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Vorwort

Diese Vorlesungsnotizen sollen die erste tiefergehende Begegung mit der Quan-
tenmechanik begleiten, wie sie im Bachelorstudium an vielen Universitdten im 2.
Studienjahr erlernt wird.

Dieses Skript ist eine Ubertragung meiner handschriftlichen Notizen die zusétz-
lich verfiigbar bleiben. Nicht alles, was sich in den handgeschriebenen Notizen
findet (Nebenrechnungen, Feinheiten, Details in Rechnungen), lasst sich gut in ein
gesetztes Skript iibertragen.

Weder Skript noch Notizen ersetzen den Besuch der Vorlesung und Ubungen,
noch das Selbststudium von weiterfithrenden und ausfiihrlicheren Biichern zum
Thema.

Mit Ausnahme der sicherlich enthaltenen Fehler ist das wenigste an diesen Vorle-
sungsnotizen meine originire Arbeit. Vieles findet sich an anderer Stelle, insbeson-
dere in den bei den Literaturhinweisen genannten Biichern. Anderes habe ich aus
hervorragenden Vorlesungsskripten meiner akademischen Lehrerinnen und Lehrer
zusammengetragen und in die Perspektive eingebettet, aus der ich in dieses so
wichtige Kapitel eines modernen Physikstudiums einfiihren mochte. Insbesondere
danke ich Johannes Valk und Ivo Ziesche fiir die Erstellung der Diagramme und
Skizzen mit TikZ.

Viel Erfolg und vor allem viel Freude beim Studium!

Kommentare und Verbesserungsvorschlége zu diesen Notizen sind jederzeit will-
kommen.

Jena, April 2025 Holger Gies



1 Fundamentale Konzepte

Anstelle einer Einfithrung in die Quantenmechanik entlang der historischen Ent-
wicklung beginnen wir mit einem Beispiel, dass die Konzepte der Quantenmechanik
besonders elementar illustriert.

1.1 Das Stern-Gerlach-Experiment

In dem von Otto Stern 1921 erdachten und von ihm und Walter Gerlach 1922 aus-
gefiihrten Experiment werden Silberatome in einem gebiindelten Strahl durch ein
inhomogenes Magnetfeld geschickt und anschliefsend auf einem Schirm detektiert.

z
] S
: *» Y| Detektor
Ofen ¥
¢ N
Kollimator

Silber hat ein magnetisches Moment p, das im Wesentlichen durch den Spin
des 47. Elektrons gegeben ist. Da die Wechselwirkung des magnetischen Moments
mit einem Magnetfeld die Energie —u - B hat, erfahrt das Atom im inhomogenen
Magnetfeld eine Kraft. Gibt es nur eine Inhomogenitit z.B. in z-Richtung, so ist
die Kraft gegeben durch

0 0B,
F,=—(u-B)~u,

5, (W B) = pa—
und weist in z-Richtung. Die Atome werden also je nach Gréfe der z-Komponente
von p abgelenkt. Der Stern-Gerlach-Apparat (SG-Apparat) misst also die z-Kom-
ponente von u, bzw. die z-Komponente des Elektronspins. Da die Orientierung

(1.1)



der Atome aus dem Ofen zufallsverteilt ist, hat p anfangs keine Vorzugsrichtung.
Entstiinde das magnetische Moment rein klassisch z.B. durch Ladungsrotationen,
so wire auf dem Detektor eine kontinuierliche Ortsverteilung der Auftreffpunkte
zu erwarten, die der Verteilung von p, zwischen —|u| und || entspréche.

Stattdessen zeigt das Experiment, dass der Strahl in genau zwei Komponenten
aufgespalten wird.

i il =

Atomstrahl Atomstrahl

~
N

il

D.h. der Elektron-Spin kann nur zwei verschiedene Einstellungen seiner z-Kom-

ponente haben, die wir “spin up” und “spin down” nennen. Die Messung ergibt
h h

S, = 5 oder S, = —5 fiir den Elektronspin, wobei die Konstante A gegeben ist

durch
h = 6.5822 x 10~ %eV - s. (1.2)

h
Diese entspricht dem (reduzierten) Planckschen Wirkungsquantum, & = —. Der
7T
Spin ist also beziiglich seiner z-Komponente “quantisiert”. Selbstverstandlich hat
die z-Richtung keine besondere Bedeutung gegeniiber z.B. der z-Richtung. Ein
h
SG-Apparat in z-Richtung wiirde entsprechend S, = 3 oder S, = —, messen.

Besonders interessant ist daher eine Sequenz von SG-Apparaten. Betrachten wir
zunédchst zwei SG-Apparate in z-Richtung:

X keine Atome

Wand

Sortieren wir die spin-down Atome nach dem ersten Apparat aus, ist es wenig
verwunderlich, dass aus dem zweiten Apparat auch nur spin-up Atome herauskom-
men. Der SGz-Apparat éndert also die Ausrichtung der z-ausgerichteten Atome
nicht.



Drehen wir jedoch die Inhomogenitéat des B-Felds in x-Richtung, so finden wir
Folgendes:

Wand

Im Detektor sind die Halfte jeweils spin-up oder spin-down Atome beziiglich
der z-Achse. Klassisch wéren wir versucht zu sagen, dass die Atome bestimmt
sind durch ihren S.-Wert und ihren S,-Wert. Es gibe demnach 4 Atomsorten
(Se =+,8.=+4), (+,—), (—,+) und (—, —). Dass diese Interpretation falsch ist,
zeigt folgender Aufbau:

50%
h
N < S, =+4—
-+ S —+ A © + 2

H SGZ SGx 7777 SGZ

\ N7 ~ .
v i 5= 2

Wand Wand 50%

h
Nach Passage von S, = —1—5 ausgerichteten Atomen durch den SGz-Apparat

h
im dritten Schritt finden sich wieder S, = j:§ Atome im Strahl. Die genannte

klassische Deutung ist somit ausgeschlossen.
Wie kann also die S, = ) Komponente, die zunéchst herausgefiltert wurde,
wieder im Strahl erscheinen?

h
Die SGz-Messung muss folglich die Ausrichtung der S, = +§ Atome beein-

h
flussen; sogar soweit, dass die S, = +— Information vollig zerstort wird. In der

Quantenmechanik, die wir im Folgenden entwickeln wollen, lassen sich also .S.- und
S-Komponenten des Spins nicht zugleich bestimmen.

Wie lasst sich dieses Experiment formalisieren?

Offensichtlich ist die Information spin-up oder spin-down beziiglich (irgend-
Jeiner Achse die groftmogliche Menge an Information, mit der wir die Atome



in diesem Experiment beschreiben konnen. Die Atome liegen im SG-Experiment
also in zwei Zustdnden vor, z.B.

|S.;+), und |S,;—). (1.3)

Hier haben wir die Ket-Notation von Paul Dirac verwendet. Da wir es mit zwei
Zusténden zu tun haben, kénnen wir Gl. (1.3) auch als Zustandsvektoren in einem
2-dimensionalen Raum auffassen, z.B.

\sz;+>é((1)), und \sz;—>£((1)). (1.4)

Wenn wir nun z.B. den |S,; +)-Zustand durch den SGz-Apparat schicken, finden
wir jeweils zur Halfte |S,;+) und |S,; —) Zustdnde; (dhnlich wiirde es mit dem
|S.; —)-Strahl gehen). Da Gl. (1.3) die groftmogliche Menge an Information dar-
stellt, muss ein linearer Zusammenhang bestehen, z.B.:

1 1
|Sz;+> = E|SI;+>—E|SJ;;—>
1 1

Die Vorfaktoren sind konventionsbedingt, wie spéter klar wird; lediglich ihr Abso-
lutbetrag ist von physikalischer Bedeutung. Gleichung Gl. (1.5) besagt z.B., dass
|S.; +) verstanden werden kann als zu gleichen Teilen bestehend aus |S,;+) und
|Sz; —), was das SGz-Experiment beschreibt. Gleichung Gl. (1.5) ldsst sich nach
|Sy; +) und |S,; —) auflosen,

1 1
|23 +) = E!Sz;+>+ﬁ!5’z;—>
R »

h
In der Tat sehen wir nun, dass der S, = —1—5 Strahl nach dem SGz-Apparat

h
jeweils wieder hélftig die Komponenten S, = += und S, = ——= vorweisen wird.

Unser Formalismus beruhend auf der Annahme, dass die Unterscheidung in zwei
Zusténde die maximale Information wiedergibt, beschreibt also das sequentielle
SG-Experiment!

Es gibt nun aber noch eine weitere Komplikation: fiir einen Atomstrahl in x-
Richtung erwarten wir fiir ein SG-Experiment mit y-Ausrichtung des inhomoge-
nen Magnetfelds dhnliche Eigenschaften. D.h. die dann zu messenden Zustdnde



|Sy; +) und |Sy; —) sollten dhnliche Relationen mit |S,; &) und |S,; &) erfiillen wie
GL (1.5) und Gl (1.6). D.h. |Sy;£) sollte sich jeweils als Linearkombinationen
von |S.;+£) oder |S,;+) aufspannbar sein mit betragsméfig gleichen Koeffizien-
ten. Andererseits aber soll z.B. |S,; +) nicht kollinear mit einem der |S,;%)- oder
|S;; £)-Vektoren sein. Man kann sich direkt davon iiberzeugen, dass diese Forde-
rung mit reellen Koeffizienten nicht zu erreichen ist. Wir sind folglich gezwungen,
einen komplexen Zusammenhang zuzulassen, z.B.:

1 1
\/§|SZ7 +) £ \/§|
Damit ist der Zustandsraum des Spins eines Silberatoms (oder Elektrons) ein kom-
plexer Vektorraum. Ein allgemeiner Zustand ist dann eine Linearkombination aus
Basisvektoren, z.B. |S,; £), mit komplexen Koeffizienten.

Wihrend wir diese ersten Formalismen anhand des SG-Experiments motiviert
haben, gelten &hnliche Uberlegungen fiir viele quantenmechanische Systeme, die
zwei Zustande haben kénnen. Ein weiteres wichtiges Beispiel ist die quantisierte
Anregung von Licht, das Photon, das in zwei Polarisationszustéinden vorliegen
kann. Z.B. eine horizontale und eine vertikale Polarisation entspriche dann den
beiden Zustédnden |S.;£) in einem SG-Experiment in z-Richtung, wéhrend eine
“schriage” um 45° nach rechts oder links verdrehte Polarisation dann den Vektoren
|S;; ) entspréchen. Allgemein spricht man von einem Zustandspaar |£), dass eine
solche (vordergriindig) bindre quantenmechanische Information speichern kann, als
von einem Qubit. Anders als bei einem klassischen Bit, das entweder |+) oder |—)

L
VoA

1S, %) = S.i-). (L.7)

sein kann, kann sich ein Qubit in einer Uberlagerung befinden, z.B.

1
oAk

1.2 Kets, Bras und Operatoren — Grundziige des
Formalismus der Quantenmechanik

Im Folgenden wollen wir elementare Grundziige des Formalismus der Quanten-
mechanik einfithren. Dabei geht es um eine erste Beschreibung und weniger um
mathematische Strenge. Die Theorie linearer komplexer Vektorrdaume in unendli-
chen Dimensionen lasst sich rigoros mathematisch formulieren. In dieser Vorlesung
sollen die Strukturen jedoch nur insofern eingefiihrt werden, wie sie fiir ein physi-
kalisches Verstandnis der Quantenmechanik notwendig sind. Des Weiteren werden
wir die Dirac’sche Notation verwenden, weil sie fiir die Quantenmechanik sehr
zweckmékig ist.



1.2.1 Der Raum der Ket-Vektoren

Wir betrachten einen komplexen Vektorraum, dessen Dimensionalitit der Zahl
der moglichen Zusténde entspricht, die ein gegebenes physikalisches System ein-
nehmen kann. Z.B. im Fall des Stern-Gerlach-Experiments kénnen die Silberatome
zwei Trajektorien folgen, so dass wir einen 2-dimensionalen Vektorraum betrach-
ten. Spater werden wir Systeme betrachten, die iberabzéhlbar unendlich viele Zu-
stdnde zulassen. Die dementsprechenden komplexen Vektorraume sind in der Ma-
thematik als Hilbertraume bekannt. Im Folgenden geniigt es jedoch, sich endlich-
dimensionale Vektorrdume vorzustellen.

Ein physikalischer Zustand in der Quantenmechanik wird durch einen komple-
xen Zustandsvektor reprasentiert, der nach Dirac als Ket-Vektor bezeichnet wird:
|a). Es gehort zu den Postulaten der Quantenmechanik (die spéater nochmals zu-
sammengefasst werden), dass dieser Ket die vollstdndige Information tiber den
Zustand des Systems enthélt. Der Vektorraum ist komplex und linear, d.h., ein
Zustand |7y) mit

17) = aila) + 2l B) (1.8)

ist ebenfalls ein Ket im Vektorraum, wenn |a) und |5) Ket-Zusténde sind. ¢; und
co konnen hierbei beliebige komplexe Zahlen sein, ¢, cy € C. Kets und komplexe
Zahlen kommutieren selbstverstandlich, d.h. ¢|a) = |a)c. Wenn ¢ = 0, dann heifst
cla): Nullket.

Das genannte Postulat besagt weiter, dass |a) und ¢|a) mit ¢ € C den gleichen
physikalischen Zustand beschreiben, d.h., lediglich die “Richtungen” im Vektor-
raum sind physikalisch bedeutsam (in der Mathematik spricht man von Strahlen
im Hilbert-Raum). Die genauen Werte der Koeffizienten in Gl. (1.5)-Gl. (1.7) wa-
ren daher nicht bedeutsam.

Eine Observable, bzw. eine Messappatur fiir eine Observable, wird in der Quan-
tenmechanik repréasentiert durch einen linearen Operator im Vektorraum. Allge-
mein ist ein linearer Operator A eine lineare Abbildung des Vektorraums in sich
selbst, d.h.,

Alcrla) + c2|8)) = c1Ala) + 2 A[f) (1.9)

ist wieder ein Ket im Vektorraum. Im endlich dimensionalen System kann man A
im Wesentlichen durch eine Matrix darstellen (z.B. eine komplexe 2 x 2-Matrix
im SG-Experiment). Im Allgemeinen ist A|a) # c|a). Jedoch fiir den Fall, dass
ein Ket durch A auf seinen eigenen Strahl abgebildet wird, spricht man von einem
Eigenket von A. Fiir solche Eigenkets |a'), |a"), |a"), ... mit

Ald"y = d'ld"y, Ald")y =d"|d"), Ald")=d"]|d"), ... (1.10)

sind a’, a”, d"”, ...die Eigenwerte von A. Wir verwenden hier die vielleicht etwas
gewohnungsbediirftige aber sehr verbreitete Notation, dass die Eigenkets mit den

10



Eigenwerten, a’,a”,--- € C oder a’,a;” - - - € R, als durchnummerierendem Symbol
bezeichnet werden.

Entspricht ein physikalischer Zustand |«) einem Eigenket von A, so sprechen
wir auch von einem Figenzustand von A. Die SG-Apparatur z.B. in z-Ausrichtung
entspricht einem Operator S,, dessen Eigenzustédnde durch |S,; +) gegeben sind,

S.Sus ) = ig|Sz;i>. (1.11)

1 0
Bezeichnen wir |S.; +) als (0) und |S,; —) als (1), so ist S, in der Basis |S,; &)

h
durch die Matrix SZ£§ ( (1) _01 ) gegeben.

1.2.2 Der Raum der Bra-Vektoren und innere Produkte

Der Raum der Bra-Vektoren ist ein zum Ket-Vektorraum dualer Raum, der die
Ket-Vektoren linear und stetig auf komplexe Zahlen abbildet. Wir bezeichnen die

Bras mit (a| und schreiben die genannte lineare Abbildung als («|: |5) RGN C,
(a]B) € C. (1.12)

Nach dem Satz von Riesz-Fréchet entspricht jedem Bra (a| ein Ket |a) in ein-
deutiger Weise. Wir postulieren zwei fundamentale Figenschaften fiir dieses innere
Produkt zwischen Kets und Bras:

(1) Aalp) = (Blay*
(2) (aay > 0, (1.13)

wobei der Asterisk * komplex konjugiert bedeutet. Aus (1) folgt sofort, dass (a|a)
reell ist, weswegen (2) erst Sinn macht. Eigenschaft (2) ist eine Positivitatsbedin-
gung, die fiir alle Kets |a) erfiillt sein muss. Die Gleichheit in (2) soll nur fiir den
Nullket gelten. Im Ubrigen ist (2) wesentlich fiir die Wahrscheinlichkeitsinterpre-
tation der Quantenmechanik. Verstehen wir das innere Produkt als Skalarprodukt,
so bedeutet (2), dass die zugehorige Metrik positiv definit ist.

Mit diesen Postulaten kénnen wir die Norm eines Kets |«) definieren als

Il = v/{ale). (1.14)
Falls |||a)|| = 0, ist |a) der Nullket. Falls |||av)|| # 0, kénnen wir einen normierten
Ket |&) definieren
)

AT (1.15)

11



so dass (a|a) = 1. Zwei Kets |a) und |3) sind orthogonal, falls

(a]B) = 0. (1.16)
Im SG-Experiment sind |S.;+) und |S,; —) orthogonal,

h
Physikalisch kommt hier zum Ausdruck, dass ein Atomstrahl mit S, = —i—E—Aus—

h
richtung nach einer weiteren SGz-Apparatur keine S, = ——-Komponente mehr

enthalt. Mit Gl (1.6) ldsst sich nachpriifen, dass |S,;+) und |S,; —) ebenfalls
orthogonal sind,

(SuitSii=) = (=it + os(8i—1) (18 + 1. )
1 1
= _§<Sz;+’5’z;+>+§<Sz§_|sz§_>
— 0, (1.18)

falls |S.;+) und |S.; —) gleich normiert sind. In der Regel normiert man |S,, +)
auf 1, (S.;£[S,; £) = 1. Mit der Wahl der Koeffizienten in Gl. (1.6) sind |S,; £)
ebenfalls normiert, wie sich unmittelbar nachpriifen lasst: (S,;+|S,;£) = 1. Das
gleiche lésst sich fiir |S,; &) definiert in Gl. (1.7) verifizieren, wobei wegen Postulat
(1) in GL. (1.13) zu beachten ist, dass z.B.

1 i
Sy+) = —alSi+)+ —=|Sii -
8,4) = olSii++ oS
\ |
= (St = o= (S = —=(Su . (1.19)

V2 V2

Man beachte hier das Minuszeichen in der zweiten Gleichung vor dem letzten Term.
Allgemeiner gilt fiir

) =Dala) = Gl= Y dlal, (1.20)

7

1.2.3 Operatoren

Wir fahren fort mit einigen wichtigen Definitionen fiir Operatoren. Zwei Operato-
ren X und Y sind gleich, wenn fiir jeden beliebigen Zustandsket |«) gilt

X|a) =Y|a), |a) beliebig. (1.21)

12



Ein Operator X heifit Nulloperator, wenn er fiir jeden Zustandsket den Nullket
ergibt,
X|a) =0, |a) beliebig. (1.22)

Die linearen Eigenschaften des Ket-Raums iibertragen sich auf die Operatoren,

X+Y = Y+ X kommutativ beziiglich der Addition,
X+Y+Z2) = (X+Y)+Z assoziativ beziiglich der Addition. (1.23)

Betrachten wir nun einen Operator im Ket-Raum mit
) = Xla. (1.24)

Der zu |y) duale Bra ist nun im Allgemeinen nicht gleich (a|X. Sondern wir
erhalten den zu X adjungierten Operator X1,

(7] = (alX". (1.25)

Wir nennen einen Operator selbstadjungiert (manchmal auch nicht ganz prézise
hermitesch'), wenn
X=X, (1.26)

Produkte von Operatoren sind assoziativ,
(XY)Z=X(YZ)=XYZ, (1.27)

aber in der Regel nicht kommutativ,

i.d.R.
XY # YX. (1.28)

wie man sich leicht am Beispiel von Matrixmultiplikationen verdeutlichen kann.
Betrachten wir

v = XIB), 18) =Yl
=1 = XY)|),

so gilt fiir die adjungierten Relationen:

(= BIX, (Bl =(alYT
= (| = (al(YTX).
= (XY) =YXt (1.29)

'Bine Unterscheidung zwischen selbstadjungiert und hermitesch ist nicht notwendig, wenn X
beschrankt ist, d.h. (| X|a) < const. x (a]a) fiir alle |a). Fiir unbeschrinkte Operatoren ist
in der Regel die Angabe seines Definitionsbereichs notwendig, so dass zwischen hermitesch
und selbstadjungiert unterschieden werden muss. Fiir die meisten Zwecke dieser Vorlesung ist
die Unterscheidung jedoch in der Regel nicht besonders bedeutsam.

13



Ebenso folgt aus (1) in Gl (1.13)
falls X = ;Y + Y = X'=cYI4 YT (1.30)

(Anti-Linearitat der f-Operation).

1.2.4 AuBeres Produkt

Als duferes Produkt aus einem Ket-Vektor |5) und einem Bra-Vektor («| bezeich-
net man die sukzessive Anwendung der linearen Abbildung («| auf einen weiteren
beliebigen Ket-Vektor |v),

(@l : |y e = (ay) e C. (1.31)

mit anschliefender Multiplikation von |8) mit c¢. Wir schreiben fiir das dufsere
Produkt

|B) (et (1.32)
Da es beliebige Kets wieder auf Kets abbildet,

(18)al) 1) = 18)al?) = (aln)I8), (1.33)

ist das dufere Produkt ein Operator. Dieser Operator rotiert beliebige Kets in
Richtung von |f3).
Beispiel: Der Operator
|52 ) (52 +] (1.34)

rotiert bzw. projeziert einen beliebigen Spinzustand in Richtung |S.;+). Er ent-

spricht also einem SGz-Apparat, bei dem die S, = —a—Komponente ausgeblendet

wird.
+
S0+ L& | se
z.B.
1 1
Sz; Sz; S:Jc; - Sz; = Sz; Sz; = Sz; Sz;_
(IS54008s+)ISes+) = 1874) | 5 S+ 75 (S )
= s, (1.35)

V2
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1.3 Basis-Kets

In der Quantenmechanik sind selbstadjungierte Operatoren von besonderem In-
teresse. Betrachten wir einen selbstadjungierten Operator A. Seien |a) und |a")
zwei Eigenvektoren von A mit den Eigenwerten o’ und a”,

Ald"y = d'|d"y, Ald") = d"|a"). (1.36)
Konjugieren wir die zweite Gleichung:
a"*(a"] = (a"|AT Y (0] A (1.37)
und multiplizieren mit |a") von rechts, so folgt
(o) = {a"|Ala') = o (a"|a'),

bzw.
(a"™ —a'){d"|a"y = 0. (1.38)

Falls |a") = |a") # Nullket gewéhlt wird, folgt
a* =d, (1.39)

d.h. die Figenwerte von selbst-adjungierten Operatoren sind reell.
Falls wir |a') # |a”) mit o' # " wihlen, folgt aus Gl. (1.38)

(a"la"y =0, (da #d"). (1.40)

d.h. die Eigenvektoren selbstadjungierter Operatoren sind orthogonal.

Da das Ergebnis einer physikalischen Messung reell ist, sind selbst-adjungierte
Operatoren gute Kandidaten um physikalische Messapparaturen und Observable
zu symbolisieren.

In der Regel wahlt man eine Konvention, in der die Eigenvektoren auch normiert
sind, so dass alle |a) eine orthonormierte Basis bilden,

<a,|a//> - 5a’a”‘ (141)

Falls A auf den Raum aller Zusténde eines Systems wirkt, ist diese Basis der
Eigenkets auch per constructionem vollstandig.

Da die Eigenkets |a) eine vollstindige orthonormierte Basis bilden, kann ein
beliebiger Zustandsket |y) in dieser Basis aufgespannt werden,

) = culd). (1.42)
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Multiplikation mit (a"| liefert

a’|ly) = co (a"|a"y = cqn, 1.43
(@) =Y ca {a"|a)) (1.43)

a/

:(Sa//a/

womit die Koeflizienten ¢, bestimmt sind:

co = (), dh.y) = S (@), (L.44)

a/

D.h. die Summe iiber alle &ufseren Produkte der Eigenvektoren erfiillt:
Sl = 1. (1.45)

wobei 1 der Identitdtsoperator ist, der 1|y) = |y) fiir beliebige |v) erfiillt. Glei-
chung Gl. (1.45) wird auch als Vollstindigkeitsrelation bezeichnet.

Beispiel: Im SG-Experiment gibt es zwei Basiszustinde, z.B. |S,;4). In dem
zugehorigen 2-dimensionalen Vektorraum ist daher

D 1S NS £ = S 4) (S | + 15 —)(S -] = 1. (1.46)
+

In der Tat ldsst sich direkt mit Gl. (1.6) nachrechnen, dass
(155593 + #1855 =085 =) 1S, £) = |52, ).
Fiir jeden einzelnen Term der Summe Gl. (1.45) gilt
(1)) ) = ¥ 1) = cala), (147
d.h. |a’)(d'| projeziert |y) auf die |a)-Richtung. Der Operator
Py = |a"){d| (1.48)
wird daher als Projektionsoperator bezeichnet. Er erfiillt die Gleichungen

Py =Py, PyPy=0, fixd #ad’, Y Pu=1 (1.49)

Mit Hilfe der Projektionsoperatoren folt, dass sich der zugehorige Operator A
schreiben lasst als

A = A-]l:AZPa/

= D Ald)d] =) dld)d]

a/

/
= ) dPu. (1.50)
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3)

Nummerieren wir die Eigenwerte o', a”, a”, ... als a®V, a®®, a® ... dann kénnen

wir in Matrixdarstellung die Basiskets reprasentieren als

1 0 0
0 1 0
=g 1, 1=l 1a®)=[{], - (1.51)

Der Operator A hat dann Diagonalgestalt,

a? 0 0
0 a? 0 ..
=l 0o 0o a® .| (152)
und die Projektoren lauten
100 000 000
10 00 {0 10 {0 0 0
Fao=1{0 0 0 » Fa@=10 0 0 Fa»=10 0 1 )

(1.53)
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2 Formalismus der
Quantenmechanik

2.1 Messungen

Die Beschreibung des Messprozesses ist in der Quantenmechanik fundamental an-
ders als in der klassischen Physik. Klassisch soll ein idealer Messprozess das zu
vermessende System iiberhaupt nicht beeinflussen. (Z.B. soll eine Geschwindig-
keitsmessung an einem Punktteilchen dieses nicht abbremsen; eine Probeladung ¢,
die ein elektrisches Kraftfeld vermessen soll, wird im Limes ¢ — 0 betrachtet, um
Einfliisse des eigenen Feldes auszuschalten.)

Anders in der Quantenmechanik: hier wird nicht nur der Einfluss der Messap-
paratur auf das zu vermessende System (quasi als notwendiges Ubel) mitberiick-
sichtigt. Sondern der Messprozess wird sogar definiert iiber den Einfluss der Mes-
sapparatur auf den Zustand eines Systems.

Sei |v) der Zustand eines Systems und A ein Operator, der eine Observable bzw.
eine Messapparatur symbolisiert. Sei A = A", so dass die Eigenkets |a’) von A eine
orthonormierte Basis bilden. In dieser Basis gilt:

) =D cald) =Y la)d ). (2.1)

Eine Messung bedeutet nun, bzw. definiert sich dadurch, dass die Messapparatur
direkt Einfluss auf den Zustand des Systems nimmt und |v) in einen Eigenzustand
umwandelt:

) = ). (2.2)
Im SGz-Experiment wird ein Atom, dass sich zundchst in einem allgemeinen Zu-
stand

) = cil+) +el=), |E) = 1555, (2.3)

befindet, entweder nach oben oder nach unten abgelenkt, d.h. entweder |~) 565 |+)

oder |v) 565 |—), wie es die Messung am Detektor nachweist.
Eine Messung éndert also den Zustand eines Systems, es sei denn, das System
ist bereits in einem Eigenzustand:

falls [y)=la) = | =la) "% |a). (2.4)
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(vgl. zwei sequentielle SGz-Apparate.)
Fiir einen gegebenen allgemeinen Zustand |y) = Z corla’)y macht die Quanten-

al

mechanik a priori keine Aussage, welcher genaue Eigenzustand nach der Messung
angenommen wird. Die Quantenmechanik beruht lediglich auf dem Postulat, dass
die Wahrscheinlichkeit p(a’), den Zustand |a’) zu messen, gegeben ist durch

Wahrscheinlichkeit fiir o’ : p(a’) = [{(d'|7)|* = |ca|?, (2.5)

wobei vorausgesetzt ist, dass |y) normiert ist, |||7)|| = 1. Diese Vorschrift Gl. (2.5)
gehort zu den Postulaten der Quantenmechanik und wird auch Bornsche Regel
genannt.

Die Wahrscheinlichkeitsinterpretation der Quantenmechanik bedeutet streng ge-
nommen, dass fiir den tatsichlichen Ausgang einer einzelnen Messung keine ech-
te Vorhersage gemacht werden kann. Ob ein bestimmtes einzelnes Atom im SG-
Experiment nach oben oder unten abgelenkt wird, kann i.A. nicht vorhergesagt
werden. Die Quantenmechanik entfaltet daher ihre Vorhersagekraft erst, wenn
eine grofse Zahl von Messungen an einem Ensemble von identisch praparierten
Systemen (“reines Ensemble”) durchgefithrt wird. Fir die Wahrscheinlichkeitsin-
terpretation war das Postulat Gl. (1.13) (2), (7|7) > 0 (mit = nur fiir den Nullket)
von fundamentaler Bedeutung.

Wir definieren nun den FErwartungswert eines Operators A beziiglich des Zu-
stands |7y):

(A)y = ([ AR). (2.6)
Der Erwartungswert héngt offensichtlich vom Zustand |y) ab. Wenn es keine Ver-

wechslung geben kann, schreiben wir auch kurz (A) statt (A),.
Der Erwartungswert ist der mittlere gemessene Wert, denn

(A) =Y (yld) (d[Ala")a"ly) = Yl F =) d'pld).  (2.7)

a/ ’a// a/ al

=a'"S
Hierbei sind @’ die moglichen Messwerte und p(a’) = |(a’|7)|* die Wahrschein-
lichkeit, a’ zu messen. Es ist wichtig, die Begriffe Eigenwert, Erwartungswert und
wahrscheinlichster Wert auseinander zu halten. Als Analogon betrachte man das
Wiirfeln mit einem idealen Wiirfel: die Augenzahlen 1,2, 3,4, 5,6 entsprechen den
Eigenwerten. Da jede mit der Wahrscheinlichkeit 1/6 gewiirfelt werden kann, ist

6
1
der Erwartungswert = Zz i 3.5. Man konnte jedoch schlecht behaupten, 3.5

i=1
sei der wahrscheinlichste Wert. . .
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2.2 Kompatible Observable

Zwei Observable sind miteinander kompatibel, wenn die zugehorigen Operatoren A
und B miteinander vertauschen,

[A,B] :== AB — BA =0, (2.8)

Andernfalls, wenn [A, B] # 0, sind sie inkompatibel.

Sind Observable kompatibel, so sind ihre Eigenkets miteinander verkniipft, wie
das folgende wichtige Theorem besagt: Seien A und B kompatible Observable, und
seien die Eigenwerte von A nicht entartet, dann sind die Matrixelemente (a”|B|a’)
alle diagonal.

Beweis (einschliefslich der Klarung aller Begriffe): Es gilt

0 = (a"|[A Blla) = (a"|(AB — BA)|d)
(a" —a"){(a"|Bla’) = 0. (2.9)

“Die Eigenwerte sind nicht ertartet” bedeutet, dass keine zwei Eigenwerte gleich
sind, a” # a'. Daher folgt

(a"|Bla"y =0 fir o"#d, dh. (d"|Bld') = by (d'|Bla’). (2.10)

Beziiglich der Basis der |a')-Kets ist die Matrixdarstellung von B also diagonal.
Also kénnen A und B beziiglich der gleichen Ket-Basis als diagonale Matrizen
dargestellt werden.

Es folgt
B|CL,> _ Z |CL”/> <a///|B|a//> <a//|a/>
.l —
) =011 411 (a’"|Bla’)y  Oqrmqr
= (d'|Bla’)|d), (2.11)

d.h. die Eigenwerte von B sind gegeben durch
v = (d'|Bld’), (2.12)

und |a’) ist daher simultaner Eigenkeit von A und B.
Falls im Eigenwertspektrum von A ein Eigenwert n-fach entartet ist, d.h. n
Eigenwerte gleich sind, dann gibt es n verschiedene Eigenkets mit
Ala}) = d'|a}), i=1,...,n. (2.13)
Jede Linearkombination der |a;) ist damit auch ein Eigenvektor. Wir kénnen nun
genau die Linearkombination auswéhlen, die B diagonalisiert, so dass ein Satz
simultaner Figenkets auch bei Entartung existiert.
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Diskutieren wir nun die Kompatibilitdt von Operatoren im Stern-Gerlach-System.
Wie in den Ubungen gezeigt wird, konnen die Drehimpulsoperatoren beziiglich der
S.-Basis als |£) = |9,; +) dargestellt werden. Das Ergebnis ist

5. = M- oe)=a( )

h . . Ch(0 —i
S, = 5(—z|+><—|+z|—><+|>=§ ( 0)' (2.14)
Wie sich direkt nachrechnen lasst, gilt:

Sz, Syl = thS,, [Sy,5:] =ihS,, [S:,S:] =1ihS,, also [S;,S;] = ihe;xSk,
(2.15)
wobei 7, 7, k die Werte x, y, z annehmen kénnen. Fiir den Antikommutator, den wir
spiter benétigen werden, gilt im Ubrigen:

2

(S, 8} = 8iS; + 8;8; = %@jn. (2.16)

Gleichung Gl. (2.15) besagt offensichtlich, dass z.B. S, und S, nicht vertauschen.
In der Tat ist ein Eigenvektor von S,, z.B. |+), kein Eigenvektor von .S,

S|+) = g ). (2.17)

Alle S; sind also zueinander inkompatibel. Aus Gl. (2.16) lesen wir ab, dass
1

(wobei wir die Notation verwenden, dass iiber unterstrichene Indizes nicht sum-
miert wird) also proportional zur Identitat ist. Es folgt

S*=5+5+52 = thll. (2.19)
Daher vertauscht das Drehimpulsquadrat S? mit jeder Komponente,
[S%, 8] =0, i=ux,vy,z (2.20)
Es lésst sich also jeweils eine simultane Ket-Basis angeben.

Wenn zwei Observable A und B kompatibel sind, hat das eine wichtige Kon-
sequenz fiir Messungen: Angenommen, wir fithren z.B. drei Messungen durch, 1)
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von A, 2) von B, und 3) wieder von A. Ein beliebiger Anfangszustand |y) wird
also dadurch:
) 2 Ja'y 2 Ja') 2 |a). (2.21)

Der zweite Schritt gilt nur, weil |a’) auch simultaner Eigenket von B ist. Die 3.
Messung mit A liefert somit wieder mit Wahrscheinlichkeit 1 dass gleich Ergebnis
wie die 1. Messung mit A. Kompatible Observable kénnen also simultan scharf
gemessen werden: jede weitere Messung von A liefert immer den Messwert @’ und
jede weitere Messung von B liefert immer den Messwert 0 = (a'| B|a’).

2.3 Inkompatible Observable

Inkompatible Observable A und B mit [A, B] # 0 haben keine gemeinsame voll-
stindige Basis von simultanen Eigenkets. Um dies zu zeigen nehmen wir das Ge-
genteil an: Sei [A, B] # 0 und es gebe eine Basis von simultanen Eigenkets |a) von
Aund B. Dann gilt AB|a’) = Ab'|a’) = d'b'|a’) und BA|d') = Bd'|d’) = a'b'|a’) und
damit (AB — BA)|a") = 0. Was im Widerspruch zu [A, B] # 0 und der Vollstin-
digkeit der Basis |a') ist. Inkompatible Observable konnen also, wenn iiberhaupt,
lediglich auf einem Unterraum eine simultane Basis haben.

Die Besonderheiten von inkompatiblen Observablen werden an folgendem Bei-
spiel besonders deutlich: Seien A, B und C' jeweils inkompatible Observable, die
an einem Zustand Messungen durchfiihren (man darf, muss aber nicht, an einen
Stern-Gerlach-Apparat denken). Jede Messung projeziert den Zustand (z.B. einen
Atomstrahl) auf einen jeweiligen Eigenket:

|a') ) )

Jeweils ein projezierter Zustand wird behalten, die {ibrigen moglichen Messer-
gebnisse werden aussortiert. Sei der projezierte Zustand |a’) nach Messung A auf
1 normiert, ||a’|| = 1. Dann ist die Wahrscheinlichkeit, bei B einen bestimmten
Zustand [b") zu messen

Wahrscheinlichkeit b’ zu messen: = |(b/|a’)|?. (2.22)

Die Wahrscheinlichkeit, anschliefend bei C' einen bestimmten Zustand |¢') zu mes-
sen, ist dann

Wahrscheinlichkeit anschl. ¢ zu messen: = [(c'|b)|?|(V]a’)|?, (2.23)
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da Wahrscheinlichkeiten multiplikativ sind.

Nun betrachten wir die Gesamtwahrscheinlichkeit, |¢’) zu messen, wihrend wir
alle moglichen Wege tiber den Zustand |b') zulassen. Dafiir summieren wir {iber
die b" Zwischenzustinde:

777
777
777

Das Ergebnis ist

D HEBPIW )P =D ()W) a|) ('), (2.24)

b/

Dies Vergleichen wir mit einer Messung, bei der die B-Apparatur entfernt wird:

ja’) )

Abbildung 2.1:

Da B dennoch eine vollstéandige Basis vermoge seiner Eigenkets definiert, konnen
wir |a’) durch die B-Basis aufspannen:

a') = 37 ) ¥]a). (2.25)

Die Wahrscheinlichkeit, bei der Messung ohne B-Apparatur |¢’) zu beobachten, ist

2

({la)* =

> (V) la)

b/

= D (W) la) ") ")), (2.26)

b/7b//

Offensichtlich sind Gl. (2.24) und Gl. (2.26) nicht i.A. gleich. Die Messung von
C' hingt davon ab, ob wir die B-Messung tatsdchlich durchfiihren oder nicht.
In Gl. (2.24) priifen wir tatsachlich nach, welchen b’-Weg das System gegangen
ist. Wir erhalten damit mehr Information iiber das System. Allerdings ist dieser
Informationsgewinn damit verbunden, dass diese Messung den Zustand beeinflusst.
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In Abbildung 2.1 erhalten wir keine Information iiber den b'-Weg. Das System
kann also sowohl iiber o’ als auch iiber b” (als auch iiber beide Wege zugleich)
gegangen sein. Dieses Gedankenexperiment ist somit eine Verallgemeinerung des
Doppelspaltexperiments.

Gleichungen Gl. (2.24) und GI. (2.26) werden in der Tat gleich, wenn [A, B] = 0
oder [B, C] = 0ist. Z.B. fiir [A, B] = 0 ist dann ein Basisvektor |b") kollinear zu |a’),
und alle anderen [0')-Eigenkets orthogonal zu |a’). D.h. nur jeweils ein Term aus der
Summe in Gl (2.24) bzw. der Doppelsumme in Gl. (2.26) ist nichtverschwindend
und Gl. (2.24) und Gl. (2.26) sind gleich; das analoge Argument gilt fiir [B, C] = 0.

2.4 Die allgemeine Unscharferelation

Die Inkompatibilitdt von Observablen hat eine direkte Konsequenz fiir die Menge
und Qualitdt von Informationen, die wir iiber ein System durch Messungen erhal-
ten konnen, z.B. unter anderem fiir die Genauigkeit, mit der wir die Werte von
(Kombinationen von) Observablen bestimmen kénnen.

Betrachten wir dazu den folgenden Operator zu einer Observablen A:

AA= A — (A), (2.27)

wobei der Erwartungswert beziiglich eines bestimmten Zustands |y) genommen
wird. Die mittlere quadratische Abweichung oder Varianz von A ist gegeben durch

(A4 = (42— 24(4) + (4)%))
= (A%) = 2(A) + (4)°
(A%) — (A)2 (2.28)

Falls |y) ein Eigenket von A ist, verschwindet die Varianz von A exakt. Die Varianz
wird oft als “Unschérfe” einer Observablen beziiglich eines Zustands bezeichnet.
Besser ist jedoch der Begriff “Unbestimmtheit”.

1
Sei z.B. |y) = |[+) = |S,;+) eines Spin-ﬁ—Systems. Dann liefert eine SGz-
h
Apparatur immer den Messwert —1—5. Die Varianz von S, ist also
(AS.)?) = (S2) = (8:)" = (+|SZ]+) — (+[S:|+)?

- — _ =0 2.29
11 (2.29)

h
Das Ergebnis der Messung S, = +§ ist also vollstédndig bestimmt (wird “scharf

gemessen”). Hingegen liefert eine S,-Messung eines anfinglichen |+)-Zustands je-

h h
weils hilftig die Messwerte S, = ii' Mit S, = 5(\+><—| +|=)(+]) ist die Varianz
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von S, also
(AS) = (83 — (8.1 = (+]S24) - (41514
= (T D 1+ )

(B D))
h2

= (R -0)

h?
= —. 2.

Das Ergebnis einer jedem Messung der Observable S, ist also a priori unbestimmt,

beide Werte :|:§ sind gleich wahrscheinlich (im Mittel ergibt sich also ein “unschar-

fer” Messwert, bzw. eine grofe Varianz).

An dieser Stelle lasst sich bereits vermuten, dass die Unschéarfe von S, beziiglich
der SGz-Basis an der Inkompatibilitdt von S, und S, liegt. In der Tat gilt fiir
zwei Observable A und B beziiglich jedes beliebigen Zustands folgende allgemeine
Unscharferelation:

(AA)*){(AB)?) = %K[A, B))I*, (2.31)

fiir selbstadjungierte Operatoren A = A" und B = B'. Dies soll im Folgenden
bewiesen werden:
Per Postulat gilt (y|y) > 0. Fiir jedes A € C gilt mit |y) = |a) + A|5) daher

0 < (yly) = (ela) + MalB) + X (Bla) + [A*(3]6)- (2.32)
TR S S
Wiéhlen wir A = (BIB)’ folgt
(alB)? . [lB)]?
0= T TEE T
oy LB
= {elod = g1y (233)
Somit folgt:
(ala)(B]8) = [(alB)|. (2.34)

Dies ist die Schwarz’sche Ungleichung (vgl. |a|?|b|* > |a - b|?). Diese verwenden
wir fiir die Zustande

o) = AAL),  [B) = AB[ ), (2.35)
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wobei | ) irgendein beliebiger Zustand sein kann. Mit

(ala) = ((AA4)?)
(Bl8) = ((AB)?)
(a|B) = (AAAB) (2.36)
folgt mit Hilfe von Gl. (2.34)
(AA)*N(AB)*) = [(AAAB)[*. (2.37)

Mit Hilfe von Kommutator und Antikommutator gilt
AAAB — %{AA, AB} + %[AA, AB, (2.38)

wobei

[AA,AB] = [A— (A), B — (B)] = |A, B] (2.39)

ist, weil die Zahlen (A) und (B) miteinander und mit Operatoren vertauschen.
Der Kommutator ist anti-selbstadjungiert,

;
([A, B]) — (AB)' — (BA)' = B'A" — ATB' = BA — AB = [B, A] = —|A, B],
(2.40)
wahrend der Antikommutator selbstadjungiert ist,

T
({A, B}> — (AB+ BA) = B'A' + ATB' = AB+ BA={A,B}. (241

WEeil selbstadjungierte Operatoren reelle Eigenwerte haben, kénnen ihre Erwar-
tungswerte auch nur reell sein. Ahnlich sind die Erwartungswerte von anti-selbst-
adjungierten Operatoren immer rein imaginér, d.h.

(AAAB) = - ([AA,AB)) +- ({AA,AB}). (2.42)

Vv Vv
rein imaginér rein reell

DN | —
DN | —

Daher gilt:

(AAPABY) = 1A BYP + 1A BYF, (243

1
n
womit die Unschérferelation Gl. (2.31) bewiesen ist, denn die Fortlassung des letz-
ten Terms kann die Ungleichung nur starker machen.

(NB: Wir werden spéter sehen, dass die berithmte Orts-, Impuls-Unschérferelation
ein einfacher Spezialfall von Gl. (2.43) ist. Zwischen Orts- und Impulsoperator be-

1
steht der Zusammenhang [z, p| = ih, so dass ((Az)?)((Ap)?) > ZHQ folgt.)
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2.5 Basiswechsel — Unitare Transformation

Gegeben zwei inkompatible Observable A und B, die durch selbstadjungierte Ope-
ratoren symbolisiert werden, so gibt es zwei Sitze von Eigenkets {|a')} und {|0)},
welche als Basisvektoren den Zustandsraum aufspannen konnen. So kénnen wir
im SG-Experiment die Zusténde in der |S,; £+)-Basis aufspannen, wir konnten al-
ternativ aber genauso die |S,; +)-Basis verwenden. Da beide Basen den gleichen
Zustandsraum aufspannen, muss es eine Transformation geben, die die eine Basis
in die andere iiberfiihrt. Der zugehorige Transformationsoperator kann direkt aus
den beiden Basen konstruiert werden:

Gegeben zwei Sétze von Basisvektoren {|a’)} und {|0')}, so existiert ein unitérer
Operator U, so dass

bWy = UlaM), p?) = U[a@), . ... (2.44)

Hierbei haben wir die Eigenwerte und -vektoren geordnet und nummeriert. Der
Operator U ist unitar, weil er die Bedingungen

UU=U0U"=1 (2.45)

erfiillt. Der Operator U kann explizit konstruiert werden:
U =3 b)), (2.46)
k

denn
Ula®) = 3" 5" (a®]a®) = 50, (2.47)
k 5
ke

wegen der Orthonormalitit der Basisvektoren. Ebenso lasst sich die Unitaritat von

U zeigen:
Uty = Z\a \b("” ’“>|—Zya€> (a9 =1, (2.48)
5ek

dhnlich fiir UU' = 1. Die Matrixdarstellung von U z.B. beziiglich der {|a’)}-Basis
lautet

U= (a™|Ula®) = (a® o), (2.49)
N——
=[b(0))

d.h. die Matrixelemente von U in der {|a’)}-Basis setzen sich aus den inneren
Produkten der alten und neuen Basis-Vektoren zusammen.

Aus der Transformation der Basisvektoren folgt sofort die Transformation der
Koordinaten eines beliebigen Vektors |v) beziiglich des Koordinatensystems, d.h.
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der jeweiligen Basis (der Vektor selbst ist natiirlich unabhéngig von der Basis):

=D L)) = 1a)(ay). (2.50)

Hierbei sind (a'”]y) die Koordinaten beziiglich der {|a’)}-Basis. Die Koordinaten
beziiglich der {|b') }-Basis sind

By =D W1aO) (a0 y) = (P Uta®) (@), (2.51)

14 4

oder in Matrix-/Komponentenschreibweise

M = Uk, (2.52)

wobei 7, die Koordinaten von |v) in der {|b') }-Basis bezeichnet. Dies lasst sich auf
Transformationen der Matrixdarstellung von Operatoren ausdehnen:

Xio = BOIXB0) = S0l a™ X]a") " b)

— Z<a(k)‘UT‘a(m)><a(m)‘X’&(n)><a(n)‘U‘a(f)>
= Ul XpnUne. (2.53)

Dies entspricht der bekannten Formel fiir Ahnlichkeitstransformationen in der
Matrix-Algebra
X' =U'XU, (2.54)

wobei der Strich die Koordinaten in der {|b')}-Basis symbolisiert.

2.6 Kontinuierliche Spektren

Bislang haben wir den ganzen Formalismus anhand des Stern-Gerlach-Experiments,
d.h. eines 2-Zustandssystems entwickelt, bei dem Operatoren, die Messapparatu-
ren entsprechen, 2 Eigenwerte hatten. In der Quantenmechanik wollen wir aber
auch Positionen, Impulse, etc. von Teilchen beschreiben, also Grofsen, die Werte
aus ganz R annehmen konnen. Betrachten wir z.B. ein Teilchen, das sich entlang
einer Achse x bewegen kann. Quantenmechanisch soll also jeder méglichen Positi-
on x ein eigener Zustandsvektor entsprechen. Da die Zahl der méglichen Zustéande
der Dimensionalitat des Vektorraums entspricht, miissen wir nun (iiberabzahlbar)
unendlichdimensionale Vektorraume betrachten.

Die zugehorige Mathematik rigoros abzuhandeln geht {iber den Rahmen der
Vorlesung hinaus. Fiir das Verstédndnis der physikalischen Strukturen soll es hier
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geniigen, den notwendigen Formalismus aus dem bisher eingefiihrten zu motivieren.
Falls diese naiven Verallgemeinerungen an ihre Grenzen stofsen, wird ein genauerer
Blick in die Mathematik folgen.

Diskretisieren wir in Gedanken also die reelle Achse in abzéhlbare Gitterpunkte
mit Abstand a:

o o o—0 *—eo ® ® ° > T
—_— 1—1 ¢+ 1+4+1

Wir stellen uns vor, das quantenmechanische Teilchen kann jeweils nur auf den
Gitterpunkten sitzen. Der Zustandsraum wird also aufgespannt durch die Positi-
onsvektoren

|i), mit z.B. i€ Z. (2.55)

Eine Ortsmessung, der ein Ortsoperator x zugeordnet wird, liefert dann die mog-
lichen Koordinaten als Eigenwerte:

xli) = xiliy, mit z; =a-i. (2.56)

Da 2, € R ist, soll z ein selbstadjungierter Operator auf dem Zustandsraum sein.
Die Orthonormalitdt und Vollstdndigkeit der Basis wird nun ausgedriickt durch

(i) =6, Y lid(il = 1. (2.57)
Ein beliebiger Zustand |¢)) lautet in dieser Basis

) = Dl {ile). (2.58)

Nun mochten wir einen Kontinuumslimes erreichen, in dem der Gitterabstand
verschwindet, a — 0. Die Zahl der Gitterpunkte pro physikalischer Langeneinheit

L geht dann in gleicher Weise gegen unendlich, N, ~ — — o0. Das gleiche gilt fiir

die Zahl der Zusténde (pro Langeneinheit). Wichtig istC,L dabei die Orthonormalitét
und Vollsténdigkeit der Basis (2.57) beizubehalten. In diesem Kontinuumslimes
wird die Summe iiber die Gitterpunkte als Riemann-Summe zum Integral. Das
Integralmafk ist dabei durch den Gitterabstand vorgegeben: Az’ = a — da':

D SIUIGES S I

=: ZAm’ l;) (],  mit |z)) == —=]i). (2.59)
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Im Kontinuumslimes lautet die Vollstandigkeit

1= /dz’]ﬂ}(m’\. (2.60)

Die in Gl (2.59) eingefithrten Zusténde |2}) sind nun nicht mehr auf 1 normiert,
sondern erfiillen

/ / 1
(zilay) = 5513'- (2.61)

Die rechte Seite divergiert zwar im Kontinuumslimes a — 0, die Riemann-Summe
iiber die rechte Seite bleibt aber endlich und ist unabhéngig von a:

1
A ! Nl = A /—51': 5121 262
; xr <xl|xj> ; Zz a J ; J ( )
Im Kontinuumslimes ist Gl. (2.61) also eine Darstellung der Dirac-0-Distribution:
=  (2|2") =0d(2' — 2") (Orthonormalitét)
= /dm’(xﬂx”} =1. (2.63)

Man sagt, die Ortseigenzustiande |z’) sind §-normiert. Sie sind per constructionem
Eigenzustande des Ortsoperators z,

zla'y = 2'|a"), 2’ €eR, (2.64)

vgl. Gl (2.56). Die Darstellung eines beliebigen Zustands |¢) lautet in dieser Orts-
basis:

) =110 = [ do'a') /o). (2:69)
Die “Matrixdarstellung” des Ortsoperators x in der Ortsbasis wird damit

(2|z|2") = 2" (' |2") = 2"6(2" — 2") = 26 (2" — 2"). (2.66)

Der Ortsoperator ist also “diagonal” in der Ortsbasis.
Diese Uberlegungen lassen sich iiber ein 3-dimensionales Gitter direkt auf den
3-dimensionalen Ortsraum ausdehnen. Es ergeben sich die wichtigen Relationen:

<X/‘X//> _ 5(3) (X/ . X”),
1 = /dga:’|x'><x’|. (2.67)
x|x)y = xX[x).
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Hierbei ist x der Ortsoperator, der sich als 3-dimensionaler Vektor aus den Orts-
I

operatoren x = | 22 | zusammensetzt. Der Zustandsvektor |x') diagonalisiert si-
€3

multan die Operatoren x;, ro und z3. Wir kénnen folgern, dass letztere daher

kompatible Observable sind:

[IZ',ZEJ‘] = 0, Z,j = ]., 2, 3. (268)

Die 3 Koordinaten eines Teilchens kénnen also simultan beliebig scharf gemessen
werden. Im Ubrigen dehnt sich das oben beschriebene Messkonzept der Quan-
tenmechanik auch auf Ortsmessungen aus. Auch eine Ortsmessung ist dadurch
definiert, dass sie einen beliebigen Zustand [¢)) auf einen Ortseigenzustand |x)
projeziert, bzw. die |x')-Komponente aus |¢) herausprojeziert. Der Einfachheit
halber fithren wir die folgende Diskussion wieder fiir eine Raumdimension durch,
sie lasst sich aber direkt auf 3 Dimensionen verallgemeinern. Idealisiert kennzeich-
net eine Ortsmessung (in einer Dimension) also

)= [ty ), (2.69)
Rein mathematisch idealisiert ist zwar eine beliebig scharfe Messung moglich, phy-
sikalisch hat aber jeder Detektor eine Ausdehnung A (z.B. die Kérnung einer Foto-
platte oder eines Pixeldetektors). Eine angemessenere Beschreibung der Messung
ist daher:

@/ +A/2

o) = [ dwleyley O [ e ). (20)

00 —A/2

Die Koordinate (" |) beziiglich der Ortsbasis heift auch Wellenfunktion ¢ (z").

Unter der Annahme, dass sich die Wellenfunktion wenig iiber die Ausdehnung
des Detektors dndert, erhalten wir aus der Wellenfunktion als Wahrscheinlichkeits-
amplitude die

Wabhrscheinlichkeit fiir
Ortsmessung bei 2’ | = [(2|1p)|*dz’ = |y (2)[*da’, (2.71)
im Interval dz’

mit do’ = A. Das diese Interpretation Sinn macht, zeigt sich in der Wahrschein-
lichkeit, ein Teilchen irgendwo zwischen —oo und oo zu messen:

/ " da () = / " da Wl Yl = () = 1, (2.72)

—00

wobei ||| = 1 normiert sein soll.
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2.7 Translationen

Unser Ziel ist es, die Dynamik von quantenmechanischen Zusténden zu beschrei-
ben. Bevor wir jedoch wirkliche Zeitentwicklung betrachten konnen, miissen wir
verstehen, wie die Verschiebung eines Zustands im Raum realisiert werden kann.

Betrachten wir z.B. einen Zustand, der um ein x’ herum lokalisiert ist. Nun
wollen wir diesen Zustand nach x’ 4+ dx’ infinitesimal verschieben, ohne sonstige
Eigenschaften des Zustands zu dndern. Wir fithren dazu einen Translationsoperator
T'(dx') ein mit der Eigenschaft

T(dx')|x') = |x + dx). (2.73)

Eine mogliche zugelassene relative Phase wihlen wir zu 1. Der Translationsoperator
T'(dx') fiihrt also einen Ortseigenket wieder in einen Ortseigenket — allerdings mit
verschobenem Eigenwert x" + dx’ — {iber. Offensichtlich ist |x") kein Eigenket von
T

Auf einen beliebigen Zustand [¢)) wirkt die Translation wie folgt:

) = T(dx)) = T(dx) / &2/ [ o) = / &1 + dx) (X |p)

= /d3x’|x/><x’ — dx'|y), (2.74)
wobei wir im letzten Schritt eine Variablensubstitution im Integral durchgefiihrt

haben. Wir erhalten also den verschobenen Zustand, indem wir die Wellenfunktion
bei x' — dx’ auswerten:

Urspriinglicher Verschobener

Zustand

Wichtig ist festzuhalten, dass unsere Translation aktiv den physikalischen Zu-
stand verschiebt. (Alternativ wird in der Literatur auch die passive Verschiebung
verwendet, bei der der physikalische Zustand gleich bleibt, aber das Koordinaten-
system um —dx’ verschoben wird.)
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Vom Translationsoperator fordern wir folgende wichtige Eigenschaften. Wegen
Wahrscheinlichkeitserhaltung muss 7" unitér sein. Ist z.B. |¢)) auf 1 normiert, soll
dies auch fiir den verschobenen Zustand gelten:

(Yly) = @I (dx)T(dx") ). (2.75)
Da |¢) beliebig, folgt die Identitat
TT(dx")T(dx") = 1. (2.76)

Wenn wir einen Zustand zweimal verschieben, z.B. um dx’ und dann um dx”, so
soll das gesamte Resultat durch eine Verschiebung beschreibbar sein:

T(dx")T(dx') = T(dx" + dx). (2.77)

Eine Verschiebung um dx’ und dann um —dx’ soll die Identitit sein, d.h.
T(—dx\T(dx') =1, bzw. T~ (dx") = T(—dx'). (2.78)

Und im Limes dx’ — 0 soll die Verschiebung ebenfalls die Identitéit sein:

lim 7T'(dx') =1. (2.79)

dx’—0

Wir wihlen folgenden Ansatz fiir die infinitesimale Translation:

T(dx')=1—iK-dx|, (2.80)
K

mit K = | K3 | einem Vektor von selbstadjungierten Operatoren KZ = K. Mit
K3

diesem Ansatz lassen sich die genannten Eigenschaften priifen.
Gl (2.76): TH(dxT(dx) = (1+4iK'-dx')(1 —iK -dx')

= 1+ <KT - K) Ldx' + O(dx'?)
=0
~ 1. (2.81)

Hierbei arbeiten wir zur Ordnung dx’, da wir von der Darstellung (2.80) auch nur
erwarten, dass sie zur ersten Ordnung richtig ist.

GL (2.77): T(dx"T(dx) = (1 —iK-dx")(1 —iK-dx')
= 1—iK- (dx" + dx') + O(dx'?)
~ T(dx" + dx'). (2.82)

33



Da T(—dx') = T'(dx') und T" unitr ist, folgt Gl. (2.78) automatisch ebenso wie
Gl (2.79). Dies bestétigt den Ansatz (2.80) fiir den Translationsoperator. Damit
kénnen wir eine dufserst wichtige Identitéit ableiten. Wir betrachten

xT(dx")|x') = x|x" + dx') = (X' + dx)|x" + dx) (2.83)
und
T(dx')x|x'y = x'T(dx")|x") = xX'|x + dx'). (2.84)
Also folgt
[x, T(dx)]|x') = dx'|x" + dx') ~ dx'|x"}, (2.85)

wobei wir wieder hohere Ordnungen in dx’ vernachléssigt haben. Da |x’) beliebig
ist, gilt Gl. (2.85) auch als Operatoridentitét: [x, T'(dx’)] = dx'1, bzw.

dx'1l = xT(dx') —T(dx")x =x —iK-dx' —x +iK - dx
= —ixK-dx' +iK-dx'x. (2.86)

Wiéhlen wir dx’ = dz’é; mit Einheitsvektor €; in j-Richtung im Raum, und mul-
tiplizieren wir mit €; von links, so folgt

éi : dX/ 1 = dl’l]léz : éj = dl',]l(;ij
= —Zél -xK- éjdﬂ?/ + 1K - éjdﬂflél’ - X

bzw.

(oder in Kurzform: [z;, K;] = id;;).

Die Grofe K wird Erzeugende der Translationen genannt. Welche physikalische
Bedeutung koénnen wir K zuordnen?

Das Konzept der Erzeugenden von Translationen (im Speziellen bzw. Trans-
formationen im Allgemeinen) ist bereits aus der klassischen Mechanik bekannt.
Phasenraumfunktionen konnen mit Hilfe von kanonischen Transformationen trans-
formiert werden. Die der Translation zugehorige Erzeugende ist der kanonische
Impuls p. Dies wird z.B. bei der Verschiebung einer Funktion f(x) deutlich:

fx)+A{p, f(z)}dx + ...

= (1+{p, - }dz) f(z).... (2.89)
Hierbei haben wir die Poisson-Klammer
0A0B 0A0B
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verwendet, mit deren Hilfe die Erzeugenden-Struktur der kanonischen Transfor-
mation sichtbar wird. In Analogie zur klassischen Mechanik kénnen wir also K
mit dem Impuls p in Verbindung bringen. Aus Dimensionsgriinden benotigt dieser
Zusammenhang jedoch noch einen Faktor der Dimension 1/Wirkung. Wir wéhlen
daher p

K= 7 (2.91)

Ob dies sinnvoll ist, ist letztenendes eine experimentelle Frage. In der Tat ist
GL. (2.91) der von De Broglie gefundenen (experimentell bestétigten) Welleneigen-
schaft von Materieteilchen (z.B. Elektronen) dquivalent, bei der die De Broglie-
Wellenlénge A mit dem Impuls zusammenhéngt:

27

P
Ak

(2.92)

2
Wir kénnen also K mit dem Operator identifizieren, der der Wellenzahl k = TW

entspricht. Der Translationsoperator wird damit
T(dx")=1 — %p - dx/, (2.93)
und wir erhalten aus Gl. (2.88) die Vertauschungsrelation
[z, p;| = ihd;;. (2.94)

Ort und Impuls eines quantenmechanischen Teilchens sind damit inkompatible
Observable, konnen also nicht gleichzeitig scharf bestimmt werden. Thre Varianzen
gehorchen der Heisenbergschen Unscharferelation, die wir aus Gl. (2.31) z.B. fiir =

und p, folgern:
2

(A (Bp)) = (2.95)

Eine weitere wichtige Vertauschungsrelation lisst sich aus den Translationen fol-
gern: betrachten wir zwei Translationen in unterschiedlichen Richtungen, z.B. in ¢
und j-Richtung. Die Reihenfolge der Verschiebungen spielt wegen Gl. (2.82) keine
Rolle:

T(dx")T(dx') = T(dx" + dx') = T(dx")T(dx"). (2.96)
Damit folgt:

0 = [T(ax"), T(dx')] = (—ﬁ) b dx',p-dx] = (—g) o7, s da,
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dz’

> @
AN AN

Az’ = da" ¢; Az’ = da" ¢
) > @

d7’ = da' ¢,

wobei wir dx” = dz"é; und dx’' = dz'é; gewahlt haben. Wegen Beliebigkeit von
dx" und dx’ folgt

[pj, pi] = 0. (2.97)

NB: Die oben genannten Eigenschaften der Translationen definieren eine Grup-
penstruktur: die Gruppe der Translationen. Wenn die Erzeugenden einer Gruppe
kommutieren, so wie in Gl. (2.97), so heifst die Gruppe “abelsch”.

Die Impulsoperatoren sind also jeweils kompatible Observable, d.h. es gibt eine
simultane Eigenbasis |p’), so dass

plp) =p'lp), p eR’ (2.98)

Diese Basis diagonalisiert den Translationsoperator:
T(dx') ') = (1 ~ip dx') p) = (1 e dx') Py (299)

Der Eigenwert ist komplex, was zu erwarten war, da T'(dx’) nicht selbstadjungiert
sondern unitar ist.

Bislang haben wir nur infinitesimale Translationen betrachtet. Eine endliche
Transformation z.B. von x’ nach x” kénnen wir aber aus infinitesimalen Transfor-
mationen zusammensetzen. Sei

x" —x'= Ndx/, (2.100)

im Limes dx’ — 0, N — oo, aber |x” — x'| =const. Dann ist

n . N
Tx"—x) = ]\}gr(l)o T(dx") = ]\;er[l)o (1 — %p : dx’)
i=1

i N
= (1= g =)

= e (—%p«x"—x')), (2.101)
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wobei wir die Limes-Darstellung der Exponentialfunktion verwendet haben.
Zusammenfassend halten wir fest, dass wir aus den Eigenschaften der Transla-
tionen folgende fundamentale Vertauschungsrelationen gefunden haben:

[.Z'i,pj] = 271(5”, [pl,p]] = 0, [[L’i, l‘j] = O (2102)

Diese Struktur ist den klassischen Poisson-Klammern sehr &hnlich. In der Tat
beobachtete P.A.M. Dirac 1925, dass viele quantenmechanische Eigenschaften eines
Systems folgen, wenn man das analoge klassische System kanonisch beschreibt
und dann die Poisson-Klammern durch Kommutatoren (und z und p Koordinaten
durch Operatoren) ersetzt:

{ . }%%[ ;L (2.103)

Diese Ersetzung wird oft als Quantisierung eines klassischen Systems bezeichnet. In
der Tat kann man die Quantenmechanik axiomatisch auf diesen Ersetzungsregeln
aufbauen. Es stoft allerdings auf seine Grenzen, wenn man Systeme beschreiben

will, die kein klassisches Analogon haben wie z.B. Spin—§ Systeme.

2.8 Wellenfunktionen in Orts- und Impulsraum

Beziiglich einer orthonormalen Ortsraumbasis lassen sich allgemeine Zustéande |1))
aufspannen

0) = [ ) wle) = [ arleye) 210

wobei wir die Wellenfunktion als

() = (@'[¢) (2.105)

im (hier wieder der Einfachheit halber 1-dimensionalen) Ortsraum eingefiihrt ha-
ben. In der Tat lassen sich allgemein Ubergangsamplituden in Ortsraumbasis
schreiben; z.B.

(61 iba) = / 4 (|2 ) (&' i) = / d'o} (o ool ). (2.106)

beschreibt die Ubergangsamplitude zwischen zwei Zustinden [;) und [t)5) mit
Hilfe der Wellenfunktionen im Ortsraum. Speziell die Normierung eines Zustands
lautet dann

1= () = / a2 | (') 2. (2.107)
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In gleicher Weise ergibt sich z.B. fiir einen Operator A

(1| Al = / da’ / dz (2f) (o) Al (2", (2.108)

d.h. solche inneren Produkte kénnen bei Kenntnis der Wellenfunktion und der
Matrixelemente (z'|A|z”) im Ortsraum ausgewertet werden. Eine wichtige Ver-
einfachung ergibt sich, falls A = f(x) eine reine Funktion vom Ortsoperator z
ist:

@) = ) o) = Fa )6l = ")
= (WilAlu) = [ ) (2.109)

Es ergibt sich ein einfaches Integral. Verallgemeinerungen auf den 3-dimensionalen
Raum sind trivial.

Nun studieren wir, wie der Impulsoperator in der Ortsraumbasis aussieht; da Ort
und Impuls inkompatible Observablen sind, kann p keine Diagonalgestalt beziiglich
der Ortsraumbasis haben. Wir betrachten erneut infinitesimale Translationen (in
einer Dimension):

T = (1= e ) o) = [ do' @) o) = [ alel + el

_ / a2/ | ! — da| ) = / i/ |V (' — da')
~ / do’|) (1/1(:(:’) - dx’%zb(a:’)) , (2.110)

wobei Terme der Ordnung dz'? wieder vernachlissigt werden. Koeffizientenver-
gleich zur Ordnung dz’ liefert

plo) = [ asle) (=inote)).

0 0
(@'lply) = —ihg— (a'l) = —ihp (). (2.111)

Beziiglich der Ortsbasis kann der Impulsoperator also als ein Ableitungsoperator
dargestellt werden. Ahnlich folgt:

bzw.

bl = [ i) (=in ) ale (I} = (i (e

(2.112)
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Bislang haben wir rein in der Ortsbasis gearbeitet. Es besteht aber zwischen Orts-
und Impulsbasis eine vollstandige Analogie. D.h. beziiglich der Impulsbasis {|p’)}
mit

plp’) = p'lp'), (2.113)

lautet die Darstellung eines Zustands

|w=/wmww5/mwwmx (2.114)

mit der Impulsraumwellenfunktion ¢ (p’) = (p'|¢)). NB: Wir verzichten darauf ein
neues Symbol wie z.B. 1)(p') einzufithren. Es sollte klar sein, dass 1(z') = (2/[2))
und ¢ (p") = (p'|¢) zwei vollig verschiedene Funktionen sein konnen.

Der Zusammenhang zwischen Orts- und Impulsbasis ist in der Ubergangsam-
plitude (2'|p’) codiert. Fiir diese Amplitude ldsst sich eine Differenzialgleichung
ableiten:

/ / a / /
(@'|plp’) = —th< z'|p’)
= p'(2'|p'), (2.115)
d.h. .
('|p') = N ei?'® (2.116)

mit einer noch zu bestimmenden Normierung N. Diese ergibt sich aus

o' —a") = (@]2") = / dp' (') (p'|2") = IN|? / dp'ei? =)
= |N|*22rhd(z’ — 2"), (2.117)

wobei wir die Fourierdarstellung der d-Distribution verwendet haben,

5(z) = / dk i (2.118)

27r

Wihlen wir N positiv und reell, so folgt

1 SR p— (2.119)

V2rh' V2mh
Damit lasst sich der Zusammenhang zwischen Wellenfunktionen in Orts- und Im-
pulsraum formulieren:

N =

ww=wm=/@<w@w J_jwwww> (2.120)
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und dhnlich .

W) = m/dm e (a). (2.121)

Der Basiswechsel ist also eine Fourier-Transformation. Die Verallgemeinerung auf
den 3-dimensionalen Raum ist wieder trivial. Die zugehorigen Bra- und Ketvek-
torrdume faktorisieren und es folgt z.B.

1 4 l.x!
(x'|p’) = WWP : (2.122)

ete.
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3 Zeitentwicklung

Die Quantenmechanik ist eine nicht-relativistische Theorie, in der Zeit und Raum
unterschiedlich voneinander behandelt werden. Insbesondere bleibt Zeit dhnlich
wie in der klassischen Mechanik ein reiner Parameter. Zeit wird nicht zu einem
Operator erhoben.

Damit stoftt die Quantenmechanik an ihre Grenzen, sobald Propagationen oder
Teilchentrajektorien etc. relativistisch werden. Die Vereinigung von Quantenme-
chanik und spezieller Relativitédtstheorie in einer “relativistischen Quantenmecha-
nik” fiithrt in der Tat zu keiner wirklich konsistenten Theorie. Diese Vereinigung ge-
lingt erst, wenn man die Freiheitsgrade eines quantenmechanischen Punktteilchens
aufgibt und zu Feldfreiheitsgraden iibergeht. Dies fiihrt dann zu relativistischen
Quantenfeldtheorien, in denen Orte wieder zu reinen Parametern werden.

Im folgenden beschrinken wir uns auf die nicht-relativistische Quantenmechanik
und wollen die Zeitentwicklung von Zusténden verstehen, sind also auf der Suche
nach dem quantenmechanischen Analogon zum 2. Newtonschen Gesetz.

3.1 Zeitentwicklungsoperator

Sei ein physikalisches System zum Zeitpunkt ¢y in einem Zustand [¢). Im Allge-
meinen erwarten wir, dass es zu einem spéteren Zeitpunkt nicht mehr im gleichen
Zustand ist, sondern in einem neuen Zustand

Fiir die Zeitentwicklung von tq nach ¢ fithren wir einen Operator U(t,ty) ein:
|1, 1) = U(t, )|, o). (3.2)

Die Wahrscheinlichkeitserhaltung der Zeitentwicklung verlangt, dass ein normier-
ter Zustand normiert bleibt:

L= (,tolth,to) = 1=t t) = (W, to|U"(t, t0)U(t, to) [, to).  (3.3)
Da |1, ty) beliebig ist, folgt, dass U unitér sein muss:

Ut(t, to)U(t, to) = 1. (3.4)
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Da eine Zeitentwicklung von t; noch ¢; und dann von t; nach ¢y einer Zeitentwick-
lung von ty nach t, entsprechen soll, gilt

U(tg, to) = U(tQ, tl)U(tl, to), (tg >t > to). (35)
Betrachten wir infinitesimale Zeitentwicklungen,
|w7 tO + dt> = U<t0 + dtu t0)|w7 t0>7 (36)

dann soll U nur infinitesimal von der Identitdt verschieden sein, und im Limes in
diese iibergehen:
lim U(to + dt, ty) = 1. (3.7)
dt—0

Analog zu den rdaumlichen Translationen erfiillt folgende Parametrisierung diese
Eigenschaften:
Ulto + dt,ty) =1 —iQdt (3.8)

mit Q = QF selbstadjungiert (wegen Unitaritéit von U).

Die physikalische Bedeutung von €2 entnehmen wir wieder aus der Analogie zur
klassischen Mechanik: Hier ist die Hamilton-Funktion die Erzeugende der Zeit-
entwicklung, wie man im Vergleich mit den kanonischen Bewegungsgleichungen
sieht:

. OH .

T = o {z,H} (klassisch),

p = —%—H ={p,H} (klassisch). (3.9)
x

Da der Operator €2 in Gl. (3.8) aber die Dimension einer Frequenz triagt, benétigen
wir einen Vorfaktor der Dimension “Wirkung”. Wir wéhlen

was sich nur experimentell verifizieren lasst. In der Tat ist dieser Zusammenhang
vertraut vom Fotoeffekt, bei der die Energie-Frequenz-Relation E = hw nachge-
wiesen wird. Damit wird der infinitesimale Zeitentwicklungsoperator zu

Ulto + dt, to) = 1 — %Hdt. (3.11)
Die klasssiche Hamilton-Funktion ist somit zum selbstadjungierten Operator er-
hoben worden, H = H', welcher die Zeitentwicklung eines Systems erzeugt. Damit

ldsst sich die wichtige Gleichung der Quantenmechanik ableiten, welche die Zeite-
volution von Zustédnden beschreibt.
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3.2 Die Schrodinger-Gleichung

Wir betrachten die Zeitentwicklung eines Systems von ¢y nach ¢ und dann nach
t + dt. Aus Gl. (3.5) folgt infinitesimal

Ut +dt,ty) = U(t+dt,t)U(t,ty) = <]1 - %Hdt) Ult,to).

2

= Ult+dtto) = Ut to) = —3 Hdt U(t to). (3.12)
Im Limes dt — 0 geht die linke Seite (geteilt durch dt) in eine Ableitung iiber:

Dies ist die Schrodinger-Gleichung fiir den Zeitentwicklungsoperator. Sie liegt aller
Zeitentwicklung in der Quantenmechanik zugrunde. Wenden wir Gl. (3.13) auf
einen Zustand zum Zeitpunkt ¢y an, so folgt:

m%U(t,to)w,m = HU(t to)|, to)

S iD= HID), (3.14)

die Schrodinger-Gleichung fiir Zusténde. Allerdings geniigt die Kenntnis der Zeit-
entwicklung fiir den Zeitentwicklungsoperator, d.h. die Losung von Gl. (3.13), um
die gesamte Zeitentwicklung eines Systems abzuleiten. Wir benétigen daher for-
male Losungen des Schrodinger-Gleichung Gl. (3.13). Hierzu betrachten wir drei
Falle:

Fall 1: Der Hamilton-Operator ist zeitnunanbhéngig, H =const. In diesem Fall
kénnen wir U(t,ty) analog zu den endlichen Translationen in Gl. (2.101) konstru-
ieren: sei t — tg = Ndt im Limes N — oo, dt — 0, mit ¢ — ¢ty =const., so folgt:

. N )
im <]1 — 3Hdt) — el (315)

N
U(t.to) = lim [TU(: +dt,t;),= Jim ;
=1

Dies lésst sich auch direkt anhand der Taylor-Entwicklung der e-Funktion verifi-
zieren.

Fall 2: Der Hamilton-Operator ist zeitabhéngig, aber H’s zu verschiedenen Zei-
ten sind kompatibel,
[H(t),H(t")] =0 fur alle ¢t (3.16)

Die formale Losung ist dann

U(t,ty) = exp (—% /t:]-](t’)dt’) : (3.17)
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was sich wieder durch Anwendung der Ableitung auf die Taylor-Entwicklung Ord-
nung fiir Ordnung zeigen lasst.

Fall 3: Der Hamilton-Operator zu verschiedenen Zeiten kommutiert nicht,
1
[H(t),H(t")] # 0 iA. fir t # t'. (Z.B. der Hamilton-Operator eines Spin—a—

Teilchens im Magnetfeld hat einen Anteil H = —p - B = ~°S.Bmit S =
mc

h
50 Falls B = B(t) zeitabhéngig die Richtung #ndert, z.B. B(t,) = Bé, und

B(t') = Bé,, dann kommutieren die jeweiligen Hamilton-Operatoren nicht, weil

Sy Sy] # 0.)
Eine formale Integration von Gl. (3.13) liefert

- t
Ult,ty) — Ulto, to) = —i/ dt' H{t"U(t', to). (3.18)
Es folgt
- t
Ult,t) =1 — % / A H (U, o). (3.19)
to

Diese Gleichung lésst sich iterieren:

Ult,tg) = 1— %/t dt' H(t") (]1 — 7% /tl dt”H(t”)U(t”,tO)>

to to

o0 . n t t t(nfl)
= ]1+Z<—1) /dt’/ dt”---/ dt™WHH ") ... H(t™).
n—1 h to to to
(3.20)

Diese Darstellung wird auch Dyson-Reihe genannt. Sie bildet die Grundlage fiir
zeitabhéngige Storungstheorie und Streutheorie. In den elementaren Beispielen
dieser Vorlesung beschiftigen wir uns weitestgehend mit Fall 1: zeitunabhéngigen
Hamilton-Operatoren.

3.3 Energieeigenzustande

Zum Studium der Zeitabhéngigkeit und Zeitentwicklung eines Zustands [, t) be-
trachten wir eine Basis {|a’)} von Eigenkets eines Operators A, der mit dem
Hamilton-Operator H kompatibel sein soll:

[H, A = 0. (3.21)
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Dann sind die Eigenkets |a’) mit
Ald'y = d'|a") (3.22)
simultane Eigenkets von H, also Energieecigenzustéinde,
Hld") = Eyl|d), (3.23)

mit Energieeigenwert FE,. Hier und im Folgenden seien stets zeitunabhéngige
Hamilton-Operatoren betrachtet. In der Basis {|a’)} ldsst sich der Zeitentwick-
lungsoperator dann wie folgt darstellen:

Ut to) = e~#110=10) Z\a" ) {a|e” #7010 g') a]—Z|a e (t=t0) (g,
/

(3.24)
Sei |1, to) ein Zustand zum Zeitpunkt £, mit

¥, to) = Z\a (@l to) = an to)|a’) (3.25)

C /(to)

mit Entwicklungskoeffizienten c,/. Die Zeitentwicklung liefert zum Zeitpunkt ¢ den
Zustand

b, t) = U(t, to) |1, to) = an,(to)e*%%/@*tona» = cult)|d). (3.26)

/ ’

a a

D.h. die Entwicklungskoeffizienten evolvieren in der Zeit gemafs
Car(t) = cu(ty)e™ i Parli=t0), (3.27)

Das heifst, die Zeitevolution der Koeffizienten besteht nur aus einer Phasendnde-
rung, wahrend die Betréige gleich bleiben. Ein spezieller Fall ergibt sich, wenn der
Anfangszustand ein Energieeigenzustand ist, z.B.

[.to) = [a') = [p,t) = e #F T g, (3.28)

Falls also das System in einem Energieeigenzustand zum Zeitpunkt t, ist, bleibt
es fiir alle Zeiten in diesem Zustand. Man spricht daher auch von stationdren Zu-
standen.

Die zugehorige kompatible Observable A liefert bei Messung zu allen Zeitpunk-
ten den Messwert a’. Eine mit H kompatible Observable kann daher als “Konstante
der Bewegung” betrachtet werden, bzw. als Erhaltungsgrofe.

Daraus ergibt sich folgendes Rezept zur Losung von Zeitentwicklungsproblemen:
finde alle, d.h. einen vollstiandigen Satz, von zueinander kompatiblen Observablen
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A/ B,C,... mit [A,B]=[B,C] =[A,C]=---=0und [H,A] = [H,B] = [H,C] =
-+ = 0. In der zugehdrigen simultanen Eigenketbasis {|K")} = {|d’,V,c,...)}
lautet dann die Zeitentwicklung

e = N7 Ky e BB () (). (3.29)
K/
Damit lassen sich alle Zustande zu allen Zeiten bestimmen.

3.4 Beispiel: Spin-Prazession

1
Als einfaches Beispiel diskutieren wir die Prézession eines Spin-—-Teilchens in

einem konstanten Magnetfeld. Das Teilchen habe ein magnetisches Moment der
Form

e h e
= —g=—-8. 3.30
# mc 20 mc ( )
Der Hamilton-Operator lautet
e h
H=—-u-B=—-—-0-B. 3.31
© 50 (3.31)

Sei B = Be, konstant und homogen:
H=———03B=—-25,, (3.32)
m
d.h. H und S, sind bis auf einen konstanten Faktor identisch
= [H,S.]=0. (3.33)

Es gibt eine simultane Eigenbasis, namlich die |[+) = |S, = +) Basis. Die entspre-
chenden Energieeigenwerte lauten dann

ehB .
Wir definieren die Frequenz
[EE— L
w=——, mit e <0 fir ein Elektron, (3.35)
me
so dass
H=uwSs.. (3.36)
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Der Zeitentwicklungsoperator lautet entsprechend

Ul(t, to) = e~ n5=w(t=t0), (3.37)
Ein beliebiger Zustand |v) lautet in der S.-Basis

) = el+) +e-[=). (3.38)

Sei |y,to = 0) = |7). So ist das System zum Zeitpunkt ¢ im Zustand

v, t) = U(t,0)|y) = cre 2% |4) + e | =), (3.39)
N—— N——
cy (1) c—(t)
weil ho
H|E) = £ |&). (3.40)

Sei z.B. |7) = |+), d.h. ¢, =1, ¢ = 0 in einem spin-up Zustand. Dann bleibt das
System zu allen Zeiten in einem spin-up Zustand, da ¢, (t) = e 2%" = |c, (t)]* = 1
und c_(t) = 0.

Falls aber z.B.

7)) = [Se; +) = ), (3.41)

)+
\/_ V2
verharrt der Zustand nicht stationér im |S,;+) Zustand. Dies lésst sich ablesen

an der Wahrscheinlichkeit, zum Zeitpunkt ¢ mit einem SGaz-Apparat den Zustand
|Sy; £) zu messen:

(Sei k) = HTHI . %<—|] 5o + e

h

COs % fir S = +% (3.42)

= 3.42
sin? wt fiir S/ = 3

h
Wie erwartet ist die Wahrscheinlichkeit S, = +§ zu messen = 1 zum Zeitpunkt

h
t = 0. Hingegen bei wt = 7 ist die Wahrscheinlichkeit S = —7 ZU messen = 1.

w
Die Wahrscheinlichkeiten oszillieren mit der Frequenz 5 Thre Summe ist = 1 wie

es sein soll.
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Der Erwartungswert einer S,-Messung ergibt beziiglich des Zustands |7, t):
(So) = (7, t]S]v, 1)
= S (B + e =]) S ()T + 1)) (e8114) + edr|))

hl/ .. ok
— _ w w — . ‘4
55 (e +e ) 5 cos wt (3.43)

Der Erwartungswert (S,) oszilliert also mit Frequenz w zwischen den beiden Ei-

genwerten :|:§ hin und her. Die Frequenz der Oszillation ist durch die Differenz

der beiden Energieniveaus gegeben:

w= % (3.44)

vgl. Gl. (3.40). Dies ist ein Beispiel fiir Rabi-Oszillationen, die zwischen zwei Nive-
aus unterschiedlicher Energie-Niveaus bei einem geeigneten Zeitentwicklungsope-
rator auftreten kénnen.

h
Im vorliegenden Fall der Spin-Dynamik folgt &hnlich (S,) = 3 sinwt und (S,) =

0. Der Erwartungswert des Spins prazediert also in der (z,y)-Ebene analog zur
Prézession eines klassischen magnetischen Moments.

3.5 Zeitentwicklungsbilder

Wir haben rdumliche Translationen und Zeitentwicklung als Operatoren einge-
fithrt, die Zustandsvektoren in rdumlich oder zeitlich verschobene Zustandsvekto-
ren uberfiihren:

) — U[Y) (3.45)

mit U = T'(dx) oder U = U(t, o). Da der Zustandsvektor ein System beschreibt,
bedeuten diese Verschiebungen eine tatsichliche (“aktive”) Anderung des Systems.
Wenn wir allerdings Ubergangsamplituden betrachten, fillt die Verschiebung wie-
der heraus, wenn der zugehorige Operator unitér ist:

(V1]aha) — <¢1|@|¢2> = (11 [12). (3.46)

=1

Betrachten wir allerdings ein Produkt der Form

(V1| X [thg) — (%WTXZ/{WQ) (3.47)

mit beliebigem Operator X, dann lédsst sich dies in zwei verschiedenen Weisen
lesen:
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Zugang 1 “aktiv’™

Zustande werden verschoben, Operatoren bleiben fest, (3.48)
) — UlY), X — X. (3.49)

Zugang 2 “passiv’:

Zusténde bleiben fest, Operatoren werden verschoben, (3.50)
[v) — |¥), X —U'XUu. (3.51)

Zugang 2 mag zunichst kiinstlich erscheinen; denn z.B. bei einer Translation ver-
schiebt sich nicht der Zustand, sondern es verschiebt sich z.B. der Ortsoperator
(und die zugehorige Basis der Eigenvektoren), der eine Messapparatur symboli-
siert:

Beispiel: Infinitesimale Translation

Zugang 1: |¢) — <1 - %p : dx') V), x—x,
Zugang 2 |) = [),
x — T dx)xT(dx') = (1 + %p : dx’) X (1 ——p- dx’)

=x+ % [p - dx',x] + O(dx)
=x+dx'l. (3.52)

Per constructionem ist klar, dass die Werte von Wahrscheinlichkeitsamplituden etc.
nicht von der Lesart 1 oder 2 abhéngen. Die Transformationen als aktiv oder passiv
aufzufassen ist also ohne physikalische Bedeutung. Wir sprechen also lediglich von
unterschiedlichen Bildern der Zeitentwicklung.

Zugang 2 ist deswegen interessant, weil er eine direktere Anndherung an den
klassischen Grenzfall erlaubt. In der klassischen Physik sprechen wir nicht von
Zustéanden. Translationen in der klassischen Physik d&ndern z.B. die Ortskoordinate
x eines Systems, verschieben also diese Grofen, die in der Quantenmechanik durch
Operatoren repréasentiert werden.

Fiir den Fall von Zeitentwicklung U = U(t,ty) sprechen wir von Zugang 1 als
Schrédinger-Bild und von Zugang 2 als Heisenberg-Bild.

Sei ohne Beschriankung der Allgemeinheit (oBdA) ¢, = 0. Beschridnken wir uns
auf zeitabhéngige Hamilton-Operatoren, so lautet der Zeitentwicklungsoperator:

U(t) = U(t, tg = 0) = e 1, (3.53)
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Zu einer gegebenen Observable A®) = A im Schrédinger-Bild definieren wir die
Observable im Heisenberg-Bild geméafs Zugang 2:

AW (@) = UT () ABU(1). (3.54)

Zum Zeitpunkt to = 0 stimmen beide Bilder iiberein, d.h. AT (0) = A®) . Zu einem
spateren Zeitpunkt hat sich im Schrodinger-Bild der Zustand aus dem Anfangszu-
stand heraus entwickelt,

|, ) = U(t)Jih, to = 0), (3.55)
wahrend der Heisenberg-Zustand gleich bleibt,
[, )1 = [, b0 = 0) = |). (3.56)
Per constructionem sind allerdings Erwartungswerte bildunabhangig:
S, 1A, ) = (.t = 0[UT ) APT (D)) = (0,1 AWy, ). (3.57)

Im Heisenberg-Bild muss nun die Zeitentwicklung anhand der Operatoren studiert
werden; sei A = A®) explizit zeitunabhingig:

d 0 0 0
— AW = — (UT()AU(t)) = = U AU(t) + UT (1) AUt
SAW@) = 2 (U0AU() = S U AU() + U ASU()
1 1
= ——UHA®U + —UTA® U
ih ih
1 1

— __—qt T A(5) il Sy (C)) T

mUHUUA U—i-mUA UU'HU
=AM (1) =AM ()

:-%MWWLWHW, (3.58)
wobei wir die Schréodinger-Gleichung und ihr komplex Konjugiertes verwendet ha-
ben: 9 5

i@#MwZHU@,—w%#NwZUWML H=H' (3.59)

Da wir den Hamilton-Operator als zeitnunanbhéngig annehmen, gilt
U'HU = U'UH = H, (3.60)

dass heift, der Hamilton-Operator im Heisenberg-Bild in Gl. (3.58) ist gleich dem
entsprechenden Operator im Schrodinger-Bild.

UHU =H® = H. (3.61)
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Damit erhalten wir die Bewegungsgleichungen fiir Heisenberg-Operatoren:

d
9 A —
AT ()

7

z [A(H) (t),H], Heisenberg-Bewegungsgleichungen. (3.62)

Diese Gleichung ist vollstandig analog zur Bewegungsgleichung im Hamilton-Forma-
lismus der klassischen Mechanik. Wihlen wir z.B. A™ = 2 (¢), so erhalten wir

d
) = =
i (t)

(), H], ™) =

?

h

0

P H o (3.63)

fiir paarweise jede Ortsraum-/Impulsraumkomponente. Ersetzen wir die Kommu-
tatoren durch Poisson-Klammern,

- ﬁ[ ) ] — { ) }Poisson; (364)

so erhalten wir die klassischen kanonischen Bewegungsgleichungen. Die Ersetzung
Gl (3.64) kann man als klassischen Limes der Quantenmechanik betrachten.
Wihrend der klassische Limes allerdings nur Sinn macht fiir Phasenraumobser-
vable, A" = A® (z p), gilt die Heisenberg-Bewegungsgleichung Gl. (3.62) auch
fiir Observable ohne klassisches Pendant, z.B. fiir die Zeitentwicklung des Spins.

3.6 Freies Teilchen und Ehrenfest-Theorem

Da die Quantenmechanik grundlegender ist als die klassische Mechanik, kénnen
wir letztere aus ersterer folgern — nicht ungekehrt; somit beschreibt Gl. (3.17)
die richtige Richtung und nicht Gl. (2.103). Um ein quantenmechanisches System
zu definieren, kénnen wir uns aber von der Analogie zur klassischen Mechanik
leiten lassen. Eine klassische Hamilton-Funktion kénnen wir z.B. zum Hamilton-
Operator erheben, indem wir die Phasenraumvariable z und p durch Operatoren
ersetzen, die den fundamentalen Kommutatoren Gl. (2.102) gehorchen. (Dies muss
allerdings nicht immer eindeutig sein; verschiedene Umordnungen von Operatoren
kénnen zu verschiedenen physikalischen Systemen fiihren.)

In Analogie zur klassischen Mechanik definieren wir also den Hamilton-Operator

eines freien Teilchens: )
= (3.65)

- 2m’
wobei m die Masse des Teilchens bezeichnet. Fiir die folgenden Rechnungen be-
nutzen wir die in den Ubungen gezeigten Regeln:

(2 F(p)] = magﬁ s Gl = —in 22, (3.66)
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Wir arbeiten nun im Heisenberg-Bild, lassen aber das Superskript (H) weg, und
studieren die Zeitentwicklung von x und p:

Enilt) = —{pi H] =0 (367

d.h. p ist eine Bewegungskonstante
pi(t) = pi(to) = const. (3.68)

Fiir den Ortsoperator im Heisenberg-Bild folgt:

alpey — __. CH] = __. 2
dtxl(t) h[xw ] 2mh[x“p]

o 7 . 8 2 Pi

 2mh Zhapip m

— :
Die Losung von Gl. (3.69) lautet
i (T
1) = mit0) + PV 4 py) (3.70)

Dies dhnelt der klassischen Trajektorie eines freien Teilchens, beschreibt aber die
Zeitentwicklung von Operatoren. So gilt z.B., dass zwar Ortsoperatoren zu gleichen
Zeiten kompatibel sind,

[zi(to), z;(t0)] = 0, (3.71)

dass aber zu verschiedenen Zeiten Inkompatibilitdten entstehen:

e astto)] = [atto) + PV 1ty 1) = T gt 1)
_ —m(tn: o), (3.72)
Dies impliziert eine Unschéarfebeziehung,
((Azi (1)) ((Azi(to))?) > 4h—m2(t — o). (3.73)

Dies zeigt: Selbst wenn das freie Teilchen zum Zeitpunkt ¢y = 0 sehr gut lokalisiert
war, wird seine Ortsbestimmung mit der Zeit unscharf. Das zugehorige Wellenpaket
“zerfliekst” also.

52



Betrachten wir nun zusétzlich ein Potential V (x),

2

H= 2p—m +V(x), (3.74)

Nun ist der Impuls keine Konstante mehr,

d i i IV (x)
—pi(t) = —=Ipi, H = —=|p; =— =— . .
Tl = —lp H) = £ V0 = =5 == (VW) (379
Fiir den Ortsoperator gilt weiterhin
—xi(l) = : 3.76
Cai(r) = 2 (3.76)
so dass wir folgern kénnen, dass
d2

Dies ist das quantenmechanische Analogon des 2. Newtonschen Gesetzes im Heisen-
berg-Bild. Bilden wir nun Erwartungswerte, so wird das Resulat Bild-unabhéngig,
2

d
m (x(t)) = ~(VV(x)). (3.79)

Hierbei haben wir angenommen, dass der Zustand zeitunabhéngig ist. Dies ist das
Ehrenfest-Theorem. Die Gleichung ist “hA-frei” und beschreibt die zeitliche Ent-
wicklung des mittleren Ortes z.B. eines Wellenpakets. Die Gleichung ist dennoch
nicht vollstédndig klassisch, denn i.A. gilt (VV(x)) # VV((x)). Die Zeitentwick-
lung des Erwartungswerts des Ortes ist also i.A. nicht gleich der Trajektorie eines
klassischen Teilchens. Die Unterschiede sind rein quantenmechanisch. Betrachten

wir also die rechte Seite des Ehrenfest-Theorems im Ortsraum beziiglich eines
Zustands [1),

(VW) = (GIVVE)l) = / &2 (XY (X |VV () [)
- / 0y () TV (3 ()
= /de’\w(X’)IQVV(X’). (3.80)

Wenn wir annehmen, dass 1(x’) nun stark lokalisiert ist, so dass sich VV(x') {iber
die Ausdehnung des Wellenpakets wenig éndert, so konnen wir nahern:

(VY (x)) ~ VV () / B |2 = YV (%), (3.81)
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wobei x’ den Ort bezeichnet, um den 1(x’) lokalisiert ist. Mit gleichen Argumenten
gilt x’ ~ (x) aufgrund der angenommenen Lokalisierung. Damit erhalten wir das
2. Newtonsche Gesetz als Grenzfall der Quantenmechanik:

d2
e (x(1) = =TV ({x)), (3.82)

und koénnen die klassische Koordinate x(¢)]i. als quantenmechanischen Erwar-
tungswert interpretieren.

NB: Die oben geforderte starke Lokalisiserung ist nicht unproblematisch, da
wegen der Unschéarfebeziehung der Impuls unscharf und damit nicht-klassisch wird.
Neben der Forderung der Lokalisierung auf Skalen, auf denen sich V(x) wenig
andert, muss also noch angenommen werden, dass die typischen Teilchenimpulse
sehr viel grofer als die durch die Lokalisierung bedingte Impulsunschérfe sind. Erst
dann ergibt sich quasi-klassisches Verhalten.

3.7 Schrodinger-Gleichung im Ortsraum

Wir haben die Schrodinger-Gleichung als Differenzialgleichung fiir den Zeitent-
wicklungsoperator kennengelernt, vgl. Gl. (3.1),

0 i

bzw. in Anwendung auf einen beliebigen Zustand |1, to) mit |, t) = U(t, to)|1, to):

0 ?
ah/},t) = —ﬁH|w,t>. (3.84)

Wir wollen nun eine Darstellung der Schrodinger-Gleichung fiir die Wellenfunktion
im Ortsraum ableiten,

P(x' 1) = (x'[v, ). (3.85)
Dazu spezialisieren wir uns an dieser Stelle auf Hamilton-Operatoren vom Typ
H = p_2 + V(x), (3.86)
2m

welche ein quantenmechanisches Teilchen der Masse m in einem Potenzial V' (x)
beschreiben. Das Potenzial sei selbstadjungiert wegen der geforderten Selbstadjun-
giertheit von H. Da V nur von x abhéngt, ist V' im Ortsraum diagonal:

X' |V|x") = V(xX')(X'|x") = V(x')o(x — x"). (3.87)
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Projezieren wir Gl. (3.84) also auf den Ortsraum, so erhalten wir

0
K| gelt) = GHY

2
= Gt = K2 )+ IVl )
= z'hgw(x’ t) = —h—QVQw(X’ t)+ V()X 1) (3.88)
ot ' 2m ’ e
Dies ist die zeitabhéngige Schrédinger-Gleichung fiir die Ortsraumwellenfunktion.
In vielen Darstellungen der Quantenmechanik bildet Gl. (3.88) den Startpunkt
der Quantenmechanik als Wellenmechanik. Wie in Abschnitt 3.3 diskutiert, ist die
Zeitentwicklung eines Zustands besonders einfach, wenn er Energieeigenzustand
des Hamilton-Operators ist:

Hlyg) = ElYs), = [bp,t) = e 78 yp), (3.89)

wobei |Ygp) = |[Yg,to = 0) als Anfangsbedingung gewéhlt wurde. Fiir solche sta-
tiondren Zustdinde vereinfacht sich also die Schrodinger-Gleichung Gl. (3.88); sei

dazu ¢(x',t) = (X'|vp,t) = wE(x/)e*%Et, Vp(x') = (X'[¢p), so folgt

Bup(x) = —5 V() + V()0u(x). (3:90

Dies ist die zeitunabhdingige Schriodinger-Gleichung. Mit anderen Worten: (x’, t)
= wE(X’)e’%Et stellt einen Separationsansatz fiir die zeitabhéngige Schrodinger-
Gleichung dar.

In den folgenden Kapiteln wollen wir die Schréodinger-Gleichung anhand einfa-
cher Beispiele naher diskutieren.

3.8 Zusammenfassung: Axiome der
Quantenmechanik

Mit diesen einleitenden Abschnitten haben wir die Grundlagen der Quantenme-
chanik gelegt und die notwendigen Rechentechniken eingefiihrt. Die Axiome haben
wir z.T. anhand von physikalischen Beispielen motiviert und begriindet. Wir fassen
die Axiome der Quantenmechanik daher hier noch einmal zusammen:

1. Zustand: Ein physikalisches System zu einem Zeitpunkt ¢g wird durch einen
Zustandsvektor |, tg) beschrieben. Die Menge aller méglichen Zustédnde ei-
nes Systems bildet den Zustandsraum des Systems, der mathematisch einem
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i.A. komplexen Hilbertraum H entspricht. Zustandsvektoren, die sich nur
um einen von Null verschiedenen Faktor unterscheiden, beschreiben densel-
ben Zustand.

(NB: Zusténde entsprechen also Strahlen im Hilbertraum. Mit der Aquiva-
lenz von Zustandsvektoren, die sich nur um einen Faktor unterscheiden, kann
man den Zustandsraum mathematisch auch als projektiven Hilbertraum auf-
fassen.)

. Observable: Jede physikalische Messgrofse (Observable) entspricht einem li-
nearen selbst-adjungierten Operator A, der auf die Zustédnde im Hilbertraum
wirkt.

(NB: Diese Operatoren haben ein reelles Spektrum, d.h. die Eigenwerte sind
reell. Das Spektrum kann aus einem diskreten Anteil (abzéhlbares Punkt-
spektrum, z.B. quantisierte Energieniveaus) und aus einem Kontinuum (z.B.
ein Kontinuum von Orts- oder Impulskoordinaten) bestehen.)

. Messresultat: Resultat der Messung einer physikalischen Grofe kann nur
einer der Eigenwerte des entsprechenden Operators A sein. Die Messung einer
physikalischen Grofe fiihrt zu einer Projektion des Zustandsvektors auf den
entsprechenden Eigenzustand des Operators.

(NB: Bei kontinuierlichem Spektrum des Operators ist das Messresultat in
der Praxis eine messbare Menge oder Intervall aus dem Kontinuum; z.B.
fithrt eine Ortsmessung eines Teilchens auf eine Lokalisierung in einem Orts-
intervall im Rahmen der Messgenauigkeit. Der Zustand nach der Messung
ist dann eine Uberlagerung von Eigenzustinden des Ortsoperators, die Ei-
genwerten in diesem Intervall entsprechen.)

. Messwahrscheinlichkeit: Wenn die Messgrofse mit Operator A an einem
System im Zustand [¢)) gemessen wird, ist die Wahrscheinlichkeit P(a’), den
Eigenwert o’ von A zu erhalten P(a’) = [(d'|1))|?, wobei |a’) der zugehori-
ge Figenvektor ist, und die Eigenvektoren und Zustandsvektoren auf eins
normiert sein miissen.

(NB: Hier sei angenommen, dass der Operator A diskretes nicht-entartetes
Spektrum hat. Bei kontinuierlichem Spektrum muss die Wahrscheinlichkeit
fiir ein Intervall [, @'+ da'] berechnet werden, was durch die Wahrscheinlich-
keitsdichtefunktion |(a’|4))|* gegeben ist. Bei Entartung muss beriicksichtigt
werden, dass es mehrere FEigenvektoren geben kann, die den gleichen Eigen-
wert haben.)

. Zeitentwicklung: Die Zeitentwicklung eines Zustandsvektors wird durch
den Zeitentwicklungsoperator U (t, ty) beschrieben. Der Zeitentwicklungsope-
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rator ist unitar und erfiillt die Schrédinger-Gleichung Gl. (3.2), wobei H der
der Energie eines Systems zugeordnete Operator ist.

(NB: Die Zeitentwicklung eines Zustandsvektors ist also gegeben durch |1, t) =
U<t7 tO) W]v tO))

In quantenmechanischen Systemen mit mehreren (identischen) Teilchen werden
die Axiome noch ergénzt durch Aussagen zum Spin und zum Pauli-Prinzip. In der
relativistischen Quantenfeldtheorie kénnen diese Zusétze begriindet werden, sie
sind aber bereits in der nicht-relativistischen Quantenmechanik notwendig zum
Verstandnis von Vielteilchensystemen. Wir werden darauf zu gegebener Zeit zu-
riickkommen.

Je nach Interpretationsansatz des quantenmechanischen Messprozesses konnen
die Axiome zur Messung auch anders formuliert werden. Die hier gegebene Formu-
lierung entspricht der Kopenhagener Interpretation, die in der Praxis am h&ufig-
sten verwendet wird. Die mathematische Struktur der Quantenmechanik ist jedoch
unabhéangig von der Interpretation.
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4 Eindimensionale Systeme

Im Folgenden werden die Losungen der stationdren Schrédinger-Gleichung fiir ein-
dimensionale Systeme untersucht. Diese liefern nicht nur interessante Modellsy-
stem, mit deren Hilfe grundlegende quantenmechanische Phénomene studiert wer-
den konnen; viele physikalische Systeme sind aufgrund von Symmetrien praktisch
eindimensional.

Wir betrachten also die eindimensionale stationére Schrodinger-Gleichung (3.90):

h2
EYp(zr) = —%azw];(x) + V(x)p(x) (4.1)
: (o . : . .
mit d, = —. Hier und im Folgenden lassen wir den Strich an der Koordinate

ox

x weg, da wir rein im Ortsraum arbeiten werden und somit kein Ortsoperator x
mehr auftaucht.
Mit der Abkiirzung

2
K(x) = S5 (B~ V() (42)
folgt die kompakte Form
O*Yp(z) + K (2)Yp(x) = 0. (4.3)

Eine explizite Losung lésst sich natiirlich nur nach Vorgabe eines Potentials V (z)
konstruieren. Im Folgenden seien aber einige allgemeine Eigenschaften der Lésun-
gen diskutiert.

4.1 Eigenschaften der stationaren
Schrodinger-Gleichung

Weil H selbstadjungiert ist, muss im Ortsraum V'(z) reell sein. Wenn ¢ g(z) nun
eine komplexe Losung der Schrédinger-Gleichung ist, dann sind Real- und Imagi-
narteil jeweils separat Losungen der Schrodinger-Gleichung. Wir kénnen uns also
im Folgenden auf rein reelle Losungen beschranken.

Nicht alle Losungen von Gl. (4.1) oder Gl. (4.3) sind physikalisch akzeptabel.
Die Wahrscheinlichkeitsinterpretation der Quantenmechanik fordert, dass ¢g(x)
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normierbar ist, d.h.

/ d [ ()2 < oo, (4.4)
Die Ortsraumwellenfunktion ¥ g(x) muss also zu den quadratintegrablen Funk-
tionen gehdren (mathematisch: ¢p(x) € Ly(R)). Mehr noch, da |[¢p(2)|*Az die
Aufenthaltswahrscheinlichkeit am Ort z im Intervall Az angibt, darf ¢)g(x) nicht
singulér sein.

Unter der Annahme, dass V(z) nur endliche Diskontinuitdten (“Stufen”) vor-
weist, aber ansonsten stetig ist, folgt, dass ¥ g(x) und 0,1 g(x) iiberall stetig sind,
denn: Sei ¢g(x) stetig bis auf endliche Diskontinuitéten, dann ist die zweite Ab-
leitung

Ozve(r) = —k*(2)Yp(2) (4.5)
integrierbar und 0,9 g(x) demnach stetig. 0,1 g(x) ist folglich ebenfalls integrierbar
und ¢ (z) folglich differenzierbar (die Annahme ist also selbst-konsistent).

Die Differenzierbarkeit von v (z) ist wichtig, wenn Teillésungen in Intervallen
I C R aneinandergehéngt werden sollen, um auf R eine Gesamtlosung zu erhalten.

Hat V() unendliche Diskontinuitéten (unendlich hohe Potentialwéinde), ist nur
noch ¢ (z) tiberall stetig und 0,¢g(z) hat endliche Diskontinuitéten.

Die Losungen haben unterschiedliche Eigenschaften je nachdem, ob

2m
E>V(r) = k()= ﬁ(E —V(z)) >0, oder (4.6)
E<V(r) = k(z)<o. (4.7)
In der klassischen Mechanik kann ein Teilchen in einem Potential V' (z) nur E >
V' (z) haben, d.h. es kann sich nur bei z-Werten aufhalten, wo seine Gesamtenergie
E >V (z) ist. Die Punkte zy mit £ = V(xy) heifen klassische Umkehrpunkte.

Vix)a

1N /

Betrachten wir nun quantenmechanisch den klassisch erlaubten Bereich

E>V(z) < K(z)>0,
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dann haben 02tz (x) und ¥p(r) wegen
Orvop(w) = —k*(2)vp(z) (4.8)

immer entgegengesetztes Vorzeichen, d.h. die Wellenfunktion ist im klassisch er-
laubten Bereich immer zur z-Achse hin gekriimmt. Nullstellen sind somit Wen-
depunkte, so dass Wellenfunktionen im klassisch erlaubten Bereich oszillatorisch
sind.

Vi
A

7N

NS

Im einfachen Fall V(z) =V = const. folgt fiir
E>V: 9p)=ae™ +a e (4.9)

mit durch die Randbedingungen festzulegenden Koeffizienten a.. (Rein reelle Lo-
sungen erhélt man durch separate Betrachtung des Real- und Imaginérteils von
Gl (4.9).)

An den klassischen Umkehrpunkten zy mit £ = V(xy), wo k*(zy) = 0, hat
Yp(z) wegen 021 (x) = 0 einen Wendepunkt, der nicht zwingend auf der z-Achse
liegen muss.

Im klassisch verbotenen Bereich

E<V() < k(z)<0

gibt es in der Quantenmechanik keinen Grund, warum ¢ (z) immer verschwinden
muss, d.h. ein quantenmechanisches Teilchen kann auch dort endliche Aufenthalts-
wahrscheinlichkeit haben. Wegen Gl. (4.8) haben g (z) und 92¢x(z) in klassisch
verbotenen Bereichen das gleiche Vorzeichen. Die Losungen sind also von der z-
Achse weg gekriimmt:

Diese Eigenschaft zusammen mit der Normierbarkeitsforderung fiihrt zu starken
Einschrankungen an die Losung. Z.B. fir V(z) = V = const. fur = > z, folgt fiir
FE <V die Losung

Yp(r) = pre™ 4+ e, x> xg (4.10)
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mit k = ﬁ(‘/ — F), k* = —k* Normierbarkeit erzwingt nun 3, = 0, so dass
Yp(x) im klassisch verbotenen Bereich exponentiell abfallen muss.

Fiir typische Potentialprobleme mit der Eigenschaft lirf V(z) — oo haben wir
T—r00

somit schon einen qualitativen Eindruck von moglichen Wellenfunktionen:

4.2 Knotensatz

Obige Betrachtungen lassen sich u.a. mit dem Knotensatz quantitativ fassen. Dazu
definieren wir die Wronski-Determinante fiir zwei Losungen der zeitunabhiangigen
Schrodinger-Gleichung geméfk:

W (g, Ym,) = e Vg, — Ve Ve, (4.11)
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wobei der Strich die Ortsableitung bedeutet, /) = 9,1 g (x). Per Annahme erfiillen
Yp, , die Schrédinger-Gleichung

By () = ~ 10 () + V() () (4.12)
Nun gilt:
W' = W, + Ymth, — Ve, — YU,
= Y, — Y un,
= D (V@) ~ B, — e, (V) — B,

2m
Sei nun F; < E5 und seien x; und x5 zwei benachbarte Nullstellen der Losung ¢p,
mit Y, (1 <z < x9) > 0.

¢E2

Die Integration der Ableitung der Wronski-Determinante liefert

/I2 dx W' = W) — Wi(x1) = ¥, (21)¢m, (11) — U, (22)105, (22)
L B -m | A, (2, (7). (4.14)

Fiir die betrachtete Losung gilt (unter Ausschluss von ¢y, (212) = 0, siche unten):

2m  [*?

7//131(551) Vi, (1) _lel(iU2)¢Ez($2) =75 dr (Ey — Ea)p, (7) ¥i,(2). (4.15)

Diese Gleichung wire also nicht zu erfiillen, wenn ¢ g, (x) im Intervall [z, o] ent-
weder nur positiv oder nur negativ ware. D.h. ¢ g,(x) muss zwischen z; und x,
eine Nullstelle (“Knoten”) haben. Dies gilt fiir jede Losung mit Ey > Fj.
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Der Einfachheit halber betrachten wir fiir die folgenden Uberlegungen ein Poten-
tial mit beliebiger Form (ohne Singularitidten) zwischen L; und Ly aber unendlich
hohen Wanden bei L; und L. Dies kann als Idealisierung von allgemeinen Poten-
tialen mit V' (Jz| — oo) verstanden werden.

AV (2) AV (z)

> T

Ly L,

Die unendlich hohen Potentialwénde zwingen die Wellenfunktion bei L; o auf
Null, ¥g(L12) = 0, d.h. die Schréodinger-Gleichung ist in diesem Fall ein Rand-
wertproblem mit Dirichlet-Randbedingungen

Eyp(z) = Hp(x), (L) =¥p(Ly) = 0. (4.16)
Partielle Ableitung nach E liefert:
_ OYp(x)

Ho =g+ Fo, o) = “L, (1.17)
Wegen Gl. (4.17),
Eo— -1y iy o _2m E-V
VYp + ¢——%¢ +V(r)p, = ¢ _—§(¢E+( - )¢)7

liefert die Ableitung der Wronski-Determinante von ¢ und g nach x,

W (¢, 9p) = (Wpd —pd) =Y’ —
2 2
= — (R + (B~ V)ouu) + T3 (B = V)i
2

Anstelle des Randwertproblems GI. (4.16) betrachten wir zundchst das Anfangs-
wertproblem
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wobei der Wert von ' wegen Linearitdt der Schrodinger-Gleichung irrelevant ist.
Fiir generisches £ € R liefert eine Integration von Gl. (4.19) zwar eine Losung
des Anfangswertproblems, die jedoch i.A. nicht ¥ g(Ly) = 0 erfiillt, d.h. nicht das
eigentliche Randwertproblem Gl. (4.16) 16st. An dieser Stelle kénnen wir bereits
erwarten, dass eine Losung des Anfangswertproblems Gl. (4.19) nur fiir ganz spezi-
elle Werte von E auch eine Losung fiir das eigentliche Randwertproblem Gl. (4.16)
ist. Diese speziellen Werte sind die Eigenwerte E des Hamilton-Operators H. Die
Reduktion von F € R auf spezielle bzw. diskrete Werte von E entspricht der
“Quantisierung der Energieniveaus” eines Systems.

Wir integrieren nun Gl. (4.18) von L; bis zu einem Ort xo(FE) > L, wo g
erstmalig verschwindet, (dabei beachten wir, dass ¢(L;) = 0 ist, weil ¢g(Ly) = 0
fir alle £ gilt):

| e Wi6.vr) = ved' — |
= Vg(r2) ¢'(v2) — Yp(2)P(72) — YE(L1) ¢'(L1) + Yi(L1) ¢(L1)
—— —— ——

=0 =0 =0
= —tpp(w2)(x2) Gl (4.18) _2h_”; Lm dx w%(l‘),
> peaB)on(E) = 57 [ vk >0, (1.20)

mit F € R beliebig. (NB: Gl. (4.20) besagt, dass ¢;(x5) # 0, siche oben).
Fiir ¢p > 0 im Integrationsgebiet folgt

Fiir v < 0 im Integrationsgebiet folgt

Up(a2) >0 = @(z2) > 0. (4.22)
Wegen
Upean(m(B) = el E) + DE A+ O(AF?) = p(ay(E))AE  (4.23)
T 9L
a =¢(z2(E))

wandert also in beiden Féllen mit abnehmender Energie die Nullstelle zo(F) nach
rechts:

Angenommen, der Grundzustand verschwinde nicht nur bei L; < Lo, sondern
habe dazwischen einen Knoten xk, L1 < xx < Lo. Nun verringern wir die Energie
E, so wandert der Knoten nach rechts. Bei stetiger Verringerung von E wird

64



~ wE—|AE| (m)

Ve(r)

> T
Ly \

irgendwann xkx = Lo gelten. Dann hétten wir eine Losung des Randwertproblems
mit kleinerem FE' als der vermeintliche Grundzustand gefunden.

Damit folgt: der Grundzustand kann keinen Knoten haben!

Ahnlich lsst sich zeigen, dass der erste angeregte Zustand einen Knoten hat
usw. D.h., der n-te angeregte Zustand hat n Knoten.

NB: der Knotensatz gilt auch fiir allgemeinere Potentiale mit V' (|z| — o0), nicht
nur fiir den hier betrachteten Spezialfall mit unendlich hohen Wéanden bei L; und
Ly. Die Dirichlet-Randbedingungen werden dann an den klassischen Umkehrpunk-
ten durch Anschluss-Bedingungen ersetzt

Ly

V(L —¢) = Yp(Li +¢) und (L) —€) = (L +¢)

und ebenso fiir Ly. Die Steigung bei L; und Ly ergibt sich wiederum indirekt
aus der Normierbarkeitsforderung.
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4.3 Barrieren

Wir betrachten nun die zeitunabhéngige Schrédinger-Gleichung fiir eine Potenti-
alstufe

2
EYp(zr) = —;—m(?iwp;(x) + V(x)p(x) (4.24)
mit
0 fi 0,
Viw) = {v >0 fﬂi i i 0. (4.25)
T V()
> T

Fiir ein von links nach rechts einfliegendes Teilchen gilt klassisch:

Vi I~ v
n R out , V(l’)
Vin
s
<« °
Uout
> X

Fir F < V kann das Teilchen in den Bereich x > 0 nicht vordringen. Das
Teilchen wird klassisch also reflektiert.

Fir £ > V fliegt das Teilchen klassisch iiber die Stufe hinweg. Fiir x > 0 ist
wegen Energieerhaltung seine Geschwindigkeit kleiner.

Quantenmechanisch ergibt sich ein anderes Bild: Fiir V' = const. fanden wir in
Gl. (4.9) die Losung

. , 2
E>V: yYpr)=ae™ +a e ™ | = h—?(E - V). (4.26)
Beriicksichtigt man die Zeitabhangigkeit,
U(x,t) = Yg(x)e BV dh e*r — eii(%tfk‘r), (4.27)

so wird deutlich, dass e**® eine nach rechts laufende Ebene Welle beschreibt, die

im Folgenden unseren Teilchenstrom darstellen soll.
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Fir F > V erwarten wir einen durchlaufenden “transmittierten” Anteil, lassen
aber auch einen reflektierten Anteil zu. Losungsansatz ist daher

. . 2
ae +a e fire <0, p= R—?E
Ye(r) = o (4.28)
Bettr firz >0, k= ﬁ(E - V).

Da der Potentialsprung endlich ist, muss ¢g(z) bei x = 0 stetig differenzierbar
sein:

lim (Yp(x —€) —vp(r+e)=0 = ar+a_ =7,

e—0

lim (Yp(x —e) = +e€) =0 = play —a_)=kps. (4.29)

e—0

Da «, unsere einlaufende Anfangsbedingung charakterisiert, 16sen wir nach a_
und [ auf:

p—k _2p
= p+ka+’ £ = p+ka+'
In der Tat lassen sich die Anschlussbedingungen nur erfiillen, wenn es auch eine
reflektierende Komponente gibt, a_ > 0 fiir V' > 0. Normieren wir o, = 1,
so entsprechen a_ dem Reflexions- und 5 dem Transmissionskoeffizienten 0 <
a_,f<1firV >0.

Wichtig: Nicht das Teilchen, sondern nur seine Wahrscheinlichkeitsamplitude
spaltet sich auf! Bei einer Ortsmessung findet man das Teilchen entweder links
oder rechts.

Fiir ein Teilchen mit Energie F < V gilt links von der Stufe z < 0 der gleiche
Losungsansatz wie in Gl. (4.28), die Losung rechts der Stufe haben wir bereits in
Gl. (4.10) gefunden:

(4.30)

. . 2
a e +a e flire <0, p= h—ZLE
Yp(r) = o (4.31)
pe " fir x >0, kK = ﬁ(V—E).
Stetige Differenzierbarkeit bei x = 0 fiihrt auf die Bedingungen
ay +a_. = B?
play —a ) = ikfS. (4.32)
Da a; wiederum die Anfangsbedingung charakterisiert (normiert mit |ay| = 1),
16sen wir nach o und S auf:
D — 1K 2p
_ = = . 4.33
“ p+iﬁa+’ B p+mo‘+ (4.33)
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Hieraus folgt sofort
+ikp — ik
PP 2 =1. (4.34)
P — KD+ 1K~~~
—_— =1

o |* =

=1

Das Ergebnis |a_|* = |a|? besagt, dass die Welle (bzw. das Teilchen) vollstindig
reflektiert wird. Einlaufende und auslaufende Welle sind allerdings phasenverscho-
ben. Konventionsbedingt definiert man

_epew) P sm) = (4.35)
Ptk
Die zeitabhéangige Losung hat also damit die Form
e—i(%t—pm) . 6—i(%t+px)—2i§ fiir r < 0’
1) = . 2 , 4.36
Ptk

Die Phasenverschiebung verschwindet im Limes p/x — 0, d.h. E/(V — E) — 0,
wenn also die Potentialwand wesentlich hoher als die Energie ist. Aus der Tat-
sache, dass QM-Teilchen in den klassisch verbotenen Bereich eindringen kénnen,
kénnen wir iibrigens nicht folgern, dass die Energieerhaltung verletzt ist. Bei einer
Eindringtiefe von 1/k ist zwar die Ortsunschérfe klein Az < 1/k, die Impulsun-

schérfe hingegen grofs geméfs der Unschérferelation Ap > hx. Die Unschérfe einer
Ap?

Energiemessung betriagt entsprechend AE ~ 2_p ~ V — F, so dass eine Ener-
m

giemessung die Werte £ + AE ~ E + (V — E) = V mit einschlieft. Wir kénnen
also nicht sicher schliefsen, dass das Teilchen im klassisch verbotenen Bereich eine
Energie kleiner als V' hat.

4.4 Tunneleffekt

Dass quantenmechanische Teilchen in den klassisch verbotenen Bereich eindringen
konnen, fithrt zum wichtigen nicht-klassischen Phdnomen des Tunneleffekts. Wir
betrachten ein Potential der Hohe V' > 0 zwischen z = 0 und = = a:
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Die Losung der stationdren Schrodinger-Gleichung, die zu einer von links einfal-
lenden Welle gehort, hat die Form fiir £ < V:

a e +a e firxr <0, p= h—?E
- 2 4.37
1/}E<17> ﬁJren:p + ﬁ,eim fir)0 <z < a, K= h_T;,L(V _ E) ( )

a S(E)eP@)  fiir 2 > a,

und Anfangsamplitude o, normiert mit |y [* = 1 und zu bestimmenden Amplitu-
den a_, 54, B, S(F). Die Transmissionsamplitude bzw. das “Tunnel-Matrixelement”
S(FE) kann schon aus Griinden der stetigen Differenzierbarkeit der Wellenfunktion
nicht verschwinden, denn: Wére S(E) = 0, so miisste wegen stetiger Differenzier-
barkeit 1 g tiberall Null sein, was im Widerspruch zur Anfangsbedingung a, =1
steht.

Stetige Differenzierbarkeit der Wellenfunktion bei x = 0 und x = a fiihrt auf die
Anschlussbedingungen

r=0:  apta. = Bi+f,
ipay —a_) = k(By— ),
r=a: i+ e ™ = ayS(E),
K(fre™ — f_e™™) = idpayS(E). (4.38)

Dies sind vier Gleichungen fiir die vier Unbekannten o, 5, 5, S(F). Die Losung
fiir S(F) lautet [UA]:

2iKp

S(E) (4.39)

" 2irpcoshra + (p? — K?)sinh ka'

Damit bestimmt sich die Wahrscheinlichkeit dafiir, dass ein von links einlaufendes
Teilchen durch den Potentialwall hindurch tunnelt, zu:

2

T(E)=|S(E)?*= (1 + m sinh? m) - (4.40)

2
Fiir groke ra = \/ h—?(V — E)a? > 1, d.h. hohe und/oder breite Potentialbarrie-

ren, vereinfacht sich das Ergebnis zu
E(V —FE) _oq /2my_
7(B) ~ 162V = E) 203508 (4.41)
V2
Die Tunnelwahrscheinlichkeit nimmt exponentiell mit der Barrierenbreite und der
Wurzel der Barrierenhohe ab. (NB: In der Regel dominiert die Exponentialfunktion
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die Tunnelwahrscheinlichkeit, so dass die Berechnung des Exponenten bereits eine
gute Abschétzung liefert.)

Klassisch verboten ist der Tunneleffekt ein genuin quantenmechanisches Phéno-
men, dass in vielen Systemen anzutreffen ist (a-Zerfall, Ladungsfluss durch Isola-
toren, Feldemission, Tunnendioden, etc.).

4.5 Resonanzen

Als weiteres wichtiges Beispiel betrachten wir gebundene Zusténde im Potential-
topf:

Vi) = 0 fir |z| > a, (4.49)
-V <0 fir|z]| <a. '
zsv

Die Zustédnde sind gebunden, wenn sie eine Energie £/ < 0 haben, d.h. der
Aufenbereich |z| > a klassisch verboten ist. Das Potential ist zwar symmetrisch
um z = 0, d.h. symmetrisch unter + — —z, die Eigenfunktionen zum Hamilton-
Operator konnen allerdings symmetrisch oder antisymmetrisch sein bzw. gerade
oder ungerade; unsere Ansétze lauten entsprechend:

2m
ﬁ(E +V)

gerade :  ¢Yg(x) =< ve ™™  fiir z > a, (4.43)

2
ye fir r < —a, K:“h_?(_E)7E<O'
. . 2m
asingr im Topf |z| < a, ¢ = ﬁ(E—i— V)

T

ungerade :  Yg(x) = < ve fir z > a, (4.44)

2
—ve™  firx < —a, k= \/h—?(—E),E<O.

Stetigkeit und Differenzierbarkeit implizieren z.B. fiir den geraden Fall:

acosqr im Topf |z| < a, ¢ =

ra

m} = gtanqa = K. (4.45)

acosqa = yeo
agsinqa = yke~
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Ahnlich folgt fiir den ungeraden Fall: ¢ cot ga = —k.
Fiir kleine V ist ¢ sehr klein, so dass Gl. (4.45) nur fiir einen Wert von E erfiillt
werden kann.

gtan(qa)

A

I — q
i 3T
2a 2,

Mit zunehmendem V' findet man eine zunehmende Zahl von gebundenen Zu-
stdnden, abwechselnd gerade und ungerade. Fiir endliches V' bleibt die Zahl der
gebundenen Zustdnde endlich. Betrachten wir nun wieder von links einlaufende
Zustdnde mit F > 0, d.h. Streuzustdnde. Bei Anfangsamplitude o, gilt der An-
satz

Oz+@1p:v + a_e P fiir ¢ < —a, p= h_zlE
- ' : 2 4.46
wE<$> B—i—elqﬂﬁ + 5—6_“190 fur |x| <a, q= h_n;(E + V) ( )

a S(E)e?@=2  fiir x> a,

mit £ > 0 und der Transmissionsamplitude S(F). Stetigkeit und Differenzierbar-
keit bei = +a liefert 4 Bedingungen fiir die 4 Unbekannten a_, 5., f_, S(F). Die
Rechnung ist langlich, aber folgender Zwischenschritt ist niitzlich:

EE <Q — E) e~ 2P S(E) sin 2aq

Qy 2\p ¢

B+ L(p —ia(

= 2 (24 walpta) §( B 4.47
o= 5 (Ber) s (447
B L(p ja(q—

= Z (2 _ 1) eelePg(R

o AV P S(E)
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mit Transmissionsamplitude

. -1
L(ip o qy .
S(F) = | cos2aq — = ——|——)sm2a> , 4.48
() = (cos2aq ~ 5 (24 1) sin2aq (1.45)

womit das Problem vollstandig gelost ist. Die Transmissionswahrscheinlichkeit er-
gibt sich zu

-1

T(E) = |S(E)|2 = cos® 2aq + —

1
(]—? + Q) sin® 2aq
4\q p

_ v2
=4+ E(E+V)

V2 ) -
= (14— _sin?2ag) . 4.4
(+4ME+vfm W) (4.49)

T(FE) ist < 1, wobei das Gleichheitszeichen fiir sin 2aq = 0 gilt, d.h.

h2n2n?

=2aq=nm = E,=
8ma?

~V, n=12,... (4.50)

D.h. fliegt ein Teilchen mit dieser Energie £ = F,, ein, wird das Potential voll-
stdndig transparent. Stromerhaltung verlangt nun, dass gleichzeitig die Reflexion
verschwindet, d.h. a_(E,) = 0, was in der Tat an Gl. (4.47) ablesbar ist.

A

11------=

)

.Elll EII2

Diese Maxima von T heifen Resonanzen. Eine weitere wichtige Eigenschaft der
Transmissionsamplitude S(E) lasst sich in diesem Beispiel gut studieren: S(FE) hat
Pole bei

cos2aq = —

L a .
— + — ] sin 2agq. 4.51
2@ p) 450
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Diese Gleichung hat nur Losungen fiir imagindre p. Ist Imp > 0, so fallen der
transmittierte und der reflektierte Anteil exponentiell ab. Fiir endliche g, und §_
muss an den Polen von S(F) wegen Gl. (4.47) gelten, dass ay = 0. Also gibt
es auch keine exponentiell nach + — —oo anwachsende einlaufende Welle. Diese
exponentiell nach den Seiten abfallende Losung entspricht offensichtlich den gebun-
denen Zustanden. In der Tat entspricht die Polbedingung genau der Bedingung fiir
gebundene Zustande, denn

sin2aqg 2 1
tan2aq = 5 = -7
cos2aq 1, + »
_ 1
= 2(cotaq—tanaq)” = = cotaq— tanaq = 4 (4.52)
q p
Die Losungen dieser Gleichung sind
gcotaq =ip, qtanaq = —ip, (4.53)

was mit p = ik genau den in Gl. (4.45) gefundenen Bedingungen fiir gebundene
Zusténde entspricht.

Die Polstellen der Transmissions- oder Streuamplitude S(E) entsprechen den
Energien der gebundenen Zustdnde. Diese Resonanzen sind nicht nur fiir Poten-
tialtopfe, sondern auch fiir andere Potentiale zu finden. Sie sind ein wichtiges
Konzept in der Quantenmechanik und deren relativistische Verallgemeinerung der
Quantenfeldtheorie. Dieses Konzept spielt eine zentrale Rolle in der Streutheorie.
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5 Der harmonische Oszillator

Der harmonische Oszillator ist das wichtigste Beispiel der Quantenmechanik. Er
taucht in vielen Teildisziplinen der modernen Physik immer wieder auf fundamen-
talem Niveau auf, z.B. in der Quantenfeldtheorie, der Quantenoptik, der Festkor-
perphysik, etc. Ein elementares Verstédndnis des harmonischen Oszillators ist daher
besonders wichtig.

5.1 Algebraische Losung des eindimensionalen
harmonischen Oszillators

In der stationdren Schrodinger-Gleichung ist der eindimensionale harmonische Os-

1
zillator definiert durch das harmonische Potential V = —mw?z? mit der Frequenz

w und der Masse m, welches klassisch zu einer linearen Kraft mit Federkonstanten
k = mw? fiihrt.

V A F/\

> X > T

Klassisch hat das System keine intrinsische Langenskala. Jede beliebige Auslen-
kung ist in gleicher Weise moglich.
Der quantenmechanische Hamilton-Operator lautet

2
p L9

H=—+- 1
5 5T (5.1)

und fiihrt zur stationdren Schrodinger-Gleichung im Ortsraum:

n o d? Nl oo, /
%dxaw];(ac)—l— —mw z“Yp (). (5.2)

Eyp(a) = — 5
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Aus Masse m, Kreisfrequenz w und der Naturkonstanten A ldsst sich nun eine

Langenskala bilden,
| h
=/ — 5.3
Zo mwa ( )

die fiir den quantenmechanischen harmonischen Oszillator charakteristisch ist. In
makroskopischen Einheiten ergeben sich jedoch sehr kleine Zahlen,

oy () () (5.0

[1m)] m w
Die Schrédinger-Gleichung liefse sich nun mit Standardmethoden fiir Differenzial-
gleichungen dieses Typs (z.B. Potenzreihenentwicklung) im Ortsraum lésen. Die
besondere Struktur des harmonischen Oszillators wird jedoch besonders bei der
operatoralgebraischen Losung deutlich. Dazu fithren wir die folgenden Leiterope-
ratoren ein:

1 T X
a = — |—+i—p]|, (Absteigeoperator
7 (xo hp> ( geop )
1 x x
P .Zo .
a' = —|——i—p|, (Aufsteigeoperator). 5.5
7 (xo hp) ( geop ) (5.5)

(NB: Diese nennt man auch in anderen Kontexten Vernichter und Erzeuger.)
Der Grund fiir die Namensgebung wird gleich deutlich. ¢ und a' sind weder
selbstadjungiert noch kompatibel miteinander, denn

1|z T T T
1 — 2|20t o
) = iy 2 )
1{1 22 i i
= 35 x—%[%l‘]Jrﬁ[p,p]Jrﬁ [PJ]—ﬁ[%P]
=0 =0 =—1ih =ih
=1 (5.6)

Da a und a' jeweils mit sich selbst vertauschen, erhalten wir die Vertauschungsre-
geln der Leiteroperatoren, die Leiteroperatoralgebra:

[a,a) =0, [a,a']=0, [a,a']=1. (5.7)
Weiterhin gilt:
1/ x x x
tg = -2~ ;22 SRy Jadl
a'a 2(% zhp> (xo—l—zhp)
1a? 1x3 , i
Y T ol T ﬁ[x,p]

(5.8)
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so dass der Hamilton-Operator durch a'a ausgedriickt werden kann:

1 1
H = hw (cﬁa + 5) —: hw <N + 5) . (5.9)
Hier haben wir den Besetzungszahloperator N eingefiihrt. Er ist selbstadjungiert,
N' = (a'a)' = a'(a")! = a’a = N, (5.10)
und nicht-negativ:
(WINTY) = (Ylalaly) = (¢l¢) >0, (5.11)

mit |¢) = a|y). Die Eigenwerte und Eigenvektoren von N (und damit auch von H)
lassen sich nun algebraisch bestimmen; d.h. nur die Leiteroperatoralgebra, nicht
aber die konkrete Darstellung (5.5) wird verwendet.

Sei |n) ein Eigenzustand von N mit Eigenwert n,

(5.11)
N|n) =nln), n > 0. (5.12)

Der Eigenwert n wird auch Besetzungszahl genannt. N erfiillt folgende Vertau-
schungsrelationen:

[N,a'] = [a'a,a'] =d' [a,a']+ [a',al]a = d,
=1 =0
[N,a] = la'a,a] =a'[a,a]+[a',a]a = —a. (5.13)
=0 =1

Daraus folgt:
N(d'|n)) = a'Nin)+ [N,a']|n) = o' (N + 1)|n)
—

= (n+Dalln),
N(aln)) = aN|n) +M|n> =a(N —1)|n)

= (n—1)a|n), (5.14)

d.h. a'|n) und a|n) sind jeweils auch Eigenvektoren von N mit Eigenwert (n + 1)
bzw. (n —1).

; .
{ a } { er.hohjc } also die Besetzungszahl um eins. (5.15)
a erniedrigt

Entsprechendes gilt fiir Potenzen : (a')™ erhoht und (a)™ erniedrigt die Beset-
zungszahl um m. Was ist der kleinste Eigenwert (und damit der Grundzustand)?
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Wegen
(n|Nn) = (n|a' a|n) = n{n|n) (5.16)

ist fiir n # 0 der Vektor a|n) ungleich dem Nullvektor, falls [n) auch nicht der
Nullvektor ist. Deshalb ist mit n # 0 auch n — 1 ein Eigenvektor von N. Da die
Eigenwerte von /N aber nicht-negativ sind, muss n € IN; gelten, so dass der kleinste
Eigenwert = 0 ist.

Der zugehorige Eigenvektor ist der Grundzustand |0), der folglich von a annihi-
liert wird:

NI0)=0 < al0)=0. (5.17)

Aufbauend auf dem Grundzustand konnen nun alle weiteren Eigenzusténde kon-
struiert werden,
In) ~ (a")"|0), hat Eigenwert n € Ny. (5.18)

Nun habe |n — 1) die Norm 1, d.h. (n —1|n—1) = 1. Sei |n) = Ba'|n — 1) ebenfalls
normiert, so folgt

1=<n\n>:\5\2<n—1]@3\n—1>:ﬁZ(n—1+1) (n—1n-1).  (5.19)

—_—
=N+1 ]

Ist der Grundzustand |0) auf 1 normiert, sind die angeregten Zusténde

n) = —=(a")"0) (5.20)

_ Lo L ey o
( Sl =1 = (@ ) )

ebenfalls auf 1 normiert. Da die Zustdnde aus dem Grundzustand erzeugt werden,
kann das Spektrum nur entartet sein (d.h. zwei oder mehrere Eigenvektoren haben
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den gleichen Eigenwert), wenn der Grundzustand entartet wére. Das dies nicht der
Fall ist, zeigen wir unten.

Damit haben wir das Eigenwertspektrum und die Eigenwerte von N vollstandig
gefunden. Damit ist auch der Hamilton-Operator bereits diagonalisiert, denn

Hln) = ho (N + %) ) = Euln), mit By — huw (n + %) | (5.21)

Die Leiteroperatoren erhthen bzw. erniedrigen die Energie um Aw. Das Spektrum
ist dquidistant.

5.2 Ortsraumdarstellung des harmonischen
Oszillators

Die Ortsraumdarstellung der Eigenfunktionen |n) ergibt sich direkt aus der Dar-
stellung der Leiteroperatoren (5.5), die im Ortsraum lautet:

V2 \zo n? V2 \zy  ox

1 x x 1 [ 19)
R e e Sy (e 22
! \/5(550 th) - \/5(550 xoaﬂf/) (522)

mit p — EL% Im Ortsraum lautet daher die Grundzustandsgleichung Gl. (5.17):
1 Oz

1 /2 0
=tho(z')

= (Df_o + fo%) tho(2') = 0. (5.23)

Die Losung dieser Differentialgleichung ist eine Gaufsfunktion,

CL‘/2

tho(2') = (L) i e 3. (5.24)

2
Xy

Den Vorfaktor haben wir hier bereits durch Normierung festgelegt, denn

oo 2 1 too =y
/ |to(2")|” da’ = \/W/ e “dx =1. (5.25)
—o0 0J—o0

=/Tzo
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Da die Losung eindeutig ist, ist damit auch der Grundzustand des harmonischen
Ostzillators eindeutig. Wir stellen fest, dass die Langenskala z( die Breite der Gauf-
funktion festlegt. D.h. z( ist ein Mak fiir die Lokalisierung des Teilchens im Grund-
zustand.

Mit Hilfe des Aufsteigeoperators lassen sich die Wellenfunktionen der angeregten
Zusténde im Ortsraum direkt erzeugen:

Ynle') = —= (a0 (2") = — ;(ﬁ—x%) ( ! ) % (5.0

n! vn! Z T

Z.B. der erste angeregte Zustand ist

V2

P (2') = x—ox'¢o(x'). (5.27)

Da die Gaufsfunktion genau der erzeugenden Funktion der Hermite-Polynome

H,(x) entspricht, sind die héheren angeregten Zusténde alle proportional zum
Grundzustand multipliziert mit einem Hermite-Polynom:

ey = (LY g () (5.28)
= _— —_— — 0 .
P 2zt ) Vornl " \ 2o c

mit den Hermite-Polynomen

Ho(&) 1,

Hl(f) = 2,

Hz(ﬁ) = 452—2;

Hy(§) = 86 —12¢,

Hy(€) = 16&" —48¢2 + 12,

H5(&) = 328° —160€% 4+ 120¢, usw. (5.29)

Nach Konstruktion bilden die Zusténde 1, (x") ein vollstéindiges orthonormiertes
Funktionensystem.

+oo +oo
Opm = (njm) = / dx'(n|x")(z'|m) = / dz' P (2" ) (2). (5.30)
Die Losung des harmonischen Oszillators lésst sich direkt auf hohere Dimensionen
verallgemeinern. Betrachten wir z.B. den 3-dimensionalen harmonischen Oszilla-
tor, so zerféillt der Hamilton-Operator in eine Summe von drei 1-dimensionalen
harmonischen Oszillatoren:

9 3

1
Hyp = 2p_m + §mw2x2 = Zl H (x4, pi), (5.31)
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+vE, |7

n=>0
n =
n =2
\ I/
"
P 1
mit H(z,p) = om §mw2:c2. Damit faktorisiert die Wellenfunktion,
m
s (X') = () iha()1hs(a3), (5.32)
d.h., die Energieeigenfunktionen sind
Uninang (X)) = Yy (27) s (25)1ng (73) (5.33)

mit den Energiecigenwerten
’ 1
Epingny = how 2 (n + 5) : (5.34)

5.3 Orts- und Impulsunscharfe

Praktische Rechnungen kénnen nun vollsténdig mit Hilfe der Leiteroperatoralgebra
durchgefiithrt werden. Dazu driicken wir Orts- und Impulsoperatoren durch die
Leiteroperatoren aus:

xr = ﬁ(a—l—aT),
p = izi(cﬁ—a). (5.35)

Wir wissen bereits, wie a' auf normierte Energieeigenzustinde wirkt:

a'ln) =vn+1n+1), bzw.d'|n—1) = /nln). (5.36)
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Mutliplikation mit a liefert

Vnaln) = aa'ln —1) = (%Vq/—i-w)m— 1)

= (N+1)n—-1)=nln—-1),
d.h. die Wirkung von a auf Energieeigenzustande ist
aln) = /nln — 1). (5.37)

Da Ort und Impuls linear von @ und a' abhiéngen, sind x|n) und p|n) Linearkom-
binationen der Energieceigenzustiande |[n— 1) und |n+1). Daraus folgt unmittelbar:

(nfz[n) = 0= (n|pn), (5.38)

d.h. im Wahrscheinlichkeitsmittel befindet sich ein quantenmechanisches Teilchen
im harmonischen Ostzillatorpotential im Ursprung und hat im Mittel verschwin-
denden Impuls. Fiir hohe Energien gehen die stationdren Zustdnde also nicht, wie
vielleicht naiv erwartet, in klassische Oszillatorbewegungen {iber.

Als néchstes betrachten wir

2
= % ((a")? +a*+d'a+ ad'),
h2
P = ———((a")?—a® —a'a+aal). (5.39)
2xj

Wegen (5.36) und (5.37) konnen zum Erwartungswert beztiglich |n) nur die Terme
mit gleich vielen a und a' Leiteroperatoren beitragen:

x3 x3
(n|z?|n) = 30<n|( a'a + aa') )|n) = ?0<n|(2]\7+ 1)|n)
=N  =N+1
1
= (n+§ , (5.40)
h? h? 1
2 - v T T = — — . 5.41
) = gptnl(d gl i) = (n+3) (5.41)

Wegen (5.38) entsprechen Gl. (5.40) und (5.41) gleichzeitig den mittleren Schwan-
kungsquadraten. Damit erhalten wir die Unschéarferelation

(AP = ()l = Toa (n+5) 25 (a2
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Der Grundzustand n = 0 erfiillt damit die Unschérferelation minimal,

2
1
((Az)*){(Ap)?) = hz Da der Faktor 5 in Gl (5.40) und (5.41) den gleichen Ur-

sprung hat wie die Grundzustandsenergie, sind die Existenz der Grundzustands-
energie und die Unschérferelation direkt miteinander verkniipft. Mit zunehmendem
n sind die Zustédnde aber zunehmend im Orts- und im Impulsraum delokalisiert.

(NB: Viele Systeme der modernen Physik lassen sich auf ungekoppelte Systeme
von harmonischen Oszillatoren abbilden, so z.B. atomare Schwingungsbewegungen
in Molekiilen, in Kristallgittern, ebenso wie die quantisierten Anregungen des elek-
tromagnetischen Strahlungsfeldes (beschrieben durch die quellenfreien Maxwell-
Gleichungen). In all diesen Systemen erzeugt a' bzw. vernichtet a eine quantisierte
Anregung. Der Besetzungszahloperator N ziahlt dann die Zahl der Phononen (bzw.
Photonen) im Kristall (bzw. im Strahlungsfeld). In diesen Systemen kénnen also
die hoheren Anregungen als hohere Teilchenzahl uminterpretiert werden.)

5.4 Koharente Zustiande

Auf der Suche nach Zustanden, die im klassischen Grenzfall tatsdchlich Schwin-
gungsbewegungen im mittleren Ort und Impuls ausfiithren, versuchen wir im Fol-
genden Energieeigenfunktionen geeignet zu iiberlagern. Wichtiges Kriterium dabei
ist, dass die resultierenden Wellenpakete nicht zerfliefsen und die Unschérferela-
tion auch nach langen Zeiten noch moglichst minimal erfiillen. Wir wissen, dass
letzteres fiir den Grundzustand erfiillt ist. Dies bleibt auch giiltig, wenn wir den
Grundzustand verschieben:

ve(@') = o2’ —za), x4 = V2o, (5.43)

d.h. wir messen die Verschiebung im z,; in Einheiten der Léngenskala xy mit der
dimensionslosen Zahl &¢. Die Verschiebung lésst sich mit dem Translationsoperator
erzeugen; dazu fassen wir zunéchst ¢¢(z’) als Projektion eines Kets [£) in den
Ortsraum auf,

(') = (2'[S). (5.44)
Der Zusammenhang mit dem Grundzustand ist dann gegeben durch
€) = T(xa)|0) = e”#"4r|0) = e'~4*]0). (5.45)
Wir verwenden nun die Baker-Campbell-Hausdorff-Formel
etel = ABTIABL fiir[A B ~ 1. (5.46)
Damit folgt
al—¢a  _ gl —¢a 3l —ale?
_& calt —¢a
= e ze%e " (5.47)
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WEeil a den Grundzustand annihiliert, gilt

1
e %0) = <1—§a+—§ém2—.”)|o>=|m, (5.48)

und wir erhalten ,
1€) = e T e |0). (5.49)

Dieser Zustand ist Eigenzustand des Absteigeoperators. Um dies zu zeigen, ver-
wenden wir (vgl. Ubungen)

2
etlacte = a— ¢t o]+ [of, ol a]) + ..

-~ 7 =T

N T
e (5.50)

woraus folgt, dass
alé) = aemTe0) = e T (a4 €) |0)

= 9. (5.51)

Damit ist [¢) also ein Eigenket von a mit Eigenwert &. Im Ubrigen ist es niitzlich,
auch komplexe Verschiebungen ¢ € C zuzulassen. Beriicksichtigt man dies, so
ergibt sich

l¢1

&) = e Fet']0). (5.52)

Entwickeln wir die Exponentialfunktion,

_ fzf’? J710) = e Z

- —wa =

(5.53)

so sehen wir, dass diese Zustéinde eine Uberlagerung unendlich vieler Energieei-
genzustande sind. Da wir die Zeitentwicklung der Energieeigenzustéinde kennen,
ergibt sich direkt die Zeitentwicklung (mit |, ¢ = 0) = [¢)):

1) = T3 S cmibyy

= e E(t)), mit £(t) = e (5.54)



Diese wichtige Beobachtung besagt, dass ein anfinglicher Zustand |£) zu allen
Zeiten ein solcher Zustand mit oszillierendem Eigenwert £(t) = e~ ™€ bleibt. Diese
Eigenschaft definiert einen kohédrenten Zustand. Im Ortsraum finden wir damit
direkt die zugehorige Wellenfunktion

Pe(' 1) = (2|€, 1) = e 3o (a’ — zge™™) (5.55)
und die Wahrscheinlichkeitsdichte:
lihe (2, 8)|* = |tho(2' — 24(2))]?,  mit 2q(t) = 2qcos(wt). (5.56)

Im Ortsraum entspricht die Wahrscheinlichkeitsdichte des kohdrenten Zustands
also einer harmonischen Schwingung der Grundzustandswellenfunktion um den
Ursprung.

Zur Berechnung von Erwartungswerten und Unschérfen beziiglich eines kohé-
renten Zustands ist die Eigenwertgleichung a|¢) = £|€) wieder sehr niitzlich:

T = X = — a aT — _O
(x)e = (Elzl6) = \f(<€| +d'l¢)) AR
= V2zgRet, (5.57)

wobei wir (£]|¢) = 1 benutzt haben. Fiir den mittleren Impuls gilt

h
(p)e = (€lpl€) = i—=— ({&la’ — al¢)) = vV2—Tm¢. (5.58)
\/_ Zg Lo
Fiir zeitabhéngige £(t) gilt folglich
, d
(@)e) = zgcoswt, und (p)er) = —Mwrgsinwt = m%@)g(t). (5.59)

Die Orts- und Impulserwartungswerte verhalten sich also genauso, wie die Ko-
ordinaten und Impulse eines klassischen harmonischen Oszillators. Analog findet
man

2 17(2) 2 2 95(2) 2
(%) = 7((@*) +2ata +a + 1) = 34-(33)5
2 h? 2 i 2 h? 2
(P)e = —55(@) =2da+a” —1)e= 5+ P (5.60)
222 222

und gleichermafen fiir & — £(t), so dass wir fiir die Varianzen

2 2
i h

(A0 =0 ((A)) = 57 (561)
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erhalten. Es folgt die Unscharfebeziehung

h2

((Az)%)((Ap)*) = T (5.62)
d.h. die koharenten Zustidnde erfiillen die Unschérferelation minimal. Kohédrente
Zusténde sind also nicht-zerfliefende minimal unscharfe oszillierende Wellenpake-

te und damit das quantenmechanische Analogon zum klassischen harmonischen
Oszillator.
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6 Symmetrien in der
Quantenmechanik

Symmetrien spielen eine grofse Rolle in der Physik. Zum einen liefern Symmetri-
en groke Hilfestellung bei der Konstruktion einer geeigneten Beschreibung eines
Systems (z.B. in der Form von Bewegungsgleichungen). Zum anderen sind Sym-
metrien iiber das Noether-Theorem direkt mit Erhaltungsgrofsen verkniipft, die oft
die Losung eines Systems stark vereinfachen.

In der Quantenmechanik verstehen wir unter Symmetrie die Eigenschaft eines
Systems, unter bestimmten Transformationen die Wahrscheinlichkeiten und Ei-
genwerte von Observablen zu erhalten. Eine Symmetrie ist also eine Abbildung T',
die bijektiv auf dem Raum der (physikalisch realisierbaren) Zusténde wirkt und
die Ubergangswahrscheinlichkeiten erhélt:

[{@lv)|* = [(TlTy) . (6.1)

Wir haben bereits bei den Translationen und Zeitentwicklungen gesehen, dass
unitére Operatoren eine solche wahrscheinlichkeitserhaltende Eigenschaft haben.
(NB: In der Tat besagt das Wigner-Theorem, dass I' entweder linear unitér oder
anti-linear anti-unitir sein muss, vg. Galindo& Pascual, Quantum Mechanics I).
Im Folgenden werden wir neben den bereits diskutierten Translationen und der
Zeitentwicklung noch weitere wichtige Symmetrien vorstellen.

6.1 Raumspiegelungen

Unter einer Raumspiegelung bzw. Paritatstransformation P &ndert sich das Vor-
zeichen aller rdumlichen Koordinaten,

P: x' = —x. (6.2)

Nun muss ein unitdrer Operator existieren, der diese Raumspiegelung auf dem
quantenmechanischen Zustandsraum implementiert:

[0) = [0) =T(P)|y), TH(P)=T""(P). (6.3)
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Fiir Operatoren muss entsprechend gelten:
A =T(P)AT!(P). (6.4)

In der Ortsraumdarstellung ergibt sich

P(x') = (X[P) = (K |D(P)|y) = (—x'|ib) = (—x), (6.5)

d.h. (X'|I'(P) = (—x/|. Im Ortsraum ldsst sich die Unitaritit von P direkt nach-
weilsen:

GilF) = @GPPI
— [ @ G PR I

:(/ffwﬂ—fww—x>
= /d393 VI (x)P2(x) = (Y1 ib2), (6.6)

wobei wir im vorletzten Schritt die Substitution x’ = —x benutzt haben. Wegen
¥, und v beliebig, folgt TT(P)T'(P) = 1, bzw. I''(P) = T'(P). Des Weiteren
gilt:

() = KNPE(P)Y) = K[T(P)[)

= (X)) =), (6.7)

d.h.
I?(P) =1. (6.8)

Die Eigenwerte von I'(P) kénnen daher nur +1 oder —1 sein. Die Eigenfunktionen
zum Eigenwert 1 sind damit gerade, zum Eigenwert —1 also ungerade Funktionen:

b(x) = (=) =1(x) (gerade)

b(x) = ¥(=x)=—¢(x) (ungerade). (6.9)
2
Fiir einen Hamilton-Operator der Form H = 2p_m + V(x) mit einem Potential der
Eigenschaft
V(x) =V (—x), (6.10)
gilt wegen
x = I'(P)xI'"(P) = —x, (6.11)
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und gleichsam fiir (entwickelbare) Funktionen f(x):

f(x) =T(P)f(x)I(P) = f(—x), (6.12)
so dass
H(x,p) = T(P)H(x,p)T!(P) = H(—x,-p) = H(x,p), (6.13)
und entsprechend
I'(P)H(x,p) = H(x,p)I'(P). (6.14)

D.h., falls V' (entwickelbar und) gerade ist, vertauscht A mit I'(P). Es gibt dann
gemeinsame Eigenfunktionen mit Eigenwerten +1 oder —1, d.h. die Eigenfunk-
tionen von H sind entweder gerade oder ungerade. Diese Eigenschaft haben wir
bereits beim harmonischen Oszillator sowie beim symmetrischen Potentialtopf ex-
plizit verifiziert.

6.2 Translationen

Wir haben bereits den Translationsoperator 7'(a) kennengelernt, der mit der Ver-
schiebung des Ortes eines Teilchens verkniipft ist:

X = X+ a. (6.15)

Die Koordinaten-Translationen (6.15) bilden eine 3-dimensionale kontinuierliche
Lie-Gruppe. Die Gruppe ist abelsch, weil zwei beliebige Translationen kommutie-
ren. Die Translationsgruppe wird parametrisiert durch die Verschiebung a, d.h. die
Gruppe ist isomorph zum Vektorraum R?. Den auf Zustandsvektoren und Opera-
toren wirkenden Translationsoperator haben wir bereits kennengelernt:

A — A=T () T() (6.16)
Im Ortsraum gilt z.B.
V() = O(x) = (K| T(2)|¢) = d(x' - a). (6.17)
Die Darstellung von 7'(a) mit Hilfe des Impulsoperators p
T(a) = e P2 (6.18)
zeigt die Unitaritdt von 7'(a) manifest. Die Abbildung

a— T(a) (6.19)
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ist eine Abbildung der Gruppe R® der Translationen in eine Gruppe von unitéiren
Operatoren (6.18) auf dem quantenmechanischen Zustandsraum. (NB: Man spricht
dabei von einem Gruppenhomomorphismus,

T(a+b) =T(a)T(b) = T(b)T(a), T '(a)=T(-a). (6.20)

T'(a) ist also eine unitare Darstellung der Translationen auf dem Hilbertraum.)
Die abelsche Natur der Translationen, x — x+a+b = x+ b + a, iibertragt
sich auf T'(a):
[T(a), T(b)] =0, Va,be R (6.21)

Wann vertauscht H mit 7'(a)? Wegen

H — T(a)HT"(a) = H(x — a, p) (6.22)

2
ist H von der Form H = 2p_ + V(x) genau dann translationsinvariant, wenn V' (x)
m

translationsinvariant ist, d.h. wenn
V(x)=V(x+a), Va. (6.23)

Die ist also nur fiir konstante Potentiale erfiillt. D.h. nur in Abwesenheit von
duferen Kréaften ist der Hamilton-Operator fiir ein Teilchen translationsinvariant.
Nur fiir diesen Fall gilt dann [p, H] = 0, so dass der Impuls eine Konstante der
Bewegung ist, denn

H=T(a)HT (a) = e"iP2HeiPa = H — L [p, H]-a+ O(a?). (6.24)

Betrachten wir jedoch ein quantenmechanisches System mit N Teilchen und einem
Hamilton-Operator der Form

N o2
Z P;
H = sz + V(Xl, cee ,XN), (625)

i=1
so verschieben sich unter Translationen alle Koordinaten,
T(a)HTT(a) = H(Xl —a,..., Xy —a,p1,... apN)7 (626)
so dass der Translationsoperator die Gestalt hat

T(a) = [[Ti(a) = [[ e P = e i Zimpia = ¢miPa, (6.27)

(2
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Hier finden wir den Gesamtimpuls P = p; +p2+. ..+ py. Der Hamilton-Operator
ist nun translationsinvariant, wenn

V(x1,...,xy)=V(x1+a,...,xy +a), Va. (6.28)

Dies ist nicht nur fiir konstante Potentiale erfiillt. Es geniigt, wenn V' z.B. nur von
den Teilchenabstéanden abhéngt; bzw. allgemeiner

N o9
P;
H=22—m+21/;j(xi—xj). (6.29)
i=1 v i<j

Dies beschreibt also ein translationsinvariantes System, bei dem wegen

H = e #P2HeiP 2 der Gesamtimpuls P eine Konstante der Bewegung ist, [P, H] =
0

Ein wichtiges Beispiel dieser Art ist die Coulomb-Wechselwirkung V;;(x; —x;) ~
1

|x; — x|’
Rolle spielt.

die im Wasserstoffatom (wie auch in allen anderen Atomen) eine zentrale

6.3 Drehungen

Eine weitere Klasse wichtiger Symmetrien in vielen physikalischen Systemen sind
die Drehungen. Im Gegensatz zu den Translationen héngt das Ergebnis von hin-
tereinander ausgefiihrten Drehungen i.A. von der Reihenfolge der einzelnen Dre-
hungen ab. Ubertragen in die Quantenmechanik erwarten wir also, dass die zuge-
horigen Operatoren der Transformation nicht mehr vertauschen.

6.3.1 Unitare Darstellungen der Drehungen

Drehungen im Ortsraum werden beschrieben durch orthogonale Drehmatrizen R,
R: x—%x=Rx (6.30)
mit
R' =R, (6.31)
so dass das Skalarprodukt invariant bleibt,

X-y=(Rx)-(Ry)=x-R'Ry=x"y. (6.32)

Die Menge aller Drehungen bilden die spezielle orthogonale Gruppe SO(3) der
eigentlichen Drehungen im Raum.
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Wir definieren die Wirkung von Drehungen auf die Wellenfunktion im Ortsraum
wie folgt: B

Y(x') = ¥(x) = (XT(R)[Y) = »(R7'X). (6.33)

(NB: Aus Konventionsgriinden bzw. Kompatibilitatsgriinden mit der Literatur de-

finieren wir die Drehungen der Wellenfunktionen als Riickwértsdrehungen im Orts-

raum, vgl. (X'|T(a)[¢) = (x" - a).)
['(R) ist unitér, weil sich das Integrationsmafs im Skalarprodukt bei Drehungen
nicht dndert,

0o = [0 d o) = [da v (mx)enx)
= [y oo = wie), (6.34)

weil d’z’ = d*y' mit ¢ = R™"2’ invariant ist.

Wegen (¢|¢) = (Y|TT(R)T(R)|¢) fiir beliebige v und ¢ muss I'(R) unitér sein,
d.h. TT(R) = I'"Y(R). Die Abbildung R — T'(R) ist eine Darstellung der Dreh-
gruppe im quantenmechanischen Zustandsraum,

D(R)D(Ry) = T(RiR),
IR = I'(R),
I(13) = 1. (6.35)

Zwei Drehungen kommutieren i.A. nicht, [Ry, Ry] # 0, so dass auch [['(Ry), ['(Ry)] #
0 i.A. gilt. Wann vertauscht der Hamilton-Operator H mit den Drehungen? Seine
Transformation lautet

H —T'(R)H(x,p)[""(R) = H(R'x, R"'p). (6.36)

2
Kinetische Terme der Form b sind invariant unter Drehungen, weil p? drehin-
m

variant ist. Potentiale sind drehinvariant, wenn sie nur vom Betrag des Ortes ab-
hangen,

V(r)=V(x])= V(R 'x[), mitr=x|, (6.37)
d.h. Zentralpotentialprobleme haben Eigenfunktionen, die auch den Drehopera-
tor diagonalisieren. Bei N quantenmechanischen Teilchen sind z.B. Potentiale, die
nur vom Teilchenabstand abhéngen, drehinvariant, V = Zl/;jﬂxi — x,|). Das

i<j

Coulomb-Potential ist genau in diesem Sinne drehinvariant.
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6.3.2 Einteilchensysteme und Drehimpulsalgebra

Im Folgenden betrachten wir Zentralpotentiale, die, wie oben diskutiert, drehin-
variant sind. D.h. wir beschridnken uns auf Einteilchen-Hamilton-Operatoren der

Form )

H= §—m+V(r), r=|x|. (6.38)

Weil I'(R) unitér ist, ldsst sich I'(R) schreiben als
I'(R) =e %, mit £F = L. (6.39)

Fiir drehinvariante Potentiale (6.38) kommutieren I'(R) und £ mit H. £ ist also
eine Konstante der Bewegung.

Wir betrachten zunéchst einmal Drehungen um eine Achse n (Einheitsvektor
n-n = 1) um den Winkel # im 3-dimensionalen Ortsraum:

nxx
—n X (A X x)
0 N
R(n,0)x
X
n
Es gilt
R(n,0)x = (h-x)n —n x (n X x)cos(f) + n x xsin(6). (6.40)
oder infinitesimal
R(n,0)x = x + 0 x x0 + O(6?), (6.41)
d.h. p
—R(n,0) =n xx = Q,x (6.42)
do 40
mit der reellen schiefsymmetrischen Matrix
0 —n3 o
Q=1 ns 0 —ni |, (6.43)
—MNo nq 0
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welche Vektoren infinitesimal um die Achse n dreht. Da n? = 1, folgt

Q2x = nx(hxx)=n(n x)-x,
Bx = —nxx=—-Ox, (6.44)

d.h. alle geraden Potenzen von €2, sind ~ Qfl und alle ungeraden Potenzen ~ €,,:
Q2 = (-1)"HQ2, QX = (—1)"Q,, n=012,... (6.45)
Damit ldsst sich 02, leicht exponentieren:
03 62 04
00n __ _ 2
e = 1+Qn<9 3!+...>+Qn<2! 4!+...)
= 1+9Q2 —Q2cos + Qy,sinb. (6.46)

—  "mx = (h-x)h — 0 x (1 X x)cos(d) + n x xsin(f) = R(h, 0)x, (6.47)

d.h. wir haben eine Matrix-Identitit fiir R(n,6) gefunden:
R(n, 0) = . (6.48)

Die Matrix €, erzeugt also Drehungen um die Achse n. Analog suchen wir nun den
selbstadjungierten Operator Ly, der die Drehungen um n im quantenmechanischen
Zustandsraum erzeugt,

T'(R(,0)) = e #£000) = ¢~ 7fln. (6.49)
D.h. wir suchen L, so, dass
B(x) = p(e ") = (x[e n]y). (6.50)
Entwickeln wir die linke Seite nach 6, so ergibt sich daraus:
52
Y(e ™ nx) = (X)) — 0Q.x" - Vo (x) + E(QHX, SV)2p(x) + .
= ¢ MWDV (x). (6.51)
Ein Vergleich mit Gl. (6.50) liefert uns die Ortsraumdarstellung von Ly,:
(X/|Ly = —ih(QuX) - V(X'|. (6.52)
Mit Hilfe des Impulsoperators folgt die Operator-Identitat:

Ly=(Mxx)-p=n-(xXxDp). (6.53)
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Damit entspricht L,, der Projektion des Drehimpulsoperators auf die Drehachse,
Ly=n-L, mitL=xxp. (6.54)
Die drei Komponenten des Drehimpulsoperators
L; = €jpxipe, 1,5,k =1,2,3 (6.55)

erzeugen also Drehungen um die Koordinatenachsen. Die Selbstadjungiertheit von
L lasst sich direkt nachpriifen,

Ll = (ejprpn)’ = epla’ = cipre;
€ijk | TjPk — [lL‘j,pk] = Lz - ihﬁijj = Lz (656)
——

Mit Hilfe von Gl. (6.55) ldsst sich die wichtige Drehimpulsalgebra ableiten. Wir
beginnen mit den Vertauschungsregeln fiir L; mit x; und p;:

(Li,xj] = €nelwipe, ;] = € [pe, ;) = ihegnay
——
—ihdy;
(Li,p;] = €elxrpe, pj] = €ine [Tk, 0| Pe = iheiepe. (6.57)
s
110k 5

Damit folgt fiir die Drehimpulsvertauschungsregeln:

[Li, L;] = €jm[Li, vepr] = €jor (xe[Li, pr] + [Li, xepr)

= h | €kCikmTePm + €jek€itmTmPr
~—_———
=€1j0€ikmTmDe
= th  €u€ikm  (TeDm — TmPe)
~——

=08m00i—065i0em

Wegen
EijkLk = €ijk€ktmTiPm = <5i£5jm - 5im5j€)x€pm = TiPj — TjPi, (6-59)
folgt
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Eine wichtige Folgerung aus Gl. (6.60) ist, dass die Komponenten des Drehimpulses
jeweils zueinander inkompatible Observable sind. Zwar vertauscht jede einzelne
Komponente mit H, aber nur eine Drehimpulskomponente kann gleichzeitig mit
H diagonalisiert und somit scharf gemessen werden.

Sehr dhnliche Beobachtungen haben wir bereits beim Stern-Gerlach-Experiment
gemacht. In der Tat gehorchen die Spin-Komponenten S; ebenfalls der gleichen
Algebra Gl. (6.60). Wahrend die S; jedoch einen internen Freiheitsgrad (Spin) des
Elektrons beschreiben, bezeichnet L; den Bahndrehimpuls eines Teilchens (z.B. in
einem Potential).

Sei V € {x,p,L}. Aus den Vertauschungsregeln folgt

D(R)VIT(R) = e #0laveitin — v ¢ %G[Ln, V] + 0(6?)

(6.41)

= V460 xV+0(6?) R(n,0)V. (6.61)

(NB: Hier haben wir [n - L, V;|] = n;[L;, V;] = ihn;€;, Vi, = ihn x 'V benutzt.) In
der Tat gilt diese Beziehung Gl. (6.61) nicht nur infinitesimal, sondern allgemein.

Gleichung (6.61) bedeutet, dass sich x, p und L als Operatoren genau wie Vekto-
ren im 3-dimensionalen Raum unter Drehungen transformieren. Man spricht daher
auch von Vektoroperatoren. Im Gegensatz dazu gilt fiir Zentralpotentiale

I(R)HTY(R) = H (6.62)
oder I'(R)(x - p)T'"(R) = x - p, d.h.
[L,H] =0, und [L,x-p]=0. (6.63)

H und x - p transformieren also wie skalare unter Drehungen, heifsen folglich ska-
lare Operatoren.

6.3.3 Eigenwertproblem des Drehimpulses

Mit dem Bahndrehimpuls L und dem Stern-Gerlach-Spin S haben wir bereits zwei
Grofken kennengelernt, die die Algebra (6.60) erfiillen. Allgemein bezeichnet man
eine Grofe J, die

[Ji, J;) = ihegpde, JI =i 4,5,k =1,2,3, (6.64)

(2

erfiillt, als Drehimpuls, unabhéngig davon, welche konkrete Bedeutung oder wel-
chen Ursprung sie hat (z.B. Bahndrehimpuls, Spin, gesamter Drehimpuls, grand
spin, etc.).

Im Folgenden wollen wir also versuchen, die Eigenwerte und Eigenfunktionen des
Drehimpulses nur mit Hilfe von Gl. (6.64) zu konstruieren. Konventionsbedingt
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wéahlt man zur Diagonalisierung Js aus (J; und Jy sind dann zwingend nicht-
diagonal). Im Folgenden sind die Leiteroperatoren

Jy=J+idy, J=J, (6.65)
niitzlich. Diese erfiillen die Vertauschungsrelationen

[Js,Js] = [Js, 1] £i[Js, Jo] = ihJo £ hJy = £hJ.,
[J+, J,] - 7:[:]2, Jl] - i[Jl, J2] - thg (666)

Wir beobachten, dass das Betragsquadrat des Drehimpulses mit allen .J; ver-
tauscht,

3205 = [Jidi, Jj] = Ji [Ji, J}) + i, T3] Ji
—— N —
= z'hez-jk (Jka + JkJZ) =0. (667)
~——

symmetrisch in ¢, k

Wir kénnen also J? simultan mit .J; diagonalisieren.
Das Quadrat eines selbstadjungierten Operators ist nicht-negativ,

W) = @lile) = (1)) ()
= (gl¢) =0, mit ¢ = Ji[y). (6.68)
Ist [+) also Eigenfunktion von J? mit Eigenwert ), so folgt
WIP) = Myl) 20 = A>0. (6.69)
Wir schreiben den nicht-negativen Eigenwert \ als
A=R(+1), >0 (6.70)

mit zu bestimmendem j. Der Faktor h? ist so gewiihlt, dass j eine dimensionslose
Zahl ist; dies ist die Drehimpulsquantenzahl.

Die zu bestimmenden Eigenwerte von .J3 bezeichnen wir mit hj3, wobei j3 wieder
dimensionslos ist und magnetische Quantenzahl genannt wird (im SG-Experiment

S’ 1
entspricht j3 = %z = j:§) Die normierten simultanen Eigenfunktionen von J?
und J3 seien also |j, j3):

I2(4,73) = B35 (G + D)4, a),  Jalj, js) = hijald, Ja)- (6.71)

Im Folgenden benétigen wir

J:tg]$ = J12 + J22 F Z(Jljg — J2J1) = J2 — J32 + th (672)
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Wegen JU = Jy gilt auch
(sl Te 5 15s) = ((igal L) (Jxlds)) > 0. (6.73)
Mit Gl. (6.72) folgt:

0<  (jjslJudeligs) = (jis|I? — J§ £ hs|jjs)

=1+ 1) — j5 £ Js) (6.74)
1N\N? 1 1N\N? 1

_ 2 : - - ; _ -

=h <<J+2> 1 (93:F2) +4>
1\2 1\2

. <j+—> > (m—) | (6.75)
2 2

Daraus folgt
—j <js <. (6.76)

Mit dhnlichen Argumenten wie beim harmonischen Oszillator lassen sich die Ei-
genwerte j und j3 mit Hilfe der Leiteroperatoren bestimmen. Es gilt:

JsJilj, g3) = Ju(Js £ Rh)|j,53) = hJi(js £1)|7, js)
= h(js £ 1)JL|], js)- (6.77)

J+|7, j3) ist also Eigenfunktion von J3 mit Eigenwert /(j3 £ 1). Einschlieklich einer
zu bestimmenden j und/oder js-abhingigen Normierungskonstante cy gilt der
Zusammenhang

Jild, js) = cxld, js £1). (6.78)
Die Normierungskonstante cy sei so gewéahlt, dass die Zusténde |7, j3) auf 1 nor-
miert sind. Wegen Gl. (6.74) gilt:

.. .o (6.78) .. .o
G, gal T Jelis ga) = lesl® (ogs £ 105,53 £ 1)
21

(6.74) . . .
=" (G +1)—J5F ),

woraus nach geeigneter Phasenwahl folgt, dass

Jilg, js) = B/ 5(G + 1) — ja(js £ 1)|5, s £ 1). (6.79)

Ist hijs Eigenwert von .Js, so ist es auch h(jz#+1), es sei denn /j(j + 1) — js(js £ 1) =
0, so dass Gl. (6.79) einen Nullvektor liefert. Die wegen Gl. (6.76) (—j < js < j)
einzig erlaubten Losungen, fiir die die Wurzel verschwindet, ist

js = j, fir (G +1) = js(js + 1)
und  js = —j, fiir /5 +1) — js(js — 1). (6.80)
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Damit Gl. (6.76) fiir alle durch Gl. (6.79) erzeugten Eigenwerte hjs erfiillt ist,
muss das Abbruchkriterium Gl. (6.80) eintreten (sonst kénnte mit Gl. (6.79) ein
beliebig grofser oder kleiner Eigenwert hjs erzeugt werden). Dies bedeutet, dass hj
und —hj Eigenwerte von J3 sein miissen. Da nun die Differenz zweier Eigenwerte
von J3 wegen Gl. (6.79) eine ganze Zahl mal A sein muss, muss

j—(—j)=2j ganzzahlig (6.81)
sein, d.h. j muss ganz oder halbganz sein:

1.3
=0,-,1,2
] ’7727

2,... 6.82
2 ) ( )

Da negative j keine neuen Eigenwerte von J?, ndmlich h%j(j + 1), liefern, geniigt
es, sich auf nicht-negative j zu beschrinken. Fir jedes 7 gibt es dann 25 + 1
verschiedene Werte von js:

Jjs=—g, =i+ L....5 =17 (6.83)

Der Eigenwert A%j(j + 1) von J? ist also (2j + 1)-fach entartet. Da J; und J?
selbstadjungiert sind, bilden die Eigenvektoren |j, j3) ein Orthonormalsystem

(7,7313", 33) = 050555 (6.84)

Zusammenfassend ergibt sich folgendes Bild: Im Zustand |7, j3) ist die Lénge des
Drehimpulsvektors = fi\/j(j + 1), seine 3-Komponente ist = hj3. Die transversalen

Komponenten im Betrag, \/J12 +J3 = \/J2 — J2, haben die Lange

hy\/j(j + 1) — j2, die Richtung der transversalen Komponenten bleibt allerdings

unbestimmt, da J;, Jo mit J3 inkompatibel sind. Die Unschérfe lasst sich leicht
berechnen:

. AN . hjs\”
<jaj3|<AJ1)2|.]7]3><]7]3|(AJ2)2’j7j3> >~ <.]7.73|[J17J2] |jaj3>|2: 5 : (685)
4 —— 2
—=ihJ3
Wie angesprochen gilt diese Losung des Drehimpulseigenwertproblems fiir viele
Beispiele. Im Fall des Bahndrehimpulses J = L = x X p werden nur die ganzzahli-
gen Eigenwerte realisiert, siehe unten. Im Fall des Stern-Gerlach-Experiments gilt

h 1 3 h 1
J= S£§a, so dass j = > JP=8%= ZHQ]I, und J3 = SZ£503 mit j3 = i§'
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6.3.4 Kugelflachenfunktionen

Im Folgenden sollen die Eigenfunktionen des Bahndrehimpulses L = x x p explizit
im Ortsraum konstruiert werden. Dazu sind Kugelkoordinaten sehr niitzlich,

sin # cos ¢
x=rx=r|sinfsing |, r=[x|, 0€l[0,7], ¢el0,2n). (6.86)
cosf

Die einzelnen Komponenten des Bahndrehimpulses in der Ortsraumdarstellung
lauten mit p — —iAV:

. 0
L3 = —ih (:E182 - 1'261) = —Zh%,
Ly = 1h (sin @% + cot 0 cos @%) ,
Ly = ih| —cos 9 + cot 0 sin 9 (6.87)
2 700 Top) ‘

wobei wir die Darstellung des Gradienten in Kugelkoordinaten verwendet haben
(vel. Ubungen). (NB: der Strich am Ortseigenwert x’ sei hier und auch im Folgen-
den weggelassen, da wir ausschlieflich im Ortsraum arbeiten werden.)

Aus Konventionsgriinden benennen wir die Eigenwerte j und j3 um in ¢ = j
und m = j3. Da die L; nicht von r abhéngen, sind die Eigenfunktionen ebenfalls
unabhéngig von r. Wir nennen diese Eigenfunktionen Kugelflichenfunktionen

Yim(0,0) 1= (%]0m). (6.89)
Aus L3Yy,, = hmYy, folgt, dass Yy, geschrieben werden kann als
Yim(0, ) = €™ Py (), (6.89)

d.h. die Kugelfldchenfunktionen separieren in eine azimutale Phase und eine noch
zu bestimmende Funktion Py, (#). Da (6, ) und (0, ¢ + 27) denselben Punkt auf
der Kugeloberflache bezeichnen, und da Yy, (0, ¢) = Yo, (0, p + 27) eindeutig sein
muss, folgt die Ganzzahligkeit von m und damit auch von ¢.
Aus Gl. (6.87) und Gl. (6.65) folgt die explizite Ortsdarstellung der Leiterope-
ratoren
Ly = he*™ (iﬁ + i cot 93> (6.90)
- 0 Do) ‘
Wir bestimmen zunédchst Yy, d.h. fiir den Fall von maximalem m = ¢, da diese
Eigenfunktion von L, annihiliert werden muss (vgl. Argumentation a|0) = 0 beim
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harmonischen Oszillator):

0=L,Yy(0,p) = he <2 + i cot Hi) " Pyy(6)

a0 Jyp
- OPy(0)  cosf
— i(t+1)p e\v)
he < B gsinepm(e))
— Y (6, ) = ce™sin’ 6, (6.91)

mit zu bestimmender Normierungskonstante c. Die Normierungsbedingung Gl. (6.84)
lautet im Ortsraum

(Sgg/5mm/ = <€m|€'m’):/dQ(€m|§<><§<\€’m')
- / 4V (8, 0) Yo (6. 0)
T 27
= [ a8 [ dpsing Y, (6.0 (0,0) (6.92)
0 0

Fiir Yy, fihrt dies auf

T 2T
1 = /d@/ dysin f|c|? sin* 0
0 0

o 2 (200)?
_ 2 241y _ 2 4
= 27|c| /0 df sin“"" 0 = 27|c| 2052 (20)
—1)¢ ! .
— Y (6, 0) = (=17 @+ DEY! sin’ e’ (6.93)

20! s

wobei wir aus Konventionsgriinden den Phasenfaktor zu (—1)° gewiithlt haben. Alle
weitere Kugelflachenfunktionen Yy, mit m < ¢ folgen aus Gl. (6.79):

L_|t,m) = h/l(l+1)—m(m—1)|t,m—1)

1 : 0 0
= Yin_1(0, = "W ——= 4icot@— | Y;,.(0,0),
tm-1(6, ) \/£(£+1)—m(m—1)6 ( 5g Tico a(p) (6, ©)

(6.94)

beginnend mit Yy (0, ¢). Thre (semi-)explizite Form lautet

ime L—m
Yzm(ﬁ,so)z<_1)€\/(2€+1)(€+m)! e (d) Y  (695)

286‘ 47T(£ — m)' sin™ 6 @ u=cos 0
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z.B.

1
%0(97¢) - Ea
3
Yio(0, ) = ECOSQ’
3 i ki
Vizi(0,0) = F 8—sm06 2,
T
5 2
Yao(0,p) = 16_7T<3COS 0—1),
15 :l:i .
Youi1(6,0) = F e % sin 6 cos 6,
T
15 igip . o
Yo 40(0,0) = 3¢ “sin” 0. (6.96)

Die Aufenthaltswahrscheinlichkeit eines quantenmechanischen Teilchens, welches
durch Kugelflachenfunktionen beschrieben wird (z.B. Wasserstoffatom), ist beziig-
lich der Winkel ~ |Yy,, (6, ¢)|*.

Weitere Eigenschaften der Kugelflachenfunktionen:
Bis auf eine Phase sind Kugelflichenfunktionen mit m und —m zueinander kom-
plex konjugiert:
Yim(0,9) = (=1)"Yp,(0, ). (6.97)

Fiir ein zentralsymmetrisches Potential vertauschen mit dem Hamilton-Operator
nicht nur L? und Lj, sondern auch der Paritéitsoperator I'(P). Die Kugelkoordi-
naten transformieren sich unter x — —x gemaéf

r—r, 0—->1—0 ©— o+ (6.98)
Damit folgt
e — (=1)"e"™?, sinf — sinf, cosf — —cosd, (6.99)
Dies bedeutet fiir die Kugelflachenfunktionen
D(P)Yin(6,2) = (—1)Yon (6, ). (6.100)

Zusténde mit gerader Drehimpulsquantenzahl sind daher gerade unter Paritat und
umgekehrt.

Wegen der Selbstadjungiertheit von L? und Ls sind die Y}, eine vollstindi-
ge Orthonormalbasis auf der Kugeloberflache. Jede (quadratintegrable) Funktion
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f(8, ) auf der Kugeloberfliche kann daher geschrieben werden als

0) = Y0, p), mit Y =35, (6.101)

lm (=0 m=—/¢

bzw.

f(0,9)

(alf) = (@lem) {tmlf). (6.102)

Die Koeffizienten ay,, ergeben sich daher aus

= (emlf) = [ demla)al) = [ a0, 0.06.0). (6109
Die Vollstandigkeit der Basis

1=>"|tm)({im| (6.104)

lautet in Ortsdarstellung

(L") = 6(e — ¢')d(cosd — cos ') = Zng ©)Yi (0, ¢). (6.105)

Zwei Eigenschaften geben wir noch ohne Beweis an, (sie konnen als Ubungsaufgabe
gelost werden):
Es gilt folgende Summenregel:

2 1
> Wanl0, ) = 210 (6.106)

Die Greensche Funktion des Laplace-Operators lautet in Kugelflichenfunktionen:

1 1t
= =Y =Y (0, 0)Y (6, ¢, 6.107

|x — x|

(wie bereits aus der Elektrostatik bekannt sein diirfte). Hier bezeichnet r- den
kleineren und 7~ den grokeren der beiden Absténde |x| und |x/|.
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7 Das Wasserstoffatom

Das Wasserstoffatom hatte fiir die Entwicklung der Quantenmechanik nicht nur
historische Bedeutung. Es ist sowohl fiir Theorie als auch fiir das Experiment eine
leicht zugdngliches System. Daher kann es zu extrem hoher Préazision studiert wer-
den und erlaubt iiber die Quantenmechanik hinaus Prézisionstests der Quanten-
feldtheorie, speziell der Quantenelektrodynamik gebundender Zustdnde. Es ist das
einfachste Atom, und die Physik der Atomhiille somit Tor zur (Quanten-)Chemie.
Ein Verstdndnis der Atombhiille und ihrer Anregungen und photonischen Uber-
géange ist ebenso Grundlage fiir die (Quanten-)optik. Viele weitere Anwendungen
liefsen sich hier aufzéhlen.

In diesem Kapitel soll das Wasserstoffatom vereinfacht als gebundenes System
aus einem spinlosen Elektron und einem spinlosen Proton betrachtet werden.

7.1 Teilchen im Zentralfeld

Betrachten wir zunéchst allgemein ein Teilchen (Elektron) in einem Zentralpoten-
tial
p?

H= % +V(r), r=]lx|, (7.1)
wobei die Masse nun durch p bezeichnet wird (um Verwechslung mit der magne-
tischen Quantenzahl vorzubeugen).

Zunéchst suchen wir einen Zusammenhang zwischen Gl. (7.1) und dem Drehim-
puls, der im Zentralpotential erhalten sein muss. Es gilt:

1 1
—(xxL); = —earily=— €€ Tix
7”2< )'L r2 igktj ik 2 17k Ckim FLePm,
0i00m—0imbje
X2 .
= TjTipj 2 pi=&i(x-p) —pi
~—
=1
= p=x%x(x-p)— SxxL (7.2)
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Fiir das Impulsquadrat folgt

1
7"2
~—

drehinvariant

x x L
1 1
= (p'x) S&xp)-p(xxL) -
N—— T N —  T"
=x-p— T4, Pi] =(pxx) L=—17
——

1 L2
= (x- p)—?ﬂﬁ (X-p)+p

(7.3)
oder auch Lo 5 L2
= —h’— — 7.4
P’ r2 or ( 87“) * (74)
(NB: Die Ortsdarstellung des Drehimpulsoperators wurde in einer Ubungsaufgabe
berechnet:
L? = —h? 8—2+cot02+La—2 (7.5)
B 062 90 sin®*0dp? )’ '

ist aber im Folgenden nicht mehr nétig, da wir die Eigenfunktionen vom Dre-
himpulsoperator L? bereits kennen.) Die fiir uns relevante Form der stationiren
Schrodinger-Gleichung lautet

R 9,0\ 12

Fiir ein zentralsymmetrisches Potential V (r) vertauschen H, L? und Ls, so dass
die Losungen von Gl. (7.6) beziiglich der simultanen Eigenwertbasis aufgespannt
werden kénnen,

Y = Ypm(x) = (x|Elm) (7.7)

mit

H|E¢m) = E|Elm),
L% Elm) = h*(({ + 1)|Eém),
Ls|Elm) = hm|E{m). (7.8)
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Ein Separationsansatz unter Verwendung der Kugelflichenfunktionen fiihrt auf

VB (x) = (X|Elm) = fpo(r)Ym (9, ¢), (7.9)

wobei wir in der Notation fgzy schon vorweggenommen haben, dass die radiale
Wellenfunktion fg,(r) nicht von m abhingt. Da die Y}, Eigenfunktionen von L?
sind, folgt fiir die Radialfunktion fg.(r) die Differentialgleichung

<_ o (ﬁﬁ) LAY Ly - E) Frelr) = 0. (7.10)

2ur? or or 2pur?

Fiihren wir eine neue Konvention fiir die Radialfunktion ein, ug,(r) = r fge(r), so
vereinfacht sich die Differentialgleichung:

<_h_2‘9_2 LD Ly - E) wpe(r) = 0. (7.11)

2p Or? 2pur?

Diese Differentialgleichung (auch Fuchssche Differentialgleichung genannt) hat die
Form eines 1-dimensionalen Potentialproblems mit effektivem Potential

R0+ 1)

Verlr) = V) + 75

(7.12)
zudem ist 0 < r < oo zu beachten. Fiir nicht-verschwindenden Drehimpuls di-
vergiert Veg(r) am Ursprung fiir » — 0. Wie in der klassischen Mechanik ergibt
sich aber eine “Zentrifugalbarriere”, die hier in der Quantenmechanik dafiir sorgen
wird, dass Wellenfunktionen mit ¢ > 0 am Ursprung verschwinden miissen. Diese
Erwartung wollen wir im Folgenden bestétigen.

Allgemein bedeutet die Normierbarkeitsforderung der Wellenfunktion, dass

>/d3x|¢E€m|2 :/ dr TQ‘fE€|2/dQ|YV€m|2
0 "
—

=|uge|?
fud ~-

_ / dr ug? (7.13)
0

Fiir kleine Abstande r bedeutet dies, dass es eine positive Zahl € geben muss, so
dass :
|uge] < erz fiirr—0 (7.14)

mit geeigneter Konstante c. Ahnlich muss ug fiir 7 — oo schneller als ugy ~ r ~3
abfallen.
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Betrachten wir zunéchst grofe r fiir den Fall, dass V(r — oo) — 0. Dann
reduziert sich die Differentialgleichung auf

h2
ﬂuzﬂé + Fugy ~ 0, fiir r — oc. (7.15)

Die asymptotische Form der Losung ist Daher

) 2/{?2
eFhT fiir B = -5 >0
Upe ~ ;;2fi2 (716)

e " fir F=— <0,
2
Fiir ein nicht-negatives Potential ist H nicht-negativ
(Y|H ) =0, (7.17)

so dass alle Energieeigenwerte £ > 0 sein miissen. Ein Teilchen in einem nicht-
negativen Potential mit V (r — oo) — 0 hat also keine gebundenen Zusténde.
Fiir kleine r verwenden wir den Ansatz

upe(r) ~r*(L+air +agr® +...). (7.18)

Einsetzen in die Differentialgleichung Gl. (7.11) liefert
— — (= D)r* 2 — (L + 1)r* 7 + 0(r*7?)) =0, (7.19)

wobei wir angenommen haben, dass V() weniger singulér als v~ fiir 7 — 0 ist.
Gl. (7.19) hat die Losungen

a=(+1 und o= - (7.20)

Fir £ =1,2,... wiirde a = —¢ die Normierbarkeitsforderung Gl. (7.14) verletzen,
so dass nur o = £ + 1 in Frage kommt. Es stellt sich heraus, dass auch fiir £ = 0
nur o = (+1 = 1 gilt (weil fiir £ = 0 der Hamilton-Operator nicht mehr wesentlich
selbstadjungiert wére). Fiir £ > 0 folgt jedenfalls, dass mit

uge(r) ~ ™ oder fgi(r) ~ 1’ (7.21)

alle Losungen am Ursprung verschwinden.
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7.2 Eigenwertproblem des Wasserstoffatoms

Wir definieren das spinlose Wasserstoffproblem durch das Proton-Elektron-Zwei-
teilchenproblem mit Hamilton-Operator

2 2
pp P
— 4+ —= 4+ V(x. — 7.22
2my, * 2me + <X Xp) ( )

H =
und der entsprechenden Schrodinger-Gleichung
0
zhgllll,w = H|V,t). (7.23)

Dies ist eine 7-dimensionale Differentialgleichung, wenn wir Gl. (7.23) z.B. auf den
Ortsraum projezieren. In (6.27)-(6.29) haben wir allerdings zeigen konnen, dass
Hamilton-Operatoren vom Typ Gl. (7.22) mit dem Gesamtimpuls vertauschen,

[Ha P] = 07 P = Pp + Pe (724)

und P somit eine Konstante der Bewegung ist. Die kanonisch konjugierte Variable
zu P ist die Schwerpunktkoordinate

MpXp + MeXe

X =
M Y

M =m, + me, (7.25)

so dass sich direkt verifizieren lisst, dass (Ubungsaufgabe!)
(X, Pj] = ihd;;. (7.26)

Gl (7.24) lasst sich direkt dadurch verifizieren, dass H unabhéngig von X ist und
zudem P mit der Relativkoordinate x = x,, — x, vertauscht:

x,P] = [le Pp + Pe| — [Xe, Pp + Pe)
= [Xp; Pp] — [Xe, Pe] = (ih — ih)1 = 0. (7.27)

Die zur Relativkoordinate kanonisch konjugierte Variable ist der Relativimpuls

_ MePp = MpPe

p= 7 , (7.28)
fiir den die Vertauschungsrelation (Ubungsaufgabe!)
[z, pj| = ihdy; (7.29)
leicht verifizierbar ist. Alle anderen Kommutatoren verschwinden:
X,p]=0, [P,p]=0, [X,x]=0. (7.30)
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In Schwerpunkts- und Relativkoordinaten lautet der Hamilton-Operator (Ubungs-

aufgabe!)

2 p2

H=—4+=— = H H.., 31
2M+2,U+V(X) p T+ 1 (7.31)

wobei die reduzierte Masse -
p= pT (7.32)

auftaucht.

Da die kanonischen Schwerpunkts- und Relativkoordinaten zwei disjunkte Alge-
bren bilden und der Hamilton-Operator in eine entsprechende Summe zerfllt, ist
die Wellenfunktion separierbar,

(X, % t) = (X', x| U, t) = &X', 1)p(xX, 1), (7.33)

Im Ortsraum zerfallt die Schréodinger-Gleichung somit in zwei Differentialgleichun-
gen:

‘hﬁcp(x' t) = —h—2v2 d(X', 1)
1 ) - 2M X/ ) )

ot
. a / hQ 2 / / /
ith—y(x',t) = ——Viy((x,t) + V(x)y(x', t). (7.34)
ot 21
Die Schwerpunktsbewegung entspricht der eines freien Teilchens
B(X', 1) = et (P ~5) (7.35)

wobei P’ der Eigenwert des Gesamtimpulsoperators ist, P|P’) = P'|P’).
Der Hamilton-Operator der Relativbewegung entspricht genau einer Bewegung
eines Teilchens mit Masse p im Potential V'(x):

2

P
Hyq = — : :
=5, V) (7.36)

Das verbleibende (schwierige) Problem ist also die Losung der Differentialgleichung
Gl (7.34) fiir (%', ). Die Energie-Eigenzustinde der Relativbewegung haben die
Form v (x',t) = e~ 7P p(x’), wobei ¢p(x’) wie iiblich die stationire Schrodinger-
Gleichung

Bun(x) = (—%Vi/ +v<x'>) ba(x) (7.37)

erfiillt. Mit den noch zu bestimmenden Losungen von Gl. (7.37) haben die Energie-
Eigenzustinde des Gesamtsystems die Form:

(3

) 12
U(x),x,t) = e%P/'X/e_?(EngiM)th(x’), (7.38)

e’ P’
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meX/e + m X/ P/2
——¢ PP Die Gesamtenergie ist also E + ST

Im Folgenden konzentrieren wir uns auf die Dynamik der Relativbewegung. Die
Relativbewegung ist ein Zentralkraftproblem mit Coulombpotential

2 A 2
H= ;’—M +V(r), V()= —Te, r=|x|. (7.39)

Fiir das Wasserstoffatom ist Z = 1 (Kernladungszahl). Fiir mehrfach ionisierte
Atome kann sie aber auch grofer sein (z.B. Z = 2 fiir He™, Z = 3 fiir Li**, usw.).

Wegen Drehinvarianz lassen sich die Eigenfunktionen schreiben als (im Folgen-
den sei der Strich x” wieder weggelassen)

mit x" = x, —x; und X' =

Yrem(X) = uEi(T)wm(H, ®), (7.40)

wobei die Yy, (6, ) die Drehimpulsoperatoren L? und L diagonalisieren und uge(r)
die Differentialgleichung Gl. (7.11) erfiillt:

B R?d* R+ 1) B Ze?
241 dr? 2412 r

Folgende dimensionslose Groften erweisen sich als zweckméfig: Die natiirliche ato-
mare Langenskala ist der Bohrsche Radius
h2
a=—5~52918 x 107" m. (7.42)
e
Die natiirliche atomare Energieskala ist der Betrag des Coulombpotentials fir Z =
1 am Bohrschen Radius:

e pe
E, = = o~ 27.1970132 €V. (7.43)
Energien und Lingen werden nun in Einheiten von F, und a gemessen,
r E
p= =g (7.44)

so dass die Differentialgleichung Gl. (7.41) iibergeht in
( d> 2Z  ((l+1)

—

4 9e4 2

i + 2¢ + P »
Wir sind insbesondere an den gebundenen Zustédnden mit £ < 0 interessiert. Wie
in Gl (7.16) diskutiert, hat ug(p) fiir grofe Abstinde p — oo die asymptotische
Form

) uge(p) = 0. (7.45)

2
uge(p — 00) ~ e P fiire= —%. (7.46)
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Fiir kleine Absténde fanden wir in Gl (7.21)
upe(p — 0) ~ p'™, (7.47)

so dass wir als Ansatz wéhlen

o0

upelp) = P S g, (7.49)

k=0

mit zu bestimmenden Koeffizienten ay. Einsetzen in Gl. (7.45) liefert folgende
Rekursionsformel fiir die Koeffizienten ay:
2k(k+0+1)—-2)
a =
Tk 0+ 2)(k+ 0+ 1) — £+ 1)

Der Rekursionsanfang aq ist dabei indirekt durch die Normierung festgelegt.
Wiirde die Reihe in k nicht abbrechen, so folgte fiir grofse k

2Kk (2k)FF1
- ak ~N —
K2 *)!

Ap+1

ao, (7.50)

d.h. Z arp® ~ age®. Damit wiirde ug(p) fiir groke p divergieren, so dass keine

k=0
akzeptable Losung vorldge. Die Potenzreihe muss also abbrechen; das Kriterium

dafiir lautet:

K(kmax +0+1) = Z. (7.51)
Daraus folgt die Quantisierung der Energieniveaus der gebundenen Zusténde
K2 Z% et
EFE=¢E,=——FE, =— . 7.52
‘ 2 212 (Fo + £ + 1)2 (7.52)
In der Literatur wird k.. oft auch n, genannt. Die Summe
nN=Fkpx+l+1=n,+0+1, n=12,... (7.53)

heifst Hauptquantenzahl, da sie die Energie der stationéren Zustdnde bestimmt:

Z2 et 7% et 72

Dies ist die Balmer-Formel. Aus historischen Griinden benutzt man die Quanten-
zahlen n und ¢ zur Bezeichnung der Zustdnde, wobei ¢ = 0,1,2,3,4,... oft mit
den Buchstaben s,p,d, f,¢g... benannt wird.

Die 14 tiefsten Zustdnde sind in Gl. (7.1) aufgelistet.
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n | € n.(= knax) | Bezeichnung | Entartung
110 0 1s 1
210 1 25 1
211 0 % 3
310 2 3s 1
311 1 3p 3
312 0 3d )

Tabelle 7.1: Die 14 tiefsten Zustdnde des (spinlosen) Wasserstoffatoms.

AAL L 7

NS S S S Ve
ot A :

L,/—‘ %WNSRA\J&
‘1

= - (

Die Entartung der Zustédnde ergibt sich aus den 2¢ 4+ 1 moglichen Einstellungen
der magnetischen Quantenzahl m, d.h. aus der 3. Komponente des Drehimpulses,
fiir jedes ¢. Fiir zunehmendes n liegen die Zustidnde immer dichter.

Da die Drehimpulsquantenzahl zu jedem n die Werte ¢ = 0,1,...,n — 1 durch-
lauft, gehdren zu jedem n

—_

(20+1)=1+3+5+...+(2n—1)=n? (7.55)
L

Il
=)

Zusténde. Dieser hohe Entwartungsgrad ist zundchst verwunderlich. Die 2¢ 4 1-
fache Entartung zu jedem ¢ erklart sich dadurch, dass L, und L_ mit H ver-
tauschen, so dass sich die Energie fiir Zustdnde mit gleichem ¢ aber verschiede-
nem m nicht unterscheiden kann. Die noch grofere Entartung (7.55) héngt in
der Tat zusammen mit einer noch groferen Symmetrie des Wasserstoffatoms: die
Schrodinger-Gleichung im Coulombpotential hat fiir F < 0 eine O(4)-Symmetrie
der 4-dimensionalen Drehungen (vgl. Ubungen).

Obige Uberlegung gilt fiir die Energie-Eigenzustinde. Die tatséichlichen Be-
setzungen der Zustdnde mit Elektronen hiangt aber noch wesentlich vom Spin-
Freiheitsgrad ab. Wegen des Pauli-Prinzips kénnen sich in jedem der obigen Zu-
stande 2 Elektronen aufhalten, die sich um ihren Spin-Zustand unterscheiden miis-

1
sen (S, = i§) Zu gegebener Hauptquantenzahl n kann ein Elektron also 2n?

111



Zusténde besetzen. Dies entspricht genau der Zahl der Elemente in einer Periode
des Periodensystems.

Das Balmer-Spektrum erfahrt in der Tat noch eine Reihe von Korrekturen, die
alle im Detail vermessen und zu hoher Prézision verstanden sind. Dazu gehoren re-
lativistische Korrekturen (z.B. die Feinstruktur), Korrekturen aufgrund von Quan-
tenfluktuationen von Strahlungsfeld und ee”-Paaren (z.B. Lamb-Verschiebung,
Uehling-Potential), Endlichkeit des Protonladungsradius, Wechselwirkung von Kern-
spin mit dem Gesamtdrehimpuls des Elektrons. Diese sollen hier nicht weiter be-
sprochen werden, sind aber spannende Themen fiir ein weiteres Studium.

Es gilt noch die Bestimmung der Eigenfunktionen abzuschlieften. Wir fanden
upe in Gl (7.48), bzw.

1
afue = farlp) = = une(p) = e "pt 5 arp”, (7.56)
P f—0nr
=upy

mit a; aus Gl (7.49) und

k=—, n=n+{+1 (7.57)

Die Normierungsbedingung lautet

1= [T dolraol o= (7.58)
Die niedrigsten Eigenfunktionen sind fiir Z = 1:
fislp) = 2e7°
Pule) = o5 (1=5)E hylo) = 5zpet

Rlo) = (130 2 et

8 1 )
fgp(p) - mﬂ (1 — 60) e 3,
faalp) = 81\/%p267

Nur s-Zustandswellenfunktionen sind nicht-verschwindend fiir » — 0; fiir alle an-
deren verhindert dies die Zentrifugalbarriere. Die Quantenzahl n, = n—/¢—1 z&hlt
im iibrigen die Knoten der radialen Wellenfunktion f,¢(p). Die explizite Formel
fiir die radialen Wellenfunktionen lautet

o (2Zp\" 27
o) = ~Nue™¥ (P22 a2t (222, 7.60)

n

(7.59)
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mit den zugeordneten modifizierten Laguerre-Polynomen

am )
LP(p) = —Lu(p), Lm(p) = S (p™e?)

und dem Normierungsfaktor
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8 Stationare Naherungsverfahren

Der Grund, warum wir uns bislang nur mit iiberschaubar vielen Systemen beschéf-
tigt haben (Stern-Gerlach, harmonischer Oszillator, Wasserstoffatom), liegt darin,
dass nur fiir relativ wenige Systeme eine exakte Losung gefunden werden kann.
Um so wichtiger sind Naherungsverfahren, die, wenn sie schon nicht zu exakten
Losungen fiihren kénnen, die Eigenschaften eines Systems zunéchst einmal qualita-
tiv erfassen. Wiinschenswert wire es, dass die gendherte Losung auch quantitativ
nahe an der exakten Losung liegt, bzw. ein Rechenschema existiert, in dem die
gendherte Losung rasch an die exakte Losung herankonvergiert. Es liegt allerdings
in der Natur der Sache, dass die Prézision eines Naherungsverfahrens nicht a prio-
ri bestimmt werden kann, sondern a posteriori kontrolliert werden muss. Wichtige
Eigenschaften eines Naherungsverfahrens sind Systematik und Konsistenz.

Systematik bedeutet, dass ein Schema angegeben werden kann (N&herung erster
Ordnung, 2. Ordnung, ...), das Ordnung fiir Ordnung abgearbeitet werden kann
und im Limes aller Ordnungen das exakte Ergebnis (im Prinzip) ergibt. Konsistenz
bedeutet, dass ein Weglassen hoherer Ordnungen n+1, n+2, ... zu einem geschlos-
senen (Gleichungs-)System zur n-ten Ordnung fithrt, das immer mindestens eine
Losung besitzt.

Naherungsverfahren, die systematisch und konsistent sind, offenbaren zumin-
dest, wenn sie nicht funktionieren, ndmlich dann, wenn das Ergebnis zu aufstei-
gender Ordnung nicht konvergiert. Andere Néherungsverfahren erlauben mitunter
nicht einmal diese falsifizierende Kontrolle, (kénnen aber trotzdem sehr niitzlich
sein).

Da unser quantitatives Verstandnis der Natur in weiten Teilen auf Naherungs-
verfahren beruht, ist ein grundlegendes Verstdndnis dieser Verfahren besonders
wichtig.

8.1 Rayleigh-Schrodingersche Storungstheorie

Storungstheorie ist (technisch-gesehen) anwendbar, wenn sich der Hamilton-Ope-
rator H des exakten Problems aufteilen lasst in einen exakt losbaren Anteil Hy

und eine Storung V/,
H=H,+V. (8.1)
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Das Eigenwertproblem von Hj sei im Folgenden als bekannt angenommen
Ho|n,a) = €4|n,a), mitne N ae{1,2,...,N,}. (8.2)

Die Quantenzahl n bezeichnet die Energie €, der stationdren Zusténde, o numme-
riert die verschiedenen Eigenfunktionen zum Eigenwert €,; d.h. im Falle N, > 1
liegt Entartung vor.

Wir fiihren nun einen Kontrollparameter A ein, mit dem wir die Storung ein-
(A = 1) und ausschalten (A = 0) kénnen,

H(\) = Hy + AV. (8.3)

Falls V' eine kleine Storung von Hj ist, konnen wir erwarten, dass die Eigenfunktio-
nen und Eigenwerte von H nur wenig von denjenigen von Hy abweichen. Mit Hilfe
des Kontrollparameters A konnen wir die Starke der Stérung steuern. Wir nehmen
nun an, dass die Eigenfunktionen und Eigenwerte von H(\) eine Entwicklung in
A besitzen,

W) = [O) + Ay + NP 4
E(\) = EO 4 XE®D £ X2E® 4 (8.4)

(NB: diese Annahme ist nicht immer erfillt. Z.B. wenn AV fiir jedes A > 0 einen
neuen gebundenen Zustand erzeugt, liegt [¢/(\)) nie nahe bei [¢(?)). Die ungestér-
ten Zusténde seien auf 1 normiert:

(WO p @y = 1. (8.5)

Es ist nun zweckméfig, |¢)(\)) nicht auf 1 zu normieren, sondern als Normierung

stattdessen
W) =1 (8.6)

zu fordern. Solange [¢)(\)) nicht senkrecht auf [1)(*)) steht, was fiir kleine A nicht
zu erwarten ist, kann Gl. (8.6) erfiillt werden. Damit folgt

= (WOp(n) Ww +ZA“’ GO ®). (8.7)

Da GI. (8.7) fiir jedes A gelten muss, folgt

WOp®y =0, k=1,2,..., (8.8)
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d.h. die Storungen stehen senkrecht auf dem Grundzustand. Die Bestimmungsglei-
chungen fiir die gestorten Grofen erhalten wir aus der stationdren Eigenwertglei-
chung

HN)pN) = ENR)

= (Hy+ \V) i Af[p®)y - = (i AkE<k>> (i )\k/]w(k/)>)

k=0 k'=0
= DN (Holp®) + Vpt)) = N ( > E@)!w(q))) . (89
k=0 k=0 p+q=k
was wiederum fiir jedes A gelten muss, d.h.
Holg®) + VIgt=l) = 3 | BW[). (8.10)
ptq=k

Explizit lauten die Gleichungen fiir £ =0,1,2,...:

Holp™) = BV®)
Hol™) +VIp') = EQp) + EOp®) (8.11)
Holp®) + VIpl) = EOp@) + EV[p) + E@ ).

Die erste Gleichung ist im Wesentlichen ein Konsistenz-Check und liefert
EY = E0) = en,  [0") = 1(0)) = [n), (8.12)

wobei wir zunéchst einmal annehmen wollen, dass das ungestorte Spektrum nicht
entartet ist (N, = 1 fiir alle n). Der Fall mit Entartung wird spéter diskutiert.
Gleichung Gl. (8.12) liefert zugleich die Anfangsbedingung zur Bestimmung aller
hoheren Ordnungen. Multiplizieren wir die zweite Gleichung aus Gl. (8.11) mit
(n|, folgt fiir den n-ten Zustand

(n|Holo™M) +(n|V [0) = ED (n [y +E©) (n]yp®)
N———— N—— N—— N—_——

e ([0 =In) =) =0
——

=0

Wir erhalten also
EW = (n|V|n) = Vi, (8.13)

bzw.

E,(\) = €n + AV + O(N?). (8.14)
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Fiir die Berechnung der Verschiebung des Energieniveaus zur 1. Ordnung in A
benotigen wir also nur das Matrixelement von V' beziiglich der ungestérten Basis

).
Ahnlich folgt fiir die k-te Ordnung aus Gl. (8.10):

(n|Hol[p ") +(n|VIp1) = > E® (n|p®)
———— W—/

=0 p+q=k =54.0

und damit
EF = (n|V]p{Y). (8.15)

Kennen wir also die Anderung des Zustands bis zur k-ten Ordnung, kénnen wir die
Anderung der Energie bis zur k4 1-ten Ordnung berechnen. Dieser Zusammenhang
lésst sich sogar resummieren:

oo

E,()\) —w = Z)\’“E k) — Z (n|V NE[p =D
= VO,
— En(A) = e + M|V |1, (). (8.16)

Wir benétigen also noch ein Bestimmungsverfahren fiir |1, ()\)) bzw. fiir dessen
Entwicklung in [)*)). Dazu spannen wir [¢{®)) beziiglich der ungestérten Basis

auf
) = (m[eP)|m), (8.17)

m#n

wobei der m = n Term wegen Gl. (8.8) herausfillt. Eine Gleichung fiir den Ent-
wicklungskoeffizienten (m|y)®) erhalten wir aus Gl (8.10) durch Multiplikation
mit (m| von links:

(m| Holy)) +(m|VIgfD) = Y E®(m|y{?)
—_———

p+q=Fk
=em (m|e)

woraus folgt
em(m ) +(mI V[ ™Y) = en(mlg) +- -+ B mlyl) + B (mln). (8.18)

D.h. fiir m # n fallt der letzte Term weg und wir erhalten

(<m|v|¢£k—1)> o E£1)<m|¢£bk—1)> .. — E'T(Lk—l)<m|¢£1)>) '
(8.19)

n ~— tm
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Da auf der rechten Seite nur Zusténde bis zur Ordnung k — 1 auftauchen, ist
Gl (8.19) zusammen mit Gl. (8.15) und Gl. (8.17) eine rekursive Bestimmungs-
gleichung fiir den gestorten Zustand zur k-ten Ordnung W;’”).

Die niedrigsten Ordnungen wollen wir nun explizit untersuchen:

1

k=1: (mly))) = (m[VIn), m#n,
€n — €m
an
= 8.20
P (8.20)
V,
(1) o mn
— = . .
w) = 3 ) 821
m#n
Daraus folgt mit Gl. (8.15) die zweite Energiekorrektur:
B = (Vi) 2 Y = ufvim)
n n " — €m
m#n
|Vinn|?
= —_— 8.22
> (8.22)

m#n

Speziell folgt fiir den Grundzustand n = 0 wegen €,, — ¢y > 0, dass die zweite
Energiekorrektur immer negativ ist, E(()Q) < 0 (oder verschwindet wenn V,,, = 0
fir alle m # 0). Am Energienenner ¢, — €, sehen wir nochmals, dass der bisherige
Formalismus im Falle von Entartung des Spektrums modifiziert werden muss.

Ohne explizite Rechnung geben wir das Resultat fiir die Anderung der Wellen-
funktion zu zweiter Ordnungen an:

|¢7(12)> = Z Vmp%n‘m>
mopn (€n — €m)(€n — 6)
1

m#n

Gleichungen (8.15), (8.17) und (8.20) lassen sich leicht mit Hilfe von computeral-
gebraischen Methoden zu sehr hoher Ordnung iterieren. Die Berechnung wird da-
durch auf die Bestimmung der Matrixelemente V/,,,, zuriickgefiihrt.

8.1.1 Beispiel: Lineare Storung des harmonischen Oszillators

Wir betrachten einen linearen Storterm

V =—Fuz, (8.24)
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zum harmonischen Oszillator,

Hy= 2 o Lnier — o (ata s 2 (8.25)
0=5 - 2mwx— a'a 5 ) )

so dass
H(\) = Hy+ AV = Hy — M\F. (8.26)

Klassisch erzeugt Gl. (8.24) eine konstante Kraft F' in z-Richtung. Mit Hilfe der
Leiteroperatoren gilt:

F.’Eo h

V= f4 =/ —. 8.27
V2 (a CL)’ o mw ( )
Benutzen wir
1
_ t _
n)y=—=a'ln—1), und |n)= aln+1), 8.28

finden wir die einzig nicht verschwindenden Matrixelemente

F F
Vs = —%(nla\n “ D) = Vit 1% = Vi1 (8.29)

Alle anderen V,,,,, mit n # m £ 1 verschwindend. Daraus folgt sofort, dass die
Korrektur erster Ordnung zur Energie verschwindet:

EY =V, =0. (8.30)

Die Korrekturen zweiter Ordnung lauten

E(Q) — ’an’2 _ ‘Vn,n71‘2 . ’Vn,n+1’2
' m#n €n = Em hw hw
2 F222 1 2 F212 1 F2q2
= P 1 _— = —
Ve e TV S T
F2
- 8.31
2mw?’ ( )

sind also unabhingig von n. Eine lineare Storung verringert also die Energie eines
jeden Niveaus um den gleichen Betrag.
Tatséchlich kénnen wir das Problem auch exakt losen. Dazu schreiben wir

2] F\*> F?
H = HO—Fa::p—+—mw2(x— )

2m 2 mw? )  2mw?
2 2
D 1 5., F _ F
S - =T — . 8.32
om + MWt 2mw?’ e mw? ( )
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Da z die gleiche Vertauschungsrelation mit p erfiillt wie z, [Z,p] = ih, sind die
exakten Eigenwerte von H:

1 F?
En:hw<n+—> — n=0,1,2,... (8.33)

2] 2mw?’
D.h. die Stérungsrechnung mit A = 1 ist zur zweiten Ordnung bereits exakt. Alle
héheren Ordnungen verschwinden somit.

8.1.2 Beispiel: Anharmonischer Oszillator
Wir betrachten einen anharmonischen Oszillator mit Stérung
V =gat = ngé (al + a)4 = ngéA, (8.34)
mit
A=(a"+a)' = 3(2N*+2N +1)+2a(2N +1)a
+2a"(2N + 1)a! + a* + a', (8.35)

wobei wir aa' = a'a + 1 = N + 1 mehrfach ausgenutzt haben. Da |n) Eigenket
von N ist, tragt der erste Term zu V,,, bei. Der zweite Term ergibt ein nicht-
verschwindendes Matrixelement V), ,, 19, der dritte Term ein nicht-verschwindendes
Matrixelement V,, ,,_o, der vierte ein V,, 44 und der fiinfte ein V,, ,,_4:

4
Vi = %3(2712 Yot 1),

Vinia = ngéz\/(n +1)(n +2)(2n + 3), (8.36)

4
Vinsa = %\/(n FD)(n+2)(n+3)n+4),
und &hnlich fiir V,, ,_o und V,, ,_4. Mit

E7(11) = Vnn
Vi |?
E(Q) _ ’ mn
Vo= e
m#£n
1
=~ Vool + Vigal” = 2lVanaf* = [Vanal’)

folgt fiir die Energien des anharmonischen Oszillators

1 3 .gx5,.
E, = + -+ - A—2n"+2n+1
n ﬁw(n 5 4)\ (2n n )

N [ gz ’ 3 2
5 (55 ) Gan’ =51In" +59m 4 21) 4. ). (8.37)
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Fir A = 1 erhalten wir eine Abschiatzung der Energie des anharmonischen Os-
zillators. Fiir eine rasch konvergierende Storungsentwicklung erwarten wir, dass
E? « BV <« e,, was fiir GL. (8.37) gilt, Falls

4
%n <1, (8.38)

Es zeigt sich jedenfalls, dass die Energieniveaus des anharmonischen Oszillators
nicht mehr dquidistant sind.

(NB: Was die tatsichlichen Konvergenzeigenschaften der Stérungstheorie fiir den
anharmonischen Oszillator angeht, so ist dies fiir sich genommen ein spannendes
Stiick Wissenschaft, dass sich zu lernen lohnt; Stichwort: asymptotische Reihen.)

8.2 Entartete Storungstheorie

Wichtig bei der bisherigen Ableitung der Storungstheorie war die Annahme, dass
das Spektrum nicht entartet ist. Im Folgenden sei diese Annahme aufgehoben (z.B.
das Wasserstoffatom zeigt ja eine grofe Entartung).

Wir betrachten also die Storung eines festen Eigenwertes €,, von Hy (der Index n
sei im Folgenden weggelassen). Sei P, der Projektor auf den entarteten Eigenraum
des Hamilton-Operators Hy zum Eigenwert EO — ¢

Py=Pl=P2 (8.39)
Wegen Zeitunabhéngigkeit des Hamilton-Operators gilt
[Py, Hy| = 0. (8.40)
Die orthonormierten Eigenfunktionen zum Eigenwert € seien
n,a) =la), a=1,2,...,N,, (8.41)

wobei N,, = N den Entartungsgrad zéhlt. Der Projektor hat also die Form

N
Fo=3 Ja)(al, (8.42)
a=1
und es gilt
(Ho — €)FPy = Py(Hy —€) = 0, (8.43)

da Py auf den Eigenraum mit Eigenwert € projiziert.
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Wir wenden nun Py auf die zweite Gleichung in (8.11) an und benutzen Py|i)(?)) =

[ ®):

Ho Pyl 2 v 1@y = EO POy 1+ 5O P )
ol [V) + RV [9) ol™) + o [¥+)
=<ho =Pop(®) =[(©) =P
=  PVPR[W®) = EM®p0), (8.44)

Wir kénnen nun Gl. (8.44) als eine Eigenwertgleichung auffassen: D.h. fiir N-fache
Entartung ist )V Py eine N x N Matrix auf dem Unterraum PyH. Da PV F,
selbstadjungiert ist, kann diese Matrix diagonalisiert werden. D.h. wir miissen die
Basis |a) so wéhlen, dass in dieser Basis

(a|V]a') = Vidaa (8.45)
gilt. Dann reduziert sich Gl. (8.44) auf
PV PByla) = V,|a) = EV|a). (8.46)

Die Eigenwerte von FyV P, sind also die Energiekorrekturen in erster Ordnung
Storungstheorie. Im Folgenden ist der Projektor @)y niitzlich, der auf den zu Py H
komplementiren orthogonalen Unterraum projiziert:

Q = 1-H,
= QDPO = POQO = O, [Qo, H()] =0. (847)

Anwendung von Qg auf die zweite Gleichung von Gl. (8.11) liefert (|/¥) = |a)):

(1) _ (1) (0) (0) (1)
Q;ZOW ) +QoV]a) = EYQolv >—|—E_  Qol™)
=HoQo =0 =€

= (Ho— Qo) + QoVl]a) =0. (8.48)

Im Unterraum (QoH hat also Hy nicht mehr den Eigenwert e. Daher kénnen wir
Hy — € formal invertieren:

1

Qolv™) = p—

QoV|a). (8.49)

™M) ist nun damit nicht eindeutig festgelegt, da mit [pM) auch Qlyp™V) eine
Losung ist (wegen Q2 = Q).

Wir fordern daher als zusétzliche Bedingung, dass \@Zz(l)> senkrecht auf PyH steht,
d.h.

Qolv(V) = [Wi)). (8.50)
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Sollte dies fiir ein [¢){") nicht erfiillt sein, ersetzen wir dieses [¢){")) immer durch
QolvM). D.h. Gl. (8.50) kann immer erfiillt werden.

= [¥5) = Qo- _1HOQ0V\a>, (8.51)

wobei |a) ein Element der Basis ist, die V' im Unterraum PyH diagonalisiert. Da
(MY senkrecht auf PyH steht, gilt die Ableitung der k-ten Energieverschiebung
fiir k£ = 2 immer noch:

1

E@ B2 vy = |V
e <Oé’ |wa> <Oé‘ QOE—HO

QoV|a). (8.52)

Check: Ist € nicht entartet, so muss |a) nicht adaptiert werden. Qo blendet dann
einfach den einen Eigenvektor |a) — |n) aus, d.h.

1
EY = <n|VQ06_HOQ0V|n>
1
= <n|VQ06_HO%: Qolm)  (m|Vn)

=(1=bmn)lm)  =Vmn

[Vinn
m#£n n m

was unser Resultat in Gl. (8.22) reproduziert.

8.2.1 Beispiel: Stark-Effekt

Im (spinlosen) Wasserstoffproblem sind z.B. alle Eigenzustédnde mit Hauptquan-
tenzahl n = 2 entartet:

{|280>, 2po), |2p-1), |2p+1>}- (8.54)

Diese Entartung kann durch ein dufseres elektrisches Feld (teilweise) aufgehoben
werden; wir wihlen als Storpotential

V = eFus, (8.55)

was einem angelegten elektrischen Feld E in x3-Richtung entspricht. Dieses V

behandeln wir als Stérung des spinlosen Coulomb-Problems. Wegen [z3, L3] = 0
folgt

0 = (ndml|[z3, L3)|n'0'm’y = (m' — m){(nlm|zs|n't'm’), (8.56)
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so dass Matrixelemente von V' zu verschiedenen magnetischen Quantenzahlen m
verschwinden. Des Weiteren benutzen wir die Eigenschaft der |[nfm) unter Paritét

P

’

Plntm) = (—=1)"|ntm), (8.57)
womit folgt, dass
14 tm) = [ d* nem (X)]? = 0. 8.58
(ntmlasfntm) = [ d 3, funl) (8.58)
ungerade gerade

Also verschwinden die Diagonalelemente der Stormatrix. Die Zustédnde [2p_;) und
|2p1) liefern also weder endliche Diagonalelemente noch endliche Nicht-Diagonale-
lemente mit den jeweils anderen Zustédnden aus Gl. (8.54). Sie 16sen die Energie-
korrekturgleichung erster Ordnung (8.46) also mit Eigenwert EW =0.

Es bleibt also noch der Unterraum {|230), |2p0>}. In dieser Basis lautet die
Matrix des Storpotentials

_ 0 (280]23|2p0)
V|{|250>,\2p0>} =eb ( <2p0|x3|250) 0 . (8.59)

Wir benotigen also
@sofoal2p) = [ v, ()t ()
_ / dr 72 / 4 Fao (1) for () Y2 () Yo Q)1 cos 6

= dp p? /dQ Yy Y 0
a/o pp” faolp)  far(p) 00 10, COS
7;’(1 _pe -5 \/E \/tCOSG

V2 2 26

a \/_
= — dp p* 1—— e r— / d / (cos @) cos 29
2/_2-6/0 PP 2

—2/3
12 [
= a== | dpp*(1- —> ~
a83/0 PP 5)¢

—1(5)— LT (6) =41 L5i=—36

= —da (8.60)
Wir erhalten also
01
V0 {j250).1200)} = —3acE ( 10 ) : (8.61)
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Die Eigenwerte und -vektoren dieser Matrix lauten daher:

1 1
EW = 3qeF, fijr—( )ﬁ (0),
()=

1 /1
EV = _3aeE, fﬁr—< ) 8.62
AR (8.62)

Diese Korrektur der Energieniveaus bezeichnet man als Stark-Effekt erster Ord-
nung. Sei Fg = % die Feldstérke des Kernfeldes im Abstand a (Bohr-Radius) vom
a

Kern, so folgt ,
M3 b & _sFE

|EYY| = 3e/a2 o= 3EB E, (8.63)
mit Fg ~ 5-10°V /cm. D.h. die Stérungstheorie ist fiir typische Laborfeldstéirken
E ~ 10°V/cm sehr gut anwendbar. Fiir sehr kleine Feldstirken £ < 10°V/cm
ist allerdings die Feinstruktur im Wasserstoffatom grofer als die Korrektur durch
den Stark-Effekt. Wahrend |2p;) und |2p_;) in erster Ordnung Storungstheorie
Eigenzustéande im elektrischen Feld bleiben, sind die Eigenzustéinde im n = 2 und
m = 0 Sektor Uberlagerungen von |2s¢) und |2p,). D.h. die iiberlagerten Zustinde
haben kein festes ¢ mehr, was einsichtig ist, da L? nicht mehr mit H vertauscht.
Die Aufspaltung in EV) = +3eFa kénnen wir interpretieren als ein elektrisches
Dipolmoment d = 3ea des Wasserstoffatoms im elektrischen Feld.

Der Grundzustand ist nicht entartet. Wegen Gl. (8.58) verschwindet daher die
Korrektur erster Ordnung in einem elektrischen Feld. Die Energieverschiebung ist
also mindestens quadratisch in E. Zur Berechnung dieser Ordnung benotigen wir
noch die Zusatzinformation, dass im Falle eines Ubergangs mit Dipolstrahlung sich
¢ nur genau um 1 éndern kann (ein solcher Ubergang sendet ein Photon aus, dass
genau den Drehimpuls +A wegtragen kann. Damit finden wir die Energiekorrektur
zweiter Ordnung;:

- 1 100)|?
@ _ ZBQEQKTL 023/100)| I

€1 — €n

n=2

= —%a?’EQ + O(E?). (8.64)

Die Rechnung im letzten Schritt ist etwas aufwéndiger, da wir die Matrixelemente
(n10]z3|100) explizit berechnen miissen, und wird hier nicht vorgefiihrt.

1
Durch Vergleich mit der allgemeinen Formel fiir Polarisationsenergien —éosz2

folgt fiir die Polarisierbarkeit des Wasserstoffatoms im Grundzustand

ap = ga?’. (8.65)
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8.3 Hellmann-Feynman-Formel

Fiir die einparametrige Schar von Eigenwerten £(\) des Hamilton-Operators H(\)
sei [10(N)) die zugehorige normierte Eigenfunktion

HN[PA) = EN[PA),  (V[gpA) = 1. (8.66)

Ableiten nach A liefert fir E(\) = (¥(A)|H(A)[1(N)) (die Ableitung nach A sei im
Folgenden mit einem Punkt gekennzeichnet):

BO) = @GOHWBO) + @O HWO)
FOOENEO) (8.67)
= BV ()R] HEMH N (),
woraus folgt:
L B0 = - HO (). (3.68)
d\ d\

Diese Hellmann-Feynman-Formel gilt im iibrigen unabhéngig davon, ob H(\) li-
near in A ist oder nicht. Falls H = Hy 4+ AV ist, folgt unmittelbar

d
B() = BOIVIBO)). (5.69)

8.4 Das Variationsprinzip nach Rayleigh-Ritz

Die zuvor entwickelte Storungstheorie ist ein systematisches und konsistentes Ver-
fahren, ist aber durch ihre Konstruktion auf die Existenz eines kleinen Parameters
angewiesen. Ein Beispiel fiir ein (in der Regel) nicht-systematisches Verfahren ist
das Variationsprinzip nach Rayleigh-Ritz. Der Vorteil dieses Verfahrens ist, dass
es nicht-storungstheoretisch ist, d.h. keine Entwicklung nach einem kleinen Para-
meter notwendig ist. Nachteil ist, dass es schwieriger sein kann, die Qualitéit der
Néherung zu beurteilen.
Wir betrachten im Folgenden das Energiefunktional

WH[Y).
(Wl

d.h. E[¢)] wird in seiner vollen Abhéngigkeit von der funktionalen Form der Wel-
lenfunktion ¢ betrachtet. Falls [¢) die stationére Schrodinger-Gleichung 16st, dann
ist E[1] gleich der Energie dieses Zustands.

E:  Zustandsraum — C, E[¢Y] = (8.70)
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Habe H nun (der Einfachheit halber) ein diskretes Spektrum F,, mit orthonor-
mierten Eigenfunktionen |n), dann lautet [¢) in dieser Basis

) = ealn), e = (nl), (8.71)

so dass

(W H) = Y (@Hn) () =Y E(¢n)(n|y)
> Ey Y ($ln)(nly) = Eo(]¢). (8.72)

Das Gleichheitszeichen gilt, wenn [¢)) der Grundzustand ist. Anderfalls gilt die
Ungleichheit. Daraus folgt das Variationsprinzip nach Rayleigh-Ritz:

Sei H = H' nach unten beschriinkt durch den kleinsten Eigenwert Ey < Ey, E,
.... Dann gilt

Ey < E[Y|, |¢¥) beliebig,
min B[] = Ep. (8.73)

Fiihrt also eine beliebige Testwellenfunktion [¢r) zu einem endlichen Wert Ep =
E[¢r], so ist Er automatisch eine obere Schranke fiir die Grundzustandsenergie.
Um daraus eine Abschétzung der Grundzustandsenergie zu erhalten, wahlt man
eine p-parametrige Schar von Testwellenfunktionen [i¢z) mit f = {f1,...,05,}.
Diejenigen Parameter S, die E[t)g] minimieren, liefern die beste Abschétzung der
Grundzustandsenergie, die mit dieser Schar von Testwellenfunktionen zugénglich

ist,
Ei(Bmin) = min Elyys] 2 Eo. (8.74)

Da |¢g) nahezu beliebig gewéhlt werden kann, ist dieses Verfahren in der Regel
nicht systematisch. Wesentliche Kriterien fiir die Wahl von |¢5) sind:

e Symmetrie-Kompatibilitit: |1g) sollte keine Symmetrien des Systems verlet-
zen.

e Beriicksichtigung des Pauli-Prinzips bei Mehrteilchen-Systemen.

e Zugangliche Berechenbarkeit von E[i)s]: Ein allgemeines multidimensionales
Minimierungsproblem ist in der Regel auch numerisch nicht einfach zu 16sen.

Im Ubrigen liefert |1s . ) zugleich eine Abschiitzung der Grundzustandswellen-
funktion 1y des Systems; allerdings wird diese in der Regel durch dieses Verfahren
nicht so gut approximiert wie die Energie.

Angeregte Energien konnen dann ebenso bestimmt werden, in dem man die
Wellenfunktion auf dem Raum minimiert, der senkrecht auf |5, ) steht.
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8.4.1 Beispiel: Der anharmonische Oszillator

Wir betrachten wiederum den harmonischen Oszillator mit anharmonischer Sto-
rung

V =gzt (8.75)
Als Testwellenfunktion wahlen wir ein Gaufssches Wellenpaket mit variabler Breite
B\ -3 i
AN _ (£ 2 s _ n
o) = o = (L) T w— [ L )

wobei 9g(2") fiir jeden Wert von § bereits auf 1 normiert ist.
Das Energiefunktional ergibt fiir diese Testwellenfunktion

H
B0) = Blosd = S = [ ot o)

N, h’ 2 m o 2 14 /

= /d:c V() (—%8m/+5w 7+ g )1/1/3(55)
B2 2 2 B2
- [ |- g (F57) taagt 5O e | o)
2

= [atsis ) (55 - )+ kg

%
1 s hw 1— 32 29 x¢
- = d u® 2 “J 0,4
\/7?/ we™ = (u 3 +6+hw52u

T 1-p5%1 29 73 3
- E (5% )

In der letzten Zeile haben wir die Integrale /

oo

(o0
_u2 .2
due™ :ﬁ,/ due " u? =
— 0o

due " ut = 3v/7/4 benutzt. Zusammenfassend folgt

—00
[e.9]

J/7/2 und /

1 1 grg 1
E(B) = —hw —+3——=. 8.77
5) = ghe (545 +390 %) (8.77)
E(B) wird minimal fiir
1 gry 1 gry 1 1
0=1——5— —65— 6=— = Bmin — 5—- 8.78
ﬁ?ﬂin hw ﬁglin fuw 6r2nin 5 Bmin ( )
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Einsetzen in Gl. (8.77) ergibt

1 1
E(Buin) = zhw (| 3Bmin — =— |, 8.79
(o) = 1 (300~ 5 (879
wobei S, die kubische Gleichung (8.78) 16st,
s g 9% (8.80)
min min hieo - .

Die reellen und positiven Losungen sind mit dem Cardano-Verfahren zu finden.

Mit der Abkiirzung x = 9—\/§ ~ (.13 konnen die Losungen explizit angegeben
werden:
2914 4 1 2913
K > % : Pmin = \/;cos <§ arccos <%)> ,

1 1

2g:z:61 2/3 2gxé 8 2gx3 3
—_— 0 = — — + | — — 81
fs hw ﬁmln 2 hw v hw v ' (8 8 )

2924\
V:\/(—i‘zzo> — K2

Einsetzen von [, in Gl. (8.79) ergibt die gesuchte obere Schranke an die Grund-
zustandsenergie des anharmonischen Oszillators.

Ragleh -y,
Bl A \j'l%
o e
Ewo 1
A3 mwmetihe |3
2
A2
1.4 70y Sorshlantc
; l " { =
Ao T 1,0 ‘Z(; Xs“{
hw

Quantitativ zeigt sich, dass die Variationsndherung nach Rayleigh-Ritz erstaun-

lich gute Resultate fiir Ej liefert — und das selbst bei starker Kopplung. Im Ge-

2gxd
gensatz dazu ist Storungstheorie jedoch nur sinnvoll fiir kleine Kopplungen 9%0
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8.5 Van der Waals-Wechselwirkung

Ein besonders praxisrelevanter Effekt, die van der Waals-Wechselwirkung zwischen
neutralen Atomen, ist ebenfalls ein Paradebeispiel der Stérungstheorie, das wir im
Folgenden andiskutieren. Wir betrachten zwei Wasserstoffatome, deren Protonen
um Abstand R voneinander entfernt sind. Es seien x und y jeweils die Vektoren
von Proton zum jeweiligen Elektron:

-~

Ny —X

P .

Die Wechselwirkungsenergien sind die Summe der Coulomb-Energien (ohne Pro-
ton-Elektron-Wechselwirkung der jeweiligen Atome):

1 1 1 1
V=e?| —+ — — . 8.82
€<|R| Riy—x| Rty |R—x|) (8:82)

Sind die Atome weit voneinander entfernt (im Vergleich zu den Atomradien), R >
a, konnen wir das Potential nach y/|R| und x/|R| entwickeln; die Terme 0. und
1. Ordnung verschwinden, und es bleibt bis zur 2. Ordnung:

V28<23_ax%§wm)' (8.83)

Das Wechselwirkungspotential V' hat damit die Form von zwei Dipol-Wechsel-
wirkungen ex und ey, die durch den Abstand R voneinander getrennt sind. Sei
R ~ e3, so folgt

e? o2
V = 3 (191 + T2y — 273Y3) =: I inMijyj, (8.84)
irj
10 0
My=101 0 (8.85)
00 -2

Fiir grofe R konnen wir V' als Stérung des Falles zweier nicht miteinander wech-
selwirkender Wasserstoffatome betrachten. Das freie Problem ist

Hy = H, + H,, (8.86)
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mit H;|n;, a;) = €, |ni, ;), wobel oy = {€;,m;}, und Hy, |n;, a;), €,, den jewei-
ligen Wasserstoff-Hamilton-Operatoren, Eigenfunktionen und Energien, entspre-
chen. Das freie System ist also in einem Produkt-Eigenzustand.

In, @) = |n1, a1;n, @) = |n1, 1) @ |ng, as), (8.87)

mit den Energien
€n = €ny + €ny- (8.88)

(NB: in der Ortsdarstellung ist das Tensorprodukt zweier Zustandsvektoren gleich
dem Produkt der Wellenfunktionen, d.h. (x,y[n, @) = ¥, oy (X)Uny.0,(¥)-)
Fiir die Stérungstheorie bendtigen wir die Matrixelemente

Vianwa = (n,a|Vin' o)
2
e
= ﬁZ(nhal’ximﬁa0/1>Mz‘j<n27042|yj|n'2,0/2> (8.89)
i,J
Wir finden also die gleichen Matrixelemente wie beim Stark-Effekt. Ebenso wie
dort gelten die Auswahlregeln fiir elektrische Dipoliiberginge m = m/, Al = =+1.
Sind die Atome in angeregten Zustinden, muss jeweils die Stormatrix im entarte-
ten Unterraum diagonalisiert werden und die Wechselwirkungsenergie ist ~ 1/R*.
Sind beide Atome im Grundzustand (oder auch nur eines), ist Voo = 0 und die
Energiekorrekturen sind von 2. Ordnung.
Im Grundzustand gilt:

’ Ofx - My|n’, o')[*
E® _— & I ! 8.90
L D (8.90)
n’,a/;n'#£0
e? [a% é? (0] - My|n', /) ?
_ e (fe\e ) 8.91
a (R6) ad o/nz’7£0 €0 — € (8.91)

=

Weil €2 /a die Dimension einer Energie hat, muss ¢ dimensionslos sein, d.h. £ ist eine
Zahl. Aufserdem haben wir ausgenutzt, dass €,y > €y, so dass E((]Q) < 0 negativ
ist. Damit ist die van der Waals-Wechselwirkung zwischen zwei Wasserstoffatomen
im Grundzustand immer attraktiv:

e? a®
Ey = —— | = e > 0. 8.92
0 610+€2o+< a)(R6)§+ S (8.92)
Fiir zwei Wasserstoffatome ergibt sich (ohne Rechnung) £ ~ 6.5.
Zwei Atome im Grundzustand, die kein permanentes Dipolmoment besitzen,
ziehen sich dennoch iiber eine Dipol-Wechselwirkung an. Die fluktuierenden La-
dungsverteilungen in den jeweiligen Atomen beeinflussen sich gegenseitig, dass
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die Ladungsverteilungen nicht mehr drehinvariant sind. Die nun asymmetrischen
Ladungsverteilungen ziehen sich dann mit einer 1/R%Wechselwirkung an.

Unsere Néherung verliert bei sehr kleinen Abstdnden R ~ a ihre Giiltigkeit.
Zum einen konnen wir das Potential nicht mehr fiir R > a entwickeln, zum an-
deren wird bei kleinen Abstdnden das Pauli-Prinzip relevant. Letzteres fithrt zur
Abstofsungen der Atome, wenn die Wellenfunktionen sich beginnen zu iiberlappen.
(NB: fiir sehr groke Absténde hingegen werden relativistische Retardierungseffek-
te wichtig, die zwar nichts am Vorzeichen der Wechselwirkung dndern, aber die
1/RS-Abhiingigkeit in eine 1/R"-Abhingigkeit umwandeln).
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