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Vorwort

Diese Vorlesungsnotizen sollen die erste tiefergehende Begegung mit der Quan-
tenmechanik begleiten, wie sie im Bachelorstudium an vielen Universitaten im 2.
Studienjahr erlernt wird.

Dieses Skript ist eine Ubertragung meiner handschriftlichen Notizen die zusit-
zlich verfiighbar bleiben. Nicht alles, was sich in den handgeschriebenen Notizen
findet (Nebenrechnungen, Feinheiten, Details in Rechnungen), lasst sich gut in ein
gesetztes Skript tibertragen.

Weder Skript noch Notizen ersetzen den Besuch der Vorlesung und Ubungen,
noch das Selbststudium von weiterfiihrenden und ausfiihrlicheren Biichern zum
Thema.

Mit Ausnahme der sicherlich enthaltenen Fehler ist das wenigste an diesen Vor-
lesungsnotizen meine originare Arbeit. Vieles findet sich an anderer Stelle, ins-
besondere in den bei den Literaturhinweisen genannten Biichern. Anderes habe
ich aus hervorragenden Vorlesungsskripten meiner akademischen Lehrerinnen und
Lehrer zusammengetragen und in die Perspektive eingebettet, aus der ich in dieses
so wichtige Kapitel eines modernen Physikstudiums einfithren mochte. Insbeson-
dere danke ich Johannes Valk und Ivo Ziesche fiir die Erstellung der Diagramme
und Skizzen mit TikZ.

Viel Erfolg und vor allem viel Freude beim Studium!

Kommentare und Verbesserungsvorschlage zu diesen Notizen sind jederzeit will-
kommen.

Jena, April 2025 Holger Gies



1 Fundamentale Konzepte

Anstelle einer Einfithrung in die Quantenmechanik entlang der historischen En-
twicklung beginnen wir mit einem Beispiel, dass die Konzepte der Quantenmechanik
besonders elementar illustriert.

1.1 Das Stern-Gerlach-Experiment

In dem von Otto Stern 1921 erdachten und von ihm und Walter Gerlach 1922 aus-
gefithrten Experiment werden Silberatome in einem gebiindelten Strahl durch ein
inhomogenes Magnetfeld geschickt und anschliefsend auf einem Schirm detektiert.

z
A

7 S
: > Y| Detektor
Ofen
= N
Kollimator

Silber hat ein magnetisches Moment g, das im Wesentlichen durch den Spin des
47. Elektrons gegeben ist. Da die Wechselwirkung des magnetischen Moments
mit einem Magnetfeld die Energie —u - B hat, erfahrt das Atom im inhomogenen
Magnetfeld eine Kraft. Gibt es nur eine Inhomogenitéit z.B. in z-Richtung, so ist
die Kraft gegeben durch

0 0B,
P (pB) =~ (1.1)

und weist in z-Richtung. Die Atome werden also je nach Grofke der z-Komponente
von p abgelenkt. Der Stern-Gerlach-Apparat (SG-Apparat) misst also die z-Kom-

ponente von p, bzw. die z-Komponente des Elektronspins. Da die Orientierung
der Atome aus dem Ofen zufallsverteilt ist, hat @ anfangs keine Vorzugsrichtung.

Entstiinde das magnetische Moment rein klassisch z.B. durch Ladungsrotationen,



so ware auf dem Detektor eine kontinuierliche Ortsverteilung der Auftreffpunkte
zu erwarten, die der Verteilung von p, zwischen —|p| und || entspriche.

Stattdessen zeigt das Experiment, dass der Strahl in genau zwei Komponenten
aufgespalten wird.

i S

Atomstrahl . Atomstrahl .

—

i il >

D.h. der Elektron-Spin kann nur zwei verschiedene Einstellungen seiner z-Kom-
ponente haben, die wir “spin up” und “spin down” nennen. Die Messung ergibt

h h
S, = > oder S, = -3 fiir den Elektronspin, wobei die Konstante A gegeben ist

durch
h = 6.5822 x 10 1%V - . (1.2)

Diese entspricht dem (reduzierten) Planckschen Wirkungsquantum, A = —. Der

7r
Spin ist also beziiglich seiner z-Komponente “quantisiert”. Selbstverstandlich hat

die z-Richtung keine besondere Bedeutung gegentiiber z.B. der z-Richtung. Ein

h
SG-Apparat in z-Richtung wiirde entsprechend .S, = 5 oder S, = —3 messen.

Besonders interessant ist daher eine Sequenz von SG-Apparaten. Betrachten wir
zunéchst zwei SG-Apparate in z-Richtung:

3 keine Atome

Wand

Sortieren wir die spin-down Atome nach dem ersten Apparat aus, ist es wenig
verwunderlich, dass aus dem zweiten Apparat auch nur spin-up Atome herauskom-
men. Der SGz-Apparat andert also die Ausrichtung der z-ausgerichteten Atome
nicht.

Drehen wir jedoch die Inhomogenitat des B-Felds in z-Richtung, so finden wir
Folgendes:

Im Detektor sind die Halfte jeweils spin-up oder spin-down Atome beziiglich
der x-Achse. Klassisch waren wir versucht zu sagen, dass die Atome bestimmt
sind durch ihren S.,-Wert und ihren S,-Wert. Es gidbe demnach 4 Atomsorten
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(Se =+,59.=+4), (+,—), (—,+) und (—, —). Dass diese Interpretation falsch ist,
zeigt folgender Aufbau:

50%
h
6; (g ~ Sz =+
+ Sy + S + 2

—> SGZ SGx SGZ

- - - h
o %= 2

Wand 50%

h
Nach Passage von S, = +§ ausgerichteten Atomen durch den SGz-Apparat

h
im dritten Schritt finden sich wieder S, = :i:§ Atome im Strahl. Die genannte

klassische Deutung ist somit ausgeschlossen.

h

Wie kann also die S, = —— Komponente, die zunédchst herausgefiltert wurde,
wieder im Strahl erscheinen?

h
Die SGz-Messung muss folglich die Ausrichtung der S, = +§ Atome beein-

h
flussen; sogar soweit, dass die S, = +— Information vollig zerstort wird. In der

Quantenmechanik, die wir im Folgenden entwickeln wollen, lassen sich also S.- und
S-Komponenten des Spins nicht zugleich bestimmen.

Wie lésst sich dieses Experiment formalisieren?

Offensichtlich ist die Information spin-up oder spin-down beziiglich (irgend-)einer
Achse die groftmogliche Menge an Information, mit der wir die Atome in diesem
Experiment beschreiben kénnen. Die Atome liegen im SG-Experiment also in zwei
Zustanden vor, z.B.

|S.;4), und |S.;—). (1.3)
Hier haben wir die Ket-Notation von Paul Dirac verwendet. Da wir es mit zwel

Zustanden zu tun haben, kénnen wir Gl. (1.3) auch als Zustandsvektoren in einem
2-dimensionalen Raum auffassen, z.B.

5502 (o)t 18:29=(). (14



Wenn wir nun z.B. den |S,; +)-Zustand durch den SGz-Apparat schicken, finden
wir jeweils zur Halfte |S,;4) und |S,; —) Zusténde; (dhnlich wiirde es mit dem
|S.; —)-Strahl gehen). Da GI. (1.3) die groktmogliche Menge an Information dar-
stellt, muss ein linearer Zusammenhang bestehen, z.B.:

1 1
‘SZQ—H — %’Sx§+>_ﬁ‘sm§_>
1S:2) = 1S ) + —]Su: -, (L5)

V2T
Die Vorfaktoren sind konventionsbedingt, wie spéter klar wird; lediglich ihr Abso-
lutbetrag ist von physikalischer Bedeutung. Gleichung GI. (1.5) besagt z.B., dass
|S.;+) verstanden werden kann als zu gleichen Teilen bestehend aus |S,;+) und
|S; —), was das SGz-Experiment beschreibt. Gleichung Gl. (1.5) ldsst sich nach
|Sy;+) und |S,; —) auflésen,

1 1
E‘Sz; -|-> + E’Sz; _>
1 1
_E|Sz§+>+ﬁ"sz§_>' (1'6>

h
In der Tat sehen wir nun, dass der S, = +§ Strahl nach dem SGz-Apparat jew-

h h
eils wieder halftig die Komponenten S, = +§ und S, = —3 vorweisen wird.

’Sx§+> =

‘SSB; _> —

Unser Formalismus beruhend auf der Annahme, dass die Unterscheidung in zwei
Zustinde die maximale Information wiedergibt, beschreibt also das sequentielle
SG-Experiment!

Es gibt nun aber noch eine weitere Komplikation: fiir einen Atomstrahl in z-
Richtung erwarten wir fiir ein SG-Experiment mit y-Ausrichtung des inhomoge-
nen Magnetfelds dhnliche Eigenschaften. D.h. die dann zu messenden Zustéande
|Sy; +) und |S,; —) sollten dhnliche Relationen mit |S.; &) und |S,; £) erfiillen wie
Gl (1.5) und Gl. (1.6). D.h. |S,; =) sollte sich jeweils als Linearkombinationen von
|S.; £) oder |S,; &) aufspannbar sein mit betragsméfig gleichen Koeffizienten. An-
dererseits aber soll z.B. |.S,; +) nicht kollinear mit einem der |S.; &)- oder | S,; =£)-
Vektoren sein. Man kann sich direkt davon iiberzeugen, dass diese Forderung mit
reellen Koeffizienten nicht zu erreichen ist. Wir sind folglich gezwungen, einen

komplexen Zusammenhang zuzulassen, z.B.:
1 ?

— S, —). 1.7

v 21 (L7)

S, ) = + —
[Sy; %) 7

‘SZQ +>



Damit ist der Zustandsraum des Spins eines Silberatoms (oder Elektrons) ein kom-
plexer Vektorraum. Ein allgemeiner Zustand ist dann eine Linearkombination aus
Basisvektoren, z.B. |S,; +), mit komplexen Koeffizienten.

Wahrend wir diese ersten Formalismen anhand des SG-Experiments motiviert
haben, gelten dhnliche Uberlegungen fiir viele quantenmechanische Systeme, die
zwei Zustande haben konnen. Ein weiteres wichtiges Beispiel ist die quantisierte
Anregung von Licht, das Photon, das in zwei Polarisationszustianden vorliegen
kann. Z.B. eine horizontale und eine vertikale Polarisation entsprache dann den
beiden Zustédnden |S,;+) in einem SG-Experiment in z-Richtung, wihrend eine
“schriage” um 45° nach rechts oder links verdrehte Polarisation dann den Vektoren
|Sy; &) entsprichen. Allgemein spricht man von einem Zustandspaar |£), dass eine
solche (vordergriindig) bindre quantenmechanische Information speichern kann, als
von einem Qubit. Anders als bei einem klassischen Bit, das entweder |[+) oder |—)

).

sein kann, kann sich ein Qubit in einer Uberlagerung befinden, z.B. —2H—>+

A

1.2 Kets, Bras und Operatoren — Grundziige des Formalismus der
Quantenmechanik

Im Folgenden wollen wir elementare Grundziige des Formalismus der Quanten-
mechanik einfithren. Dabei geht es um eine erste Beschreibung und weniger um
mathematische Strenge. Die Theorie linearer komplexer Vektorrdume in unend-
lichen Dimensionen lasst sich rigoros mathematisch formulieren. In dieser Vor-
lesung sollen die Strukturen jedoch nur insofern eingefiihrt werden, wie sie fiir ein
physikalisches Verstidndnis der Quantenmechanik notwendig sind. Des Weiteren
werden wir die Dirac’sche Notation verwenden, weil sie fiir die Quantenmechanik
sehr zweckmalig ist.

1.2.1 Der Raum der Ket-Vektoren

Wir betrachten einen komplexen Vektorraum, dessen Dimensionalitat der Zahl
der moglichen Zustidnde entspricht, die ein gegebenes physikalisches System ein-
nehmen kann. 7.B. im Fall des Stern-Gerlach-Experiments konnen die Silber-
atome zwei Trajektorien folgen, so dass wir einen 2-dimensionalen Vektorraum
betrachten. Spéater werden wir Systeme betrachten, die tiberabzihlbar unendlich
viele Zustande zulassen. Die dementsprechenden komplexen Vektorrdume sind in
der Mathematik als Hilbertraume bekannt. Im Folgenden gentigt es jedoch, sich
endlich-dimensionale Vektorraume vorzustellen.



Ein physikalischer Zustand in der Quantenmechanik wird durch einen komplexen
Zustandsvektor représentiert, der nach Dirac als Ket-Vektor bezeichnet wird: |a;).
Es gehort zu den Postulaten der Quantenmechanik (die spater nochmals zusam-
mengefasst werden), dass dieser Ket die vollstdndige Information tiber den Zustand
des Systems enthélt. Der Vektorraum ist komplex und linear, d.h., ein Zustand
) mit

) = alla) + el B) (1.8)
ist ebenfalls ein Ket im Vektorraum, wenn |a) und |3) Ket-Zusténde sind. ¢; und
co konnen hierbei beliebige komplexe Zahlen sein, ¢1,co € C. Kets und komplexe
Zahlen kommutieren selbstverstandlich, d.h. ¢|a) = |a)c. Wenn ¢ = 0, dann heifst
cla): Nullket.

Das genannte Postulat besagt weiter, dass |a) und c|a) mit ¢ € C den gleichen
physikalischen Zustand beschreiben, d.h., lediglich die “Richtungen” im Vektorraum
sind physikalisch bedeutsam (in der Mathematik spricht man von Strahlen im
Hilbert-Raum). Die genauen Werte der Koeffizienten in Gl. (1.5)-Gl. (1.7) waren
daher nicht bedeutsam.

Eine Observable, bzw. eine Messappatur fiir eine Observable, wird in der Quan-
tenmechanik représentiert durch einen linearen Operator im Vektorraum. Allge-
mein ist ein linearer Operator A eine lineare Abbildung des Vektorraums in sich

selbst, d.h.,
Alcr|a) + 2| B)) = c1Ala) + 2 A|B) (1.9)

ist wieder ein Ket im Vektorraum. Im endlich dimensionalen System kann man
A im Wesentlichen durch eine Matrix darstellen (z.B. eine komplexe 2 x 2-Matrix
im SG-Experiment). Im Allgemeinen ist A|a) # c|a). Jedoch fiir den Fall, dass
ein Ket durch A auf seinen eigenen Strahl abgebildet wird, spricht man von einem
Eigenket von A. Fiir solche Eigenkets |a’), |a"), [a"), ... mit

Ald"y = d'|d"), Al|d") =d"|d"), Ald")=d"]d"), ... (1.10)

sind @', a”, ", ... die Eigenwerte von A. Wir verwenden hier die vielleicht etwas
gewohnungsbediirftige aber sehr verbreitete Notation, dass die Eigenkets mit den
Eigenwerten, a’,a”,--- € Coder a’,a;”--- € R, als durchnummerierendem Symbol
bezeichnet werden.

Entspricht ein physikalischer Zustand |a) einem Eigenket von A, so sprechen wir
auch von einem FEigenzustand von A. Die SG-Apparatur z.B. in z-Ausrichtung
entspricht einem Operator S,, dessen Eigenzustande durch |S,; +) gegeben sind,

S.|S.:+) = i§|SZ;i>. (1.11)



1 0
Bezeichnen wir |S.; +) als (O) und |S,; —) als (1), so ist S, in der Basis |S.; £)

1 0

durch die Matrix Széi—i ( 0 1

ben.
5 ) gegeben

1.2.2 Der Raum der Bra-Vektoren und innere Produkte

Der Raum der Bra-Vektoren ist ein zum Ket-Vektorraum dualer Raum, der die
Ket-Vektoren linear und stetig auf komplexe Zahlen abbildet. Wir bezeichnen die

Bras mit (a| und schreiben die genannte lineare Abbildung als («|: |5) RN C,

(a|B) € C. (1.12)

Nach dem Satz von Riesz-Fréchet entspricht jedem Bra (| ein Ket |a) in ein-
deutiger Weise. Wir postulieren zwei fundamentale Eigenschaften fiir dieses innere
Produkt zwischen Kets und Bras:

(1) (alB) = (Bla)’
(2) (ala) =0, (1.13)

wobei der Asterisk * komplex konjugiert bedeutet. Aus (1) folgt sofort, dass (o|a)
reell ist, weswegen (2) erst Sinn macht. Eigenschaft (2) ist eine Positivitédtsbedin-
gung, die fiir alle Kets |«) erfiillt sein muss. Die Gleichheit in (2) soll nur fiir den
Nullket gelten. Im Ubrigen ist (2) wesentlich fiir die Wahrscheinlichkeitsinterpre-
tation der Quantenmechanik. Verstehen wir das innere Produkt als Skalarprodukt,
so bedeutet (2), dass die zugehorige Metrik positiv definit ist.

Mit diesen Postulaten konnen wir die Norm eines Kets |a) definieren als

He |l = v{ela). (1.14)

Falls |||a)|| = 0, ist |a) der Nullket. Falls [||a)|| # 0, konnen wir einen normierten
Ket |&) definieren
@)

= Mo (115)

so dass (a]a) = 1. Zwei Kets |a) und |3) sind orthogonal, falls
(a|B) = 0. (1.16)
Im SG-Experiment sind |S.;+) und |S,; —) orthogonal,
(S.;+]S.;—) =0. (1.17)




Physikalisch kommt hier zum Ausdruck, dass ein Atomstrahl mit S, = +7§—AUS—
h

richtung nach einer weiteren SGz-Apparatur keine S, = ——-Komponente mehr

enthalt. Mit Gl (1.6) ldsst sich nachpriifen, dass |S,;+) und |S,; —) ebenfalls
orthogonal sind,

1 1 1 1
Se; H|Se;—) = | =205+ + —=(5: — — |5 +) + —=15: —
(Sui+18=) = (—s(i+ + (8. ) (lSia + 518 -))
1 1
= —5 (9 ]85 ) + (825 —18: )
~ 0, (1.18)
falls |S.;+) und |S.; —) gleich normiert sind. In der Regel normiert man |S,, %)
auf 1, (S,;£|5,;£) = 1. Mit der Wahl der Koeffizienten in Gl. (1.6) sind |S,; %)
ebenfalls normiert, wie sich unmittelbar nachpriifen lasst: (S,;£|5,;£) = 1. Das

gleiche lésst sich fiir |S,; ) definiert in Gl. (1.7) verifizieren, wobei wegen Postulat
(1) in GI. (1.13) zu beachten ist, dass z.B.

N <Sy,+\ 1<SZ,+|— LS. (1.19)

V2 V2

Man beachte hier das Minuszeichen in der zweiten Gleichung vor dem letzten Term.

7) = ZCz’\O@) = (= ZCHO%’? (1.20)

l

Allgemeiner gilt fiir

1.2.3 Operatoren

Wir fahren fort mit einigen wichtigen Definitionen fiir Operatoren. Zwei Opera-
toren X und Y sind gleich, wenn fiir jeden beliebigen Zustandsket |«) gilt

Xla) =Yla), |a) beliebig. (1.21)

Ein Operator X heikt Nulloperator, wenn er fiir jeden Zustandsket den Nullket
ergibt,
Xla) =0, |a) beliebig. (1.22)

Die linearen Eigenschaften des Ket-Raums iibertragen sich auf die Operatoren,

X+Y =Y+ X kommutativ beziiglich der Addition,
X+ (Y +2) (X +Y)+ Z assoziativ beziiglich der Addition. (1.23)



Betrachten wir nun einen Operator im Ket-Raum mit
) = X|a). (1.24)

Der zu |y) duale Bra ist nun im Allgemeinen nicht gleich (a|X. Sondern wir
erhalten den zu X adjungierten Operator X7,

(1] = (al X", (1.25)

Wir nennen einen Operator selbstadjungiert (manchmal auch nicht ganz prazise
hermitesch'), wenn

Xt = x (1.26)
Produkte von Operatoren sind assoziativ,
(XY)Z =X(YZ)=XYZ, (1.27)
aber in der Regel nicht kommutativ,
i.d.R.
XY # YX. (1.28)

wie man sich leicht am Beispiel von Matrixmultiplikationen verdeutlichen kann.
Betrachten wir

[v) = XI6), 18)=Yla)
= [7) = (XY)]a),

so gilt fiir die adjungierten Relationen:

(= (BIXT, (8] = (YT
= (7] = (a](YTXT).
= (XY =YiXT, (1.29)

Ebenso folgt aus (1) in GI. (1.13)
falls X = 1Y + Y = X' =¢Yi+ayT. (1.30)

(Anti-Linearitdt der $-Operation).

'Eine Unterscheidung zwischen selbstadjungiert und hermitesch ist nicht notwendig, wenn X beschrénkt ist, d.h. (o] X)) <
const. X (a|a) fiir alle |). Fiir unbeschriankte Operatoren ist in der Regel die Angabe seines Definitionsbereichs notwendig,
so dass zwischen hermitesch und selbstadjungiert unterschieden werden muss. Fiir die meisten Zwecke dieser Vorlesung ist die
Unterscheidung jedoch in der Regel nicht besonders bedeutsam.



1.2.4 AuBeres Produkt

Als aukeres Produkt aus einem Ket-Vektor |3) und einem Bra-Vektor («| bezeich-
net man die sukzessive Anwendung der linearen Abbildung (| auf einen weiteren
beliebigen Ket-Vektor |v),

(@] : |7y % ¢ = (aly) e C, (131)
mit anschliefender Multiplikation von |3) mit ¢. Wir schreiben fiir das dufiere
Produkt

B){al (1.32)
Da es beliebige Kets wieder auf Kets abbildet,

(18)al) 1) = 18)(aly) = (al))IB), (1.3

ist das aufsere Produkt ein Operator. Dieser Operator rotiert beliebige Kets in
Richtung von |3).
Beispiel: Der Operator
|Sz§+><Sz§+| (1'34)

rotiert bzw. projeziert einen beliebigen Spinzustand in Richtung |S.;+). Er

entspricht also einem SGz-Apparat, bei dem die S, = —;Komponente ausge-
blendet wird.

S. ) (8. A& | sa

7.B.

(154008 +) 10 +) = 18:4) | S (S 12 )+ {855 41555 =)

_ %\Sz;ﬂ, (1.35)

1.3 Basis-Kets

In der Quantenmechanik sind selbstadjungierte Operatoren von besonderem Inter-
esse. Betrachten wir einen selbstadjungierten Operator A. Seien |a’) und |a") zwei
Eigenvektoren von A mit den Eigenwerten ¢’ und a”,

Ald"y = d'|d"y, Ald") = d"|a"). (1.36)



Konjugieren wir die zweite Gleichung:

i (s-adj.)

a"(a"| = (a"|A (a"|A (1.37)

und multiplizieren mit |a’) von rechts, so folgt
" (a"la') = (o Ala)) = o (a"|a)
bzw.
(" —ad'){a"]a") = 0. (1.38)
Falls |a") = |a") # Nullket gewihlt wird, folgt
a*=d, (1.39)

d.h. die Eigenwerte von selbst-adjungierten Operatoren sind reell.
Falls wir |a’) # |a") mit @’ # a” wihlen, folgt aus Gl. (1.38)

(a"la"y =0, (d #ad"). (1.40)

d.h. die Figenvektoren selbstadjungierter Operatoren sind orthogonal.

Da das Ergebnis einer physikalischen Messung reell ist, sind selbst-adjungierte
Operatoren gute Kandidaten um physikalische Messapparaturen und Observable
zu symbolisieren.

In der Regel wéahlt man eine Konvention, in der die Eigenvektoren auch normiert
sind, so dass alle |a") eine orthonormierte Basis bilden,

<CL/’CL”> - 5a’a”- (141)

Falls A auf den Raum aller Zustdnde eines Systems wirkt, ist diese Basis der
Eigenkets auch per constructionem vollstandig.

Da die Eigenkets |a’) eine vollstindige orthonormierte Basis bilden, kann ein
beliebiger Zustandsket |v) in dieser Basis aufgespannt werden,

)= cald). (142)

a/

Multiplikation mit (a"| liefert
Z Col \a = Cyr, (1.43)
—5 !

womit die Koeffizienten ¢, bestimmt sind:

co = (@), dh ) = 3 (@), (1.44)

(1,/



D.h. die Summe iiber alle dufseren Produkte der Eigenvektoren erfiillt:

> la) | =1, (1.45)

wobei 1 der Identitdtsoperator ist, der 1|y) = |v) fiir beliebige |v) erfiillt. Gle-
ichung Gl. (1.45) wird auch als Vollstindigkeitsrelation bezeichnet.

Beispiel: Im SG-Experiment gibt es zwei Basiszustdnde, z.B. |S.;£). In dem
zugehorigen 2-dimensionalen Vektorraum ist daher

D 18 ) (S ] = |95 +)(Ss; ] + 82 =) =] = 1. (1.46)

+
In der Tat ldasst sich direkt mit Gl. (1.6) nachrechnen, dass

(185500085 +] 41825 =082 =1) IS0, £) = |55, %),
Fiir jeden einzelnen Term der Summe GI. (1.45) gilt

(l) (@) 1) = la)a'ly) = ewla), (1.47)
d.h. |a"){d'| projeziert |y) auf die |a’)-Richtung. Der Operator
Py =|d)a (148)
wird daher als Projektionsoperator bezeichnet. Er erfiillt die Gleichungen

P3 =Py, PyPp=0, fird #d", Y Pu=1. (1.49)

Mit Hilfe der Projektionsoperatoren folt, dass sich der zugehorige Operator A
schreiben lasst als

A=A1=A) P,

= Y Ald)d| =) dld)d]

a/
/

=) dP,. (1.50)

a

Nummerieren wir die Eigenwerte o', a”, o, ... als a(l), a(2>, a® ., dann konnen
wir in Matrixdarstellung die Basiskets reprasentieren als
1 0 0
.10 11 .10
oMy = , aP)= , Ja®h= s (1.51)

0 0 1



Der Operator A hat dann Diagonalgestalt,

aV? 0 0
. 0 a(2) 0
= 4 4 . (1.52)
und die Projektoren lauten
100 000 . 000
1000 lo1o0. looo
Fao= 100 0 B 00 Feo=10 0 1 0

(1.53)



2 Formalismus der Quantenmechanik

2.1 Messungen

Die Beschreibung des Messprozesses ist in der Quantenmechanik fundamental an-
ders als in der klassischen Physik. Klassisch soll ein idealer Messprozess das zu
vermessende System iiberhaupt nicht beeinflussen. (Z.B. soll eine Geschwindig-
keitsmessung an einem Punktteilchen dieses nicht abbremsen; eine Probeladung g,
die ein elektrisches Kraftfeld vermessen soll, wird im Limes ¢ — 0 betrachtet, um
Einfliisse des eigenen Feldes auszuschalten.)

Anders in der Quantenmechanik: hier wird nicht nur der Einfluss der Messap-
paratur auf das zu vermessende System (quasi als notwendiges Ubel) mitberiick-
sichtigt. Sondern der Messprozess wird sogar definiert iiber den Einfluss der Mes-
sapparatur auf den Zustand eines Systems.

Sei |y) der Zustand eines Systems und A ein Operator, der eine Observable bzw.
eine Messapparatur symbolisiert. Sei A = A', so dass die Eigenkets |a’) von A
eine orthonormierte Basis bilden. In dieser Basis gilt:

) =) cold) =) la){dly). (2.1)

Eine Messung bedeutet nun, bzw. definiert sich dadurch, dass die Messapparatur
direkt Einfluss auf den Zustand des Systems nimmt und |v) in einen Eigenzustand
umwandelt:
) ), (2:2)
Im SGz-Experiment wird ein Atom, dass sich zunachst in einem allgemeinen Zus-
tand
7) = cil ) +e-[=), |E) =155, (2.3)

befindet, entweder nach oben oder nach unten abgelenkt, d.h. entweder |v) 565 +)

oder |v) 5% |—), wie es die Messung am Detektor nachweist.

Eine Messung andert also den Zustand eines Systems, es sei denn, das System
ist bereits in einem Eigenzustand:

falls |7) = |a) = |9) = |a) "8 gy, (2.4)



(vel. zwei sequentielle SGz-Apparate.)
Fiir einen gegebenen allgemeinen Zustand |vy) = Z cy|a’y macht die Quanten-

CL/

mechanik a priori keine Aussage, welcher genaue Eigenzustand nach der Messung
angenommen wird. Die Quantenmechanik beruht lediglich auf dem Postulat, dass
die Wahrscheinlichkeit p(a’), den Zustand |a") zu messen, gegeben ist durch

Wahrscheinlichkeit fiir @’ : p(a’) = |[(d'|7)]* = |cw|?, (2.5)

wobei vorausgesetzt ist, dass |y) normiert ist, |||7)|| = 1. Diese Vorschrift Gl. (2.5)
gehort zu den Postulaten der Quantenmechanik und wird auch Bornsche Regel
genannt.

Die Wahrscheinlichkeitsinterpretation der Quantenmechanik bedeutet streng ge-
nommen, dass fiir den tatsachlichen Ausgang einer einzelnen Messung keine echte
Vorhersage gemacht werden kann. Ob ein bestimmtes einzelnes Atom im SG-
Experiment nach oben oder unten abgelenkt wird, kann i.A. nicht vorhergesagt
werden. Die Quantenmechanik entfaltet daher ihre Vorhersagekraft erst, wenn
eine groke Zahl von Messungen an einem Ensemble von identisch praparierten
Systemen (“reines Ensemble”) durchgefithrt wird. Fiir die Wahrscheinlichkeitsin-
terpretation war das Postulat Gl. (1.13) (2), (y]y) > 0 (mit = nur fiir den Nullket)
von fundamentaler Bedeutung.

Wir definieren nun den Erwartungswert eines Operators A beziiglich des Zustands
[7):

(A, = (11AL). (2.6
Der Erwartungswert héangt offensichtlich vom Zustand |vy) ab. Wenn es keine Ver-
wechslung geben kann, schreiben wir auch kurz (A) statt (A),.
Der Erwartungswert ist der mittlere gemessene Wert, denn

(A) =) (la’) (@] Ala")(a"|y) = D d (@) P =) d pld). (2.7)

! A1 / /

a.a — a a
) a 5a/a//

Hierbei sind a' die moglichen Messwerte und p(a’) = [{d'|7)|* die Wahrschein-
lichkeit, a’ zu messen. Es ist wichtig, die Begriffe Eigenwert, Erwartungswert und
wahrscheinlichster Wert auseinander zu halten. Als Analogon betrachte man das
Wiirfeln mit einem idealen Wiirfel: die Augenzahlen 1,2, 3,4, 5,6 entsprechen den

Figenwerten. Da jede mit der Wahrscheinlichkeit 1/6 gewtirfelt werden kann, ist
6

1
der Erwartungswert = E 7 - 5= 3.5. Man konnte jedoch schlecht behaupten, 3.5
i=1
sei der wahrscheinlichste Wert. . .



2.2 Kompatible Observable

Zwei Observable sind miteinander kompatibel, wenn die zugehorigen Operatoren A
und B miteinander vertauschen,

[A,B] = AB — BA = 0. (2.8)

Andernfalls, wenn [A, B] # 0, sind sie inkompatibel.

Sind Observable kompatibel, so sind ihre Eigenkets miteinander verkniipft, wie
das folgende wichtige Theorem besagt: Seien A und B kompatible Observable, und
seien die Eigenwerte von A nicht entartet, dann sind die Matrixelemente (a”|Bla’)
alle diagonal.

Beweis (einschlieklich der Klarung aller Begriffe): Es gilt

0 = (a"|[A, B]|d') = (a"|(AB — BA)|a')
= (a" —d"){a"|B|d") = 0. (2.9)
“Die Eigenwerte sind nicht ertartet” bedeutet, dass keine zwei Eigenwerte gleich
sind, a” # a’. Daher folgt
(d"|Bla"y =0 fir d"#4d, dh (d"|Bld"y =0y {d'|Bld). (2.10)
Beziiglich der Basis der |a')-Kets ist die Matrixdarstellung von B also diagonal.

Also kéonnen A und B beziiglich der gleichen Ket-Basis als diagonale Matrizen
dargestellt werden.

Es folgt
B CL/ _ CL”/ a/// B a// CL” a’
a’) ;,! ) {a”|Bla") (a"|a’)
aa :(Sa,,,a,,<a’”|B|a’> 6a”a’
~ (@|Bla)|d), .

d.h. die Eigenwerte von B sind gegeben durch
V' = (d|B|d), (2.12)

und |a) ist daher simultaner Eigenkeit von A und B.
Falls im Eigenwertspektrum von A ein Eigenwert n-fach entartet ist, d.h. n
Eigenwerte gleich sind, dann gibt es n verschiedene Eigenkets mit

Ala})y =d'|a}), i=1,...,n. (2.13)

Jede Linearkombination der |a}) ist damit auch ein Eigenvektor. Wir kénnen nun
genau die Linearkombination auswahlen, die B diagonalisiert, so dass ein Satz
simultaner Eigenkets auch bei Entartung existiert.



Diskutieren wir nun die Kompatibilitat von Operatoren im Stern-Gerlach-System.
Wie in den Ubungen gezeigt wird, kénnen die Drehimpulsoperatoren beziiglich der
S.-Basis als |[+) = |9,; ) dargestellt werden. Das Ergebnis ist

s. = o) — 1)) 2 ((1) _°1>
(10)
S, = g(—u+><—\+¢y—><+y)% (Q —07;) (2.14)

Wie sich direkt nachrechnen lasst, gilt:

[Sx, Sy] = iﬁSz, [Sy, Sz] = ’thx, [527 Sx] = ihSy, also [SZ, S]} = ihEiijk,
(2.15)
wobei 1, 7, k die Werte x,y, z annehmen konnen. Fiir den Antikommutator, den
wir spéter benotigen werden, gilt im Ubrigen:

h2
{SZ', Sj} = S@S] + S]SZ = ?52]]1 (2.16)

Gleichung Gl. (2.15) besagt offensichtlich, dass z.B. S, und S, nicht vertauschen.
In der Tat ist ein Eigenvektor von S., z.B. |+), kein Eigenvektor von S,:

S,|+) = g 0, (2.17)

Alle S; sind also zueinander inkompatibel. Aus Gl. (2.16) lesen wir ab, dass
1
{Si, S} = 28,5, =25} = 5712]1, (2.18)

(wobei wir die Notation verwenden, dass tiber unterstrichene Indizes nicht sum-
miert wird) also proportional zur Identitét ist. Es folgt

3
2 2 2 2 2
S :Sx—FSy—I—SZ:Zh 1. (2.19)
Daher vertauscht das Drehimpulsquadrat S? mit jeder Komponente,
[S%,8] =0, i=ux,y,z2. (2.20)

Es lasst sich also jeweils eine simultane Ket-Basis angeben.
Wenn zwei Observable A und B kompatibel sind, hat das eine wichtige Konse-
quenz fiir Messungen: Angenommen, wir fiithren z.B. drei Messungen durch, 1) von



A, 2) von B, und 3) wieder von A. Ein beliebiger Anfangszustand |y) wird also
dadurch:
7y 2 Ja') 25 Ja’) <5 |a). (2.21)

Der zweite Schritt gilt nur, weil |a’) auch simultaner Eigenket von B ist. Die 3.
Messung mit A liefert somit wieder mit Wahrscheinlichkeit 1 dass gleich Ergebnis
wie die 1. Messung mit A. Kompatible Observable konnen also simultan scharf
gemessen werden: jede weitere Messung von A liefert immer den Messwert a’ und
jede weitere Messung von B liefert immer den Messwert 0’ = (a'| Blad').

2.3 Inkompatible Observable

Inkompatible Observable A und B mit [A, B] # 0 haben keine gemeinsame voll-
standige Basis von simultanen Eigenkets. Um dies zu zeigen nehmen wir das Gegen-
teil an: Sei [A, B] # 0 und es gebe eine Basis von simultanen Eigenkets |a) von
A und B. Dann gilt AB|d’) = Ab'|d’) = d'b'|d’) und BA|d") = Bd'|d’) = d'b'|a’)
und damit (AB — BA)|a) = 0. Was im Widerspruch zu [A, B] # 0 und der
Vollstandigkeit der Basis |a') ist. Inkompatible Observable kénnen also, wenn
tiberhaupt, lediglich auf einem Unterraum eine simultane Basis haben.

Die Besonderheiten von inkompatiblen Observablen werden an folgendem Beispiel
besonders deutlich: Seien A, B und C jeweils inkompatible Observable, die an
einem Zustand Messungen durchfithren (man darf, muss aber nicht, an einen Stern-
Gerlach-Apparat denken). Jede Messung projeziert den Zustand (z.B. einen Atom-
strahl) auf einen jeweiligen Eigenket:

|a’) ) )

Jeweils ein projezierter Zustand wird behalten, die tibrigen moglichen Messergeb-
nisse werden aussortiert. Sei der projezierte Zustand |a’) nach Messung A auf 1
normiert, [[a’|| = 1. Dann ist die Wahrscheinlichkeit, bei B einen bestimmten
Zustand |b) zu messen

Wahrscheinlichkeit &' zu messen: = [{¥'|a’)|*. (2.22)

Die Wahrscheinlichkeit, anschliekend bei C' einen bestimmten Zustand |c') zu
messen, ist dann

Wahrscheinlichkeit anschl. ¢ zu messen: = [{¢/|b)|?|(V/|a')|?, (2.23)



da Wahrscheinlichkeiten multiplikativ sind.

Nun betrachten wir die Gesamtwahrscheinlichkeit, |¢) zu messen, wihrend wir
alle moglichen Wege tiber den Zustand |b') zulassen. Dafiir summieren wir iiber
die b Zwischenzustinde:

777]
7277
777

Das Frgebnis ist
DBV P = D () la) (a0 (). (2.24)
b/ b/

Dies Vergleichen wir mit einer Messung, bei der die B-Apparatur entfernt wird:

') )

Figure 2.1:

Da B dennoch eine vollstandige Basis vermoge seiner Eigenkets definiert, konnen
wir |a’) durch die B-Basis aufspannen:

) = ) (W|a). (2.25)

Die Wahrscheinlichkeit, bei der Messung ohne B-Apparatur |¢’) zu beobachten, ist
2

[{c'la’)|* =

> () a’)
%

= > (W) (@) (|, (2.26)

by

Offensichtlich sind GIl. (2.24) und GI. (2.26) nicht i.A. gleich. Die Messung von
C' hangt davon ab, ob wir die B-Messung tatsédchlich durchfiihren oder nicht.
In Gl (2.24) priifen wir tatsichlich nach, welchen b-Weg das System gegangen
ist. Wir erhalten damit mehr Information iiber das System. Allerdings ist dieser

Informationsgewinn damit verbunden, dass diese Messung den Zustand beeinflusst.
In Abbildung 2.1 erhalten wir keine Information iiber den b'-Weg. Das System
kann also sowohl iiber o’ als auch iiber " (als auch iiber beide Wege zugleich)
gegangen sein. Dieses Gedankenexperiment ist somit eine Verallgemeinerung des
Doppelspaltexperiments.



Gleichungen GI. (2.24) und GI. (2.26) werden in der Tat gleich, wenn [A, B] =0
oder [B,C] = 0 ist. Z.B. fiir [A, B] = 0 ist dann ein Basisvektor |b') kollinear zu
la’), und alle anderen [0')-Eigenkets orthogonal zu |a"). D.h. nur jeweils ein Term
aus der Summe in Gl (2.24) bzw. der Doppelsumme in Gl. (2.26) ist nichtver-
schwindend und GI. (2.24) und GI. (2.26) sind gleich; das analoge Argument gilt
fir [B,C] = 0.

2.4 Die allgemeine Unscharferelation

Die Inkompatibilitdt von Observablen hat eine direkte Konsequenz fiir die Menge
und Qualitat von Informationen, die wir iiber ein System durch Messungen erhal-
ten konnen, z.B. unter anderem fiir die Genauigkeit, mit der wir die Werte von
(Kombinationen von) Observablen bestimmen kénnen.

Betrachten wir dazu den folgenden Operator zu einer Observablen A:

AA=A— (A), (2.27)

wobei der Erwartungswert beziiglich eines bestimmten Zustands |y) genommen
wird. Die mittlere quadratische Abweichung oder Varianz von A ist gegeben durch

(AAP) = ((A7—24(4) + (4)))
= (A%) —2(4)" + (4)°
= (4%) — (4)~. (2.28)
Falls |v) ein Eigenket von A ist, verschwindet die Varianz von A exakt. Die Varianz

wird oft als “Unscharfe” einer Observablen beziiglich eines Zustands bezeichnet.
Besser ist jedoch der Begriftf “Unbestimmtheit”.

1
Sei z.B. |y) = [+) = |S.;+) eines Spin—i-Systems. Dann liefert eine SGz-
Apparatur immer den Messwert +§. Die Varianz von S, ist also

«ASJ3::G¥>—§$V::HM¥H&—<+BH+V
%—%:Q (2.29)

h
Das Ergebnis der Messung S, = +§ ist also vollstdndig bestimmt (wird “scharf

gemessen”). Hingegen liefert eine S,-Messung eines anfinglichen |+)-Zustands jew-

h h
eils hilftig die Messwerte S, = i§. Mit S, = 5(!+><—] +|=)(+]) ist die Varianz



von S, also

(AS,)7) = (S7) = (S)* = (+|Sgl+) — (+[Su[+)*

_ h—(<+\(\+><—\+r—><+r>(r+><—r+\—><+m+>

4
~(HEDE1 ) )

= (R 1)) —0)
_ %2 (2.30)

Das Ergebnis einer jedem Messung der Observable S, ist also a priori unbestimmt,

beide Werte j:§ sind gleich wahrscheinlich (im Mittel ergibt sich also ein “unschar-

fer” Messwert, bzw. eine grofe Varianz).

An dieser Stelle léasst sich bereits vermuten, dass die Unschérfe von S, beziiglich
der SGz-Basis an der Inkompatibilitdat von S, und S, liegt. In der Tat gilt fiir
zwel Observable A und B beziiglich jedes beliebigen Zustands folgende allgemeine
Unscharferelation:

(AAP)(ABY) 2 Z(A, B 2.31)

fiir selbstadjungierte Operatoren A = A" und B = B'. Dies soll im Folgenden
bewiesen werden:
Per Postulat gilt (y]y) > 0. Fiir jedes A € C gilt mit |y) = |a) + A|5) daher

0 < (yly) = {ala) + MalB) + A (Bla) + AP (B]B). (2.32)
en iy Bl
Wahlen wir A = (BB folgt
{alB)*  l{alB)]?
V= el G *(B1B)
= (a]a) — a2l
= (a|a) BIB) (2.33)
Somit folgt:
(ale)(B18) = [(alB)[. (2.34)

Dies ist die Schwarz’sche Ungleichung (vgl. |al?|b[* > |a - b|?). Diese verwenden
wir fiir die Zustande

) = AAL),|B) = ABJ ), (2.35)



wobei | ) irgendein beliebiger Zustand sein kann. Mit

(ala) = ((AA))
(BlB) = ((AB))

(a|B) = (AAAB) (2.36)
folgt mit Hilfe von Gl. (2.34)
(AAP)((AB)) = {AAAB)J. (2.37)
Mit Hilfe von Kommutator und Antikommutator gilt
AAAB = %{AA, ABY + %[AA, AB), (2.38)
wobei
[AAAB]|=[A—(A),B— (B)] = A, B] (2.39)

ist, weil die Zahlen (A) und (B) miteinander und mit Operatoren vertauschen.
Der Kommutator ist anti-selbstadjungiert,

T
([A, B]) — (AB)! — (BA)' = BTA' — ATB' = BA— AB =B, A] = —|A, B],
(2.40)
wahrend der Antikommutator selbstadjungiert ist,

]
({A, B}) — (AB+ BAY = Bt AT + AIBt = AB+ BA={A,B}. (241)

Weil selbstadjungierte Operatoren reelle Eigenwerte haben, konnen ihre Erwar-
tungswerte auch nur reell sein. Ahnlich sind die Erwartungswerte von anti-selbst-
adjungierten Operatoren immer rein imaginar, d.h.

(AAAB) — % ([AA,AB]) +% ({AA,ABY) . (2.42)
rein imvaginéir reil??eell
Daher gilt:
5 5 (2.37) 1 5 1 5
(AAH(AB)) = KA BRI"+ 7 [{A, BRI (2.43)

womit die Unschérferelation Gl. (2.31) bewiesen ist, denn die Fortlassung des let-
zten Terms kann die Ungleichung nur stérker machen.

(NB: Wir werden spéter sehen, dass die beriihmte Orts-, Impuls-Unschérferelation
ein einfacher Spezialfall von Gl. (2.43) ist. Zwischen Orts- und Impulsoperator

1
besteht der Zusammenhang [x, p|] = ik, so dass ((Az)*){(Ap)?) > ZLFLQ folgt.)



2.5 Basiswechsel — Unitare Transformation

Gegeben zwei inkompatible Observable A und B, die durch selbstadjungierte Oper-
atoren symbolisiert werden, so gibt es zwei Sitze von Eigenkets {|a")} und {|V')},
welche als Basisvektoren den Zustandsraum aufspannen konnen. So konnen wir
im SG-Experiment die Zustédnde in der |S,; +)-Basis aufspannen, wir konnten al-
ternativ aber genauso die |S,; £)-Basis verwenden. Da beide Basen den gleichen
Zustandsraum aufspannen, muss es eine Transformation geben, die die eine Basis
in die andere iiberfiihrt. Der zugehorige Transformationsoperator kann direkt aus
den beiden Basen konstruiert werden:

Gegeben zwel Sitze von Basisvektoren {|a’)} und {|b')}, so existiert ein unitirer
Operator U, so dass

BDY = Ula®y, 16@) = Ula?), . ... (2.44)

Hierbei haben wir die Eigenwerte und -vektoren geordnet und nummeriert. Der
Operator U ist unitar, weil er die Bedingungen

U =U0U"=1 (2.45)

erfiillt. Der Operator U kann explizit konstruiert werden:
U =3 b a), (2.46)
k

denn
Ula®y = bEN () 40y = [p0) 9 A7
a®@) = p") (@®]a") = ), (2.47)
k Oke
wegen der Orthonormalitat der Basisvektoren. Ebenso lasst sich die Unitaritéit von

U zeigen:
Uty = Z ) k)| = Z al) (2.48)

512k
shnlich fiir UUT = 1. Die Matrixdarstellung von U z.B. beziiglich der {|a’)}-Basis
lautet

U = (a®|Ula®) = (a®[p0), 5 49
(@' \aw> {a'™ o) (2.49)
—[1(0)

d.h. die Matrixelemente von U in der {|a")}-Basis setzen sich aus den inneren
Produkten der alten und neuen Basis-Vektoren zusammen.

Aus der Transformation der Basisvektoren folgt sofort die Transformation der
Koordinaten eines beliebigen Vektors |y) beziiglich des Koordinatensystems, d.h.



der jeweiligen Basis (der Vektor selbst ist natiirlich unabhéngig von der Basis):

) = ldN ) =) 1a) ). (2.50)
a’ 14

Hierbei sind (a'”|y) die Koordinaten beziiglich der {|a’)}-Basis. Die Koordinaten
beziiglich der {|b')}-Basis sind

(W) =) 0W[a)(ay) =Y (a™UTa®)(a]y), (2.51)

14 14

oder in Matrix-/Komponentenschreibweise

’Yllc = U/I[Yﬁ; (2'52)

wobei 7, die Koordinaten von |y) in der {|b')}-Basis bezeichnet. Dies ldsst sich
auf Transformationen der Matrixdarstellung von Operatoren ausdehnen:

X, = <b(k‘)‘X‘b(€)> _ Z(b(k)‘a(m)><a(m)’X’a(n)><a(n)‘b(€)>

_ Z<a<k)]UUa(m>>(a(m)]X]a(”>>(a(m\U\a(@)
= Ul XnUp. (2.53)

Dies entspricht der bekannten Formel fiir Ahnlichkeitstransformationen in der
Matrix-Algebra
X' =U'XU, (2.54)

wobei der Strich die Koordinaten in der {|0')}-Basis symbolisiert.

2.6 Kontinuierliche Spektren

Bislang haben wir den ganzen Formalismus anhand des Stern-Gerlach-Experiments,
d.h. eines 2-Zustandssystems entwickelt, bei dem Operatoren, die Messapparaturen
entsprechen, 2 Eigenwerte hatten. In der Quantenmechanik wollen wir aber auch
Positionen, Impulse, etc. von Teilchen beschreiben, also Groken, die Werte aus
ganz R annehmen konnen. Betrachten wir z.B. ein Teilchen, das sich entlang einer
Achse = bewegen kann. Quantenmechanisch soll also jeder mdoglichen Position
x ein eigener Zustandsvektor entsprechen. Da die Zahl der moglichen Zustande
der Dimensionalitit des Vektorraums entspricht, miissen wir nun (iiberabzihlbar)
unendlichdimensionale Vektorraume betrachten.



Die zugehorige Mathematik rigoros abzuhandeln geht iiber den Rahmen der Vor-
lesung hinaus. Fiir das Verstiandnis der physikalischen Strukturen soll es hier genii-
gen, den notwendigen Formalismus aus dem bisher eingefiihrten zu motivieren.
Falls diese naiven Verallgemeinerungen an ihre Grenzen stofen, wird ein genauerer
Blick in die Mathematik folgen.

Diskretisieren wir in Gedanken also die reelle Achse in abzahlbare Gitterpunkte
mit Abstand a:

Wir stellen uns vor, das quantenmechanische Teilchen kann jeweils nur auf den
Gitterpunkten sitzen. Der Zustandsraum wird also aufgespannt durch die Posi-
tionsvektoren

4}, mit z.B. i € Z. (2.55)

Eine Ortsmessung, der ein Ortsoperator x zugeordnet wird, liefert dann die mog-
lichen Koordinaten als Eigenwerte:

xli) = zi|i), mit ) =a-i. (2.56)

Da z! € R ist, soll z ein selbstadjungierter Operator auf dem Zustandsraum sein.
Die Orthonormalitat und Vollstandigkeit der Basis wird nun ausgedriickt durch

(i) =05 Il = 1. 257
Ein beliebiger Zustand |¢) lautet in dieser Basis

¥) = l)ily) (2:58)

Nun mochten wir einen Kontinuumslimes erreichen, in dem der Gitterabstand ver-
schwindet, a — 0. Die Zahl der Gitterpunkte pro physikalischer Langeneinheit L

geht dann in gleicher Weise gegen unendlich, N; ~ — — oo. Das gleiche gilt fiir

die Zahl der Zusténde (pro Langeneinheit). Wichtig igt, dabei die Orthonormalitét
und Vollstédndigkeit der Basis (2.57) beizubehalten. In diesem Kontinuumslimes
wird die Summe iiber die Gitterpunkte als Riemann-Summe zum Integral. Das
Integralmafk ist dabei durch den Gitterabstand vorgegeben: Az’ = a — da”:

1= Sl = Y Aw i

= Y A2 g ()], mit [2]) = —[i). (2.59)

Sl



Im Kontinuumslimes lautet die Vollstandigkeit

i - / a2V (. (2.60)

Die in Gl. (2.59) eingefiihrten Zustinde |z}) sind nun nicht mehr auf 1 normiert,

sondern erfiillen |

Die rechte Seite divergiert zwar im Kontinuumslimes a — 0, die Riemann-Summe
tiber die rechte Seite bleibt aber endlich und ist unabhéngig von a:

ZA:{:' (zj]2) = Zﬁx’ é&j = Zézj = 1. (2.62)

Im Kontinuumslimes ist Gl. (2.61) also eine Darstellung der Dirac-0-Distribution:
= §(2' — 2")  (Orthonormalitit)
= /daz (2|2") = 1. (2.63)
Man sagt, die Ortseigenzustinde |z’) sind d-normiert. Sie sind per constructionem
Eigenzustande des Ortsoperators x,
rlz") = 2|2"), 2 eR, (2.64)

vgl. Gl (2.56). Die Darstellung eines beliebigen Zustands |¢) lautet in dieser
Ortsbasis:

) =110) = [ d'le o). (2.65)
Die “Matrixdarstellung” des Ortsoperators x in der Ortsbasis wird damit
(2 |z|2") = 2" (2|2") = 2"0(2" — 2") = 26 (2" — 2. (2.66)

Der Ortsoperator ist also “diagonal” in der Ortsbasis.
Diese Uberlegungen lassen sich iiber ein 3-dimensionales Gitter direkt auf den
3-dimensionalen Ortsraum ausdehnen. Es ergeben sich die wichtigen Relationen:

<X/‘XH> _ 5(3)(X/ o X//)7
1 = /d%’\x’ﬂx’]. (2.67)
x|x')y = x'|x).

Hierbei ist x der Ortsoperator, der sich als 3-dimensionaler Vektor aus den Ort-
L1

soperatoren X = | x9 | zusammensetzt. Der Zustandsvektor |x’) diagonalisiert
L3



simultan die Operatoren x1, o und z3. Wir konnen folgern, dass letztere daher
kompatible Observable sind:

@i, 2] =0, i,j=1223 (2.68)

Die 3 Koordinaten eines Teilchens konnen also simultan beliebig scharf gemessen
werden. Im Ubrigen dehnt sich das oben beschriebene Messkonzept der Quan-
tenmechanik auch auf Ortsmessungen aus. Auch eine Ortsmessung ist dadurch
definiert, dass sie einen beliebigen Zustand |¢) auf einen Ortseigenzustand |x)
projeziert, bzw. die |x')-Komponente aus |1)) herausprojeziert. Der Einfachheit
halber fiihren wir die folgende Diskussion wieder fiir eine Raumdimension durch, sie
lasst sich aber direkt auf 3 Dimensionen verallgemeinern. Idealisiert kennzeichnet
eine Ortsmessung (in einer Dimension) also

) = / a2y (@) O gy, (2.69)

(0. 9]

Rein mathematisch idealisiert ist zwar eine beliebig scharfe Messung moglich,
physikalisch hat aber jeder Detektor eine Ausdehnung A (z.B. die Kérnung einer
Fotoplatte oder eines Pixeldetektors). Eine angemessenere Beschreibung der Mes-
sung ist daher:

' +A/2

I e | o, SN 210
—00 ' —A/2
Die Koordinate (x”|¢) beziiglich der Ortsbasis heift auch Wellenfunktion 1 (z").
Unter der Annahme, dass sich die Wellenfunktion wenig iiber die Ausdehnung
des Detektors dndert, erhalten wir aus der Wellenfunktion als Wahrscheinlichkeits-
amplitude die

Wahrscheinlichkeit fiir
Ortsmessung bei ' | = [(2/|¢)[*d2’ = |¢(2)|*d’, (2.71)
im Interval da’

mit dz’ = A. Das diese Interpretation Sinn macht, zeigt sich in der Wahrschein-
lichkeit, ein Teilchen irgendwo zwischen —oo und co zu messen:

/ " (@) = / " dw Wl |) = (1) = 1, (2.72)

o0

wobei ||1]| = 1 normiert sein soll.



2.7 Translationen

Unser Ziel ist es, die Dynamik von quantenmechanischen Zustanden zu beschreiben.
Bevor wir jedoch wirkliche Zeitentwicklung betrachten kénnen, miissen wir verste-
hen, wie die Verschiebung eines Zustands im Raum realisiert werden kann.

Betrachten wir z.B. einen Zustand, der um ein x’ herum lokalisiert ist. Nun
wollen wir diesen Zustand nach x’ + dx’ infinitesimal verschieben, ohne sonstige
Eigenschaften des Zustands zu andern. Wir fithren dazu einen Translationsoperator
T(dx') ein mit der Eigenschaft

T(dx)|x") = |x' + dx'). (2.73)

Eine mogliche zugelassene relative Phase wahlen wir zu 1. Der Translationsopera-
tor T'(dx’) fiihrt also einen Ortseigenket wieder in einen Ortseigenket — allerdings
mit verschobenem Eigenwert x’ + dx’ — iiber. Offensichtlich ist |x’) kein Eigenket
von 1.

Auf einen beliebigen Zustand [¢) wirkt die Translation wie folgt:

) = T(dx)|y) = T(dxl>/d3$/!X'><X'\¢> = /dg%l\X'+dX/><X/W>
— /d%’\x’}(x’— dx'|1), (2.74)

wobel wir im letzten Schritt eine Variablensubstitution im Integral durchgefiihrt
haben. Wir erhalten also den verschobenen Zustand, indem wir die Wellenfunktion
bei x" — dx" auswerten:

7’
4
Urspriinglicher Verschobener
7
Zustand Zustand
7
__________
T T f’
7 —d7 7 7 +d7

Wichtig ist festzuhalten, dass unsere Translation aktiv den physikalischen Zus-
tand verschiebt. (Alternativ wird in der Literatur auch die passive Verschiebung
verwendet, bei der der physikalische Zustand gleich bleibt, aber das Koordinaten-
system um —dx’ verschoben wird.)

Vom Translationsoperator fordern wir folgende wichtige Eigenschaften. Wegen
Wahrscheinlichkeitserhaltung muss 7" unitér sein. Ist z.B. [¢) auf 1 normiert, soll
dies auch fiir den verschobenen Zustand gelten:

(V]e) = (|T(dx')T(dx')])). (2.75)



Da [¢) beliebig, folgt die Identitét
TH(dxT(dx') = 1. (2.76)

Wenn wir einen Zustand zweimal verschieben, z.B. um dx’ und dann um dx”, so
soll das gesamte Resultat durch eine Verschiebung beschreibbar sein:

T(dx")T(dx') = T(dx" + dx'). (2.77)

Eine Verschiebung um dx’ und dann um —dx’ soll die Identitét sein, d.h.
T(—dx"\T(dx') =1, baw. T Hdx') = T(—dx'). (2.78)

Und im Limes dx” — 0 soll die Verschiebung ebenfalls die Identitit sein:
d}(igo T(dx') =1. (2.79)

Wir wahlen folgenden Ansatz fiir die infinitesimale Translation:

T(dx')=1—iK-dx/, (2.80)
K,

mit K = | Ky | einem Vektor von selbstadjungierten Operatoren Kj = K. Mit
K3

diesem Ansatz lassen sich die genannten Eigenschaften priifen.

Gl (2.76) :  THWdxT(dx') = (1 +iK'-dx)(1 —iK - dx)

= 1+ (KT—O K) -dx' + O(dx"?)
~ 1. (2.81)

Hierbei arbeiten wir zur Ordnung dx’, da wir von der Darstellung (2.80) auch nur
erwarten, dass sie zur ersten Ordnung richtig ist.

Gl (2.77): T(dx")T(dx') = (1 —iK-dx")(1 —iK - dx’)
= 1 —iK - (dx" +dx') + O(dx?)
~ T(dx" + dx)). (2.82)
Da T(—dx') = T'(dx') und T unitér ist, folgt Gl. (2.78) automatisch ebenso wie

Gl. (2.79). Dies bestitigt den Ansatz (2.80) fiir den Translationsoperator. Damit
konnen wir eine aukerst wichtige Identitat ableiten. Wir betrachten

xT(dx")|x') = x|x" + dx') = (X' + dx')|x + dx') (2.83)



und
T(dx)x|x") = x'T(dx")|x") = x'|x" + dx'). (2.84)
Also folgt
(x, T(dx")]|x") = dx'|x" + dx') ~ dx'|x"), (2.85)

wobei wir wieder hohere Ordnungen in dx’ vernachléssigt haben. Da |x') beliebig
ist, gilt GL. (2.85) auch als Operatoridentitit: [x, T(dx’)] = dx'1, bzw.

dx'1 = xT(dx') — T(dx")x =x —iK - dx' — x +iK - dx’
= —ixK-dx' +iK - dx'x. (2.86)

Wihlen wir dx' = dz'é; mit Einheitsvektor €; in j-Richtung im Raum, und mul-
tiplizieren wir mit e; von links, so folgt

é -dx'1 = da'le; - &; = da'16;;
= —ié;-xK-é;dr' + 1K -¢e;dr'e; - x
= —ix; Kda' + i Kja;da’, (2.87)

bzw.
[332', KJ] = Z(Szj ]1, (288)
(oder in Kurzform: [z;, K| = id;;).

Die Groke K wird Erzeugende der Translationen genannt. Welche physikalische
Bedeutung kénnen wir K zuordnen?

Das Konzept der Erzeugenden von Translationen (im Speziellen bzw. Trans-
formationen im Allgemeinen) ist bereits aus der klassischen Mechanik bekannt.
Phasenraumfunktionen koénnen mit Hilfe von kanonischen Transformationen trans-
formiert werden. Die der Translation zugehorige Erzeugende ist der kanonische
Impuls p. Dies wird z.B. bei der Verschiebung einer Funktion f(x) deutlich:

f(x) = flx+dz) = f(x)+da:%+0(d;p2)
= f(z)+{p, flz)}dx + ...

= (14 {p, - }dz) f(z).... (2.89)
Hierbei haben wir die Poisson-Klammer
0A0B 0AOB
4. B} = dx Op  Op Ox (2.90)

verwendet, mit deren Hilfe die Erzeugenden-Struktur der kanonischen Transfor-
mation sichtbar wird. In Analogie zur klassischen Mechanik kénnen wir also K
mit dem Impuls p in Verbindung bringen. Aus Dimensionsgriinden bendtigt dieser



Zusammenhang jedoch noch einen Faktor der Dimension 1/Wirkung. Wir wéihlen

daher

p
K=-—. 2.91
’ 2.91)

Ob dies sinnvoll ist, ist letztenendes eine experimentelle Frage. In der Tat ist
Gl. (2.91) der von De Broglie gefundenen (experimentell bestatigten) Welleneigen-
schaft von Materieteilchen (z.B. Elektronen) dquivalent, bei der die De Broglie-
Wellenlange A mit dem Impuls zusammenhangt:

2t p
— == 2.92
<=7 (2.92)

2
Wir kénnen also K mit dem Operator identifizieren, der der Wellenzahl k& = ;

entspricht. Der Translationsoperator wird damit

T(dx) =1 — %p L dx, (2.93)

und wir erhalten aus Gl. (2.88) die Vertauschungsrelation

Ort und Impuls eines quantenmechanischen Teilchens sind damit inkompatible
Observable, konnen also nicht gleichzeitig scharf bestimmt werden. Ihre Varianzen
gehorchen der Heisenbergschen Unschdrferelation, die wir aus Gl. (2.31) z.B. fiir x

und p, folgern: )
(AP (a2

Eine weitere wichtige Vertauschungsrelation lasst sich aus den Translationen fol-

(2.95)

gern: betrachten wir zwei Translationen in unterschiedlichen Richtungen, z.B. in ¢
und j-Richtung. Die Reihenfolge der Verschiebungen spielt wegen Gl. (2.82) keine
Rolle:

dz’

A’ = da’ ¢, A7’ = da’ ¢,

T(dx")T(dx") = T(dx" + dx') = T'(dx')T (dx"). (2.96)



Damit folgt:

-\ 2 -\ 2
0= [T(dx"), T(dx")] = (—%) p-dx" p-dx]= (—%) [p;, pilda"da’,
wobel wir dx” = da"é; und dx’ = da'é; gewihlt haben. Wegen Beliebigkeit von
dx" und dx’ folgt
pj, pi| = 0. (2.97)

NB: Die oben genannten Eigenschaften der Translationen definieren eine Grup-
penstruktur: die Gruppe der Translationen. Wenn die Erzeugenden einer Gruppe
kommutieren, so wie in Gl. (2.97), so heifst die Gruppe “abelsch”.

Die Impulsoperatoren sind also jeweils kompatible Observable, d.h. es gibt eine
simultane Eigenbasis |p’), so dass

plp’) =p'lp), p R’ (2.93)
Diese Basis diagonalisiert den Translationsoperator:
? ?
T o) = (1 o ) ip) = (1o g0 ) (299

Der Eigenwert ist komplex, was zu erwarten war, da T'(dx’) nicht selbstadjungiert
sondern unitar ist.

Bislang haben wir nur infinitesimale Translationen betrachtet. Eine endliche
Transformation z.B. von x’ nach x” konnen wir aber aus infinitesimalen Transfor-
mationen zusammensetzen. Sei

x" —x'= Ndx/, (2.100)
im Limes dx’ — 0, N — oo, aber |x” — x'| =const. Dann ist
n i N
Tx"—x') = lim || 7T(dx')= lim (1 ——p- dX’)

N—s00 4 " N—00 h
Z:

. N
- . o L . /! o /
= (1 inP X))
i

— exp (—ﬁp (% — X')> | (2.101)

wobei wir die Limes-Darstellung der Exponentialfunktion verwendet haben.
Zusammenfassend halten wir fest, dass wir aus den Eigenschaften der Transla-
tionen folgende fundamentale Vertauschungsrelationen gefunden haben:



Diese Struktur ist den klassischen Poisson-Klammern sehr dhnlich. In der Tat
beobachtete P.A.M. Dirac 1925, dass viele quantenmechanische Eigenschaften eines
Systems folgen, wenn man das analoge klassische System kanonisch beschreibt und
dann die Poisson-Klammern durch Kommutatoren (und « und p Koordinaten durch

Operatoren) ersetzt:
1
— : 2.1
()=l ] 2103

Diese Ersetzung wird oft als Quantisierung eines klassischen Systems bezeichnet. In

der Tat kann man die Quantenmechanik axiomatisch auf diesen Ersetzungsregeln
aufbauen. Es stolt allerdings auf seine Grenzen, wenn man Systeme beschreiben

will, die kein klassisches Analogon haben wie z.B. Spin—i Systeme.

2.8 Wellenfunktionen in Orts- und Impulsraum

Beziiglich einer orthonormalen Ortsraumbasis lassen sich allgemeine Zusténde 1)
aufspannen

[4) Z/dx'\w’ﬂw'\w =/dw’!w’>¢($’), (2.104)

wobel wir die Wellenfunktion als

p(a) = (2'[¢) (2.105)

im (hier wieder der Einfachheit halber 1-dimensionalen) Ortsraum eingefiihrt haben.

In der Tat lassen sich allgemein Ubergangsamplituden in Ortsraumbasis schreiben;
z.B.

wmmszwmwmmzfmwwwmﬁ (2.106)

beschreibt die Ubergangsamplitude zwischen zwei Zustinden [¢;) und [t5) mit
Hilfe der Wellenfunktionen im Ortsraum. Speziell die Normierung eines Zustands
lautet dann

1= (ol = [ do'oia)P (2.107)
In gleicher Weise ergibt sich z.B. fiir einen Operator A
A} = [’ [ a0

d.h. solche inneren Produkte kénnen bei Kenntnis der Wellenfunktion und der
Matrixelemente (2'|Al2”) im Ortsraum ausgewertet werden. Eine wichtige Ver-
einfachung ergibt sich, falls A = f(x) eine reine Funktion vom Ortsoperator x



1st:
@ (@))e"y = F@) el = F()o(’ — "),
S (A = / da’ (&Y (& Ybola). (2.109)

Es ergibt sich ein einfaches Integral. Verallgemeinerungen auf den 3-dimensionalen
Raum sind trivial.

Nun studieren wir, wie der Impulsoperator in der Ortsraumbasis aussieht; da Ort
und Impuls inkompatible Observablen sind, kann p keine Diagonalgestalt beziiglich
der Ortsraumbasis haben. Wir betrachten erneut infinitesimale Translationen (in
einer Dimension):

T(da!)|) = (1-—~%pdxf)\¢»:=b/"dx'fwdxwtx®<xW¢»:=b/“dxﬂx'+dw@<x%¢o
_ / ' |7\ (x' — da'|) = / dr' |2y (z' — da')
-~ / a2')2) <¢(x'> _ dx’%w(x’)) | (2.110)

wobei Terme der Ordnung dz’* wieder vernachlissigt werden. Koeffizientenver-
gleich zur Ordnung dz’ liefert

plo) = [ do'e) (=ing vt ).

0

(@ [pl) = —Zﬁ—< 19) = il (). (2.111)

Beziiglich der Ortsbasis kann der Impulsoperator also als ein Ableitungsoperator
dargestellt werden. Ahnlich folgt:

bzw.

(U1lplpe) = [ da"yi(2') —Zﬁ— a(2),  (@|p"|Y) = (—ih)" ainib(flf’)-
ox

(2.112)
Bislang haben wir rein in der Ortsbasis gearbeitet. Es besteht aber zwischen Orts-

und Impulsbasis eine vollstindige Analogie. D.h. beziiglich der Impulsbasis {|p’) }
mit
plp') = p'lp), (2.113)

lautet die Darstellung eines Zustands

rwszwwwszwww, (2.114)



mit der Impulsraumwellenfunktion ¢ (p’) = (p'|¢). NB: Wir verzichten darauf ein
neues Symbol wie z.B. ¢)(p') einzufithren. Es sollte klar sein, dass (z) = (z/[)
und ¥ (p') = (p|1) zwei vollig verschiedene Funktionen sein konnen.

Der Zusammenhang zwischen Orts- und Impulsbasis ist in der Ubergangsam-
plitude (z'[p") codiert. Fiir diese Amplitude lisst sich eine Differenzialgleichung
ableiten:

0
(@lplp') = —ihg5(|p')
= p/{2|p'), (2.115)
d.h. |
(Z'|p) = N ei?™ (2.116)

mit einer noch zu bestimmenden Normierung N. Diese ergibt sich aus
(o' o) = o) = [ @y = NP [ el
= |N|*2rhé(z’ — 2", (2.117)

wobel wir die Fourierdarstellung der o-Distribution verwendet haben,

5(x) = /OO Ak ik, (2.118)

Wihlen wir NV positiv und reell, so folgt

1 1 i, 0.0

. = (P = —=er'". 2.119
Gre (@]p) 57 (2.119)

Damit léasst sich der Zusammenhang zwischen Wellenfunktionen in Orts- und Im-

N:

pulsraum formulieren:

(') = (@) = / ') (o) =
und ahnlich

/ %p/x/
\/ﬁ/dpe Y(p'), (2.120)

4= s [ ety i

Der Basiswechsel ist also eine Fourier-Transformation. Die Verallgemeinerung auf
den 3-dimensionalen Raum ist wieder trivial. Die zugehorigen Bra- und Ketvek-
torraume faktorisieren und es folgt z.B.

1 R
A P X
(x'|p’) = B )3/265 : (2.122)

etc.



3 Zeitentwicklung

Die Quantenmechanik ist eine nicht-relativistische Theorie, in der Zeit und Raum
unterschiedlich voneinander behandelt werden. Insbesondere bleibt Zeit dhnlich
wie in der klassischen Mechanik ein reiner Parameter. Zeit wird nicht zu einem
Operator erhoben.

Damit stokt die Quantenmechanik an ihre Grenzen, sobald Propagationen oder
Teilchentrajektorien etc. relativistisch werden. Die Vereinigung von Quanten-
mechanik und spezieller Relativitatstheorie in einer “relativistischen Quantenme-
chanik” fiihrt in der Tat zu keiner wirklich konsistenten Theorie. Diese Vereini-
gung gelingt erst, wenn man die Freiheitsgrade eines quantenmechanischen Punkt-
teilchens aufgibt und zu Feldfreiheitsgraden iibergeht. Dies fiihrt dann zu relativis-
tischen Quantenfeldtheorien, in denen Orte wieder zu reinen Parametern werden.

Im folgenden beschranken wir uns auf die nicht-relativistische Quantenmechanik
und wollen die Zeitentwicklung von Zustdnden verstehen, sind also auf der Suche
nach dem quantenmechanischen Analogon zum 2. Newtonschen Gesetz.

3.1 Zeitentwicklungsoperator

Sei ein physikalisches System zum Zeitpunkt ¢y in einem Zustand |¢). Im Allge-
meinen erwarten wir, dass es zu einem spéateren Zeitpunkt nicht mehr im gleichen
Zustand ist, sondern in einem neuen Zustand

1) mit [t = to) = |). 3.)
Fiir die Zeitentwicklung von ¢y nach ¢ fithren wir einen Operator U (t,ty) ein:
[, 8) = Ut to) ), to). (3.2)

Die Wahrscheinlichkeitserhaltung der Zeitentwicklung verlangt, dass ein normierter
Zustand normiert bleibt:

1 = <¢7t0’¢7t0> = I = <¢7t|¢7t> = <¢7t0’UT(t7tO)U(t7t0)|¢7t0> (33)
Da |1, ty) beliebig ist, folgt, dass U unitér sein muss:
Ul(t, to)U(t, to) = 1. (3.4)



Da eine Zeitentwicklung von ¢y noch ¢; und dann von £, nach ¢, einer Zeitentwick-
lung von ¢y nach s entsprechen soll, gilt

U(tz, t()> = U(tg, tl)U<t1, to), (tg > 1 > to). (35)
Betrachten wir infinitesimale Zeitentwicklungen,
’¢7 to + dt> — U(tO + dt7 tO)’¢7 t0>7 (36>

dann soll U nur infinitesimal von der Identitéat verschieden sein, und im Limes in

diese iibergehen:

lim Uty + dt, to) = 1. (3.7)
dt—0

Analog zu den rdumlichen Translationen erfiillt folgende Parametrisierung diese

Eigenschaften:
Ulty+dt, ty) = 1 —iQdt (3.8)

mit = Q' selbstadjungiert (wegen Unitaritit von U).

Die physikalische Bedeutung von €2 entnehmen wir wieder aus der Analogie zur
klassischen Mechanik: Hier ist die Hamilton-Funktion die Erzeugende der Zeit-
entwicklung, wie man im Vergleich mit den kanonischen Bewegungsgleichungen
sieht:

T = %—ZI = {x,H} (klassisch),
p = —%—H ={p,H} (klassisch). (3.9)
T

Da der Operator €2 in Gl. (3.8) aber die Dimension einer Frequenz trigt, benttigen
wir einen Vorfaktor der Dimension “Wirkung”. Wir wahlen

H
O=— 3.10
h’ ( )

was sich nur experimentell verifizieren ldsst. In der Tat ist dieser Zusammen-
hang vertraut vom Fotoeffekt, bei der die Energie-Frequenz-Relation E = hw
nachgewiesen wird. Damit wird der infinitesimale Zeitentwicklungsoperator zu

Ulty + dt, to) = 1 — %Hdt. (3.11)

Die klasssiche Hamilton-Funktion ist somit zum selbstadjungierten Operator er-
hoben worden, H = H', welcher die Zeitentwicklung eines Systems erzeugt. Damit
lasst sich die wichtige Gleichung der Quantenmechanik ableiten, welche die Zeit-
evolution von Zustanden beschreibt.



3.2 Die Schrodinger-Gleichung

Wir betrachten die Zeitentwicklung eines Systems von ¢y nach ¢ und dann nach
t +dt. Aus Gl (3.5) folgt infinitesimal

Ut +dt,ty) = Ult+dt,t)U(t,ty) = (]1 - 3Hdt> Ut to).

h
= U(t+dt, ty) — Ult, ty) = —%Hdt U(t, to). (3.12)
Im Limes dt — 0 geht die linke Seite (geteilt durch dt) in eine Ableitung iiber:
0
i Ut to) = HU(t o). (3.13)

Dies ist die Schrodinger-Gleichung fiir den Zeitentwicklungsoperator. Sie liegt aller
Zeitentwicklung in der Quantenmechanik zugrunde. Wenden wir Gl. (3.13) auf
einen Zustand zum Zeitpunkt ¢y an, so folgt:

O Ut to) = HU( 1)l o)

S Rty = HD), (3.14)

die Schrodinger-Gleichung fiir Zustande. Allerdings geniigt die Kenntnis der Zeit-
entwicklung fiir den Zeitentwicklungsoperator, d.h. die Losung von Gl. (3.13), um
die gesamte Zeitentwicklung eines Systems abzuleiten. Wir bendtigen daher for-
male Losungen des Schrodinger-Gleichung Gl. (3.13). Hierzu betrachten wir drei
Falle:

Fall 1: Der Hamilton-Operator ist zeitnunanbhéngig, H =const. In diesem Fall
konnen wir U(t, ) analog zu den endlichen Translationen in Gl. (2.101) konstru-
ieren: sei t — tg = Ndt im Limes N — oo, dt — 0, mit t — ¢ty =const., so folgt:

N : N _
Ult,tg) = lim || U(t; +dt,t;),= lim (]1 — int) — e =) (315)
e N—+00 h
Dies lasst sich auch direkt anhand der Taylor-Entwicklung der e-Funktion veri-
fizieren.

Fall 2: Der Hamilton-Operator ist zeitabhéngig, aber H’s zu verschiedenen
Zeiten sind kompatibel,

[H(t), H(t")] =0 fiir alle ¢,t". (3.16)



Die formale Losung ist dann

Ut tg) = exp (—% /to tH(t’)dt’) | (3.17)

was sich wieder durch Anwendung der Ableitung auf die Taylor-Entwicklung Ord-
nung fiir Ordnung zeigen lasst.

Fall 3: Der Hamilton-Operator zu verschiedenen Zeiten kommutiert nicht,

1
[H(t), H({t")] # 0 1A fir t # t'. (Z.B. der Hamilton-Operator eines Spin—ﬁ—

Teilchens im Magnetfeld hat einen Anteil H = —p - B = S . Bmit S =
mc

h
50 Falls B = B(t) zeitabhédngig die Richtung dndert, z.B. B(ty) = Be, und

B(t') = Be,, dann kommutieren die jeweiligen Hamilton-Operatoren nicht, weil

Eine formale Integration von Gl. (3.13) liefert

. t

1
Ult,ty) — Ulty, to) = —= | dVH(E U ty). 3.18
(t:10) ~ Uity 1) h/to (U o) (3.18)

Es folgt

-t
U(t,to)zﬂ—%/ dt' H{t"U(t', tg). (3.19)

to

Diese Gleichung lasst sich iterieren:

. t . t
Ult,to)) = 1 —% / ' H(t') <]1 —% / dt”H(t”)U(t”,to)>
to

to
00 NN " " t(n—l)
-~ 11+Z(—1) / dt’ / dt"- - - / dt™HAVH(") ... H(t™).
n—1 h to to to
(3.20)

Diese Darstellung wird auch Dyson-Reihe genannt. Sie bildet die Grundlage fiir
zeitabhangige Storungstheorie und Streutheorie. In den elementaren Beispielen
dieser Vorlesung beschéftigen wir uns weitestgehend mit Fall 1: zeitunabhéangigen
Hamilton-Operatoren.

3.3 Energieeigenzustande

Zum Studium der Zeitabhangigkeit und Zeitentwicklung eines Zustands |, t) be-
trachten wir eine Basis {|a’)} von Eigenkets eines Operators A, der mit dem



Hamilton-Operator H kompatibel sein soll:
|H, Al = 0. (3.21)
Dann sind die Eigenkets |a") mit
Ala"y = d|a") (3.22)
simultane Eigenkets von H, also Energieeigenzustande,
Hld') = Ey|d’y, (3.23)

mit Energieeigenwert E,. Hier und im Folgenden seien stets zeitunabhéngige
Hamilton-Operatoren betrachtet. In der Basis {|a’)} ldsst sich der Zeitentwick-
lungsoperator dann wie folgt darstellen:

Ut tg) = e #7100 = 37 ") (o |e (10| o) a|—Z|a o) (g,

l//

(3.24)
Sei |1, ty) ein Zustand zum Zeitpunkt £y mit

[, tg) = Z |a’) {a |¢ ty) = Yca (tg)]a’) (3.25)

C/t()

mit Entwicklungskoeffizienten c,. Die Zeitentwicklung liefert zum Zeitpunkt ¢ den
Zustand

|1, 1) = UL, to)|, t) = ZC /(to)e iEa(t=10)| Zc/ )a). (3.26)

D.h. die Entw1ck1ungskoefﬁz1enten evolvieren in der Zeit gemafé
co(t) = culty)e” B (t10), (3.27)

Das heifst, die Zeitevolution der Koeffizienten besteht nur aus einer Phasenén-
derung, wahrend die Betrage gleich bleiben. Ein spezieller Fall ergibt sich, wenn
der Anfangszustand ein Energieeigenzustand ist, z.B.

b, t0) = @) = [, 1) = e KRB0y, (3.28)

Falls also das System in einem Energieecigenzustand zum Zeitpunkt ¢, ist, bleibt
es fiir alle Zeiten in diesem Zustand. Man spricht daher auch von stationdren
Zustanden.

Die zugehorige kompatible Observable A liefert bei Messung zu allen Zeitpunkten
den Messwert a’. Eine mit H kompatible Observable kann daher als “Konstante
der Bewegung” betrachtet werden, bzw. als Erhaltungsgrofe.



Daraus ergibt sich folgendes Rezept zur Losung von Zeitentwicklungsproble-
men: finde alle, d.h. einen vollstandigen Satz, von zueinander kompatiblen Ob-

servablen A, B,C,... mit [A,B] = [B,C] = [A,C] = --- = 0 und [H, 4] =
[H,B] = [H,C] =---=0. In der zugehorigen simultanen Eigenketbasis {|K')} =
{la',b',c,...)} lautet dann die Zeitentwicklung

Damit lassen sich alle Zustéande zu allen Zeiten bestimmen.
3.4 Beispiel: Spin-Prazession

Als einfaches Beispiel diskutieren wir die Préazession eines Spin—ﬁ-Teilchens in einem

konstanten Magnetfeld. Das Teilchen habe ein magnetisches Moment der Form

e h €
- g——18. 3.30
H mc2a mc ( )
Der Hamilton-Operator lautet
h
H=-u B=-""¢.B (3.31)
mc 2

Sei B = Be, konstant und homogen:

0 B
H=-""0,B=-""3g, (3.32)

mc?2 mc
d.h. H und S, sind bis auf einen konstanten Faktor identisch

=~ [H,S5.]=0. (3.33)

Es gibt eine simultane Eigenbasis, ndmlich die |+) = |5, = 4) Basis. Die
entsprechenden Energieeigenwerte lauten dann

ehB
Wir definieren die Frequenz
B
w= ﬂ, mit e < 0 fiir ein Elektron, (3.35)
mc

so dass
H=wSs.. (3.36)



Der Zeitentwicklungsoperator lautet entsprechend

Ult, ty) = e i5=(t=10), (3.37)
Ein beliebiger Zustand |v) lautet in der S,-Basis

) = cilH) +e|=). (3:38)

Sei |y,to = 0) = |y). So ist das System zum Zeitpunkt ¢ im Zustand

t) = _ —%wt B %wt . .
7,6 =U(t,0)]7) = cee 2 |4) + c_e2 | =), (3.39)
c+(t) c—(t)
weil .
H|%) = +—|). (3.40)

Sei z.B. |y) = |+), dh. ¢, =1, c. = 0 in einem spin-up Zustand. Dann bleibt das
System zu allen Zeiten in einem spin-up Zustand, da ¢, (t) = e 2 = |c, (¢)]> = 1
und c_(t) = 0.
Falls aber z.B. 1 1
) =15 +) = \/§H> + \/ﬁ\ ) (3.41)
verharrt der Zustand nicht stationér im |S,;+) Zustand. Dies ldsst sich ablesen
an der Wahrscheinlichkeit, zum Zeitpunkt £ mit einem SGz-Apparat den Zustand
|S,; +) zu messen:
2 1 1 | 1 — Lt +iwt i
(Sithilf = || Sttt | |5 + seth )]

V2

h
2 2 2 (3.42)
2

h
Wie erwartet ist die Wahrscheinlichkeit S = —1—5 zu messen = 1 zum Zeitpunkt

h

t = 0. Hingegen bei wt = 7 ist die Wahrscheinlichkeit S/, = —= zu messen = 1.

w
Die Wahrscheinlichkeiten oszillieren mit der Frequenz 5 [hre Summe ist = 1 wie

es sein soll.



Der Erwartungswert einer S,-Messung ergibt beziiglich des Zustands |y, t):
(Sa) = (1, t1Sely, 1)

= 2 (B ) (=T ) () + b))
YT h

= 55 (e +e ) = 5 o8 wt. (3.43)
Der Erwartungswert (S,) oszilliert also mit Frequenz w zwischen den beiden Eigen-
werten ££— hin und her. Die Frequenz der Oszillation ist durch die Differenz der
beiden Energieniveaus gegeben:
E,—-FE_
g
vgl. Gl (3.40). Dies ist ein Beispiel fiir Rabi-Oszillationen, die zwischen zwei

W= (3.44)

Niveaus unterschiedlicher Energie-Niveaus bei einem geeigneten Zeitentwicklung-
soperator auftreten konnen.
h
Im vorliegenden Fall der Spin-Dynamik folgt dhnlich (S,) = 5 sinwt und (S,) =

0. Der Erwartungswert des Spins prizediert also in der (z,y)-Ebene analog zur
Prazession eines klassischen magnetischen Moments.

3.5 Zeitentwicklungsbilder

Wir haben raumliche Translationen und Zeitentwicklung als Operatoren eingefiihrt,
die Zustandsvektoren in raumlich oder zeitlich verschobene Zustandsvektoren iiber-
fithren:

) = UlY) (3.45)

mit U = T'(dx) oder U = Ul(t, ty). Da der Zustandsvektor ein System beschreibt,
bedeuten diese Verschiebungen eine tatsichliche (“aktive”) Anderung des Systems.
Wenn wir allerdings Ubergangsamplituden betrachten, fillt die Verschiebung wie-
der heraus, wenn der zugehorige Operator unitar ist:

(V1]apa) — <¢1\Q_@W2> = (1|19). (3.46)

Betrachten wir allerdings ein Produkt der Form

(1| X |tha) — (U XU ) (3.47)

mit beliebigem Operator X, dann lasst sich dies in zwei verschiedenen Weisen
lesen:



Zugang 1 “aktiv’:

Zustande werden verschoben, Operatoren bleiben fest, (3.48)
)y — U|Y), X — X. (3.49)

Zugang 2 “passiv’:

—~
o
(SN
)

~—

Zustéinde bleiben fest, Operatoren werden verschoben,

) — ), X — UXU. (3.51)

Zugang 2 mag zunéchst kiinstlich erscheinen; denn z.B. bei einer Translation ver-
schiebt sich nicht der Zustand, sondern es verschiebt sich z.B. der Ortsoperator
(und die zugehorige Basis der Eigenvektoren), der eine Messapparatur symbol-
isiert:

Beispiel: Infinitesimale Translation

Zugang 1: |¢p) — (1 = %p : dX’> ), x — X,
Zugang 2 [¢) — i),

x — Tl(dxxT(dx') = (1 + %p : dx’) X (1 — %p : dx’)

=x+ % [p - dx', x| 4+ O(dx"?)

= x + dx'1. (3.52)

Per constructionem ist klar, dass die Werte von Wahrscheinlichkeitsamplituden etc.
nicht von der Lesart 1 oder 2 abhédngen. Die Transformationen als aktiv oder passiv
aufzufassen ist also ohne physikalische Bedeutung. Wir sprechen also lediglich von
unterschiedlichen Bildern der Zeitentwicklung.

Zugang 2 ist deswegen interessant, weil er eine direktere Anndherung an den
klassischen Grenzfall erlaubt. In der klassischen Physik sprechen wir nicht von
Zustianden. Translationen in der klassischen Physik andern z.B. die Ortskoordinate
x eines Systems, verschieben also diese Groken, die in der Quantenmechanik durch
Operatoren repriasentiert werden.

Fiir den Fall von Zeitentwicklung U = U(t, ty) sprechen wir von Zugang 1 als
Schrodinger-Bild und von Zugang 2 als Heisenberg-Bild.

Sei ohne Beschrankung der Allgemeinheit (0BdA) ¢y = 0. Beschrinken wir uns
auf zeitabhangige Hamilton-Operatoren, so lautet der Zeitentwicklungsoperator:

U(t) = Ult,tg = 0) = e ", (3.53)



7Zu einer gegebenen Observable A®) = A im Schrodinger-Bild definieren wir die
Observable im Heisenberg-Bild gemél Zugang 2:
AWy = Ut ASU@). (3.54)

Zum Zeitpunkt ty = 0 stimmen beide Bilder iiberein, d.h. AT™(0) = A®). Zu
einem spateren Zeitpunkt hat sich im Schrodinger-Bild der Zustand aus dem An-
fangszustand heraus entwickelt,

[, ) = U ()], g = 0, (3.55)
wahrend der Heisenberg-Zustand gleich bleibt,
[, ) = [y, £ = 0) = [¥). (3.56)

Per constructionem sind allerdings Erwartungswerte bildunabhéangig:
S, t| AP, ) = (U, 1y = U APU B)]) = (&, 1| AW, ). (3.57)

Im Heisenberg-Bild muss nun die Zeitentwicklung anhand der Operatoren studiert
werden; sei A = A®) explizit zeitunabhingig:

d 0 %, %,
L ameyy = 9ot _ Y Al
th (t) at1<U ()AU(t)) 1 atU (HAU(t)+ U'(t)A atU (t)
= ——U'HA®U + —UTA® U
zlh 1h .
_ .yt FAS T 42 7t A Ut
SUTHU AP+ AN UTHU
=AM 4) =AM) (1)
— —%VWﬂQLUUﬂﬂ, (3.58)

wobei wir die Schrodinger-Gleichung und ihr komplex Konjugiertes verwendet

haben:

0 0
z’haU(t) = HU(t), —m&(ﬂ t)=U'(t)H, H=H" (3.59)
Da wir den Hamilton-Operator als zeitnunanbhéngig annehmen, gilt
U'HU =U'UH = H, (3.60)

dass heift, der Hamilton-Operator im Heisenberg-Bild in Gl. (3.58) ist gleich dem
entsprechenden Operator im Schrodinger-Bild.

U'HU = HYW = H. (3.61)

Damit erhalten wir die Bewegungsgleichungen fiir Heisenberg-Operatoren:

J .
ﬁA(H)(t) = —%[A(m (t), H], Heisenberg-Bewegungsgleichungen. (3.62)



Diese Gleichung ist vollstandig analog zur Bewegungsgleichung im Hamilton-Forma-
lismus der klassischen Mechanik. Wihlen wir z.B. A™ = zM(#), so erhalten wir

d ? d 7

—e W) = ——[2W @), H], —pW ()= —=[pP@), H 3.63

() =~ (@), ], op(8) = —[p (), H], (3.63)
fiir paarweise jede Ortsraum-/Impulsraumkomponente. Ersetzen wir die Kommu-
tatoren durch Poisson-Klammern,

?

- i_i[ ) } — { ) }Poissona (364)
so erhalten wir die klassischen kanonischen Bewegungsgleichungen. Die Ersetzung
Gl. (3.64) kann man als klassischen Limes der Quantenmechanik betrachten.

Wahrend der klassische Limes allerdings nur Sinn macht fiir Phasenraumobserv-
able, AT = AW (z p) gilt die Heisenberg-Bewegungsgleichung Gl. (3.62) auch
fiir Observable ohne klassisches Pendant, z.B. fiir die Zeitentwicklung des Spins.

3.6 Freies Teilchen und Ehrenfest-Theorem

Da die Quantenmechanik grundlegender ist als die klassische Mechanik, kénnen
wir letztere aus ersterer folgern — nicht ungekehrt; somit beschreibt Gl. (3.17) die
richtige Richtung und nicht Gl (2.103). Um ein quantenmechanisches System
zu definieren, konnen wir uns aber von der Analogie zur klassischen Mechanik
leiten lassen. Eine klassische Hamilton-Funktion kénnen wir z.B. zum Hamilton-
Operator erheben, indem wir die Phasenraumvariable x und p durch Operatoren
ersetzen, die den fundamentalen Kommutatoren Gl. (2.102) gehorchen. (Dies muss
allerdings nicht immer eindeutig sein; verschiedene Umordnungen von Operatoren
konnen zu verschiedenen physikalischen Systemen fiihren.)

In Analogie zur klassischen Mechanik definieren wir also den Hamilton-Operator

eines freien Teilchens: ,
D

H=— 3.65

r, (3.65)

wobei m die Masse des Teilchens bezeichnet. Fiir die folgenden Rechnungen be-

nutzen wir die in den Ubungen gezeigten Regeln:

(22, F(p)] = mag;f), o

Wir arbeiten nun im Heisenberg-Bild, lassen aber das Superskript (H) weg, und

pi, G(x)] = —ih (3.66)

studieren die Zeitentwicklung von x und p:

it =~ [pi H] = 0. (3.67)



d.h. p ist eine Bewegungskonstante

pi(t) = pi(ty) = const. (3.68)
Fiir den Ortsoperator im Heisenberg-Bild folgt:
d i i
) t) = —¢ i7H - = 79 ’
R T
Lo Di
= — h 2 _
omh 8pip m
- Billo (3.69)
m '

Die Losung von Gl. (3.69) lautet

pﬁﬁi‘)) (t — to). (3.70)

a:l(t) = 3%(15()) +

Dies dhnelt der klassischen Trajektorie eines freien Teilchens, beschreibt aber die
Zeitentwicklung von Operatoren. So gilt z.B., dass zwar Ortsoperatoren zu gleichen
Zeiten kompatibel sind,

[zi(to), x(t0)] = 0, (3.71)
dass aber zu verschiedenen Zeiten Inkompatibilitaten entstehen:
pilt t—t
0)ey(t0)] = |alto) + P01 — ), 0) | = Lty o)
ih(t — 1)
— s, 3.72)
Dies impliziert eine Unschérfebeziehung,
2 2 G 2
((Azi(t)")(Azi(t))") = (¢ — o) (3.73)

Dies zeigt: Selbst wenn das freie Teilchen zum Zeitpunkt ¢y = 0 sehr gut lokalisiert
war, wird seine Ortsbestimmung mit der Zeit unscharf. Das zugehorige Wellen-
paket “zerfliefst” also.

Betrachten wir nun zusétzlich ein Potential V' (x),

2

H= 2p—m 1V (%), (3.74)

Nun ist der Impuls keine Konstante mehr,

Lp(t) = —lpu B =~ V() = -2 = vV, (a7)




Fiir den Ortsoperator gilt weiterhin

—Ti(t) = , 3.76
it =22 (3.76)
so dass wir folgern konnen, dass
d2 d pl(t) 1
—z;(t) = — =——(VV . 3.77
) a1
d

Dies ist das quantenmechanische Analogon des 2. Newtonschen Gesetzes im Heisen-
berg-Bild. Bilden wir nun Erwartungswerte, so wird das Resulat Bild-unabhangig,

d2
ms (x(t)) = ~(VV(x)). (3.79)

Hierbei haben wir angenommen, dass der Zustand zeitunabhangig ist. Dies ist das
Ehrenfest-Theorem. Die Gleichung ist “A-frei” und beschreibt die zeitliche Entwick-
lung des mittleren Ortes z.B. eines Wellenpakets. Die Gleichung ist dennoch nicht
vollstidndig klassisch, denn i.A. gilt (VV/(x)) # VV((x)). Die Zeitentwicklung des
Erwartungswerts des Ortes ist also 1.A. nicht gleich der Trajektorie eines klassischen
Teilchens. Die Unterschiede sind rein quantenmechanisch. Betrachten wir also die
rechte Seite des Ehrenfest-Theorems im Ortsraum beziiglich eines Zustands ),

(VV(x)) = @IVVx)lY) = / 2 (Y [x') (X' |VV (x)[4)
= [TV )e)
= / &2’ [(x))*VV (X). (3.80)

Wenn wir annehmen, dass 9 (x’) nun stark lokalisiert ist, so dass sich VV/(x') iiber
die Ausdehnung des Wellenpakets wenig dndert, so konnen wir nidhern:

(VV(x)) = VV(X) / x| p(x)|* = VV (X)), (3.81)

wobei x” den Ort bezeichnet, um den 1 (x) lokalisiert ist. Mit gleichen Argumenten
gilt X’ ~ (x) aufgrund der angenommenen Lokalisierung. Damit erhalten wir das
2. Newtonsche Gesetz als Grenzfall der Quantenmechanik:

d2
m@<x(t)> = -VV({x)), (3.82)



und konnen die klassische Koordinate x(t)|. als quantenmechanischen Erwar-
tungswert interpretieren.

NB: Die oben geforderte starke Lokalisiserung ist nicht unproblematisch, da we-
gen der Unschérfebeziehung der Impuls unscharf und damit nicht-klassisch wird.
Neben der Forderung der Lokalisierung auf Skalen, auf denen sich V(x) wenig
andert, muss also noch angenommen werden, dass die typischen Teilchenimpulse
sehr viel grofer als die durch die Lokalisierung bedingte Impulsunschérfe sind. Erst
dann ergibt sich quasi-klassisches Verhalten.

3.7 Schrodinger-Gleichung im Ortsraum

Wir haben die Schrodinger-Gleichung als Differenzialgleichung fiir den Zeitentwick-
lungsoperator kennengelernt, vgl. Gl. (3.1),

0 i
Ut 1) = = HU(t 1) (3.83)

bzw. in Anwendung auf einen beliebigen Zustand |1, tg) mit [0, t) = U(t, t9)|1), to):

0 i

Wir wollen nun eine Darstellung der Schrodinger-Gleichung fiir die Wellenfunktion
im Ortsraum ableiten,

(1) = (<[, ). (3.85)
Dazu spezialisieren wir uns an dieser Stelle auf Hamilton-Operatoren vom Typ
p?
H=—+V 3.86
PV, (3.86)

welche ein quantenmechanisches Teilchen der Masse m in einem Potenzial V(x)
beschreiben. Das Potenzial sei selbstadjungiert wegen der geforderten Selbstad-
jungiertheit von H. Da V nur von x abhéngt, ist V' im Ortsraum diagonal:

X'|VIx") = V)X =V(x)o(x'—x"). (3.87)

Projezieren wir Gl. (3.84) also auf den Ortsraum, so erhalten wir
ih(x'| 5 W t) = (X|H,t)

— zh () = (| t) + |V (e, 1

(9 h2
= ihagb(xl,t) = —%VQ@D(X’,t)—|—V(X’)¢(X’,t). (3.88)



Dies ist die zeitabhangige Schrodinger-Gleichung fiir die Ortsraumwellenfunktion.
In vielen Darstellungen der Quantenmechanik bildet Gl. (3.88) den Startpunkt der
Quantenmechanik als Wellenmechanik. Wie in Abschnitt 3.3 diskutiert, ist die
Zeitentwicklung eines Zustands besonders einfach, wenn er Energieeigenzustand
des Hamilton-Operators ist:

H|vg) = Elg), = [Yp,t) = e i p), (3.89)

wobei |Yg) = |¢Yg,typ = 0) als Anfangsbedingung gewéhlt wurde. Fiir solche
stationdren Zustinde vereinfacht sich also die Schrodinger-Gleichung Gl. (3.88);

sei dazu P(x, 1) = (X'|vop, t) = Pp(x)e 1P, Pp(x) = (X'|ip), so folgt
hQ
EYp(x') = —%V%E(X') +V(x)Ye(x). (3.90)

Dies ist die zeitunabhdngige Schrodinger-Gleichung. Mit anderen Worten: p(x', 1)
= QME(X')G_%EZf stellt einen Separationsansatz fiir die zeitabhangige Schrodinger-
Gleichung dar.

In den folgenden Kapiteln wollen wir die Schrodinger-Gleichung anhand einfacher
Beispiele naher diskutieren.

3.8 Zusammenfassung: Axiome der Quantenmechanik

Mit diesen einleitenden Abschnitten haben wir die Grundlagen der Quantenmecha-
nik gelegt und die notwendigen Rechentechniken eingefiihrt. Die Axiome haben wir
z.T. anhand von physikalischen Beispielen motiviert und begriindet. Wir fassen
die Axiome der Quantenmechanik daher hier noch einmal zusammen:

1. Zustand: Ein physikalisches System zu einem Zeitpunkt ¢y wird durch einen
Zustandsvektor |1, tg) beschrieben. Die Menge aller moglichen Zusténde eines
Systems bildet den Zustandsraum des Systems, der mathematisch einem i.A.
komplexen Hilbertraum H entspricht. Zustandsvektoren, die sich nur um einen
von Null verschiedenen Faktor unterscheiden, beschreiben denselben Zustand.

(NB: Zusténde entsprechen also Strahlen im Hilbertraum. Mit der Aquivalenz
von Zustandsvektoren, die sich nur um einen Faktor unterscheiden, kann man
den Zustandsraum mathematisch auch als projektiven Hilbertraum auffassen.)

2. Observable: Jede physikalische Messgrofse (Observable) entspricht einem lin-
earen selbst-adjungierten Operator A, der auf die Zustdnde im Hilbertraum
wirkt.



(NB: Diese Operatoren haben ein reelles Spektrum, d.h. die Eigenwerte sind
reell. Das Spektrum kann aus einem diskreten Anteil (abzahlbares Punktspek-
trum, z.B. quantisierte Energieniveaus) und aus einem Kontinuum (z.B. ein
Kontinuum von Orts- oder Impulskoordinaten) bestehen.)

3. Messresultat: Resultat der Messung einer physikalischen Grofse kann nur
einer der Eigenwerte des entsprechenden Operators A sein. Die Messung einer
physikalischen Grofe fithrt zu einer Projektion des Zustandsvektors auf den
entsprechenden Eigenzustand des Operators.

(NB: Bei kontinuierlichem Spektrum des Operators ist das Messresultat in der
Praxis eine messbare Menge oder Intervall aus dem Kontinuum; z.B. fiihrt
eine Ortsmessung eines Teilchens auf eine Lokalisierung in einem Ortsintervall
im Rahmen der Messgenauigkeit. Der Zustand nach der Messung ist dann
eine Uberlagerung von Eigenzustdnden des Ortsoperators, die Eigenwerten in
diesem Intervall entsprechen.)

4. Messwahrscheinlichkeit: Wenn die Messgroke mit Operator A an einem
System im Zustand [¢) gemessen wird, ist die Wahrscheinlichkeit P(a’), den
Eigenwert a’ von A zu erhalten P(a’) = |(a'|1))|?, wobei |a’) der zugehorige
Eigenvektor ist, und die Eigenvektoren und Zustandsvektoren auf eins normiert
seln mussen.

(NB: Hier sei angenommen, dass der Operator A diskretes nicht-entartetes
Spektrum hat. Bei kontinuierlichem Spektrum muss die Wahrscheinlichkeit fiir
ein Intervall [, a’+da’] berechnet werden, was durch die Wahrscheinlichkeits-
dichtefunktion |{a’|1))|* gegeben ist. Bei Entartung muss beriicksichtigt wer-
den, dass es mehrere Eigenvektoren geben kann, die den gleichen Eigenwert

haben.)

5. Zeitentwicklung: Die Zeitentwicklung eines Zustandsvektors wird durch den
Zeitentwicklungsoperator U (t,ty) beschrieben. Der Zeitentwicklungsoperator
ist unitdr und erfiillt die Schrodinger-Gleichung Gl. (3.2), wobei H der der
Energie eines Systems zugeordnete Operator ist.

(NB: Die Zeitentwicklung eines Zustandsvektors ist also gegeben durch [¢), ) =
U(ta tO) ‘¢7 t0> )

In quantenmechanischen Systemen mit mehreren (identischen) Teilchen werden
die Axiome noch erginzt durch Aussagen zum Spin und zum Pauli-Prinzip. In
der relativistischen Quantenfeldtheorie konnen diese Zusdtze begriindet werden,
sie sind aber bereits in der nicht-relativistischen QQuantenmechanik notwendig zum



Verstandnis von Vielteilchensystemen. Wir werden darauf zu gegebener Zeit zuriick-
kommen.

Je nach Interpretationsansatz des quantenmechanischen Messprozesses konnen
die Axiome zur Messung auch anders formuliert werden. Die hier gegebene For-
mulierung entspricht der Kopenhagener Interpretation, die in der Praxis am héau-
figsten verwendet wird. Die mathematische Struktur der Quantenmechanik ist
jedoch unabhéangig von der Interpretation.



4 Eindimensionale Systeme

Im Folgenden werden die Losungen der stationdren Schrodinger-Gleichung fiir
eindimensionale Systeme untersucht. Diese liefern nicht nur interessante Mod-
ellsystem, mit deren Hilfe grundlegende quantenmechanische Phianomene studiert
werden konnen; viele physikalische Systeme sind aufgrund von Symmetrien prak-
tisch eindimensional.

Wir betrachten also die eindimensionale stationdre Schrodinger-Gleichung (3.90):

Bys(e) =~ () + V(w)(a) (4.1)

mit 0, = 7 Hier und im Folgenden lassen wir den Strich an der Koordinate
x

x weg, da wir rein im Ortsraum arbeiten werden und somit kein Ortsoperator x
mehr auftaucht.

Mit der Abkiirzung

2
k() = h—?(E ~ V() (4.2)
folgt die kompakte Form
Opvp(x) + K (x)yp(z) = 0. (4.3)

Fine explizite Losung ldsst sich natiirlich nur nach Vorgabe eines Potentials V()
konstruieren. Im Folgenden seien aber einige allgemeine Eigenschaften der Losun-
gen diskutiert.

4.1 Eigenschaften der stationaren Schrodinger-Gleichung

Weil H selbstadjungiert ist, muss im Ortsraum V(z) reell sein. Wenn ¢ (z) nun
eine komplexe Losung der Schrodinger-Gleichung ist, dann sind Real- und Imag-
inarteil jeweils separat Losungen der Schrodinger-Gleichung. Wir kénnen uns also
im Folgenden auf rein reelle Losungen beschrénken.

Nicht alle Losungen von GI. (4.1) oder Gl. (4.3) sind physikalisch akzeptabel.
Die Wahrscheinlichkeitsinterpretation der Quantenmechanik fordert, dass vp(x)



normierbar ist, d.h.

/OO dx [pp(x)|* < oo. (4.4)

Die Ortsraumwellenfunktion ¥z (x) muss also zu den quadratintegrablen Funktio-
nen gehoéren (mathematisch: g(xz) € Ly(R)). Mehr noch, da |¢g(z)|*Az die
Aufenthaltswahrscheinlichkeit am Ort x im Intervall Az angibt, darf ¥ g(x) nicht
singular sein.

Unter der Annahme, dass V' (z) nur endliche Diskontinuitédten (“Stufen”) vorweist,
aber ansonsten stetig ist, folgt, dass ¥p(x) und d,¢p(x) iiberall stetig sind, denn:
Sei g (x) stetig bis auf endliche Diskontinuitéiten, dann ist die zweite Ableitung

Onpp(x) = —k*(x)p(x) (4.5)

integrierbar und 0,9 g(x) demnach stetig. 9,9 (x) ist folglich ebenfalls integrier-
bar und ¥ g(x) folglich differenzierbar (die Annahme ist also selbst-konsistent).
Die Differenzierbarkeit von ¢g(x) ist wichtig, wenn Teillosungen in Intervallen
I C R aneinandergehéingt werden sollen, um auf R eine Gesamtlosung zu erhalten.
Hat V' (x) unendliche Diskontinuitdten (unendlich hohe Potentialwéinde), ist nur
noch ¥g(x) iiberall stetig und 0,¢ () hat endliche Diskontinuitaten.
Die Losungen haben unterschiedliche Eigenschaften je nachdem, ob

2m
E>V(r) = K)= ﬁ<E —V(z)) >0, oder (4.6)
E<V(z) = K <0. (4.7)
In der klassischen Mechanik kann ein Teilchen in einem Potential V(x) nur £ >
V(x) haben, d.h. es kann sich nur bei z-Werten aufhalten, wo seine Gesamtenergie

E > V(x) ist. Die Punkte xy mit E = V(xy) heifen klassische Umkehrpunkte.

V(z)a

ie /
N\

T
Tk

Betrachten wir nun quantenmechanisch den klassisch erlaubten Bereich

E>V(z) < Kk(r)>0,



dann haben 0% x(z) und ¥ p(z) wegen
Opp(x) = —K(@)dp() (48)

immer entgegengesetztes Vorzeichen, d.h. die Wellenfunktion ist im klassisch er-
laubten Bereich immer zur xz-Achse hin gekriimmt. Nullstellen sind somit Wen-
depunkte, so dass Wellenfunktionen im klassisch erlaubten Bereich oszillatorisch
sind.

VE

77N

NS

Im einfachen Fall V(z) =V = const. folgt fiir
E>V: aplr)=ae™ +a_e ™ (4.9)

mit durch die Randbedingungen festzulegenden Koeffizienten a.. (Rein reelle Lo-
sungen erhélt man durch separate Betrachtung des Real- und Imaginérteils von
Gl (4.9).)

An den klassischen Umkehrpunkten zy mit £ = V(zy), wo k*(zy) = 0, hat
Y(x) wegen 0%1)g(x) = 0 einen Wendepunkt, der nicht zwingend auf der z-Achse
liegen muss.

Im Elassisch verbotenen Bereich

E<V(r) < Kk(r)<0

gibt es in der Quantenmechanik keinen Grund, warum ¥ pg(x) immer verschwinden
muss, d.h. ein quantenmechanisches Teilchen kann auch dort endliche Aufenthalts-
wahrscheinlichkeit haben. Wegen Gl. (4.8) haben 1x(z) und 0% g(x) in klassisch
verbotenen Bereichen das gleiche Vorzeichen. Die Losungen sind also von der z-
Achse weg gekriimmt:

Diese Eigenschaft zusammen mit der Normierbarkeitsforderung fiithrt zu starken
Finschrankungen an die Losung. Z.B. fir V(x) = V = const. fiir x > x; folgt fiir
E <V die Losung

Yp(r) = 0™+ Fe ™, x> (4.10)
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mit Kk = F(V — E), k* = —k*. Normierbarkeit erzwingt nun 8, = 0, so dass

Yp(x) im klassisch verbotenen Bereich exponentiell abfallen muss.

Fiir typische Potentialprobleme mit der Eigenschaft hrf V(x) — oo haben wir
T—r 100

somit schon einen qualitativen Eindruck von moglichen Wellenfunktionen:

: \
. 4
.
i Vi,
4
4

4.2 Knotensatz

Obige Betrachtungen lassen sich u.a. mit dem Knotensatz quantitativ fassen. Dazu
definieren wir die Wronski-Determinante fiir zwei Losungen der zeitunabhangigen
Schrodinger-Gleichung gemak:

W(¢E17 ¢E2> - ¢E1¢/EQ - wlf?1¢E27 (411)

wobei der Strich die Ortsableitung bedeutet, ¥ = 9,1 g(x). Per Annahme erfiillen
Yp,, die Schrodinger-Gleichung

h2
E1,2¢E172(5'3) - _%@b%m(x) + V(x)wEm(x)' (4-12)



Nun gilt:
W' = Yy by, + ey, — Up Ve, — Vi U,
= ¢E1¢§§2 - ¢ZH¢EQ
= 2, (V(w) — oo, — e, (V(z) — B,

2m

— ﬁ(El — E2)Yp Y5, (4.13)

Sei nun £} < Ey und seien x; und x5 zwei benachbarte Nullstellen der Losung ¢g,
mit @DEl(xl <rxr < 5!32) > 0.

Vi,

¥,
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Die Integration der Ableitung der Wronski-Determinante liefert

/xQ dx W' — W(IZ) - W(Il) = wbl (%1)¢E2($1) — ijgl (952)%5’2(332)
GL (4.13) Qh_”;(El N /;dx Vi, (2)0, (). (4.14)

Fiir die betrachtete Losung gilt (unter Ausschluss von ¢, (212) = 0, siche unten):

om ["2

U, (21) Uy (1) = Vg, (02) Yy (32) = — dz (Ey — Eo)¢p, (z) ¥p,(2). (4.15)
>0 <0 h xl 26

Diese Gleichung wire also nicht zu erfiillen, wenn ¥g,(x) im Intervall [z, z5] ent-
weder nur positiv oder nur negativ wire. D.h. g, (x) muss zwischen z; und z,
eine Nullstelle (“Knoten”) haben. Dies gilt fiir jede Losung mit Fy > Fj.

Der Einfachheit halber betrachten wir fiir die folgenden Uberlegungen ein Poten-
tial mit beliebiger Form (ohne Singularitédten) zwischen Ly und Ly aber unendlich
hohen Wanden bei Ly und Ly. Dies kann als Idealisierung von allgemeinen Poten-
tialen mit V(|z| — oo) verstanden werden.

Die unendlich hohen Potentialwinde zwingen die Wellenfunktion bei L;, auf
Null, ¥g(L12) = 0, d.h. die Schrédinger-Gleichung ist in diesem Fall ein Rand-
wertproblem mit Dirichlet-Randbedingungen

Ep(x) = Hyp(x), Yp(li) =¢p(L:) = 0. (4.16)
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x [ll 112 x
Partielle Ableitung nach F liefert:
OVp(x
Ho = e + 86, ofr) = 22 (417
Wegen Gl. (4.17),
’ 1/ 7 2m
Vg + B¢ = —%Cb +V(x)p, = ¢" = —ﬁ(iﬂE +(E-V)9),
liefert die Ableitung der Wronski-Determinante von ¢ und g nach z,
W'(¢,vp) = (Yr¢ — vpd) = vpd" — Uy
2m 2m
= _ﬁ(w% +(E = V)¢ve) + ﬁ(E — Ve
2m

Anstelle des Randwertproblems Gl. (4.16) betrachten wir zunéchst das Anfangs-
wertproblem

wobel der Wert von C' wegen Linearitat der Schrodinger-Gleichung irrelevant ist.
Fiir generisches £ € R liefert eine Integration von GIl. (4.19) zwar eine Losung
des Anfangswertproblems, die jedoch i.A. nicht ¥ g(Ls) = 0 erfiillt, d.h. nicht das
eigentliche Randwertproblem Gl. (4.16) 16st. An dieser Stelle konnen wir bereits er-
warten, dass eine Losung des Anfangswertproblems Gl. (4.19) nur fiir ganz spezielle
Werte von E auch eine Losung fiir das eigentliche Randwertproblem Gl. (4.16) ist.
Diese speziellen Werte sind die Eigenwerte E des Hamilton-Operators H. Die
Reduktion von £ € R auf spezielle bzw. diskrete Werte von E entspricht der
“Quantisierung der Energieniveaus” eines Systems.

Wir integrieren nun Gl. (4.18) von Ly bis zu einem Ort xo(E) > Ly, wo ¥g
erstmalig verschwindet, (dabei beachten wir, dass ¢(L1) = 0 ist, weil ¢p(L1) =0



fir alle F gilt):

/L “do W) = v’ — W

1

9
Ly

= Yp(22) ¢'(22) — Yp(2)d(22) — YE(L1) ¢'(L1) + Yp(Lr) w

—0 =0 =0
=~y O 2 [ dr i),
= e B)olB) = 35 [ deuke) >0 (4.20)

mit F € R beliebig. (NB: Gl. (4.20) besagt, dass ¢x(x2) # 0, siche oben).
Fiir v > 0 im Integrationsgebiet folgt

V() <0 = ¢(xs) <0. (4.21)

Fiir v < 0 im Integrationsgebiet folgt

Up(2) >0 = daz) > 0. (4.22)

Wegen

>
ey
_|_

)
>
"L
||

berap(rE)) = Pp(ra(E)) + Olza(E))AE (4.23)

wandert also in beiden Féllen mit abnehmender Energie die Nullstelle z5( F) nach
rechts:

Ve |ap|(T)

Vi(z)

> T
Ly \

Angenommen, der Grundzustand verschwinde nicht nur bei L; < Lo, sondern

habe dazwischen einen Knoten xk, L1 < xg < L9. Nun verringern wir die Energie
E, so wandert der Knoten nach rechts. Bei stetiger Verringerung von £ wird
irgendwann rx = Lo gelten. Dann hatten wir eine Losung des Randwertproblems
mit kleinerem E als der vermeintliche Grundzustand gefunden.

Damit folgt: der Grundzustand kann keinen Knoten haben!



Ahnlich ldsst sich zeigen, dass der erste angeregte Zustand einen Knoten hat usw.
D.h., der n-te angeregte Zustand hat n Knoten.

NB: der Knotensatz gilt auch fiir allgemeinere Potentiale mit V' (|z| — oo), nicht
nur fiir den hier betrachteten Spezialfall mit unendlich hohen Wanden bei L; und
L. Die Dirichlet-Randbedingungen werden dann an den klassischen Umkehrpunk-
ten durch Anschluss-Bedingungen ersetzt

Ly

V(L —¢) = Yp(Li +¢) und (L) —€) = (L +¢)

und ebenso fiir Lo. Die Steigung bei L; und Ly ergibt sich wiederum indirekt
aus der Normierbarkeitsforderung.

4.3 Barrieren

Wir betrachten nun die zeitunabhangige Schrodinger-Gleichung fiir eine Potential-
stufe

2
Bve(e) =~ 0%u(a) + V(a)be(r) (124)
mit
V(z) = {O fir & < 0, (4.25)
V>0 firxz>0.

V(x)

> T

Fiir ein von links nach rechts einfliegendes Teilchen gilt klassisch:
Fir &/ < V kann das Teilchen in den Bereich x > 0 nicht vordringen. Das
Teilchen wird klassisch also reflektiert.



Vin , T+ Vout \ V(37)

Fiir £ > V fliegt das Teilchen klassisch iiber die Stufe hinweg. Fiir x > 0 ist
wegen Energieerhaltung seine Geschwindigkeit kleiner.

Quantenmechanisch ergibt sich ein anderes Bild: Fiir V' = const. fanden wir in
Gl. (4.9) die Losung

2m

E>V: aplr)=ae™ +a_e ™ k*= - —(E=V). (4.26)
Berticksichtigt man die Zeitabhangigkeit,
D(a,t) = vplx)e BV dh. ekt — emilFihr), (4.27)

% eine nach rechts laufende Ebene Welle beschreibt, die

im Folgenden unseren Teilchenstrom darstellen soll.

so wird deutlich, dass e

Fir £ > V erwarten wir einen durchlaufenden “transmittierten” Anteil, lassen
aber auch einen reflektierten Anteil zu. Losungsansatz ist daher

( 2m

are? +a_e P firx <0, p= = —F
Yp(r) =49 o (4.28)
Be'hr fiir & > 0, k = ﬁ(E V).
\

Da der Potentialsprung endlich ist, muss ¥g(x) bei x = 0 stetig differenzierbar
seln:

lim (Yp(x —€) —¢Yp(r+€) =0 = a,+a_ =0,

e—0

lim (Yp(x —e) =Yz +€) =0 = play —a )=k (4.29)

e—0

Da a unsere einlaufende Anfangsbedingung charakterisiert, 16sen wir nach a_

und [ auf:
p—k 2p

., =
p+k b= p+ E
In der Tat lassen sich die Anschlussbedingungen nur erfiillen, wenn es auch eine

(4.30)

_ =

reflektierende Komponente gibt, o= > 0 fiir V' > 0. Normieren wir a, = 1,
so entsprechen a_ dem Reflexions- und S dem Transmissionskoeffizienten 0 <
a_,p<1ftirV >0.



Wichtig: Nicht das Teilchen, sondern nur seine Wahrscheinlichkeitsamplitude
spaltet sich auf! Bei einer Ortsmessung findet man das Teilchen entweder links
oder rechts.

Fiir ein Teilchen mit Energie £ < V' gilt links von der Stufe z < 0 der gleiche
Losungsansatz wie in Gl. (4.28), die Losung rechts der Stufe haben wir bereits in
Gl (4.10) gefunden:

i

are? +a_e P firz <0, p= 2—77;E
V() = 4 th (4.31)
Be " fir x > 0, k= \/—(V—E).
\ h?
Stetige Differenzierbarkeit bei x = 0 fiithrt auf die Bedingungen
QL + o = 5,
play —a_) = ikp. (4.32)

Da a wiederum die Anfangsbedingung charakterisiert (normiert mit |a,| = 1),
16sen wir nach a_ und g auf:

D — 1K 2p
= = , 4.33
“ p+z'/<;a+’ b p—i—m&+ (4:33)
Hieraus folgt sofort . ‘
o p=PFIRP M 2y (4.34)

—'I;/ﬁ) +'LI€\/—/
Lot i

Das Ergebnis |a_|* = |a|* besagt, dass die Welle (bzw. das Teilchen) vollstindig
reflektiert wird. Einlaufende und auslaufende Welle sind allerdings phasenver-
schoben. Konventionsbedingt definiert man

2B PR I(F) = - (4.35)
Ptk D
Die zeitabhangige Losung hat also damit die Form
e—i(%t—px) _ 6—i(%t+px)—2i§ fiir < 0,
r,t) =y - 2 : 4.36
piz,?) - p‘ eIt fiir x > 0. ( )
p+ir

Die Phasenverschiebung verschwindet im Limes p/k — 0, d.h. E/(V — E) — 0,
wenn also die Potentialwand wesentlich hoher als die Energie ist. Aus der Tat-
sache, dass QM-Teilchen in den klassisch verbotenen Bereich eindringen kénnen,
konnen wir iibrigens nicht folgern, dass die Energieerhaltung verletzt ist. Bei einer



FEindringtiefe von 1/k ist zwar die Ortsunschérfe klein Az < 1/k, die Impulsun-

scharfe hingegen grofs gemélfs der Unscharferelation Ap > hAx. Die Unscharfe einer
Ap?

Energiemessung betragt entsprechend AE ~ — ~ V — E. so dass eine En-

m
ergiemessung die Werte E+ AE ~ E+ (V — E) =V mit einschliefst. Wir konnen
also nicht sicher schlieffen, dass das Teilchen im klassisch verbotenen Bereich eine
Energie kleiner als V' hat.

4.4 Tunneleffekt

Dass quantenmechanische Teilchen in den klassisch verbotenen Bereich eindringen
konnen, fiithrt zum wichtigen nicht-klassischen Phénomen des Tunneleffekts. Wir
betrachten ein Potential der Hohe V' > 0 zwischen £ = 0 und z = a:

V(x)

0 a

Die Losung der stationaren Schrodinger-Gleichung, die zu einer von links einfal-
lenden Welle gehort, hat die Form fiir £ < V:

"

. . 2
ae? +a_e”™ firxr <0, p= h—n;E
p— 2 .
Ve(T) = o fre™ 4+ e fir0<zx<a, k= h—?(v — F) (4.37)
\04+S(E)eip(x_“) fir x > a,

und Anfangsamplitude o, normiert mit |y |* = 1 und zu bestimmenden Amplitu-
dena_, By, f_, S(F). Die Transmissionsamplitude bzw. das“Tunnel-Matrixelement
S(F) kann schon aus Griinden der stetigen Differenzierbarkeit der Wellenfunktion
nicht verschwinden, denn: Ware S(E) = 0, so miisste wegen stetiger Differenzier-
barkeit 1g iiberall Null sein, was im Widerspruch zur Anfangsbedingung a, =1
steht.

Stetige Differenzierbarkeit der Wellenfunktion bei x = 0 und x = a fithrt auf die

Anschlussbedingungen
r=0: a, +a. = [+,
iplay —a-) = K(B+ —B-),
r=a: Bie™ 4+ e = a,S(F),

k(B e — e ™) = ipa,S(F). (4.38)



Dies sind vier Gleichungen fiir die vier Unbekannten o, 8., B, S(E). Die Losung
fiir S(E) lautet [UA]:

21K

S(E) (4.39)

" ikp cosh ka + (p? — Kk?)sinh ka'

Damit bestimmt sich die Wahrscheinlichkeit dafiir, dass ein von links einlaufendes
Teilchen durch den Potentialwall hindurch tunnelt, zu:

V2 -
T(E)=|S(E)= (1 inh” . 4.40
(8) = ISP = 1+ 15— s ) (140
2
Fiir grofe ka = \/h—?(v — FE)a? > 1, d.h. hohe und/oder breite Potentialbarri-

eren, vereinfacht sich das Ergebnis zu
E(V —FE) _oq [2nv_
T(E) ~ 162 7 ) 20 /3B0-E) (4.41)

Die Tunnelwahrscheinlichkeit nimmt exponentiell mit der Barrierenbreite und der

Wurzel der Barrierenhohe ab. (NB: In der Regel dominiert die Exponentialfunktion
die Tunnelwahrscheinlichkeit, so dass die Berechnung des Exponenten bereits eine
gute Abschatzung liefert.)

Klassisch verboten ist der Tunneleffekt ein genuin quantenmechanisches Phano-
men, dass in vielen Systemen anzutreffen ist (a-Zerfall, Ladungsfluss durch Isola-
toren, Feldemission, Tunnendioden, etc.).

4.5 Resonanzen

Als weiteres wichtiges Beispiel betrachten wir gebundene Zustande im Potential-

topf:
0 fii >
Viz) = fr |z} > a. (1.42)
—V <0 fir |z| < a.
) AV

Die Zustande sind gebunden, wenn sie eine Energie £ < 0 haben, d.h. der
Aufenbereich |x| > a klassisch verboten ist. Das Potential ist zwar symmetrisch



um x = 0, d.h. symmetrisch unter x — —x, die Eigenfunktionen zum Hamilton-
Operator konnen allerdings symmetrisch oder antisymmetrisch sein bzw. gerade
oder ungerade; unsere Anséitze lauten entsprechend:

/

2
acosqr im Topf |z| < a, q\/h—T(E+V)
gerade : Yp(z) =< ve ™  fiir x > a, (4.43)
2
\yem fir x < —a, k= h—rg(—E), E <0.
( 2
m
asingr im Topf |z| < a, q:\/ﬁ(Eij)
ungerade : Yp(z) = ¢ ve ™ fiir x > a, (4.44)
2
\—fye"m fiir v < —a, k= h—ﬂ;(—E)7 E < 0.

Stetigkeit und Differenzierbarkeit implizieren z.B. fiir den geraden Fall:
Rra

Ra

{oz cosqa = ye

. } = qtanga = k. (4.45)
agsinga = Yke

Ahnlich folgt fiir den ungeraden Fall: ¢ cot ga = —k.
Fiir kleine V' ist ¢ sehr klein, so dass Gl. (4.45) nur fir einen Wert von E erfiillt
werden kann.

qtan(qa)

I — q
m 3m
2a 2m

Mit zunehmendem V' findet man eine zunehmende Zahl von gebundenen Zustéan-
den, abwechselnd gerade und ungerade. Fiir endliches V' bleibt die Zahl der gebun-
denen Zustdande endlich. Betrachten wir nun wieder von links einlaufende Zustédnde



mit £ > 0, d.h. Streuzustiande. Bei Anfangsamplitude o gilt der Ansatz

(
are™ +a_e™™ firx < —a, p= h_?E
_ | | 9 4.4
¢E(33') < ﬁ+62q$ + ﬁ_@_qu fur ’ZC’ <a, q= h_”;<E + V) ( 6>
\a+S(E)eip(x_a> fir x > a,

mit £ > 0 und der Transmissionsamplitude S(F). Stetigkeit und Differenzier-
barkeit bei z = +a liefert 4 Bedingungen fiir die 4 Unbekannten a_, 54, 6, S(F).
Die Rechnung ist ldnglich, aber folgender Zwischenschritt ist niitzlich:

o _ (ﬂ _ fz) e~ 1S ( ) sin 2aq

e 2\p ¢

B L(p —iaf

(o N T | awp+a)g( B 4.47
=gl ) s (4.47)
_ 1 ,

B- — - (]_9 _ 1) eza(q—p)S(E)

QL 2 q

mit Transmissionsamplitude

: -1
S(F) = (cos 2aq — % (I—) + Q) sin 2aq) : (4.48)

qg P

womit das Problem vollstandig gelost ist. Die Transmissionswahrscheinlichkeit

[ )\

1
T(E)=|S(E)|* = | cos®2aq + 1 (Z—j + Q) sin” 2aq
q P

2
\ Ty )

V2 ;o\
= |1 in” 2 : 4.4
( +4E(E+V)Sm aq) (4.49)

T(F) ist <1, wobei das Gleichheitszeichen fiir sin2aq = 0 gilt, d.h.
hn’n?

Sma?

ergibt sich zu

= 2aq¢ =nm = F,= -V, n=12,... (4.50)

D.h. fliegt ein Teilchen mit dieser Energie £ = FE),, ein, wird das Potential voll-
standig transparent. Stromerhaltung verlangt nun, dass gleichzeitig die Reflexion
verschwindet, d.h. a_(F,) = 0, was in der Tat an Gl. (4.47) ablesbar ist.



E, Es

Diese Maxima von T heifen Resonanzen. Eine weitere wichtige Eigenschaft der

Transmissionsamplitude S(F) ldsst sich in diesem Beispiel gut studieren: S(FE)
hat Pole bei '

cos 2aq = ! (1—? + Q) sin 2aq. (4.51)

2\q p

Diese Gleichung hat nur Losungen fiir imagindre p. Ist Imp > 0, so fallen der
transmittierte und der reflektierte Anteil exponentiell ab. Fiir endliche S und 5_
muss an den Polen von S(FE) wegen Gl. (4.47) gelten, dass oy = 0. Also gibt
es auch keine exponentiell nach x — —oo anwachsende einlaufende Welle. Diese
exponentiell nach den Seiten abfallende Losung entspricht offensichtlich den gebun-
denen Zustanden. In der Tat entspricht die Polbedingung genau der Bedingung
fiir gebundene Zustande, denn

sin2aq 2 1
tan2aq = PP T
coszaq 1y + > |
_ i
— 2(cotaq —tanaq)”' = cotag—tanaq = r_4 (4.52)
q p
Die Losungen dieser Gleichung sind
gcotaq = ip, qtanaq = —ip, (4.53)

was mit p = ik genau den in Gl. (4.45) gefundenen Bedingungen fiir gebundene
Zustande entspricht.

Die Polstellen der Transmissions- oder Streuamplitude S(FE) entsprechen den
Energien der gebundenen Zustidnde. Diese Resonanzen sind nicht nur fiir Poten-
tialtopfe, sondern auch fiir andere Potentiale zu finden. Sie sind ein wichtiges
Konzept in der Quantenmechanik und deren relativistische Verallgemeinerung der
Quantenfeldtheorie. Dieses Konzept spielt eine zentrale Rolle in der Streutheorie.



5 Der harmonische Oszillator

Der harmonische Oszillator ist das wichtigste Beispiel der Quantenmechanik. Er
taucht in vielen Teildisziplinen der modernen Physik immer wieder auf fundamen-
talem Niveau auf, z.B. in der Quantenfeldtheorie, der Quantenoptik, der Festkor-
perphysik, etc. Ein elementares Verstandnis des harmonischen Oszillators ist daher
besonders wichtig.

5.1 Algebraische Losung des eindimensionalen harmonischen Oszillators

In der stationédren Schrodinger-Gleichung ist der eindimensionale harmonische Os-

1
zillator definiert durch das harmonische Potential V = —mw?z? mit der Frequenz

w und der Masse m, welches klassisch zu einer linearen Kraft mit Federkonstanten
k = muw? fithrt.

> X > T

Klassisch hat das System keine intrinsische Léngenskala. Jede beliebige Auslen-
kung ist in gleicher Weise moglich.
Der quantenmechanische Hamilton-Operator lautet

2
1
H = 2]?_m + émw%z (5.1)
und fiihrt zur stationaren Schrodinger-Gleichung im Ortsraum:
E N n o d / 1 2 12 / 59
Yp(r') = _%dx’2¢E(x)+ Smw e Yp(x'). (5.2)

Aus Masse m, Kreisfrequenz w und der Naturkonstanten A ldsst sich nun eine
Langenskala bilden,

o = —, (53)



die fiir den quantenmechanischen harmonischen Oszillator charakteristisch ist. In
makroskopischen Einheiten ergeben sich jedoch sehr kleine Zahlen,

[f—r;] ~ 107! (%) " (H%Z]> " (5.4)

Die Schrodinger-Gleichung liefse sich nun mit Standardmethoden fiir Differenzial-
gleichungen dieses Typs (z.B. Potenzreihenentwicklung) im Ortsraum l6sen. Die
besondere Struktur des harmonischen Oszillators wird jedoch besonders bei der
operatoralgebraischen Losung deutlich. Dazu fithren wir die folgenden Leiteroper-
atoren ein:

1 x 20
a = —|—+1—p)|, (Absteigeoperator
1 x x
| (NS Aufstei
a' = 1 : utsteigeoperator). 5.5

(NB: Diese nennt man auch in anderen Kontexten Vernichter und Erzeuger.)
Der Grund fiir die Namensgebung wird gleich deutlich. a und a' sind weder
selbstadjungiert noch kompatibel miteinander, denn

1| x xT x xT
1 _ = .40 o 0
1 1 ]+I(2)[ ]+7} ] 7 ]
= - | slx, 2]+ —|p,r]——|x
2 x(Q) 9 h2 p7p hp7 h 7p
=0 =0 =—1h =ih
=1 (5.6)

Da a und a' jeweils mit sich selbst vertauschen, erhalten wir die Vertauschungsregeln
der Leiteroperatoren, die Leiteroperatoralgebra:

[a,a) =0, [al,a']=0, [a,a]=1. (5.7)
Weiterhin gilt:

a'a =

T — =, (5.8)

so dass der Hamilton-Operator durch a'a ausgedriickt werden kann:

H—hw(cﬁﬁ%) —:hw(NJr%). (5.9)



Hier haben wir den Besetzungszahloperator NV eingefiihrt. Er ist selbstadjungiert,
N' = (a'a)! = al(a") = ala = N, (5.10)

und nicht-negativ:
(WINT) = (¢lalaly) = (¢]g) > 0, (5.11)

mit |¢) = aly). Die Eigenwerte und Eigenvektoren von N (und damit auch von H)
lassen sich nun algebraisch bestimmen; d.h. nur die Leiteroperatoralgebra, nicht
aber die konkrete Darstellung (5.5) wird verwendet.

Sei |n) ein Eigenzustand von N mit Eigenwert n,

(5.11)

N|n) =nln), n > 0. (5.12)
Der Eigenwert n wird auch Besetzungszahl genannt. N erfiillt folgende Ver-
tauschungsrelationen:
N, a'l = [a'a,a'] = a'[a,a']+[a’,a']a = a,
—1 —0
[N,a] = [a'a,a] =a'[a,a]+][a',a]a = —a. (5.13)
=0 =21

Daraus folgt:
N (a' — a'N|n) + [N, a']|n) = al (N + 1
(a'ln)) = a'Nin) + [N, a']|n) = a'( )In)

=af
= (n+ 1)a'|n),
N(aln)) = aN|n) —|—M\n> = a(N — 1)|n)

=—a

= (n—1)aln), (5.14)

d.h. a'|n) und a|n) sind jeweils auch Eigenvektoren von N mit Eigenwert (n + 1)
bzw. (n —1).

; .
{a } { erhoht } also die Besetzungszahl um eins. (5.15)

a erniedrigt

Entsprechendes gilt fiir Potenzen : (a”)™ erhoht und (a)™ erniedrigt die Beset-

zungszahl um m. Was ist der kleinste Eigenwert (und damit der Grundzustand)?
Wegen

(n|N|n) = (n|a’ a|n) = n{n|n) (5.16)

ist fiir n # 0 der Vektor a|n) ungleich dem Nullvektor, falls |n) auch nicht der

Nullvektor ist. Deshalb ist mit n # 0 auch n — 1 ein Eigenvektor von N. Da



die Eigenwerte von N aber nicht-negativ sind, muss n € INy gelten, so dass der
kleinste Eigenwert = 0 ist.
Der zugehorige Eigenvektor ist der Grundzustand |0), der folglich von a anni-
hiliert wird:
N|0) =0 < al0)=0. (5.17)
Aufbauend auf dem Grundzustand konnen nun alle weiteren Eigenzustinde kon-
struiert werden,

In) ~ (a")"|0), hat Eigenwert n € IN,. (5.18)

Nun habe |n—1) die Norm 1, d.h. (n—1|n—1) = 1. Sei |n) = Ba'|n—1) ebenfalls
normiert, so folgt

_ — BI2({n — t 1) = B2%(n — _ _
L={(nln) =8 (n-1l@a [n-1)=pn—-1+1){n—1n—-1). (519
=N+1 e}
Ist der Grundzustand |0) auf 1 normiert, sind die angeregten Zusténde
1 n
n) = —=(a")"|0) (5:20)

Vn!
ziaTn— = ! a?in—2)=...
( o'l = 1) = e = 2) )

ebenfalls auf 1 normiert. Da die Zustidnde aus dem Grundzustand erzeugt werden,

kann das Spektrum nur entartet sein (d.h. zwei oder mehrere Figenvektoren haben
den gleichen Eigenwert), wenn der Grundzustand entartet wére. Das dies nicht der
Fall ist, zeigen wir unten.

Damit haben wir das Eigenwertspektrum und die Eigenwerte von N vollstiandig
gefunden. Damit ist auch der Hamilton-Operator bereits diagonalisiert, denn

2 2

Die Leiteroperatoren erhéhen bzw. erniedrigen die Energie um hw. Das Spektrum

Hln) = hu <N i 1) n) = Eyln), mit E, — hw (n + 3) 2D

ist aquidistant.



5.2 Ortsraumdarstellung des harmonischen Oszillators

Die Ortsraumdarstellung der Eigenfunktionen |n) ergibt sich direkt aus der Darstel-
lung der Leiteroperatoren (5.5),; die im Ortsraum lautet:

1 [z z ., To . 1 /2 N 0
a = —— i— — | — + zo=—
V2 \ g Bt V2 \ g "9

of — L (E R o L ﬁl—xi (5.22)
V2 \ T V2 \zg o '

mit p — — oy . Im Ortsraum lautet daher die Grundzustandsgleichung Gl. (5.17):
1 Oz
1 [ 0
=0 = "lal0)y = — [ = — | ('|0) =0
a0 (/lalo @(+a) )
=to(z')
:L,/
> (Zrng) wie) - (523
L

Die Losung dieser Differentialgleichung ist eine Gauffunktion,

olz') = <L2)Ze£ (5.24)

T

Den Vorfaktor haben wir hier bereits durch Normierung festgelegt, denn

o0 1 oo oy
/ (2| da’ = - e “dr' =1. (5.25)
- g o0 y
=V

Da die Losung eindeutig ist, ist damit auch der Grundzustand des harmonischen
Oszillators eindeutig. Wir stellen fest, dass die Langenskala xz, die Breite der
Gaubfunktion festlegt. D.h. z( ist ein Mak fiir die Lokalisierung des Teilchens im
Grundzustand.

Mit Hilfe des Aufsteigeoperators lassen sich die Wellenfunktionen der angeregten
Zustande im Ortsraum direkt erzeugen:

A T 11 [/ O\ [ 1\ -Z
(o) = —= (el = Tg?(“f”a—x) (r) TR (5.2

Z.B. der erste angeregte Zustand ist

i(2') = \;—f 'o(2"). (5.27)



Da die Gaufsfunktion genau der erzeugenden Funktion der Hermite-Polynome H,,(x)
entspricht, sind die hoheren angeregten Zustinde alle proportional zum Grundzu-
stand multipliziert mit einem Hermite-Polynom:

/2

1
1\ 1 A=
n /: Hn - 21‘7 5.28
)= (7)) T (5) ¢ o

mit den Hermite-Polynomen

Hy(§) = 1,
H1(f) = 2,
Hy(¢) = 46 -2,
Hs(€) = 8% — 12¢,
Hy(€) = 166 — 48¢% 4 12,
H5(&) = 328° — 160€° + 120€,  usw. (5.29)
NI —
n=1
n=2

Zo

Nach Konstruktion bilden die Zustinde 1),(z") ein vollstindiges orthonormiertes
Funktionensystem.

dpm = (njm) = /_ h dx'(n|z"){(z'|m) = / h da' Y7 (2 )by, (2)). (5.30)

oo — 00
Die Losung des harmonischen Oszillators léasst sich direkt auf hohere Dimensionen
verallgemeinern. Betrachten wir z.B. den 3-dimensionalen harmonischen Oszilla-
tor, so zerfillt der Hamilton-Operator in eine Summe von drei 1-dimensionalen
harmonischen Oszillatoren:

2 3
p 1
H3D = —2m + émCUQXQ = -_El H(]Jz,pz), (531)
pF 1
mit H(z,p) = o+ émwzazz. Damit faktorisiert die Wellenfunktion,
m

3p(x') = (@) ¥a(wy)vs(xh), (5.32)



d.h., die Energieeigenfunktionen sind

Vnyngns (x') = Uy (93'1)%2 (90’2)%3 (:Ué) (5.33)

mit den Energieeigenwerten
’ 1
Eoingng = hw Z (n + 5) . (5.34)

5.3 Orts- und Impulsunscharfe

Praktische Rechnungen konnen nun vollstandig mit Hilfe der Leiteroperatoralgebra
durchgefiihrt werden. Dazu driicken wir Orts- und Impulsoperatoren durch die
Leiteroperatoren aus:

Tr = E(cﬂrcﬂ),
p = L (a' —a). (5.35)

Wir wissen bereits, wie a' auf normierte Energiccigenzustiande wirkt:
a'ln) =vn+1ln+1), bzw. a'ln —1) = v/nln). (5.36)
Mutliplikation mit a liefert

Vnaln) = aa'ln — 1) = (@4—@)]71 — 1)

= (N+1)n—1)=nln—1),
d.h. die Wirkung von a auf Energieeigenzustiande ist

aln) = v/njn —1). (5.37)

Da Ort und Impuls linear von a und a' abhingen, sind z|n) und p|n) Linearkom-
binationen der Energiecigenzustéande |n—1) und |n+1). Daraus folgt unmittelbar:

(nlz[n) = 0= (nlpln), (5.38)

d.h. im Wahrscheinlichkeitsmittel befindet sich ein quantenmechanisches Teilchen
im harmonischen Oszillatorpotential im Ursprung und hat im Mittel verschwinden-
den Impuls. Fiir hohe Energien gehen die stationdren Zustande also nicht, wie
vielleicht naiv erwartet, in klassische Oszillatorbewegungen tiber.



Als néachstes betrachten wir
2

2 = % ((CLT)2 +a’+a'a+ aaT) :
h2

p2 = —-— ((aT)2 —a*—d'a+ aaT) - (5.39)
2xj

Wegen (5.36) und (5.37) kénnen zum Erwartungswert beziiglich |n) nur die Terme
mit gleich vielen a und a' Leiteroperatoren beitragen:

e} = Plnl(gla+ gl )i = ol N+ Dl
_ 2 (n+%) (5.40)
oliin) = gtnl( ot ol i) =T (ng). ()

Wegen (5.38) entsprechen Gl. (5.40) und (5.41) gleichzeitig den mittleren Schwan-
kungsquadraten. Damit erhalten wir die Unschéarferelation

(BaPH(B0) = (k)b =Ty (n3) 25 G

Der Grundzustand n = 0 erfiillt damit die Unschérferelation minimal,
2

(Az)*) ((Ap)?) = hz Da der Faktor % in Gl. (5.40) und (5.41) den gleichen Ur-
sprung hat wie die Grundzustandsenergie, sind die Existenz der Grundzustandsen-
ergie und die Unscharferelation direkt miteinander verkniipft. Mit zunehmendem
n sind die Zustande aber zunehmend im Orts- und im Impulsraum delokalisiert.

(NB: Viele Systeme der modernen Physik lassen sich auf ungekoppelte Systeme
von harmonischen Oszillatoren abbilden, so z.B. atomare Schwingungsbewegungen
in Molekiilen, in Kristallgittern, ebenso wie die quantisierten Anregungen des elek-
tromagnetischen Strahlungsfeldes (beschrieben durch die quellenfreien Maxwell-
Gleichungen). In all diesen Systemen erzeugt a' bzw. vernichtet a eine quantisierte
Anregung. Der Besetzungszahloperator N zéhlt dann die Zahl der Phononen (bzw.
Photonen) im Kristall (bzw. im Strahlungsfeld). In diesen Systemen kénnen also
die hoheren Anregungen als hohere Teilchenzahl uminterpretiert werden.)

5.4 Koharente Zustiande

Auf der Suche nach Zustanden, die im klassischen Grenzfall tatsédchlich Schwin-
gungsbewegungen im mittleren Ort und Impuls ausfiihren, versuchen wir im Fol-



genden Energieeigenfunktionen geeignet zu iiberlagern. Wichtiges Kriterium dabei
ist, dass die resultierenden Wellenpakete nicht zerflielsen und die Unschérferela-
tion auch nach langen Zeiten noch moglichst minimal erfiillen. Wir wissen, dass
letzteres fiir den Grundzustand erfiillt ist. Dies bleibt auch giiltig, wenn wir den
Grundzustand verschieben:

vela!) = o(a) — xq), wa= V2w, (5.43)

d.h. wir messen die Verschiebung im x4 in Einheiten der Langenskala xy mit der
dimensionslosen Zahl &. Die Verschiebung lasst sich mit dem Translationsoperator
erzeugen; dazu fassen wir zunéchst ¢¢(z’) als Projektion eines Kets |€) in den
Ortsraum auf,

e(x’) = (@'[€). (5.44)
Der Zusammenhang mit dem Grundzustand ist dann gegeben durch
€) = T(xa)|0) = e#]0) = &' ~<]0). (5.45)
Wir verwenden nun die Baker-Campbell-Hausdorff-Formel
eAeB = eATBT3ABl (A B ~ 1. (5.46)
Damit folgt
plal—¢a _ al ~€a,—glat,—alé?
= e_%ze‘s‘ﬁe_ga. (5.47)
Weil a den Grundzustand annihiliert, gilt
e %0) = (1 —fa+ %g%ﬂ — .. ) 0) = 10), (5.48)
und wir erhalten
€) = e~ Tefel|0), (5.49)

Dieser Zustand ist Eigenzustand des Absteigeoperators. Um dies zu zeigen, ver-
wenden wir (vgl. Ubungen)

2
et qett! = ¢ — ¢ [a!, a] +€— a', [al, a]] + . ..
T C =71
-
= a+¢&, (5.50)

woraus folgt, dass

olé) = ae %) = e 5 (a+6) [0
- £é). (5.51)



Damit ist [£) also ein Eigenket von a mit Eigenwert &. Im Ubrigen ist es niitzlich,
auch komplexe Verschiebungen & € C zuzulassen. Beriicksichtigt man dies, so
ergibt sich

€2 eat
&) = e 2 e 0). (5.52)
Entwickeln wir die Exponentialfunktion,
e " e S
IR Do 559
=0 —\/_|n> :O

so sehen wir, dass diese Zustinde eine Uberlagerung unendlich vieler Energieeigen-
zustande sind. Da wir die Zeitentwicklung der Energieeigenzustinde kennen, ergibt
sich direkt die Zeitentwicklung (mit |£,¢ = 0) = |€)):

ety = 5SS iy
n=0 m

= e E(t)),  mit £(t) = Ee . (5.54)

Diese wichtige Beobachtung besagt, dass ein anfinglicher Zustand |£) zu allen
Zeiten ein solcher Zustand mit oszillierendem Eigenwert £(t) = e ™€ bleibt. Diese
Eigenschaft definiert einen kohéarenten Zustand. Im Ortsraum finden wir damit
direkt die zugehorige Wellenfunktion

¢§(SUI, t) = (2|, t) = e_%mwo(x’ — :Ude_m) (5.55)
und die Wahrscheinlichkeitsdichte:
(!, ) = |vhola’ — zg@)]°,  mit z4(t) = 24 cos(wt). (5.56)

Im Ortsraum entspricht die Wahrscheinlichkeitsdichte des kohérenten Zustands
also einer harmonischen Schwingung der Grundzustandswellenfunktion um den
Ursprung.

Zur Berechnung von Erwartungswerten und Unscharfen beziiglich eines koharenten
Zustands ist die Eigenwertgleichung a|&) = £|€) wieder sehr niitzlich:

e = (€lx a4 al *o
(x)e = (Elz|¢) = f(m +ale)) = 756+
= V2z9Ret, (5.57)



wobei wir (£|€) = 1 benutzt haben. Fiir den mittleren Impuls gilt

h h
— — [ = 2—1 5.58
i a'—a mé. .
(P)e = (Elple) =i 7 - ((€la’ = alg)) = V2 Im¢ (5.58)
Fiir zeitabhangige £(t) gilt folglich
d
(T)ew) = wacoswt, und (p)er) = —mwgsinwt = ma<aj>§(,§). (5.59)

Die Orts- und Impulserwartungswerte verhalten sich also genauso, wie die Koor-
dinaten und Impulse eines klassischen harmonischen Oszillators. Analog findet
man

2 1’% 2 2 37(2) 2
(2% = 5((a*) +2ala+a*+ 1) = 5 + (@)
2 n’ 2 : 2 h’ 2
(p7)e = _—233%«& ) —2a'a+a”— 1) = —2:6(2) + ()¢ (5.60)

und gleichermafen fiir & — £(¢), so dass wir fiir die Varianzen

0 _ T 2 B’
A = — A = — 61
(B =T, {(de) = 5 (5.61)
erhalten. Es folgt die Unscharfebeziehung
2 o I
(D) ((29)) = 7 (5.62)

d.h. die kohéarenten Zustdande erfiillen die Unscharferelation minimal. Kohéarente
Zustinde sind also nicht-zerflielkende minimal unscharfe oszillierende Wellenpakete
und damit das quantenmechanische Analogon zum klassischen harmonischen Os-
zillator.



6 Symmetrien in der Quantenmechanik

Symmetrien spielen eine grofse Rolle in der Physik. Zum einen liefern Symme-
trien groke Hilfestellung bei der Konstruktion einer geeigneten Beschreibung eines
Systems (z.B. in der Form von Bewegungsgleichungen). Zum anderen sind Sym-
metrien iber das Noether-Theorem direkt mit Erhaltungsgrofsen verkniipft, die oft
die Losung eines Systems stark vereinfachen.

In der Quantenmechanik verstehen wir unter Symmetrie die Eigenschaft eines
Systems, unter bestimmten Transformationen die Wahrscheinlichkeiten und Eigen-
werte von Observablen zu erhalten. Eine Symmetrie ist also eine Abbildung I', die
bijektiv auf dem Raum der (physikalisch realisierbaren) Zustande wirkt und die
Ubergangswahrscheinlichkeiten erhélt:

{ol)[* = [(Tglly) [, (6.1)

Wir haben bereits bei den Translationen und Zeitentwicklungen gesehen, dass
unitdare Operatoren eine solche wahrscheinlichkeitserhaltende Eigenschaft haben.
(NB: In der Tat besagt das Wigner-Theorem, dass I entweder linear unitér oder
anti-linear anti-unitdr sein muss, vg. Galindo& Pascual, Quantum Mechanics I).
Im Folgenden werden wir neben den bereits diskutierten Translationen und der
Zeitentwicklung noch weitere wichtige Symmetrien vorstellen.

6.1 Raumspiegelungen

Unter einer Raumspiegelung bzw. Paritatstransformation P dndert sich das Vorze-
ichen aller raumlichen Koordinaten,

P: x — —x. (6.2)

Nun muss ein unitarer Operator existieren, der diese Raumspiegelung auf dem
quantenmechanischen Zustandsraum implementiert:

[v) = [¥) =D(P)|g), T'(P)=T"'(P). (6.3)
Fiir Operatoren muss entsprechend gelten:

A =T(P)ATH(P). (6.4)



In der Ortsraumdarstellung ergibt sich

D(x') = (X|9) = (X|D(P)[p) = (—x'|ih) = 9h(—x), (6.5)

d.h. (X'|I'(P) = (—x'|. Im Ortsraum lisst sich die Unitaritit von P direkt nach-
welsen:

(Gilde) = (BT (PIT(P)| )
- / 2! (1| TT(P)|x') (< |T(P)] )

B /dgx/¢f(—xl)¢2(—x')
_ / @ 7 (X)(x) = (1), (6.6)

wobel wir im vorletzten Schritt die Substitution x’ = —x benutzt haben. Wegen
o, und )y beliebig, folgt I'T(P)I'(P) = 1, bzw. I''(P) = T"Y(P). Des Weiteren
gilt:

V() = (K[DPIN(P)) = (X|T(P)[)
= P(—x') = P(x), (6.7)

d.h.
I'*(P)=1. (6.8)

Die Eigenwerte von I'(P) konnen daher nur +1 oder —1 sein. Die Eigenfunktionen
zum Eigenwert 1 sind damit gerade, zum Eigenwert —1 also ungerade Funktionen:

V(X)) = P(—x) = ¥(x) (gerade)

J(x) = $(—x) = —(x) (ungerade). (6.9)
2
Fiir einen Hamilton-Operator der Form H = 2p_ + V(x) mit einem Potential der
m
Eigenschaft
V(x) =V (—x), (6.10)
gilt wegen
% =[(P)xI''(P) = —x, (6.11)
und gleichsam fiir (entwickelbare) Funktionen f(x):
f(x) =T(P)f(x)I(P) = f(-x). (6.12)
so dass

H(x,p) = [(P)H(x,p)I"(P) = H(-—x,~p) = H(x,p).  (6.13)



und entsprechend

D(P)H(x,p) = H(x,p)T(P). (6.14)

D.h., falls V' (entwickelbar und) gerade ist, vertauscht H mit I'(P). Es gibt dann
gemeinsame Eigenfunktionen mit Eigenwerten +1 oder —1, d.h. die Eigenfunk-
tionen von H sind entweder gerade oder ungerade. Diese Eigenschaft haben wir
bereits beim harmonischen Oszillator sowie beim symmetrischen Potentialtopf ex-
plizit verifiziert.

6.2 Translationen

Wir haben bereits den Translationsoperator T'(a) kennengelernt, der mit der Ver-
schiebung des Ortes eines Teilchens verkniipft ist:

X — X+ a. (6.15)

Die Koordinaten-Translationen (6.15) bilden eine 3-dimensionale kontinuierliche
Lie-Gruppe. Die Gruppe ist abelsch, weil zwei beliebige Translationen kommu-
tieren. Die Translationsgruppe wird parametrisiert durch die Verschiebung a, d.h.
die Gruppe ist isomorph zum Vektorraum R®. Den auf Zustandsvektoren und
Operatoren wirkenden Translationsoperator haben wir bereits kennengelernt:

~

) = [¢) =T(a)ly),
A — A=T(a)AT(a). (6.16)

Im Ortsraum gilt z.B.
V() = P(x) = (X|T(a)) = P(x' - a). (6.17)
Die Darstellung von T'(a) mit Hilfe des Impulsoperators p
T(a) = e P, (6.18)
zeigt die Unitaritdt von T'(a) manifest. Die Abbildung
a— T(a) (6.19)

ist eine Abbildung der Gruppe R? der Translationen in eine Gruppe von unitiren
Operatoren (6.18) auf dem quantenmechanischen Zustandsraum. (NB: Man spricht
dabei von einem Gruppenhomomorphismus,

T(a+b)=T(a)T(b) = T(b)T(a), T '(a)=T(-a). (6.20)

T'(a) ist also eine unitdre Darstellung der Translationen auf dem Hilbertraum.)



Die abelsche Natur der Translationen, x — x+a+b = x+ b + a, iibertragt
sich auf T'(a):

[T(a),T(b)] =0, Va,beR’ (6.21)
Wann vertauscht H mit T'(a)? Wegen
H — T(a)HT'(a) = H(x — a, p) (6.22)

2
ist H von der Form H = 2p_ +V(x) genau dann translationsinvariant, wenn V' (x)
m

translationsinvariant ist, d.h. wenn
V(x)=V(x+a), Va. (6.23)

Die ist also nur fiir konstante Potentiale erfiillt. D.h. nur in Abwesenheit von
aulkeren Kraften ist der Hamilton-Operator fiir esn Teilchen translationsinvariant.
Nur fiir diesen Fall gilt dann [p, H] = 0, so dass der Impuls eine Konstante der
Bewegung ist, denn

H = T HT (a) = e tPafetra — i1 — Lp. H]-a+ O(a2). 6.24
(a)HT"(a) = e e p, H]-a+ O(a) (6.24)

Betrachten wir jedoch ein quantenmechanisches System mit /N Teilchen und einem
Hamilton-Operator der Form

N
H =
1=1

D;
Zmi

+V(X1,. .. ,XN>, (625)

so verschieben sich unter Translationen alle Koordinaten,
T(a)HT'(a) = H(x; —a,...,Xy —a,p1,--.,PN), (6.26)
so dass der Translationsoperator die Gestalt hat

T(a) = [[Ti(a) = [] e P2 = e i Zmpia = P2 (6.27)

(4

Hier finden wir den Gesamtimpuls P = p1+po+...+py. Der Hamilton-Operator
ist nun translationsinvariant, wenn

V(xi,...,xy)=V(xy1+a,...,xy+a), Va. (6.28)

Dies ist nicht nur fiir konstante Potentiale erfiillt. Es geniigt, wenn V' z.B. nur von
den Teilchenabstinden abhangt: bzw. allgemeiner

N 9
P; Z
1=1

1<J




Dies beschreibt also ein translationsinvariantes System, bei dem wegen
H = e iP2HeiP2 der Gesamtimpuls P eine Konstante der Bewegung ist, [P, H| =
0

Ein wichtiges Beispiel dieser Art ist die Coulomb-Wechselwirkung V;;(x; —x;) ~
1

[xi — x|

Rolle spielt.

, die im Wasserstoffatom (wie auch in allen anderen Atomen) eine zentrale

6.3 Drehungen

Eine weitere Klasse wichtiger Symmetrien in vielen physikalischen Systemen sind
die Drehungen. Im Gegensatz zu den Translationen hangt das Ergebnis von hin-
tereinander ausgefiithrten Drehungen i.A. von der Reihenfolge der einzelnen Drehun-
gen ab. Ubertragen in die Quantenmechanik erwarten wir also, dass die zugehori-
gen Operatoren der Transformation nicht mehr vertauschen.

6.3.1 Unitare Darstellungen der Drehungen
Drehungen im Ortsraum werden beschrieben durch orthogonale Drehmatrizen R,
R: x—x=Rx (6.30)
mit
R'=R, (6.31)

so dass das Skalarprodukt invariant bleibt,
X-y=(Rx)-(Ry)=x-R'Ry =x-y. (6.32)

Die Menge aller Drehungen bilden die spezielle orthogonale Gruppe SO(3) der
eigentlichen Drehungen im Raum.

Wir definieren die Wirkung von Drehungen auf die Wellenfunktion im Ortsraum
wie folgt: N

Y(x) = ¥(x) = X|D(R)Y) = $(R'X). (6.33)

(NB: Aus Konventionsgriinden bzw. Kompatibilitdtsgriinden mit der Literatur
definieren wir die Drehungen der Wellenfunktionen als Riickwértsdrehungen im
Ortsraum, vgl. (X'|T(a)|y) = ¢(x' — a).)

['(R) ist unitér, weil sich das Integrationsmaf im Skalarprodukt bei Drehungen



nicht andert,
@1P = / 82! (X)) = / o' (R'%)6(R™%)
_ / dy B (3)0(y) = (8]6), (6.34)

weil 2’ = d®y' mit y = R~ 2’ invariant ist.

Wegen (]¢) = (¢|IT(R)I(R)|¢) fiir beliebige 1) und ¢ muss I'(R) unitér sein,
dh. TYR) = I''(R). Die Abbildung R — T(R) ist eine Darstellung der
Drehgruppe im quantenmechanischen Zustandsraum,

['(R)[(Ry) = T'(R1Ry),
r(RY) = Ti(R)
() = 1. (6.35)

Zwei Drehungen kommutieren i.A. nicht, [Ry, Rs] # 0, so dass auch [['(Ry), I'( Ry)| #
0 i.A. gilt. Wann vertauscht der Hamilton-Operator H mit den Drehungen? Seine
Transformation lautet

H - T(R)H(x,p)I"(R) = H(R'x, R"'p). (6.36)
2
Kinetische Terme der Form L sind invariant unter Drehungen, weil p? drehin-
m
variant ist. Potentiale sind drehinvariant, wenn sie nur vom Betrag des Ortes
abhangen,
V(r)=V(x|) = V(R 'x|), mitr=]|x|, (6.37)
d.h. Zentralpotentialprobleme haben Eigenfunktionen, die auch den Drehoperator
diagonalisieren. Bei N quantenmechanischen Teilchen sind z.B. Potentiale, die
nur vom Teilchenabstand abhéngen, drehinvariant, V' = ZVU(\XZ- — x;|). Das
1<J
Coulomb-Potential ist genau in diesem Sinne drehinvariant.

6.3.2 Einteilchensysteme und Drehimpulsalgebra

Im Folgenden betrachten wir Zentralpotentiale, die, wie oben diskutiert, drehin-
variant sind. D.h. wir beschrianken uns auf Einteilchen-Hamilton-Operatoren der

Form )

H= Qp—m LV, T =lx]. (6.38)
Weil T'(R) unitar ist, ldsst sich I'(R) schreiben als
[(R) = e #, mit £! = L. (6.39)



Fiir drehinvariante Potentiale (6.38) kommutieren I'(R) und £ mit H. L ist also
eine Konstante der Bewegung.

Wir betrachten zunéchst einmal Drehungen um eine Achse n (Einheitsvektor
n-n=1)um den Winkel 8 im 3-dimensionalen Ortsraum:

R(n,0)x
Es gilt
Rn,f)x = (n-x)n—n x (n X x)cos(f) +n x xsin(f). (6.40)
oder infinitesimal
RN, 0)x = x + 1 x x0 + O(6?), (6.41)
d.h. ;
—R(Mn,0)] =nxx= )X (6.42)
dp =0
mit der reellen schiefsymmetrischen Matrix
0 —n3 N9
Qn = ns 0 —ni |, (643)

—ny Ny 0
welche Vektoren infinitesimal um die Achse n dreht. Da n* = 1, folgt
Q*x = nx (Axx)=n(n- x)—x,
Px = —Axx=—-Ox, (6.44)
d.h. alle geraden Potenzen von €, sind ~ Q2 und alle ungeraden Potenzen ~
Q2 = (=1)"HQ2 QP = (—1)"Q,, n=0,1,2,... (6.45)

Damit lasst sich #€, leicht exponentieren:

03 62 o4
00, . 2 _
e _1+Qn(9 —3!+...)+Qn<2! 4!+...)

= 14+ Q% — Q% cos + Qysin . (6.46)



—  M'x=(n.x)A—n x (0 xx)cos(d) + 10 x xsin(f) = R(n, 0)x, (6.47)
d.h. wir haben eine Matrix-Identitét fiir R(n,#d) gefunden:
R(n,0) =’ (6.48)

Die Matrix €2, erzeugt also Drehungen um die Achse n. Analog suchen wir nun den
selbstadjungierten Operator Ly, der die Drehungen um n im quantenmechanischen
Zustandsraum erzeugt,

D(R(q,0)) = e #£00) = ¢=7fln, (6.49)
D.h. wir suchen L, so, dass
) = (e "Mx) = (e i), (6.50)
Entwickeln wir die linke Seite nach #, so ergibt sich daraus:
Y(e Mmx) = Y(x') — 0% - Vip(x) + %Q(an’ V)2(x) + .
= ¢ )V (x). (6.51)

Ein Vergleich mit Gl. (6.50) liefert uns die Ortsraumdarstellung von Ly:
(xX'|Ly = —ih(Qux') - V(X']. (6.52)

Mit Hilfe des Impulsoperators folgt die Operator-Identitét:

Ly=(Mxx)-p=1n-(xXDp). (6.53)
Damit entspricht L,, der Projektion des Drehimpulsoperators auf die Drehachse,

Ly=n-L, mitL=xXxp. (6.54)
Die drei Komponenten des Drehimpulsoperators

L = €jrxipr, 1,J,k=1,2,3 (6.55)

erzeugen also Drehungen um die Koordinatenachsen. Die Selbstadjungiertheit von
L lasst sich direkt nachpriifen,

LI = (ejpam) = Gijka«?C} = €ijkPET;
= €ijk | TjPk — [Z’j,pk] = Lz - Z'h@jj = Lz (656)

i,



Mit Hilfe von GIl. (6.55) ldsst sich die wichtige Drehimpulsalgebra ableiten. Wir
beginnen mit den Vertauschungsregeln fiir L; mit z; und p;:

LZ';x' = € y L] — €4 y Ljl — h ij
[ ]] ké[xk‘pf 37]] €ikt T [pf x]] LNE; LT
—ihdy;
LZ', | = €ike|T sy Pil = €kt | Tky Pj :’ihéi' . 6.57
[Li, pjl ke TrDe, D)) = €ine | .de]]pé Jepe (6.57)
2 k‘j

Damit folgt fiir die Drehimpulsvertauschungsregeln:

\Li, Lij] = €jou|Li, xepr] = €jor (xe|Li, pi] + [Li, zelpr)

= il | €jer€ikmTiPm + Ejer€itmTmPr
=€kjt€ikmTmPr
= 1h €itk€ikm (Cl?ﬁpm_fmpﬁ)
N——

:5jm5€i_5ji6€m

Wegen
€iik Lk = €ijk€rtmTePm = (0300 jm — OimOi0)XePm = Tipj — X, (6.59)
folgt

Eine wichtige Folgerung aus Gl. (6.60) ist, dass die Komponenten des Drehimpulses
jeweils zueinander inkompatible Observable sind. Zwar vertauscht jede einzelne
Komponente mit H, aber nur eine Drehimpulskomponente kann gleichzeitig mit
H diagonalisiert und somit scharf gemessen werden.

Sehr ahnliche Beobachtungen haben wir bereits beim Stern-Gerlach-Experiment
gemacht. In der Tat gehorchen die Spin-Komponenten S; ebenfalls der gleichen
Algebra Gl. (6.60). Wihrend die S; jedoch einen internen Freiheitsgrad (Spin) des
Elektrons beschreiben, bezeichnet L; den Bahndrehimpuls eines Teilchens (z.B. in
einem Potential).

Sei V € {x,p,L}. Aus den Vertauschungsregeln folgt

D(R)VIH(R) = e #nyeitln =V 4 %Q[Ln, V] + 0(6?)
— Vioax Vo))" Rm, 0V, (6.61)
(NB: Hier haben wir [n - L, V;] = n;|L;, V;] = ihne;;,Vi = ihn x 'V benutzt.) In
der Tat gilt diese Beziehung Gl. (6.61) nicht nur infinitesimal, sondern allgemein.



Gleichung (6.61) bedeutet, dass sich x, p und L als Operatoren genau wie Vek-
toren im 3-dimensionalen Raum unter Drehungen transformieren. Man spricht
daher auch von Vektoroperatoren. Im Gegensatz dazu gilt fiir Zentralpotentiale

['(R)HT'(R) = H (6.62)
oder T(R)(x - p)I'"(R) = x - p, d.h.
L, H] =0, und |[L,x-p|=0. (6.63)

H und x - p transformieren also wie skalare unter Drehungen, heifsen folglich
skalare Operatoren.

6.3.3 Eigenwertproblem des Drehimpulses

Mit dem Bahndrehimpuls L und dem Stern-Gerlach-Spin S haben wir bereits zwei
Grofen kennengelernt, die die Algebra (6.60) erfiillen. Allgemein bezeichnet man
eine Groke J, die

Ji Jj) = iheipdr, SN =i i Gk =1,2,3, (6.64)

erfiillt, als Drehimpuls, unabhéngig davon, welche konkrete Bedeutung oder welchen
Ursprung sie hat (z.B. Bahndrehimpuls, Spin, gesamter Drehimpuls, grand spin,
etc.).

Im Folgenden wollen wir also versuchen, die Eigenwerte und Eigenfunktionen des
Drehimpulses nur mit Hilfe von Gl. (6.64) zu konstruieren. Konventionsbedingt
wihlt man zur Diagonalisierung J3 aus (J; und Jy sind dann zwingend nicht-
diagonal). Im Folgenden sind die Leiteroperatoren

Jo=J +idy, J=J, (6.65)
niitzlich. Diese erfiillen die Vertauschungsrelationen

|Js, J1| = [Js, J1] £ ilJs, o] = ihJy £ hJy = £hJy,
Jo, J | = ilJs, Ji] —i|Jy, o] = 2hJ5. (6.66)
Wir beobachten, dass das Betragsquadrat des Drehimpulses mit allen J; vertauscht,
32T = [, Jj) = Ji [ i, Jj) + [, Ji] i
I = il = Ji i, Ji) + [ Jis Jj]
= thegjp £JZ~J;C + Jsz’l = 0. (6.67)

symmetrisch in i, k

Wir konnen also J* simultan mit J5 diagonalisieren.



Das Quadrat eines selbstadjungierten Operators ist nicht-negativ,
(WIIle) = WlTil) = (@) (F)
= (@l¢) =0, mit ¢ = Ji[). (6.68)
Ist |¢) also Eigenfunktion von J* mit Eigenwert ), so folgt
(WIIP[) = Melp) 20 = A>0. (6.69)
Wir schreiben den nicht-negativen Eigenwert A als
A=njG+1), >0 (6.70)

mit zu bestimmendem j. Der Faktor A? ist so gewiihlt, dass j eine dimensionslose
Zahl ist; dies ist die Drehimpulsquantenzahl.

Die zu bestimmenden Eigenwerte von J3 bezeichnen wir mit Aj3, wobei 73 wieder
dimensionslos ist und magnetische Quantenzahl genannt wird (im SG-Experiment

S’ 1
entspricht j3 = %’2 = 5) Die normierten simultanen Eigenfunktionen von J?
und J3 seien also |7, js):

I214,3) = B25(5 + D)|g, ), Jalg, js) = Bjsld, Js)- (6.71)

Im Folgenden bendtigen wir
Jide = Ji + T3 FilJiJy — JoJy) = J° — J £ hJs. (6.72)
Wegen Jh = J gilt auch
(sl T T5lida) = (Gl T3) (J=lda) = 0. (6.73)
Mit Gl. (6.72) folgt:

0<  (jjalJedzljgs) = (jjslI* = J5 & Bs|5Js)

=R +1) - 2]3 + js) 2 (6.74)
(o))
— (j +;> > Q%) (6.75)

Daraus folgt
~j << (6.76)



Mit ahnlichen Argumenten wie beim harmonischen Oszillator lassen sich die Eigen-
werte 7 und j3 mit Hilfe der Leiteroperatoren bestimmen. Es gilt:

JsJilj, gs) = Je(Js £ h)|j, j3) = hJe(gs £ 1)]7, j3)
= (3 £1)Jx]j, js). (6.77)
J+|7, 73) ist also Eigenfunktion von J; mit Eigenwert h(j3 4+ 1). Einschliefslich

einer zu bestimmenden j und/oder js-abhidngigen Normierungskonstante c. gilt
der Zusammenhang

Jelj, s) = cxlj, js £ 1). (6.78)
Die Normierungskonstante c. sei so gewéhlt, dass die Zustande |j, j3) auf 1 normiert
sind. Wegen Gl. (6.74) gilt:

6.78 .. ..
O \esl? (o gs & g, ds £ 1)

~
(G +1) —j5 Fs)

woraus nach geeigneter Phasenwahl folgt, dass

Jilg,gs) = ha/5(G + 1) = js(s £ D)1, Js 1), (6.79)
Ist hijs Eigenwert von Js, so ist es auch A(js=£1), es sei denn v/j(j + 1) — js(jz £ 1) =
0, so dass Gl. (6.79) einen Nullvektor liefert. Die wegen Gl (6.76) (—j < 73 < j)
einzig erlaubten Losungen, fiir die die Wurzel verschwindet, ist

g o= J, fir /j(G+1) = sz +1)
und g3 = —j, fiir \/j(j +1 ) — Js(js — 1). (6.80)
Damit Gl. (6.76) fiir alle durch Gl. (6.79) erzeugten Eigenwerte Ajs erfiillt ist, muss
das Abbruchkriterium Gl. (6.80) eintreten (sonst kénnte mit Gl. (6.79) ein beliebig

grofser oder kleiner Eigenwert hjs erzeugt werden). Dies bedeutet, dass hj und
—hj Eigenwerte von J3 sein miissen. Da nun die Differenz zweier Eigenwerte von

<j7j3|‘]:{3‘]:l:‘j7j3>

(6.74)

J3 wegen Gl. (6.79) eine ganze Zahl mal A sein muss, muss
j—(—j) =27 ganzzahlig (6.81)

sein, d.h. 7 muss ganz oder halbganz sein:

13
=0,-,1,=,2,... 6.82
..7 Y 27 J 27 Y ( )
Da negative j keine neuen Eigenwerte von J?, nimlich A%j(j + 1), liefern, geniigt
es, sich auf nicht-negative j zu beschranken. Fiir jedes j gibt es dann 27 + 1

verschiedene Werte von js:

J3=-5—J+tL....0—=17 (6.83)



Der Eigenwert A%j(j + 1) von J* ist also (2 + 1)-fach entartet. Da J3 und J?
selbstadjungiert sind, bilden die Eigenvektoren |7, j3) ein Orthonormalsystem

Zusammenfassend ergibt sich folgendes Bild: Im Zustand |7, j3) ist die Lange des
Drehimpulsvektors = hy/j(j + 1), seine 3-Komponente ist = hjs. Die transver-

salen Komponenten im Betrag, /J7 + J5 = 1/J? — J3, haben die Lange

h\/ j(j +1) — 73, die Richtung der transversalen Komponenten bleibt allerdings
unbestimmt, da J;, Jo mit J3 inkompatibel sind. Die Unschérfe lasst sich leicht

berechnen:
1 2 hiz\’
G A0 .0 ) > 51015 5 ) ()
=ihJ3

(6.85)
Wie angesprochen gilt diese Losung des Drehimpulseigenwertproblems fiir viele
Beispiele. Im Fall des Bahndrehimpulses J = L = x X p werden nur die ganz-

zahligen Eigenwerte realisiert, siche unten. Im Fall des Stern-Gerlach-Experiments

h 1 3 h 1
gilt J = S£§a, so dass j = > J?=8%= 1712]1, und Jy = Szﬁ?jg mit j3 = iﬁ'

6.3.4 Kugelflachenfunktionen

Im Folgenden sollen die Eigenfunktionen des Bahndrehimpulses L = x X p explizit
im Ortsraum konstruiert werden. Dazu sind Kugelkoordinaten sehr niitzlich,

sin 6 cos ¢
x=rx=r|sinfsinp |, r=|x|, 0€[0,n], ¢€]l0,2n). (6.86)
cos 6
Die einzelnen Komponenten des Bahndrehimpulses in der Ortsraumdarstellung
lauten mit p — —1AV:
0

L3 = —ih (xlag — 562(91) = —ih%,

Ly = ih (sin cp% + cot 6 cos cp?) :
@

Lo = ih (— COS gp% + cot 6 sin gpai) : (6.87)
¥

wobel wir die Darstellung des Gradienten in Kugelkoordinaten verwendet haben
(vel. Ubungen). (NB: der Strich am Ortseigenwert x" sei hier und auch im Folgen-
den weggelassen, da wir ausschlieflich im Ortsraum arbeiten werden.)



Aus Konventionsgriinden benennen wir die Eigenwerte 57 und j3 um in £ = j
und m = j3. Da die L; nicht von r abhéangen, sind die Eigenfunktionen ebenfalls
unabhéingig von r. Wir nennen diese Eigenfunktionen Kugelfiichenfunktionen

}/Em(ea 90) = <}A<

Aus L3Yy,, = hmYy,, folgt, dass Yy, geschrieben werden kann als

You(0,0) = €™ Pun(0), (6.89)

{m). (6.88)

d.h. die Kugelflichenfunktionen separieren in eine azimutale Phase und eine noch
zu bestimmende Funktion P, (6). Da (6, ¢) und (6, ¢ + 27) denselben Punkt auf
der Kugeloberfliche bezeichnen, und da Y,,(0, @) = Yi,(0, ¢ + 27) eindeutig sein
muss, folgt die Ganzzahligkeit von m und damit auch von /.

Aus Gl. (6.87) und Gl. (6.65) folgt die explizite Ortsdarstellung der Leiteropera-
toren

y a a
- w :l:— ' - . .
L. = he ( 7 + ¢ cot f ) (6.90)

Wir bestimmen zunéachst Yy, d.h. fiir den Fall von maximalem m = ¢, da diese
Figenfunktion von L, annihiliert werden muss (vgl. Argumentation a|0) = 0 beim
harmonischen Oszillator):

0= L+Y:gg(@, gD) = hei‘p (g + 17 cot 9&) 6i€¢P€€(@)

00 Oy
- OPy(0)  cos6
_ i(l+1)e 144 o
he < 00 ¢ sin 6 PM(Q))
—  Yy(h, ) = ce™sin' 6, (6.91)

mit zu bestimmender Normierungskonstante ¢. Die Normierungsbedingung Gl. (6.84
lautet im Ortsraum

'm)

5108,y = (bmlm = / O em
= /dQ%M@,@)Ym(@,w)

T 21
= / dQ/ dpsin@Y, (0,0)Yu(0,p) (6.92)
0 0



Fir Yy, fithrt dies auf

7T 2m
1 = / dﬁ/ dip sin | c|* sin®*
0 0

T 2 (2%1)?
= 27T]c]2/ df sin* 0 = 27|c|? 24
0 20 +2 (20)!
_ (=D [+ 120! it
= Yu0,p) = 50 . sin’ B’ (6.93)

wobei wir aus Konventionsgriinden den Phasenfaktor zu (—1)° gewéihlt haben. Alle
weitere Kugelflachenfunktionen Yy, mit m < ¢ folgen aus Gl. (6.79):

L_|t,m) = Bl +1) —m(m —1)|t,m —1)

1 . 0 0
— Y—1(0, — el ——+icot0— ) Yy, (0, ),
tm-1(0, ) N ETICED ( %0 6@) (0 )
(6.94)
beginnend mit Yy(6, ). Thre (semi-)explizite Form lautet
(—1)" J@e+D)(C+m)l e™me (d N\ o
Ym 97 — N 1 - ; .
n (0, ) 207! (0 —m)!  sin™ @ \ du (L= u=cos 6 (6.95)
z.B.
00\, @) = A’
3
Yip(0,¢) = /= cost,
Am
3 =+
Yi41(0,¢0) = F4/—sinfe™?,
’ 87
Yiol0, ) = \/——(3c0s20 — 1),
15 4,
Yoi1(0,0) = F4/—€e ¥ sinfcosb,
’ 8w
Yoi9(0,0) = 19 a2ie g2 g (6.96)
2,j:2 ) 327_‘_ * *

Die Aufenthaltswahrscheinlichkeit eines quantenmechanischen Teilchens, welches
durch Kugelflichenfunktionen beschrieben wird (z.B. Wasserstoffatom), ist beziig-

lich der Winkel ~ [Yy,.(6, )|

Weitere Eigenschaften der Kugelflachenfunktionen:



Bis auf eine Phase sind Kugelflachenfunktionen mit m und —m zueinander kom-
plex konjugiert:

Vim0, @) = (=1)"Y;,(0, ¢). (6.97)

Fiir ein zentralsymmetrisches Potential vertauschen mit dem Hamilton-Operator

nicht nur L? und Ls, sondern auch der Parititsoperator I'(P). Die Kugelkoordi-
naten transformieren sich unter x — —x gemaf

r—r, 0—=>1—0 p—p+m. (6.98)
Damit folgt
e — (—=1)me"™? sinf — sinf, cosf — — cosé, (6.99)
Dies bedeutet fiir die Kugelflachenfunktionen
D(P)Yin(9, ) = (—1) Vi (0, ). (6.100)

Zustande mit gerader Drehimpulsquantenzahl sind daher gerade unter Paritat und
umgekehrt.

Wegen der Selbstadjungiertheit von L? und L sind die Yy, eine vollstindige
Orthonormalbasis auf der Kugeloberfliche. Jede (quadratintegrable) Funktion
f(0, ) auf der Kugeloberfliche kann daher geschrieben werden als

%) l
F(0,0) =) amYum(0,9), mit > =>"%", (6.101)
‘m

‘m (=0 m=—/

bzw.

f(0,¢) = (n

m) (bm|f) . (6.102)

fl=> (n

E,m :}/gm :O[em

Die Koefhizienten oy, ergeben sich daher aus

i = (ml) = [ dmli(alf) = [ 05,0060, (6103
Die Vollstiandigkeit der Basis

L= |tm){m] (6.104)

{m

lautet in Ortsdarstellung

(B[10") = 6(p — ¢)6(cos B — cos0') = Y Yiu (0, 0)Y5, (0, &) (6.105)
‘{m



Zwei Eigenschaften geben wir noch ohne Beweis an, (sie kénnen als Ubungsaufgabe
gelost werden):
Es gilt folgende Summenregel:

20+ 1

12
> Ym0 o) ==——. (6.106)

m=—/
Die Greensche Funktion des Laplace-Operators lautet in Kugelflachenfunktionen:

14

1 1 r
= dm 1 Yem(0, 0)Y0, (0, ), (6.107)
Ix — x| Z%—l—lq{“

‘m

(wie bereits aus der Elektrostatik bekannt sein diirfte). Hier bezeichnet r~ den
kleineren und 7~ den grokeren der beiden Absténde |x| und |x/|.



7 Das Wasserstoffatom

Das Wasserstoffatom hatte fiir die Entwicklung der Quantenmechanik nicht nur
historische Bedeutung. Es ist sowohl fiir Theorie als auch fiir das Experiment eine
leicht zugéngliches System. Daher kann es zu extrem hoher Préazision studiert wer-
den und erlaubt iiber die Quantenmechanik hinaus Préazisionstests der Quanten-
feldtheorie, speziell der Quantenelektrodynamik gebundender Zustéande. Es ist das
einfachste Atom, und die Physik der Atomhiille somit Tor zur (Quanten-)Chemie.
Ein Verstindnis der Atombhiille und ihrer Anregungen und photonischen Uberginge
ist ebenso Grundlage fiir die (Quanten-)optik. Viele weitere Anwendungen liefsen
sich hier aufzahlen.

In diesem Kapitel soll das Wasserstoffatom vereinfacht als gebundenes System
aus einem spinlosen Elektron und einem spinlosen Proton betrachtet werden.

7.1 Teilchen im Zentralfeld

Betrachten wir zunéchst allgemein ein Teilchen (Elektron) in einem Zentralpoten-

tial
9

p
H—E+V(r), r= x|, (7.1)
wobei die Masse nun durch p bezeichnet wird (um Verwechslung mit der magneti-
schen Quantenzahl vorzubeugen).
Zunédchst suchen wir einen Zusammenhang zwischen Gl. (7.1) und dem Drehim-
puls, der im Zentralpotential erhalten sein muss. Es gilt:
1 1 1
ﬁ(X X L)i = ﬁGijkfﬁij = ﬁ €ijk€kim TjT¢Pm
5160 jum—0im0 0

= Z;T;D; 3 Pi= zi(x - p) — pi
N
el
1
. pox(k-p) - 4xxL (72)



Fiir das Impulsquadrat folgt

1
) x X L

NP

drehinvariant

1 1
= (p-x) p(X'P)— P'(ix Llp
=x-p— [.I'Z" pl] Z(pXX)-L:—L2

‘\./_/
zh(sii
1 1 L2

= (x-p)5(x-p) = 3ih5(x-p)+ 5

0* 20 L>
32
i ((97"2 7"87“) T

(7.3)
oder auch g 5 L2

— K2 — 4
p’ r2Or ( 6’7‘) i (74)
(NB: Die Ortsdarstellung des Drehimpulsoperators wurde in einer Ubungsaufgabe

berechnet: 52 8 R
L’ = —h* | = + cot 0 7.5
(392 50 T eaw) ’ (7:5)

ist aber im Folgenden nicht mehr notig, da wir die Eigenfunktionen vom Drehim-
pulsoperator L? bereits kennen.) Die fiir uns relevante Form der stationiren
Schrodinger-Gleichung lautet

(R 9,0\ I

Fiir ein zentralsymmetrisches Potential V(1) vertauschen H, L? und Ls, so dass

die Losungen von Gl. (7.6) beziiglich der simultanen Eigenwertbasis aufgespannt
werden konnen,

Y = Ypim(x) = (x| Elm) (7.7)
mit
H|Etm) = E|Efm),
L* Elm) = R*({ + 1)|Efm),
Ls|Efm) = hm|Efm). (7.8)



Ein Separationsansatz unter Verwendung der Kugelflaichenfunktionen fiihrt auf

Ypom(x) = (X|Etm) = [pi(r)Yun(0, ¢), (7.9)

wobei wir in der Notation fg, schon vorweggenommen haben, dass die radiale
Wellenfunktion fg(r) nicht von m abhéngt. Da die Y}, Eigenfunktionen von L?
sind, folgt fiir die Radialfunktion fg,(r) die Differentialgleichung

> 0 0 200+ 1

Fithren wir eine neue Konvention fiir die Radialfunktion ein, uge(r) = r fge(r), so

vereinfacht sich die Differentialgleichung:

Rt o> RH(0+1)
<_2,u or? " 212 +Vir) - E) upe(r) = 0. (7.11)

Diese Differentialgleichung (auch Fuchssche Differentialgleichung genannt) hat die

Form eines 1-dimensionalen Potentialproblems mit effektivem Potential
R0+ 1)

V;,ﬂf(?“) = V(r) + 2,LL7“2

(7.12)

zudem ist 0 < r < oo zu beachten. Fir nicht-verschwindenden Drehimpuls di-
vergiert Vog(r) am Ursprung fiir » — 0. Wie in der klassischen Mechanik ergibt
sich aber eine “Zentrifugalbarriere”, die hier in der Quantenmechanik dafiir sorgen
wird, dass Wellenfunktionen mit £ > 0 am Ursprung verschwinden miissen. Diese
Erwartung wollen wir im Folgenden bestatigen.

Allgemein bedeutet die Normierbarkeitsforderung der Wellenfunktion, dass

>/d35€’¢mm’2=/ drr ng\ /dQ]Ym]2
0

:’UE€’ 7

_ / dr |upl? (713)
0

Fir kleine Abstande r bedeutet dies, dass es eine positive Zahl € geben muss, so

dass 1
(upe| < cr2 firr—0 (7.14)
mit geeigneter Konstante ¢. Ahnlich muss wgy fiir 7 — oo schneller als wgp ~ 2
abfallen.
Betrachten wir zunéchst grofe r fiir den Fall, dass V(r — oo) — 0. Dann

reduziert sich die Differentialgleichung auf
hQ

o Uy, + Euge ~ 0, fir r — oo. (7.15)



Die asymptotische Form der Losung ist Daher

r 27.2
: h°k
e fiir B = - >0,
Upe ~ %/@2 (7.16)
e " fir HF=—— <0,
\ 24
Fiir ein nicht-negatives Potential ist H nicht-negativ
(Y|H[Y) >0, (7.17)

so dass alle Energieeigenwerte £/ > 0 sein miissen. Ein Teilchen in einem nicht-
negativen Potential mit V(r — oo) — 0 hat also keine gebundenen Zusténde.
Fiir kleine r verwenden wir den Ansatz

upe(r) ~ (1 + air + agr® +...). (7.18)

Finsetzen in die Differentialgleichung GIl. (7.11) liefert
— — (ala = 1)r* 7 =L+ 1)r* 2+ o(r* %)) =0, (7.19)

wobei wir angenommen haben, dass V(r) weniger singulir als =2 fiir » — 0 ist.
Gl. (7.19) hat die Losungen

a=¢+1 und a=-—L (7.20)

Fir ¢ =1,2,... wiirde « = —¢ die Normierbarkeitsforderung Gl. (7.14) verletzen,
so dass nur o« = £ + 1 in Frage kommt. Es stellt sich heraus, dass auch fiir £ = 0
nur o = £+ 1 =1 gilt (weil fiir £ = 0 der Hamilton-Operator nicht mehr wesentlich
selbstadjungiert wire). Fiir £ > 0 folgt jedenfalls, dass mit

+1

up(r) ~r oder fri(r) ~ 1’ (7.21)

alle Losungen am Ursprung verschwinden.

7.2 Eigenwertproblem des Wasserstoffatoms

Wir definieren das spinlose Wasserstoffproblem durch das Proton-Elektron-Zwei-
teilchenproblem mit Hamilton-Operator
2 2
Py p
€ V e 722
o g Ve (7.22)

H =




und der entsprechenden Schrodinger-Gleichung
0
iha\\ll,ﬂ = H|V, t). (7.23)

Dies ist eine 7-dimensionale Differentialgleichung, wenn wir Gl. (7.23) z.B. auf den
Ortsraum projezieren. In (6.27)-(6.29) haben wir allerdings zeigen kiénnen, dass
Hamilton-Operatoren vom Typ Gl. (7.22) mit dem Gesamtimpuls vertauschen,

[H,P] =0, P=p,+pe (7.24)

und P somit eine Konstante der Bewegung ist. Die kanonisch konjugierte Variable

zu P ist die Schwerpunktkoordinate

MpXp + MeXe
M ?

so dass sich direkt verifizieren lisst, dass (Ubungsaufgabe!)

X —

M = mp, + me, (7.25)

Gl. (7.24) lasst sich direkt dadurch verifizieren, dass H unabhéngig von X ist und
zudem P mit der Relativkoordinate x = x, — x, vertauscht:

%, P = [Xp, Pp + Pe] — [Xe; Pp + Pe]
- [Xp7 pp] — [Xe, Pe] = (1A —iR)1 = 0. (7.27)

Die zur Relativkoordinate kanonisch konjugierte Variable ist der Relativimpuls

_ MePp — MpPe

p= A : (7.28)
fiir den die Vertauschungsrelation (Ubungsaufgabe!)
[z, pj| = ihdy; (7.29)
leicht verifizierbar ist. Alle anderen Kommutatoren verschwinden:
X,p/=0, [P,p]=0, [X,x]=0. (7.30)

In Schwerpunkts- und Relativkoordinaten lautet der Hamilton-Operator (Ubungs-

aufgabe!)

2 2

p
H=—+— = H, H,q, 7.31
5 +QM+V@) b+ Hyel ( )

wobei die reduzierte Masse
MM

H="n

(7.32)



auftaucht.

Da die kanonischen Schwerpunkts- und Relativkoordinaten zwei disjunkte Alge-
bren bilden und der Hamilton-Operator in eine entsprechende Summe zerféllt, ist
die Wellenfunktion separierbar,

WX, %, 1) = (X, X0, 1) = B(X, (X, 1) (733
Im Ortsraum zerfallt die Schrodinger-Gleichung somit in zwei Differentialgleichun-
gen:
0 h?
h—0(X' 1) = ———Vx®(X',
0 h?
ih—(x' 1) = ——V2(xX', t) + V(X)(X ) t). (7.34)
ot 211
Die Schwerpunktsbewegung entspricht der eines freien Teilchens
i (pl._ P2
DX 1) = ef (Px=5t) (7.35)

wobei P’ der Eigenwert des Gesamtimpulsoperators ist, P|P’) = P’|P’).
Der Hamilton-Operator der Relativhewegung entspricht genau einer Bewegung
cines Teilchens mit Masse p im Potential V' (x):

p’
Hre —_ . 7.36
1 o + V(x) ( )

Das verbleibende (schwierige) Problem ist also die Losung der Differentialgleichung
Gl. (7.34) fiir ¢(x', ). Die Energie-Eigenzustéinde der Relativbewegung haben die
Form ¢(x’,t) = e i 5(x), wobei ¢p(x') wie iiblich die stationire Schrodinger-
Gleichung

Bus(x) = (=5 V4 + VX)) d(x) (7.37)

erfiillt. Mit den noch zu bestimmenden Losungen von Gl. (7.37) haben die Energie-
Eigenzustande des Gesamtsystems die Form:

—iplx! —L p’2
U(x),x),t) =en’ *e h<E+2M>t¢E(X'), (7.38)
meX, + mpX, P2
mit x' = x, — x| und X' = — P Die Gesamtenergie ist also E + S

Im Folgenden konzentrieren wir uns auf die Dynamik der Relativbewegung. Die
Relativbewegung ist ein Zentralkraftproblem mit Coulombpotential
2 Z€2

p
H = o +V(r), V(r)= = |x|. (7.39)



Fiir das Wasserstoffatom ist Z = 1 (Kernladungszahl). Fiir mehrfach ionisierte
Atome kann sie aber auch groker sein (z.B. Z = 2 fiir He', Z = 3 fiir Li*", usw.).

Wegen Drehinvarianz lassen sich die Eigenfunktionen schreiben als (im Folgenden
sei der Strich x” wieder weggelassen )

vrn(x) = ")y, 6.), (7.40

wobei die Y;,,(6, ¢) die Drehimpulsoperatoren L* und Lz diagonalisieren und ug(r)
die Differentialgleichung Gl. (7.11) erfiillt:

R R+ 2
241 dr? 20112 r

— E) upe(r) = 0. (7.41)

Folgende dimensionslose Groken erweisen sich als zweckmafig: Die natiirliche

atomare Langenskala ist der Bohrsche Radius

hQ
a=—5 ~52918 x 107! m. (7.42)

=
Die natiirliche atomare Energieskala ist der Betrag des Coulombpotentials fiir Z =
1 am Bohrschen Radius:

e el
E, = — =57 ~ 27.1970132 eV. (7.43)
Energien und Langen werden nun in Einheiten von E, und a gemessen,
r b
= — = — 744
p= =g (7.44)
so dass die Differentialgleichung Gl. (7.41) iibergeht in
d? 27 Ll +1)
(d—pQ + 2¢ + p — p2 > ’LLEg<p) = 0. (745)

Wir sind insbesondere an den gebundenen Zustanden mit £ < 0 interessiert. Wie
in Gl. (7.16) diskutiert, hat uge(p) fiir groke Abstinde p — oo die asymptotische

Form
2

upe(p — 00) ~ e P fiir e = —%. (7.46)
Fiir kleine Abstande fanden wir in Gl. (7.21)
upe(p = 0) ~ p'*, (7.47)

so dass wir als Ansatz wahlen

upe(p) = p' e Z app”, (7.48)
k=0



mit zu bestimmenden Koeffizienten a;. Einsetzen in Gl. (7.45) liefert folgende
Rekursionsformel fiir die Koeffizienten ay:

B 2k(k+L+1) = 2)
T R )k () — U+ )

Der Rekursionsanfang ag ist dabei indirekt durch die Normierung festgelegt.
Wiirde die Reihe in £ nicht abbrechen, so folgte fiir grofe &

2kk (2k)F+1
A+t ~ 5 @~ ) ay, (7.50)

ay. (7.49)

o
d.h. Z app” ~ ape®™. Damit wiirde upe(p) fiir grofse p divergieren, so dass keine

k=0
akzeptable Losung vorldge. Die Potenzreihe muss also abbrechen; das Kriterium

dafiir lautet:

K(kpax + 0+ 1) = Z. (7.51)
Daraus folgt die Quantisierung der Energieniveaus der gebundenen Zustande
K 7% et
F=¢£,=——FE,=— : 7.52
‘ > 212 (K + £ + 1)? (7:52)
In der Literatur wird k. oft auch n, genannt. Die Summe
nN=kpx+l+1=n+0+1, n=12,... (7.53)

heifst Hauptquantenzahl, da sie die Energie der stationaren Zustande bestimmt:
Z% et 7 2uet 72
2h2n2  n22h2 T n?

Dies ist die Balmer-Formel. Aus historischen Griinden benutzt man die Quanten-

E, = . 13.6eV. (7.54)

zahlen n und ¢ zur Bezeichnung der Zustdnde, wobei ¢ = 0,1,2,3,4,... oft mit
den Buchstaben s, p,d, f, g ... benannt wird.
Die 14 tiefsten Zustdnde sind in Gl. (7.1) aufgelistet.

n | € n.(= knax) | Bezeichnung | Entartung
110 0 1s 1
210 1 2s 1
211 0 2p 3
310 2 3s 1
301 1 3p 3
312 0 3d 5

Table 7.1: Die 14 tiefsten Zustande des (spinlosen) Wasserstoffatoms.
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Die Entartung der Zustiande ergibt sich aus den 2¢ + 1 moglichen Einstellungen
der magnetischen Quantenzahl m, d.h. aus der 3. Komponente des Drehimpulses,
fiir jedes . Fiir zunehmendes n liegen die Zustdnde immer dichter.

Da die Drehimpulsquantenzahl zu jedem n die Werte £ = 0,1,...,n — 1 durch-
lauft, gehoren zu jedem n

n—1

> 20+1)=14+345+...+2n—1)=n’ (7.55)

(=0
Zustinde. Dieser hohe Entwartungsgrad ist zundchst verwunderlich. Die 2¢ + 1-
fache Entartung zu jedem £ erklart sich dadurch, dass L, und L_ mit H ver-
tauschen, so dass sich die Energie fiir Zustdnde mit gleichem ¢ aber verschiedenem
m nicht unterscheiden kann. Die noch grokere Entartung (7.55) hangt in der
Tat zusammen mit einer noch groferen Symmetrie des Wasserstoffatoms: die
Schrodinger-Gleichung im Coulombpotential hat fir £ < 0 eine O(4)-Symmetrie
der 4-dimensionalen Drehungen (vgl. Ubungen).

Obige Uberlegung gilt fiir die Energie-Eigenzustinde. Die tatsichlichen Be-
setzungen der Zustande mit Elektronen héngt aber noch wesentlich vom Spin-
Freiheitsgrad ab. Wegen des Pauli-Prinzips konnen sich in jedem der obigen

Zustande 2 Elektronen aufhalten, die sich um ihren Spin-Zustand unterscheiden

1
missen (S, = +=). Zu gegebener Hauptquantenzahl n kann ein Elektron also on’

Zustande besetzen. Dies entspricht genau der Zahl der Elemente in einer Periode
des Periodensystems.

Das Balmer-Spektrum erfahrt in der Tat noch eine Reihe von Korrekturen, die
alle im Detail vermessen und zu hoher Prazision verstanden sind. Dazu gehoren rel-
ativistische Korrekturen (z.B. die Feinstruktur), Korrekturen aufgrund von Quan-
tenfluktuationen von Strahlungsfeld und e”e™-Paaren (z.B. Lamb-Verschiebung,
Uehling-Potential), Endlichkeit des Protonladungsradius, Wechselwirkung von Kern-
spin mit dem Gesamtdrehimpuls des Elektrons. Diese sollen hier nicht weiter be-



sprochen werden, sind aber spannende Themen fiir ein weiteres Studium.
Es gilt noch die Bestimmung der Eigenfunktionen abzuschlieken. Wir fanden ugy

in Gl. (7.48), bzw.
1

afpr = fn = — U, — e Ryt k) 7.56
fee = far(p) pU lp)=e"p Z arp (7.56)
=Upy k=0"r
mit ay aus Gl (7.49) und
A
Kk=—, n=n,+{+1 (7.57)
n
Die Normierungsbedingung lautet
e r
L= [P o=t (7.58)
0
Die niedrigsten Eigenfunktionen sind fiir 7 = 1:

fis(p) = 2e77
f23<p> — i (1 - B) e_ga f2p(p) : :

2 2 2 _
h = 2 (12 ) o

fap(p) = %p (1 = ép) e s,
faalp) = pre s (7.59)

Nur s-Zustandswellenfunktionen sind nicht-verschwindend fiir » — 0; fiir alle an-
deren verhindert dies die Zentrifugalbarriere. Die Quantenzahl n, =n —¢—1 zahlt
im iibrigen die Knoten der radialen Wellenfunktion f,s(p). Die explizite Formel
fiir die radialen Wellenfunktionen lautet

i
fue(p) = — e <%) L (227p) » (7.60)
mit den zugeordneten modifizierten Laguerre-Polynomen
L) = 2 Lop),  Lulp) = e~ (5" ") (761)
dp? dp™

und dem Normierungsfaktor

22\ (n— 1)
Mne = ( n ) 2n[(n+0)> (7:62)




8 Stationare Naherungsverfahren

Der Grund, warum wir uns bislang nur mit tiberschaubar vielen Systemen beschaf-
tigt haben (Stern-Gerlach, harmonischer Oszillator, Wasserstoffatom), liegt darin,
dass nur fiir relativ wenige Systeme eine exakte Losung gefunden werden kann.
Um so wichtiger sind Naherungsverfahren, die, wenn sie schon nicht zu exakten
Losungen fiithren kénnen, die Eigenschaften eines Systems zunéchst einmal quali-
tativ erfassen. Wiinschenswert wére es, dass die genaherte Losung auch quantitativ
nahe an der exakten Losung liegt, bzw. ein Rechenschema existiert, in dem die
genaherte Losung rasch an die exakte Losung herankonvergiert. Es liegt allerdings
in der Natur der Sache, dass die Prazision eines Naherungsverfahrens nicht a priori
bestimmt werden kann, sondern a posteriori kontrolliert werden muss. Wichtige
Eigenschaften eines Naherungsverfahrens sind Systematik und Konsistenz.

Systematik bedeutet, dass ein Schema angegeben werden kann (Ndherung er-
ster Ordnung, 2. Ordnung, ...), das Ordnung fiir Ordnung abgearbeitet wer-
den kann und im Limes aller Ordnungen das exakte Ergebnis (im Prinzip) ergibt.
Konsistenz bedeutet, dass ein Weglassen hoherer Ordnungen n+ 1, n + 2, ...zu
einem geschlossenen (Gleichungs-)System zur n-ten Ordnung fiihrt, das immer
mindestens eine Losung besitzt.

Naherungsverfahren, die systematisch und konsistent sind, offenbaren zumindest,
wenn sie nicht funktionieren, namlich dann, wenn das Ergebnis zu aufsteigender
Ordnung nicht konvergiert. Andere Naherungsverfahren erlauben mitunter nicht
einmal diese falsifizierende Kontrolle, (konnen aber trotzdem sehr niitzlich sein).

Da unser quantitatives Verstandnis der Natur in weiten Teilen auf Naherungs-
verfahren beruht, ist ein grundlegendes Verstandnis dieser Verfahren besonders
wichtig.

8.1 Rayleigh-Schrodingersche Storungstheorie

Storungstheorie ist (technisch-gesehen) anwendbar, wenn sich der Hamilton-Ope-
rator H des exakten Problems aufteilen lasst in einen exakt losbaren Anteil H
und eine Storung V,

H=H,+V. (81)



Das Eigenwertproblem von Hj sei im Folgenden als bekannt angenommen
Hyln,a) = e4|n, ), mitn € Nya € {1,2,...,N,}. (8.2)

Die Quantenzahl n bezeichnet die Energie €, der stationdren Zustinde, o num-
meriert die verschiedenen Eigenfunktionen zum Eigenwert €,; d.h. im Falle N, > 1
liegt Entartung vor.

Wir fiihren nun einen Kontrollparameter A ein, mit dem wir die Storung ein-
(A =1) und ausschalten (A = 0) kénnen,

H(\) = Hy + \V. (8.3)

Falls V' eine kleine Storung von H ist, konnen wir erwarten, dass die Eigenfunktio-
nen und Eigenwerte von H nur wenig von denjenigen von H, abweichen. Mit Hilfe
des Kontrollparameters A konnen wir die Starke der Storung steuern. Wir nehmen
nun an, dass die Eigenfunktionen und Eigenwerte von H () eine Entwicklung in A
besitzen,

W) = [+ AD) + NP+
E\) = EO 4 xEW £ X2E@ 4 (8.4)

(NB: diese Annahme ist nicht immer erfillt. Z.B. wenn AV fir jedes A > 0
einen neuen gebundenen Zustand erzeugt, liegt [1/(\)) nie nahe bei [(%)). Die
ungestorten Zustande seien auf 1 normiert:

(O )p 0y = 1. (8.5)

Es ist nun zweckméafig, [¢)(A)) nicht auf 1 zu normieren, sondern als Normierung
stattdessen

(WOl(A) =1 (8.6)
zu fordern. Solange [1)(A)) nicht senkrecht auf |1)(%) steht, was fiir kleine A nicht
zu erwarten ist, kann Gl. (8.6) erfiillt werden. Damit folgt

1= @O)) E @O@) + 37 N (O pH). (8.7)
k=1

1

Da GI. (8.7) fiir jedes A gelten muss, folgt
WOy =0, k=12..., (8.8)

d.h. die Stérungen stehen senkrecht auf dem Grundzustand. Die Bestimmungs-
gleichungen fiir die gestorten Groken erhalten wir aus der stationdren Eigenwert-



gleichung
HN[Y(A) = EN[YA)

= (Hy+ \V) i A|p )y = (i )\kE(’“>> (i Ak’\¢<k’>>>

k=0 k'=0
= SOX (Holp®) +vipty) = SO EOR@) | (89
k=0 k=0 pra=Fk
was wiederum fiir jedes A gelten muss, d.h.
Holp™) + VIp"Y) = 3 EP[p). (8.10)
p+q=k

Explizit lauten die Gleichungen fiir £ =0,1,2,...:

Holp") = BVp)
Holo'V) + Vi) = EVY) + V) (8.11)
Holyp®) + VIpl) = BV + BUjg0) + EXp).

Die erste Gleichung ist im Wesentlichen ein Konsistenz-Check und liefert
EY = E0) =€, [¢\7) = [4(0)) = [n), (8.12)

wobei wir zunachst einmal annehmen wollen, dass das ungestorte Spektrum nicht
entartet ist (IV, = 1 fiir alle n). Der Fall mit Entartung wird spater diskutiert.
Gleichung Gl. (8.12) liefert zugleich die Anfangsbedingung zur Bestimmung aller
hoheren Ordnungen. Multiplizieren wir die zweite Gleichung aus Gl. (8.11) mit
(n|, folgt fiir den n-ten Zustand

(n|Ho[p") +(n|V [0{) = EW(n [p\") + B (n|p") .
Ty —n) i ~
=en <”’ﬁi )
Wir erhalten also
EW = (n|V|n) = V., (8.13)
bzw.
E,(\) = €, + AV + O(N?). (8.14)

Fiir die Berechnung der Verschiebung des Energieniveaus zur 1. Ordnung in A
benotigen wir also nur das Matrixelement von V' beziiglich der ungestorten Basis



Ahnlich folgt fiir die k-te Ordnung aus GI. (8.10):
Hy| oWy 4-(n|V]plE=1) EW
U )+l VIgE) = 3 BY (nfy?)

;6 p+q=k —5q,0

und damit

EF = (n|V]y{FY). (8.15)

Kennen wir also die Anderung des Zustands bis zur k-ten Ordnung, konnen wir die
Anderung der Energie bis zur k4 1-ten Ordnung berechnen. Dieser Zusammenhang
lasst sich sogar resummieren:

Eu(N) = Ba(0) = Z)\k = (n[VA el
—ep, k=1
= <nMV|¢n( N}
= Ey(N) = e+ An|VI]e(A). (8.16)

Wir benotigen also noch ein Bestimmungsverfahren fiir |, (A)) bzw. fiir dessen
Entwicklung in [)*)). Dazu spannen wir [} beziiglich der ungestérten Basis
auf

9 = 3 (mlpm), (817

m#n

wobei der m = n Term wegen Gl. (8.8) herausfillt. Eine Gleichung fiir den En-
twicklungskoeffizienten (m|y!®)) erhalten wir aus Gl. (8.10) durch Multiplikation
mit (m| von links:

{m[Ho|{?) +(m|V [~y = >~ EW{m|y?)

+g=k
—em(m[pl) b

woraus folgt

em(m|PP) + (m| VYY) = e, (m|ypP) + -+ BE D (m|ylY) + B (mn).

(8.18)
D.h. fiir m # n fallt der letzte Term weg und wir erhalten
1
() o = (mIVIgED) = B (mll ) = - = EE D mlu))
B (8.19)

Da auf der rechten Seite nur Zustdnde bis zur Ordnung k£ — 1 auftauchen, ist
Gl. (8.19) zusammen mit Gl. (8.15) und GI. (8.17) eine rekursive Bestimmungs-
gleichung fiir den gestorten Zustand zur k-ten Ordnung ]@b?(f)>



Die niedrigsten Ordnungen wollen wir nun explizit untersuchen:

1
k=1 (mp{) = (m|V|n), m#n,
€n — Em
an
= 8.20
€n — €Em (8.20)
= ) = 3 m). 8.21)
" €n — €,
m=#n
Daraus folgt mit Gl. (8.15) die zweite Energiekorrektur
V,
g2 — (1)y (821 mn
D = (vl 2 Y vy
m#n
2
=) Vinnl” (8.22)
mn €n — Em

Speziell folgt fiir den Grundzustand n = 0 wegen €,, — ¢y > 0, dass die zweite
Energiekorrektur immer negativ ist, ESQ) < 0 (oder verschwindet wenn V,,, = 0
fir alle m # 0). Am Energienenner ¢, — €, sechen wir nochmals, dass der bisherige
Formalismus im Falle von Entartung des Spektrums modifiziert werden muss.

Ohne explizite Rechnung geben wir das Resultat fiir die Anderung der Wellen-
funktion zu zweiter Ordnungen an:

1
‘¢7(12)> = Z VinpVon|m)

— (en - em)(en - Ep)

— Z Vnmvmnym> (8.23)

€
m%n m

Gleichungen (8.15), (8.17) und (8.20) lassen sich leicht mit Hilfe von computer-
algebraischen Methoden zu sehr hoher Ordnung iterieren. Die Berechnung wird

dadurch auf die Bestimmung der Matrixelemente V,,,,, zuriickgefiihrt.

8.1.1 Beispiel: Lineare Storung des harmonischen Oszillators

Wir betrachten einen linearen Storterm
V =—Fux, (8.24)

zum harmonischen Oszillator,

Pl 5 1
H0:—+2mwa: —hw(aTa—l—é), (8.25)

2m



so dass

H(A\) = Hy+ AV = Hy— \Fu. (8.26)
Klassisch erzeugt Gl. (8.24) eine konstante Kraft F' in x-Richtung. Mit Hilfe der
Leiteroperatoren gilt:

FCEO h
V=20 (g Y 8.7
\/§ (a + a) , Xy W ( )
Benutzen wir
1 1
In) = —alln —1), und |n) = aln + 1), (8.28)

vn vn+1

finden wir die einzig nicht verschwindenden Matrixelemente

F F
Vit = —%< laln +1) = —vn + 1% = Voir (8.29)

Alle anderen V,,,, mit n # m + 1 verschwindend. Daraus folgt sofort, dass die
Korrektur erster Ordnung zur Energie verschwindet:

EW =V, =0. (8.30)

n

Die Korrekturen zweiter Ordnung lauten

E(Q) o Z ’an‘Q o ’Vn,n—llz_ ’Vn,n+1’2
e €, — €,  hw hw

m#n
2 F2z 1 2 [z 1 F*a3
— =/ 1 I
¢ﬁ22hw T T e 2w
F
= — 8.31
2mw?’ (8.31)

sind also unabhéngig von n. Eine lineare Storung verringert also die Energie eines
jeden Niveaus um den gleichen Betrag.
Tatséchlich konnen wir das Problem auch exakt 16sen. Dazu schreiben wir

21 F\* F?
H = HO—F37p——|——mw2<x——)

om 2 mw? ) 2mw?
2 2
p 1 9~9 F - F
_ 1 _ o 3.32
2m + 2mw o 2mw?’ vt mw? ( )

Da 7 die gleiche Vertauschungsrelation mit p erfiillt wie xz, [z, p] = ih, sind die
exakten Eigenwerte von H:

o) 2mw?’

D.h. die Storungsrechnung mit A = 1 ist zur zweiten Ordnung bereits exakt. Alle

1 F?
En—hw(n+—) n=0,1,2,... (8.33)

hoheren Ordnungen verschwinden somit.



8.1.2 Beispiel: Anharmonischer Oszillator

Wir betrachten einen anharmonischen Oszillator mit Storung

4
V=gr'=20 (G 4a) = ngA (8.34)

mit
A= (a"+a)" = 32N*+2N + 1) +2a(2N + 1)a
+2a"(2N + 1)a’ + a* + o™, (8.35)

wobei wir aa' = a'a +1 = N + 1 mehrfach ausgenutzt haben. Da |n) Eigenket
von NV ist, tragt der erste Term zu V,,, bei. Der zweite Term ergibt ein nicht-
verschwindendes Matrixelement V;, 19, der dritte Term ein nicht-verschwindendes
Matrixelement V,, ,_o, der vierte ein V, .4 und der fiinfte ein V;, ,,_4:

4
Vi = %3(2712 +2n+ 1),

Vinte = ng%Q\/(n + 1)(n +2)(2n + 3), (8.36)

4
Vanrs = S22/ (n+ 10 +2)(n +3)(n +4),
und ahnlich fir V,, ,—o und V;, ,_4. Mit

qul) — Vnn
Vin|?
E 2) _ ’ mn
DD
m=#n
1
- 4hw (Z‘Vn n—|—2‘2 + ’Vn n+4‘2 2’Vn,n—2’2 — ’Vn,n—4’2)

folgt fiir die Energien des anharmonischen Oszillators

13, g%
E, = 2 2 1
N hw(n+2—|—4>\hw(n+n—i—)

)\2 4\ 2
A (%) (34n® — 51n® + 59n + 21) + .. ) . (837)

Fiir A = 1 erhalten wir eine Abschitzung der Energie des anharmonischen Os-
zillators. Fiir eine rasch konvergierende Storungsentwicklung erwarten wir, dass

EY « EWV « ¢,, was fiir Gl. (8.37) gilt, Falls

4
%n <1, (8.38)



Es zeigt sich jedenfalls, dass die Energieniveaus des anharmonischen Oszillators
nicht mehr aquidistant sind.

(NB: Was die tatsédchlichen Konvergenzeigenschaften der Storungstheorie fiir den
anharmonischen Oszillator angeht, so ist dies fiir sich genommen ein spannendes
Stiick Wissenschaft, dass sich zu lernen lohnt; Stichwort: asymptotische Reihen.)

8.2 Entartete Storungstheorie

Wichtig bei der bisherigen Ableitung der Storungstheorie war die Annahme, dass
das Spektrum nicht entartet ist. Im Folgenden sei diese Annahme aufgehoben (z.B.
das Wasserstoffatom zeigt ja eine grofse Entartung).

Wir betrachten also die Storung eines festen Eigenwertes €, von Hy (der Index n
sei im Folgenden weggelassen). Sei Py der Projektor auf den entarteten Eigenraum
des Hamilton-Operators Hy zum Eigenwert E© = €,

Py= P} =P} (8.39)
Wegen Zeitunabhangigkeit des Hamilton-Operators gilt
[Py, Hy) = 0. (8.40)
Die orthonormierten Eigenfunktionen zum Eigenwert € seien
n,a) =la), a=1,2,..., N, (8.41)

wobeil N,, = N den Entartungsgrad zahlt. Der Projektor hat also die Form

Py=3"laal, (8.42)

und es gilt
(Hy —€)Py = Py(Hy —€) =0, (8.43)

da Py auf den Eigenraum mit Eigenwert e projiziert.
Wir wenden nun Fy auf die zweite Gleichung in (8.11) an und benutzen PO\¢(0)> —

o)

(1) Oy — g0 p1sOy 4+ 5O P 0
HyPy |Yv'Y) + BV [9'™Y) EY Pt + BV Ry [t)
=< =Folu) =[p®) =
=  PRVP[pY) = EW 0y, (8.44)

Wir kénnen nun Gl. (8.44) als eine Eigenwertgleichung auffassen: D.h. fiir N-fache
Entartung ist Py)V By eine N x N Matrix auf dem Unterraum FPyH. Da PV B,



selbstadjungiert ist, kann diese Matrix diagonalisiert werden. D.h. wir miissen die
Basis |a) so wihlen, dass in dieser Basis

(alV]a/) = Vadaar (8.45)
gilt. Dann reduziert sich Gl. (8.44) auf
PV Byla) = V,|a) = EVla). (8.46)

Die Eigenwerte von FPyV Fy sind also die Energickorrekturen in erster Ordnung
Storungstheorie. Im Folgenden ist der Projektor () niitzlich, der auf den zu PyH
komplementaren orthogonalen Unterraum projiziert:

QO = 1 - P07
= QoFy = RQo=0, [Qo, Ho=0. (8.47)

Anwendung von Qg auf die zweite Gleichung von Gl. (8.11) liefert (|?) = |a)):

QoHy [ + QoVa) = EW Qolv”) + B Qo)
=HyQo =0 —
= (Hy— Qo) + QoV|a) = 0. (8.48)

Im Unterraum (QoH hat also Hy nicht mehr den Eigenwert e. Daher konnen wir
Hy — € formal invertieren:

1
e — Hy

™M) ist nun damit nicht eindeutig festgelegt, da mit |™M) auch Qg™ eine
Losung ist (wegen Qf = Qo).

Wir fordern daher als zusiitzliche Bedingung, dass [1)")) senkrecht auf PyH steht,
d.h.

Qolyt") = QoVla). (8.49)

Qolvg) = [We). (8.50)
Sollte dies fiir ein |1V} nicht erfiillt sein, ersetzen wir dieses [¢)\V) immer durch
Q0|¢S)>. D.h. Gl (8.50) kann immer erfiillt werden.

1
(Dy —
= —
‘wa > QOG _ HO
wobei |a) ein Element der Basis ist, die V' im Unterraum FPyH diagonalisiert. Da

|¢é})> senkrecht auf FPyH steht, gilt die Ableitung der k-ten Energieverschiebung
fiir £ = 2 immer noch:

QoV ), (8.51)

1

E®) (825) VWY = V
(@lVIe) = (alV@i—r

«

QoVa). (8.52)



Check: Ist e nicht entartet, so muss |a) nicht adaptiert werden. )y blendet dann
einfach den einen Eigenvektor |a) — |n) aus, d.h.

— HOQ0V|n>

— (n|VQy _HOZ (f?oé\m) ><m\;/!n>

5 Wl (8.53)

€, — €
m;énn m

EY = <n|VQ0

n

was unser Resultat in Gl (8.22) reproduziert.

8.2.1 Beispiel: Stark-Effekt

Im (spinlosen) Wasserstoffproblem sind z.B. alle Eigenzustiande mit Hauptquan-
tenzahl n = 2 entartet:

{!280% 2p0), |12p-1), !2p+1>}. (8.54)

Diese Entartung kann durch ein dufseres elektrisches Feld (teilweise) aufgehoben
werden; wir wahlen als Storpotential

V = eFus, (8.55)

was einem angelegten elektrischen Feld E in x3-Richtung entspricht. Dieses V
behandeln wir als Storung des spinlosen Coulomb-Problems. Wegen [x3, L] = 0
folgt

0 = (nlm|[xs3, Ls)|n't'm") = (m" — m){(nlm|xs|n’t'm’), (8.56)
so dass Matrixelemente von V' zu verschiedenen magnetischen Quantenzahlen m

verschwinden. Des Weiteren benutzen wir die Eigenschaft der [nfm) unter Paritit
P

)

Plntm) = (—1)"|nfm), (8.57)
womit folgt, dass
(ndm|xs|nlm) = /d3az T3 |Unem(x)][* = 0. (8.58)

ungerade gerade

Also verschwinden die Diagonalelemente der Stormatrix. Die Zusténde |2p_;) und
12p1) liefern also weder endliche Diagonalelemente noch endliche Nicht-Diagonale-
lemente mit den jeweils anderen Zustdnden aus Gl. (8.54). Sie losen die Energie-
korrekturgleichung erster Ordnung (8.46) also mit Eigenwert EW =0



Es bleibt also noch der Unterraum {]23()}, ]2p0>}. In dieser Basis lautet die
Matrix des Storpotentials

Vl{j2s0).I200)) = €E ( (

Wir benotigen also

solasfom) = [ s, ()i (o
= /dr r2/dQ foo (1) for (1) Yy (£2) Y10(Q2)7 cos 6
= a/O dpp® foolp) falp )/dQI(fQ/ X;Q/ cos 0

p 1 /3
:%(1_5) 2\/5 \/E—\/Mcose

a 00 0 f 27 /1 )
= d 4 d d(cos @) cos“ 0
2v/2-6 Jo e 2> Si —1 (cos0) )

0 (250]23]2po) ) . (8.59)

2p0’$3‘280> 0

— 7
= a—— / dp p* ( )
—I'(5)— 5T Zv %5':—36
= —3a (8.60)
Wir erhalten also
V{1250, 12p00) = —3aek ((1) (1)) : (8.61)
Die Eigenwerte und -vektoren dieser Matrix lauten daher:

1 1
EW = 3qeE, fir —( )A Oy,
()=

1 /1
EWY = _3qeFE, fiir—( ) 8.62
NAS (8.62)

Diese Korrektur der Energieniveaus bezeichnet man als Stark-Effekt erster Ord-
nung. Sei B = % die Feldstarke des Kernfeldes im Abstand a (Bohr-Radius)

vom Kern, so folgt
E é? D)
EY|=3——— =3—"F, 8.63
B =5t = (8.63)
mit B ~ 5-10°V /em. D.h. die Stérungstheorie ist fiir typische Laborfeldstérken
E ~ 10°V /em sehr gut anwendbar. Fiir sehr kleine Feldstirken E < 10°V /em



ist allerdings die Feinstruktur im Wasserstoffatom grofser als die Korrektur durch
den Stark-Effekt. Wéihrend |2p;) und |2p_;) in erster Ordnung Storungstheorie
Eigenzustande im elektrischen Feld bleiben, sind die Eigenzustande im n = 2 und
m = 0 Sektor Uberlagerungen von [2sq) und |2pg). D.h. die iiberlagerten Zustinde
haben kein festes ¢ mehr, was einsichtig ist, da L® nicht mehr mit H vertauscht.
Die Aufspaltung in EY = +3eFa konnen wir interpretieren als ein elektrisches
Dipolmoment d = 3ea des Wasserstoffatoms im elektrischen Feld.

Der Grundzustand ist nicht entartet. Wegen GI. (8.58) verschwindet daher die
Korrektur erster Ordnung in einem elektrischen Feld. Die Energieverschiebung ist
also mindestens quadratisch in E. Zur Berechnung dieser Ordnung benotigen wir
noch die Zusatzinformation, dass im Falle eines Ubergangs mit Dipolstrahlung sich
¢ nur genau um 1 #ndern kann (ein solcher Ubergang sendet ein Photon aus, dass
genau den Drehimpuls =h wegtragen kann. Damit finden wir die Energiekorrektur
zweiter Ordnung:

0 2
g _ 3 epelrlaslon |
n—2 €1 — €n
9
= —Za3E2+O(E3). (8.64)

Die Rechnung im letzten Schritt ist etwas aufwéandiger, da wir die Matrixelemente

(n10|x3]100) explizit berechnen miissen, und wird hier nicht vorgefiihrt.

1
Durch Vergleich mit der allgemeinen Formel fiir Polarisationsenergien —iozPE2

folgt fiir die Polarisierbarkeit des Wasserstoffatoms im Grundzustand

9
ap = §a3. (8.65)

8.3 Hellmann-Feynman-Formel

Fiir die einparametrige Schar von Eigenwerten E(\) des Hamilton-Operators H ()
sei [1(\)) die zugehorige normierte Eigenfunktion

HA)[PA) = EAN)D(A),  @A)[p(A) = 1. (8.66)



Ableiten nach A liefert fiir E(A\) = (¢(A)|H(A)[Y(A)) (die Ableitung nach A sei im

Folgenden mit einem Punkt gekennzeichnet):

E) = (@NHNON) + @ONHN)H(A)

+<¢(Ad)!H( )W (A)) (8.67)
= B\ (v W(W (WNHN[ V),
woraus folgt:
LB = WO HO (). (8.68)
d\ d\ '

Diese Hellmann-Feynman-Formel gilt im iibrigen unabhéngig davon, ob H(\) lin-
ear in A ist oder nicht. Falls H = Hy+ AV ist, folgt unmittelbar

d

B = BV IE). (8.69)

8.4 Das Variationsprinzip nach Rayleigh-Ritz

Die zuvor entwickelte Storungstheorie ist ein systematisches und konsistentes Ver-
fahren, ist aber durch ihre Konstruktion auf die Existenz eines kleinen Parameters
angewiesen. Ein Beispiel fiir ein (in der Regel) nicht-systematisches Verfahren ist
das Variationsprinzip nach Rayleigh-Ritz. Der Vorteil dieses Verfahrens ist, dass
es nicht-storungstheoretisch ist, d.h. keine Entwicklung nach einem kleinen Pa-
rameter notwendig ist. Nachteil ist, dass es schwieriger sein kann, die Qualitit der
Néaherung zu beurteilen.
Wir betrachten im Folgenden das Energiefunktional

(WH|D).
R
d.h. E[¢] wird in seiner vollen Abhéngigkeit von der funktionalen Form der Wellen-
funktion v betrachtet. Falls |¢)) die stationdre Schrodinger-Gleichung 16st, dann

ist E[1] gleich der Energie dieses Zustands.
Habe H nun (der Einfachheit halber) ein diskretes Spektrum FE,, mit orthonor-
mierten Eigenfunktionen |n), dann lautet 1) in dieser Basis

‘¢> - ch‘n>7 Cn = <n’¢>a (871)

n

FE .  Zustandsraum — C, FE¢] = (8.70)



so dass

W H|Y) = Zw\H\n (nfy) = ZE (W|n) (n|e)
> EOZ Yln) (n|y) = Eo<ww>. (8.72)

Das Gleichheitszeichen gilt, wenn |¢)) der Grundzustand ist. Anderfalls gilt die
Ungleichheit. Daraus folgt das Variationsprinzip nach Rayleigh-Ritz:
Sei H = H' nach unten beschrankt durch den kleinsten Eigenwert Ey < Ej, Es,
... Dann gilt

Ey E[Y], |1) beliebig,
min K] = Ey. (8.73)

IA

Fiihrt also eine beliebige Testwellenfunktion [¢r) zu einem endlichen Wert FEp =
E[1r], so ist Ep automatisch eine obere Schranke fiir die Grundzustandsenergie.
Um daraus eine Abschatzung der Grundzustandsenergie zu erhalten, wahlt man
eine p-parametrige Schar von Testwellenfunktionen |[i5) mit 8 = {f1,..., 5}
Diejenigen Parameter Sy, die E[t¢g] minimieren, liefern die beste Abschatzung der
Grundzustandsenergie, die mit dieser Schar von Testwellenfunktionen zuganglich
ist,

EBuin) = mﬁin Es] > Ey. (8.74)

Da |15) nahezu beliebig gewihlt werden kann, ist dieses Verfahren in der Regel
nicht systematisch. Wesentliche Kriterien fiir die Wahl von [¢3) sind:

e Symmetrie-Kompatibilitdt: |i3) sollte keine Symmetrien des Systems verlet-
zZen.

e Berticksichtigung des Pauli-Prinzips bei Mehrteilchen-Systemen.

o Zugéngliche Berechenbarkeit von E[i)s]: Ein allgemeines multidimensionales
Minimierungsproblem ist in der Regel auch numerisch nicht einfach zu losen.

Im Ubrigen liefert 195 ) zugleich eine Abschétzung der Grundzustandswellen-
funktion )y des Systems; allerdings wird diese in der Regel durch dieses Verfahren
nicht so gut approximiert wie die Energie.

Angeregte Energien konnen dann ebenso bestimmt werden, in dem man die
Wellenfunktion auf dem Raum minimiert, der senkrecht auf |15 . ) steht.



8.4.1 Beispiel: Der anharmonische Oszillator

Wir betrachten wiederum den harmonischen Oszillator mit anharmonischer Storung

V = gzt (8.75)
Als Testwellenfunktion wahlen wir ein Gaufssches Wellenpaket mit variabler Breite
1 12
5 —55y h
= (2 = — v =4/ — 8.76
o) = o) = (F=) e T m= o 876

wobei 15(2") fiir jeden Wert von 8 bereits auf 1 normiert ist.
Das Energiefunktional ergibt fiir diese Testwellenfunktion

B5) = Blud = 2 s v o)

/ * / h2 m / / /
— /d:c wﬁ(x) (—%Qz/ + —w?2”? + gx 4) Yp(x)

2

2
= /dx’zp;(x’) - (——2:,:’> to st W a4 ga” | (@)

12
—BE 12 2
= VP /dx’e f%)h?w $_(1_52)+5+_9x/4>

h 1—5%1 29 k3
_ W( /3_+5+_9@_)

0

In der letzten Zeile haben wir die Integrale /

—0o

(0. 9]
2 2
—uc —uc 2
due —ﬁ,/ due " u” =
— 0
o0

V7 /2 und / due " ut = 3v/7/4 benutzt. Zusammenfassend folgt

1 1 grg 1
E(B) = ~hw — 4320 ) 8.77
8) = (B + 5 +350 %) (8.77)
E() wird minimal fiir
1 o1 i1 1
0=1—— —¢20 > g (8.78)

6 r2nin hw 62@11 huw r2nin ﬁmin .



Finsetzen in Gl. (8.77) ergibt

1 1
E min) — =h 3Pmin — ) 8.79
(Bui) = 51 (30— ) (879
wobei S, die kubische Gleichung (8.78) 16st,
4
3 2 9y
= —6=— = 0. 8.80
min min hw ( )
Die reellen und positiven Losungen sind mit dem Cardano-Verfahren zu finden.
Mit der Abkiirzung k = ﬁ ~ ().13 konnen die Losungen explizit angegeben
werden:
29 4 1 29
K > gzo o Buin = \/gcos (§ arccos (%)) :

1 1
29 33 ( (2975 .\ | (2979 ;
: min — 5 ho B ! 81
h< 5 5 o tv) o+ % (8.81)

2974\ >
V—\/< ;ZO) — K2,

Einsetzen von S, in Gl (8.79) ergibt die gesuchte obere Schranke an die Grundzu-
standsenergie des anharmonischen Oszillators.

'Qa. . \'\ -Q{h
Bl A \jt%
= e
Euo 1K
43 Mumalihe |3
Q}B
AL |
4.4 5”7-0‘&“23 Sl—@-nﬁumi{
: - ; e
Ao 1 Lo 23 "
biw

Quantitativ zeigt sich, dass die Variationsnaherung nach Rayleigh-Ritz erstaunlich
gute Resultate fiir Ey liefert — und das selbst bei starker Kopplung. Im Gegensatz
29

hw

dazu ist Storungstheorie jedoch nur sinnvoll fiir kleine Kopplungen



8.5 Van der Waals-Wechselwirkung

Ein besonders praxisrelevanter Effekt, die van der Waals-Wechselwirkung zwischen
neutralen Atomen, ist ebenfalls ein Paradebeispiel der Storungstheorie, das wir im
Folgenden andiskutieren. Wir betrachten zwei Wasserstoffatome, deren Protonen
um Abstand R voneinander entfernt sind. Es seien x und y jeweils die Vektoren
von Proton zum jeweiligen Elektron:

-~

Ry =«

Die Wechselwirkungsenergien sind die Summe der Coulomb-Energien (ohne Pro-
ton-Elektron-Wechselwirkung der jeweiligen Atome):
1 1 1 1
V=€2< - -~ — ). 8.82
R Riy x Ry R-x S
Sind die Atome weit voneinander entfernt (im Vergleich zu den Atomradien), R >>

a, konnen wir das Potential nach y/|R| und x/|R| entwickeln; die Terme 0. und
1. Ordnung verschwinden, und es bleibt bis zur 2. Ordnung:

o (x-y_S(X-R)(Y'R)) | (8.83)

R3 R®
Das Wechselwirkungspotential V' hat damit die Form von zweil Dipol-Wechselwir-
kungen ex und ey, die durch den Abstand R voneinander getrennt sind. Sei
R ~ e3, so folgt

e? e?
V = IiE (T1y1 + 2y — 2w3Y3) =: R3 inMiiyJ’ (8.84)
2¥)
10 0
My=[o01 0 |. (8.85)
00 —2

Fiir groke R konnen wir V' als Storung des Falles zweier nicht miteinander wech-
selwirkender Wasserstoffatome betrachten. Das freie Problem ist

Hy = Hy + Ho, (8.86)



mit H;|n;, o) = €p,|ni, a;), wobel o; = {£;, m; }, und H;, |n;, o), €,, den jeweiligen
Wasserstoff-Hamilton-Operatoren, Eigenfunktionen und Energien, entsprechen. Das
freie System ist also in einem Produkt-Eigenzustand.

n, ) = |ny, a1 ng, as) = ng,aq) @ |ng, as), (8.87)

mit den Energien
€n = €ny + Eny. (8.88)

(NB: in der Ortsdarstellung ist das Tensorprodukt zweier Zustandsvektoren gleich
dem Produkt der Wellenfunktionen, d.h. (x,y|n,a) = ¥, 0y (X)¥n,.0,(¥)-)
Fiir die Storungstheorie benotigen wir die Matrixelemente

Vna,n’o/ - <n,a\V!n/,O/>
2

= 5 D (mcufaifnd, o) My (n, aolyInb, a5y (8.89
i.J

Wir finden also die gleichen Matrixelemente wie beim Stark-Effekt. Ebenso wie
dort gelten die Auswahlregeln fiir elektrische Dipoliiberginge m = m/, Al = £1.

Sind die Atome in angeregten Zustanden, muss jeweils die Stormatrix im en-
tarteten Unterraum diagonalisiert werden und die Wechselwirkungsenergie ist ~
1/R?. Sind beide Atome im Grundzustand (oder auch nur eines), ist Vyo = 0 und
die Energiekorrekturen sind von 2. Ordnung.

Im Grundzustand gilt:

4 SN AN
9 e 1(0|x - My|n', o)
EY = — > = (8.90)
€0 €/
n!,a;n!#£0

e* (a €’ [(0]x - Myln', )|
_ e fa\e ) 8.91
a <R6) a’ Z €0 — € (8.91)

\ o .n/+£0 )

Weil €?/a die Dimension einer Energie hat, muss & dimensionslos sein, d.h. ¢ ist
eine Zahl. Auberdem haben wir ausgenutzt, dass €, > €p, so dass EéQ) < 0
negativ ist. Damit ist die van der Waals-Wechselwirkung zwischen zwei Wasser-
stoffatomen im Grundzustand immer attraktiv:

62 CL6
Ey= €10+ €0 + (—E> (ﬁ) E+..., &£>0. (892)

Fiir zwei Wasserstoffatome ergibt sich (ohne Rechnung) £ ~ 6.5.



Zwel Atome im Grundzustand, die kein permanentes Dipolmoment besitzen,
ziehen sich dennoch iiber eine Dipol-Wechselwirkung an. Die fluktuierenden La-
dungsverteilungen in den jeweiligen Atomen beeinflussen sich gegenseitig, dass
die Ladungsverteilungen nicht mehr drehinvariant sind. Die nun asymmetrischen
Ladungsverteilungen ziehen sich dann mit einer 1/ RY-Wechselwirkung an.

Unsere Naherung verliert bei sehr kleinen Abstdnden R ~ a ihre Giiltigkeit. Zum
einen konnen wir das Potential nicht mehr fiir R > a entwickeln, zum anderen
wird bei kleinen Abstdnden das Pauli-Prinzip relevant. Letzteres fiihrt zur Ab-
stolungen der Atome, wenn die Wellenfunktionen sich beginnen zu iiberlappen.
(NB: fiir sehr grofe Abstédnde hingegen werden relativistische Retardierungseffekte
wichtig, die zwar nichts am Vorzeichen der Wechselwirkung dndern, aber die 1/ RS-
Abhingigkeit in eine 1/R™-Abhingigkeit umwandeln).
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