

Dx e−
1
4

R T
0 dτ ( ˙̃x2−2 ˙̃xµδµ0

nβ
T

+(δµ0
nβ
T

)2) . (6.6)

Being an integration over a total derivative, the second term in the exponent gives
zero. The other two terms yield

∫

Dx e−
1
4

R T
0 dτ ẋ2

=

∫

Dx e−
1
4

R T
0 dτ ˙̃x2

e
(nβ)2

4T

=
∞∑

n=−∞
e−

(nβ)2

4T

∫

Dx̃ e−
1
4

R T
0 dτ ˙̃x2

. (6.7)

The paths x̃, over which the path integral on the right hand side of (6.7) has to be
taken, have the same properties as the ones used in the worldline calculations that
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6.3. The Polyakov loop and confinement

were done earlier in this thesis. The loops also have the same statistical weight as
the ones used by us so far. We therefore can compute the integral in (6.7) using the
Monte Carlo methods employed throughout the thesis. All we have to do is to take
an additional sum into account.

6.3 The Polyakov loop and confinement

Consider a static quark in an SU(2) gauge field theory without any dynamic quarks
(one also speaks of quenched QCD). Its worldline is a circle around the space-time
cylinder. We can now define the Polyakov loop L(x). It is given by the Wilson loop
along the worldline of the static quark, i.e.

L(x) =
1

Nc
tr P exp

[

−
∫ β

0
dx0A0(x)

]

, (6.8)

where Nc is the number of colours, which in our case is two. As shown in [48] the
expectation value of 〈L(x)〉, which is given by

〈L(x)〉 =
1

Z

∫

DAL(x) e−S(β,A] , (6.9)

has a very simple relation to the free energy Fq of the system:

e−βFq = 〈L(x)〉. (6.10)

An expression similar to (6.10) can also be given for 〈L(x)L†(x + R)〉. One finds (see
again [48]) that

〈L(x)L†(x + R)〉 = e−βF
|R|
qq̄ , (6.11)

where F
|R|
qq̄ denotes the free energy of a system with two static quarks that are

separated by a distance of |R|. Assuming the cluster decomposition theorem to
hold, we find that

lim
|R|→∞

e−βF
|R|
qq̄ = lim

|R|→∞
〈L(x)L†(x + R)〉

=〈L(x)〉 〈L†(x + R)〉 . (6.12)

This means that for 〈L(x)〉 = 0 the free energy F∞
qq̄ has to be infinite, which is inter-

preted as confining. For 〈L(x)〉 6= 0 the free energy F∞
qq̄ is finite. This is interpreted

as deconfining.
For the computation we are about to do, it is convenient to work in the Polyakov

gauge, where

∂0A0 = 0 and Aa
0(x) = a(x)δa3 . (6.13)
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In this gauge L(x) evaluates to

L(x) =
1

2
tr exp

[

−
∫ β

0
dx0 A0(x)

]

=
1

2

[

exp

[
i

2

∫ β

0
dx0 a(x)

]

+ exp

[

− i

2

∫ β

0
dx0 a(x)

]]

= cos

(
β a(x)

2

)

, (6.14)

where ∂0A0 = ∂0a(x) = 0 was used in the last step. Not only 〈L〉 can serve as a order
parameter for confinement, but also 〈a(x)〉. By virtue of the Jensen inequality we
find:

L[〈a(x)〉] ≥ 〈L[a(x)]〉 . (6.15)

Knowing the A0 expectation value, we can therefore easily find out whether or not
the system has to be confined.

6.4 The one-loop effective action of a pure SU(2) gauge

field

But what is the A0 expectation value? Sadly a general answer to this question has
not yet been found. What we do is to restrict ourselves to a set of background gauge
fields that are parametrised by one parameter and to calculate the effective poten-
tial Veff = Γ

Volume , which is the effective Lagrangian density, which is proportional to
the free energy density (there are no sources and J is therefore zero). Because the
gauge field corresponding to the minimum of the effective potential has the minimal
free energy, we treat it as the expectation value. In one-loop perturbation theory an
analytical solution for the contribution to the effective action of a constant a(x) = a
that is caused by the temperature being nonzero was found by Weiss (see [36]):

V Weiss
eff (a) = −2π2

β4




1

45
− 1

24

{

1 −
[(

βa

π

)

mod2

− 1

]2
}2



 . (6.16)

A plot of the Weiss solution is shown in figure 6.1. The minima of the Weiss solu-
tion lie at βa = 2πz, where z is an integer. Plugging this into (6.14), we find L = 1
and interpret this as deconfining. Because of asymptotic freedom, that is the cou-
pling constant g being small at high energies, we expect perturbation to be valid
at high temperatures. The Weiss result therefore indicates a deconfined phase at
high temperatures. In this thesis we will go beyond the Weiss solution and explore
how things change if one chooses a spatially varying background gauge field. To do
so, we add a perturbation to the constant field. The components of the background
field we consider are given by

Aa
µ = a(x)δ3aδ0µ , with a(x) = a + δa cos(kx1) cos(kx2) . (6.17)
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Figure 6.1: The Weiss solution of the effective potential for a constant background
field a(x) = a.

The definition of the perturbation contains two parameters: δa is the amplitude and
k is the frequency of the perturbation.

In order to calculate the effective action, we employ the background field method
in Feynman gauge, which is explained in [49]. Although the overall gauge is then
fixed, the resulting effective action is still gauge invariant under gauge transforma-
tions of the background field alone (which justifies the use of the Polyakov gauge).
We analyse the effective action in one-loop approximation. The one-loop effective
action is given by

Γ(1) =
1

2
ln det

[
−D

2 − 2G
]
− ln det

[
−D

2
]

=
1

2
Tr ln

[
−D

2 − 2G
]
− Tr ln

[
−D

2
]

, (6.18)

where the field strength tensor G has to be taken in the adjoint representation.
This is where worldline numerics comes into play; as a tool to numerically compute
the one-loop effective action.

6.5 The one-loop effective potential for a(x)

Starting from (6.18), we derive the expression for the one-loop effective potential of
a gauge field with

Aa
0(x) = a(x)δa3δµ0 and a(x) = a + δa cos(kx1) cos(kx2) . (6.19)
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We write (6.18) in the proper time representation (see section A.1) and perform the
trace as explained in section 2.4. We find that

Γ(1) = − 1

2
tr

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T
0 dτ ẋ2

4 Pe−
R T
0 dτ [ẋA+2G]

+ tr

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T

0
dτ ẋ2

4 Pe−
R T

0
dτ ẋA . (6.20)

Because A only points into one direction of the colour space, the problem is pseudo-
abelian and the path ordering is not necessary. After dropping the path ordering,
the one-loop effective action reads

Γ(1) = − 1

2

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T

0
dτ ẋ2

4 tr e−
R T

0
dτ [ẋA+2G]

+

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T
0 dτ ẋ2

4 tr e−
R T
0 dτ ẋA

=

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T

0
dτ ẋ2

4

[

tr e−
R T

0
dτ ẋA − 1

2
tr e−

R T

0
dτ [ẋA+2G]

]

.

(6.21)

6.5.1 Performing the traces

The next step is to perform the traces. We will turn to tr e−
R T
0 dτ ẋA first. Using the

definition of the gauge field (equation (6.19)), we get that

tr e−
R T

0
dτ ẋA =tr ei

R T

0
dτ ẋ0 a(x) T3

=tr eΘT3
, (6.22)

where we defined Θ = i
∫ T
0 dτ ẋ0 a(x). If there exists an invertible matrix U that

complies with
UT

3
U

−1 = diag(T1, T2, T3) , (6.23)

where U
−1 is the inverse matrix of U and T0, T1, T2 and T3 are the eigenvalues of

T
3, we can easily perform the trace, because then

tr eΘT
3

=trU−1
UeΘT

3

=trU eΘT3
U

−1

=tr eΘUT3 U−1

=tr eΘ diag(T1,T2,T3)

=

3∑

i=0

eΘ Ti , (6.24)
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where the second and forth step can be seen to be correct by expanding the expo-
nential. According to (2.24), T

3 is

T
3 = i





0 1 0
−1 0 0
0 0 0



 (6.25)

and therefore Hermitian. A matrix that meets the requirements given above is
therefore known to exist. The eigenvalues of T

3 are: T1 = 1, T2 = −1 and T3 = 0.
Because of (6.24), we can write:

tr e−
R T
0 dτ ẋA =tr ei

R T
0 dτ ẋ0 a(x) T

3

=1 + e−i
R T
0 dτ ẋ0 a(x) + ei

R T
0 dτ ẋ0 a(x) (6.26)

The first trace in (6.21), tr e−
R T
0 dτ [ẋA+2G], is to be dealt with next. The trace here

runs over colour and Lorentz labels. We will perform the Lorentz trace first. As a
first step, we write the trace including the explicit Lorentz structure and give the
trace the index L to remind us that we are only looking at the Lorentz trace:

trL e−
R T
0 dτ [ẋA+2G] = trL e−

R T
0 dτ [ẋA δµν+2Gµν ] . (6.27)

Because of exp(k1 + A) = exp(k1) exp(A) = exp(k) exp(A), where k is a C-number,
1 the unit matrix and A an arbitrary matrix, the trace can also be written as

trL e−
R T
0 dτ [ẋA δµν+2Gµν ] = e−

R T
0 dτ ẋA trL e−2

R T
0 dτ Gµν . (6.28)

Now we compute the field strength tensor as defined in (2.30):

Gµν =∂µAν − ∂νAµ + g[Aµ,Aν ] . (6.29)

Because of the pseudo-abelian structure of the problem, the commutator vanishes.
Plugging in the definition of the gauge field that we consider here (given in (6.19)),
we get that

Gµν = − i
(
∂µa(x)δν0 − ∂νa(x)δµ0

)
T

3 . (6.30)

We see that the non-zero components of Gµν , which we will call Fµν , are given by

Fµν =G3
µν

= − Eµδν0 + Eνδµ0 , (6.31)

where we introduced the electric field Eµ = −∂µa(x). The two electric field compo-
nents that are not zero are given by

E1 = − ∂1a(x) = δa k sin(kx1) cos(kx2)

E2 = − ∂2a(x) = δa k cos(kx1) sin(kx2) . (6.32)
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Given as a matrix F then looks like

F =







0 E1 E2 0
−E1 0 0 0
−E2 0 0 0

0 0 0 0







. (6.33)

Putting it all back into the trace, we find that

trL e−
R T

0
dτ [ẋA+2G] = e−

R T

0
dτ ẋA trL e2i

R T

0
dτ FµνT

3
. (6.34)

As before in this section, since iFµν is Hermitian the problem of taking the trace re-
duces to the problem of finding the eigenvalues of iFµν . They are: 0, 0, ±

√

E2
1 + E2

2 .
Finally we sum to get

trL e−
R T

0
dτ [ẋA+2G] = e−

R T

0
dτ ẋA

(
2 + e2

R T

0
dτ | ~E|T3

+ e−2
R T

0
dτ | ~E|T3)

. (6.35)

The only trace left is the colour trace over (6.35):

trc e−
R T

0
dτ ẋA

(
2 + e2

R T

0
dτ | ~E|T3

+ e−2
R T

0
dτ | ~E|T3)

=2 trc ei
R T

0
dτ ẋ0 a(x) T3

+ trc eT3
R T

0
dτ ẋ0

[
i a(x)+2| ~E|

]

+ trc eT3
R T

0
dτ ẋ0

[
i a(x)−2| ~E|

]

. (6.36)

We can again use the fact that T
3 is Hermitian and find that

tr e−
R T
0

dτ [ẋA+2G] =2
(
1 + e−i

R T
0

dτ ẋ0 a(x) + ei
R T
0

dτ ẋ0 a(x)
)

+ 1 + e
R T

0
dτ ẋ0

[
i a(x)+2| ~E|

]

+ e−
R T

0
dτ ẋ0

[
i a(x)+2| ~E|

]

+ 1 + e
R T

0
dτ ẋ0

[
i a(x)−2| ~E|

]

+ e−
R T

0
dτ ẋ0

[
i a(x)−2| ~E|

]

. (6.37)

6.5.2 Calculating Γ(1)

Using our knowledge about the traces, we can write (6.21) as

Γ(1) =

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T

0
dτ ẋ2

4
[
tr e−

R T

0
dτ ẋA − 1

2
tr e−

R T

0
dτ [ẋA+2G]

]

=

∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T
0 dτ ẋ2

4

[

− 1

2

(
2 + e

R T
0 dτ ẋ0

[
i a(x)+2| ~E|

]

+ e−
R T

0
dτ ẋ0

[
i a(x)+2| ~E|

]

+ e
R T

0
dτ ẋ0

[
i a(x)−2| ~E|

]

+ e−
R T
0 dτ ẋ0

[
i a(x)−2| ~E|

]
)]

= −
∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T
0 dτ ẋ2

4

[

1

+
1

2
(ei

R T

0
dτ ẋ0 a(x) + e−i

R T

0
dτ ẋ0 a(x))(e2

R T

0
dτ | ~E| + e2

R T

0
dτ | ~E|)

]

. (6.38)
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The 1 only amounts for a constant term which will be left out, and the first and
second term in brackets are twice a hyperbolic and trigonometric cosine function
respectively. This makes it possible to write the one-loop effective action in a very
concise form:

Γ(1) = −
∫ ∞

0

dT

T 3

∫

dDx

∫ x(T )=x

x(0)=x
Dx e−

R T

0
dτ ẋ2

4

× 2 cos

(∫ T

0
dτ ẋ0 a(x)

)

cosh

(

2

∫ T

0
dτ | ~E|

)

. (6.39)

6.5.3 Making the one-loop effective action suit numerical evaluation

To make the one-loop effective action numerically treatable, we normalise the path
integral, which is to be evaluated using Monte Carlo techniques. We do this just as
in section 2.5. Then

Γ(1) = − 2

(4π)2

∫ ∞

0

dT

T 3
e−m2T

∫

dDxN
∫ x(T )=x

x(0)=x
Dx e−

R T

0
dτ ẋ2

4

× cos

(∫ T

0
dτ ẋ0 a(x)

)

cosh

(

2

∫ T

0
dτ | ~E|

)

, (6.40)

where

N =
[ ∫ x(T )=x

x(0)=x
Dx e−

R T
0 dτ ẋ2

4

]−1
. (6.41)

We are investigating a quantum field theory at finite temperature. As is explained
in section 6.2, (6.40) can therefore be written as

Γ(1) = − 2

(4π)2

∫ ∞

0

dT

T 3

∫

dDxN
∞∑

n=−∞
e−

(nβ)2

4T

∫

Dx̃ e−
1
4

R T
0 dτ ˙̃x2

× cos
(

− nβ

T
a(x) +

∫ T

0
dτ ˙̃x0 a(x)

)

cosh
(

2

∫ T

0
dτ | ~E|

)

= − 2

(4π)2

∫ ∞

0

dT

T 3

∫

dDxN
∞∑

n=−∞
e−

(nβ)2

4T

∫

Dx̃ e−
1
4

R T
0 dτ ˙̃x2

× cosh
(

2

∫ T

0
dτ | ~E|

)[

cos
(nβ

T

∫ T

0
dτ a(x)

)

cos
( ∫ T

0
dτ ˙̃x0 a(x)

)

+ sin
(nβ

T

∫ T

0
dτ a(x)

)

sin
(∫ T

0
dτ ˙̃x0 a(x)

)]

. (6.42)

We only want to investigate finite temperature effects and therefore exclude the
zero temperature case by demanding that n 6= 0. Because

∞∑

n=−∞,n 6=0

f(n2) sin(αn) =
∞∑

n=1

f(n2) sin(αn) +
∞∑

n=1

f(n2) sin(−αn) = 0 , (6.43)
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the term containing the sine function drops out. The same reasoning leads to a
different result for the term with the cosine function since

∞∑

n=−∞,n 6=0

f(n2) cos(αn) =
∞∑

n=1

f(n2) cos(αn) +
∞∑

n=1

f(n2) cos(−αn)

= 2
∞∑

n=1

f(n2) cos(αn) . (6.44)

The finite temperature one-loop effective action Γ
(1)
e therefore is

Γ(1)
e = − 4

(4π)2

∫ ∞

0

dT

T 3

∫

dDxN
∞∑

n=1

e−
(nβ)2

4T

∫

Dx̃ e−
1
4

R T

0
dτ ˙̃x2

× cos
(nβ

T

∫ T

0
dτ a(x)

)

cos
(∫ T

0
dτ ˙̃x0 a(x)

)

× cosh
(

2

∫ T

0
dτ | ~E|

)

. (6.45)

After the introduction of unit loops (see section 2.5) it looks like

Γ(1)
e = − 4

(4π)2

∫ ∞

0

dT

T 3

∫

dDxN
∫

Dy

∞∑

n=1

e−
(nβ)2

4T e−
1
4

R 1
0 dt ẏ2

× cos
(

nβ

∫ 1

0
dt a(x +

√
Ty)

)

cos
(√

T

∫ 1

0
dt ẏ0 a(x +

√
Ty)

)

× cosh
(

2T

∫ 1

0
dt | ~E(x +

√
Ty)|

)

. (6.46)

6.5.4 Deriving the one-loop effective potential

To get the one-loop effective potential V
(1)
eff we have to divide the one-loop effective

action Γ
(1)
e by the space-time volume:

V
(1)
eff = − 4

(4π)2

[ ∫

dDx
]−1

∫ ∞

0

dT

T 3

∫

dDxN
∫

Dy

∞∑

n=1

e−
(nβ)2

4T e−
1
4

R 1
0 dt ẏ2

× cos
(

nβ

∫ 1

0
dt a(x +

√
Ty)

)

cos
(√

T

∫ 1

0
dt ẏ0 a(x +

√
Ty)

)

× cosh
(

2T

∫ 1

0
dt | ~E(x +

√
Ty)|

)

. (6.47)

The field a(x) is given by a(x) = a + δa cos(kx1) cos(kx2). The two nonzero compo-
nents of ~E are therefore given by

E1 = kδa sin(kx1) cos(kx2)

E2 = kδa cos(kx1) sin(kx2) . (6.48)
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If we plug this into the definition of the one-loop effective potential and perform the
change of variables T → T/β2 and xµ → xµ/β, we find that

V
(1)
eff = − 4

(4π)2β4

[ ∫

dDx
]−1

∫

dDx

∫ ∞

0

dT

T 3
N

∫

Dy

∞∑
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e−
n2

4T e−
1
4

R 1
0

dt ẏ2

× cos
(

n

∫ 1

0
dt

[

â + δ̂a cos
(
k̂(x1 +

√
Ty1)

)
cos

(
k̂(x2 +

√
Ty2)

)])

× cos
(√

T

∫ 1

0
dt ẏ0

[

â + δ̂a cos
(
k̂(x1 +

√
Ty1)

)
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(
k̂(x2 +

√
Ty2)

)])

× cosh
(

2T k̂δ̂a

∫ 1

0
dt

[

sin2
(
k̂(x1 +

√
Ty1)

)
cos2

(
k(x2 +

√
Ty2)

)
+

× cos2
(
k̂(x1 +

√
Ty1)

)
sin2

(
k̂(x2 +

√
Ty2)

)]
1
2
)

, (6.49)

where several new quantities were introduced: a, δa and k were rescaled to become
â = βa, δ̂a = βδa and k̂ = βk. Because the x-integrand does not depend on x0 and x3,
the integrations over the two variables cancel with the corresponding integrations
that are in the denominator. Furthermore, the x-integrand is periodic in x1 and x2

with a period of 2π/k̂. Using this, we finally get the expression that is numerically
evaluated:

V
(1)
eff = − 1

4π2β4

( k̂

2π

)2
∫ 2π

k̂

0
dx1

∫ 2π

k̂

0
dx2

∫ ∞

0
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1
4

R 1
0

dt ẏ2

× cos
(

n

∫ 1

0
dt

[

â + δ̂a cos
(
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√
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)
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(
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√
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(√

T
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0
dt ẏ0

[
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(
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√
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)
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(
k̂(x2 +

√
Ty2)

)])

× cosh
(

2T k̂δ̂a

∫ 1

0
dt

[

sin2
(
k̂(x1 +

√
Ty1)

)
cos2

(
k(x2 +

√
Ty2)

)

+ cos2
(
k̂(x1 +

√
Ty1)

)
sin2

(
k̂(x2 +

√
Ty2)

)]
1
2
)

. (6.50)

From (6.50) we can find another way to write the Weiss solution, which was given
in equation (6.16), if we set δ̂a = 0:

V Weiss
eff (â) = − 1

4π2β4

∫ ∞

0

dT

T 3

∞∑

n=1

e−
n2

4T cos(nâ) . (6.51)
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6.5.5 The pseudo Weiss approximation

The numerical results are compared to the Weiss solution and what we call the
pseudo Weiss approximation. It can be obtained by simply inserting a(x) into the
Weiss solution and performing the x-integrations:

V psWei
eff (δ̂a, k̂) = − 1

4π2β4

( k̂

2π

)2
∫ 2π

k̂

0
dx1

∫ 2π

k̂

0
dx2

∫ ∞

0

dT

T 3
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n=1

e−
n2

4T
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(

n

∫ 1

0
dt

[

â + δ̂a cos(k̂x1) cos(k̂x2)
])

= − 1

4π2β4

( 1

2π

)2
∫ 2π

0
dx1

∫ 2π

0
dx2

∫ ∞

0

dT

T 3

∞∑

n=1

e−
n2

4T

× cos
(

n

∫ 1

0
dt

[

â + δ̂a cos(x1) cos(x2)
])

. (6.52)

We see that the pseudo Weiss solution does not depend on k̂, i.e.

V psWei
eff (δ̂a, k̂) = V psWei

eff (δ̂a) . (6.53)

In the pseudo Weiss approximation we take the field to be locally constant and then
perform the x-integrations. The smaller we choose k̂, the better this is fulfilled.
With a small k̂ the dominating contributions to the T -integral for V

(1)
eff are computed

with a nearly constant background field as the frequency of its variation is small.
That for small k̂ we expect the pseudo Weiss approximation to be the outcome of

the calculation can also be seen by investigating the small-k̂-behaviour of all the
contributions to the path integral. At small k̂ and at T values that dominate the
proper time integrand k̂

√
T is also small. For the first cosine term in (6.52) this

means that

N
∫

Dy e−
1
4

R 1
0

dt ẏ2
cos

(

n

∫ 1

0
dt

[

â + δ̂a cos
(
k̂(x1 +

√
Ty1)

)
cos

(
k̂(x2 +

√
Ty2)

)])

≈ cos
(

n

∫ 1

0
dt

[

â + δ̂a cos(k̂x1) cos(k̂x2)
])

. (6.54)

For the second term in (6.52) this means that

N
∫

Dy e−
1
4

R 1
0 dt ẏ2

cos
(√

T

∫ 1

0
dt ẏ0

[

â + δ̂a cos
(
k̂(x1 +

√
Ty1)

)
cos

(
k̂(x2 +

√
Ty2)

)])

≈ 1 (6.55)

because with small k̂
√

T the integral in the cosine function is taken over a total
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Figure 6.2: The proper time integrand IT with â = k̂ = δ̂a = 1 and x1 = x2 = 0.
100 loops of 101 points were used for the computation.

derivative of a loop and therefore zero. For the third term we find that

N
∫

Dy e−
1
4

R 1
0

dt ẏ2
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(

2T k̂δ̂a
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0
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)
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(
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)
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√
Ty2)

)]
1
2

≈ 1 (6.56)

because all the contributions to the argument that come from the integral are
damped by a factor of k̂. We again see that the pseudo Weiss approximation is
the expected outcome for small k̂.

6.6 The numerical treatment

In this section the numerical results are presented. The necessity of an integration
cutoff is explained.
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6.6.1 The integration cutoff

V
(1)
eff is calculated using the techniques explained in chapter 3 and section 6.2. The

evaluation of the proper time integrand IT is somewhat troublesome. In figure 6.2
we have a typical plot of a proper time integrand, with the gauge field given by
â = k̂ = δ̂a = 1, evaluated at x1 = x2 = 0. We see the typical behaviour of the T -
integrands: The absolute value approaches a maximum and then the function goes
to zero. At some point the numerical error will dominate. The integrand is given by

IT =
N
T 3

∫

Dy

∞∑
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e−
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4T e−
1
4
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0
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0
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√
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√
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0
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√
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× cosh
(
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0
dt

[

sin2
(
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√
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)
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(
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√
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)

+ cos2
(
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√
Ty1)

)
sin2

(
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√
Ty2)

)]
1
2
)

. (6.57)

Because of the hyperbolic cosine function in the integrand the smallest error in
the Monte Carlo calculation will eventually become big. The difficult contribution
looks like: cosh(2T k̂δ̂aΦMC), where ΦMC is computed up to some (in general T de-
pendent) error. We see that as T grows the effect of this error will be exponentially
enhanced. We also see that to enlarge the range of validity of the computation of
the T -integrand we have to choose k̂δ̂a to be smaller. Not being able to compute
the integrand we of course also cannot perform an integration. We will therefore
have to abort the integration at some finite value of T . This requires us to find an
abortion criterion to decide where to stop the integration.

We choose to cut off the integration where the absolute value of the integrand
has its first minimum (that is not a zero crossing). Should this point have a value
bigger than ten we cut off at T = 10. If the cutoff is done at a T < 2 the results
are considered unusable and are not shown here. Cutting off the integration range
causes an error which we cannot quantify. We therefore do not give any errors for
the results as we have no means to estimate them, but believe them to be small
as long as the main contribution to the integral is not cut off, which should be
the case if the cutoff is done at a T > 4. The Romberg integration routine qromo
implemented with midpnt from [38] was again used for the integration.

6.6.2 The effective potential

In figure 6.3 we see the effective potential for different values of the parameters
δ̂a and k̂. Figure 6.3 (a) shows that setting δ̂a = 0.1 and k̂ = 1.0 does not have a
notable effect either for the pseudo Weiss approximation or the worldline numerical
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Figure 6.3: The one-loop effective potential with two different values of δ̂a and k̂.
100 loops of 101 points were used for the computation.
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Figure 6.4: The one-loop effective potential as a function of δ̂a at k̂ = 1. 100 loops
of 101 points were used for the computation.

results. This is different when one sets δ̂a = 1.0 and k̂ = 0.1. The corresponding
plot is given in figure 6.3 (b). The pseudo Weiss approximation and the worldline
numerical results deviate from the Weiss solution, but they agree with each other.
As expected, the pseudo Weiss approximation is useful in the case of small k̂. The
minima of the numerical results lie above the minima in the constant field case
(Weiss solution) and the maxima of the numerical results underneath the maxima
in the constant field case.

Altogether, we can state that the overall structure of the Weiss solution is pre-
served and the maxima and minima stay at the same values of â, which are zero
and π respectively.

To get a better idea of the effect of varying the two parameters, we now turn to
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Figure 6.5: The one-loop effective potential as a function of k̂ at δ̂a = 0.25. 100
loops of 101 points were used for the computation.

figures in which the effective potential, with one of the parameters fixed, is shown.
These plot are done at the minimum and the maximum, i.e. â = 0 and â = π. The
Weiss solution and the pseudo Weiss approximation are also shown. The parameter
range on the abscissa includes values that allow for a cutoff bigger than three.

At δ̂a or k̂ equal to zero the numerical treatment we use breaks down. The prob-
lem we have is in fact that there is no numerical difficulty and a cutoff of the in-
tegration is not necessary. The algorithm that searches for the cutoff value of T
therefore gives a useless result. For k̂ = 0 there is the additional problem that the
integration together with the fraction in front of the integral cannot be handled
numerically as they have to be treated as a limiting process. We again get useless
results. For this reason at δ̂a = 0 and k̂ = 0 there are no worldline numerical results
given.

In figure 6.4 we see the one-loop effective potential as a function of δ̂a with
k̂ = 1. We can see something quite remarkable and unexpected. In figure 6.4 (a)
the data shows a minimum that lies beneath the minimum of the Weiss solution
at about δ̂a = 0.25. This indicates that the varying field might be favoured over a
constant field. As can be seen on figure 6.4 (b) at δ̂a = 0.25, where the minimum
was in figure 6.4 (a), there is a maximum that exceeds the maximum of the Weiss
solution.

To find out how this minimum (maximum) depends on the value of k̂, we now turn
to plots in which δ̂a = 0.25 and k̂ is varied. Figure 6.5 is the first of a whole series
of similar plots. The kink that can be seen in the figures 6.5 (a)-6.9 (a) is caused by
the numerical integration. When the point, where the kink is, is passed, to get the
required relative error of 10−5 one integration step less is needed and performed.

Since the pseudo Weiss approximation does not depend on k̂, both, the Weiss
solution and the pseudo Weiss approximation, are given as horizontal lines. In
the case of â = 0, the one-loop effective potential starts above the Weiss minimum
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Figure 6.6: The one-loop effective potential as a function of k̂ at δ̂a = 0.25. A
different loop cloud than in figure 6.5 was used for the computation.
The loop cloud consisted of 100 loops of 101 points.
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Figure 6.7: The one-loop effective potential as a function of k̂ at δ̂a = 0.25. A bigger
loop cloud than in figure 6.5 was used for the computation. The loop
cloud consisted of 100 loops of 1001 points.

with a negative slope and then intersects the Weiss solution. It keeps decreasing
until finally the numerics becomes unreliable. In the case of â = π, the one-loop
effective potential starts beneath the Weiss maximum with a positive slope and
then intersects the Weiss solution. It keeps increasing until finally the numerics
becomes unreliable.

In order to clarify whether or not this behaviour is caused by a numerical artefact
we take a look at the same plot, but this time different loop clouds were used to get
the data.

A different loop cloud than for the data shown in figure 6.5, that was of the same
size as the loop cloud used for the data in figure 6.5, was employed to generate the
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Figure 6.8: The one-loop effective potential as a function of k̂ at δ̂a = 0.25. A bigger
loop cloud than in figure 6.5 was used for the computation. The loop
cloud consisted of 1000 loops of 101 points.
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Figure 6.9: The one-loop effective potential as a function of k̂ at δ̂a = 0.5. 100 loops
of 101 points were used for the computation.

data shown in figure 6.6. The data that is shown in the figures 6.7 and 6.8 was gen-
erated with clouds of 100 loops of 1001 points and clouds of 1000 loops of 101 points
respectively. We see that the result worldline numerics delivers remains the same.
Although this is hardly a proof of the results not just being some numerical junk
that is collected by the algorithm at some point during the calculation, this makes
us trust our findings insofar as we would assume numerical problems to depend no-
tably on the loop cloud that is used. Furthermore, we would expect such problems
to become bigger as we choose either δ̂a or k̂ bigger since the numerical stability
depends on them. Assuming this, figure 6.4 tells us that the minimum (maximum)
at δ̂a = 0.25 cannot be the result of numerical problems because choosing δ̂a bigger
makes the minimum (maximum) disappear.
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Figure 6.10: The one-loop effective potential as a function of k̂ at δ̂a = 1. 100 loops
of 101 points were used for the computation.

We, however, do not fully understand the numerical data at small k̂. The plots
in the figures 6.5-6.7 show an unexpected behaviour. Instead of approaching the
pseudo Weiss solution, the numerical data goes to a different value. Since the result
is the same for different loop clouds, it cannot simply be dismissed as an effect of
the uncertainty which Monte Carlo methods necessarily entail. Further research is
required in order to understand this puzzling behaviour.

In figure 6.9 and figure 6.10 the one-loop effective potential is plotted as in fig-
ure 6.4 but this time with δ̂a = 0.5 and δ̂a = 1 respectively. We see that the qual-
itative picture does not change. In the minimum the pseudo Weiss approximation
moves upwards with the numerical data following it as δ̂a is chosen bigger. In the
maximum it is just the other way around. The pseudo Weiss approximation moves
downwards with the numerical data following it as δ̂a is chosen bigger. The point
where the Weiss solution is intersected moves to the right. In figure 6.10 the inter-
section point does not lie in the accessible parameter range.

The data obtained clearly indicates a varying field to be favoured over the con-
stant field.
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7 Conclusions and Outlook

In chapter 4 the application of the worldline numerical method to the pseudo-
abelian background field and the PNA field was presented. We saw that the pseudo-
abelian field is well treatable in two gauges, which shows that there are fields for
which worldline numerics is able to compute the Wilson loop expectation value
and to conserve the gauge invariance of the Wilson loop expectation value (see fig-
ure 4.2). For the first time the one-loop effective Lagrangian density of the PNA
field was calculated (see figure 4.7).

Although it is possible to calculate an analytic expression for the one-loop effec-
tive Lagrangian density of the PNA field [40], this has not yet been done.

In chapter 5 we investigated how useful worldline numerics is to calculate the
one-loop effective action of an instanton background field. The Wilson loop expec-
tation value in an instanton background field has been computed in two gauges:
the regular gauge (BPST instanton) and the singular gauge (singular instanton).
The results in both gauges did not match (see figure 5.2). Because the Wilson loop
expectation value is gauge invariant, this indicates a failure of the straightforward
method used. We compared the analytically known a1, which is the coefficient of or-
der T 2 in the inverse mass expansion, with the estimates computed using a fitting
procedure. While the Wilson loop expectation value of the singular instanton gave
good results in the parameter range we expected it to be well treatable (small x), the
BPST instanton did so only very close to the origin and showed very bad agreement
with the true value anywhere else although the gauge field itself was well behaved
throughout the whole 4-dimensional space we worked in (see figures 5.3 and 5.4).
In the limit of big x, instead of falling off like x−8, it fell off like x−4 as x grew.
As pointed out in section 5.3, this wrong behaviour could be retraced to a flawed
computation of integrations over worldline correlation functions which spoiled a
non-trivial cancellation of terms of order x−4, which was responsible for the analyt-
ical decay like x−8. Because this cancellation was not reproduced precisely enough
we were left with a term of order x−4, which dominated the behaviour of the nu-
merically obtained a1 in the BPST case. In section 5.4, how well the numerical
method conserves the Lorentz structure of such integrations over worldline corre-
lation functions was improved by rotating the loop cloud. This, however, did not
improve the results for the a1 of the BPST instanton. Enlarging the loop cloud im-
proved the results but did so at such terrible speed (see figure 5.5 and figure 5.6)
that loop clouds seemed to be needed that exceed today’s possibilities by far. We
saw no way for us to get reliable results for the Wilson loop expectation value in the
whole range of integration necessary to compute the one-loop effective action of the
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Chapter 7. Conclusions and Outlook

BPST instanton within a reasonable time span. For the time being, we therefore
considered the use of worldline numerics to calculate the one-loop effective action
in a BPST instanton background field to be suboptimal. Although we did not suc-
ceed to compute the one-loop effective action, we have discovered a new feature of
worldline numerics that only appears when one tries to treat non-abelian fields:
should the computation involve non-trivial cancellations of terms that contribute
to the inverse mass expansion, the worldline numerical method might not be able
to compute the correct Wilson loop expectation value. Using worldline numerics
to compute the one-loop effective action, one should choose the field in a way that
no such cancellations take place, but the large-x-behaviour of every contribution to
the coefficient of order T 2 in the inverse mass expansion as given in (5.21) coincides
with the large-x-behaviour of tr[GµνGµν ].

Using worldline numerics, the one-loop effective action of the instanton has so
far not been calculated. We believe this to be possible using the singular instanton.
As has been stated, the standard discretisation will run into the same difficulties
as the ones known from the path integral formulation of the hydrogen problem in
quantum mechanics. But since these problems have been solved (see [44]), one
should be able to perform the calculation utilising the solution for the hydrogen
problem employing hybrid Monte Carlo methods.

We stated that in three dimensions rotating the cloud about only one axis results
in numerical computations for

∫ 1
0 dt

∫ 1
0 dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 that show the an-

alytically expected Lorentz structure. We have not gained any insight into why or
how this is the case.

In chapter 6 we computed the effect the perturbation by δa cos(kx1) cos(kx2) has
on the one-loop effective potential of the zero-component of an SU(2) gauge field in
thermal equilibrium. We found the overall structure of the constant field solution
to be unchanged by the fact that the field varys (see figure 6.3). While the results
are not fully understood in the whole parameter range, the numerical data clearly
indicated that a varying field is favoured over the constant field (see the figures 6.4-
6.10).

This calls for further research in order to clarify and verify the results obtained.
The most urgent step is to enlarge the loop clouds in order to stabilise the numerical
treatment.
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A Appendix

A.1 Proper time representation

In this section we show that for Hermitian and positive definite matrices A and B

tr (ln(A) − ln(B)) = −
∫ ∞

0

dT

T
tr (e−AT − e−BT ) . (A.1)

Let ai and bi be the eigenvalues of A and B. We find that
∫ ∞

0

dT

T
tr (e−AT − e−BT ) = lim

α→0

∫ ∞

α

dT

T
tr (e−AT − e−BT )

= lim
α→0

[ ∫ ∞

α

dT

T
tr e−AT −

∫ ∞

α

dT

T
tr e−BT

]

= lim
α→0

[∑

i

∫ ∞

α

dT

T
e−aiT −

∫ ∞

α

dT

T
e−biT

]

=
∑

i

lim
α→0

[ ∫ ∞

aiα

dx

x
e−x −

∫ ∞

biα

dx

x
e−x

]

. (A.2)

With the exponential integral

Ei(x) =

∫ x

−∞

dt

t
et

= −
∫ ∞

x

dt

t
e−t

=CE + ln |x| +
∞∑

k=1

xk

k k!
, (A.3)

where CE = 0.577215665... is the Euler constant, we can write:
∫ ∞

0

dT

T
tr (e−AT − e−BT ) =

∑

i

lim
α→0

[

− Ei(−aiα) + Ei(−biα)
]

=
∑

i

lim
α→0

[

CE + ln(biα) +

∞∑

k=1

(biα)k

k k!
− CE − ln(aiα) −

∞∑

k=1

(aiα)k

k k!

]

=
∑

i

ln(bi) − ln(ai)

= − tr (ln(A) − ln(B)) . (A.4)

This concludes the proof.
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A.2 The matrix element in the trace

In this section a path integral expression for the matrix elements 〈x|e−(−D2+m2)T |x〉,
which we encountered calculating the trace of the fluctuation operator in (2.47), is
derived. Since

〈x|e−(−D2+m2)T |x〉 = e−m2T 〈x|eD2T |x〉 , (A.5)

the only difficult part is calculating 〈x|eD
2T |x〉. This can be done in the same way as

the introduction of Feynman path integrals in a quantum mechanics course. First
we define τ = T

N , with τ very small (and N very big), write the exponential as a
product of N exponentials, with T replaced by τ , and use N − 1 sets of the space
basis |x〉 to separate the product’s N factors. We can then write:

〈x|eD2T |x〉 = lim
N→∞

〈x|
N∏

i=1

eD2τ |x〉

= lim
N→∞

[
∫

ddx1 . . .

∫

ddxN−1 〈x|eD2τ |x1〉 . . . 〈xN−1|eD2τ |x〉
]

, (A.6)

where we use d instead of D to denote the number of space-time dimensions. Since
τ is very small, we can expand the exponentials and keep only the term of order
one. For every factor in (A.6), this yields that

〈xi|eD2τ |xi+1〉 = 〈xi|xi+1〉 + 〈xi|(∂µ + Aµ)(∂µ + Aµ)τ |xi+1〉
= δ(xi − xi+1) + 〈xi|(∂2 + ∂µAµ + Aµ∂µ + A

2)τ |xi+1〉
= δ(xi − xi+1) + 〈xi|∂2|xi+1〉τ

+ 〈xi|(∂µAµ)|xi+1〉τ + 2〈xi|Aµ ∂µ|xi+1〉τ
+ 〈xi|A2|xi+1〉τ

= δ(xi − xi+1) + 〈xi|(∂2 + ∂µAµ + Aµ∂µ + A
2)τ |xi+1〉

= δ(xi − xi+1) + 〈xi|∂2|xi+1〉τ

+ 2〈xi|Aµ ∂µ|xi+1〉τ + A
2(

xi + xi+1

2
)〈xi|xi+1〉τ

+ ∂µAµ(
xi + xi+1

2
)〈xi|xi+1〉τ . (A.7)

As Schulman shows in [50], it is correct to choose 〈xi|Aµ|xi+1〉 = Aµ(xi+xi+1

2 ) :=
Aµ(ζi). Assuming Aµ to vanish sufficiently quickly, we can use Gauß’ law to get rid
of the last term in (A.7). Expanding in terms of momentum eigenstates, we find
that

〈xi|eD2τ |xi+1〉 =
1

(2π)d

∫

ddpi e
ipi(xi−xi+1)

[

1 + τ(−p2
i + i2A(ζi)pi + A(ζi)

2)
]

=
1

(2π)d

∫

ddpi e
ipi(xi−xi+1)eτ(−p2

i +i2A(ζi)pi+A(ζi)2)

=
1

(2π)d

∫

ddpi e−τ(p2
i−ipi(

xi−xi+1
τ

+2A(ζi))−A(ζi)2) . (A.8)
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Completing the square in the exponent, we derive:

〈xi|eD
2τ |xi+1〉 =

1

(2π)d

∫

ddpi e
−τ

[
(pi+

1
2i

(2A(ζi)+
xi−xi+1

τ
))2+A(ζi)

xi−xi+1
τ

+ 1
4
(

xi−xi+1
τ

)2
]

=Ni e
−τ(A(ζi)

xi−xi+1
τ

+ 1
4
(

xi−xi+1
τ

)2) , (A.9)

where

Ni =
1

(2π)d

∫

ddpie
−τ(pi+

1
2i

(2A(ζi)+
xi−xi+1

τ
))2 . (A.10)

If we now plug (A.9) into (A.6), we arrive at our final destination:

〈x|eD
2T |x〉 = lim

N→∞

[
N

∫

ddx1 . . .

∫

ddxN−1e
−τ(A(ζ0)

x−x1
τ

+ 1
4
(

x−x1
τ

)2) . . .

× e−τ(A(ζN−1)
xN−1−x

τ
+ 1

4
(

xN−1−x

τ
)2)

]

=:

∫ x(T )=x

x(0)=x
Dx P e−

R T
0 dτ [ ẋ2

4
+ẋµAµ] , (A.11)

where

N =
N−1∏

i=0

Ni . (A.12)

The P denotes path ordering. It is required because the gauge field evaluated for
different arguments in general does not commute with itself. It is defined by

PeA(t1)+A(t2)+···+A(tn) := eA(t1)eA(t2) . . . eA(tn) ,

with t1 > · · · > tn . (A.13)

Writing (A.11) without the path ordering, as one does it with an Abelian gauge field,
is therefore false. The path ordered integral in (A.11) is an example of a product
integral. More information on product integration can be found in [47].

A.3 The v-loop algorithm

Apart from omissions, this section follows the treatment given in [15]. The v-loop
algorithm is a very effective tool to generate a set of np numbers ŷ = yi distributed
as

P [ŷ] = P [{yi}] =
1

N δ(y1 + . . . ynp) exp
[

− np

4

np∑

k=1

(yk − yk−1)
2
]

(A.14)

so that the expectation value of some quantity Q(ŷ) can be calculated by

〈Q〉 =
1

N

∫

dŷP [ŷ]Q(ŷ)

= lim
k→∞

[1

k

k∑

i=1

Q(ŷk)
]

. (A.15)
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The idea of its derivation, which can be found in [15], is to perform a linear variable
transformation ŷ → v̂ so that P [v̂] becomes a product of Gaussian distributions,
which are easy to generate. As a recipe the v-loop algorithm can be summarised in
just a few steps:

(1) generate np − 1 numbers wi, i = 1, . . . , np − 1 such that they are distributed
according to exp(−w2

i )

(2) compute v̄i, i = 1, . . . , np − 1, by normalising the wi:

v̄1 =

√

2

np
w1,

v̄i =
2

√
np

√

np + 1 − i

np + 2 − i
wi, i = 2, . . . , np − 1 (A.16)

(3) compute vi, i = 2, . . . , np − 1, using

vi = v̄i −
1

np + 2 − i
vi−1,1, where vi−1,1 =

i−1∑

j=2

vj (A.17)

(4) construct the unit loops according to

y1 =
1

np



v̄1 −
np−1
∑

i=2

(

np − i +
1

2

)

vi



 ,

yi = yi−1 + vi, i = 2, . . . , np − 1,

ynp = −
np−1
∑

i=1

yi . (A.18)

A.4 The inverse mass expansion in terms of the gauge field

As is well known and has been used throughout this thesis, the Wilson loop expec-
tation value possesses an expansion of the form:

〈 trP e−
H

dxµAµ 〉 = a0 + a1 T 2 + O(T 4)

= tr1 − 1

12
tr[(Gµν)2]T 2 + O(T 4) . (A.19)

In this section of the appendix we will derive a1, i.e. the coefficient of order T 2 of the
inverse mass expansion. The derivation is done purely in terms of the gauge field
and not as it is usually done in Fock-Schwinger gauge (see e.g. [8]), which makes it
possible to express the gauge fields in terms of the field strength tensor. This will be
done for an Abelian as well as for a non-abelian gauge theory. In an Abelian gauge
theory the path ordering in the definition of the Wilson loop has no effect and can
thus be dropped. This makes the derivation we are about to undertake much more
convenient. We will therefore turn to the Abelian case first.
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A.4.1 Abelian case

Starting with the definition of the Wilson loop, we first drop the path ordering and
write the exponential using all the notation we are used to. The path, along which
the integration needs to be done, is denoted by y. We again use T for the proper
time and x is the “centre of mass” of the loop, for which we calculate the Wilson
loop. In an Abelian gauge theory the only generator of the gauge group is 1. For the
sake of notational simplicity we will scale the coupling constant into the fields and
take the field to be a purely imaginary number: Re(A) = 0. The Wilson loop then
looks like

W =e−
√

T
R 1
0

dt ẏµ(t) Aµ(x+
√

Ty(t)) ,

which is after expanding the exponential

=

∞∑

k=0

(−1)k

k!
T

k
2

[ ∫ 1

0
dt ẏµ(t)Aµ(x +

√
Ty(t))

]k
. (A.20)

Now we expand the gauge field itself:

∫ 1

0
dt ẏµ(t)Aµ(x +

√
Ty(t)) =

∫ 1

0
dt ẏµ(t)

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) yr
ν(t) , (A.21)

where ∂
(r)
ν Aµ(x) yr

ν(t)r in (A.21) is short for

∂(r)
ν Aµ(x) ỹr

ν = ∂α∂β . . . ∂ω
︸ ︷︷ ︸

rtimes

Aµ(x) yα(t)yβ(t) . . . yω(t)
︸ ︷︷ ︸

rtimes

. (A.22)

For the Wilson loop we then have:

W =

∞∑

k=0

(−1)k

k!
T

k
2

[ ∫ 1

0
dt ẏµ(t)

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) yr
ν(t)

]k
. (A.23)

Because the paths that we consider are loops, the first term (corresponding to r = 0)
of the sum in (A.21) vanishes:

∫ 1

0
dt ẏµ(t)T 0Aµ(x) =Aµ(x)

∫ 1

0
dt ẏµ(t)

= 0 . (A.24)

To get the coefficient of order T 2 of the inverse mass expansion a1, we simply have
to count powers, add all contributions in (A.23) that are of order T 2 and calculate
its expectation value. There are only two terms in (A.23) that contribute to the
coefficient of order T 2. They correspond to k = 1 and k = 2:

−T 2

∫ 1

0
dt ẏµ(t) ∂ν∂α∂βAµ(x) yν(t)yα(t)yβ(t)
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and

T 2 1

2

∫ 1

0
dt ẏµ(t) ∂νAµ(x) yν(t)

∫ 1

0
dt′ ẏα(t′) ∂βAα(x) yβ(t′) . (A.25)

The coefficient a1 is now just the expectation value of the sum of the two contribu-
tions:

a1 =
〈
− ∂ν∂α∂βAµ(x)

∫ 1

0
dt ẏµ(t)yν(t)yα(t)yβ(t)

+
1

2
∂νAµ(x) ∂βAα(x)

∫ 1

0
dt

∫ 1

0
dt′ ẏµ(t)yν(t)ẏα(t′)yβ(t′)

〉

=
1

2
∂νAµ(x) ∂βAα(x)

∫ 1

0
dt

∫ 1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

− ∂ν∂α∂βAµ(x)

∫ 1

0
dt 〈 ẏµ(t)yν(t)yα(t)yβ(t) 〉 . (A.26)

A.4.2 Non-abelian case

We start with the exponential that appears in the definition of the Wilson loop, writ-
ing it using all the notation we are used to. The path, along which the integration
needs to be done, is denoted by y. We again use T for the proper time and x is the
“centre of mass” of the loop, for which we calculate the Wilson loop. We find that

P e−
H

dxµAµ =P e−
√

T
R 1
0 dt ẏµ(t)Aµ(x+

√
Ty(t))

= lim
N→∞

N∏

n=1

e−
√

T (yn
µ−yn−1

µ )Aµ(x+
√

T yn+yn−1

2
)

= lim
N→∞

N∏

n=1

e−
√

T y′n
µ Aµ(x+

√
T ỹn) , (A.27)

where yn
µ denotes the µ component of the loop yµ(t) evaluated at t = n/N and we

introduced two new quantities:

y′nµ = (yn
µ − yn−1

µ ) and ỹn
µ =

yn
µ + yn−1

µ

2
. (A.28)

We now expand first the exponential and then the gauge field about T = 0. We find:

P e−
H

dxµAµ = lim
N→∞

N∏

n=1

∞∑

k=0

1

k!
T

k
2

[

− y′nµ Aµ(x +
√

T
yn + yn−1

2
)
]k

= lim
N→∞

N∏

n=1

∞∑

k=0

T
k
2

k!

[

− y′nµ

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) (ỹn
ν )r

]k
, (A.29)
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where ∂
(r)
ν Aµ(x) (ỹn

ν )r in (A.29) is short for

∂(r)
ν Aµ(x) (ỹn

ν )r = ∂α∂β . . . ∂ω
︸ ︷︷ ︸

rtimes

Aµ(x) ỹn
αỹn

β . . . ỹn
ω

︸ ︷︷ ︸

rtimes

. (A.30)

This yields that

P e−
H

dxµAµ = lim
N→∞

N∏

n=1

[

1− T
1
2 y′nµ

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) (ỹn
ν )r

+
1

2
T y′nµ

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) (ỹn
ν )r

× y′nα

∞∑

s=0

T
s
2

s!
∂

(s)
β Aα(x) (ỹn

β )s

− 1

6
T

3
2 y′nµ

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) (ỹn
ν )r

× y′nα

∞∑

s=0

T
s
2

s!
∂

(s)
β Aα(x) (ỹn

β )s

× y′nκ

∞∑

l=0

T
l
2

l!
∂

(l)
λ Aκ(x) (ỹn

λ)l

+
1

24
T 2y′nµ

∞∑

r=0

T
r
2

r!
∂(r)

ν Aµ(x) (ỹn
ν )r

× y′nα

∞∑

s=0

T
s
2

s!
∂

(s)
β Aα(x) (ỹn

β )s

× y′nκ

∞∑

l=0

T
l
2

l!
∂

(l)
λ Aκ(x) (ỹn

λ)l

× y′nη

∞∑

k=0

T
k
2

k!
∂

(k)
ζ Aη(x) (ỹn

ζ )

− . . .
]

. (A.31)

The Taylor series of Aµ is now performed and the result is ordered in powers of T :

P e−
H

dxµAµ = lim
N→∞

N∏

n=1

[

1− T
1
2 Aµ(x)y′nµ

− T ∂νAµ(x) y′nµ ỹn
ν

+
1

2
T Aµ(x)Aν(x) y′nµ y′nν
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− 1

2
T

3
2 ∂ν∂αAµ(x) y′nµ ỹn

ν ỹn
α

+ T
3
2 ∂νAµ(x)Aβ(x) y′nµ y′nβ ỹn

ν

− 1

6
T

3
2 Aµ(x)Aα(x)Aβ(x) y′nβ y′nα y′nµ

− 1

6
T 2 ∂ν∂α∂βAµ(x) y′nµ ỹn

ν ỹn
αỹn

β

+
1

4
T 2 ∂ν∂αAµ(x)Aβ(x) y′nβ y′nµ ỹn

ν ỹn
α

+
1

4
T 2

Aβ(x) ∂ν∂αAµ(x) y′nβ y′nµ ỹn
ν ỹn

α

+
1

2
T 2 ∂νAµ(x)∂βAα(x) y′nα y′nµ ỹn

β ỹn
ν

− 1

6
T 2 ∂νAµ(x)Aα(x)Aβ(x) y′nµ y′nα y′nβ ỹn

ν

− 1

6
T 2

Aα(x)∂νAµ(x)Aβ(x) y′nα y′nµ y′nβ ỹn
ν

− 1

6
T 2

Aα(x)Aβ(x)∂νAµ(x) y′nα y′nβ y′nµ ỹn
ν

+
1

24
T 2

Aµ(x)Aα(x)Aβ(x)Aν) y′nµ y′nα y′nβ y′nν

+ . . .
]

. (A.32)

Note that the derivatives only act on the field next to them and that the order of
the derivatives of the fields and the fields themselves is important because they in
general do not commute. We now perform the product in (A.27).

The path ordering requires us to perform the product in (A.27) in the correct
order, i.e. multiplying the factor with n = N from the left onto the factor with
n = N − 1 . . . . Since we are only interested in the coefficient of order T 2, we will
only perform those multiplications which yield a contribution of that order. The
easiest contributions to find are those corresponding to summands in (A.32) that
are of order T 2. Let Kn

2 be a representative of those summands evaluated at time
n. We can perform the product and write:

P e−
H

dxµAµ = lim
N→∞

[(1 + · · · + KN
2 + · · · )(1 + · · · + KN−1

2 + · · · ) · · ·

(1 + · · · + K1
2 + · · · )] . (A.33)

We only get something of order T 2 if a Kn
2 is multiplied with all the 1s belonging to

the other ns. This means that we get n summands of order T 2:

P e−
H

dxµAµ = lim
N→∞

[KN
2 + KN−1

2 + · · · + K1
2 + · · · )]

= lim
N→∞

[

N∑

n=1

Kn
2 + · · · ] . (A.34)
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If we for example take Kn
2 to be the first summand of order T 2 in (A.32), we find the

contribution to the coefficient of order T 2 in the inverse mass expansion a1 to be

1

T 2
lim

N→∞

[ N∑

n=1

Kn
2

]

= lim
N→∞

[ N∑

n=1

1

6
∂ν∂α∂βAµ(x) y′nµ ỹn

ν ỹn
αỹn

β

]

= lim
N→∞

[1

6
∂ν∂α∂βAµ(x)

N∑

n=1

y′nµ ỹn
ν ỹn

αỹn
β

]

. (A.35)

Now let Kn
1/2 and Kn′

3/2 be representatives of summands in (A.32) that need to be

multiplied with each other so that the result is of order T 2. In the same fashion as
above we can find the corresponding contribution to a1:

P e−
H

dxµAµ = lim
N→∞

[(1 + · · · + KN
1
2

+ · · · + KN
3
2

· · · )

(1 + · · · + KN−1
1
2

+ · · · + KN−1
3
2

+ · · · ) · · ·

(1 + · · · + K1
1
2

+ · · · + K1
3
2

+ · · · )] . (A.36)

We have various possibilities to combine the Ks. We could, for example, multiply
KN

1/2 with · · · + KN−1
3/2 and the remaining N − 2 1s, or we could multiply KN

1/2 with

· · · + KN−2
3/2 and the other 1s. This would give the sum

∑N−1
n=1 KN

1/2K
n
3/2. Doing the

same, starting with KN−1
1/2 , we would get

∑N−2
n=1 KN−1

1/2 Kn
3/2. Note that the exponent

and the upper limit of the summation have been reduced by one. This procedure
can be used to get another N−3 of such sums all contributing additively. Because of
the very simple relation between them, we can easily combine them to one double
sum. We therefore find that

P e−
H

dxµAµ = lim
N→∞

[
N∑

n=1

n−1∑

j=1

Kn
1
2
Kj

3
2

+ · · · ] . (A.37)

Following the same reasoning, with the roles of Kn
1/2 and Kn

3/2 interchanged, we find
another contribution:

P e−
H

dxµAµ = lim
N→∞

[

N∑

n=1

n−1∑

j=1

Kn
3
2
Kj

1
2

+ · · · ] . (A.38)

Kn
1/2 and Kn

3/2 therefore give a contribution to a1 equal to

1

T 2
lim

N→∞

[ N∑

n=1

n−1∑

j=1

Kn
1
2
Kj

3
2

+

N∑

n=1

n−1∑

j=1

Kn
3
2
Kj

1
2

]

. (A.39)

Should Kn
1/2 and Kn

3/2 be equal, we only get one of the sums in (A.39).
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For three Ks involved, say Kn
1 , Kn′

1/2 and Kn′′
1/2, we get three sums, as can be seen

by repeating the argument above. The summand contributing to the coefficient of
order T 2 is

1

T 2
lim

N→∞

[ N∑

n=1

n−1∑

j=1

j−1
∑

r=1

Kn
1
2

Kj
1K

r
1 +

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

Kn
1 Kj

1
2

Kr
1 +

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

Kn
1 Kj

1Kr
1
2

]

.

(A.40)

There is one summand, let us call it Kn
1/2 in (A.32) which is of order T

1
2 . Multiplying

it four times onto itself (at different times) we get the contribution

1

T 2
lim

N→∞

[ N∑

n=1

n−1∑

j=1

j−1
∑

r=1

r−1∑

l=1

Kn
1
2
Kj

1
2

Kr
1
2
K l

1
2

]

. (A.41)

Putting everything together, we find for a1, which is the trace over the expectation
value of the sum of the contributions we have found in this section, that

a1 = tr
〈

lim
N→∞

[

−1

6
∂ν∂α∂βAµ(x)

N∑

n=1

y′nµ ỹn
ν ỹn

αỹn
β

+
1

4
∂ν∂αAµ(x)Aβ(x)

N∑

n=1

y′nβ y′nµ ỹn
ν ỹn

α

+
1

4
Aβ(x)∂ν∂αAµ(x)

N∑

n=1

y′nβ y′nµ ỹn
ν ỹn

α

+
1

2
∂νAµ(x)∂βAα(x)

N∑

n=1

y′nα y′nµ ỹn
β ỹn

ν

−1

6
∂νAµ(x)Aα(x)Aβ(x)

N∑

n=1

y′nµ y′nα y′nβ ỹn
ν

−1

6
Aα(x)∂νAµ(x)Aβ(x)

N∑

n=1

y′nα y′nµ y′nβ ỹn
ν

−1

6
Aα(x)Aβ(x)∂νAµ(x)

N∑

n=1

y′nα y′nβ y′nµ ỹn
ν

+
1

24
Aµ(x)Aα(x)Aν(x)Aβ(x)

N∑

n=1

y′nµ y′nα y′nν y′nβ

+
1

2
∂ν∂αAµ(x)Aβ(x)

N∑

n=1

n−1∑

j=1

y′jβ y′nµ ỹn
ν ỹn

α

+
1

2
Aβ(x)∂ν∂αAµ(x)

N∑

n=1

n−1∑

j=1

y′nβ y′jµ ỹj
ν ỹ

j
α
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− ∂νAµ(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

y′jν y′nµ y′nβ ỹn
ν

−Aν(x)∂νAµ(x)Aβ(x)

N∑

n=1

n−1∑

j=1

y′nν y′jµ y′jβ ỹj
ν

+
1

6
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

y′jν y′nβ y′nα y′nµ

+
1

6
Aν(x)Aµ(x)Aα(x)Aβ(x)

N∑

n=1

n−1∑

j=1

y′nν y′jβ y′jα y′jµ

+∂νAµ(x)∂αAβ(x)
N∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα ỹj

β

−1

2
∂νAµ(x)Aβ(x)Aα(x)

N∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα y′jβ

−1

2
Aβ(x)Aα(x)∂νAµ(x)

N∑

n=1

n−1∑

j=1

y′jµ ỹj
νy

′n
α y′nβ

−Aµ(x)Aα(x)∂βAν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′rν ỹr
β

−Aµ(x)∂βAν(x)Aα(x)
N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′rα y′jν ỹj
β

−∂βAν(x)Aµ(x)Aα(x)
N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′jµ y′rα y′nν ỹn
β

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′rβ y′rν

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′jβ y′rν

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′nα y′jβ y′rν

+Aµ(x)Aα(x)Aβ(x)Aν(x)
N∑

n=1

n−1∑

j=1

j−1
∑

r=1

r−1∑

l=1

y′nµ y′jα y′rβ y′lν
]〉

. (A.42)
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Because of the cyclic invariance of the trace, some terms that include only a single
sum can be simplified. The final expression for a1 then reads:

a1 = tr
〈

lim
N→∞

[

−1

6
∂ν∂α∂βAµ(x)

N∑

n=1

y′nµ ỹn
ν ỹn

αỹn
β

+
1

2
∂ν∂αAµ(x)Aβ(x)

N∑

n=1

y′nβ y′nµ ỹn
ν ỹn

α

+
1

2
∂νAµ(x)∂βAα(x)

N∑

n=1

y′nα y′nµ ỹn
β ỹn

ν

−1

2
∂νAµ(x)Aα(x)Aβ(x)

N∑

n=1

y′nµ y′nα y′nβ ỹn
ν

+
1

24
Aµ(x)Aα(x)Aν(x)Aβ(x)

N∑

n=1

y′nµ y′nα y′nν y′nβ

+
1

2
∂ν∂αAµ(x)Aβ(x)

N∑

n=1

n−1∑

j=1

y′jβ y′nµ ỹn
ν ỹn

α

+
1

2
Aβ(x)∂ν∂αAµ(x)

N∑

n=1

n−1∑

j=1

y′nβ y′jµ ỹj
ν ỹ

j
α

− ∂νAµ(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

y′jν y′nµ y′nβ ỹn
ν

−Aν(x)∂νAµ(x)Aβ(x)
N∑

n=1

n−1∑

j=1

y′nν y′jµ y′jβ ỹj
ν

+
1

6
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

y′jν y′nβ y′nα y′nµ

+
1

6
Aν(x)Aµ(x)Aα(x)Aβ(x)

N∑

n=1

n−1∑

j=1

y′nν y′jβ y′jαy′jµ

+∂νAµ(x)∂αAβ(x)
N∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα ỹj

β

−1

2
∂νAµ(x)Aβ(x)Aα(x)

N∑

n=1

n−1∑

j=1

y′nµ ỹn
ν y′jα y′jβ

−1

2
Aβ(x)Aα(x)∂νAµ(x)

N∑

n=1

n−1∑

j=1

y′jµ ỹj
νy

′n
α y′nβ

−Aµ(x)Aα(x)∂βAν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jαy′rν ỹr
β
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−Aµ(x)∂βAν(x)Aα(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′rα y′jν ỹj
β

−∂βAν(x)Aµ(x)Aα(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′jµ y′rα y′nν ỹn
β

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′rβ y′rν

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′jα y′jβ y′rν

+
1

2
Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

y′nµ y′nα y′jβ y′rν

+Aµ(x)Aα(x)Aβ(x)Aν(x)

N∑

n=1

n−1∑

j=1

j−1
∑

r=1

r−1∑

l=1

y′nµ y′jα y′rβ y′lν
]〉

. (A.43)

A.5 Tables of the computation of a worldline correlation

function

In this section tables of numerical results for the worldline correlation function
∫ 1
0 dt

∫ 1
0 dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 are shown.

Table A.1: Table with the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

obtained by a straightforward implementation. 100 loops of 101 points
were used for the computation.

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 5.91974e-19 0 0 0 1 3.68972e-17
0 0 0 2 -7.51835e-17 0 0 0 3 -6.90089e-17
0 0 1 0 3.47636e-18 0 0 1 1 1.0655e-18
0 0 1 2 -5.31315e-17 0 0 1 3 5.1131e-18
0 0 2 0 2.30596e-18 0 0 2 1 -8.93242e-17
0 0 2 2 5.83755e-18 0 0 2 3 5.71999e-17
0 0 3 0 -1.00381e-17 0 0 3 1 2.24462e-17
0 0 3 2 -8.86113e-17 0 0 3 3 -8.42967e-18
0 1 0 0 -8.05766e-18 0 1 0 1 0.274591
0 1 0 2 -0.046134 0 1 0 3 0.00285352
0 1 1 0 -0.274591 0 1 1 1 -4.07443e-18
0 1 1 2 -0.00971428 0 1 1 3 -0.0339902
0 1 2 0 0.046134 0 1 2 1 0.00971428

continued on next page
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Table A.1: Table with the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

obtained by a straightforward implementation. 100 loops of 101 points
were used for the computation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

0 1 2 2 5.1669e-18 0 1 2 3 -0.00776091
0 1 3 0 -0.00285352 0 1 3 1 0.0339902
0 1 3 2 0.00776091 0 1 3 3 -5.13261e-18
0 2 0 0 7.7351e-18 0 2 0 1 -0.046134
0 2 0 2 0.277747 0 2 0 3 -0.0207131
0 2 1 0 0.046134 0 2 1 1 -2.5373e-18
0 2 1 2 0.0284149 0 2 1 3 -0.0131166
0 2 2 0 -0.277747 0 2 2 1 -0.0284149
0 2 2 2 -4.73019e-18 0 2 2 3 -0.0555001
0 2 3 0 0.0207131 0 2 3 1 0.0131166
0 2 3 2 0.0555001 0 2 3 3 -3.53558e-18
0 3 0 0 -1.19682e-17 0 3 0 1 0.00285352
0 3 0 2 -0.0207131 0 3 0 3 0.319711
0 3 1 0 -0.00285352 0 3 1 1 1.02999e-18
0 3 1 2 -0.0687531 0 3 1 3 0.0299561
0 3 2 0 0.0207131 0 3 2 1 0.0687531
0 3 2 2 -4.44292e-18 0 3 2 3 0.00385483
0 3 3 0 -0.319711 0 3 3 1 -0.0299561
0 3 3 2 -0.00385483 0 3 3 3 7.96672e-18
1 0 0 0 1.00248e-18 1 0 0 1 -0.274591
1 0 0 2 0.046134 1 0 0 3 -0.00285352
1 0 1 0 0.274591 1 0 1 1 4.14599e-18
1 0 1 2 0.00971428 1 0 1 3 0.0339902
1 0 2 0 -0.046134 1 0 2 1 -0.00971428
1 0 2 2 2.02698e-18 1 0 2 3 0.00776091
1 0 3 0 0.00285352 1 0 3 1 -0.0339902
1 0 3 2 -0.00776091 1 0 3 3 -8.5305e-18
1 1 0 0 9.6204e-18 1 1 0 1 6.85758e-18
1 1 0 2 -2.42241e-17 1 1 0 3 2.25579e-17
1 1 1 0 4.84497e-17 1 1 1 1 -6.43582e-18
1 1 1 2 1.72844e-17 1 1 1 3 1.04786e-16
1 1 2 0 -6.34706e-17 1 1 2 1 -1.30679e-17
1 1 2 2 -1.37977e-17 1 1 2 3 -1.27502e-18
1 1 3 0 -5.34208e-17 1 1 3 1 -5.91541e-17
1 1 3 2 3.65105e-17 1 1 3 3 -9.36751e-19
1 2 0 0 -8.35967e-18 1 2 0 1 -0.00971428
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A.5. Tables of the computation of a worldline correlation function

Table A.1: Table with the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

obtained by a straightforward implementation. 100 loops of 101 points
were used for the computation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

1 2 0 2 0.0284149 1 2 0 3 -0.0687531
1 2 1 0 0.00971428 1 2 1 1 7.9201e-18
1 2 1 2 0.300189 1 2 1 3 -0.0293346
1 2 2 0 -0.0284149 1 2 2 1 -0.300189
1 2 2 2 -9.45502e-18 1 2 2 3 0.0534002
1 2 3 0 0.0687531 1 2 3 1 0.0293346
1 2 3 2 -0.0534002 1 2 3 3 -1.50921e-18
1 3 0 0 2.71159e-18 1 3 0 1 -0.0339902
1 3 0 2 -0.0131166 1 3 0 3 0.0299561
1 3 1 0 0.0339902 1 3 1 1 -4.51028e-19
1 3 1 2 -0.0293346 1 3 1 3 0.258561
1 3 2 0 0.0131166 1 3 2 1 0.0293346
1 3 2 2 -2.07462e-18 1 3 2 3 0.0203626
1 3 3 0 -0.0299561 1 3 3 1 -0.258561
1 3 3 2 -0.0203626 1 3 3 3 -2.55004e-18
2 0 0 0 1.05733e-18 2 0 0 1 0.046134
2 0 0 2 -0.277747 2 0 0 3 0.0207131
2 0 1 0 -0.046134 2 0 1 1 -5.79045e-18
2 0 1 2 -0.0284149 2 0 1 3 0.0131166
2 0 2 0 0.277747 2 0 2 1 0.0284149
2 0 2 2 -6.7661e-18 2 0 2 3 0.0555001
2 0 3 0 -0.0207131 2 0 3 1 -0.0131166
2 0 3 2 -0.0555001 2 0 3 3 6.1355e-18
2 1 0 0 7.33117e-18 2 1 0 1 0.00971428
2 1 0 2 -0.0284149 2 1 0 3 0.0687531
2 1 1 0 -0.00971428 2 1 1 1 -2.62485e-18
2 1 1 2 -0.300189 2 1 1 3 0.0293346
2 1 2 0 0.0284149 2 1 2 1 0.300189
2 1 2 2 -3.39406e-18 2 1 2 3 -0.0534002
2 1 3 0 -0.0687531 2 1 3 1 -0.0293346
2 1 3 2 0.0534002 2 1 3 3 -2.97722e-18
2 2 0 0 -4.37838e-18 2 2 0 1 6.97053e-17
2 2 0 2 -4.52544e-18 2 2 0 3 5.19116e-18
2 2 1 0 -6.85866e-17 2 2 1 1 7.47761e-18
2 2 1 2 9.93526e-18 2 2 1 3 3.57407e-18
2 2 2 0 1.91921e-17 2 2 2 1 1.07556e-17
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Table A.1: Table with the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

obtained by a straightforward implementation. 100 loops of 101 points
were used for the computation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

2 2 2 2 9.63917e-18 2 2 2 3 3.40933e-17
2 2 3 0 -5.00566e-17 2 2 3 1 2.06936e-17
2 2 3 2 7.39084e-17 2 2 3 3 1.03888e-17
2 3 0 0 6.79822e-18 2 3 0 1 -0.00776091
2 3 0 2 -0.0555001 2 3 0 3 0.00385483
2 3 1 0 0.00776091 2 3 1 1 5.09575e-20
2 3 1 2 0.0534002 2 3 1 3 0.0203626
2 3 2 0 0.0555001 2 3 2 1 -0.0534002
2 3 2 2 -1.97596e-18 2 3 2 3 0.346751
2 3 3 0 -0.00385483 2 3 3 1 -0.0203626
2 3 3 2 -0.346751 2 3 3 3 3.29164e-18
3 0 0 0 7.36471e-18 3 0 0 1 -0.00285352
3 0 0 2 0.0207131 3 0 0 3 -0.319711
3 0 1 0 0.00285352 3 0 1 1 8.23994e-18
3 0 1 2 0.0687531 3 0 1 3 -0.0299561
3 0 2 0 -0.0207131 3 0 2 1 -0.0687531
3 0 2 2 -9.26315e-20 3 0 2 3 -0.00385483
3 0 3 0 0.319711 3 0 3 1 0.0299561
3 0 3 2 0.00385483 3 0 3 3 -7.8583e-18
3 1 0 0 7.72386e-18 3 1 0 1 0.0339902
3 1 0 2 0.0131166 3 1 0 3 -0.0299561
3 1 1 0 -0.0339902 3 1 1 1 -1.56949e-17
3 1 1 2 0.0293346 3 1 1 3 -0.258561
3 1 2 0 -0.0131166 3 1 2 1 -0.0293346
3 1 2 2 -4.09368e-18 3 1 2 3 -0.0203626
3 1 3 0 0.0299561 3 1 3 1 0.258561
3 1 3 2 0.0203626 3 1 3 3 -8.84709e-19
3 2 0 0 -9.765e-18 3 2 0 1 0.00776091
3 2 0 2 0.0555001 3 2 0 3 -0.00385483
3 2 1 0 -0.00776091 3 2 1 1 -1.90603e-18
3 2 1 2 -0.0534002 3 2 1 3 -0.0203626
3 2 2 0 -0.0555001 3 2 2 1 0.0534002
3 2 2 2 -9.93346e-18 3 2 2 3 -0.346751
3 2 3 0 0.00385483 3 2 3 1 0.0203626
3 2 3 2 0.346751 3 2 3 3 -7.15573e-20
3 3 0 0 1.25084e-17 3 3 0 1 -2.29157e-17
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A.5. Tables of the computation of a worldline correlation function

Table A.1: Table with the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

obtained by a straightforward implementation. 100 loops of 101 points
were used for the computation.
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µ ν α β worldline result µ ν α β worldline result

3 3 0 2 -1.54819e-17 3 3 0 3 1.3553e-16
3 3 1 0 2.63982e-17 3 3 1 1 9.97466e-19
3 3 1 2 -2.81741e-17 3 3 1 3 -4.34201e-17
3 3 2 0 6.00225e-17 3 3 2 1 6.70384e-17
3 3 2 2 -3.03685e-18 3 3 2 3 -1.17094e-19
3 3 3 0 6.55595e-17 3 3 3 1 1.79978e-17
3 3 3 2 1.55865e-17 3 3 3 3 1.38778e-18

Table A.2: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions. 34 evaluations (corresponding to 34 rotated copies of
the loop cloud) using 100 loops of 101 points were used for the compu-
tation.

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 -1.8102e-20 0 0 0 1 -7.89111e-19
0 0 0 2 -2.49021e-19 0 0 1 0 -7.33227e-19
0 0 1 1 5.9163e-20 0 0 1 2 5.87649e-19
0 0 2 0 -7.10149e-19 0 0 2 1 -1.54681e-19
0 0 2 2 1.44158e-20 0 1 0 0 -1.06692e-20
0 1 0 1 0.317984 0 1 0 2 1.8443e-19
0 1 1 0 -0.317984 0 1 1 1 -5.10855e-20
0 1 1 2 9.41701e-18 0 1 2 0 -8.24743e-19
0 1 2 1 -8.79056e-18 0 1 2 2 -8.06524e-20
0 2 0 0 -1.57299e-20 0 2 0 1 -3.21263e-18
0 2 0 2 0.317984 0 2 1 0 1.09507e-17
0 2 1 1 9.52551e-21 0 2 1 2 7.30153e-18
0 2 2 0 -0.317984 0 2 2 1 -3.42136e-18
0 2 2 2 2.68142e-20 1 0 0 0 6.72871e-21
1 0 0 1 -0.317984 1 0 0 2 1.06769e-17
1 0 1 0 0.317984 1 0 1 1 4.64745e-20
1 0 1 2 2.12872e-17 1 0 2 0 2.09525e-18
1 0 2 1 -2.13718e-18 1 0 2 2 2.56088e-20
1 1 0 0 9.65557e-21 1 1 0 1 -1.97221e-20
1 1 0 2 1.31336e-19 1 1 1 0 -4.96705e-19
1 1 1 1 6.51009e-20 1 1 1 2 4.40717e-19
1 1 2 0 -1.25658e-19 1 1 2 1 1.22015e-18
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Table A.2: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions. 34 evaluations (corresponding to 34 rotated copies of
the loop cloud) using 100 loops of 101 points were used for the compu-
tation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

1 1 2 2 -2.75072e-21 1 2 0 0 1.39187e-20
1 2 0 1 1.10618e-17 1 2 0 2 3.39515e-18
1 2 1 0 1.73922e-17 1 2 1 1 -7.1318e-20
1 2 1 2 0.317984 1 2 2 0 -6.51974e-18
1 2 2 1 -0.317984 1 2 2 2 2.07666e-21
2 0 0 0 -5.49081e-20 2 0 0 1 -4.10234e-19
2 0 0 2 -0.317984 2 0 1 0 4.31337e-18
2 0 1 1 -6.39641e-20 2 0 1 2 -1.2246e-17
2 0 2 0 0.317984 2 0 2 1 -2.34662e-18
2 0 2 2 2.43293e-20 2 1 0 0 1.6796e-20
2 1 0 1 -8.13594e-18 2 1 0 2 -7.78334e-18
2 1 1 0 -3.87647e-18 2 1 1 1 1.44414e-20
2 1 1 2 -0.317984 2 1 2 0 -3.19195e-18
2 1 2 1 0.317984 2 1 2 2 -2.64457e-21
2 2 0 0 4.02212e-20 2 2 0 1 4.22303e-19
2 2 0 2 6.44196e-19 2 2 1 0 -9.31781e-20
2 2 1 1 -4.11199e-20 2 2 1 2 2.90902e-19
2 2 2 0 -7.98923e-19 2 2 2 1 -5.79444e-19
2 2 2 2 3.10095e-19

Table A.3: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

in three dimensions. 2,000,000 loops of 101 points were used for the
computation.

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 -3.50847e-20 0 0 0 1 -5.50973e-19
0 0 0 2 4.71693e-19 0 0 1 0 8.19679e-19
0 0 1 1 5.8455e-20 0 0 1 2 3.70387e-19
0 0 2 0 -4.3467e-19 0 0 2 1 4.04886e-19
0 0 2 2 -5.17888e-20 0 1 0 0 1.82786e-20
0 1 0 1 0.331451 0 1 0 2 -0.000203934
0 1 1 0 -0.331451 0 1 1 1 -8.80596e-21
0 1 1 2 -8.31337e-05 0 1 2 0 0.000203934
0 1 2 1 8.31337e-05 0 1 2 2 -6.76788e-20
0 2 0 0 -5.69572e-20 0 2 0 1 -0.000203934
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A.5. Tables of the computation of a worldline correlation function

Table A.3: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

in three dimensions. 2,000,000 loops of 101 points were used for the
computation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

0 2 0 2 0.331186 0 2 1 0 0.000203934
0 2 1 1 1.99144e-20 0 2 1 2 -0.000298953
0 2 2 0 -0.331186 0 2 2 1 0.000298953
0 2 2 2 3.69985e-20 1 0 0 0 1.3936e-20
1 0 0 1 -0.331451 1 0 0 2 0.000203934
1 0 1 0 0.331451 1 0 1 1 6.96224e-20
1 0 1 2 8.31337e-05 1 0 2 0 -0.000203934
1 0 2 1 -8.31337e-05 1 0 2 2 6.6418e-20
1 1 0 0 5.15469e-20 1 1 0 1 -2.071e-19
1 1 0 2 5.9772e-20 1 1 1 0 4.56647e-21
1 1 1 1 -6.16994e-20 1 1 1 2 5.80297e-19
1 1 2 0 -1.08255e-18 1 1 2 1 -1.06973e-18
1 1 2 2 2.75009e-20 1 2 0 0 -7.0594e-20
1 2 0 1 -8.31337e-05 1 2 0 2 -0.000298953
1 2 1 0 8.31337e-05 1 2 1 1 -8.85429e-20
1 2 1 2 0.330872 1 2 2 0 0.000298953
1 2 2 1 -0.330872 1 2 2 2 1.04298e-19
2 0 0 0 1.18161e-19 2 0 0 1 0.000203934
2 0 0 2 -0.331186 2 0 1 0 -0.000203934
2 0 1 1 8.5625e-20 2 0 1 2 0.000298953
2 0 2 0 0.331186 2 0 2 1 -0.000298953
2 0 2 2 -1.89715e-20 2 1 0 0 -4.35189e-20
2 1 0 1 8.31337e-05 2 1 0 2 0.000298953
2 1 1 0 -8.31337e-05 2 1 1 1 9.47017e-20
2 1 1 2 -0.330872 2 1 2 0 -0.000298953
2 1 2 1 0.330872 2 1 2 2 1.51013e-21
2 2 0 0 -7.25514e-20 2 2 0 1 -6.50983e-20
2 2 0 2 -3.98984e-19 2 2 1 0 -2.9079e-19
2 2 1 1 -6.75725e-21 2 2 1 2 1.38454e-19
2 2 2 0 -3.32316e-19 2 2 2 1 -1.15626e-18
2 2 2 2 8.11829e-20
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Table A.4: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions. 100 loops of 14,241 points were used for the compu-
tation.

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 -9.74435e-17 0 0 0 1 1.14381e-15
0 0 0 2 -9.3336e-15 0 0 1 0 -9.42832e-15
0 0 1 1 4.2262e-17 0 0 1 2 -1.26645e-15
0 0 2 0 2.81632e-15 0 0 2 1 -5.02664e-16
0 0 2 2 7.94665e-17 0 1 0 0 -1.34598e-17
0 1 0 1 0.297909 0 1 0 2 0.0333473
0 1 1 0 -0.297909 0 1 1 1 -1.70299e-17
0 1 1 2 -0.023779 0 1 2 0 -0.0333473
0 1 2 1 0.023779 0 1 2 2 -3.01939e-17
0 2 0 0 -8.18568e-17 0 2 0 1 0.0333473
0 2 0 2 0.318283 0 2 1 0 -0.0333473
0 2 1 1 -3.72052e-17 0 2 1 2 -0.0514883
0 2 2 0 -0.318283 0 2 2 1 0.0514883
0 2 2 2 5.93328e-17 1 0 0 0 3.06013e-17
1 0 0 1 -0.297909 1 0 0 2 -0.0333473
1 0 1 0 0.297909 1 0 1 1 1.38635e-17
1 0 1 2 0.023779 1 0 2 0 0.0333473
1 0 2 1 -0.023779 1 0 2 2 5.23405e-18
1 1 0 0 -4.01419e-17 1 1 0 1 -2.81529e-15
1 1 0 2 4.43025e-15 1 1 1 0 -1.7684e-15
1 1 1 1 1.01031e-17 1 1 1 2 8.54911e-16
1 1 2 0 2.59074e-15 1 1 2 1 -4.04357e-15
1 1 2 2 -4.90665e-17 1 2 0 0 -4.92515e-17
1 2 0 1 -0.023779 1 2 0 2 -0.0514883
1 2 1 0 0.023779 1 2 1 1 5.56632e-17
1 2 1 2 0.320992 1 2 2 0 0.0514883
1 2 2 1 -0.320992 1 2 2 2 6.62522e-18
2 0 0 0 -2.47921e-17 2 0 0 1 -0.0333473
2 0 0 2 -0.318283 2 0 1 0 0.0333473
2 0 1 1 -2.25956e-17 2 0 1 2 0.0514883
2 0 2 0 0.318283 2 0 2 1 -0.0514883
2 0 2 2 1.02233e-17 2 1 0 0 8.23672e-17
2 1 0 1 0.023779 2 1 0 2 0.0514883
2 1 1 0 -0.023779 2 1 1 1 -3.72179e-17
2 1 1 2 -0.320992 2 1 2 0 -0.0514883
2 1 2 1 0.320992 2 1 2 2 4.40814e-17
2 2 0 0 2.49313e-17 2 2 0 1 -4.62021e-15
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A.5. Tables of the computation of a worldline correlation function

Table A.4: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉 in

three dimensions. 100 loops of 14,241 points were used for the compu-
tation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

2 2 0 2 6.77951e-15 2 2 1 0 -8.9194e-15
2 2 1 1 4.20786e-17 2 2 1 2 4.18565e-15
2 2 2 0 -5.51472e-15 2 2 2 1 -1.57275e-15
2 2 2 2 -4.902e-17

Table A.5: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

in four dimensions; only components with µ = 0 are shown. 96 Monte
Carlo evaluations with 100 loops of 101 points were used for the com-
putation.

µ ν α β worldline result µ ν α β worldline result

0 0 0 0 3.1331e-18 0 0 0 1 -3.02033e-17
0 0 0 2 -1.63548e-17 0 0 0 3 -4.86273e-19
0 0 1 0 -3.69468e-17 0 0 1 1 6.36205e-18
0 0 1 2 -1.93687e-17 0 0 1 3 1.30484e-18
0 0 2 0 3.55469e-17 0 0 2 1 8.6476e-18
0 0 2 2 5.01795e-18 0 0 2 3 -1.2988e-18
0 0 3 0 4.16456e-18 0 0 3 1 4.31963e-19
0 0 3 2 1.78885e-18 0 0 3 3 -9.52311e-21
0 1 0 0 -6.03821e-18 0 1 0 1 0.274591
0 1 0 2 0.0152587 0 1 0 3 -1.74607e-05
0 1 1 0 -0.274591 0 1 1 1 9.36357e-18
0 1 1 2 -0.0136663 0 1 1 3 -1.521e-05
0 1 2 0 -0.0152587 0 1 2 1 0.0136663
0 1 2 2 6.45227e-18 0 1 2 3 1.21264e-05
0 1 3 0 1.74607e-05 0 1 3 1 1.521e-05
0 1 3 2 -1.21264e-05 0 1 3 3 6.66322e-20
0 2 0 0 2.56515e-18 0 2 0 1 0.0152587
0 2 0 2 0.31605 0 2 0 3 0.000101377
0 2 1 0 -0.0152587 0 2 1 1 4.54158e-18
0 2 1 2 0.0130284 0 2 1 3 -3.23125e-05
0 2 2 0 -0.31605 0 2 2 1 -0.0130284
0 2 2 2 9.22331e-18 0 2 2 3 6.94696e-06
0 2 3 0 -0.000101377 0 2 3 1 3.23125e-05
0 2 3 2 -6.94696e-06 0 2 3 3 -1.94998e-19
0 3 0 0 -1.64831e-19 0 3 0 1 -1.74607e-05
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Table A.5: Table of the numerical results for
∫

1

0
dt

∫
1

0
dt′ 〈 ẏµ(t)yν(t)ẏα(t′)yβ(t′) 〉

in four dimensions; only components with µ = 0 are shown. 96 Monte
Carlo evaluations with 100 loops of 101 points were used for the com-
putation.

continued from previous page
µ ν α β worldline result µ ν α β worldline result

0 3 0 2 0.000101377 0 3 0 3 0.251449
0 3 1 0 1.74607e-05 0 3 1 1 -7.49145e-19
0 3 1 2 5.46195e-05 0 3 1 3 -0.012305
0 3 2 0 -0.000101377 0 3 2 1 -5.46195e-05
0 3 2 2 9.45696e-20 0 3 2 3 -0.00150833
0 3 3 0 -0.251449 0 3 3 1 0.012305
0 3 3 2 0.00150833 0 3 3 3 4.61477e-19
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