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Vorwort

Diese Vorlesungsnotizen sollen die erste tiefergehende Begegung mit der Quan-
tenmechanik begleiten, wie sie im Bachelorstudium an vielen Universitäten im 2.
Studienjahr erlernt wird.
Dieses Skript ist eine Übertragung meiner handschriftlichen Notizen die zusät-

zlich verfügbar bleiben. Nicht alles, was sich in den handgeschriebenen Notizen
findet (Nebenrechnungen, Feinheiten, Details in Rechnungen), lässt sich gut in ein
gesetztes Skript übertragen.
Weder Skript noch Notizen ersetzen den Besuch der Vorlesung und Übungen,

noch das Selbststudium von weiterführenden und ausführlicheren Büchern zum
Thema.
Mit Ausnahme der sicherlich enthaltenen Fehler ist das wenigste an diesen Vor-

lesungsnotizen meine originäre Arbeit. Vieles findet sich an anderer Stelle, ins-
besondere in den bei den Literaturhinweisen genannten Büchern. Anderes habe
ich aus hervorragenden Vorlesungsskripten meiner akademischen Lehrerinnen und
Lehrer zusammengetragen und in die Perspektive eingebettet, aus der ich in dieses
so wichtige Kapitel eines modernen Physikstudiums einführen möchte. Insbeson-
dere danke ich Johannes Valk und Ivo Ziesche für die Erstellung der Diagramme
und Skizzen mit TikZ.
Viel Erfolg und vor allem viel Freude beim Studium!
Kommentare und Verbesserungsvorschläge zu diesen Notizen sind jederzeit will-

kommen.

Jena, April 2025 Holger Gies
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1 Fundamentale Konzepte

Anstelle einer Einführung in die Quantenmechanik entlang der historischen En-
twicklung beginnen wir mit einem Beispiel, dass die Konzepte der Quantenmechanik
besonders elementar illustriert.

1.1 Das Stern-Gerlach-Experiment

In dem von Otto Stern 1921 erdachten und von ihm und Walter Gerlach 1922 aus-
geführten Experiment werden Silberatome in einem gebündelten Strahl durch ein
inhomogenes Magnetfeld geschickt und anschließend auf einem Schirm detektiert.

Ofen

Kollimator

y

S

N

z

Detektor

Silber hat ein magnetisches Moment µ, das im Wesentlichen durch den Spin des
47. Elektrons gegeben ist. Da die Wechselwirkung des magnetischen Moments
mit einem Magnetfeld die Energie −µ ·B hat, erfährt das Atom im inhomogenen
Magnetfeld eine Kraft. Gibt es nur eine Inhomogenität z.B. in z-Richtung, so ist
die Kraft gegeben durch

Fz =
∂

∂z
(µ ·B) ' µz

∂Bz

∂z
(1.1)

und weist in z-Richtung. Die Atome werden also je nach Größe der z-Komponente
von µ abgelenkt. Der Stern-Gerlach-Apparat (SG-Apparat) misst also die z-Kom-
ponente von µ, bzw. die z-Komponente des Elektronspins. Da die Orientierung
der Atome aus dem Ofen zufallsverteilt ist, hat µ anfangs keine Vorzugsrichtung.
Entstünde das magnetische Moment rein klassisch z.B. durch Ladungsrotationen,

5



so wäre auf dem Detektor eine kontinuierliche Ortsverteilung der Auftreffpunkte
zu erwarten, die der Verteilung von µz zwischen −|µ| und |µ| entspräche.
Stattdessen zeigt das Experiment, dass der Strahl in genau zwei Komponenten

aufgespalten wird.

Atomstrahl

−|~µ|

|~µ|

Atomstrahl

−|~µ|

|~µ|

D.h. der Elektron-Spin kann nur zwei verschiedene Einstellungen seiner z-Kom-
ponente haben, die wir “spin up” und “spin down” nennen. Die Messung ergibt

Sz =
~
2

oder Sz = −~
2

für den Elektronspin, wobei die Konstante ~ gegeben ist
durch

~ = 6.5822× 10−16eV · s. (1.2)

Diese entspricht dem (reduzierten) Planckschen Wirkungsquantum, ~ =
h

2π
. Der

Spin ist also bezüglich seiner z-Komponente “quantisiert”. Selbstverständlich hat
die z-Richtung keine besondere Bedeutung gegenüber z.B. der x-Richtung. Ein

SG-Apparat in x-Richtung würde entsprechend Sx =
~
2
oder Sx = −~

2
messen.

Besonders interessant ist daher eine Sequenz von SG-Apparaten. Betrachten wir
zunächst zwei SG-Apparate in z-Richtung:

SGz

+

–

Wand

SGz
+

–
keine Atome

Sortieren wir die spin-down Atome nach dem ersten Apparat aus, ist es wenig
verwunderlich, dass aus dem zweiten Apparat auch nur spin-up Atome herauskom-
men. Der SGz-Apparat ändert also die Ausrichtung der z-ausgerichteten Atome
nicht.
Drehen wir jedoch die Inhomogenität des B-Felds in x-Richtung, so finden wir

Folgendes:
Im Detektor sind die Hälfte jeweils spin-up oder spin-down Atome bezüglich

der x-Achse. Klassisch wären wir versucht zu sagen, dass die Atome bestimmt
sind durch ihren Sz-Wert und ihren Sx-Wert. Es gäbe demnach 4 Atomsorten
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SGz

+

–

Wand

SGx

+

–

Sx = +
~
2

Sx = −~
2

(Sx = +, Sz = +), (+,−), (−,+) und (−,−). Dass diese Interpretation falsch ist,
zeigt folgender Aufbau:

SGz

+

–

Wand

S
z =

+

SGx

+

–

Wand

S
x =

+

SGz

+

–

Sz = +
~
2

50%

Sz = −
~
2

50%

Nach Passage von Sx = +
~
2

ausgerichteten Atomen durch den SGz-Apparat

im dritten Schritt finden sich wieder Sz = ±~
2

Atome im Strahl. Die genannte
klassische Deutung ist somit ausgeschlossen.

Wie kann also die Sz = −~
2

Komponente, die zunächst herausgefiltert wurde,
wieder im Strahl erscheinen?
Die SGx-Messung muss folglich die Ausrichtung der Sz = +

~
2

Atome beein-

flussen; sogar soweit, dass die Sz = +
~
2

Information völlig zerstört wird. In der
Quantenmechanik, die wir im Folgenden entwickeln wollen, lassen sich also Sz- und
Sx-Komponenten des Spins nicht zugleich bestimmen.
Wie lässt sich dieses Experiment formalisieren?
Offensichtlich ist die Information spin-up oder spin-down bezüglich (irgend-)einer

Achse die größtmögliche Menge an Information, mit der wir die Atome in diesem
Experiment beschreiben können. Die Atome liegen im SG-Experiment also in zwei
Zuständen vor, z.B.

|Sz; +〉, und |Sz;−〉. (1.3)
Hier haben wir die Ket -Notation von Paul Dirac verwendet. Da wir es mit zwei
Zuständen zu tun haben, können wir Gl. (1.3) auch als Zustandsvektoren in einem
2-dimensionalen Raum auffassen, z.B.

|Sz; +〉=̂
(

1

0

)
, und |Sz;−〉=̂

(
0

1

)
. (1.4)
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Wenn wir nun z.B. den |Sz; +〉-Zustand durch den SGx-Apparat schicken, finden
wir jeweils zur Hälfte |Sx; +〉 und |Sx;−〉 Zustände; (ähnlich würde es mit dem
|Sz;−〉-Strahl gehen). Da Gl. (1.3) die größtmögliche Menge an Information dar-
stellt, muss ein linearer Zusammenhang bestehen, z.B.:

|Sz; +〉 =
1√
2
|Sx; +〉 − 1√

2
|Sx;−〉

|Sz;−〉 =
1√
2
|Sx; +〉 +

1√
2
|Sx;−〉. (1.5)

Die Vorfaktoren sind konventionsbedingt, wie später klar wird; lediglich ihr Abso-
lutbetrag ist von physikalischer Bedeutung. Gleichung Gl. (1.5) besagt z.B., dass
|Sz; +〉 verstanden werden kann als zu gleichen Teilen bestehend aus |Sx; +〉 und
|Sx;−〉, was das SGx-Experiment beschreibt. Gleichung Gl. (1.5) lässt sich nach
|Sx; +〉 und |Sx;−〉 auflösen,

|Sx; +〉 =
1√
2
|Sz; +〉 +

1√
2
|Sz;−〉

|Sx;−〉 = − 1√
2
|Sz; +〉 +

1√
2
|Sz;−〉. (1.6)

In der Tat sehen wir nun, dass der Sx = +
~
2
Strahl nach dem SGz-Apparat jew-

eils wieder hälftig die Komponenten Sz = +
~
2

und Sz = −~
2

vorweisen wird.
Unser Formalismus beruhend auf der Annahme, dass die Unterscheidung in zwei
Zustände die maximale Information wiedergibt, beschreibt also das sequentielle
SG-Experiment!
Es gibt nun aber noch eine weitere Komplikation: für einen Atomstrahl in x-

Richtung erwarten wir für ein SG-Experiment mit y-Ausrichtung des inhomoge-
nen Magnetfelds ähnliche Eigenschaften. D.h. die dann zu messenden Zustände
|Sy; +〉 und |Sy;−〉 sollten ähnliche Relationen mit |Sz;±〉 und |Sx;±〉 erfüllen wie
Gl. (1.5) und Gl. (1.6). D.h. |Sy;±〉 sollte sich jeweils als Linearkombinationen von
|Sz;±〉 oder |Sx;±〉 aufspannbar sein mit betragsmäßig gleichen Koeffizienten. An-
dererseits aber soll z.B. |Sy; +〉 nicht kollinear mit einem der |Sz;±〉- oder |Sx;±〉-
Vektoren sein. Man kann sich direkt davon überzeugen, dass diese Forderung mit
reellen Koeffizienten nicht zu erreichen ist. Wir sind folglich gezwungen, einen
komplexen Zusammenhang zuzulassen, z.B.:

|Sy;±〉 =
1√
2
|Sz; +〉 ± i√

2
|Sz;−〉. (1.7)
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Damit ist der Zustandsraum des Spins eines Silberatoms (oder Elektrons) ein kom-
plexer Vektorraum. Ein allgemeiner Zustand ist dann eine Linearkombination aus
Basisvektoren, z.B. |Sz;±〉, mit komplexen Koeffizienten.
Während wir diese ersten Formalismen anhand des SG-Experiments motiviert

haben, gelten ähnliche Überlegungen für viele quantenmechanische Systeme, die
zwei Zustände haben können. Ein weiteres wichtiges Beispiel ist die quantisierte
Anregung von Licht, das Photon, das in zwei Polarisationszuständen vorliegen
kann. Z.B. eine horizontale und eine vertikale Polarisation entspräche dann den
beiden Zuständen |Sz;±〉 in einem SG-Experiment in z-Richtung, während eine
“schräge” um 45◦ nach rechts oder links verdrehte Polarisation dann den Vektoren
|Sx;±〉 entsprächen. Allgemein spricht man von einem Zustandspaar |±〉, dass eine
solche (vordergründig) binäre quantenmechanische Information speichern kann, als
von einem Qubit. Anders als bei einem klassischen Bit, das entweder |+〉 oder |−〉
sein kann, kann sich ein Qubit in einer Überlagerung befinden, z.B.

1√
2
|+〉+ 1√

2
|−〉.

1.2 Kets, Bras und Operatoren – Grundzüge des Formalismus der
Quantenmechanik

Im Folgenden wollen wir elementare Grundzüge des Formalismus der Quanten-
mechanik einführen. Dabei geht es um eine erste Beschreibung und weniger um
mathematische Strenge. Die Theorie linearer komplexer Vektorräume in unend-
lichen Dimensionen lässt sich rigoros mathematisch formulieren. In dieser Vor-
lesung sollen die Strukturen jedoch nur insofern eingeführt werden, wie sie für ein
physikalisches Verständnis der Quantenmechanik notwendig sind. Des Weiteren
werden wir die Dirac’sche Notation verwenden, weil sie für die Quantenmechanik
sehr zweckmäßig ist.

1.2.1 Der Raum der Ket-Vektoren

Wir betrachten einen komplexen Vektorraum, dessen Dimensionalität der Zahl
der möglichen Zustände entspricht, die ein gegebenes physikalisches System ein-
nehmen kann. Z.B. im Fall des Stern-Gerlach-Experiments können die Silber-
atome zwei Trajektorien folgen, so dass wir einen 2-dimensionalen Vektorraum
betrachten. Später werden wir Systeme betrachten, die überabzählbar unendlich
viele Zustände zulassen. Die dementsprechenden komplexen Vektorräume sind in
der Mathematik als Hilberträume bekannt. Im Folgenden genügt es jedoch, sich
endlich-dimensionale Vektorräume vorzustellen.
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Ein physikalischer Zustand in der Quantenmechanik wird durch einen komplexen
Zustandsvektor repräsentiert, der nach Dirac als Ket-Vektor bezeichnet wird: |α〉.
Es gehört zu den Postulaten der Quantenmechanik (die später nochmals zusam-
mengefasst werden), dass dieser Ket die vollständige Information über den Zustand
des Systems enthält. Der Vektorraum ist komplex und linear, d.h., ein Zustand
|γ〉 mit

|γ〉 = c1|α〉 + c2|β〉 (1.8)
ist ebenfalls ein Ket im Vektorraum, wenn |α〉 und |β〉 Ket-Zustände sind. c1 und
c2 können hierbei beliebige komplexe Zahlen sein, c1, c2 ∈ C. Kets und komplexe
Zahlen kommutieren selbstverständlich, d.h. c|α〉 = |α〉c. Wenn c = 0, dann heißt
c|α〉: Nullket.
Das genannte Postulat besagt weiter, dass |α〉 und c|α〉 mit c ∈ C den gleichen

physikalischen Zustand beschreiben, d.h., lediglich die “Richtungen” im Vektorraum
sind physikalisch bedeutsam (in der Mathematik spricht man von Strahlen im
Hilbert-Raum). Die genauen Werte der Koeffizienten in Gl. (1.5)-Gl. (1.7) waren
daher nicht bedeutsam.
Eine Observable, bzw. eine Messappatur für eine Observable, wird in der Quan-

tenmechanik repräsentiert durch einen linearen Operator im Vektorraum. Allge-
mein ist ein linearer Operator A eine lineare Abbildung des Vektorraums in sich
selbst, d.h.,

A(c1|α〉 + c2|β〉) = c1A|α〉 + c2A|β〉 (1.9)
ist wieder ein Ket im Vektorraum. Im endlich dimensionalen System kann man
A im Wesentlichen durch eine Matrix darstellen (z.B. eine komplexe 2× 2-Matrix
im SG-Experiment). Im Allgemeinen ist A|α〉 6= c|α〉. Jedoch für den Fall, dass
ein Ket durch A auf seinen eigenen Strahl abgebildet wird, spricht man von einem
Eigenket von A. Für solche Eigenkets |a′〉, |a′′〉, |a′′′〉, . . .mit

A|a′〉 = a′|a′〉, A|a′′〉 = a′′|a′′〉, A|a′′′〉 = a′′′|a′′′〉, . . . (1.10)

sind a′, a′′, a′′′, . . . die Eigenwerte von A. Wir verwenden hier die vielleicht etwas
gewöhnungsbedürftige aber sehr verbreitete Notation, dass die Eigenkets mit den
Eigenwerten, a′, a′′, · · · ∈ C oder a′, a;′′ · · · ∈ R, als durchnummerierendem Symbol
bezeichnet werden.
Entspricht ein physikalischer Zustand |α〉 einem Eigenket von A, so sprechen wir

auch von einem Eigenzustand von A. Die SG-Apparatur z.B. in z-Ausrichtung
entspricht einem Operator Sz, dessen Eigenzustände durch |Sz;±〉 gegeben sind,

Sz|Sz;±〉 = ±~
2
|Sz;±〉. (1.11)
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Bezeichnen wir |Sz; +〉 als
(

1

0

)
und |Sz;−〉 als

(
0

1

)
, so ist Sz in der Basis |Sz;±〉

durch die Matrix Sz=̂
~
2

(
1 0

0 −1

)
gegeben.

1.2.2 Der Raum der Bra-Vektoren und innere Produkte

Der Raum der Bra-Vektoren ist ein zum Ket-Vektorraum dualer Raum, der die
Ket-Vektoren linear und stetig auf komplexe Zahlen abbildet. Wir bezeichnen die
Bras mit 〈α| und schreiben die genannte lineare Abbildung als 〈α|: |β〉 〈α|−→ C,

〈α|β〉 ∈ C. (1.12)

Nach dem Satz von Riesz-Fréchet entspricht jedem Bra 〈α| ein Ket |α〉 in ein-
deutiger Weise. Wir postulieren zwei fundamentale Eigenschaften für dieses innere
Produkt zwischen Kets und Bras:

(1) 〈α|β〉 = 〈β|α〉∗

(2) 〈α|α〉 ≥ 0, (1.13)

wobei der Asterisk ∗ komplex konjugiert bedeutet. Aus (1) folgt sofort, dass 〈α|α〉
reell ist, weswegen (2) erst Sinn macht. Eigenschaft (2) ist eine Positivitätsbedin-
gung, die für alle Kets |α〉 erfüllt sein muss. Die Gleichheit in (2) soll nur für den
Nullket gelten. Im Übrigen ist (2) wesentlich für die Wahrscheinlichkeitsinterpre-
tation der Quantenmechanik. Verstehen wir das innere Produkt als Skalarprodukt,
so bedeutet (2), dass die zugehörige Metrik positiv definit ist.
Mit diesen Postulaten können wir die Norm eines Kets |α〉 definieren als

‖|α〉‖ =
√
〈α|α〉. (1.14)

Falls ‖|α〉‖ = 0, ist |α〉 der Nullket. Falls ‖|α〉‖ 6= 0, können wir einen normierten
Ket |α̃〉 definieren

|α̃〉 =
|α〉
‖|α〉‖

, (1.15)

so dass 〈α̃|α̃〉 = 1. Zwei Kets |α〉 und |β〉 sind orthogonal, falls

〈α|β〉 = 0. (1.16)

Im SG-Experiment sind |Sz; +〉 und |Sz;−〉 orthogonal,

〈Sz; +|Sz;−〉 = 0. (1.17)
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Physikalisch kommt hier zum Ausdruck, dass ein Atomstrahl mit Sz = +
~
2
-Aus-

richtung nach einer weiteren SGz-Apparatur keine Sz = −~
2
-Komponente mehr

enthält. Mit Gl. (1.6) lässt sich nachprüfen, dass |Sx; +〉 und |Sx;−〉 ebenfalls
orthogonal sind,

〈Sx; +|Sx;−〉 =

(
− 1√

2
〈Sz; +| + 1√

2
〈Sz;−|

)(
1√
2
|Sz; +〉 +

1√
2
|Sz;−〉

)
= −1

2
〈Sz; +|Sz; +〉 +

1

2
〈Sz;−|Sz;−〉

= 0, (1.18)

falls |Sz; +〉 und |Sz;−〉 gleich normiert sind. In der Regel normiert man |Sz,±〉
auf 1, 〈Sz;±|Sz;±〉 = 1. Mit der Wahl der Koeffizienten in Gl. (1.6) sind |Sx;±〉
ebenfalls normiert, wie sich unmittelbar nachprüfen lässt: 〈Sx;±|Sx;±〉 = 1. Das
gleiche lässt sich für |Sy;±〉 definiert in Gl. (1.7) verifizieren, wobei wegen Postulat
(1) in Gl. (1.13) zu beachten ist, dass z.B.

|Sy; +〉 =
1√
2
|Sz; +〉 +

i√
2
|Sz;−〉

⇒ 〈Sy; +| = 1√
2
〈Sz; +| − i√

2
〈Sz;−|. (1.19)

Man beachte hier das Minuszeichen in der zweiten Gleichung vor dem letzten Term.
Allgemeiner gilt für

|γ〉 =
∑
i

ci|αi〉 ⇒ 〈γ| =
∑
i

c∗i 〈αi|, (1.20)

1.2.3 Operatoren

Wir fahren fort mit einigen wichtigen Definitionen für Operatoren. Zwei Opera-
toren X und Y sind gleich, wenn für jeden beliebigen Zustandsket |α〉 gilt

X|α〉 = Y |α〉, |α〉 beliebig. (1.21)

Ein Operator X heißt Nulloperator, wenn er für jeden Zustandsket den Nullket
ergibt,

X|α〉 = 0, |α〉 beliebig. (1.22)
Die linearen Eigenschaften des Ket-Raums übertragen sich auf die Operatoren,

X + Y = Y + X kommutativ bezüglich der Addition,
X + (Y + Z) = (X + Y ) + Z assoziativ bezüglich der Addition. (1.23)
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Betrachten wir nun einen Operator im Ket-Raum mit

|γ〉 = X|α〉. (1.24)

Der zu |γ〉 duale Bra ist nun im Allgemeinen nicht gleich 〈α|X . Sondern wir
erhalten den zu X adjungierten Operator X†,

〈γ| = 〈α|X†. (1.25)

Wir nennen einen Operator selbstadjungiert (manchmal auch nicht ganz präzise
hermitesch1), wenn

X† = X. (1.26)

Produkte von Operatoren sind assoziativ,

(XY )Z = X(Y Z) ≡ XY Z, (1.27)

aber in der Regel nicht kommutativ,

XY
i.d.R.
6= Y X. (1.28)

wie man sich leicht am Beispiel von Matrixmultiplikationen verdeutlichen kann.
Betrachten wir

|γ〉 = X|β〉, |β〉 = Y |α〉
⇒ |γ〉 = (XY )|α〉,

so gilt für die adjungierten Relationen:

〈γ| = 〈β|X†, 〈β| = 〈α|Y †

⇒ 〈γ| = 〈α|(Y †X†).
⇒ (XY )† = Y †X†. (1.29)

Ebenso folgt aus (1) in Gl. (1.13)

falls X = c1Y + c2Y ⇒ X† = c∗1Y
† + c∗2Y

†. (1.30)

(Anti-Linearität der †-Operation).

1Eine Unterscheidung zwischen selbstadjungiert und hermitesch ist nicht notwendig, wenn X beschränkt ist, d.h. 〈α|X|α〉 ≤
const. × 〈α|α〉 für alle |α〉. Für unbeschränkte Operatoren ist in der Regel die Angabe seines Definitionsbereichs notwendig,
so dass zwischen hermitesch und selbstadjungiert unterschieden werden muss. Für die meisten Zwecke dieser Vorlesung ist die
Unterscheidung jedoch in der Regel nicht besonders bedeutsam.

13



1.2.4 Äußeres Produkt

Als äußeres Produkt aus einem Ket-Vektor |β〉 und einem Bra-Vektor 〈α| bezeich-
net man die sukzessive Anwendung der linearen Abbildung 〈α| auf einen weiteren
beliebigen Ket-Vektor |γ〉,

〈α| : |γ〉 〈α|−→ c = 〈α|γ〉 ∈ C. (1.31)

mit anschließender Multiplikation von |β〉 mit c. Wir schreiben für das äußere
Produkt

|β〉〈α|. (1.32)
Da es beliebige Kets wieder auf Kets abbildet,(

|β〉〈α|
)
|γ〉 = |β〉〈α|γ〉 = (〈α|γ〉)|β〉, (1.33)

ist das äußere Produkt ein Operator. Dieser Operator rotiert beliebige Kets in
Richtung von |β〉.
Beispiel: Der Operator

|Sz; +〉〈Sz; +| (1.34)
rotiert bzw. projeziert einen beliebigen Spinzustand in Richtung |Sz; +〉. Er

entspricht also einem SGz-Apparat, bei dem die Sz = −~
2
-Komponente ausge-

blendet wird.

|Sz; +〉〈+;Sz| ∧
= SGz

+

–

z.B.(
|Sz; +〉〈Sz; +|

)
|Sx; +〉 = |Sz; +〉

 1√
2
〈Sz; +|Sz; +〉︸ ︷︷ ︸

=1

+
1√
2
〈Sz; +|Sz;−〉︸ ︷︷ ︸

=0


=

1√
2
|Sz; +〉. (1.35)

1.3 Basis-Kets

In der Quantenmechanik sind selbstadjungierte Operatoren von besonderem Inter-
esse. Betrachten wir einen selbstadjungierten Operator A. Seien |a′〉 und |a′′〉 zwei
Eigenvektoren von A mit den Eigenwerten a′ und a′′,

A|a′〉 = a′|a′〉, A|a′′〉 = a′′|a′′〉. (1.36)
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Konjugieren wir die zweite Gleichung:

a′′∗〈a′′| = 〈a′′|A† (s.-adj.)
= 〈a′′|A (1.37)

und multiplizieren mit |a′〉 von rechts, so folgt

a′′∗〈a′′|a′〉 = 〈a′′|A|a′〉 = a′〈a′′|a′〉,

bzw.
(a′′∗ − a′)〈a′′|a′〉 = 0. (1.38)

Falls |a′〉 = |a′′〉 6= Nullket gewählt wird, folgt

a′∗ = a′, (1.39)

d.h. die Eigenwerte von selbst-adjungierten Operatoren sind reell.
Falls wir |a′〉 6= |a′′〉 mit a′ 6= a′′ wählen, folgt aus Gl. (1.38)

〈a′′|a′〉 = 0, (a′ 6= a′′). (1.40)

d.h. die Eigenvektoren selbstadjungierter Operatoren sind orthogonal.
Da das Ergebnis einer physikalischen Messung reell ist, sind selbst-adjungierte

Operatoren gute Kandidaten um physikalische Messapparaturen und Observable
zu symbolisieren.
In der Regel wählt man eine Konvention, in der die Eigenvektoren auch normiert

sind, so dass alle |a′〉 eine orthonormierte Basis bilden,

〈a′|a′′〉 = δa′a′′. (1.41)

Falls A auf den Raum aller Zustände eines Systems wirkt, ist diese Basis der
Eigenkets auch per constructionem vollständig.
Da die Eigenkets |a′〉 eine vollständige orthonormierte Basis bilden, kann ein

beliebiger Zustandsket |γ〉 in dieser Basis aufgespannt werden,

|γ〉 =
∑
a′

ca′|a′〉. (1.42)

Multiplikation mit 〈a′′| liefert

〈a′′|γ〉 =
∑
a′

ca′ 〈a′′|a′〉︸ ︷︷ ︸
=δa′′a′

= ca′′, (1.43)

womit die Koeffizienten ca′ bestimmt sind:

ca′ = 〈a′|γ〉, d.h. |γ〉 =
∑
a′

〈a′|γ〉|a′〉. (1.44)
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D.h. die Summe über alle äußeren Produkte der Eigenvektoren erfüllt:∑
a′

|a′〉〈a′| = 1, (1.45)

wobei 1 der Identitätsoperator ist, der 1|γ〉 = |γ〉 für beliebige |γ〉 erfüllt. Gle-
ichung Gl. (1.45) wird auch als Vollständigkeitsrelation bezeichnet.
Beispiel: Im SG-Experiment gibt es zwei Basiszustände, z.B. |Sz;±〉. In dem

zugehörigen 2-dimensionalen Vektorraum ist daher∑
±
|Sz;±〉〈Sz;±| = |Sz; +〉〈Sz; +| + |Sz;−〉〈Sz;−| = 1. (1.46)

In der Tat lässt sich direkt mit Gl. (1.6) nachrechnen, dass(
|Sz; +〉〈Sz; +| + |Sz;−〉〈Sz;−|

)
|Sx,±〉 = |Sx,±〉.

Für jeden einzelnen Term der Summe Gl. (1.45) gilt(
|a′〉〈a′|

)
|γ〉 = |a′〉〈a′|γ〉 = ca′|a′〉, (1.47)

d.h. |a′〉〈a′| projeziert |γ〉 auf die |a′〉-Richtung. Der Operator

Pa′ = |a′〉〈a′| (1.48)

wird daher als Projektionsoperator bezeichnet. Er erfüllt die Gleichungen

P 2
a′ = Pa′, Pa′Pa′′ = 0, für a′ 6= a′′,

∑
a′

Pa′ = 1. (1.49)

Mit Hilfe der Projektionsoperatoren folt, dass sich der zugehörige Operator A
schreiben lässt als

A = A · 1 = A
∑
a′

Pa′

=
∑
a′

A|a′〉〈a′| =
∑
a′

a′|a′〉〈a′|

=

′∑
a

a′Pa′. (1.50)

Nummerieren wir die Eigenwerte a′, a′′, a′′′, . . . als a(1), a(2), a(3) . . . , dann können
wir in Matrixdarstellung die Basiskets repräsentieren als

|a(1)〉=̂


1

0

0
...

 , |a(2)〉=̂


0

1

0
...

 , |a(3)〉=̂


0

0

1
...

 , . . . (1.51)
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Der Operator A hat dann Diagonalgestalt,

A=̂


a(1) 0 0 . . .

0 a(2) 0 . . .

0 0 a(3) . . .
... ... ... . . .

 . (1.52)

und die Projektoren lauten

Pa(1)=̂


1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
... ... ... . . .

 , Pa(2)=̂


0 0 0 . . .

0 1 0 . . .

0 0 0 . . .
... ... ... . . .

 Pa(3)=̂


0 0 0 . . .

0 0 0 . . .

0 0 1 . . .
... ... ... . . .

 , . . .

(1.53)
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2 Formalismus der Quantenmechanik

2.1 Messungen

Die Beschreibung des Messprozesses ist in der Quantenmechanik fundamental an-
ders als in der klassischen Physik. Klassisch soll ein idealer Messprozess das zu
vermessende System überhaupt nicht beeinflussen. (Z.B. soll eine Geschwindig-
keitsmessung an einem Punktteilchen dieses nicht abbremsen; eine Probeladung q,
die ein elektrisches Kraftfeld vermessen soll, wird im Limes q → 0 betrachtet, um
Einflüsse des eigenen Feldes auszuschalten.)
Anders in der Quantenmechanik: hier wird nicht nur der Einfluss der Messap-

paratur auf das zu vermessende System (quasi als notwendiges Übel) mitberück-
sichtigt. Sondern der Messprozess wird sogar definiert über den Einfluss der Mes-
sapparatur auf den Zustand eines Systems.
Sei |γ〉 der Zustand eines Systems und A ein Operator, der eine Observable bzw.

eine Messapparatur symbolisiert. Sei A = A†, so dass die Eigenkets |a′〉 von A
eine orthonormierte Basis bilden. In dieser Basis gilt:

|γ〉 =
∑
a′

ca′|a′〉 =
∑
a′

|a′〉〈a′|γ〉. (2.1)

Eine Messung bedeutet nun, bzw. definiert sich dadurch, dass die Messapparatur
direkt Einfluss auf den Zustand des Systems nimmt und |γ〉 in einen Eigenzustand
umwandelt:

|γ〉 Messung−→ |a′〉. (2.2)

Im SGz-Experiment wird ein Atom, dass sich zunächst in einem allgemeinen Zus-
tand

|γ〉 = c+|+〉 + c−|−〉, |±〉 ≡ |Sz;±〉, (2.3)

befindet, entweder nach oben oder nach unten abgelenkt, d.h. entweder |γ〉 SGz−→ |+〉
oder |γ〉 SGz−→ |−〉, wie es die Messung am Detektor nachweist.
Eine Messung ändert also den Zustand eines Systems, es sei denn, das System

ist bereits in einem Eigenzustand:

falls |γ〉 = |a′〉 ⇒ |γ〉 = |a′〉 Messung−→ |a′〉. (2.4)
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(vgl. zwei sequentielle SGz-Apparate.)
Für einen gegebenen allgemeinen Zustand |γ〉 =

∑
a′

ca′|a′〉 macht die Quanten-

mechanik a priori keine Aussage, welcher genaue Eigenzustand nach der Messung
angenommen wird. Die Quantenmechanik beruht lediglich auf dem Postulat, dass
die Wahrscheinlichkeit p(a′), den Zustand |a′〉 zu messen, gegeben ist durch

Wahrscheinlichkeit für a′ : p(a′) = |〈a′|γ〉|2 = |ca′|2, (2.5)

wobei vorausgesetzt ist, dass |γ〉 normiert ist, ‖|γ〉‖ = 1. Diese Vorschrift Gl. (2.5)
gehört zu den Postulaten der Quantenmechanik und wird auch Bornsche Regel
genannt.
Die Wahrscheinlichkeitsinterpretation der Quantenmechanik bedeutet streng ge-

nommen, dass für den tatsächlichen Ausgang einer einzelnen Messung keine echte
Vorhersage gemacht werden kann. Ob ein bestimmtes einzelnes Atom im SG-
Experiment nach oben oder unten abgelenkt wird, kann i.A. nicht vorhergesagt
werden. Die Quantenmechanik entfaltet daher ihre Vorhersagekraft erst, wenn
eine große Zahl von Messungen an einem Ensemble von identisch präparierten
Systemen (“reines Ensemble”) durchgeführt wird. Für die Wahrscheinlichkeitsin-
terpretation war das Postulat Gl. (1.13) (2), 〈γ|γ〉 ≥ 0 (mit = nur für den Nullket)
von fundamentaler Bedeutung.
Wir definieren nun den Erwartungswert eines OperatorsA bezüglich des Zustands
|γ〉:

〈A〉γ = 〈γ|A|γ〉. (2.6)

Der Erwartungswert hängt offensichtlich vom Zustand |γ〉 ab. Wenn es keine Ver-
wechslung geben kann, schreiben wir auch kurz 〈A〉 statt 〈A〉γ.
Der Erwartungswert ist der mittlere gemessene Wert, denn

〈A〉 =
∑
a′,a′′

〈γ|a′〉 〈a′|A|a′′〉︸ ︷︷ ︸
=a′′δa′a′′

〈a′′|γ〉 =
∑
a′

a′|〈a′|γ〉|2 =
∑
a′

a′ p(a′). (2.7)

Hierbei sind a′ die möglichen Messwerte und p(a′) = |〈a′|γ〉|2 die Wahrschein-
lichkeit, a′ zu messen. Es ist wichtig, die Begriffe Eigenwert, Erwartungswert und
wahrscheinlichster Wert auseinander zu halten. Als Analogon betrachte man das
Würfeln mit einem idealen Würfel: die Augenzahlen 1, 2, 3, 4, 5, 6 entsprechen den
Eigenwerten. Da jede mit der Wahrscheinlichkeit 1/6 gewürfelt werden kann, ist

der Erwartungswert =

6∑
i=1

i · 1
6

= 3.5. Man könnte jedoch schlecht behaupten, 3.5

sei der wahrscheinlichste Wert. . .
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2.2 Kompatible Observable

Zwei Observable sind miteinander kompatibel, wenn die zugehörigen Operatoren A
und B miteinander vertauschen,

[A,B] := AB −BA = 0. (2.8)

Andernfalls, wenn [A,B] 6= 0, sind sie inkompatibel.
Sind Observable kompatibel, so sind ihre Eigenkets miteinander verknüpft, wie

das folgende wichtige Theorem besagt: Seien A und B kompatible Observable, und
seien die Eigenwerte von A nicht entartet, dann sind die Matrixelemente 〈a′′|B|a′〉
alle diagonal.
Beweis (einschließlich der Klärung aller Begriffe): Es gilt

0 = 〈a′′|[A,B]|a′〉 = 〈a′′|(AB −BA)|a′〉
= (a′′ − a′)〈a′′|B|a′〉 = 0. (2.9)

“Die Eigenwerte sind nicht ertartet” bedeutet, dass keine zwei Eigenwerte gleich
sind, a′′ 6= a′. Daher folgt

〈a′′|B|a′〉 = 0 für a′′ 6= a′, d.h. 〈a′′|B|a′〉 = δa′a′′〈a′|B|a′〉. (2.10)

Bezüglich der Basis der |a′〉-Kets ist die Matrixdarstellung von B also diagonal.
Also können A und B bezüglich der gleichen Ket-Basis als diagonale Matrizen
dargestellt werden.
Es folgt

B|a′〉 =
∑
a′′′,a′′

|a′′′〉 〈a′′′|B|a′′〉︸ ︷︷ ︸
=δa′′′a′′〈a′′′|B|a′〉

〈a′′|a′〉︸ ︷︷ ︸
δa′′a′

= 〈a′|B|a′〉|a′〉, (2.11)

d.h. die Eigenwerte von B sind gegeben durch

b′ = 〈a′|B|a′〉, (2.12)

und |a′〉 ist daher simultaner Eigenkeit von A und B.
Falls im Eigenwertspektrum von A ein Eigenwert n-fach entartet ist, d.h. n

Eigenwerte gleich sind, dann gibt es n verschiedene Eigenkets mit

A|a′i〉 = a′|a′i〉, i = 1, . . . , n. (2.13)

Jede Linearkombination der |a′i〉 ist damit auch ein Eigenvektor. Wir können nun
genau die Linearkombination auswählen, die B diagonalisiert, so dass ein Satz
simultaner Eigenkets auch bei Entartung existiert.
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Diskutieren wir nun die Kompatibilität von Operatoren im Stern-Gerlach-System.
Wie in den Übungen gezeigt wird, können die Drehimpulsoperatoren bezüglich der
Sz-Basis als |±〉 ≡ |Sz;±〉 dargestellt werden. Das Ergebnis ist

Sz =
~
2

(
|+〉〈+| − |−〉〈−|

)
=̂
~
2

(
1 0

0 −1

)
Sx =

~
2

(
|+〉〈−| + |−〉〈+|

)
=̂
~
2

(
0 1

1 0

)
,

Sy =
~
2

(
− i|+〉〈−| + i|−〉〈+|

)
=̂
~
2

(
0 −i
i 0

)
. (2.14)

Wie sich direkt nachrechnen lässt, gilt:

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy, also [Si, Sj] = i~εijkSk,
(2.15)

wobei i, j, k die Werte x, y, z annehmen können. Für den Antikommutator, den
wir später benötigen werden, gilt im Übrigen:

{Si, Sj} = SiSj + SjSi =
~2

2
δij1. (2.16)

Gleichung Gl. (2.15) besagt offensichtlich, dass z.B. Sx und Sy nicht vertauschen.
In der Tat ist ein Eigenvektor von Sz, z.B. |+〉, kein Eigenvektor von Sx:

Sx|+〉 =
~
2
|−〉. (2.17)

Alle Si sind also zueinander inkompatibel. Aus Gl. (2.16) lesen wir ab, dass

{Si, Si} = 2SiSi = 2S2
i =

1

2
~21, (2.18)

(wobei wir die Notation verwenden, dass über unterstrichene Indizes nicht sum-
miert wird) also proportional zur Identität ist. Es folgt

S2 = S2
x + S2

y + S2
z =

3

4
~21. (2.19)

Daher vertauscht das Drehimpulsquadrat S2 mit jeder Komponente,

[S2, Si] = 0, i = x, y, z. (2.20)

Es lässt sich also jeweils eine simultane Ket-Basis angeben.
Wenn zwei Observable A und B kompatibel sind, hat das eine wichtige Konse-

quenz für Messungen: Angenommen, wir führen z.B. drei Messungen durch, 1) von
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A, 2) von B, und 3) wieder von A. Ein beliebiger Anfangszustand |γ〉 wird also
dadurch:

|γ〉 A−→ |a′〉 B−→ |a′〉 A−→ |a′〉. (2.21)

Der zweite Schritt gilt nur, weil |a′〉 auch simultaner Eigenket von B ist. Die 3.
Messung mit A liefert somit wieder mit Wahrscheinlichkeit 1 dass gleich Ergebnis
wie die 1. Messung mit A. Kompatible Observable können also simultan scharf
gemessen werden: jede weitere Messung von A liefert immer den Messwert a′ und
jede weitere Messung von B liefert immer den Messwert b′ = 〈a′|B|a′〉.

2.3 Inkompatible Observable

Inkompatible Observable A und B mit [A,B] 6= 0 haben keine gemeinsame voll-
ständige Basis von simultanen Eigenkets. Um dies zu zeigen nehmen wir das Gegen-
teil an: Sei [A,B] 6= 0 und es gebe eine Basis von simultanen Eigenkets |a′〉 von
A und B. Dann gilt AB|a′〉 = Ab′|a′〉 = a′b′|a′〉 und BA|a′〉 = Ba′|a′〉 = a′b′|a′〉
und damit (AB − BA)|a′〉 = 0. Was im Widerspruch zu [A,B] 6= 0 und der
Vollständigkeit der Basis |a′〉 ist. Inkompatible Observable können also, wenn
überhaupt, lediglich auf einem Unterraum eine simultane Basis haben.
Die Besonderheiten von inkompatiblen Observablen werden an folgendem Beispiel

besonders deutlich: Seien A, B und C jeweils inkompatible Observable, die an
einem Zustand Messungen durchführen (man darf, muss aber nicht, an einen Stern-
Gerlach-Apparat denken). Jede Messung projeziert den Zustand (z.B. einen Atom-
strahl) auf einen jeweiligen Eigenket:

A

|a′〉

B

|b′〉

C

|c′〉

Jeweils ein projezierter Zustand wird behalten, die übrigen möglichen Messergeb-
nisse werden aussortiert. Sei der projezierte Zustand |a′〉 nach Messung A auf 1
normiert, ‖a′‖ = 1. Dann ist die Wahrscheinlichkeit, bei B einen bestimmten
Zustand |b′〉 zu messen

Wahrscheinlichkeit b′ zu messen: = |〈b′|a′〉|2. (2.22)

Die Wahrscheinlichkeit, anschließend bei C einen bestimmten Zustand |c′〉 zu
messen, ist dann

Wahrscheinlichkeit anschl. c′ zu messen: = |〈c′|b′〉|2|〈b′|a′〉|2, (2.23)
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da Wahrscheinlichkeiten multiplikativ sind.
Nun betrachten wir die Gesamtwahrscheinlichkeit, |c′〉 zu messen, während wir

alle möglichen Wege über den Zustand |b′〉 zulassen. Dafür summieren wir über
die b′ Zwischenzustände:

B + B + B + ...

Das Ergebnis ist∑
b′

|〈c′|b′〉|2|〈b′|a′〉|2 =
∑
b′

〈c′|b′〉〈b′|a′〉〈a′|b′〉〈b′|c′〉. (2.24)

Dies Vergleichen wir mit einer Messung, bei der die B-Apparatur entfernt wird:

A

|a′〉

C

|c′〉

Figure 2.1:

Da B dennoch eine vollständige Basis vermöge seiner Eigenkets definiert, können
wir |a′〉 durch die B-Basis aufspannen:

|a′〉 =
∑
b′

|b′〉〈b′|a′〉. (2.25)

Die Wahrscheinlichkeit, bei der Messung ohne B-Apparatur |c′〉 zu beobachten, ist

|〈c′|a′〉|2 =

∣∣∣∣∣∑
b′

〈c′|b′〉〈b′|a′〉

∣∣∣∣∣
2

=
∑
b′,b′′

〈c′|b′〉〈b′|a′〉〈a′|b′′〉〈b′′|c′〉. (2.26)

Offensichtlich sind Gl. (2.24) und Gl. (2.26) nicht i.A. gleich. Die Messung von
C hängt davon ab, ob wir die B-Messung tatsächlich durchführen oder nicht.
In Gl. (2.24) prüfen wir tatsächlich nach, welchen b′-Weg das System gegangen
ist. Wir erhalten damit mehr Information über das System. Allerdings ist dieser
Informationsgewinn damit verbunden, dass diese Messung den Zustand beeinflusst.
In Abbildung 2.1 erhalten wir keine Information über den b′-Weg. Das System
kann also sowohl über b′ als auch über b′′ (als auch über beide Wege zugleich)
gegangen sein. Dieses Gedankenexperiment ist somit eine Verallgemeinerung des
Doppelspaltexperiments.
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Gleichungen Gl. (2.24) und Gl. (2.26) werden in der Tat gleich, wenn [A,B] = 0

oder [B,C] = 0 ist. Z.B. für [A,B] = 0 ist dann ein Basisvektor |b′〉 kollinear zu
|a′〉, und alle anderen |b′〉-Eigenkets orthogonal zu |a′〉. D.h. nur jeweils ein Term
aus der Summe in Gl. (2.24) bzw. der Doppelsumme in Gl. (2.26) ist nichtver-
schwindend und Gl. (2.24) und Gl. (2.26) sind gleich; das analoge Argument gilt
für [B,C] = 0.

2.4 Die allgemeine Unschärferelation

Die Inkompatibilität von Observablen hat eine direkte Konsequenz für die Menge
und Qualität von Informationen, die wir über ein System durch Messungen erhal-
ten können, z.B. unter anderem für die Genauigkeit, mit der wir die Werte von
(Kombinationen von) Observablen bestimmen können.
Betrachten wir dazu den folgenden Operator zu einer Observablen A:

∆A = A− 〈A〉, (2.27)

wobei der Erwartungswert bezüglich eines bestimmten Zustands |γ〉 genommen
wird. Die mittlere quadratische Abweichung oder Varianz von A ist gegeben durch

〈(∆A)2〉 =
〈(
A2 − 2A〈A〉 + 〈A〉2

)〉
= 〈A2〉 − 2〈A〉2 + 〈A〉2

= 〈A2〉 − 〈A〉2. (2.28)

Falls |γ〉 ein Eigenket von A ist, verschwindet die Varianz von A exakt. Die Varianz
wird oft als “Unschärfe” einer Observablen bezüglich eines Zustands bezeichnet.
Besser ist jedoch der Begriff “Unbestimmtheit”.
Sei z.B. |γ〉 = |+〉 ≡ |Sz; +〉 eines Spin-

1

2
-Systems. Dann liefert eine SGz-

Apparatur immer den Messwert +
~
2
. Die Varianz von Sz ist also

〈(∆Sz)2〉 = 〈S2
z〉 − 〈Sz〉2 = 〈+|S2

z |+〉 − 〈+|Sz|+〉2

=
~2

4
− ~2

4
= 0. (2.29)

Das Ergebnis der Messung Sz = +
~
2

ist also vollständig bestimmt (wird “scharf
gemessen”). Hingegen liefert eine Sx-Messung eines anfänglichen |+〉-Zustands jew-
eils hälftig die Messwerte Sx = ±~

2
. Mit Sx =

~
2

(
|+〉〈−|+ |−〉〈+|

)
ist die Varianz
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von Sx also

〈(∆Sx)2〉 = 〈S2
x〉 − 〈Sx〉2 = 〈+|S2

x|+〉 − 〈+|Sx|+〉2

=
~2

4

(
〈+|
(
|+〉〈−| + |−〉〈+|

)(
|+〉〈−| + |−〉〈+|

)
|+〉

−
(
〈+|
(
|+〉〈−| + |−〉〈+|

)
|+〉
)2
)

=
~2

4

(
〈+|+〉〈−|−〉〈+|+〉 − 0

)
=

~2

4
. (2.30)

Das Ergebnis einer jedem Messung der Observable Sx ist also a priori unbestimmt,

beide Werte ±~
2
sind gleich wahrscheinlich (im Mittel ergibt sich also ein “unschar-

fer” Messwert, bzw. eine große Varianz).
An dieser Stelle lässt sich bereits vermuten, dass die Unschärfe von Sx bezüglich

der SGz-Basis an der Inkompatibilität von Sx und Sz liegt. In der Tat gilt für
zwei Observable A und B bezüglich jedes beliebigen Zustands folgende allgemeine
Unschärferelation:

〈(∆A)2〉〈(∆B)2〉 ≥ 1

4
|〈[A,B]〉|2, (2.31)

für selbstadjungierte Operatoren A = A† und B = B†. Dies soll im Folgenden
bewiesen werden:
Per Postulat gilt 〈γ|γ〉 ≥ 0. Für jedes λ ∈ C gilt mit |γ〉 = |α〉 + λ|β〉 daher

0 ≤ 〈γ|γ〉 = 〈α|α〉 + λ〈α|β〉 + λ∗〈β|α〉 + |λ|2〈β|β〉. (2.32)

Wählen wir λ = −〈β|α〉
〈β|β〉

, so folgt

0 ≤ 〈α|α〉 +
|〈α|β〉|2

〈β|β〉
− 2
|〈α|β〉|2

〈β|β〉

= 〈α|α〉 − |〈α|β〉|
2

〈β|β〉
. (2.33)

Somit folgt:
〈α|α〉〈β|β〉 ≥ |〈α|β〉|2. (2.34)

Dies ist die Schwarz’sche Ungleichung (vgl. |a|2|b|2 ≥ |a · b|2). Diese verwenden
wir für die Zustände

|α〉 = ∆A| 〉, |β〉 = ∆B| 〉, (2.35)
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wobei | 〉 irgendein beliebiger Zustand sein kann. Mit

〈α|α〉 = 〈(∆A)2〉
〈β|β〉 = 〈(∆B)2〉
〈α|β〉 = 〈∆A∆B〉 (2.36)

folgt mit Hilfe von Gl. (2.34)

〈(∆A)2〉〈(∆B)2〉 ≥ |〈∆A∆B〉|2. (2.37)

Mit Hilfe von Kommutator und Antikommutator gilt

∆A∆B =
1

2
{∆A,∆B} +

1

2
[∆A,∆B], (2.38)

wobei
[∆A,∆B] = [A− 〈A〉, B − 〈B〉] = [A,B] (2.39)

ist, weil die Zahlen 〈A〉 und 〈B〉 miteinander und mit Operatoren vertauschen.
Der Kommutator ist anti-selbstadjungiert,(
[A,B]

)†
= (AB)† − (BA)† = B†A† − A†B† = BA− AB = [B,A] = −[A,B],

(2.40)
während der Antikommutator selbstadjungiert ist,(

{A,B
})†

= (AB + BA)† = B†A† + A†B† = AB + BA = {A,B}. (2.41)

Weil selbstadjungierte Operatoren reelle Eigenwerte haben, können ihre Erwar-
tungswerte auch nur reell sein. Ähnlich sind die Erwartungswerte von anti-selbst-
adjungierten Operatoren immer rein imaginär, d.h.

〈∆A∆B〉 =
1

2
〈[∆A,∆B]〉︸ ︷︷ ︸
rein imaginär

+
1

2
〈{∆A,∆B}〉︸ ︷︷ ︸

rein reell

. (2.42)

Daher gilt:

〈(∆A)2〉〈(∆B)2〉
(2.37)
≥ 1

4
|〈[A,B]〉|2 +

1

4
|〈{A,B}〉|2, (2.43)

womit die Unschärferelation Gl. (2.31) bewiesen ist, denn die Fortlassung des let-
zten Terms kann die Ungleichung nur stärker machen.
(NB:Wir werden später sehen, dass die berühmte Orts-, Impuls-Unschärferelation

ein einfacher Spezialfall von Gl. (2.43) ist. Zwischen Orts- und Impulsoperator

besteht der Zusammenhang [x, p] = i~, so dass 〈(∆x)2〉〈(∆p)2〉 ≥ 1

4
~2 folgt.)
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2.5 Basiswechsel – Unitäre Transformation

Gegeben zwei inkompatible Observable A und B, die durch selbstadjungierte Oper-
atoren symbolisiert werden, so gibt es zwei Sätze von Eigenkets {|a′〉} und {|b′〉},
welche als Basisvektoren den Zustandsraum aufspannen können. So können wir
im SG-Experiment die Zustände in der |Sz;±〉-Basis aufspannen, wir könnten al-
ternativ aber genauso die |Sx;±〉-Basis verwenden. Da beide Basen den gleichen
Zustandsraum aufspannen, muss es eine Transformation geben, die die eine Basis
in die andere überführt. Der zugehörige Transformationsoperator kann direkt aus
den beiden Basen konstruiert werden:
Gegeben zwei Sätze von Basisvektoren {|a′〉} und {|b′〉}, so existiert ein unitärer

Operator U , so dass

|b(1)〉 = U |a(1)〉, |b(2)〉 = U |a(2)〉, . . . . (2.44)

Hierbei haben wir die Eigenwerte und -vektoren geordnet und nummeriert. Der
Operator U ist unitär, weil er die Bedingungen

U †U = UU † = 1 (2.45)

erfüllt. Der Operator U kann explizit konstruiert werden:

U =
∑
k

|b(k)〉〈a(k)|, (2.46)

denn
U |a(`)〉 =

∑
k

|b(k)〉 〈a(k)|a(`)〉︸ ︷︷ ︸
δk`

= |b(`)〉, (2.47)

wegen der Orthonormalität der Basisvektoren. Ebenso lässt sich die Unitarität von
U zeigen:

U †U =
∑
k,`

|a(`)〉 〈b(`)|b(k)〉︸ ︷︷ ︸
δ`k

〈a(k)| =
∑
`

|a(`)〉〈a(`)| = 1, (2.48)

ähnlich für UU † = 1. Die Matrixdarstellung von U z.B. bezüglich der {|a′〉}-Basis
lautet

U = 〈a(k)|U |a(`)〉︸ ︷︷ ︸
=|b(`)〉

= 〈a(k)|b(`)〉, (2.49)

d.h. die Matrixelemente von U in der {|a′〉}-Basis setzen sich aus den inneren
Produkten der alten und neuen Basis-Vektoren zusammen.
Aus der Transformation der Basisvektoren folgt sofort die Transformation der

Koordinaten eines beliebigen Vektors |γ〉 bezüglich des Koordinatensystems, d.h.
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der jeweiligen Basis (der Vektor selbst ist natürlich unabhängig von der Basis):

|γ〉 =
∑
a′

|a′〉〈a′|γ〉 ≡
∑
`

|a(`)〉〈a(`)|γ〉. (2.50)

Hierbei sind 〈a(`)|γ〉 die Koordinaten bezüglich der {|a′〉}-Basis. Die Koordinaten
bezüglich der {|b′〉}-Basis sind

〈b(k)|γ〉 =
∑
`

〈b(k)|a(`)〉〈a(`)|γ〉 =
∑
`

〈a(k)|U †|a(`)〉〈a(`)|γ〉, (2.51)

oder in Matrix-/Komponentenschreibweise

γ′k = U †k`γ`, (2.52)

wobei γ′k die Koordinaten von |γ〉 in der {|b′〉}-Basis bezeichnet. Dies lässt sich
auf Transformationen der Matrixdarstellung von Operatoren ausdehnen:

X ′k` = 〈b(k)|X|b(`)〉 =
∑
m,n

〈b(k)|a(m)〉〈a(m)|X|a(n)〉〈a(n)|b(`)〉

=
∑
m,n

〈a(k)|U †|a(m)〉〈a(m)|X|a(n)〉〈a(n)|U |a(`)〉

= U †kmXmnUn`. (2.53)

Dies entspricht der bekannten Formel für Ähnlichkeitstransformationen in der
Matrix-Algebra

X ′ = U †XU, (2.54)

wobei der Strich die Koordinaten in der {|b′〉}-Basis symbolisiert.

2.6 Kontinuierliche Spektren

Bislang haben wir den ganzen Formalismus anhand des Stern-Gerlach-Experiments,
d.h. eines 2-Zustandssystems entwickelt, bei dem Operatoren, die Messapparaturen
entsprechen, 2 Eigenwerte hatten. In der Quantenmechanik wollen wir aber auch
Positionen, Impulse, etc. von Teilchen beschreiben, also Größen, die Werte aus
ganz R annehmen können. Betrachten wir z.B. ein Teilchen, das sich entlang einer
Achse x bewegen kann. Quantenmechanisch soll also jeder möglichen Position
x ein eigener Zustandsvektor entsprechen. Da die Zahl der möglichen Zustände
der Dimensionalität des Vektorraums entspricht, müssen wir nun (überabzählbar)
unendlichdimensionale Vektorräume betrachten.
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Die zugehörige Mathematik rigoros abzuhandeln geht über den Rahmen der Vor-
lesung hinaus. Für das Verständnis der physikalischen Strukturen soll es hier genü-
gen, den notwendigen Formalismus aus dem bisher eingeführten zu motivieren.
Falls diese naiven Verallgemeinerungen an ihre Grenzen stoßen, wird ein genauerer
Blick in die Mathematik folgen.
Diskretisieren wir in Gedanken also die reelle Achse in abzählbare Gitterpunkte

mit Abstand a:
x

i− 1 i i+ 1a

Wir stellen uns vor, das quantenmechanische Teilchen kann jeweils nur auf den
Gitterpunkten sitzen. Der Zustandsraum wird also aufgespannt durch die Posi-
tionsvektoren

|i〉, mit z.B. i ∈ Z. (2.55)
Eine Ortsmessung, der ein Ortsoperator x zugeordnet wird, liefert dann die mög-
lichen Koordinaten als Eigenwerte:

x|i〉 = x′i|i〉, mit x′i = a · i. (2.56)

Da x′i ∈ R ist, soll x ein selbstadjungierter Operator auf dem Zustandsraum sein.
Die Orthonormalität und Vollständigkeit der Basis wird nun ausgedrückt durch

〈i|j〉 = δij,
∑
i

|i〉〈i| = 1. (2.57)

Ein beliebiger Zustand |ψ〉 lautet in dieser Basis

|ψ〉 =
∑
i

|i〉〈i|ψ〉. (2.58)

Nun möchten wir einen Kontinuumslimes erreichen, in dem der Gitterabstand ver-
schwindet, a → 0. Die Zahl der Gitterpunkte pro physikalischer Längeneinheit L

geht dann in gleicher Weise gegen unendlich, NL ∼
L

a
→ ∞. Das gleiche gilt für

die Zahl der Zustände (pro Längeneinheit). Wichtig ist, dabei die Orthonormalität
und Vollständigkeit der Basis (2.57) beizubehalten. In diesem Kontinuumslimes
wird die Summe über die Gitterpunkte als Riemann-Summe zum Integral. Das
Integralmaß ist dabei durch den Gitterabstand vorgegeben: ∆x′ = a→ dx′:

1 =
∑
i

|i〉〈i| =
∑
i

∆x
1

a
|i〉〈i|

=:
∑
i

∆x′ |x′i〉〈x′i|, mit |x′i〉 :=
1√
a
|i〉. (2.59)
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Im Kontinuumslimes lautet die Vollständigkeit

1 =

∫
dx′|x′〉〈x′|. (2.60)

Die in Gl. (2.59) eingeführten Zustände |x′i〉 sind nun nicht mehr auf 1 normiert,
sondern erfüllen

〈x′i|x′j〉 =
1

a
δij. (2.61)

Die rechte Seite divergiert zwar im Kontinuumslimes a→ 0, die Riemann-Summe
über die rechte Seite bleibt aber endlich und ist unabhängig von a:∑

i

∆x′ 〈x′i|x′j〉 =
∑
i

∆x′
1

a
δij =

∑
i

δij = 1. (2.62)

Im Kontinuumslimes ist Gl. (2.61) also eine Darstellung der Dirac-δ-Distribution:

⇒ 〈x′|x′′〉 = δ(x′ − x′′) (Orthonormalität)

⇒
∫
dx′〈x′|x′′〉 = 1. (2.63)

Man sagt, die Ortseigenzustände |x′〉 sind δ-normiert. Sie sind per constructionem
Eigenzustände des Ortsoperators x,

x|x′〉 = x′|x′〉, x′ ∈ R, (2.64)

vgl. Gl. (2.56). Die Darstellung eines beliebigen Zustands |ψ〉 lautet in dieser
Ortsbasis:

|ψ〉 = 1|ψ〉 =

∫
dx′|x′〉〈x′|ψ〉. (2.65)

Die “Matrixdarstellung” des Ortsoperators x in der Ortsbasis wird damit

〈x′|x|x′′〉 = x′′〈x′|x′′〉 = x′′δ(x′ − x′′) = x′δ(x′ − x′′). (2.66)

Der Ortsoperator ist also “diagonal” in der Ortsbasis.
Diese Überlegungen lassen sich über ein 3-dimensionales Gitter direkt auf den

3-dimensionalen Ortsraum ausdehnen. Es ergeben sich die wichtigen Relationen:

〈x′|x′′〉 = δ(3)(x′ − x′′),

1 =

∫
d3x′|x′〉〈x′|. (2.67)

x|x′〉 = x′|x′〉.

Hierbei ist x der Ortsoperator, der sich als 3-dimensionaler Vektor aus den Ort-

soperatoren x =

x1

x2

x3

 zusammensetzt. Der Zustandsvektor |x′〉 diagonalisiert
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simultan die Operatoren x1, x2 und x3. Wir können folgern, dass letztere daher
kompatible Observable sind:

[xi, xj] = 0, i, j = 1, 2, 3. (2.68)

Die 3 Koordinaten eines Teilchens können also simultan beliebig scharf gemessen
werden. Im Übrigen dehnt sich das oben beschriebene Messkonzept der Quan-
tenmechanik auch auf Ortsmessungen aus. Auch eine Ortsmessung ist dadurch
definiert, dass sie einen beliebigen Zustand |ψ〉 auf einen Ortseigenzustand |x′〉
projeziert, bzw. die |x′〉-Komponente aus |ψ〉 herausprojeziert. Der Einfachheit
halber führen wir die folgende Diskussion wieder für eine Raumdimension durch, sie
lässt sich aber direkt auf 3 Dimensionen verallgemeinern. Idealisiert kennzeichnet
eine Ortsmessung (in einer Dimension) also

|ψ〉 =

∫ ∞
−∞

dx′|x′〉〈x′|ψ〉 (Ortsmessung)−→ ∼ |x′〉. (2.69)

Rein mathematisch idealisiert ist zwar eine beliebig scharfe Messung möglich,
physikalisch hat aber jeder Detektor eine Ausdehnung ∆ (z.B. die Körnung einer
Fotoplatte oder eines Pixeldetektors). Eine angemessenere Beschreibung der Mes-
sung ist daher:

|ψ〉 =

∫ ∞
−∞

dx′|x′〉〈x′|ψ〉 (Ortsmessung bei x′)−→
∫ x′+∆/2

x′−∆/2

dx′′|x′′〉〈x′′|ψ〉. (2.70)

Die Koordinate 〈x′′|ψ〉 bezüglich der Ortsbasis heißt auch Wellenfunktion ψ(x′′).
Unter der Annahme, dass sich die Wellenfunktion wenig über die Ausdehnung

des Detektors ändert, erhalten wir aus der Wellenfunktion als Wahrscheinlichkeits-
amplitude dieWahrscheinlichkeit für

Ortsmessung bei x′

im Interval dx′

 = |〈x′|ψ〉|2dx′ = |ψ(x′)|2dx′, (2.71)

mit dx′ = ∆. Das diese Interpretation Sinn macht, zeigt sich in der Wahrschein-
lichkeit, ein Teilchen irgendwo zwischen −∞ und ∞ zu messen:∫ ∞

−∞
dx′|ψ(x′)|2 =

∫ ∞
−∞

dx′〈ψ|x′〉〈x′|ψ〉 = 〈ψ|ψ〉 = 1, (2.72)

wobei ‖ψ‖ = 1 normiert sein soll.
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2.7 Translationen

Unser Ziel ist es, die Dynamik von quantenmechanischen Zuständen zu beschreiben.
Bevor wir jedoch wirkliche Zeitentwicklung betrachten können, müssen wir verste-
hen, wie die Verschiebung eines Zustands im Raum realisiert werden kann.
Betrachten wir z.B. einen Zustand, der um ein x′ herum lokalisiert ist. Nun

wollen wir diesen Zustand nach x′ + dx′ infinitesimal verschieben, ohne sonstige
Eigenschaften des Zustands zu ändern. Wir führen dazu einen Translationsoperator
T (dx′) ein mit der Eigenschaft

T (dx′)|x′〉 = |x′ + dx′〉. (2.73)

Eine mögliche zugelassene relative Phase wählen wir zu 1. Der Translationsopera-
tor T (dx′) führt also einen Ortseigenket wieder in einen Ortseigenket – allerdings
mit verschobenem Eigenwert x′ + dx′ – über. Offensichtlich ist |x′〉 kein Eigenket
von T .
Auf einen beliebigen Zustand |ψ〉 wirkt die Translation wie folgt:

|ψ〉 → T (dx′)|ψ〉 = T (dx′)

∫
d3x′|x′〉〈x′|ψ〉 =

∫
d3x′|x′ + dx′〉〈x′|ψ〉

=

∫
d3x′|x′〉〈x′ − dx′|ψ〉, (2.74)

wobei wir im letzten Schritt eine Variablensubstitution im Integral durchgeführt
haben. Wir erhalten also den verschobenen Zustand, indem wir die Wellenfunktion
bei x′ − dx′ auswerten:

~x′

Verschobener
Zustand

~x′ + d~x~x′

Ursprünglicher
Zustand

~x′ − d~x′

Wichtig ist festzuhalten, dass unsere Translation aktiv den physikalischen Zus-
tand verschiebt. (Alternativ wird in der Literatur auch die passive Verschiebung
verwendet, bei der der physikalische Zustand gleich bleibt, aber das Koordinaten-
system um −dx′ verschoben wird.)
Vom Translationsoperator fordern wir folgende wichtige Eigenschaften. Wegen

Wahrscheinlichkeitserhaltung muss T unitär sein. Ist z.B. |ψ〉 auf 1 normiert, soll
dies auch für den verschobenen Zustand gelten:

〈ψ|ψ〉 = 〈ψ|T †(dx′)T (dx′)|ψ〉. (2.75)
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Da |ψ〉 beliebig, folgt die Identität

T †(dx′)T (dx′) = 1. (2.76)

Wenn wir einen Zustand zweimal verschieben, z.B. um dx′ und dann um dx′′, so
soll das gesamte Resultat durch eine Verschiebung beschreibbar sein:

T (dx′′)T (dx′) = T (dx′′ + dx′). (2.77)

Eine Verschiebung um dx′ und dann um −dx′ soll die Identität sein, d.h.

T (−dx′)T (dx′) = 1, bzw. T−1(dx′) = T (−dx′). (2.78)

Und im Limes dx′ → 0 soll die Verschiebung ebenfalls die Identität sein:

lim
dx′→0

T (dx′) = 1. (2.79)

Wir wählen folgenden Ansatz für die infinitesimale Translation:

T (dx′) = 1− iK · dx′, (2.80)

mit K =

K1

K2

K3

 einem Vektor von selbstadjungierten Operatoren K†i = K. Mit

diesem Ansatz lassen sich die genannten Eigenschaften prüfen.

Gl. (2.76) : T †(dx′)T (dx′) = (1 + iK† · dx′)(1− iK · dx′)

= 1 + i

(
K† −K︸ ︷︷ ︸

=0

)
· dx′ + O(dx′2)

' 1. (2.81)

Hierbei arbeiten wir zur Ordnung dx′, da wir von der Darstellung (2.80) auch nur
erwarten, dass sie zur ersten Ordnung richtig ist.

Gl. (2.77) : T (dx′′)T (dx′) = (1− iK · dx′′)(1− iK · dx′)
= 1− iK · (dx′′ + dx′) + O(dx′2)

' T (dx′′ + dx′). (2.82)

Da T (−dx′) = T †(dx′) und T † unitär ist, folgt Gl. (2.78) automatisch ebenso wie
Gl. (2.79). Dies bestätigt den Ansatz (2.80) für den Translationsoperator. Damit
können wir eine äußerst wichtige Identität ableiten. Wir betrachten

xT (dx′)|x′〉 = x|x′ + dx′〉 = (x′ + dx′)|x′ + dx′〉 (2.83)
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und
T (dx′)x|x′〉 = x′T (dx′)|x′〉 = x′|x′ + dx′〉. (2.84)

Also folgt
[x, T (dx′)]|x′〉 = dx′|x′ + dx′〉 ' dx′|x′〉, (2.85)

wobei wir wieder höhere Ordnungen in dx′ vernachlässigt haben. Da |x′〉 beliebig
ist, gilt Gl. (2.85) auch als Operatoridentität: [x, T (dx′)] = dx′1, bzw.

dx′1 = xT (dx′)− T (dx′)x = x− iK · dx′ − x + iK · dx′

= −ixK · dx′ + iK · dx′ x. (2.86)

Wählen wir dx′ = dx′êj mit Einheitsvektor êj in j-Richtung im Raum, und mul-
tiplizieren wir mit êi von links, so folgt

êi · dx′ 1 = dx′1êi · êj = dx′1δij

= −iêi · xK · êjdx′ + iK · êjdx′êi · x
= −ixiKjdx

′ + iKjxidx
′, (2.87)

bzw.
[xi, Kj] = iδij 1, (2.88)

(oder in Kurzform: [xi, Kj] = iδij).
Die Größe K wird Erzeugende der Translationen genannt. Welche physikalische

Bedeutung können wir K zuordnen?
Das Konzept der Erzeugenden von Translationen (im Speziellen bzw. Trans-

formationen im Allgemeinen) ist bereits aus der klassischen Mechanik bekannt.
Phasenraumfunktionen können mit Hilfe von kanonischen Transformationen trans-
formiert werden. Die der Translation zugehörige Erzeugende ist der kanonische
Impuls p. Dies wird z.B. bei der Verschiebung einer Funktion f (x) deutlich:

f (x)→ f (x + dx) = f (x) + dx
df

dx
+ O(dx2)

= f (x) + {p, f (x)}dx + . . .

=
(
1 + {p, · }dx

)
f (x) . . . . (2.89)

Hierbei haben wir die Poisson-Klammer

{A,B} =
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
(2.90)

verwendet, mit deren Hilfe die Erzeugenden-Struktur der kanonischen Transfor-
mation sichtbar wird. In Analogie zur klassischen Mechanik können wir also K

mit dem Impuls p in Verbindung bringen. Aus Dimensionsgründen benötigt dieser
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Zusammenhang jedoch noch einen Faktor der Dimension 1/Wirkung. Wir wählen
daher

K =
p

~
. (2.91)

Ob dies sinnvoll ist, ist letztenendes eine experimentelle Frage. In der Tat ist
Gl. (2.91) der von De Broglie gefundenen (experimentell bestätigten) Welleneigen-
schaft von Materieteilchen (z.B. Elektronen) äquivalent, bei der die De Broglie-
Wellenlänge λ mit dem Impuls zusammenhängt:

2π

λ
=
p

~
(2.92)

Wir können also K mit dem Operator identifizieren, der der Wellenzahl k =
2π

λ
entspricht. Der Translationsoperator wird damit

T (dx′) = 1− i

~
p · dx′, (2.93)

und wir erhalten aus Gl. (2.88) die Vertauschungsrelation

[xi, pj] = i~δij. (2.94)

Ort und Impuls eines quantenmechanischen Teilchens sind damit inkompatible
Observable, können also nicht gleichzeitig scharf bestimmt werden. Ihre Varianzen
gehorchen der Heisenbergschen Unschärferelation, die wir aus Gl. (2.31) z.B. für x
und px folgern:

〈(∆x)2〉〈(∆px)2〉 ≥ ~2

4
. (2.95)

Eine weitere wichtige Vertauschungsrelation lässt sich aus den Translationen fol-
gern: betrachten wir zwei Translationen in unterschiedlichen Richtungen, z.B. in i
und j-Richtung. Die Reihenfolge der Verschiebungen spielt wegen Gl. (2.82) keine
Rolle:

d~x′ = dx′ êi

d~x′

d~x′′ = dx′′ êj d~x′′ = dx′′ êj

T (dx′′)T (dx′) = T (dx′′ + dx′) = T (dx′)T (dx′′). (2.96)
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Damit folgt:

0 = [T (dx′′), T (dx′)] =

(
− i
~

)2

[p · dx′′,p · dx′] =

(
− i
~

)2

[pj, pi]dx
′′dx′,

wobei wir dx′′ = dx′′êj und dx′ = dx′êi gewählt haben. Wegen Beliebigkeit von
dx′′ und dx′ folgt

[pj, pi] = 0. (2.97)

NB: Die oben genannten Eigenschaften der Translationen definieren eine Grup-
penstruktur: die Gruppe der Translationen. Wenn die Erzeugenden einer Gruppe
kommutieren, so wie in Gl. (2.97), so heißt die Gruppe “abelsch”.
Die Impulsoperatoren sind also jeweils kompatible Observable, d.h. es gibt eine

simultane Eigenbasis |p′〉, so dass

p|p′〉 = p′|p′〉, p′ ∈ R3. (2.98)

Diese Basis diagonalisiert den Translationsoperator:

T (dx′)|p′〉 =

(
1− i

~
p · dx′

)
|p′〉 =

(
1− i

~
p′ · dx′

)
|p′〉. (2.99)

Der Eigenwert ist komplex, was zu erwarten war, da T (dx′) nicht selbstadjungiert
sondern unitär ist.
Bislang haben wir nur infinitesimale Translationen betrachtet. Eine endliche

Transformation z.B. von x′ nach x′′ können wir aber aus infinitesimalen Transfor-
mationen zusammensetzen. Sei

x′′ − x′ = N dx′, (2.100)

im Limes dx′ → 0, N →∞, aber |x′′ − x′| =const. Dann ist

T (x′′ − x′) = lim
N→∞

n∏
i=1

T (dx′) = lim
N→∞

(
1− i

~
p · dx′

)N
= lim

N→∞

(
1− i

~N
p · (x′′ − x′)

)N
= exp

(
− i
~
p · (x′′ − x′)

)
, (2.101)

wobei wir die Limes-Darstellung der Exponentialfunktion verwendet haben.
Zusammenfassend halten wir fest, dass wir aus den Eigenschaften der Transla-

tionen folgende fundamentale Vertauschungsrelationen gefunden haben:

[xi, pj] = i~δij, [pi, pj] = 0, [xi, xj] = 0. (2.102)
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Diese Struktur ist den klassischen Poisson-Klammern sehr ähnlich. In der Tat
beobachtete P.A.M. Dirac 1925, dass viele quantenmechanische Eigenschaften eines
Systems folgen, wenn man das analoge klassische System kanonisch beschreibt und
dann die Poisson-Klammern durch Kommutatoren (und x und pKoordinaten durch
Operatoren) ersetzt:

{ , } → 1

i~
[ , ]. (2.103)

Diese Ersetzung wird oft als Quantisierung eines klassischen Systems bezeichnet. In
der Tat kann man die Quantenmechanik axiomatisch auf diesen Ersetzungsregeln
aufbauen. Es stößt allerdings auf seine Grenzen, wenn man Systeme beschreiben
will, die kein klassisches Analogon haben wie z.B. Spin-

1

2
Systeme.

2.8 Wellenfunktionen in Orts- und Impulsraum

Bezüglich einer orthonormalen Ortsraumbasis lassen sich allgemeine Zustände |ψ〉
aufspannen

|ψ〉 =

∫
dx′|x′〉〈x′|ψ〉 =

∫
dx′|x′〉ψ(x′), (2.104)

wobei wir die Wellenfunktion als

ψ(x′) = 〈x′|ψ〉 (2.105)

im (hier wieder der Einfachheit halber 1-dimensionalen) Ortsraum eingeführt haben.
In der Tat lassen sich allgemein Übergangsamplituden in Ortsraumbasis schreiben;
z.B.

〈ψ1|ψ2〉 =

∫
dx′〈ψ1|x′〉〈x′|ψ2〉 =

∫
dx′ψ∗1(x′)ψ2(x′). (2.106)

beschreibt die Übergangsamplitude zwischen zwei Zuständen |ψ1〉 und |ψ2〉 mit
Hilfe der Wellenfunktionen im Ortsraum. Speziell die Normierung eines Zustands
lautet dann

1 = 〈ψ|ψ〉 =

∫
dx′|ψ(x′)|2. (2.107)

In gleicher Weise ergibt sich z.B. für einen Operator A

〈ψ1|A|ψ2〉 =

∫
dx′
∫
dx′′ψ∗1(x′)〈x′|A|x′′〉ψ2(x′′), (2.108)

d.h. solche inneren Produkte können bei Kenntnis der Wellenfunktion und der
Matrixelemente 〈x′|A|x′′〉 im Ortsraum ausgewertet werden. Eine wichtige Ver-
einfachung ergibt sich, falls A = f (x) eine reine Funktion vom Ortsoperator x
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ist:

〈x′|f (x)|x′′〉 = f (x′)〈x′|x′′〉 = f (x′)δ(x′ − x′′).

⇒ 〈ψ1|A|ψ2〉 =

∫
dx′f (x′)ψ∗1(x′)ψ2(x′). (2.109)

Es ergibt sich ein einfaches Integral. Verallgemeinerungen auf den 3-dimensionalen
Raum sind trivial.
Nun studieren wir, wie der Impulsoperator in der Ortsraumbasis aussieht; da Ort

und Impuls inkompatible Observablen sind, kann p keine Diagonalgestalt bezüglich
der Ortsraumbasis haben. Wir betrachten erneut infinitesimale Translationen (in
einer Dimension):

T (dx′)|ψ〉 =

(
1− i

~
pdx′

)
|ψ〉 =

∫
dx′ T (dx′)|x′〉〈x′|ψ〉 =

∫
dx′|x′ + dx′〉〈x′|ψ〉

=

∫
dx′|x′〉〈x′ − dx′|ψ〉 =

∫
dx′|x′〉ψ(x′ − dx′)

'
∫
dx′|x′〉

(
ψ(x′)− dx′ ∂

∂x′
ψ(x′)

)
, (2.110)

wobei Terme der Ordnung dx′2 wieder vernachlässigt werden. Koeffizientenver-
gleich zur Ordnung dx′ liefert

p|ψ〉 =

∫
dx′|x′〉

(
−i~ ∂

∂x′
ψ(x′)

)
,

bzw.
〈x′|p|ψ〉 = −i~ ∂

∂x′
〈x′|ψ〉 ≡ −i~ ∂

∂x′
ψ(x′). (2.111)

Bezüglich der Ortsbasis kann der Impulsoperator also als ein Ableitungsoperator
dargestellt werden. Ähnlich folgt:

〈ψ1|p|ψ2〉 =

∫
dx′ψ∗1(x′)

(
−i~ ∂

∂x′

)
ψ2(x′), 〈x′|pn|ψ〉 = (−i~)n

∂n

∂x′n
ψ(x′).

(2.112)
Bislang haben wir rein in der Ortsbasis gearbeitet. Es besteht aber zwischen Orts-
und Impulsbasis eine vollständige Analogie. D.h. bezüglich der Impulsbasis {|p′〉}
mit

p|p′〉 = p′|p′〉, (2.113)

lautet die Darstellung eines Zustands

|ψ〉 =

∫
dp′|p′〉〈p′|ψ〉 ≡

∫
dp′|p′〉ψ(p′), (2.114)
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mit der Impulsraumwellenfunktion ψ(p′) = 〈p′|ψ〉. NB: Wir verzichten darauf ein
neues Symbol wie z.B. ψ̃(p′) einzuführen. Es sollte klar sein, dass ψ(x′) = 〈x′|ψ〉
und ψ(p′) = 〈p′|ψ〉 zwei völlig verschiedene Funktionen sein können.
Der Zusammenhang zwischen Orts- und Impulsbasis ist in der Übergangsam-

plitude 〈x′|p′〉 codiert. Für diese Amplitude lässt sich eine Differenzialgleichung
ableiten:

〈x′|p|p′〉 = −i~ ∂

∂x′
〈x′|p′〉

= p′〈x′|p′〉, (2.115)

d.h.
〈x′|p′〉 = N e

i
~p
′x′, (2.116)

mit einer noch zu bestimmenden Normierung N . Diese ergibt sich aus

δ(x′ − x′′) = 〈x′|x′′〉 =

∫
dp′〈x′|p′〉〈p′|x′′〉 = |N |2

∫
dp′e

i
~p
′(x′−x′′)

= |N |22π~δ(x′ − x′′), (2.117)

wobei wir die Fourierdarstellung der δ-Distribution verwendet haben,

δ(x) =

∫ ∞
−∞

dk

2π
eikx. (2.118)

Wählen wir N positiv und reell, so folgt

N =
1√
2π~

, ⇒ 〈x′|p′〉 =
1√
2π~

e
i
~p
′x′. (2.119)

Damit lässt sich der Zusammenhang zwischen Wellenfunktionen in Orts- und Im-
pulsraum formulieren:

ψ(x′) = 〈x′|ψ〉 =

∫
dp′〈x′|p′〉〈p′|ψ〉 =

1√
2π~

∫
dp′e

i
~p
′x′ψ(p′), (2.120)

und ähnlich
ψ(p′) =

1√
2π~

∫
dx′e−

i
~p
′x′ψ(x′). (2.121)

Der Basiswechsel ist also eine Fourier-Transformation. Die Verallgemeinerung auf
den 3-dimensionalen Raum ist wieder trivial. Die zugehörigen Bra- und Ketvek-
torräume faktorisieren und es folgt z.B.

〈x′|p′〉 =
1

(2π~)3/2
e
i
~p
′·x′, (2.122)

etc.
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3 Zeitentwicklung

Die Quantenmechanik ist eine nicht-relativistische Theorie, in der Zeit und Raum
unterschiedlich voneinander behandelt werden. Insbesondere bleibt Zeit ähnlich
wie in der klassischen Mechanik ein reiner Parameter. Zeit wird nicht zu einem
Operator erhoben.
Damit stößt die Quantenmechanik an ihre Grenzen, sobald Propagationen oder

Teilchentrajektorien etc. relativistisch werden. Die Vereinigung von Quanten-
mechanik und spezieller Relativitätstheorie in einer “relativistischen Quantenme-
chanik” führt in der Tat zu keiner wirklich konsistenten Theorie. Diese Vereini-
gung gelingt erst, wenn man die Freiheitsgrade eines quantenmechanischen Punkt-
teilchens aufgibt und zu Feldfreiheitsgraden übergeht. Dies führt dann zu relativis-
tischen Quantenfeldtheorien, in denen Orte wieder zu reinen Parametern werden.
Im folgenden beschränken wir uns auf die nicht-relativistische Quantenmechanik

und wollen die Zeitentwicklung von Zuständen verstehen, sind also auf der Suche
nach dem quantenmechanischen Analogon zum 2. Newtonschen Gesetz.

3.1 Zeitentwicklungsoperator

Sei ein physikalisches System zum Zeitpunkt t0 in einem Zustand |ψ〉. Im Allge-
meinen erwarten wir, dass es zu einem späteren Zeitpunkt nicht mehr im gleichen
Zustand ist, sondern in einem neuen Zustand

|ψ, t〉 mit |ψ, t = t0〉 = |ψ〉. (3.1)

Für die Zeitentwicklung von t0 nach t führen wir einen Operator U(t, t0) ein:

|ψ, t〉 = U(t, t0)|ψ, t0〉. (3.2)

Die Wahrscheinlichkeitserhaltung der Zeitentwicklung verlangt, dass ein normierter
Zustand normiert bleibt:

1 = 〈ψ, t0|ψ, t0〉 ⇒ 1 = 〈ψ, t|ψ, t〉 = 〈ψ, t0|U †(t, t0)U(t, t0)|ψ, t0〉. (3.3)

Da |ψ, t0〉 beliebig ist, folgt, dass U unitär sein muss:

U †(t, t0)U(t, t0) = 1. (3.4)
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Da eine Zeitentwicklung von t0 noch t1 und dann von t1 nach t2 einer Zeitentwick-
lung von t0 nach t2 entsprechen soll, gilt

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0). (3.5)

Betrachten wir infinitesimale Zeitentwicklungen,

|ψ, t0 + dt〉 = U(t0 + dt, t0)|ψ, t0〉, (3.6)

dann soll U nur infinitesimal von der Identität verschieden sein, und im Limes in
diese übergehen:

lim
dt→0

U(t0 + dt, t0) = 1. (3.7)

Analog zu den räumlichen Translationen erfüllt folgende Parametrisierung diese
Eigenschaften:

U(t0 + dt, t0) = 1− iΩdt (3.8)

mit Ω = Ω† selbstadjungiert (wegen Unitarität von U).
Die physikalische Bedeutung von Ω entnehmen wir wieder aus der Analogie zur

klassischen Mechanik: Hier ist die Hamilton-Funktion die Erzeugende der Zeit-
entwicklung, wie man im Vergleich mit den kanonischen Bewegungsgleichungen
sieht:

ẋ =
∂H

∂p
= {x,H} (klassisch),

ṗ = −∂H
∂x

= {p,H} (klassisch). (3.9)

Da der Operator Ω in Gl. (3.8) aber die Dimension einer Frequenz trägt, benötigen
wir einen Vorfaktor der Dimension “Wirkung”. Wir wählen

Ω =
H

~
, (3.10)

was sich nur experimentell verifizieren lässt. In der Tat ist dieser Zusammen-
hang vertraut vom Fotoeffekt, bei der die Energie-Frequenz-Relation E = ~ω
nachgewiesen wird. Damit wird der infinitesimale Zeitentwicklungsoperator zu

U(t0 + dt, t0) = 1− i

~
Hdt. (3.11)

Die klasssiche Hamilton-Funktion ist somit zum selbstadjungierten Operator er-
hoben worden, H = H†, welcher die Zeitentwicklung eines Systems erzeugt. Damit
lässt sich die wichtige Gleichung der Quantenmechanik ableiten, welche die Zeit-
evolution von Zuständen beschreibt.
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3.2 Die Schrödinger-Gleichung

Wir betrachten die Zeitentwicklung eines Systems von t0 nach t und dann nach
t + dt. Aus Gl. (3.5) folgt infinitesimal

U(t + dt, t0) = U(t + dt, t)U(t, t0) =

(
1− i

~
Hdt

)
U(t, t0).

⇒ U(t + dt, t0)− U(t, t0) = − i
~
HdtU(t, t0). (3.12)

Im Limes dt→ 0 geht die linke Seite (geteilt durch dt) in eine Ableitung über:

i~
∂

∂t
U(t, t0) = HU(t, t0). (3.13)

Dies ist die Schrödinger-Gleichung für den Zeitentwicklungsoperator. Sie liegt aller
Zeitentwicklung in der Quantenmechanik zugrunde. Wenden wir Gl. (3.13) auf
einen Zustand zum Zeitpunkt t0 an, so folgt:

i~
∂

∂t
U(t, t0)|ψ, t0〉 = HU(t, t0)|ψ, t0〉

⇒ i~
∂

∂t
|ψ, t〉 = H|ψ, t〉, (3.14)

die Schrödinger-Gleichung für Zustände. Allerdings genügt die Kenntnis der Zeit-
entwicklung für den Zeitentwicklungsoperator, d.h. die Lösung von Gl. (3.13), um
die gesamte Zeitentwicklung eines Systems abzuleiten. Wir benötigen daher for-
male Lösungen des Schrödinger-Gleichung Gl. (3.13). Hierzu betrachten wir drei
Fälle:
Fall 1: Der Hamilton-Operator ist zeitnunanbhängig, H =const. In diesem Fall

können wir U(t, t0) analog zu den endlichen Translationen in Gl. (2.101) konstru-
ieren: sei t− t0 = Ndt im Limes N →∞, dt→ 0, mit t− t0 =const., so folgt:

U(t, t0) = lim
N→∞

N∏
i=1

U(ti + dt, ti),= lim
N→∞

(
1− i

~
Hdt

)N
= e−

i
~H(t−t0). (3.15)

Dies lässt sich auch direkt anhand der Taylor-Entwicklung der e-Funktion veri-
fizieren.

Fall 2: Der Hamilton-Operator ist zeitabhängig, aber H’s zu verschiedenen
Zeiten sind kompatibel,

[H(t), H(t′)] = 0 für alle t, t′. (3.16)
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Die formale Lösung ist dann

U(t, t0) = exp

(
− i
~

∫ t

t0

H(t′)dt′
)
, (3.17)

was sich wieder durch Anwendung der Ableitung auf die Taylor-Entwicklung Ord-
nung für Ordnung zeigen lässt.

Fall 3: Der Hamilton-Operator zu verschiedenen Zeiten kommutiert nicht,
[H(t), H(t′)] 6= 0 i.A. für t 6= t′. (Z.B. der Hamilton-Operator eines Spin-

1

2
-

Teilchens im Magnetfeld hat einen Anteil H = −µ · B = − e

mc
S · B mit S =

~
2
σ. Falls B = B(t) zeitabhängig die Richtung ändert, z.B. B(t0) = Bêx und

B(t′) = Bêy, dann kommutieren die jeweiligen Hamilton-Operatoren nicht, weil
[Sx, Sy] 6= 0.)
Eine formale Integration von Gl. (3.13) liefert

U(t, t0)− U(t0, t0)︸ ︷︷ ︸
=1

= − i
~

∫ t

t0

dt′H(t′)U(t′, t0). (3.18)

Es folgt

U(t, t0) = 1− i

~

∫ t

t0

dt′H(t′)U(t′, t0). (3.19)

Diese Gleichung lässt sich iterieren:

U(t, t0) = 1− i

~

∫ t

t0

dt′H(t′)

(
1− i

~

∫ t′

t0

dt′′H(t′′)U(t′′, t0)

)

= 1 +

∞∑
n=1

(
− i
~

)n ∫ t

t0

dt′
∫ t′

t0

dt′′· · ·
∫ t(n−1)

t0

dt(n)H(t′)H(t′′) . . . H(t(n)).

(3.20)

Diese Darstellung wird auch Dyson-Reihe genannt. Sie bildet die Grundlage für
zeitabhängige Störungstheorie und Streutheorie. In den elementaren Beispielen
dieser Vorlesung beschäftigen wir uns weitestgehend mit Fall 1: zeitunabhängigen
Hamilton-Operatoren.

3.3 Energieeigenzustände

Zum Studium der Zeitabhängigkeit und Zeitentwicklung eines Zustands |ψ, t〉 be-
trachten wir eine Basis {|a′〉} von Eigenkets eines Operators A, der mit dem
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Hamilton-Operator H kompatibel sein soll:

[H,A] = 0. (3.21)

Dann sind die Eigenkets |a′〉 mit

A|a′〉 = a′|a′〉 (3.22)

simultane Eigenkets von H, also Energieeigenzustände,

H|a′〉 = Ea′|a′〉, (3.23)

mit Energieeigenwert Ea′. Hier und im Folgenden seien stets zeitunabhängige
Hamilton-Operatoren betrachtet. In der Basis {|a′〉} lässt sich der Zeitentwick-
lungsoperator dann wie folgt darstellen:

U(t, t0) = e−
i
~H(t−t0) =

∑
a′,a′′

|a′′〉〈a′′|e−
i
~H(t−t0)|a′〉〈a′| =

∑
a′

|a′〉e−
i
~Ea′(t−t0)〈a′|.

(3.24)
Sei |ψ, t0〉 ein Zustand zum Zeitpunkt t0 mit

|ψ, t0〉 =
∑
a′

|a′〉 〈a′|ψ, t0〉︸ ︷︷ ︸
ca′(t0)

=
∑
a′

ca′(t0)|a′〉 (3.25)

mit Entwicklungskoeffizienten ca′. Die Zeitentwicklung liefert zum Zeitpunkt t den
Zustand

|ψ, t〉 = U(t, t0)|ψ, t0〉 =
∑
a′

ca′(t0)e−
i
~Ea′(t−t0)|a′〉 ≡

∑
a′

ca′(t)|a′〉. (3.26)

D.h. die Entwicklungskoeffizienten evolvieren in der Zeit gemäß

ca′(t) = ca′(t0)e−
i
~Ea′(t−t0). (3.27)

Das heißt, die Zeitevolution der Koeffizienten besteht nur aus einer Phasenän-
derung, während die Beträge gleich bleiben. Ein spezieller Fall ergibt sich, wenn
der Anfangszustand ein Energieeigenzustand ist, z.B.

|ψ, t0〉 = |a′〉 ⇒ |ψ, t〉 = e−
i
~Ea′(t−t0)|a′〉. (3.28)

Falls also das System in einem Energieeigenzustand zum Zeitpunkt t0 ist, bleibt
es für alle Zeiten in diesem Zustand. Man spricht daher auch von stationären
Zuständen.
Die zugehörige kompatible Observable A liefert bei Messung zu allen Zeitpunkten

den Messwert a′. Eine mit H kompatible Observable kann daher als “Konstante
der Bewegung” betrachtet werden, bzw. als Erhaltungsgröße.

44



Daraus ergibt sich folgendes Rezept zur Lösung von Zeitentwicklungsproble-
men: finde alle, d.h. einen vollständigen Satz, von zueinander kompatiblen Ob-
servablen A,B,C, . . . mit [A,B] = [B,C] = [A,C] = · · · = 0 und [H,A] =

[H,B] = [H,C] = · · · = 0. In der zugehörigen simultanen Eigenketbasis {|K ′〉} =

{|a′, b′, c′, . . .〉} lautet dann die Zeitentwicklung

e−
i
~H(t−t0) =

∑
K ′

|K ′〉e−
i
~EK′(t−t0)〈K ′|. (3.29)

Damit lassen sich alle Zustände zu allen Zeiten bestimmen.

3.4 Beispiel: Spin-Präzession

Als einfaches Beispiel diskutieren wir die Präzession eines Spin-
1

2
-Teilchens in einem

konstanten Magnetfeld. Das Teilchen habe ein magnetisches Moment der Form

µ =
e

mc

~
2
σ =

e

mc
S. (3.30)

Der Hamilton-Operator lautet

H = −µ ·B = − e

mc

~
2
σ ·B. (3.31)

Sei B = Bêz konstant und homogen:

H = − e

mc

~
2
σ3B = −eB

mc
Sz, (3.32)

d.h. H und Sz sind bis auf einen konstanten Faktor identisch

⇒ [H,Sz] = 0. (3.33)

Es gibt eine simultane Eigenbasis, nämlich die |±〉 ≡ |Sz = ±〉 Basis. Die
entsprechenden Energieeigenwerte lauten dann

E± = ∓e~B
2mc

für |±〉. (3.34)

Wir definieren die Frequenz

ω =
|e|B
mc

, mit e < 0 für ein Elektron, (3.35)

so dass
H = ωSz. (3.36)
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Der Zeitentwicklungsoperator lautet entsprechend

U(t, t0) = e−
i
~Szω(t−t0). (3.37)

Ein beliebiger Zustand |γ〉 lautet in der Sz-Basis

|γ〉 = c+|+〉 + c−|−〉. (3.38)

Sei |γ, t0 = 0〉 ≡ |γ〉. So ist das System zum Zeitpunkt t im Zustand

|γ, t〉 = U(t, 0)|γ〉 = c+e
− i

2ωt︸ ︷︷ ︸
c+(t)

|+〉 + c−e
i
2ωt︸ ︷︷ ︸

c−(t)

|−〉, (3.39)

weil
H|±〉 = ±~ω

2
|±〉. (3.40)

Sei z.B. |γ〉 = |+〉, d.h. c+ = 1, c− = 0 in einem spin-up Zustand. Dann bleibt das
System zu allen Zeiten in einem spin-up Zustand, da c+(t) = e−

i
2ωt ⇒ |c+(t)|2 = 1

und c−(t) = 0.
Falls aber z.B.

|γ〉 = |Sx; +〉 =
1√
2
|+〉 +

1√
2
|−〉, (3.41)

verharrt der Zustand nicht stationär im |Sx; +〉 Zustand. Dies lässt sich ablesen
an der Wahrscheinlichkeit, zum Zeitpunkt t mit einem SGx-Apparat den Zustand
|Sx;±〉 zu messen:

|〈Sx;±|γ, t〉|2 =

∣∣∣∣[ 1√
2
〈+| ± 1√

2
〈−|
] [

1√
2
e−

i
2ωt|+〉 +

1√
2
e+ i

2ωt|−〉
]∣∣∣∣2

=

∣∣∣∣12 (e− i
2ωt ± e+ i

2ωt
)∣∣∣∣2

=


cos2 ωt

2
für S ′x = +

~
2

sin2 ωt

2
für S ′x = −~

2

(3.42)

Wie erwartet ist die Wahrscheinlichkeit S ′x = +
~
2
zu messen = 1 zum Zeitpunkt

t = 0. Hingegen bei ωt = π ist die Wahrscheinlichkeit S ′x = −~
2
zu messen = 1.

Die Wahrscheinlichkeiten oszillieren mit der Frequenz
ω

2
. Ihre Summe ist = 1 wie

es sein soll.
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Der Erwartungswert einer Sx-Messung ergibt bezüglich des Zustands |γ, t〉:

〈Sx〉 = 〈γ, t|Sx|γ, t〉

=
1

2

(
e
i
2ωt〈+| + e−

i
2ωt〈−|

) ~
2

(
|+〉〈−| + |−〉〈+|

)(
e−

i
2ωt|+〉 + e

i
2ωt|−〉

)
=

~
2

1

2

(
eiωt + e−iωt

)
=

~
2

cosωt. (3.43)

Der Erwartungswert 〈Sx〉 oszilliert also mit Frequenz ω zwischen den beiden Eigen-

werten ±~
2
hin und her. Die Frequenz der Oszillation ist durch die Differenz der

beiden Energieniveaus gegeben:

ω =
E+ − E−

~
, (3.44)

vgl. Gl. (3.40). Dies ist ein Beispiel für Rabi-Oszillationen, die zwischen zwei
Niveaus unterschiedlicher Energie-Niveaus bei einem geeigneten Zeitentwicklung-
soperator auftreten können.

Im vorliegenden Fall der Spin-Dynamik folgt ähnlich 〈Sy〉 =
~
2

sinωt und 〈Sz〉 =

0. Der Erwartungswert des Spins präzediert also in der (x, y)-Ebene analog zur
Präzession eines klassischen magnetischen Moments.

3.5 Zeitentwicklungsbilder

Wir haben räumliche Translationen und Zeitentwicklung als Operatoren eingeführt,
die Zustandsvektoren in räumlich oder zeitlich verschobene Zustandsvektoren über-
führen:

|ψ〉 → U|ψ〉 (3.45)

mit U = T (dx) oder U = U(t, t0). Da der Zustandsvektor ein System beschreibt,
bedeuten diese Verschiebungen eine tatsächliche (“aktive”) Änderung des Systems.
Wenn wir allerdings Übergangsamplituden betrachten, fällt die Verschiebung wie-
der heraus, wenn der zugehörige Operator unitär ist:

〈ψ1|ψ2〉 → 〈ψ1| U †U︸︷︷︸
=1

|ψ2〉 = 〈ψ1|ψ2〉. (3.46)

Betrachten wir allerdings ein Produkt der Form

〈ψ1|X|ψ2〉 −→ 〈ψ1|U †XU|ψ2〉 (3.47)

mit beliebigem Operator X , dann lässt sich dies in zwei verschiedenen Weisen
lesen:
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Zugang 1 “aktiv”:

Zustände werden verschoben, Operatoren bleiben fest, (3.48)
|ψ〉 −→ U|ψ〉, X −→ X. (3.49)

Zugang 2 “passiv”:

Zustände bleiben fest, Operatoren werden verschoben, (3.50)
|ψ〉 −→ |ψ〉, X −→ U †XU . (3.51)

Zugang 2 mag zunächst künstlich erscheinen; denn z.B. bei einer Translation ver-
schiebt sich nicht der Zustand, sondern es verschiebt sich z.B. der Ortsoperator
(und die zugehörige Basis der Eigenvektoren), der eine Messapparatur symbol-
isiert:
Beispiel: Infinitesimale Translation

Zugang 1: |ψ〉 →
(

1− i

~
p · dx′

)
|ψ〉, x→ x,

Zugang 2: |ψ〉 → |ψ〉,

x → T †(dx′)xT (dx′) =

(
1 +

i

~
p · dx′

)
x

(
1− i

~
p · dx′

)
= x +

i

~
[p · dx′,x] + O(dx′2)

= x + dx′1. (3.52)

Per constructionem ist klar, dass die Werte von Wahrscheinlichkeitsamplituden etc.
nicht von der Lesart 1 oder 2 abhängen. Die Transformationen als aktiv oder passiv
aufzufassen ist also ohne physikalische Bedeutung. Wir sprechen also lediglich von
unterschiedlichen Bildern der Zeitentwicklung.
Zugang 2 ist deswegen interessant, weil er eine direktere Annäherung an den

klassischen Grenzfall erlaubt. In der klassischen Physik sprechen wir nicht von
Zuständen. Translationen in der klassischen Physik ändern z.B. die Ortskoordinate
x eines Systems, verschieben also diese Größen, die in der Quantenmechanik durch
Operatoren repräsentiert werden.
Für den Fall von Zeitentwicklung U = U(t, t0) sprechen wir von Zugang 1 als

Schrödinger-Bild und von Zugang 2 als Heisenberg-Bild.
Sei ohne Beschränkung der Allgemeinheit (oBdA) t0 = 0. Beschränken wir uns

auf zeitabhängige Hamilton-Operatoren, so lautet der Zeitentwicklungsoperator:

U(t) ≡ U(t, t0 = 0) = e−
i
~Ht. (3.53)
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Zu einer gegebenen Observable A(S) ≡ A im Schrödinger-Bild definieren wir die
Observable im Heisenberg-Bild gemäß Zugang 2:

A(H)(t) = U †(t)A(S)U(t). (3.54)

Zum Zeitpunkt t0 = 0 stimmen beide Bilder überein, d.h. A(H)(0) = A(S). Zu
einem späteren Zeitpunkt hat sich im Schrödinger-Bild der Zustand aus dem An-
fangszustand heraus entwickelt,

|ψ, t〉(S) = U(t)|ψ, t0 = 0〉, (3.55)

während der Heisenberg-Zustand gleich bleibt,

|ψ, t〉(H) = |ψ, t0 = 0〉 ≡ |ψ〉. (3.56)

Per constructionem sind allerdings Erwartungswerte bildunabhängig:
(S)〈ψ, t|A(S)|ψ, t〉(S) = 〈ψ, t0 = 0|U †(t)A(S)U(t)|ψ〉 = 〈ψ, t|(H)A(H)|ψ, t〉(H). (3.57)

Im Heisenberg-Bild muss nun die Zeitentwicklung anhand der Operatoren studiert
werden; sei A = A(S) explizit zeitunabhängig:

d

dt
A(H)(t) =

∂

∂t

(
U †(t)AU(t)

)
=
∂

∂t
U †(t)AU(t) + U †(t)A

∂

∂t
U(t)

= − 1

i~
U †HA(S)U +

1

i~
U †A(S)HU

= − 1

i~
U †HU U †A(S)U︸ ︷︷ ︸

=A(H)(t)

+
1

i~
U †A(S)U︸ ︷︷ ︸

=A(H)(t)

U †HU

= − i
~

[A(H)(t), U †HU ], (3.58)

wobei wir die Schrödinger-Gleichung und ihr komplex Konjugiertes verwendet
haben:

i~
∂

∂t
U(t) = HU(t), −i~ ∂

∂t
U †(t) = U †(t)H, H = H†. (3.59)

Da wir den Hamilton-Operator als zeitnunanbhängig annehmen, gilt

U †HU = U †UH = H, (3.60)

dass heißt, der Hamilton-Operator im Heisenberg-Bild in Gl. (3.58) ist gleich dem
entsprechenden Operator im Schrödinger-Bild.

U †HU = H(H) = H. (3.61)

Damit erhalten wir die Bewegungsgleichungen für Heisenberg-Operatoren:
d

dt
A(H)(t) = − i

~
[A(H)(t), H ], Heisenberg-Bewegungsgleichungen. (3.62)
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Diese Gleichung ist vollständig analog zur Bewegungsgleichung im Hamilton-Forma-
lismus der klassischen Mechanik. Wählen wir z.B. A(H) = x(H)(t), so erhalten wir

d

dt
x(H)(t) = − i

~
[x(H)(t), H ],

d

dt
p(H)(t) = − i

~
[p(H)(t), H ], (3.63)

für paarweise jede Ortsraum-/Impulsraumkomponente. Ersetzen wir die Kommu-
tatoren durch Poisson-Klammern,

− i

~
[ , ]→ { , }Poisson, (3.64)

so erhalten wir die klassischen kanonischen Bewegungsgleichungen. Die Ersetzung
Gl. (3.64) kann man als klassischen Limes der Quantenmechanik betrachten.
Während der klassische Limes allerdings nur Sinn macht für Phasenraumobserv-

able, A(H) = A(H)(x, p), gilt die Heisenberg-Bewegungsgleichung Gl. (3.62) auch
für Observable ohne klassisches Pendant, z.B. für die Zeitentwicklung des Spins.

3.6 Freies Teilchen und Ehrenfest-Theorem

Da die Quantenmechanik grundlegender ist als die klassische Mechanik, können
wir letztere aus ersterer folgern – nicht ungekehrt; somit beschreibt Gl. (3.17) die
richtige Richtung und nicht Gl. (2.103). Um ein quantenmechanisches System
zu definieren, können wir uns aber von der Analogie zur klassischen Mechanik
leiten lassen. Eine klassische Hamilton-Funktion können wir z.B. zum Hamilton-
Operator erheben, indem wir die Phasenraumvariable x und p durch Operatoren
ersetzen, die den fundamentalen Kommutatoren Gl. (2.102) gehorchen. (Dies muss
allerdings nicht immer eindeutig sein; verschiedene Umordnungen von Operatoren
können zu verschiedenen physikalischen Systemen führen.)
In Analogie zur klassischen Mechanik definieren wir also den Hamilton-Operator

eines freien Teilchens:
H =

p2

2m
, (3.65)

wobei m die Masse des Teilchens bezeichnet. Für die folgenden Rechnungen be-
nutzen wir die in den Übungen gezeigten Regeln:

[xi, F (p)] = i~
∂F (p)

∂pi
, [pi, G(x)] = −i~∂G(x)

∂xi
. (3.66)

Wir arbeiten nun im Heisenberg-Bild, lassen aber das Superskript (H) weg, und
studieren die Zeitentwicklung von x und p:

d

dt
pi(t) = − i

~
[pi, H ] = 0, (3.67)
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d.h. p ist eine Bewegungskonstante

pi(t) = pi(t0) = const. (3.68)

Für den Ortsoperator im Heisenberg-Bild folgt:

d

dt
xi(t) = − i

~
[xi, H ] = − i

2m~
[xi, p

2]

= − i

2m~
i~

∂

∂pi
p2 =

pi
m

=
pi(t0)

m
. (3.69)

Die Lösung von Gl. (3.69) lautet

xi(t) = xi(t0) +
pi(t0)

m
(t− t0). (3.70)

Dies ähnelt der klassischen Trajektorie eines freien Teilchens, beschreibt aber die
Zeitentwicklung von Operatoren. So gilt z.B., dass zwar Ortsoperatoren zu gleichen
Zeiten kompatibel sind,

[xi(t0), xj(t0)] = 0, (3.71)

dass aber zu verschiedenen Zeiten Inkompatibilitäten entstehen:

[xi(t), xj(t0)] =

[
xi(t0) +

pi(t0)

m
(t− t0), xj(t0)

]
=
t− t0
m

[pi(t0), xj(t0)]

=
i~(t− t0)

m
δij. (3.72)

Dies impliziert eine Unschärfebeziehung,

〈(∆xi(t))2〉〈(∆xi(t0))2〉 ≥ ~2

4m2
(t− t0)2. (3.73)

Dies zeigt: Selbst wenn das freie Teilchen zum Zeitpunkt t0 = 0 sehr gut lokalisiert
war, wird seine Ortsbestimmung mit der Zeit unscharf. Das zugehörige Wellen-
paket “zerfließt” also.
Betrachten wir nun zusätzlich ein Potential V (x),

H =
p2

2m
+ V (x), (3.74)

Nun ist der Impuls keine Konstante mehr,

d

dt
pi(t) = − i

~
[pi, H ] = − i

~
[pi, V (x)] = −∂V (x)

∂xi
≡ −

(
∇V (x)

)
i
. (3.75)
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Für den Ortsoperator gilt weiterhin

d

dt
xi(t) =

pi(t)

m
, (3.76)

so dass wir folgern können, dass

d2

dt2
xi(t) =

d

dt

pi(t)

m
= − 1

m

(
∇V (x)

)
i
, (3.77)

=⇒ m
d2

dt2
x(t) = −∇V (x). (3.78)

Dies ist das quantenmechanische Analogon des 2. Newtonschen Gesetzes im Heisen-
berg-Bild. Bilden wir nun Erwartungswerte, so wird das Resulat Bild-unabhängig,

m
d2

dt2
〈x(t)〉 = −〈∇V (x)〉. (3.79)

Hierbei haben wir angenommen, dass der Zustand zeitunabhängig ist. Dies ist das
Ehrenfest-Theorem. Die Gleichung ist “~-frei” und beschreibt die zeitliche Entwick-
lung des mittleren Ortes z.B. eines Wellenpakets. Die Gleichung ist dennoch nicht
vollständig klassisch, denn i.A. gilt 〈∇V (x)〉 6= ∇V (〈x〉). Die Zeitentwicklung des
Erwartungswerts des Ortes ist also i.A. nicht gleich der Trajektorie eines klassischen
Teilchens. Die Unterschiede sind rein quantenmechanisch. Betrachten wir also die
rechte Seite des Ehrenfest-Theorems im Ortsraum bezüglich eines Zustands |ψ〉,

〈∇V (x)〉 = 〈ψ|∇V (x)|ψ〉 =

∫
d3x′〈ψ|x′〉〈x′|∇V (x)|ψ〉

, =

∫
d3x′ψ∗(x′)∇V (x′)ψ(x′)

=

∫
d3x′|ψ(x′)|2∇V (x′). (3.80)

Wenn wir annehmen, dass ψ(x′) nun stark lokalisiert ist, so dass sich ∇V (x′) über
die Ausdehnung des Wellenpakets wenig ändert, so können wir nähern:

〈∇V (x)〉 ≈ ∇V (x′)

∫
d3x′|ψ(x′)|2 = ∇V (x′), (3.81)

wobei x′ den Ort bezeichnet, um den ψ(x′) lokalisiert ist. Mit gleichen Argumenten
gilt x′ ' 〈x〉 aufgrund der angenommenen Lokalisierung. Damit erhalten wir das
2. Newtonsche Gesetz als Grenzfall der Quantenmechanik:

m
d2

dt2
〈x(t)〉 = −∇V (〈x〉), (3.82)
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und können die klassische Koordinate x(t)|kl. als quantenmechanischen Erwar-
tungswert interpretieren.
NB: Die oben geforderte starke Lokalisiserung ist nicht unproblematisch, da we-

gen der Unschärfebeziehung der Impuls unscharf und damit nicht-klassisch wird.
Neben der Forderung der Lokalisierung auf Skalen, auf denen sich V (x) wenig
ändert, muss also noch angenommen werden, dass die typischen Teilchenimpulse
sehr viel größer als die durch die Lokalisierung bedingte Impulsunschärfe sind. Erst
dann ergibt sich quasi-klassisches Verhalten.

3.7 Schrödinger-Gleichung im Ortsraum

Wir haben die Schrödinger-Gleichung als Differenzialgleichung für den Zeitentwick-
lungsoperator kennengelernt, vgl. Gl. (3.1),

∂

∂t
U(t, t0) = − i

~
HU(t, t0), (3.83)

bzw. in Anwendung auf einen beliebigen Zustand |ψ, t0〉mit |ψ, t〉 = U(t, t0)|ψ, t0〉:
∂

∂t
|ψ, t〉 = − i

~
H|ψ, t〉. (3.84)

Wir wollen nun eine Darstellung der Schrödinger-Gleichung für die Wellenfunktion
im Ortsraum ableiten,

ψ(x′, t) = 〈x′|ψ, t〉. (3.85)

Dazu spezialisieren wir uns an dieser Stelle auf Hamilton-Operatoren vom Typ

H =
p2

2m
+ V (x), (3.86)

welche ein quantenmechanisches Teilchen der Masse m in einem Potenzial V (x)

beschreiben. Das Potenzial sei selbstadjungiert wegen der geforderten Selbstad-
jungiertheit von H. Da V nur von x abhängt, ist V im Ortsraum diagonal:

〈x′|V |x′′〉 = V (x′)〈x′|x′′〉 = V (x′)δ(x′ − x′′). (3.87)

Projezieren wir Gl. (3.84) also auf den Ortsraum, so erhalten wir

i~〈x′| ∂
∂t
|ψ, t〉 = 〈x′|H|ψ, t〉

⇒ i~
∂

∂t
〈x′|ψ, t〉 = 〈x′| p

2

2m
|ψ, t〉 + 〈x′|V (x)|ψ, t〉

⇒ i~
∂

∂t
ψ(x′, t) = − ~2

2m
∇2ψ(x′, t) + V (x′)ψ(x′, t). (3.88)
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Dies ist die zeitabhängige Schrödinger-Gleichung für die Ortsraumwellenfunktion.
In vielen Darstellungen der Quantenmechanik bildet Gl. (3.88) den Startpunkt der
Quantenmechanik als Wellenmechanik. Wie in Abschnitt 3.3 diskutiert, ist die
Zeitentwicklung eines Zustands besonders einfach, wenn er Energieeigenzustand
des Hamilton-Operators ist:

H|ψE〉 = E|ψE〉, ⇒ |ψE, t〉 = e−
i
~Et|ψE〉, (3.89)

wobei |ψE〉 = |ψE, t0 = 0〉 als Anfangsbedingung gewählt wurde. Für solche
stationären Zustände vereinfacht sich also die Schrödinger-Gleichung Gl. (3.88);
sei dazu ψ(x′, t) = 〈x′|ψE, t〉 ≡ ψE(x′)e−

i
~Et, ψE(x′) = 〈x′|ψE〉, so folgt

EψE(x′) = − ~2

2m
∇2ψE(x′) + V (x′)ψE(x′). (3.90)

Dies ist die zeitunabhängige Schrödinger-Gleichung. Mit anderen Worten: ψ(x′, t)

= ψE(x′)e−
i
~Et stellt einen Separationsansatz für die zeitabhängige Schrödinger-

Gleichung dar.
In den folgenden Kapiteln wollen wir die Schrödinger-Gleichung anhand einfacher

Beispiele näher diskutieren.

3.8 Zusammenfassung: Axiome der Quantenmechanik

Mit diesen einleitenden Abschnitten haben wir die Grundlagen der Quantenmecha-
nik gelegt und die notwendigen Rechentechniken eingeführt. Die Axiome haben wir
z.T. anhand von physikalischen Beispielen motiviert und begründet. Wir fassen
die Axiome der Quantenmechanik daher hier noch einmal zusammen:

1. Zustand: Ein physikalisches System zu einem Zeitpunkt t0 wird durch einen
Zustandsvektor |ψ, t0〉 beschrieben. Die Menge aller möglichen Zustände eines
Systems bildet den Zustandsraum des Systems, der mathematisch einem i.A.
komplexen HilbertraumH entspricht. Zustandsvektoren, die sich nur um einen
von Null verschiedenen Faktor unterscheiden, beschreiben denselben Zustand.
(NB: Zustände entsprechen also Strahlen im Hilbertraum. Mit der Äquivalenz
von Zustandsvektoren, die sich nur um einen Faktor unterscheiden, kann man
den Zustandsraum mathematisch auch als projektiven Hilbertraum auffassen.)

2. Observable: Jede physikalische Messgröße (Observable) entspricht einem lin-
earen selbst-adjungierten Operator A, der auf die Zustände im Hilbertraum
wirkt.
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(NB: Diese Operatoren haben ein reelles Spektrum, d.h. die Eigenwerte sind
reell. Das Spektrum kann aus einem diskreten Anteil (abzählbares Punktspek-
trum, z.B. quantisierte Energieniveaus) und aus einem Kontinuum (z.B. ein
Kontinuum von Orts- oder Impulskoordinaten) bestehen.)

3. Messresultat: Resultat der Messung einer physikalischen Größe kann nur
einer der Eigenwerte des entsprechenden Operators A sein. Die Messung einer
physikalischen Größe führt zu einer Projektion des Zustandsvektors auf den
entsprechenden Eigenzustand des Operators.
(NB: Bei kontinuierlichem Spektrum des Operators ist das Messresultat in der
Praxis eine messbare Menge oder Intervall aus dem Kontinuum; z.B. führt
eine Ortsmessung eines Teilchens auf eine Lokalisierung in einem Ortsintervall
im Rahmen der Messgenauigkeit. Der Zustand nach der Messung ist dann
eine Überlagerung von Eigenzuständen des Ortsoperators, die Eigenwerten in
diesem Intervall entsprechen.)

4. Messwahrscheinlichkeit: Wenn die Messgröße mit Operator A an einem
System im Zustand |ψ〉 gemessen wird, ist die Wahrscheinlichkeit P (a′), den
Eigenwert a′ von A zu erhalten P (a′) = |〈a′|ψ〉|2, wobei |a′〉 der zugehörige
Eigenvektor ist, und die Eigenvektoren und Zustandsvektoren auf eins normiert
sein müssen.
(NB: Hier sei angenommen, dass der Operator A diskretes nicht-entartetes
Spektrum hat. Bei kontinuierlichem Spektrum muss die Wahrscheinlichkeit für
ein Intervall [a′, a′+da′] berechnet werden, was durch die Wahrscheinlichkeits-
dichtefunktion |〈a′|ψ〉|2 gegeben ist. Bei Entartung muss berücksichtigt wer-
den, dass es mehrere Eigenvektoren geben kann, die den gleichen Eigenwert
haben.)

5. Zeitentwicklung: Die Zeitentwicklung eines Zustandsvektors wird durch den
Zeitentwicklungsoperator U(t, t0) beschrieben. Der Zeitentwicklungsoperator
ist unitär und erfüllt die Schrödinger-Gleichung Gl. (3.2), wobei H der der
Energie eines Systems zugeordnete Operator ist.
(NB: Die Zeitentwicklung eines Zustandsvektors ist also gegeben durch |ψ, t〉 =

U(t, t0)|ψ, t0〉.)

In quantenmechanischen Systemen mit mehreren (identischen) Teilchen werden
die Axiome noch ergänzt durch Aussagen zum Spin und zum Pauli-Prinzip. In
der relativistischen Quantenfeldtheorie können diese Zusätze begründet werden,
sie sind aber bereits in der nicht-relativistischen Quantenmechanik notwendig zum
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Verständnis von Vielteilchensystemen. Wir werden darauf zu gegebener Zeit zurück-
kommen.
Je nach Interpretationsansatz des quantenmechanischen Messprozesses können

die Axiome zur Messung auch anders formuliert werden. Die hier gegebene For-
mulierung entspricht der Kopenhagener Interpretation, die in der Praxis am häu-
figsten verwendet wird. Die mathematische Struktur der Quantenmechanik ist
jedoch unabhängig von der Interpretation.
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4 Eindimensionale Systeme

Im Folgenden werden die Lösungen der stationären Schrödinger-Gleichung für
eindimensionale Systeme untersucht. Diese liefern nicht nur interessante Mod-
ellsystem, mit deren Hilfe grundlegende quantenmechanische Phänomene studiert
werden können; viele physikalische Systeme sind aufgrund von Symmetrien prak-
tisch eindimensional.
Wir betrachten also die eindimensionale stationäre Schrödinger-Gleichung (3.90):

EψE(x) = − ~2

2m
∂2
xψE(x) + V (x)ψE(x) (4.1)

mit ∂x ≡
∂

∂x
. Hier und im Folgenden lassen wir den Strich an der Koordinate

x weg, da wir rein im Ortsraum arbeiten werden und somit kein Ortsoperator x
mehr auftaucht.
Mit der Abkürzung

k2(x) =
2m

~2

(
E − V (x)

)
(4.2)

folgt die kompakte Form

∂2
xψE(x) + k2(x)ψE(x) = 0. (4.3)

Eine explizite Lösung lässt sich natürlich nur nach Vorgabe eines Potentials V (x)

konstruieren. Im Folgenden seien aber einige allgemeine Eigenschaften der Lösun-
gen diskutiert.

4.1 Eigenschaften der stationären Schrödinger-Gleichung

Weil H selbstadjungiert ist, muss im Ortsraum V (x) reell sein. Wenn ψE(x) nun
eine komplexe Lösung der Schrödinger-Gleichung ist, dann sind Real- und Imag-
inärteil jeweils separat Lösungen der Schrödinger-Gleichung. Wir können uns also
im Folgenden auf rein reelle Lösungen beschränken.
Nicht alle Lösungen von Gl. (4.1) oder Gl. (4.3) sind physikalisch akzeptabel.

Die Wahrscheinlichkeitsinterpretation der Quantenmechanik fordert, dass ψE(x)
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normierbar ist, d.h. ∫ ∞
−∞

dx |ψE(x)|2 <∞. (4.4)

Die Ortsraumwellenfunktion ψE(x) muss also zu den quadratintegrablen Funktio-
nen gehören (mathematisch: ψE(x) ∈ L2(R)). Mehr noch, da |ψE(x)|2∆x die
Aufenthaltswahrscheinlichkeit am Ort x im Intervall ∆x angibt, darf ψE(x) nicht
singulär sein.
Unter der Annahme, dass V (x) nur endliche Diskontinuitäten (“Stufen”) vorweist,

aber ansonsten stetig ist, folgt, dass ψE(x) und ∂xψE(x) überall stetig sind, denn:
Sei ψE(x) stetig bis auf endliche Diskontinuitäten, dann ist die zweite Ableitung

∂2
xψE(x) = −k2(x)ψE(x) (4.5)

integrierbar und ∂xψE(x) demnach stetig. ∂xψE(x) ist folglich ebenfalls integrier-
bar und ψE(x) folglich differenzierbar (die Annahme ist also selbst-konsistent).
Die Differenzierbarkeit von ψE(x) ist wichtig, wenn Teillösungen in Intervallen

I ⊂ R aneinandergehängt werden sollen, um auf R eine Gesamtlösung zu erhalten.
Hat V (x) unendliche Diskontinuitäten (unendlich hohe Potentialwände), ist nur

noch ψE(x) überall stetig und ∂xψE(x) hat endliche Diskontinuitäten.
Die Lösungen haben unterschiedliche Eigenschaften je nachdem, ob

E > V (x) ⇒ k2(x) =
2m

~2

(
E − V (x)

)
> 0, oder (4.6)

E < V (x) ⇒ k2(x) < 0. (4.7)

In der klassischen Mechanik kann ein Teilchen in einem Potential V (x) nur E ≥
V (x) haben, d.h. es kann sich nur bei x-Werten aufhalten, wo seine Gesamtenergie
E ≥ V (x) ist. Die Punkte xU mit E = V (xU) heißen klassische Umkehrpunkte.

x

V (x)

E

xk

Betrachten wir nun quantenmechanisch den klassisch erlaubten Bereich

E > V (x) ⇔ k2(x) > 0,
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dann haben ∂2
xψE(x) und ψE(x) wegen

∂2
xψE(x) = −k2(x)ψE(x) (4.8)

immer entgegengesetztes Vorzeichen, d.h. die Wellenfunktion ist im klassisch er-
laubten Bereich immer zur x-Achse hin gekrümmt. Nullstellen sind somit Wen-
depunkte, so dass Wellenfunktionen im klassisch erlaubten Bereich oszillatorisch
sind.

x

ψE

Im einfachen Fall V (x) = V = const. folgt für

E > V : ψE(x) = α+e
ikx + α−e

−ikx (4.9)

mit durch die Randbedingungen festzulegenden Koeffizienten α±. (Rein reelle Lö-
sungen erhält man durch separate Betrachtung des Real- und Imaginärteils von
Gl. (4.9).)
An den klassischen Umkehrpunkten xU mit E = V (xU), wo k2(xU) = 0, hat

ψE(x) wegen ∂2
xψE(x) = 0 einen Wendepunkt, der nicht zwingend auf der x-Achse

liegen muss.
Im klassisch verbotenen Bereich

E < V (x) ⇔ k2(x) < 0

gibt es in der Quantenmechanik keinen Grund, warum ψE(x) immer verschwinden
muss, d.h. ein quantenmechanisches Teilchen kann auch dort endliche Aufenthalts-
wahrscheinlichkeit haben. Wegen Gl. (4.8) haben ψE(x) und ∂2

xψE(x) in klassisch
verbotenen Bereichen das gleiche Vorzeichen. Die Lösungen sind also von der x-
Achse weg gekrümmt:
Diese Eigenschaft zusammen mit der Normierbarkeitsforderung führt zu starken

Einschränkungen an die Lösung. Z.B. für V (x) = V = const. für x > x0 folgt für
E < V die Lösung

ψE(x) = β+e
κx + β−e

−κx, x > x0 (4.10)
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x

ψE

mit κ =

√
2m

~2
(V − E), κ2 ≡ −k2. Normierbarkeit erzwingt nun β+ = 0, so dass

ψE(x) im klassisch verbotenen Bereich exponentiell abfallen muss.
Für typische Potentialprobleme mit der Eigenschaft lim

x→±∞
V (x)→∞ haben wir

somit schon einen qualitativen Eindruck von möglichen Wellenfunktionen:

x

V (x)

ψE1

ψE2

E1

E2

x

4.2 Knotensatz

Obige Betrachtungen lassen sich u.a. mit dem Knotensatz quantitativ fassen. Dazu
definieren wir die Wronski-Determinante für zwei Lösungen der zeitunabhängigen
Schrödinger-Gleichung gemäß:

W (ψE1, ψE2) = ψE1ψ
′
E2
− ψ′E1

ψE2, (4.11)

wobei der Strich die Ortsableitung bedeutet, ψ′E = ∂xψE(x). Per Annahme erfüllen
ψE1,2 die Schrödinger-Gleichung

E1,2ψE1,2(x) = − ~2

2m
ψ′′E1,2

(x) + V (x)ψE1,2(x). (4.12)
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Nun gilt:

W ′ = ψ′E1
ψ′E2

+ ψE1ψ
′′
E2
− ψ′′E1

ψE2 − ψ
′
E1
ψ′E2

= ψE1ψ
′′
E2
− ψ′′E1

ψE2

=
2m

~2
ψE1(V (x)− E2)ψE2 −

2m

~2
ψE1(V (x)− E1)ψE2

=
2m

~2
(E1 − E2)ψE1ψE2. (4.13)

Sei nun E1 < E2 und seien x1 und x2 zwei benachbarte Nullstellen der Lösung ψE1

mit ψE1(x1 < x < x2) > 0.

x

ψE1

ψE2

x1 x2

Die Integration der Ableitung der Wronski-Determinante liefert∫ x2

x1

dxW ′ = W (x2)−W (x1) = ψ′E1
(x1)ψE2(x1)− ψ′E1

(x2)ψE2(x2)

Gl. (4.13)
=

2m

~2
(E1 − E2)

∫ x2

x1

dxψE1(x)ψE2(x). (4.14)

Für die betrachtete Lösung gilt (unter Ausschluss von ψ′E1
(x1,2) = 0, siehe unten):

ψ′E1
(x1)︸ ︷︷ ︸
>0

ψE2(x1)−ψ′E1
(x2)︸ ︷︷ ︸
<0

ψE2(x2) =
2m

~2

∫ x2

x1

dx (E1 − E2)ψE1(x)︸ ︷︷ ︸
<0

ψE2(x). (4.15)

Diese Gleichung wäre also nicht zu erfüllen, wenn ψE2(x) im Intervall [x1, x2] ent-
weder nur positiv oder nur negativ wäre. D.h. ψE2(x) muss zwischen x1 und x2

eine Nullstelle (“Knoten”) haben. Dies gilt für jede Lösung mit E2 > E1.
Der Einfachheit halber betrachten wir für die folgenden Überlegungen ein Poten-

tial mit beliebiger Form (ohne Singularitäten) zwischen L1 und L2 aber unendlich
hohen Wänden bei L1 und L2. Dies kann als Idealisierung von allgemeinen Poten-
tialen mit V (|x| → ∞) verstanden werden.
Die unendlich hohen Potentialwände zwingen die Wellenfunktion bei L1,2 auf

Null, ψE(L1,2) = 0, d.h. die Schrödinger-Gleichung ist in diesem Fall ein Rand-
wertproblem mit Dirichlet-Randbedingungen

EψE(x) = HψE(x), ψE(L1) = ψE(L2) = 0. (4.16)
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x

V (x)

x

V (x)

L1 L2

Partielle Ableitung nach E liefert:

Hφ = ψE + Eφ, φ(x) =
∂ψE(x)

∂E
. (4.17)

Wegen Gl. (4.17),

ψE + Eφ = − ~2

2m
φ′′ + V (x)φ, ⇒ φ′′ = −2m

~2

(
ψE + (E − V )φ

)
,

liefert die Ableitung der Wronski-Determinante von φ und ψE nach x,

W ′(φ, ψE) = (ψEφ
′ − ψ′Eφ)′ = ψEφ

′′ − ψ′′Eφ

= −2m

~2

(
ψ2
E + (E − V )φψE

)
+

2m

~2
(E − V )ψEφ

= −2m

~2
ψ2
E. (4.18)

Anstelle des Randwertproblems Gl. (4.16) betrachten wir zunächst das Anfangs-
wertproblem

HψE = EψE, mit ψE(L1) = 0, ψ′E(L1) = C 6= 0, (4.19)

wobei der Wert von C wegen Linearität der Schrödinger-Gleichung irrelevant ist.
Für generisches E ∈ R liefert eine Integration von Gl. (4.19) zwar eine Lösung
des Anfangswertproblems, die jedoch i.A. nicht ψE(L2) = 0 erfüllt, d.h. nicht das
eigentliche Randwertproblem Gl. (4.16) löst. An dieser Stelle können wir bereits er-
warten, dass eine Lösung des Anfangswertproblems Gl. (4.19) nur für ganz spezielle
Werte von E auch eine Lösung für das eigentliche Randwertproblem Gl. (4.16) ist.
Diese speziellen Werte sind die Eigenwerte E des Hamilton-Operators H. Die
Reduktion von E ∈ R auf spezielle bzw. diskrete Werte von E entspricht der
“Quantisierung der Energieniveaus” eines Systems.
Wir integrieren nun Gl. (4.18) von L1 bis zu einem Ort x2(E) > L1, wo ψE

erstmalig verschwindet, (dabei beachten wir, dass φ(L1) = 0 ist, weil ψE(L1) = 0
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für alle E gilt):∫ x2

L1

dx W ′(φ, ψE) = ψEφ
′ − ψ′Eφ

∣∣∣x2
L1

= ψE(x2)︸ ︷︷ ︸
=0

φ′(x2)− ψ′E(x2)φ(x2)− ψE(L1)︸ ︷︷ ︸
=0

φ′(L1) + ψ′E(L1)φ(L1)︸ ︷︷ ︸
=0

= −ψ′E(x2)φ(x2)
Gl. (4.18)

= −2m

~2

∫ x2

L1

dxψ2
E(x),

⇒ ψ′E(x2(E))φ(x2(E)) =
2m

~2

∫ x2

L1

dxψ2
E(x) > 0, (4.20)

mit E ∈ R beliebig. (NB: Gl. (4.20) besagt, dass ψ′E(x2) 6= 0, siehe oben).
Für ψE > 0 im Integrationsgebiet folgt

ψ′E(x2) < 0 ⇒ φ(x2) < 0. (4.21)

Für ψE < 0 im Integrationsgebiet folgt

ψ′E(x2) > 0 ⇒ φ(x2) > 0. (4.22)

Wegen

ψE+∆E(x2(E)) = ψE(x2(E))︸ ︷︷ ︸
=0

+
∂ψE
∂E︸︷︷︸

=φ(x2(E))

∆E + O(∆E2) = φ(x2(E))∆E (4.23)

wandert also in beiden Fällen mit abnehmender Energie die Nullstelle x2(E) nach
rechts:

x

L1

ψE(x)

ψE−|∆E|(x)

Angenommen, der Grundzustand verschwinde nicht nur bei L1 < L2, sondern
habe dazwischen einen Knoten xK, L1 < xK < L2. Nun verringern wir die Energie
E, so wandert der Knoten nach rechts. Bei stetiger Verringerung von E wird
irgendwann xK = L2 gelten. Dann hätten wir eine Lösung des Randwertproblems
mit kleinerem E als der vermeintliche Grundzustand gefunden.
Damit folgt: der Grundzustand kann keinen Knoten haben!
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Ähnlich lässt sich zeigen, dass der erste angeregte Zustand einen Knoten hat usw.
D.h., der n-te angeregte Zustand hat n Knoten.
NB: der Knotensatz gilt auch für allgemeinere Potentiale mit V (|x| → ∞), nicht

nur für den hier betrachteten Spezialfall mit unendlich hohen Wänden bei L1 und
L2. Die Dirichlet-Randbedingungen werden dann an den klassischen Umkehrpunk-
ten durch Anschluss-Bedingungen ersetzt

x

V (x)

E

L1 L2

ψE(L1 − ε) = ψE(L1 + ε) und ψ′E(L1 − ε) = ψ′E(L1 + ε)

und ebenso für L2. Die Steigung bei L1 und L2 ergibt sich wiederum indirekt
aus der Normierbarkeitsforderung.

4.3 Barrieren

Wir betrachten nun die zeitunabhängige Schrödinger-Gleichung für eine Potential-
stufe

EψE(x) = − ~2

2m
∂2
xψE(x) + V (x)ψE(x) (4.24)

mit

V (x) =

{
0 für x < 0,

V > 0 für x > 0.
(4.25)

x

V (x)

Für ein von links nach rechts einfliegendes Teilchen gilt klassisch:
Für E < V kann das Teilchen in den Bereich x > 0 nicht vordringen. Das

Teilchen wird klassisch also reflektiert.
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x

V (x)
vin vout

vin

vout

Für E > V fliegt das Teilchen klassisch über die Stufe hinweg. Für x > 0 ist
wegen Energieerhaltung seine Geschwindigkeit kleiner.
Quantenmechanisch ergibt sich ein anderes Bild: Für V = const. fanden wir in

Gl. (4.9) die Lösung

E > V : ψE(x) = α+e
ikx + α−e

−ikx, k2 =
2m

~2
(E − V ). (4.26)

Berücksichtigt man die Zeitabhängigkeit,

ψ(x, t) = ψE(x)e−iEt/~, d.h. eikx → e−i(
E
~ t−kx), (4.27)

so wird deutlich, dass eikx eine nach rechts laufende Ebene Welle beschreibt, die
im Folgenden unseren Teilchenstrom darstellen soll.
Für E > V erwarten wir einen durchlaufenden “transmittierten” Anteil, lassen

aber auch einen reflektierten Anteil zu. Lösungsansatz ist daher

ψE(x) =


α+e

ipx + α−e
−ipx für x < 0, p =

√
2m

~2
E

βeikx für x > 0, k =

√
2m

~2
(E − V ).

(4.28)

Da der Potentialsprung endlich ist, muss ψE(x) bei x = 0 stetig differenzierbar
sein:

lim
ε→0

(ψE(x− ε)− ψE(x + ε)) = 0 ⇒ α+ + α− = β,

lim
ε→0

(ψ′E(x− ε)− ψ′E(x + ε)) = 0 ⇒ p(α+ − α−) = kβ. (4.29)

Da α+ unsere einlaufende Anfangsbedingung charakterisiert, lösen wir nach α−
und β auf:

α− =
p− k
p + k

α+, β =
2p

p + k
α+. (4.30)

In der Tat lassen sich die Anschlussbedingungen nur erfüllen, wenn es auch eine
reflektierende Komponente gibt, α− > 0 für V > 0. Normieren wir α+ = 1,
so entsprechen α− dem Reflexions- und β dem Transmissionskoeffizienten 0 <

α−, β < 1 für V > 0.
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Wichtig: Nicht das Teilchen, sondern nur seine Wahrscheinlichkeitsamplitude
spaltet sich auf! Bei einer Ortsmessung findet man das Teilchen entweder links
oder rechts.
Für ein Teilchen mit Energie E < V gilt links von der Stufe x < 0 der gleiche

Lösungsansatz wie in Gl. (4.28), die Lösung rechts der Stufe haben wir bereits in
Gl. (4.10) gefunden:

ψE(x) =


α+e

ipx + α−e
−ipx für x < 0, p =

√
2m

~2
E

βe−κx für x > 0, κ =

√
2m

~2
(V − E).

(4.31)

Stetige Differenzierbarkeit bei x = 0 führt auf die Bedingungen

α+ + α− = β,

p(α+ − α−) = iκβ. (4.32)

Da α+ wiederum die Anfangsbedingung charakterisiert (normiert mit |α+| = 1),
lösen wir nach α− und β auf:

α− =
p− iκ
p + iκ

α+, β =
2p

p + iκ
α+. (4.33)

Hieraus folgt sofort

|α−|2 =
p + iκ

p− iκ
p− iκ
p + iκ︸ ︷︷ ︸

=1

|α+|2︸ ︷︷ ︸
=1

= 1. (4.34)

Das Ergebnis |α−|2 = |α+|2 besagt, dass die Welle (bzw. das Teilchen) vollständig
reflektiert wird. Einlaufende und auslaufende Welle sind allerdings phasenver-
schoben. Konventionsbedingt definiert man

− e2iδ(E) :=
p− iκ
p + iκ

⇒ cot δ(E) =
κ

p
. (4.35)

Die zeitabhängige Lösung hat also damit die Form

ψ(x, t) = α+ ·

e
−i(E~ t−px) − e−i(

E
~ t+px)−2iδ für x < 0,

2p

p + iκ
e−i

E
~ te−κx für x > 0.

(4.36)

Die Phasenverschiebung verschwindet im Limes p/κ → 0, d.h. E/(V − E) → 0,
wenn also die Potentialwand wesentlich höher als die Energie ist. Aus der Tat-
sache, dass QM-Teilchen in den klassisch verbotenen Bereich eindringen können,
können wir übrigens nicht folgern, dass die Energieerhaltung verletzt ist. Bei einer
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Eindringtiefe von 1/κ ist zwar die Ortsunschärfe klein ∆x ≤ 1/κ, die Impulsun-
schärfe hingegen groß gemäß der Unschärferelation ∆p ≥ ~κ. Die Unschärfe einer

Energiemessung beträgt entsprechend ∆E ∼ ∆p2

2m
' V − E, so dass eine En-

ergiemessung die Werte E + ∆E ' E + (V −E) = V mit einschließt. Wir können
also nicht sicher schließen, dass das Teilchen im klassisch verbotenen Bereich eine
Energie kleiner als V hat.

4.4 Tunneleffekt

Dass quantenmechanische Teilchen in den klassisch verbotenen Bereich eindringen
können, führt zum wichtigen nicht-klassischen Phänomen des Tunneleffekts. Wir
betrachten ein Potential der Höhe V > 0 zwischen x = 0 und x = a:

x
0

V (x)

a

Die Lösung der stationären Schrödinger-Gleichung, die zu einer von links einfal-
lenden Welle gehört, hat die Form für E < V :

ψE(x) =


α+e

ipx + α−e
−ipx für x < 0, p =

√
2m

~2
E

β+e
κx + β−e

−κx für 0 < x < a, κ =

√
2m

~2
(V − E)

α+S(E)eip(x−a) für x > a,

(4.37)

und Anfangsamplitude α+ normiert mit |α+|2 = 1 und zu bestimmenden Amplitu-
den α−, β+, β−, S(E). Die Transmissionsamplitude bzw. das “Tunnel-Matrixelement”
S(E) kann schon aus Gründen der stetigen Differenzierbarkeit der Wellenfunktion
nicht verschwinden, denn: Wäre S(E) = 0, so müsste wegen stetiger Differenzier-
barkeit ψE überall Null sein, was im Widerspruch zur Anfangsbedingung α+ = 1

steht.
Stetige Differenzierbarkeit der Wellenfunktion bei x = 0 und x = a führt auf die

Anschlussbedingungen

x = 0 : α+ + α− = β+ + β−,

ip(α+ − α−) = κ(β+ − β−),

x = a : β+e
κa + β−e

−κa = α+S(E),

κ(β+e
κa − β−e−κa) = ipα+S(E). (4.38)
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Dies sind vier Gleichungen für die vier Unbekannten α−, β+, β−, S(E). Die Lösung
für S(E) lautet [ÜA]:

S(E) =
2iκp

2iκp coshκa + (p2 − κ2) sinhκa
. (4.39)

Damit bestimmt sich die Wahrscheinlichkeit dafür, dass ein von links einlaufendes
Teilchen durch den Potentialwall hindurch tunnelt, zu:

T (E) = |S(E)|2 =

(
1 +

V 2

4E(V − E)
sinh2 κa

)−1

. (4.40)

Für große κa =

√
2m

~2
(V − E)a2 � 1, d.h. hohe und/oder breite Potentialbarri-

eren, vereinfacht sich das Ergebnis zu

T (E) ' 16
E(V − E)

V 2
e
−2a

√
2m
~2

(V−E)
. (4.41)

Die Tunnelwahrscheinlichkeit nimmt exponentiell mit der Barrierenbreite und der
Wurzel der Barrierenhöhe ab. (NB: In der Regel dominiert die Exponentialfunktion
die Tunnelwahrscheinlichkeit, so dass die Berechnung des Exponenten bereits eine
gute Abschätzung liefert.)
Klassisch verboten ist der Tunneleffekt ein genuin quantenmechanisches Phäno-

men, dass in vielen Systemen anzutreffen ist (α-Zerfall, Ladungsfluss durch Isola-
toren, Feldemission, Tunnendioden, etc.).

4.5 Resonanzen

Als weiteres wichtiges Beispiel betrachten wir gebundene Zustände im Potential-
topf:

V (x) =

{
0 für |x| > a,

−V < 0 für |x| < a.
(4.42)

x

V
−a a

Die Zustände sind gebunden, wenn sie eine Energie E < 0 haben, d.h. der
Außenbereich |x| > a klassisch verboten ist. Das Potential ist zwar symmetrisch
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um x = 0, d.h. symmetrisch unter x → −x, die Eigenfunktionen zum Hamilton-
Operator können allerdings symmetrisch oder antisymmetrisch sein bzw. gerade
oder ungerade; unsere Ansätze lauten entsprechend:

gerade : ψE(x) =


α cos qx im Topf |x| < a, q =

√
2m

~2
(E + V )

γe−κx für x > a,

γeκx für x < −a, κ =

√
2m

~2
(−E), E < 0.

(4.43)

ungerade : ψE(x) =


α sin qx im Topf |x| < a, q =

√
2m

~2
(E + V )

γe−κx für x > a,

−γeκx für x < −a, κ =

√
2m

~2
(−E), E < 0.

(4.44)

Stetigkeit und Differenzierbarkeit implizieren z.B. für den geraden Fall:{
α cos qa = γe−κa

αq sin qa = γκe−κa

}
⇒ q tan qa = κ. (4.45)

Ähnlich folgt für den ungeraden Fall: q cot qa = −κ.
Für kleine V ist q sehr klein, so dass Gl. (4.45) nur für einen Wert von E erfüllt

werden kann.

q

q tan(qa)

π

2a
3π

2a

Mit zunehmendem V findet man eine zunehmende Zahl von gebundenen Zustän-
den, abwechselnd gerade und ungerade. Für endliches V bleibt die Zahl der gebun-
denen Zustände endlich. Betrachten wir nun wieder von links einlaufende Zustände
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mit E > 0, d.h. Streuzustände. Bei Anfangsamplitude α+ gilt der Ansatz

ψE(x) =


α+e

ipx + α−e
−ipx für x < −a, p =

√
2m

~2
E

β+e
iqx + β−e

−iqx für |x| < a, q =

√
2m

~2
(E + V )

α+S(E)eip(x−a) für x > a,

(4.46)

mit E > 0 und der Transmissionsamplitude S(E). Stetigkeit und Differenzier-
barkeit bei x = ±a liefert 4 Bedingungen für die 4 Unbekannten α−, β+, β−, S(E).
Die Rechnung ist länglich, aber folgender Zwischenschritt ist nützlich:

α−
α+

=
i

2

(
q

p
− p

q

)
e−2ipaS(E) sin 2aq

β+

α+
=

1

2

(
p

q
+ 1

)
e−ia(p+q)S(E) (4.47)

β−
α+

=
1

2

(
p

q
− 1

)
eia(q−p)S(E)

mit Transmissionsamplitude

S(E) =

(
cos 2aq − i

2

(
p

q
+
q

p

)
sin 2aq

)−1

, (4.48)

womit das Problem vollständig gelöst ist. Die Transmissionswahrscheinlichkeit
ergibt sich zu

T (E) = |S(E)|2 =

cos2 2aq +
1

4

(
p

q
+
q

p

)
︸ ︷︷ ︸
=4+ V 2

E(E+V )

sin2 2aq


−1

=

(
1 +

V 2

4E(E + V )
sin2 2aq

)−1

. (4.49)

T (E) ist ≤ 1, wobei das Gleichheitszeichen für sin 2aq = 0 gilt, d.h.

⇒ 2aq = nπ ⇒ En =
~2n2π2

8ma2
− V, n = 1, 2, . . . (4.50)

D.h. fliegt ein Teilchen mit dieser Energie E = En ein, wird das Potential voll-
ständig transparent. Stromerhaltung verlangt nun, dass gleichzeitig die Reflexion
verschwindet, d.h. α−(En) = 0, was in der Tat an Gl. (4.47) ablesbar ist.
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E
E1 E2

1

Diese Maxima von T heißen Resonanzen. Eine weitere wichtige Eigenschaft der
Transmissionsamplitude S(E) lässt sich in diesem Beispiel gut studieren: S(E)

hat Pole bei
cos 2aq =

i

2

(
p

q
+
q

p

)
sin 2aq. (4.51)

Diese Gleichung hat nur Lösungen für imaginäre p. Ist Im p > 0, so fallen der
transmittierte und der reflektierte Anteil exponentiell ab. Für endliche β+ und β−
muss an den Polen von S(E) wegen Gl. (4.47) gelten, dass α+ = 0. Also gibt
es auch keine exponentiell nach x → −∞ anwachsende einlaufende Welle. Diese
exponentiell nach den Seiten abfallende Lösung entspricht offensichtlich den gebun-
denen Zuständen. In der Tat entspricht die Polbedingung genau der Bedingung
für gebundene Zustände, denn

tan 2aq =
sin 2aq

cos 2aq
=

2

i

1
p
q + q

p

= 2 (cot aq − tan aq)−1 ⇒ cot aq − tan aq =
ip

q
− q

ip
. (4.52)

Die Lösungen dieser Gleichung sind

q cot aq = ip, q tan aq = −ip, (4.53)

was mit p = iκ genau den in Gl. (4.45) gefundenen Bedingungen für gebundene
Zustände entspricht.
Die Polstellen der Transmissions- oder Streuamplitude S(E) entsprechen den

Energien der gebundenen Zustände. Diese Resonanzen sind nicht nur für Poten-
tialtöpfe, sondern auch für andere Potentiale zu finden. Sie sind ein wichtiges
Konzept in der Quantenmechanik und deren relativistische Verallgemeinerung der
Quantenfeldtheorie. Dieses Konzept spielt eine zentrale Rolle in der Streutheorie.
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5 Der harmonische Oszillator

Der harmonische Oszillator ist das wichtigste Beispiel der Quantenmechanik. Er
taucht in vielen Teildisziplinen der modernen Physik immer wieder auf fundamen-
talem Niveau auf, z.B. in der Quantenfeldtheorie, der Quantenoptik, der Festkör-
perphysik, etc. Ein elementares Verständnis des harmonischen Oszillators ist daher
besonders wichtig.

5.1 Algebraische Lösung des eindimensionalen harmonischen Oszillators

In der stationären Schrödinger-Gleichung ist der eindimensionale harmonische Os-
zillator definiert durch das harmonische Potential V =

1

2
mω2x2 mit der Frequenz

ω und der Masse m, welches klassisch zu einer linearen Kraft mit Federkonstanten
k = mω2 führt.

x

V

x

F

Klassisch hat das System keine intrinsische Längenskala. Jede beliebige Auslen-
kung ist in gleicher Weise möglich.
Der quantenmechanische Hamilton-Operator lautet

H =
p2

2m
+

1

2
mω2x2 (5.1)

und führt zur stationären Schrödinger-Gleichung im Ortsraum:

EψE(x′) = − ~2

2m

d2

dx′2
ψE(x′) +

1

2
mω2x′2ψE(x′). (5.2)

Aus Masse m, Kreisfrequenz ω und der Naturkonstanten ~ lässt sich nun eine
Längenskala bilden,

x0 =

√
~
mω

, (5.3)
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die für den quantenmechanischen harmonischen Oszillator charakteristisch ist. In
makroskopischen Einheiten ergeben sich jedoch sehr kleine Zahlen,

x0

[1m]
' 10−17

(
[1kg]

m

)1/2(
[1Hz]

ω

)1/2

. (5.4)

Die Schrödinger-Gleichung ließe sich nun mit Standardmethoden für Differenzial-
gleichungen dieses Typs (z.B. Potenzreihenentwicklung) im Ortsraum lösen. Die
besondere Struktur des harmonischen Oszillators wird jedoch besonders bei der
operatoralgebraischen Lösung deutlich. Dazu führen wir die folgenden Leiteroper-
atoren ein:

a =
1√
2

(
x

x0
+ i

x0

~
p

)
, (Absteigeoperator)

a† =
1√
2

(
x

x0
− ix0

~
p

)
, (Aufsteigeoperator). (5.5)

(NB: Diese nennt man auch in anderen Kontexten Vernichter und Erzeuger.)
Der Grund für die Namensgebung wird gleich deutlich. a und a† sind weder

selbstadjungiert noch kompatibel miteinander, denn

[a, a†] =
1

2

[
x

x0
+ i

x0

~
p,
x

x0
− ix0

~
p

]
=

1

2

 1

x2
0

[x, x]︸︷︷︸
=0

+
x2

0

~2
[p, p]︸︷︷︸

=0

+
i

~
[p, x]︸︷︷︸
=−i~

− i
~

[x, p]︸︷︷︸
=i~


= 1 (5.6)

Da a und a† jeweils mit sich selbst vertauschen, erhalten wir die Vertauschungsregeln
der Leiteroperatoren, die Leiteroperatoralgebra:

[a, a] = 0, [a†, a†] = 0, [a, a†] = 1. (5.7)

Weiterhin gilt:

a†a =
1

2

(
x

x0
− ix0

~
p

)(
x

x0
+ i

x0

~
p

)
=

1

2

x2

x2
0

+
1

2

x2
0

~2
p2 +

i

2~
[x, p]

=
mω

2~
x2 +

1

2mω~
p2 − 1

2
, (5.8)

so dass der Hamilton-Operator durch a†a ausgedrückt werden kann:

H = ~ω
(
a†a +

1

2

)
=: ~ω

(
N +

1

2

)
. (5.9)
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Hier haben wir den Besetzungszahloperator N eingeführt. Er ist selbstadjungiert,

N † = (a†a)† = a†(a†)† = a†a = N, (5.10)

und nicht-negativ:
〈ψ|N |ψ〉 = 〈ψ|a†a|ψ〉 = 〈φ|φ〉 ≥ 0, (5.11)

mit |φ〉 = a|ψ〉. Die Eigenwerte und Eigenvektoren vonN (und damit auch vonH)
lassen sich nun algebraisch bestimmen; d.h. nur die Leiteroperatoralgebra, nicht
aber die konkrete Darstellung (5.5) wird verwendet.
Sei |n〉 ein Eigenzustand von N mit Eigenwert n,

N |n〉 = n|n〉, n
(5.11)
≥ 0. (5.12)

Der Eigenwert n wird auch Besetzungszahl genannt. N erfüllt folgende Ver-
tauschungsrelationen:

[N, a†] = [a†a, a†] = a† [a, a†]︸ ︷︷ ︸
=1

+ [a†, a†]︸ ︷︷ ︸
=0

a = a†,

[N, a] = [a†a, a] = a† [a, a]︸︷︷︸
=0

+ [a†, a]︸ ︷︷ ︸
=−1

a = −a. (5.13)

Daraus folgt:

N
(
a†|n〉

)
= a†N |n〉 + [N, a†]︸ ︷︷ ︸

=a†

|n〉 = a†(N + 1)|n〉

= (n + 1)a†|n〉,
N
(
a|n〉

)
= aN |n〉 + [N, a]︸ ︷︷ ︸

=−a

|n〉 = a(N − 1)|n〉

= (n− 1)a|n〉, (5.14)

d.h. a†|n〉 und a|n〉 sind jeweils auch Eigenvektoren von N mit Eigenwert (n+ 1)

bzw. (n− 1).{
a†

a

} {
erhöht

erniedrigt

}
also die Besetzungszahl um eins. (5.15)

Entsprechendes gilt für Potenzen : (a†)m erhöht und (a)m erniedrigt die Beset-
zungszahl um m. Was ist der kleinste Eigenwert (und damit der Grundzustand)?
Wegen

〈n|N |n〉 = 〈n|a† a|n〉 = n〈n|n〉 (5.16)

ist für n 6= 0 der Vektor a|n〉 ungleich dem Nullvektor, falls |n〉 auch nicht der
Nullvektor ist. Deshalb ist mit n 6= 0 auch n − 1 ein Eigenvektor von N . Da
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m

3

2

1

0
a†

a†a

a

die Eigenwerte von N aber nicht-negativ sind, muss n ∈ N0 gelten, so dass der
kleinste Eigenwert = 0 ist.
Der zugehörige Eigenvektor ist der Grundzustand |0〉, der folglich von a anni-

hiliert wird:
N |0〉 = 0 ⇔ a|0〉 = 0. (5.17)

Aufbauend auf dem Grundzustand können nun alle weiteren Eigenzustände kon-
struiert werden,

|n〉 ∼ (a†)n|0〉, hat Eigenwert n ∈ N0. (5.18)
Nun habe |n−1〉 die Norm 1, d.h. 〈n−1|n−1〉 = 1. Sei |n〉 = βa†|n−1〉 ebenfalls
normiert, so folgt

1 = 〈n|n〉 = |β|2〈n− 1| aa†︸︷︷︸
=N+1

|n− 1〉 = β2(n− 1 + 1) 〈n− 1|n− 1〉︸ ︷︷ ︸
=1

. (5.19)

Ist der Grundzustand |0〉 auf 1 normiert, sind die angeregten Zustände

|n〉 =
1√
n!

(a†)n|0〉 (5.20)(
=

1√
n
a†|n− 1〉 =

1√
n(n− 1)

(a†)2|n− 2〉 = . . .

)
ebenfalls auf 1 normiert. Da die Zustände aus dem Grundzustand erzeugt werden,
kann das Spektrum nur entartet sein (d.h. zwei oder mehrere Eigenvektoren haben
den gleichen Eigenwert), wenn der Grundzustand entartet wäre. Das dies nicht der
Fall ist, zeigen wir unten.
Damit haben wir das Eigenwertspektrum und die Eigenwerte von N vollständig

gefunden. Damit ist auch der Hamilton-Operator bereits diagonalisiert, denn

H|n〉 = ~ω
(
N +

1

2

)
|n〉 = En|n〉, mit En = ~ω

(
n +

1

2

)
. (5.21)

Die Leiteroperatoren erhöhen bzw. erniedrigen die Energie um ~ω. Das Spektrum
ist äquidistant.
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5.2 Ortsraumdarstellung des harmonischen Oszillators

Die Ortsraumdarstellung der Eigenfunktionen |n〉 ergibt sich direkt aus der Darstel-
lung der Leiteroperatoren (5.5), die im Ortsraum lautet:

a =
1√
2

(
x

x0
+ i

x0

~
p

)
→ 1√

2

(
x′

x0
+ x0

∂

∂x′

)
a† =

1√
2

(
x

x0
− ix0

~
p

)
→ 1√

2

(
x′

x0
− x0

∂

∂x′

)
(5.22)

mit p→ ~
i

∂

∂x′
. Im Ortsraum lautet daher die Grundzustandsgleichung Gl. (5.17):

a|0〉 = 0 ⇒ 〈x′|a|0〉 =
1√
2

(
x′

x0
+ x0

∂

∂x′

)
〈x′|0〉︸ ︷︷ ︸
=ψ0(x′)

= 0

⇒
(
x′

x0
+ x0

∂

∂x′

)
ψ0(x′) = 0. (5.23)

Die Lösung dieser Differentialgleichung ist eine Gaußfunktion,

ψ0(x′) =

(
1

πx2
0

)1
4

e
− x′2

2x20 . (5.24)

Den Vorfaktor haben wir hier bereits durch Normierung festgelegt, denn∫ +∞

−∞
|ψ0(x′)|2 dx′ =

1√
πx2

0

∫ +∞

−∞
e
−x
′2
x20 dx′︸ ︷︷ ︸

=
√
πx0

= 1. (5.25)

Da die Lösung eindeutig ist, ist damit auch der Grundzustand des harmonischen
Oszillators eindeutig. Wir stellen fest, dass die Längenskala x0 die Breite der
Gaußfunktion festlegt. D.h. x0 ist ein Maß für die Lokalisierung des Teilchens im
Grundzustand.
Mit Hilfe des Aufsteigeoperators lassen sich die Wellenfunktionen der angeregten

Zustände im Ortsraum direkt erzeugen:

ψn(x′) =
1√
n!

(a†)nψ0(x′) =
1√
n!

1

2
n
2

(
x′

x0
− x0

∂

∂x′

)n(
1

πx2
0

)1
4

e
− x′2

2x20 . (5.26)

Z.B. der erste angeregte Zustand ist

ψ1(x′) =

√
2

x0
x′ψ0(x′). (5.27)
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Da die Gaußfunktion genau der erzeugenden Funktion der Hermite-PolynomeHn(x)

entspricht, sind die höheren angeregten Zustände alle proportional zum Grundzu-
stand multipliziert mit einem Hermite-Polynom:

ψn(x′) =

(
1

πx2
0

)1
4 1√

2nn!
Hn

(
x′

x0

)
e
− x′2

2x20 , (5.28)

mit den Hermite-Polynomen

H0(ξ) = 1,

H1(ξ) = 2ξ,

H2(ξ) = 4ξ2 − 2,

H3(ξ) = 8ξ3 − 12ξ,

H4(ξ) = 16ξ4 − 48ξ2 + 12,

H5(ξ) = 32ξ5 − 160ξ3 + 120ξ, usw. (5.29)

x′

x0

|ψEn|2
n = 0

n = 1

n = 2

Nach Konstruktion bilden die Zustände ψn(x′) ein vollständiges orthonormiertes
Funktionensystem.

δnm = 〈n|m〉 =

∫ +∞

−∞
dx′〈n|x′〉〈x′|m〉 =

∫ +∞

−∞
dx′ψ∗n(x′)ψm(x′). (5.30)

Die Lösung des harmonischen Oszillators lässt sich direkt auf höhere Dimensionen
verallgemeinern. Betrachten wir z.B. den 3-dimensionalen harmonischen Oszilla-
tor, so zerfällt der Hamilton-Operator in eine Summe von drei 1-dimensionalen
harmonischen Oszillatoren:

H3D =
p2

2m
+

1

2
mω2x2 =

3∑
i=1

H(xi, pi), (5.31)

mit H(x, p) =
p2

2m
+

1

2
mω2x2. Damit faktorisiert die Wellenfunktion,

ψ3D(x′) = ψ1(x′1)ψ2(x′2)ψ3(x′3), (5.32)
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d.h., die Energieeigenfunktionen sind

ψn1n2n3(x
′) = ψn1(x

′
1)ψn2(x

′
2)ψn3(x

′
3) (5.33)

mit den Energieeigenwerten

En1n2n3 = ~ω
3∑
i=1

(
ni +

1

2

)
. (5.34)

5.3 Orts- und Impulsunschärfe

Praktische Rechnungen können nun vollständig mit Hilfe der Leiteroperatoralgebra
durchgeführt werden. Dazu drücken wir Orts- und Impulsoperatoren durch die
Leiteroperatoren aus:

x =
x0√

2

(
a + a†

)
,

p = i
~
x0

1√
2

(
a† − a

)
. (5.35)

Wir wissen bereits, wie a† auf normierte Energieeigenzustände wirkt:

a†|n〉 =
√
n + 1|n + 1〉, bzw. a†|n− 1〉 =

√
n|n〉. (5.36)

Mutliplikation mit a liefert
√
na|n〉 = aa†|n− 1〉 =

(
a†a︸︷︷︸
=N

+ [a, a†]︸ ︷︷ ︸
=1

)
|n− 1〉

= (N + 1)|n− 1〉 = n|n− 1〉,

d.h. die Wirkung von a auf Energieeigenzustände ist

a|n〉 =
√
n|n− 1〉. (5.37)

Da Ort und Impuls linear von a und a† abhängen, sind x|n〉 und p|n〉 Linearkom-
binationen der Energieeigenzustände |n−1〉 und |n+1〉. Daraus folgt unmittelbar:

〈n|x|n〉 = 0 = 〈n|p|n〉, (5.38)

d.h. im Wahrscheinlichkeitsmittel befindet sich ein quantenmechanisches Teilchen
im harmonischen Oszillatorpotential im Ursprung und hat im Mittel verschwinden-
den Impuls. Für hohe Energien gehen die stationären Zustände also nicht, wie
vielleicht naiv erwartet, in klassische Oszillatorbewegungen über.
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Als nächstes betrachten wir

x2 =
x2

0

2

(
(a†)2 + a2 + a†a + aa†

)
,

p2 = − ~2

2x2
0

(
(a†)2 − a2 − a†a + aa†

)
. (5.39)

Wegen (5.36) und (5.37) können zum Erwartungswert bezüglich |n〉 nur die Terme
mit gleich vielen a und a† Leiteroperatoren beitragen:

〈n|x2|n〉 =
x2

0

2
〈n|
(
a†a︸︷︷︸
=N

+ aa†︸︷︷︸
=N+1

)
|n〉 =

x2
0

2
〈n|(2N + 1)|n〉

= x2
0

(
n +

1

2

)
, (5.40)

〈n|p2|n〉 =
~2

2x2
0

〈n|
(
a†a︸︷︷︸
=N

+ aa†︸︷︷︸
=N+1

)
|n〉 =

~2

x2
0

(
n +

1

2

)
. (5.41)

Wegen (5.38) entsprechen Gl. (5.40) und (5.41) gleichzeitig den mittleren Schwan-
kungsquadraten. Damit erhalten wir die Unschärferelation

〈(∆x)2〉〈(∆p)2〉 = 〈n|x2|n〉〈n|p2|n〉 =
~2

x2
0

x2
0

(
n +

1

2

)2

≥ ~2

4
. (5.42)

Der Grundzustand n = 0 erfüllt damit die Unschärferelation minimal,

〈(∆x)2〉〈(∆p)2〉 =
~2

4
. Da der Faktor

1

2
in Gl. (5.40) und (5.41) den gleichen Ur-

sprung hat wie die Grundzustandsenergie, sind die Existenz der Grundzustandsen-
ergie und die Unschärferelation direkt miteinander verknüpft. Mit zunehmendem
n sind die Zustände aber zunehmend im Orts- und im Impulsraum delokalisiert.
(NB: Viele Systeme der modernen Physik lassen sich auf ungekoppelte Systeme

von harmonischen Oszillatoren abbilden, so z.B. atomare Schwingungsbewegungen
in Molekülen, in Kristallgittern, ebenso wie die quantisierten Anregungen des elek-
tromagnetischen Strahlungsfeldes (beschrieben durch die quellenfreien Maxwell-
Gleichungen). In all diesen Systemen erzeugt a† bzw. vernichtet a eine quantisierte
Anregung. Der Besetzungszahloperator N zählt dann die Zahl der Phononen (bzw.
Photonen) im Kristall (bzw. im Strahlungsfeld). In diesen Systemen können also
die höheren Anregungen als höhere Teilchenzahl uminterpretiert werden.)

5.4 Kohärente Zustände

Auf der Suche nach Zuständen, die im klassischen Grenzfall tatsächlich Schwin-
gungsbewegungen im mittleren Ort und Impuls ausführen, versuchen wir im Fol-
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genden Energieeigenfunktionen geeignet zu überlagern. Wichtiges Kriterium dabei
ist, dass die resultierenden Wellenpakete nicht zerfließen und die Unschärferela-
tion auch nach langen Zeiten noch möglichst minimal erfüllen. Wir wissen, dass
letzteres für den Grundzustand erfüllt ist. Dies bleibt auch gültig, wenn wir den
Grundzustand verschieben:

ψξ(x
′) = ψ0(x′ − xd), xd =

√
2ξx0, (5.43)

d.h. wir messen die Verschiebung im xd in Einheiten der Längenskala x0 mit der
dimensionslosen Zahl ξ. Die Verschiebung lässt sich mit dem Translationsoperator
erzeugen; dazu fassen wir zunächst ψξ(x′) als Projektion eines Kets |ξ〉 in den
Ortsraum auf,

ψξ(x
′) = 〈x′|ξ〉. (5.44)

Der Zusammenhang mit dem Grundzustand ist dann gegeben durch

|ξ〉 = T (xd)|0〉 = e−
i
~xdp|0〉 ≡ eξa

†−ξa|0〉. (5.45)

Wir verwenden nun die Baker-Campbell-Hausdorff-Formel

eAeB = eA+B+1
2 [A,B] für[A,B] ∼ 1. (5.46)

Damit folgt

eξa
†−ξa = eξa

†
e−ξae−

1
2 [a†,−a]ξ2

= e−
ξ2

2 eξa
†
e−ξa. (5.47)

Weil a den Grundzustand annihiliert, gilt

e−ξa|0〉 =

(
1− ξa +

1

2
ξ2a2 − . . .

)
|0〉 = |0〉, (5.48)

und wir erhalten
|ξ〉 = e−

ξ2

2 eξa
†|0〉. (5.49)

Dieser Zustand ist Eigenzustand des Absteigeoperators. Um dies zu zeigen, ver-
wenden wir (vgl. Übungen)

e−ξa
†
aeξa

†
= a− ξ [a†, a]︸ ︷︷ ︸

=−1

+
ξ2

2
[a†, [a†, a]︸ ︷︷ ︸

=−1

]︸ ︷︷ ︸
=0

+ . . .

= a + ξ, (5.50)

woraus folgt, dass

a|ξ〉 = ae−
ξ2

2 eξa
†|0〉 = e−

ξ2

2 eξa
†
(a + ξ) |0〉

= ξ|ξ〉. (5.51)
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Damit ist |ξ〉 also ein Eigenket von a mit Eigenwert ξ. Im Übrigen ist es nützlich,
auch komplexe Verschiebungen ξ ∈ C zuzulassen. Berücksichtigt man dies, so
ergibt sich

|ξ〉 = e−
|ξ|2
2 eξa

†|0〉. (5.52)

Entwickeln wir die Exponentialfunktion,

|ξ〉 = e−
|ξ|2
2

∞∑
n=0

ξn

n!
(a†)n|0〉︸ ︷︷ ︸
=
√
n!|n〉

= e−
|ξ|2
2

∞∑
n=0

ξn√
n!
|n〉, (5.53)

so sehen wir, dass diese Zustände eine Überlagerung unendlich vieler Energieeigen-
zustände sind. Da wir die Zeitentwicklung der Energieeigenzustände kennen, ergibt
sich direkt die Zeitentwicklung (mit |ξ, t = 0〉 = |ξ〉):

|ξ, t〉 = e−
|ξ|2
2

∞∑
n=0

ξn√
n!
e−

i
~Ent|n〉

= e−
i
2ωt

(
e−
|ξ|2
2

∞∑
n=0

(
ξe−iωt

)n
√
n!
|n〉

)
= e−

i
2ωt|ξ(t)〉, mit ξ(t) = ξe−iωt. (5.54)

Diese wichtige Beobachtung besagt, dass ein anfänglicher Zustand |ξ〉 zu allen
Zeiten ein solcher Zustand mit oszillierendem Eigenwert ξ(t) = e−iωtξ bleibt. Diese
Eigenschaft definiert einen kohärenten Zustand. Im Ortsraum finden wir damit
direkt die zugehörige Wellenfunktion

ψξ(x
′, t) = 〈x′|ξ, t〉 = e−

i
2ωtψ0(x′ − xde−iωt) (5.55)

und die Wahrscheinlichkeitsdichte:

|ψξ(x′, t)|2 = |ψ0(x′ − xd(t))|2 , mit xd(t) = xd cos(ωt). (5.56)

Im Ortsraum entspricht die Wahrscheinlichkeitsdichte des kohärenten Zustands
also einer harmonischen Schwingung der Grundzustandswellenfunktion um den
Ursprung.
Zur Berechnung von Erwartungswerten und Unschärfen bezüglich eines kohärenten

Zustands ist die Eigenwertgleichung a|ξ〉 = ξ|ξ〉 wieder sehr nützlich:

〈x〉ξ = 〈ξ|x|ξ〉 =
x0√

2

(
〈ξ|a + a†|ξ〉

)
=
x0√

2
(ξ + ξ∗)

=
√

2x0Reξ, (5.57)
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wobei wir 〈ξ|ξ〉 = 1 benutzt haben. Für den mittleren Impuls gilt

〈p〉ξ = 〈ξ|p|ξ〉 = i
~√
2x0

(
〈ξ|a† − a|ξ〉

)
=
√

2
~
x0

Imξ. (5.58)

Für zeitabhängige ξ(t) gilt folglich

〈x〉ξ(t) = xd cosωt, und 〈p〉ξ(t) = −mωxd sinωt ≡ m
d

dt
〈x〉ξ(t). (5.59)

Die Orts- und Impulserwartungswerte verhalten sich also genauso, wie die Koor-
dinaten und Impulse eines klassischen harmonischen Oszillators. Analog findet
man

〈x2〉ξ =
x2

0

2
〈(a†)2 + 2a†a + a2 + 1〉ξ =

x2
0

2
+ 〈x〉2ξ

〈p2〉ξ = − ~2

2x2
0

〈(a†)2 − 2a†a + a2 − 1〉ξ =
~2

2x2
0

+ 〈p〉2ξ (5.60)

und gleichermaßen für ξ → ξ(t), so dass wir für die Varianzen

〈(∆x)2〉 =
x2

0

2
, 〈(∆p)2〉 =

~2

2x2
0

(5.61)

erhalten. Es folgt die Unschärfebeziehung

〈(∆x)2〉〈(∆p)2〉 =
~2

4
, (5.62)

d.h. die kohärenten Zustände erfüllen die Unschärferelation minimal. Kohärente
Zustände sind also nicht-zerfließende minimal unscharfe oszillierende Wellenpakete
und damit das quantenmechanische Analogon zum klassischen harmonischen Os-
zillator.
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6 Symmetrien in der Quantenmechanik

Symmetrien spielen eine große Rolle in der Physik. Zum einen liefern Symme-
trien große Hilfestellung bei der Konstruktion einer geeigneten Beschreibung eines
Systems (z.B. in der Form von Bewegungsgleichungen). Zum anderen sind Sym-
metrien über das Noether-Theorem direkt mit Erhaltungsgrößen verknüpft, die oft
die Lösung eines Systems stark vereinfachen.
In der Quantenmechanik verstehen wir unter Symmetrie die Eigenschaft eines

Systems, unter bestimmten Transformationen die Wahrscheinlichkeiten und Eigen-
werte von Observablen zu erhalten. Eine Symmetrie ist also eine Abbildung Γ, die
bijektiv auf dem Raum der (physikalisch realisierbaren) Zustände wirkt und die
Übergangswahrscheinlichkeiten erhält:

|〈φ|ψ〉|2 = |〈Γφ|Γψ〉|2. (6.1)

Wir haben bereits bei den Translationen und Zeitentwicklungen gesehen, dass
unitäre Operatoren eine solche wahrscheinlichkeitserhaltende Eigenschaft haben.
(NB: In der Tat besagt das Wigner-Theorem, dass Γ entweder linear unitär oder

anti-linear anti-unitär sein muss, vg. Galindo& Pascual, Quantum Mechanics I ).
Im Folgenden werden wir neben den bereits diskutierten Translationen und der

Zeitentwicklung noch weitere wichtige Symmetrien vorstellen.

6.1 Raumspiegelungen

Unter einer Raumspiegelung bzw. Paritätstransformation P ändert sich das Vorze-
ichen aller räumlichen Koordinaten,

P : x′ → −x′. (6.2)

Nun muss ein unitärer Operator existieren, der diese Raumspiegelung auf dem
quantenmechanischen Zustandsraum implementiert:

|ψ〉 → |ψ̃〉 = Γ(P )|ψ〉, Γ†(P ) = Γ−1(P ). (6.3)

Für Operatoren muss entsprechend gelten:

Ã = Γ(P )AΓ†(P ). (6.4)
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In der Ortsraumdarstellung ergibt sich

ψ̃(x′) = 〈x′|ψ̃〉 = 〈x′|Γ(P )|ψ〉 !
= 〈−x′|ψ〉 = ψ(−x′), (6.5)

d.h. 〈x′|Γ(P ) ≡ 〈−x′|. Im Ortsraum lässt sich die Unitarität von P direkt nach-
weisen:

〈ψ̃1|ψ̃2〉 = 〈ψ̃1|Γ†(P )Γ(P )|ψ̃2〉

=

∫
d3x′ 〈ψ̃1|Γ†(P )|x′〉〈x′|Γ(P )|ψ̃2〉

=

∫
d3x′ ψ∗1(−x′)ψ2(−x′)

=

∫
d3xψ∗1(x)ψ2(x) = 〈ψ1|ψ2〉, (6.6)

wobei wir im vorletzten Schritt die Substitution x′ = −x benutzt haben. Wegen
ψ1 und ψ2 beliebig, folgt Γ†(P )Γ(P ) = 1, bzw. Γ†(P ) = Γ−1(P ). Des Weiteren
gilt: ˜̃

ψ(x′) = 〈x′|Γ(P )Γ(P )|ψ〉 = 〈x′|Γ(P )|ψ̃〉
= ψ̃(−x′) = ψ(x′), (6.7)

d.h.
Γ2(P ) = 1. (6.8)

Die Eigenwerte von Γ(P ) können daher nur +1 oder −1 sein. Die Eigenfunktionen
zum Eigenwert 1 sind damit gerade, zum Eigenwert −1 also ungerade Funktionen:

ψ̃(x′) = ψ(−x′) = ψ(x′) (gerade)
ψ̃(x′) = ψ(−x′) = −ψ(x′) (ungerade). (6.9)

Für einen Hamilton-Operator der Form H =
p2

2m
+ V (x) mit einem Potential der

Eigenschaft
V (x) = V (−x), (6.10)

gilt wegen
x̃ = Γ(P )xΓ†(P ) = −x, (6.11)

und gleichsam für (entwickelbare) Funktionen f (x):

f̃ (x) = Γ(P )f (x)Γ†(P ) = f (−x), (6.12)

so dass
H̃(x,p) = Γ(P )H(x,p)Γ†(P ) = H(−x,−p) = H(x,p), (6.13)
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und entsprechend
Γ(P )H(x,p) = H(x,p)Γ(P ). (6.14)

D.h., falls V (entwickelbar und) gerade ist, vertauscht H mit Γ(P ). Es gibt dann
gemeinsame Eigenfunktionen mit Eigenwerten +1 oder −1, d.h. die Eigenfunk-
tionen von H sind entweder gerade oder ungerade. Diese Eigenschaft haben wir
bereits beim harmonischen Oszillator sowie beim symmetrischen Potentialtopf ex-
plizit verifiziert.

6.2 Translationen

Wir haben bereits den Translationsoperator T (a) kennengelernt, der mit der Ver-
schiebung des Ortes eines Teilchens verknüpft ist:

x→ x + a. (6.15)

Die Koordinaten-Translationen (6.15) bilden eine 3-dimensionale kontinuierliche
Lie-Gruppe. Die Gruppe ist abelsch, weil zwei beliebige Translationen kommu-
tieren. Die Translationsgruppe wird parametrisiert durch die Verschiebung a, d.h.
die Gruppe ist isomorph zum Vektorraum R3. Den auf Zustandsvektoren und
Operatoren wirkenden Translationsoperator haben wir bereits kennengelernt:

|ψ〉 → |ψ̃〉 = T (a)|ψ〉,
A → Ã = T (a)AT †(a). (6.16)

Im Ortsraum gilt z.B.

ψ(x′)→ ψ̃(x′) = 〈x′|T (a)|ψ〉 = ψ(x′ − a). (6.17)

Die Darstellung von T (a) mit Hilfe des Impulsoperators p

T (a) = e−
i
~p·a, (6.18)

zeigt die Unitarität von T (a) manifest. Die Abbildung

a→ T (a) (6.19)

ist eine Abbildung der Gruppe R3 der Translationen in eine Gruppe von unitären
Operatoren (6.18) auf dem quantenmechanischen Zustandsraum. (NB: Man spricht
dabei von einem Gruppenhomomorphismus,

T (a + b) = T (a)T (b) = T (b)T (a), T−1(a) = T (−a). (6.20)

T (a) ist also eine unitäre Darstellung der Translationen auf dem Hilbertraum.)
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Die abelsche Natur der Translationen, x → x + a + b = x + b + a, überträgt
sich auf T (a):

[T (a), T (b)] = 0, ∀a,b ∈ R3. (6.21)
Wann vertauscht H mit T (a)? Wegen

H → T (a)HT †(a) = H(x− a,p) (6.22)

ist H von der Form H =
p2

2m
+V (x) genau dann translationsinvariant, wenn V (x)

translationsinvariant ist, d.h. wenn

V (x) = V (x + a), ∀a. (6.23)

Die ist also nur für konstante Potentiale erfüllt. D.h. nur in Abwesenheit von
äußeren Kräften ist der Hamilton-Operator für ein Teilchen translationsinvariant.
Nur für diesen Fall gilt dann [p, H ] = 0, so dass der Impuls eine Konstante der
Bewegung ist, denn

H = T (a)HT †(a) = e−
i
~p·aHe

i
~p·a = H − i

~
[p, H ]︸ ︷︷ ︸

=0

·a +O(a2). (6.24)

Betrachten wir jedoch ein quantenmechanisches System mit N Teilchen und einem
Hamilton-Operator der Form

H =

N∑
i=1

p2
i

2mi
+ V (x1, . . . ,xN), (6.25)

so verschieben sich unter Translationen alle Koordinaten,

T (a)HT †(a) = H(x1 − a, . . . ,xN − a,p1, . . . ,pN), (6.26)

so dass der Translationsoperator die Gestalt hat

T (a) =
∏
i

Ti(a) =
∏
i

e−
i
~pi·a = e−

i
~
∑N
i=1 pi·a = e−

i
~P·a. (6.27)

Hier finden wir den Gesamtimpuls P = p1 +p2 + . . .+pN . Der Hamilton-Operator
ist nun translationsinvariant, wenn

V (x1, . . . ,xN) = V (x1 + a, . . . ,xN + a), ∀a. (6.28)

Dies ist nicht nur für konstante Potentiale erfüllt. Es genügt, wenn V z.B. nur von
den Teilchenabständen abhängt; bzw. allgemeiner

H =

N∑
i=1

p2
i

2mi
+
∑
i<j

Vij(xi − xj). (6.29)
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Dies beschreibt also ein translationsinvariantes System, bei dem wegen
H = e−

i
~P·aHe

i
~P·a der GesamtimpulsP eine Konstante der Bewegung ist, [P, H ] =

0.
Ein wichtiges Beispiel dieser Art ist die Coulomb-Wechselwirkung Vij(xi−xj) ∼

1

|xi − xj|
, die im Wasserstoffatom (wie auch in allen anderen Atomen) eine zentrale

Rolle spielt.

6.3 Drehungen

Eine weitere Klasse wichtiger Symmetrien in vielen physikalischen Systemen sind
die Drehungen. Im Gegensatz zu den Translationen hängt das Ergebnis von hin-
tereinander ausgeführten Drehungen i.A. von der Reihenfolge der einzelnen Drehun-
gen ab. Übertragen in die Quantenmechanik erwarten wir also, dass die zugehöri-
gen Operatoren der Transformation nicht mehr vertauschen.

6.3.1 Unitäre Darstellungen der Drehungen

Drehungen im Ortsraum werden beschrieben durch orthogonale Drehmatrizen R,

R : x→ x̃ = Rx (6.30)

mit
RT = R−1, (6.31)

so dass das Skalarprodukt invariant bleibt,

x̃ · ỹ = (Rx) · (Ry) = x ·RTRy = x · y. (6.32)

Die Menge aller Drehungen bilden die spezielle orthogonale Gruppe SO(3) der
eigentlichen Drehungen im Raum.
Wir definieren die Wirkung von Drehungen auf die Wellenfunktion im Ortsraum

wie folgt:
ψ(x′)→ ψ̃(x′) = 〈x′|Γ(R)|ψ〉 = ψ(R−1x′). (6.33)

(NB: Aus Konventionsgründen bzw. Kompatibilitätsgründen mit der Literatur
definieren wir die Drehungen der Wellenfunktionen als Rückwärtsdrehungen im
Ortsraum, vgl. 〈x′|T (a)|ψ〉 = ψ(x′ − a).)

Γ(R) ist unitär, weil sich das Integrationsmaß im Skalarprodukt bei Drehungen
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nicht ändert,

〈ψ̃|φ̃〉 =

∫
d3x′ ψ̃∗(x′)φ̃(x′) =

∫
d3x′ ψ∗(R−1x′)φ(R−1x′)

=

∫
d3y′ ψ∗(y′)φ(y′) = 〈ψ|φ〉, (6.34)

weil d3x′ = d3y′ mit y′ = R−1x′ invariant ist.
Wegen 〈ψ̃|φ̃〉 = 〈ψ|Γ†(R)Γ(R)|φ〉 für beliebige ψ und φ muss Γ(R) unitär sein,

d.h. Γ†(R) = Γ−1(R). Die Abbildung R → Γ(R) ist eine Darstellung der
Drehgruppe im quantenmechanischen Zustandsraum,

Γ(R1)Γ(R2) = Γ(R1R2),

Γ(R−1) = Γ†(R),

Γ(13) = 1. (6.35)

Zwei Drehungen kommutieren i.A. nicht, [R1, R2] 6= 0, so dass auch [Γ(R1),Γ(R2)] 6=
0 i.A. gilt. Wann vertauscht der Hamilton-Operator H mit den Drehungen? Seine
Transformation lautet

H → Γ(R)H(x,p)Γ†(R) = H(R−1x, R−1p). (6.36)

Kinetische Terme der Form
p2

2m
sind invariant unter Drehungen, weil p2 drehin-

variant ist. Potentiale sind drehinvariant, wenn sie nur vom Betrag des Ortes
abhängen,

V (r) = V (|x|) = V (|R−1x|), mit r ≡ |x|, (6.37)
d.h. Zentralpotentialprobleme haben Eigenfunktionen, die auch den Drehoperator
diagonalisieren. Bei N quantenmechanischen Teilchen sind z.B. Potentiale, die
nur vom Teilchenabstand abhängen, drehinvariant, V =

∑
i<j

Vij(|xi − xj|). Das

Coulomb-Potential ist genau in diesem Sinne drehinvariant.

6.3.2 Einteilchensysteme und Drehimpulsalgebra

Im Folgenden betrachten wir Zentralpotentiale, die, wie oben diskutiert, drehin-
variant sind. D.h. wir beschränken uns auf Einteilchen-Hamilton-Operatoren der
Form

H =
p2

2m
+ V (r), r = |x|. (6.38)

Weil Γ(R) unitär ist, lässt sich Γ(R) schreiben als

Γ(R) = e−
i
~L, mit L† = L. (6.39)
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Für drehinvariante Potentiale (6.38) kommutieren Γ(R) und L mit H. L ist also
eine Konstante der Bewegung.
Wir betrachten zunächst einmal Drehungen um eine Achse n̂ (Einheitsvektor

n̂ · n̂ = 1) um den Winkel θ im 3-dimensionalen Ortsraum:

θ
−n̂× (n̂× x)

n̂× x

n̂

x
R(n̂, θ)x

Es gilt

R(n̂, θ)x = (n̂ · x)n̂− n̂× (n̂× x) cos(θ) + n̂× x sin(θ). (6.40)

oder infinitesimal
R(n̂, θ)x = x + n̂× xθ +O(θ2), (6.41)

d.h.
d

dθ
R(n̂, θ)

∣∣∣∣
θ=0

= n̂× x =: Ωnx (6.42)

mit der reellen schiefsymmetrischen Matrix

Ωn =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 , (6.43)

welche Vektoren infinitesimal um die Achse n̂ dreht. Da n̂2 = 1, folgt

Ω2
nx = n̂× (n̂× x) = n̂(n̂ · x)− x,

Ω3
nx = −n̂× x = −Ωnx, (6.44)

d.h. alle geraden Potenzen von Ωn sind ∼ Ω2
n und alle ungeraden Potenzen ∼ Ωn:

Ω2n
n = (−1)n+1Ω2

n, Ω2n+1
n = (−1)nΩn, n = 0, 1, 2, . . . (6.45)

Damit lässt sich θΩn leicht exponentieren:

eθΩn = 1 + Ωn

(
θ − θ3

3!
+ . . .

)
+ Ω2

n

(
θ2

2!
− θ4

4!
+ . . .

)
= 1 + Ω2

n − Ω2
n cos θ + Ωn sin θ. (6.46)

89



=⇒ eθΩnx = (n̂ · x)n̂− n̂× (n̂× x) cos(θ) + n̂× x sin(θ) ≡ R(n̂, θ)x, (6.47)

d.h. wir haben eine Matrix-Identität für R(n̂, θ) gefunden:

R(n̂, θ) = eθΩn. (6.48)

Die Matrix Ωn erzeugt also Drehungen um die Achse n̂. Analog suchen wir nun den
selbstadjungierten Operator Ln, der die Drehungen um n̂ im quantenmechanischen
Zustandsraum erzeugt,

Γ(R(n̂, θ)) = e−
i
~L(n̂,θ) = e−

i
~θLn. (6.49)

D.h. wir suchen Ln so, dass

ψ̃(x′) = ψ(e−θΩnx′) = 〈x′|e−
i
~θLn|ψ〉. (6.50)

Entwickeln wir die linke Seite nach θ, so ergibt sich daraus:

ψ(e−θΩnx′) = ψ(x′)− θΩnx
′ · ∇ψ(x′) +

θ2

2
(Ωnx

′ · ∇)2ψ(x′) + . . .

= e−θ(Ωnx
′)·∇ψ(x′). (6.51)

Ein Vergleich mit Gl. (6.50) liefert uns die Ortsraumdarstellung von Ln:

〈x′|Ln = −i~(Ωnx
′) · ∇〈x′|. (6.52)

Mit Hilfe des Impulsoperators folgt die Operator-Identität:

Ln = (n̂× x) · p = n̂ · (x× p). (6.53)

Damit entspricht Ln der Projektion des Drehimpulsoperators auf die Drehachse,

Ln = n̂ · L, mit L = x× p. (6.54)

Die drei Komponenten des Drehimpulsoperators

Li = εijkxjpk, i, j, k = 1, 2, 3 (6.55)

erzeugen also Drehungen um die Koordinatenachsen. Die Selbstadjungiertheit von
L lässt sich direkt nachprüfen,

L†i = (εijkxjpk)
† = εijkp

†
kx
†
j = εijkpkxj

= εijk

xjpk − [xj, pk]︸ ︷︷ ︸
i~δjk

 = Li − i~εijj = Li. (6.56)
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Mit Hilfe von Gl. (6.55) lässt sich die wichtige Drehimpulsalgebra ableiten. Wir
beginnen mit den Vertauschungsregeln für Li mit xj und pj:

[Li, xj] = εik`[xkp`, xj] = εik`xk [p`, xj]︸ ︷︷ ︸
−i~δ`j

= i~εijkxk

[Li, pj] = εik`[xkp`, pj] = εik` [xk, pj]︸ ︷︷ ︸
i~δkj

p` = i~εij`p`. (6.57)

Damit folgt für die Drehimpulsvertauschungsregeln:

[Li, Lj] = εj`k[Li, x`pk] = εj`k (x`[Li, pk] + [Li, x`]pk)

= i~

εj`kεikmx`pm + εj`kεi`mxmpk︸ ︷︷ ︸
=εkj`εikmxmp`


= i~ εj`kεikm︸ ︷︷ ︸

=δjmδ`i−δjiδ`m

(x`pm − xmp`)

= i~ (xipj − xjpi) . (6.58)

Wegen

εijkLk = εijkεk`mx`pm = (δi`δjm − δimδj`)x`pm = xipj − xjpi, (6.59)

folgt
[Li, Lj] = i~εijkLk. (6.60)

Eine wichtige Folgerung aus Gl. (6.60) ist, dass die Komponenten des Drehimpulses
jeweils zueinander inkompatible Observable sind. Zwar vertauscht jede einzelne
Komponente mit H, aber nur eine Drehimpulskomponente kann gleichzeitig mit
H diagonalisiert und somit scharf gemessen werden.
Sehr ähnliche Beobachtungen haben wir bereits beim Stern-Gerlach-Experiment

gemacht. In der Tat gehorchen die Spin-Komponenten Si ebenfalls der gleichen
Algebra Gl. (6.60). Während die Si jedoch einen internen Freiheitsgrad (Spin) des
Elektrons beschreiben, bezeichnet Li den Bahndrehimpuls eines Teilchens (z.B. in
einem Potential).
Sei V ∈ {x,p,L}. Aus den Vertauschungsregeln folgt

Γ(R)VΓ†(R) = e−
i
~θLnVe

i
~θLn = V +

i

~
θ[Ln,V] +O(θ2)

= V + θn̂×V +O(θ2)
(6.41)

= R(n̂, θ)V. (6.61)

(NB: Hier haben wir [n̂ · L, Vj] = ni[Li, Vj] = i~niεijkVk = i~n̂ ×V benutzt.) In
der Tat gilt diese Beziehung Gl. (6.61) nicht nur infinitesimal, sondern allgemein.
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Gleichung (6.61) bedeutet, dass sich x, p und L als Operatoren genau wie Vek-
toren im 3-dimensionalen Raum unter Drehungen transformieren. Man spricht
daher auch von Vektoroperatoren. Im Gegensatz dazu gilt für Zentralpotentiale

Γ(R)HΓ†(R) = H (6.62)

oder Γ(R)(x · p)Γ†(R) = x · p, d.h.

[L, H ] = 0, und [L,x · p] = 0. (6.63)

H und x · p transformieren also wie skalare unter Drehungen, heißen folglich
skalare Operatoren.

6.3.3 Eigenwertproblem des Drehimpulses

Mit dem Bahndrehimpuls L und dem Stern-Gerlach-Spin S haben wir bereits zwei
Größen kennengelernt, die die Algebra (6.60) erfüllen. Allgemein bezeichnet man
eine Größe J, die

[Ji, Jj] = i~εijkJk, J †i = Ji, i, j, k = 1, 2, 3, (6.64)

erfüllt, als Drehimpuls, unabhängig davon, welche konkrete Bedeutung oder welchen
Ursprung sie hat (z.B. Bahndrehimpuls, Spin, gesamter Drehimpuls, grand spin,
etc.).
Im Folgenden wollen wir also versuchen, die Eigenwerte und Eigenfunktionen des

Drehimpulses nur mit Hilfe von Gl. (6.64) zu konstruieren. Konventionsbedingt
wählt man zur Diagonalisierung J3 aus (J1 und J2 sind dann zwingend nicht-
diagonal). Im Folgenden sind die Leiteroperatoren

J± = J1 ± iJ2, J †− = J+ (6.65)

nützlich. Diese erfüllen die Vertauschungsrelationen

[J3, J±] = [J3, J1]± i[J3, J2] = i~J2 ± ~J1 = ±~J±,
[J+, J−] = i[J2, J1]− i[J1, J2] = 2~J3. (6.66)

Wir beobachten, dass das Betragsquadrat des Drehimpulses mit allen Ji vertauscht,

[J2, Jj] = [JiJi, Jj] = Ji [Ji, Jj]︸ ︷︷ ︸
i~εijkJk

+ [Ji, Jj]︸ ︷︷ ︸
i~εijkJk

Ji

= i~εijk (JiJk + JkJi)︸ ︷︷ ︸
symmetrisch in i, k

= 0. (6.67)

Wir können also J2 simultan mit J3 diagonalisieren.
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Das Quadrat eines selbstadjungierten Operators ist nicht-negativ,

〈ψ|J2|ψ〉 = 〈ψ|JiJi|ψ〉 =
(
〈ψ|J †i

)(
Ji|ψ〉

)
= 〈φ|φ〉 ≥ 0, mit φ = Ji|ψ〉. (6.68)

Ist |ψ〉 also Eigenfunktion von J2 mit Eigenwert λ, so folgt

〈ψ|J2|ψ〉 = λ〈ψ|ψ〉 ≥ 0 =⇒ λ ≥ 0. (6.69)

Wir schreiben den nicht-negativen Eigenwert λ als

λ = ~2j(j + 1), j ≥ 0 (6.70)

mit zu bestimmendem j. Der Faktor ~2 ist so gewählt, dass j eine dimensionslose
Zahl ist; dies ist die Drehimpulsquantenzahl.
Die zu bestimmenden Eigenwerte von J3 bezeichnen wir mit ~j3, wobei j3 wieder

dimensionslos ist und magnetische Quantenzahl genannt wird (im SG-Experiment

entspricht j3 =
S ′z
~

= ±1

2
). Die normierten simultanen Eigenfunktionen von J2

und J3 seien also |j, j3〉:

J2|j, j3〉 = ~2j(j + 1)|j, j3〉, J3|j, j3〉 = ~j3|j, j3〉. (6.71)

Im Folgenden benötigen wir

J±J∓ = J2
1 + J2

2 ∓ i(J1J2 − J2J1) = J2 − J2
3 ± ~J3. (6.72)

Wegen J †− = J+ gilt auch

〈jj3|J±J∓|jj3〉 =
(
〈jj3|J †∓

)(
J∓|jj3〉

)
≥ 0. (6.73)

Mit Gl. (6.72) folgt:

0 ≤ 〈jj3|J±J∓|jj3〉 = 〈jj3|J2 − J2
3 ± ~J3|jj3〉

= ~2(j(j + 1)− j2
3 ± j3) (6.74)

= ~2

((
j +

1

2

)2

− 1

4
−
(
j3 ∓

1

2

)2

+
1

4

)

=⇒
(
j +

1

2

)2

≥
(
j3 ∓

1

2

)2

. (6.75)

Daraus folgt
− j ≤ j3 ≤ j. (6.76)
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Mit ähnlichen Argumenten wie beim harmonischen Oszillator lassen sich die Eigen-
werte j und j3 mit Hilfe der Leiteroperatoren bestimmen. Es gilt:

J3J±|j, j3〉 = J±(J3 ± ~)|j, j3〉 = ~J±(j3 ± 1)|j, j3〉
= ~(j3 ± 1)J±|j, j3〉. (6.77)

J±|j, j3〉 ist also Eigenfunktion von J3 mit Eigenwert ~(j3 ± 1). Einschließlich
einer zu bestimmenden j und/oder j3-abhängigen Normierungskonstante c± gilt
der Zusammenhang

J±|j, j3〉 = c±|j, j3 ± 1〉. (6.78)
Die Normierungskonstante c± sei so gewählt, dass die Zustände |j, j3〉 auf 1 normiert
sind. Wegen Gl. (6.74) gilt:

〈j, j3|J∓J±|j, j3〉
(6.78)

= |c±|2 〈j, j3 ± 1|j, j3 ± 1〉︸ ︷︷ ︸
=1

(6.74)
= ~2

(
j(j + 1)− j2

3 ∓ j3

)
,

woraus nach geeigneter Phasenwahl folgt, dass

J±|j, j3〉 = ~
√
j(j + 1)− j3(j3 ± 1)|j, j3 ± 1〉. (6.79)

Ist ~j3 Eigenwert von J3, so ist es auch ~(j3±1), es sei denn
√
j(j + 1)− j3(j3 ± 1) =

0, so dass Gl. (6.79) einen Nullvektor liefert. Die wegen Gl. (6.76) (−j ≤ j3 ≤ j)
einzig erlaubten Lösungen, für die die Wurzel verschwindet, ist

j3 = j, für
√
j(j + 1)− j3(j3 + 1)

und j3 = −j, für
√
j(j + 1)− j3(j3 − 1). (6.80)

Damit Gl. (6.76) für alle durch Gl. (6.79) erzeugten Eigenwerte ~j3 erfüllt ist, muss
das Abbruchkriterium Gl. (6.80) eintreten (sonst könnte mit Gl. (6.79) ein beliebig
großer oder kleiner Eigenwert ~j3 erzeugt werden). Dies bedeutet, dass ~j und
−~j Eigenwerte von J3 sein müssen. Da nun die Differenz zweier Eigenwerte von
J3 wegen Gl. (6.79) eine ganze Zahl mal ~ sein muss, muss

j − (−j) = 2j ganzzahlig (6.81)

sein, d.h. j muss ganz oder halbganz sein:

j = 0,
1

2
, 1,

3

2
, 2, . . . (6.82)

Da negative j keine neuen Eigenwerte von J2, nämlich ~2j(j + 1), liefern, genügt
es, sich auf nicht-negative j zu beschränken. Für jedes j gibt es dann 2j + 1

verschiedene Werte von j3:

j3 = −j,−j + 1, . . . , j − 1, j. (6.83)
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Der Eigenwert ~2j(j + 1) von J2 ist also (2j + 1)-fach entartet. Da J3 und J2

selbstadjungiert sind, bilden die Eigenvektoren |j, j3〉 ein Orthonormalsystem

〈j, j3|j′, j′3〉 = δjj′δj3j′3. (6.84)

Zusammenfassend ergibt sich folgendes Bild: Im Zustand |j, j3〉 ist die Länge des
Drehimpulsvektors = ~

√
j(j + 1), seine 3-Komponente ist = ~j3. Die transver-

salen Komponenten im Betrag,
√
J2

1 + J2
2 =

√
J2 − J2

3 , haben die Länge

~
√
j(j + 1)− j2

3 , die Richtung der transversalen Komponenten bleibt allerdings
unbestimmt, da J1, J2 mit J3 inkompatibel sind. Die Unschärfe lässt sich leicht
berechnen:

〈j, j3|(∆J1)2|j, j3〉〈j, j3|(∆J2)2|j, j3〉 ≥
1

4
|〈j, j3| [J1, J2]︸ ︷︷ ︸

=i~J3

|j, j3〉|2 =

(
~j3

2

)2

.

(6.85)
Wie angesprochen gilt diese Lösung des Drehimpulseigenwertproblems für viele
Beispiele. Im Fall des Bahndrehimpulses J ≡ L = x× p werden nur die ganz-
zahligen Eigenwerte realisiert, siehe unten. Im Fall des Stern-Gerlach-Experiments

gilt J ≡ S=̂
~
2
σ, so dass j =

1

2
, J2 = S2 =

3

4
~21, und J3 = Sz=̂

~
2
σ3 mit j3 = ±1

2
.

6.3.4 Kugelflächenfunktionen

Im Folgenden sollen die Eigenfunktionen des Bahndrehimpulses L = x×p explizit
im Ortsraum konstruiert werden. Dazu sind Kugelkoordinaten sehr nützlich,

x = rx̂ = r

sin θ cosϕ

sin θ sinϕ

cos θ

 , r = |x|, θ ∈ [0, π], ϕ ∈ [0, 2π). (6.86)

Die einzelnen Komponenten des Bahndrehimpulses in der Ortsraumdarstellung
lauten mit p→ −i~∇:

L3 = −i~ (x1∂2 − x2∂1) = −i~ ∂

∂ϕ
,

L1 = i~
(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
,

L2 = i~
(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
, (6.87)

wobei wir die Darstellung des Gradienten in Kugelkoordinaten verwendet haben
(vgl. Übungen). (NB: der Strich am Ortseigenwert x′ sei hier und auch im Folgen-
den weggelassen, da wir ausschließlich im Ortsraum arbeiten werden.)
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Aus Konventionsgründen benennen wir die Eigenwerte j und j3 um in ` ≡ j

und m ≡ j3. Da die Li nicht von r abhängen, sind die Eigenfunktionen ebenfalls
unabhängig von r. Wir nennen diese Eigenfunktionen Kugelflächenfunktionen

Y`m(θ, ϕ) := 〈x̂|`m〉. (6.88)

Aus L3Y`m = ~mY`m folgt, dass Y`m geschrieben werden kann als

Y`m(θ, ϕ) = eimϕP`m(θ), (6.89)

d.h. die Kugelflächenfunktionen separieren in eine azimutale Phase und eine noch
zu bestimmende Funktion P`m(θ). Da (θ, ϕ) und (θ, ϕ + 2π) denselben Punkt auf
der Kugeloberfläche bezeichnen, und da Y`m(θ, ϕ) ≡ Y`m(θ, ϕ+ 2π) eindeutig sein
muss, folgt die Ganzzahligkeit von m und damit auch von `.
Aus Gl. (6.87) und Gl. (6.65) folgt die explizite Ortsdarstellung der Leiteropera-

toren
L± = ~e±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
. (6.90)

Wir bestimmen zunächst Y``, d.h. für den Fall von maximalem m = `, da diese
Eigenfunktion von L+ annihiliert werden muss (vgl. Argumentation a|0〉 = 0 beim
harmonischen Oszillator):

0 = L+Y``(θ, ϕ) = ~eiϕ
(
∂

∂θ
+ i cot θ

∂

∂ϕ

)
ei`ϕP``(θ)

= ~ei(`+1)ϕ

(
∂P``(θ)

∂θ
− `cos θ

sin θ
P``(θ)

)
=⇒ Y``(θ, ϕ) = cei`ϕ sin` θ, (6.91)

mit zu bestimmender Normierungskonstante c. Die Normierungsbedingung Gl. (6.84)
lautet im Ortsraum

δ``′δmm′ = 〈`m|`′m′〉 =

∫
dΩ〈`m|x̂〉〈x̂|`′m′〉

=

∫
dΩY ∗`m(θ, ϕ)Y`′m′(θ, ϕ)

=

∫ π

0

dθ

∫ 2π

0

dϕ sin θ Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) (6.92)
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Für Y`` führt dies auf

1 =

∫ π

0

dθ

∫ 2π

0

dϕ sin θ|c|2 sin2` θ

= 2π|c|2
∫ π

0

dθ sin2`+1 θ = 2π|c|2 2

2` + 2

(2``!)2

(2`)!

=⇒ Y``(θ, ϕ) =
(−1)`

2``!

√
(2` + 1)(2`)!

4π
sin` θei`ϕ, (6.93)

wobei wir aus Konventionsgründen den Phasenfaktor zu (−1)` gewählt haben. Alle
weitere Kugelflächenfunktionen Y`m mit m < ` folgen aus Gl. (6.79):

L−|`,m〉 = ~
√
`(` + 1)−m(m− 1)|`,m− 1〉

=⇒ Y`m−1(θ, ϕ) =
1√

`(` + 1)−m(m− 1)
e−iϕ

(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
Y`m(θ, ϕ),

(6.94)

beginnend mit Y``(θ, ϕ). Ihre (semi-)explizite Form lautet

Y`m(θ, ϕ) =
(−1)`

2``!

√
(2` + 1)(` + m)!

4π(`−m)!

eimϕ

sinm θ

(
d

du

)`−m
(1− u2)`

∣∣∣
u=cos θ

, (6.95)

z.B.

Y00(θ, ϕ) =

√
1

4π
,

Y10(θ, ϕ) =

√
3

4π
cos θ,

Y1,±1(θ, ϕ) = ∓
√

3

8π
sin θe±iϕ,

Y20(θ, ϕ) =

√
5

16π
(3 cos2 θ − 1),

Y2,±1(θ, ϕ) = ∓
√

15

8π
e±iϕ sin θ cos θ,

Y2,±2(θ, ϕ) =

√
15

32π
e±2iϕ sin2 θ. (6.96)

Die Aufenthaltswahrscheinlichkeit eines quantenmechanischen Teilchens, welches
durch Kugelflächenfunktionen beschrieben wird (z.B. Wasserstoffatom), ist bezüg-
lich der Winkel ∼ |Y`m(θ, ϕ)|2.
Weitere Eigenschaften der Kugelflächenfunktionen:
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Bis auf eine Phase sind Kugelflächenfunktionen mit m und −m zueinander kom-
plex konjugiert:

Y`,−m(θ, ϕ) = (−1)mY ∗`m(θ, ϕ). (6.97)

Für ein zentralsymmetrisches Potential vertauschen mit dem Hamilton-Operator
nicht nur L2 und L3, sondern auch der Paritätsoperator Γ(P ). Die Kugelkoordi-
naten transformieren sich unter x→ −x gemäß

r → r, θ → π − θ, ϕ→ ϕ + π. (6.98)

Damit folgt

eimϕ → (−1)meimϕ, sin θ → sin θ, cos θ → − cos θ, (6.99)

Dies bedeutet für die Kugelflächenfunktionen

Γ(P )Y`m(θ, ϕ) = (−1)`Y`m(θ, ϕ). (6.100)

Zustände mit gerader Drehimpulsquantenzahl sind daher gerade unter Parität und
umgekehrt.
Wegen der Selbstadjungiertheit von L2 und L3 sind die Y`m eine vollständige

Orthonormalbasis auf der Kugeloberfläche. Jede (quadratintegrable) Funktion
f (θ, ϕ) auf der Kugeloberfläche kann daher geschrieben werden als

f (θ, ϕ) =
∑
`,m

α`mY`m(θ, ϕ), mit
∑
`,m

=

∞∑
`=0

∑̀
m=−`

, (6.101)

bzw.
f (θ, ϕ) ≡ 〈n̂|f〉 =

∑
`,m

〈n̂|`m〉︸ ︷︷ ︸
=Y`m

〈`m|f〉︸ ︷︷ ︸
=α`m

. (6.102)

Die Koeffizienten α`m ergeben sich daher aus

α`m = 〈`m|f〉 =

∫
dΩ〈`m|n̂〉〈n̂|f〉 =

∫
dΩY ∗`m(θ, ϕ)f (θ, ϕ). (6.103)

Die Vollständigkeit der Basis

1 =
∑
`,m

|`m〉〈`m| (6.104)

lautet in Ortsdarstellung

〈n̂|1|n̂′〉 = δ(ϕ− ϕ′)δ(cos θ − cos θ′) =
∑
`,m

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′). (6.105)
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Zwei Eigenschaften geben wir noch ohne Beweis an, (sie können als Übungsaufgabe
gelöst werden):
Es gilt folgende Summenregel:∑̀

m=−`

|Y`m(θ, ϕ)|2 =
2` + 1

4π
. (6.106)

Die Greensche Funktion des Laplace-Operators lautet in Kugelflächenfunktionen:

1

|x− x′|
= 4π

∑
`,m

1

2` + 1

r`<
r`+1
>

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′), (6.107)

(wie bereits aus der Elektrostatik bekannt sein dürfte). Hier bezeichnet r< den
kleineren und r> den größeren der beiden Abstände |x| und |x′|.
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7 Das Wasserstoffatom

Das Wasserstoffatom hatte für die Entwicklung der Quantenmechanik nicht nur
historische Bedeutung. Es ist sowohl für Theorie als auch für das Experiment eine
leicht zugängliches System. Daher kann es zu extrem hoher Präzision studiert wer-
den und erlaubt über die Quantenmechanik hinaus Präzisionstests der Quanten-
feldtheorie, speziell der Quantenelektrodynamik gebundender Zustände. Es ist das
einfachste Atom, und die Physik der Atomhülle somit Tor zur (Quanten-)Chemie.
Ein Verständnis der Atomhülle und ihrer Anregungen und photonischen Übergänge
ist ebenso Grundlage für die (Quanten-)optik. Viele weitere Anwendungen ließen
sich hier aufzählen.
In diesem Kapitel soll das Wasserstoffatom vereinfacht als gebundenes System

aus einem spinlosen Elektron und einem spinlosen Proton betrachtet werden.

7.1 Teilchen im Zentralfeld

Betrachten wir zunächst allgemein ein Teilchen (Elektron) in einem Zentralpoten-
tial

H =
p2

2µ
+ V (r), r = |x|, (7.1)

wobei die Masse nun durch µ bezeichnet wird (um Verwechslung mit der magneti-
schen Quantenzahl vorzubeugen).
Zunächst suchen wir einen Zusammenhang zwischen Gl. (7.1) und dem Drehim-

puls, der im Zentralpotential erhalten sein muss. Es gilt:

1

r2
(x× L)i =

1

r2
εijkxjLk =

1

r2
εijkεk`m︸ ︷︷ ︸

δi`δjm−δimδj`

xjx`pm

= x̂jx̂ipj −
x2

r2︸︷︷︸
=1

pi = x̂i(x · p)− pi

=⇒ p = x̂(x̂ · p)− 1

r2
x× L (7.2)
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Für das Impulsquadrat folgt

p2 = p ·

x̂(x̂ · p)− 1

r2︸︷︷︸
drehinvariant

x× L


= (p · x)︸ ︷︷ ︸

=x·p−[xi, pi]︸ ︷︷ ︸
i~δii

1

r2
(x · p)− p · (x× L)︸ ︷︷ ︸

=(p×x)·L=−L2

1

r2

= (x · p)
1

r2
(x · p)− 3i~

1

r2
(x · p) +

L2

r2

= −~2 1

r2

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L2

r2

(7.3)

oder auch
p2 = −~2 1

r2

∂

∂r

(
r2 ∂

∂r

)
+

L2

r2
. (7.4)

(NB: Die Ortsdarstellung des Drehimpulsoperators wurde in einer Übungsaufgabe
berechnet:

L2 = −~2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
, (7.5)

ist aber im Folgenden nicht mehr nötig, da wir die Eigenfunktionen vom Drehim-
pulsoperator L2 bereits kennen.) Die für uns relevante Form der stationären
Schrödinger-Gleichung lautet

Eψ =

(
− ~2

2µr2

∂

∂r

(
r2 ∂

∂r

)
+

L2

2µr2
+ V (r)

)
ψ (7.6)

Für ein zentralsymmetrisches Potential V (r) vertauschen H, L2 und L3, so dass
die Lösungen von Gl. (7.6) bezüglich der simultanen Eigenwertbasis aufgespannt
werden können,

ψ = ψE`m(x) = 〈x|E`m〉 (7.7)

mit

H|E`m〉 = E|E`m〉,
L2|E`m〉 = ~2`(` + 1)|E`m〉,
L3|E`m〉 = ~m|E`m〉. (7.8)
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Ein Separationsansatz unter Verwendung der Kugelflächenfunktionen führt auf

ψE`m(x) = 〈x|E`m〉 = fE`(r)Y`m(θ, ϕ), (7.9)

wobei wir in der Notation fE` schon vorweggenommen haben, dass die radiale
Wellenfunktion fE`(r) nicht von m abhängt. Da die Y`m Eigenfunktionen von L2

sind, folgt für die Radialfunktion fE`(r) die Differentialgleichung(
− ~2

2µr2

∂

∂r

(
r2 ∂

∂r

)
+

~2`(` + 1)

2µr2
+ V (r)− E

)
fE`(r) = 0. (7.10)

Führen wir eine neue Konvention für die Radialfunktion ein, uE`(r) = rfE`(r), so
vereinfacht sich die Differentialgleichung:(

−~2

2µ

∂2

∂r2
+

~2`(` + 1)

2µr2
+ V (r)− E

)
uE`(r) = 0. (7.11)

Diese Differentialgleichung (auch Fuchssche Differentialgleichung genannt) hat die
Form eines 1-dimensionalen Potentialproblems mit effektivem Potential

Veff(r) = V (r) +
~2`(` + 1)

2µr2
. (7.12)

zudem ist 0 ≤ r < ∞ zu beachten. Für nicht-verschwindenden Drehimpuls di-
vergiert Veff(r) am Ursprung für r → 0. Wie in der klassischen Mechanik ergibt
sich aber eine “Zentrifugalbarriere”, die hier in der Quantenmechanik dafür sorgen
wird, dass Wellenfunktionen mit ` > 0 am Ursprung verschwinden müssen. Diese
Erwartung wollen wir im Folgenden bestätigen.
Allgemein bedeutet die Normierbarkeitsforderung der Wellenfunktion, dass

∞ >

∫
d3x |ψE`m|2 =

∫ ∞
0

dr r2|fE`|2︸ ︷︷ ︸
=|uE`|2

∫
dΩ |Y`m|2︸ ︷︷ ︸

=1

=

∫ ∞
0

dr |uE`|2 (7.13)

Für kleine Abstände r bedeutet dies, dass es eine positive Zahl ε geben muss, so
dass

|uE`| < crε−
1
2 für r → 0 (7.14)

mit geeigneter Konstante c. Ähnlich muss uE` für r →∞ schneller als uE` ∼ r−
1
2

abfallen.
Betrachten wir zunächst große r für den Fall, dass V (r → ∞) → 0. Dann

reduziert sich die Differentialgleichung auf
~2

2µ
u′′E` + EuE` ∼ 0, für r →∞. (7.15)
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Die asymptotische Form der Lösung ist Daher

uE` ∼


e±ikr für E =

~2k2

2µ
> 0,

e−κr für E = −~
2κ2

2µ
< 0,

(7.16)

Für ein nicht-negatives Potential ist H nicht-negativ

〈ψ|H|ψ〉 ≥ 0, (7.17)

so dass alle Energieeigenwerte E ≥ 0 sein müssen. Ein Teilchen in einem nicht-
negativen Potential mit V (r →∞)→ 0 hat also keine gebundenen Zustände.
Für kleine r verwenden wir den Ansatz

uE`(r) ∼ rα(1 + a1r + a2r
2 + . . .). (7.18)

Einsetzen in die Differentialgleichung Gl. (7.11) liefert

− ~2

2µ

(
α(α− 1)rα−2 − `(` + 1)rα−2 + o(rα−2)

)
= 0, (7.19)

wobei wir angenommen haben, dass V (r) weniger singulär als r−2 für r → 0 ist.
Gl. (7.19) hat die Lösungen

α = ` + 1 und α = −`. (7.20)

Für ` = 1, 2, . . . würde α = −` die Normierbarkeitsforderung Gl. (7.14) verletzen,
so dass nur α = ` + 1 in Frage kommt. Es stellt sich heraus, dass auch für ` = 0

nur α = `+1 = 1 gilt (weil für ` = 0 der Hamilton-Operator nicht mehr wesentlich
selbstadjungiert wäre). Für ` > 0 folgt jedenfalls, dass mit

uE`(r) ∼ r`+1 oder fE`(r) ∼ r` (7.21)

alle Lösungen am Ursprung verschwinden.

7.2 Eigenwertproblem des Wasserstoffatoms

Wir definieren das spinlose Wasserstoffproblem durch das Proton-Elektron-Zwei-
teilchenproblem mit Hamilton-Operator

H =
p2
p

2mp
+

p2
e

2me
+ V (xe − xp) (7.22)
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und der entsprechenden Schrödinger-Gleichung

i~
∂

∂t
|Ψ, t〉 = H|Ψ, t〉. (7.23)

Dies ist eine 7-dimensionale Differentialgleichung, wenn wir Gl. (7.23) z.B. auf den
Ortsraum projezieren. In (6.27)-(6.29) haben wir allerdings zeigen können, dass
Hamilton-Operatoren vom Typ Gl. (7.22) mit dem Gesamtimpuls vertauschen,

[H,P] = 0, P = pp + pe (7.24)

und P somit eine Konstante der Bewegung ist. Die kanonisch konjugierte Variable
zu P ist die Schwerpunktkoordinate

X =
mpxp + mexe

M
, M = mp + me, (7.25)

so dass sich direkt verifizieren lässt, dass (Übungsaufgabe!)

[Xi, Pj] = i~δij. (7.26)

Gl. (7.24) lässt sich direkt dadurch verifizieren, dass H unabhängig von X ist und
zudem P mit der Relativkoordinate x = xp − xe vertauscht:

[x,P] = [xp,pp + pe]− [xe,pp + pe]

= [xp,pp]− [xe,pe] = (i~− i~)1 = 0. (7.27)

Die zur Relativkoordinate kanonisch konjugierte Variable ist der Relativimpuls

p =
mepp −mppe

M
, (7.28)

für den die Vertauschungsrelation (Übungsaufgabe!)

[xi, pj] = i~δij (7.29)

leicht verifizierbar ist. Alle anderen Kommutatoren verschwinden:

[X,p] = 0, [P,p] = 0, [X,x] = 0. (7.30)

In Schwerpunkts- und Relativkoordinaten lautet der Hamilton-Operator (Übungs-
aufgabe!)

H =
P2

2M
+

p2

2µ
+ V (x) = Hsp + Hrel, (7.31)

wobei die reduzierte Masse
µ =

mpme

M
(7.32)
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auftaucht.
Da die kanonischen Schwerpunkts- und Relativkoordinaten zwei disjunkte Alge-

bren bilden und der Hamilton-Operator in eine entsprechende Summe zerfällt, ist
die Wellenfunktion separierbar,

Ψ(X′,x′, t) = 〈X′,x′|Ψ, t〉 = Φ(X′, t)ψ(x′, t). (7.33)

Im Ortsraum zerfällt die Schrödinger-Gleichung somit in zwei Differentialgleichun-
gen:

i~
∂

∂t
Φ(X′, t) = − ~2

2M
∇2

X′Φ(X′, t),

i~
∂

∂t
ψ(x′, t) = −~2

2µ
∇2

x′ψ(x′, t) + V (x′)ψ(x′, t). (7.34)

Die Schwerpunktsbewegung entspricht der eines freien Teilchens

Φ(X′, t) = e
i
~

(
P′·x′−P′2t

2M

)
, (7.35)

wobei P′ der Eigenwert des Gesamtimpulsoperators ist, P|P′〉 = P′|P′〉.
Der Hamilton-Operator der Relativbewegung entspricht genau einer Bewegung

eines Teilchens mit Masse µ im Potential V (x):

Hrel =
p2

2µ
+ V (x). (7.36)

Das verbleibende (schwierige) Problem ist also die Lösung der Differentialgleichung
Gl. (7.34) für ψ(x′, t). Die Energie-Eigenzustände der Relativbewegung haben die
Form ψ(x′, t) = e−

i
~EtψE(x′), wobei ψE(x′) wie üblich die stationäre Schrödinger-

Gleichung

EψE(x′) =

(
−~2

2µ
∇2

x′ + V (x′)

)
ψE(x′) (7.37)

erfüllt. Mit den noch zu bestimmenden Lösungen von Gl. (7.37) haben die Energie-
Eigenzustände des Gesamtsystems die Form:

Ψ(x′e,x
′
p, t) = e

−i
~ P′·X′e

− i
~

(
E+P′2

2M

)
t
ψE(x′), (7.38)

mit x′ = x′p − x′e und X′ =
mex

′
e + mpx

′
p

M
. Die Gesamtenergie ist also E +

P′2

2M
.

Im Folgenden konzentrieren wir uns auf die Dynamik der Relativbewegung. Die
Relativbewegung ist ein Zentralkraftproblem mit Coulombpotential

H =
p2

2µ
+ V (r), V (r) = −Ze

2

r
, r = |x|. (7.39)
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Für das Wasserstoffatom ist Z = 1 (Kernladungszahl). Für mehrfach ionisierte
Atome kann sie aber auch größer sein (z.B. Z = 2 für He+, Z = 3 für Li2+, usw.).
Wegen Drehinvarianz lassen sich die Eigenfunktionen schreiben als (im Folgenden

sei der Strich x′ wieder weggelassen)

ψE`m(x) =
uE`(r)

r
Y`m(θ, ϕ), (7.40)

wobei die Y`m(θ, ϕ) die Drehimpulsoperatoren L2 und L3 diagonalisieren und uE`(r)
die Differentialgleichung Gl. (7.11) erfüllt:(

−~2

2µ

d2

dr2
+

~2`(` + 1)

2µr2
− Ze2

r
− E

)
uE`(r) = 0. (7.41)

Folgende dimensionslose Größen erweisen sich als zweckmäßig: Die natürliche
atomare Längenskala ist der Bohrsche Radius

a =
~2

µe2
' 5.2918× 10−11 m. (7.42)

Die natürliche atomare Energieskala ist der Betrag des Coulombpotentials für Z =

1 am Bohrschen Radius:

Ea =
e2

a
=
µe4

~2
' 27.1970132 eV. (7.43)

Energien und Längen werden nun in Einheiten von Ea und a gemessen,

ρ :=
r

a
, ε :=

E

Ea
, (7.44)

so dass die Differentialgleichung Gl. (7.41) übergeht in(
d2

dρ2
+ 2ε +

2Z

ρ
− `(` + 1)

ρ2

)
uE`(ρ) = 0. (7.45)

Wir sind insbesondere an den gebundenen Zuständen mit E < 0 interessiert. Wie
in Gl. (7.16) diskutiert, hat uE`(ρ) für große Abstände ρ →∞ die asymptotische
Form

uE`(ρ→∞) ∼ e−κρ, für ε = −κ
2

2
. (7.46)

Für kleine Abstände fanden wir in Gl. (7.21)

uE`(ρ→ 0) ∼ ρ1+`, (7.47)

so dass wir als Ansatz wählen

uE`(ρ) = ρ1+`e−κρ
∞∑
k=0

akρ
k, (7.48)
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mit zu bestimmenden Koeffizienten ak. Einsetzen in Gl. (7.45) liefert folgende
Rekursionsformel für die Koeffizienten ak:

ak+1 =
2(κ(k + ` + 1)− Z)

(k + ` + 2)(k + ` + 1)− `(` + 1)
ak. (7.49)

Der Rekursionsanfang a0 ist dabei indirekt durch die Normierung festgelegt.
Würde die Reihe in k nicht abbrechen, so folgte für große k

ak+1 ∼
2κk

k2
ak ∼

(2κ)k+1

(k)!
a0, (7.50)

d.h.
∞∑
k=0

akρ
k ∼ a0e

2κρ. Damit würde uE`(ρ) für große ρ divergieren, so dass keine

akzeptable Lösung vorläge. Die Potenzreihe muss also abbrechen; das Kriterium
dafür lautet:

κ(kmax + ` + 1) = Z. (7.51)

Daraus folgt die Quantisierung der Energieniveaus der gebundenen Zustände

E = εEa = −κ
2

2
Ea = − Z2µe4

2~2(kmax + ` + 1)2
. (7.52)

In der Literatur wird kmax oft auch nr genannt. Die Summe

n = kmax + ` + 1 ≡ nr + ` + 1, n = 1, 2, . . . (7.53)

heißt Hauptquantenzahl, da sie die Energie der stationären Zustände bestimmt:

En = −Z
2µe4

2~2n2
= −Z

2

n2

µe4

2~2
' Z2

n2
· 13.6eV. (7.54)

Dies ist die Balmer-Formel. Aus historischen Gründen benutzt man die Quanten-
zahlen n und ` zur Bezeichnung der Zustände, wobei ` = 0, 1, 2, 3, 4, . . . oft mit
den Buchstaben s, p, d, f, g . . . benannt wird.
Die 14 tiefsten Zustände sind in Gl. (7.1) aufgelistet.

n ` nr(≡ kmax) Bezeichnung Entartung
1 0 0 1s 1
2 0 1 2s 1
2 1 0 2p 3
3 0 2 3s 1
3 1 1 3p 3
3 2 0 3d 5

Table 7.1: Die 14 tiefsten Zustände des (spinlosen) Wasserstoffatoms.
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Die Entartung der Zustände ergibt sich aus den 2` + 1 möglichen Einstellungen
der magnetischen Quantenzahl m, d.h. aus der 3. Komponente des Drehimpulses,
für jedes `. Für zunehmendes n liegen die Zustände immer dichter.
Da die Drehimpulsquantenzahl zu jedem n die Werte ` = 0, 1, . . . , n − 1 durch-

läuft, gehören zu jedem n

n−1∑
`=0

(2` + 1) = 1 + 3 + 5 + . . . + (2n− 1) = n2 (7.55)

Zustände. Dieser hohe Entwartungsgrad ist zunächst verwunderlich. Die 2` + 1-
fache Entartung zu jedem ` erklärt sich dadurch, dass L+ und L− mit H ver-
tauschen, so dass sich die Energie für Zustände mit gleichem ` aber verschiedenem
m nicht unterscheiden kann. Die noch größere Entartung (7.55) hängt in der
Tat zusammen mit einer noch größeren Symmetrie des Wasserstoffatoms: die
Schrödinger-Gleichung im Coulombpotential hat für E < 0 eine O(4)-Symmetrie
der 4-dimensionalen Drehungen (vgl. Übungen).
Obige Überlegung gilt für die Energie-Eigenzustände. Die tatsächlichen Be-

setzungen der Zustände mit Elektronen hängt aber noch wesentlich vom Spin-
Freiheitsgrad ab. Wegen des Pauli-Prinzips können sich in jedem der obigen
Zustände 2 Elektronen aufhalten, die sich um ihren Spin-Zustand unterscheiden
müssen (Sz = ±1

2
). Zu gegebener Hauptquantenzahl n kann ein Elektron also 2n2

Zustände besetzen. Dies entspricht genau der Zahl der Elemente in einer Periode
des Periodensystems.
Das Balmer-Spektrum erfährt in der Tat noch eine Reihe von Korrekturen, die

alle im Detail vermessen und zu hoher Präzision verstanden sind. Dazu gehören rel-
ativistische Korrekturen (z.B. die Feinstruktur), Korrekturen aufgrund von Quan-
tenfluktuationen von Strahlungsfeld und e+e−-Paaren (z.B. Lamb-Verschiebung,
Uehling-Potential), Endlichkeit des Protonladungsradius, Wechselwirkung von Kern-
spin mit dem Gesamtdrehimpuls des Elektrons. Diese sollen hier nicht weiter be-
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sprochen werden, sind aber spannende Themen für ein weiteres Studium.
Es gilt noch die Bestimmung der Eigenfunktionen abzuschließen. Wir fanden uE`

in Gl. (7.48), bzw.

afE` ≡ fn`(ρ) =
1

ρ
un`(ρ)︸ ︷︷ ︸
≡uE`

= e−κρρ`
∑
k=0nr

akρ
k, (7.56)

mit ak aus Gl. (7.49) und

κ =
Z

n
, n = nr + ` + 1. (7.57)

Die Normierungsbedingung lautet

1 =

∫ ∞
0

dρ ρ2|fn`(ρ)|2, ρ =
r

a
. (7.58)

Die niedrigsten Eigenfunktionen sind für Z = 1:

f1s(ρ) = 2e−ρ

f2s(ρ) =
1√
2

(
1− ρ

2

)
e−

ρ
2 , f2p(ρ) =

1

2
√

6
ρe−

ρ
2

f3s(ρ) =
2

3
√

3

(
1− 2

3
ρ +

2

27
ρ2

)
e−

ρ
3 ,

f3p(ρ) =
8

27
√

6
ρ

(
1− 1

6
ρ

)
e−

ρ
3 ,

f3d(ρ) =
4

81
√

30
ρ2e−

ρ
3 (7.59)

Nur s-Zustandswellenfunktionen sind nicht-verschwindend für r → 0; für alle an-
deren verhindert dies die Zentrifugalbarriere. Die Quantenzahl nr = n−`−1 zählt
im übrigen die Knoten der radialen Wellenfunktion fn`(ρ). Die explizite Formel
für die radialen Wellenfunktionen lautet

fn`(ρ) = −Nn`e
−Zρn

(
2Zρ

n

)`
L2`+1
n+`

(
2Zρ

n

)
, (7.60)

mit den zugeordneten modifizierten Laguerre-Polynomen

L(p)
m (ρ) =

dp

dρp
Lm(ρ), Lm(ρ) = eρ

dm

dρm
(
ρm e−ρ

)
(7.61)

und dem Normierungsfaktor

Nn` =

(
2Z

n

)3
(n− `− 1)!

2n[(n + `)!]3
. (7.62)
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8 Stationäre Näherungsverfahren

Der Grund, warum wir uns bislang nur mit überschaubar vielen Systemen beschäf-
tigt haben (Stern-Gerlach, harmonischer Oszillator, Wasserstoffatom), liegt darin,
dass nur für relativ wenige Systeme eine exakte Lösung gefunden werden kann.
Um so wichtiger sind Näherungsverfahren, die, wenn sie schon nicht zu exakten
Lösungen führen können, die Eigenschaften eines Systems zunächst einmal quali-
tativ erfassen. Wünschenswert wäre es, dass die genäherte Lösung auch quantitativ
nahe an der exakten Lösung liegt, bzw. ein Rechenschema existiert, in dem die
genäherte Lösung rasch an die exakte Lösung herankonvergiert. Es liegt allerdings
in der Natur der Sache, dass die Präzision eines Näherungsverfahrens nicht a priori
bestimmt werden kann, sondern a posteriori kontrolliert werden muss. Wichtige
Eigenschaften eines Näherungsverfahrens sind Systematik und Konsistenz.
Systematik bedeutet, dass ein Schema angegeben werden kann (Näherung er-

ster Ordnung, 2. Ordnung, . . . ), das Ordnung für Ordnung abgearbeitet wer-
den kann und im Limes aller Ordnungen das exakte Ergebnis (im Prinzip) ergibt.
Konsistenz bedeutet, dass ein Weglassen höherer Ordnungen n + 1, n + 2, . . . zu
einem geschlossenen (Gleichungs-)System zur n-ten Ordnung führt, das immer
mindestens eine Lösung besitzt.
Näherungsverfahren, die systematisch und konsistent sind, offenbaren zumindest,

wenn sie nicht funktionieren, nämlich dann, wenn das Ergebnis zu aufsteigender
Ordnung nicht konvergiert. Andere Näherungsverfahren erlauben mitunter nicht
einmal diese falsifizierende Kontrolle, (können aber trotzdem sehr nützlich sein).
Da unser quantitatives Verständnis der Natur in weiten Teilen auf Näherungs-

verfahren beruht, ist ein grundlegendes Verständnis dieser Verfahren besonders
wichtig.

8.1 Rayleigh-Schrödingersche Störungstheorie

Störungstheorie ist (technisch-gesehen) anwendbar, wenn sich der Hamilton-Ope-
rator H des exakten Problems aufteilen lässt in einen exakt lösbaren Anteil H0

und eine Störung V ,
H = H0 + V. (8.1)
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Das Eigenwertproblem von H0 sei im Folgenden als bekannt angenommen

H0|n, α〉 = εα|n, α〉, mit n ∈ N, α ∈ {1, 2, . . . , Nn}. (8.2)

Die Quantenzahl n bezeichnet die Energie εn der stationären Zustände, α num-
meriert die verschiedenen Eigenfunktionen zum Eigenwert εn; d.h. im Falle Nn > 1

liegt Entartung vor.
Wir führen nun einen Kontrollparameter λ ein, mit dem wir die Störung ein-

(λ = 1) und ausschalten (λ = 0) können,

H(λ) = H0 + λV. (8.3)

Falls V eine kleine Störung von H0 ist, können wir erwarten, dass die Eigenfunktio-
nen und Eigenwerte von H nur wenig von denjenigen von H0 abweichen. Mit Hilfe
des Kontrollparameters λ können wir die Stärke der Störung steuern. Wir nehmen
nun an, dass die Eigenfunktionen und Eigenwerte von H(λ) eine Entwicklung in λ
besitzen,

|ψ(λ)〉 = |ψ(0)〉 + λ|ψ(1)〉 + λ2|ψ(2)〉 + . . . ,

E(λ) = E(0) + λE(1) + λ2E(2) + . . . , (8.4)

(NB: diese Annahme ist nicht immer erfüllt. Z.B. wenn λV für jedes λ > 0

einen neuen gebundenen Zustand erzeugt, liegt |ψ(λ)〉 nie nahe bei |ψ(0)〉). Die
ungestörten Zustände seien auf 1 normiert:

〈ψ(0)|ψ(0)〉 = 1. (8.5)

Es ist nun zweckmäßig, |ψ(λ)〉 nicht auf 1 zu normieren, sondern als Normierung
stattdessen

〈ψ(0)|ψ(λ)〉 = 1 (8.6)

zu fordern. Solange |ψ(λ)〉 nicht senkrecht auf |ψ(0)〉 steht, was für kleine λ nicht
zu erwarten ist, kann Gl. (8.6) erfüllt werden. Damit folgt

1 = 〈ψ(0)|ψ(λ)〉 (8.4)= 〈ψ(0)|ψ(0)〉︸ ︷︷ ︸
=1

+

∞∑
k=1

λk〈ψ(0)|ψ(k)〉. (8.7)

Da Gl. (8.7) für jedes λ gelten muss, folgt

〈ψ(0)|ψ(k)〉 = 0, k = 1, 2, . . . , (8.8)

d.h. die Störungen stehen senkrecht auf dem Grundzustand. Die Bestimmungs-
gleichungen für die gestörten Größen erhalten wir aus der stationären Eigenwert-
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gleichung

H(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉

⇒ (H0 + λV )

∞∑
k=0

λk|ψ(k)〉 =

( ∞∑
k=0

λkE(k)

)( ∞∑
k′=0

λk
′|ψ(k′)〉

)

⇒
∞∑
k=0

λk
(
H0|ψ(k)〉 + V |ψ(k−1)〉

)
=

∞∑
k=0

λk

∑
p+q=k

E(p)|ψ(q)〉

 , (8.9)

was wiederum für jedes λ gelten muss, d.h.

H0|ψ(k)〉 + V |ψ(k−1)〉 =
∑
p+q=k

E(p)|ψ(q)〉. (8.10)

Explizit lauten die Gleichungen für k = 0, 1, 2, . . . :

H0|ψ(0)〉 = E(0)|ψ(0)〉
H0|ψ(1)〉 + V |ψ(0)〉 = E(0)|ψ(1)〉 + E(1)|ψ(0)〉 (8.11)
H0|ψ(2)〉 + V |ψ(1)〉 = E(0)|ψ(2)〉 + E(1)|ψ(1)〉 + E(2)|ψ(0)〉.

Die erste Gleichung ist im Wesentlichen ein Konsistenz-Check und liefert

E(0) = E(0) = εn, |ψ(0)〉 = |ψ(0)〉 = |n〉, (8.12)

wobei wir zunächst einmal annehmen wollen, dass das ungestörte Spektrum nicht
entartet ist (Nn = 1 für alle n). Der Fall mit Entartung wird später diskutiert.
Gleichung Gl. (8.12) liefert zugleich die Anfangsbedingung zur Bestimmung aller
höheren Ordnungen. Multiplizieren wir die zweite Gleichung aus Gl. (8.11) mit
〈n|, folgt für den n-ten Zustand

〈n|H0|ψ(1)
n 〉︸ ︷︷ ︸

=εn 〈n|ψ(1)〉︸ ︷︷ ︸
=0

+〈n|V |ψ(0)
n 〉︸ ︷︷ ︸

=|n〉

= E(1)〈n |ψ(0)
n 〉︸ ︷︷ ︸

=|n〉

+E(0) 〈n|ψ(1)〉︸ ︷︷ ︸
=0

.

Wir erhalten also
E(1) = 〈n|V |n〉 ≡ Vnn, (8.13)

bzw.
En(λ) = εn + λVnn +O(λ2). (8.14)

Für die Berechnung der Verschiebung des Energieniveaus zur 1. Ordnung in λ

benötigen wir also nur das Matrixelement von V bezüglich der ungestörten Basis
|n〉.
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Ähnlich folgt für die k-te Ordnung aus Gl. (8.10):

〈n|H0|ψ(k)
n 〉︸ ︷︷ ︸

=0

+〈n|V |ψ(k−1)
n 〉 =

∑
p+q=k

E(p) 〈n|ψ(q)
n 〉︸ ︷︷ ︸

=δq,0

und damit
E(k)
n = 〈n|V |ψ(k−1)

n 〉. (8.15)

Kennen wir also die Änderung des Zustands bis zur k-ten Ordnung, können wir die
Änderung der Energie bis zur k+1-ten Ordnung berechnen. Dieser Zusammenhang
lässt sich sogar resummieren:

En(λ)− En(0)︸ ︷︷ ︸
=εn

=

∞∑
k=1

λkE(k)
n =

∞∑
k=1

〈n|V λk|ψ(k−1)
n 〉

= 〈n|λV |ψn(λ)〉},
=⇒ En(λ) = εn + λ〈n|V |ψn(λ)〉. (8.16)

Wir benötigen also noch ein Bestimmungsverfahren für |ψn(λ)〉 bzw. für dessen
Entwicklung in |ψ(k)

n 〉. Dazu spannen wir |ψ(k)
n 〉 bezüglich der ungestörten Basis

auf
|ψ(k)

n 〉 =
∑
m6=n

〈m|ψ(k)
n 〉|m〉, (8.17)

wobei der m = n Term wegen Gl. (8.8) herausfällt. Eine Gleichung für den En-
twicklungskoeffizienten 〈m|ψ(k)

n 〉 erhalten wir aus Gl. (8.10) durch Multiplikation
mit 〈m| von links:

〈m|H0|ψ(k)
n 〉︸ ︷︷ ︸

=εm〈m|ψ
(k)
n 〉

+〈m|V |ψ(k−1)
n 〉 =

∑
p+q=k

E(p)〈m|ψ(q)
n 〉,

woraus folgt

εm〈m|ψ(k)
n 〉 + 〈m|V |ψ(k−1)

n 〉 = εn〈m|ψ(k)
n 〉 + · · · + E(k−1)

n 〈m|ψ(1)
n 〉 + E(k)

n 〈m|n〉.
(8.18)

D.h. für m 6= n fällt der letzte Term weg und wir erhalten

〈m|ψ(k)
n 〉|m6=n =

1

εn − εm

(
〈m|V |ψ(k−1)

n 〉 − E(1)
n 〈m|ψ(k−1)

n 〉 − · · · − E(k−1)
n 〈m|ψ(1)

n 〉
)
.

(8.19)
Da auf der rechten Seite nur Zustände bis zur Ordnung k − 1 auftauchen, ist
Gl. (8.19) zusammen mit Gl. (8.15) und Gl. (8.17) eine rekursive Bestimmungs-
gleichung für den gestörten Zustand zur k-ten Ordnung |ψ(k)

n 〉.
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Die niedrigsten Ordnungen wollen wir nun explizit untersuchen:

k = 1 : 〈m|ψ(1)
n 〉 =

1

εn − εm
〈m|V |n〉, m 6= n,

≡ Vmn
εn − εm

, (8.20)

=⇒ |ψ(1)
n 〉 =

∑
m6=n

Vmn
εn − εm

|m〉. (8.21)

Daraus folgt mit Gl. (8.15) die zweite Energiekorrektur:

E(2)
n = 〈n|V |ψ(1)

n 〉
(8.21)

=
∑
m6=n

Vmn
εn − εm

〈n|V |m〉

=
∑
m6=n

|Vmn|2

εn − εm
. (8.22)

Speziell folgt für den Grundzustand n = 0 wegen εm − ε0 > 0, dass die zweite
Energiekorrektur immer negativ ist, E(2)

0 < 0 (oder verschwindet wenn Vmn = 0

für alle m 6= 0). Am Energienenner εn− εm sehen wir nochmals, dass der bisherige
Formalismus im Falle von Entartung des Spektrums modifiziert werden muss.
Ohne explizite Rechnung geben wir das Resultat für die Änderung der Wellen-

funktion zu zweiter Ordnungen an:

|ψ(2)
n 〉 =

∑
m,p 6=n

1

(εn − εm)(εn − εp)
VmpVpn|m〉

−
∑
m6=n

1

(εn − εm)2
VnmVmn|m〉. (8.23)

Gleichungen (8.15), (8.17) und (8.20) lassen sich leicht mit Hilfe von computer-
algebraischen Methoden zu sehr hoher Ordnung iterieren. Die Berechnung wird
dadurch auf die Bestimmung der Matrixelemente Vmn zurückgeführt.

8.1.1 Beispiel: Lineare Störung des harmonischen Oszillators

Wir betrachten einen linearen Störterm

V = −Fx, (8.24)

zum harmonischen Oszillator,

H0 =
p2

2m
+

1

2
mω2x2 = ~ω

(
a†a +

1

2

)
, (8.25)
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so dass
H(λ) = H0 + λV = H0 − λFx. (8.26)

Klassisch erzeugt Gl. (8.24) eine konstante Kraft F in x-Richtung. Mit Hilfe der
Leiteroperatoren gilt:

V = −Fx0√
2

(
a† + a

)
, x0 =

√
~
mω

. (8.27)

Benutzen wir

|n〉 =
1√
n
a†|n− 1〉, und |n〉 =

1√
n + 1

a|n + 1〉, (8.28)

finden wir die einzig nicht verschwindenden Matrixelemente

Vn,n+1 = −Fx0√
2
〈n|a|n + 1〉 = −

√
n + 1

Fx0√
2
≡ Vn+1,n. (8.29)

Alle anderen Vnm mit n 6= m ± 1 verschwindend. Daraus folgt sofort, dass die
Korrektur erster Ordnung zur Energie verschwindet:

E(1)
n = Vnn = 0. (8.30)

Die Korrekturen zweiter Ordnung lauten

E(2)
n =

∑
m6=n

|Vmn|2

εn − εm
=
|Vn,n−1|2

~ω
− |Vn,n+1|2

~ω

=
√
n

2F 2x2
0

2

1

~ω
−
√
n + 1

2F 2x2
0

2

1

~ω
= −F

2x2
0

2~ω

= − F 2

2mω2
, (8.31)

sind also unabhängig von n. Eine lineare Störung verringert also die Energie eines
jeden Niveaus um den gleichen Betrag.
Tatsächlich können wir das Problem auch exakt lösen. Dazu schreiben wir

H = H0 − Fx =
p2

2m
+

1

2
mω2

(
x− F

mω2

)2

− F 2

2mω2

=
p2

2m
+

1

2
mω2x̃2 − F 2

2mω2
, x̃ = x− F

mω2
. (8.32)

Da x̃ die gleiche Vertauschungsrelation mit p erfüllt wie x, [x̃, p] = i~, sind die
exakten Eigenwerte von H:

En = ~ω
(
n +

1

2

)
− F 2

2mω2
, n = 0, 1, 2, . . . (8.33)

D.h. die Störungsrechnung mit λ = 1 ist zur zweiten Ordnung bereits exakt. Alle
höheren Ordnungen verschwinden somit.
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8.1.2 Beispiel: Anharmonischer Oszillator

Wir betrachten einen anharmonischen Oszillator mit Störung

V = gx4 =
gx4

0

4

(
a† + a

)4 ≡ gx4
0

4
∆, (8.34)

mit

∆ = (a† + a)4 = 3(2N 2 + 2N + 1) + 2a(2N + 1)a

+2a†(2N + 1)a† + a4 + a†4, (8.35)

wobei wir aa† = a†a + 1 = N + 1 mehrfach ausgenutzt haben. Da |n〉 Eigenket
von N ist, trägt der erste Term zu Vnn bei. Der zweite Term ergibt ein nicht-
verschwindendes Matrixelement Vn,n+2, der dritte Term ein nicht-verschwindendes
Matrixelement Vn,n−2, der vierte ein Vn,n+4 und der fünfte ein Vn,n−4:

Vnn =
gx4

0

4
3(2n2 + 2n + 1),

Vn,n+2 =
gx4

0

4
2
√

(n + 1)(n + 2)(2n + 3), (8.36)

Vn,n+4 =
gx4

0

4

√
(n + 1)(n + 2)(n + 3)(n + 4),

und ähnlich für Vn,n−2 und Vn,n−4. Mit

E(1)
n = Vnn

E(2)
n =

∑
m 6=n

|Vmn|2

εn − εm

= − 1

4~ω
(
2|Vn,n+2|2 + |Vn,n+4|2 − 2|Vn,n−2|2 − |Vn,n−4|2

)
folgt für die Energien des anharmonischen Oszillators

En = ~ω
(
n +

1

2
+

3

4
λ
gx4

0

~ω
(2n2 + 2n + 1)

−λ
2

8

(
gx4

0

~ω

)2 (
34n3 − 51n2 + 59n + 21

)
+ . . .

)
. (8.37)

Für λ = 1 erhalten wir eine Abschätzung der Energie des anharmonischen Os-
zillators. Für eine rasch konvergierende Störungsentwicklung erwarten wir, dass
E(2)
n � E(1)

n � εn, was für Gl. (8.37) gilt, Falls

gx4
0

~ω
n� 1, (8.38)
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Es zeigt sich jedenfalls, dass die Energieniveaus des anharmonischen Oszillators
nicht mehr äquidistant sind.
(NB: Was die tatsächlichen Konvergenzeigenschaften der Störungstheorie für den

anharmonischen Oszillator angeht, so ist dies für sich genommen ein spannendes
Stück Wissenschaft, dass sich zu lernen lohnt; Stichwort: asymptotische Reihen.)

8.2 Entartete Störungstheorie

Wichtig bei der bisherigen Ableitung der Störungstheorie war die Annahme, dass
das Spektrum nicht entartet ist. Im Folgenden sei diese Annahme aufgehoben (z.B.
das Wasserstoffatom zeigt ja eine große Entartung).
Wir betrachten also die Störung eines festen Eigenwertes εn von H0 (der Index n

sei im Folgenden weggelassen). Sei P0 der Projektor auf den entarteten Eigenraum
des Hamilton-Operators H0 zum Eigenwert E(0) = ε,

P0 = P †0 = P 2
0 . (8.39)

Wegen Zeitunabhängigkeit des Hamilton-Operators gilt

[P0, H0] = 0. (8.40)

Die orthonormierten Eigenfunktionen zum Eigenwert ε seien

|n, α〉 ≡ |α〉, α = 1, 2, . . . , Nn, (8.41)

wobei Nn ≡ N den Entartungsgrad zählt. Der Projektor hat also die Form

P0 =

N∑
α=1

|α〉〈α|, (8.42)

und es gilt
(H0 − ε)P0 = P0(H0 − ε) = 0, (8.43)

da P0 auf den Eigenraum mit Eigenwert ε projiziert.
Wir wenden nun P0 auf die zweite Gleichung in (8.11) an und benutzen P0|ψ(0)〉 =

|ψ(0)〉:

H0P0︸ ︷︷ ︸
=εP0

|ψ(1)〉 + P0V |ψ(0)〉︸ ︷︷ ︸
=P0|ψ(0)〉

= E(1) P0|ψ(0)〉︸ ︷︷ ︸
=|ψ(0)〉

+E(0)P0︸ ︷︷ ︸
=εP0

|ψ(1)〉

⇒ P0V P0|ψ(0)〉 = E(1)|ψ(0)〉. (8.44)

Wir können nun Gl. (8.44) als eine Eigenwertgleichung auffassen: D.h. für N -fache
Entartung ist P0V P0 eine N × N Matrix auf dem Unterraum P0H. Da P0V P0
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selbstadjungiert ist, kann diese Matrix diagonalisiert werden. D.h. wir müssen die
Basis |α〉 so wählen, dass in dieser Basis

〈α|V |α′〉 = Vαδαα′ (8.45)

gilt. Dann reduziert sich Gl. (8.44) auf

P0V P0|α〉 = Vα|α〉 ≡ E(1)
α |α〉. (8.46)

Die Eigenwerte von P0V P0 sind also die Energiekorrekturen in erster Ordnung
Störungstheorie. Im Folgenden ist der Projektor Q0 nützlich, der auf den zu P0H

komplementären orthogonalen Unterraum projiziert:

Q0 = 1− P0,

⇒ Q0P0 = P0Q0 = 0, [Q0, H0] = 0. (8.47)

Anwendung von Q0 auf die zweite Gleichung von Gl. (8.11) liefert (|ψ(0)〉 = |α〉):

Q0H0︸ ︷︷ ︸
=H0Q0

|ψ(1)〉 + Q0V |α〉 = E(1)Q0|ψ(0)〉︸ ︷︷ ︸
=0

+ E(0)︸︷︷︸
=ε

Q0|ψ(1)〉

⇒ (H0 − ε)Q0|ψ(1)〉 + Q0V |α〉 = 0. (8.48)

Im Unterraum Q0H hat also H0 nicht mehr den Eigenwert ε. Daher können wir
H0 − ε formal invertieren:

Q0|ψ(1)〉 =
1

ε−H0
Q0V |α〉. (8.49)

|ψ(1)〉 ist nun damit nicht eindeutig festgelegt, da mit |ψ(1)〉 auch Q0|ψ(1)〉 eine
Lösung ist (wegen Q2

0 = Q0).
Wir fordern daher als zusätzliche Bedingung, dass |ψ(1)〉 senkrecht auf P0H steht,

d.h.
Q0|ψ(1)

α 〉 ≡ |ψ(1)
α 〉. (8.50)

Sollte dies für ein |ψ(1)
α 〉 nicht erfüllt sein, ersetzen wir dieses |ψ(1)

α 〉 immer durch
Q0|ψ(1)

α 〉. D.h. Gl. (8.50) kann immer erfüllt werden.

⇒ |ψ(1)
α 〉 = Q0

1

ε−H0
Q0V |α〉, (8.51)

wobei |α〉 ein Element der Basis ist, die V im Unterraum P0H diagonalisiert. Da
|ψ(1)

α 〉 senkrecht auf P0H steht, gilt die Ableitung der k-ten Energieverschiebung
für k = 2 immer noch:

E(2)
α

(8.15)
= 〈α|V |ψ(1)

α 〉 = 〈α|V Q0
1

ε−H0
Q0V |α〉. (8.52)
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Check: Ist ε nicht entartet, so muss |α〉 nicht adaptiert werden. Q0 blendet dann
einfach den einen Eigenvektor |α〉 → |n〉 aus, d.h.

E(2)
n = 〈n|V Q0

1

ε−H0
Q0V |n〉

= 〈n|V Q0
1

ε−H0

∑
m

Q0|m〉︸ ︷︷ ︸
=(1−δmn)|m〉

〈m|V |n〉︸ ︷︷ ︸
=Vmn

=
∑
m 6=n

|Vmn|2

εn − εm
, (8.53)

was unser Resultat in Gl. (8.22) reproduziert.

8.2.1 Beispiel: Stark-Effekt

Im (spinlosen) Wasserstoffproblem sind z.B. alle Eigenzustände mit Hauptquan-
tenzahl n = 2 entartet: {

|2s0〉, |2p0〉, |2p−1〉, |2p+1〉
}
. (8.54)

Diese Entartung kann durch ein äußeres elektrisches Feld (teilweise) aufgehoben
werden; wir wählen als Störpotential

V = eEx3, (8.55)

was einem angelegten elektrischen Feld E in x3-Richtung entspricht. Dieses V
behandeln wir als Störung des spinlosen Coulomb-Problems. Wegen [x3, L3] = 0

folgt
0 = 〈n`m|[x3, L3]|n′`′m′〉 = (m′ −m)〈n`m|x3|n′`′m′〉, (8.56)

so dass Matrixelemente von V zu verschiedenen magnetischen Quantenzahlen m
verschwinden. Des Weiteren benutzen wir die Eigenschaft der |n`m〉 unter Parität
P ,

P |n`m〉 = (−1)`|n`m〉, (8.57)

womit folgt, dass

〈n`m|x3|n`m〉 =

∫
d3x x3︸︷︷︸

ungerade

|ψn`m(x)|2︸ ︷︷ ︸
gerade

= 0. (8.58)

Also verschwinden die Diagonalelemente der Störmatrix. Die Zustände |2p−1〉 und
|2p1〉 liefern also weder endliche Diagonalelemente noch endliche Nicht-Diagonale-
lemente mit den jeweils anderen Zuständen aus Gl. (8.54). Sie lösen die Energie-
korrekturgleichung erster Ordnung (8.46) also mit Eigenwert E(1) = 0.
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Es bleibt also noch der Unterraum
{
|2s0〉, |2p0〉

}
. In dieser Basis lautet die

Matrix des Störpotentials

V |{|2s0〉,|2p0〉} = eE

(
0 〈2s0|x3|2p0〉

〈2p0|x3|2s0〉 0

)
. (8.59)

Wir benötigen also

〈2s0|x3|2p0〉 =

∫
d3xψ∗2s0(x)x3ψ2p0(x)

=

∫
dr r2

∫
dΩ f20(r)f21(r)Y ∗00(Ω)Y10(Ω)r cos θ

= a

∫ ∞
0

dρ ρ3 f20(ρ)︸ ︷︷ ︸
= e

ρ
2√
2
(1−ρ2)

f21(ρ)︸ ︷︷ ︸
=ρe

−ρ2
2
√
6

∫
dΩ Y ∗00︸︷︷︸

= 1√
4π

Y10︸︷︷︸
=
√

3
4π cos θ

cos θ

=
a

2
√

2 · 6

∫ ∞
0

dρ ρ4
(

1− ρ

2

)
e−ρ
√

3

4π

∫ 2π

0

dϕ︸ ︷︷ ︸
=2π

∫ 1

−1

d(cos θ) cos2 θ︸ ︷︷ ︸
=2/3

= a
1

8

2

3

∫ ∞
0

dρ ρ4
(

1− ρ

2

)
e−ρ︸ ︷︷ ︸

=Γ(5)−1
2Γ(6)=4!−1

25!=−36

= −3a (8.60)

Wir erhalten also
V |{|2s0〉,|2p0〉} = −3aeE

(
0 1

1 0

)
. (8.61)

Die Eigenwerte und -vektoren dieser Matrix lauten daher:

E(1) = 3aeE, für
1√
2

(
1

−1

)
=̂|ψ(0)〉,

E(1) = −3aeE, für
1√
2

(
1

1

)
. (8.62)

Diese Korrektur der Energieniveaus bezeichnet man als Stark-Effekt erster Ord-
nung. Sei EB =

e

a2
die Feldstärke des Kernfeldes im Abstand a (Bohr-Radius)

vom Kern, so folgt

|E(1)| = 3
E

e/a2

e2

a
= 3

E

EB
Ea (8.63)

mit EB ' 5 · 109V/cm. D.h. die Störungstheorie ist für typische Laborfeldstärken
E ∼ 106V/cm sehr gut anwendbar. Für sehr kleine Feldstärken E < 103V/cm
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ist allerdings die Feinstruktur im Wasserstoffatom größer als die Korrektur durch
den Stark-Effekt. Während |2p1〉 und |2p−1〉 in erster Ordnung Störungstheorie
Eigenzustände im elektrischen Feld bleiben, sind die Eigenzustände im n = 2 und
m = 0 Sektor Überlagerungen von |2s0〉 und |2p0〉. D.h. die überlagerten Zustände
haben kein festes ` mehr, was einsichtig ist, da L2 nicht mehr mit H vertauscht.
Die Aufspaltung in E(1) = ±3eEa können wir interpretieren als ein elektrisches
Dipolmoment d = 3ea des Wasserstoffatoms im elektrischen Feld.
Der Grundzustand ist nicht entartet. Wegen Gl. (8.58) verschwindet daher die

Korrektur erster Ordnung in einem elektrischen Feld. Die Energieverschiebung ist
also mindestens quadratisch in E. Zur Berechnung dieser Ordnung benötigen wir
noch die Zusatzinformation, dass im Falle eines Übergangs mit Dipolstrahlung sich
` nur genau um 1 ändern kann (ein solcher Übergang sendet ein Photon aus, dass
genau den Drehimpuls ±~ wegtragen kann. Damit finden wir die Energiekorrektur
zweiter Ordnung:

E(2) =

∞∑
n=2

e2E2 |〈n10|x3|100〉|2

ε1 − εn
+ . . .

= −9

4
a3E2 + O(E3). (8.64)

Die Rechnung im letzten Schritt ist etwas aufwändiger, da wir die Matrixelemente
〈n10|x3|100〉 explizit berechnen müssen, und wird hier nicht vorgeführt.

Durch Vergleich mit der allgemeinen Formel für Polarisationsenergien −1

2
αPE

2

folgt für die Polarisierbarkeit des Wasserstoffatoms im Grundzustand

αP =
9

2
a3. (8.65)

8.3 Hellmann-Feynman-Formel

Für die einparametrige Schar von Eigenwerten E(λ) des Hamilton-Operators H(λ)

sei |ψ(λ)〉 die zugehörige normierte Eigenfunktion

H(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉, 〈ψ(λ)|ψ(λ)〉 = 1. (8.66)
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Ableiten nach λ liefert für E(λ) = 〈ψ(λ)|H(λ)|ψ(λ)〉 (die Ableitung nach λ sei im
Folgenden mit einem Punkt gekennzeichnet):

Ė(λ) = 〈ψ̇(λ)|H(λ)|ψ(λ)〉 + 〈ψ(λ)|H(λ)|ψ̇(λ)〉
+〈ψ(λ)|Ḣ(λ)|ψ(λ)〉 (8.67)

= E(λ)
d

dλ
〈ψ(λ)|ψ(λ)〉︸ ︷︷ ︸

=1

+〈ψ(λ)|Ḣ(λ)|ψ(λ)〉,

woraus folgt:
d

dλ
E(λ) = 〈ψ(λ)| d

dλ
H(λ)|ψ(λ)〉. (8.68)

Diese Hellmann-Feynman-Formel gilt im übrigen unabhängig davon, ob H(λ) lin-
ear in λ ist oder nicht. Falls H = H0 + λV ist, folgt unmittelbar

d

dλ
E(λ) = 〈ψ(λ)|V |ψ(λ)〉. (8.69)

8.4 Das Variationsprinzip nach Rayleigh-Ritz

Die zuvor entwickelte Störungstheorie ist ein systematisches und konsistentes Ver-
fahren, ist aber durch ihre Konstruktion auf die Existenz eines kleinen Parameters
angewiesen. Ein Beispiel für ein (in der Regel) nicht-systematisches Verfahren ist
das Variationsprinzip nach Rayleigh-Ritz. Der Vorteil dieses Verfahrens ist, dass
es nicht-störungstheoretisch ist, d.h. keine Entwicklung nach einem kleinen Pa-
rameter notwendig ist. Nachteil ist, dass es schwieriger sein kann, die Qualität der
Näherung zu beurteilen.
Wir betrachten im Folgenden das Energiefunktional

E : Zustandsraum→ C, E[ψ] =
〈ψ|H|ψ〉
〈ψ|ψ〉

; (8.70)

d.h. E[ψ] wird in seiner vollen Abhängigkeit von der funktionalen Form der Wellen-
funktion ψ betrachtet. Falls |ψ〉 die stationäre Schrödinger-Gleichung löst, dann
ist E[ψ] gleich der Energie dieses Zustands.
Habe H nun (der Einfachheit halber) ein diskretes Spektrum En mit orthonor-

mierten Eigenfunktionen |n〉, dann lautet |ψ〉 in dieser Basis

|ψ〉 =
∑
n

cn|n〉, cn = 〈n|ψ〉, (8.71)
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so dass

〈ψ|H|ψ〉 =
∑
n

〈ψ|H|n〉〈n|ψ〉 =
∑
n

En〈ψ|n〉〈n|ψ〉

≥ E0

∑
n

〈ψ|n〉〈n|ψ〉 = E0〈ψ|ψ〉. (8.72)

Das Gleichheitszeichen gilt, wenn |ψ〉 der Grundzustand ist. Anderfalls gilt die
Ungleichheit. Daraus folgt das Variationsprinzip nach Rayleigh-Ritz:
Sei H = H† nach unten beschränkt durch den kleinsten Eigenwert E0 < E1, E2,

. . . . Dann gilt

E0 ≤ E[ψ], |ψ〉 beliebig,
minE[ψ] = E0. (8.73)

Führt also eine beliebige Testwellenfunktion |ψT〉 zu einem endlichen Wert ET =

E[ψT], so ist ET automatisch eine obere Schranke für die Grundzustandsenergie.
Um daraus eine Abschätzung der Grundzustandsenergie zu erhalten, wählt man

eine p-parametrige Schar von Testwellenfunktionen |ψβ〉 mit β = {β1, . . . , βp}.
Diejenigen Parameter βmin, dieE[ψβ] minimieren, liefern die beste Abschätzung der
Grundzustandsenergie, die mit dieser Schar von Testwellenfunktionen zugänglich
ist,

E(βmin) = min
β
E[ψβ] ≥ E0. (8.74)

Da |ψβ〉 nahezu beliebig gewählt werden kann, ist dieses Verfahren in der Regel
nicht systematisch. Wesentliche Kriterien für die Wahl von |ψβ〉 sind:

• Symmetrie-Kompatibilität: |ψβ〉 sollte keine Symmetrien des Systems verlet-
zen.

• Berücksichtigung des Pauli-Prinzips bei Mehrteilchen-Systemen.

• Zugängliche Berechenbarkeit von E[ψβ]: Ein allgemeines multidimensionales
Minimierungsproblem ist in der Regel auch numerisch nicht einfach zu lösen.

Im Übrigen liefert |ψβmin〉 zugleich eine Abschätzung der Grundzustandswellen-
funktion ψ0 des Systems; allerdings wird diese in der Regel durch dieses Verfahren
nicht so gut approximiert wie die Energie.
Angeregte Energien können dann ebenso bestimmt werden, in dem man die

Wellenfunktion auf dem Raum minimiert, der senkrecht auf |ψβmin〉 steht.
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8.4.1 Beispiel: Der anharmonische Oszillator

Wir betrachten wiederum den harmonischen Oszillator mit anharmonischer Störung

V = gx4. (8.75)

Als Testwellenfunktion wählen wir ein Gaußsches Wellenpaket mit variabler Breite

ψβ(x′) = 〈x′|ψβ〉 =

(
β

x2
0π

)1
4

e
−β2

x′2
x20 , x0 =

√
~
mω

, (8.76)

wobei ψβ(x′) für jeden Wert von β bereits auf 1 normiert ist.
Das Energiefunktional ergibt für diese Testwellenfunktion

E(β) ≡ E[ψβ] =
〈ψβ|H|ψβ〉
〈ψβ|ψβ〉

=

∫
dx′ ψ∗β(x′)Hψβ(x′)

=

∫
dx′ ψ∗β(x′)

(
− ~2

2m
∂2
x′ +

m

2
ω2x′2 + gx′4

)
ψβ(x′)

=

∫
dx′ ψ∗β(x′)

− ~2

2m︸︷︷︸
=~ω

2 x
2
0

(
−β

2

x2
0

x′
)2

+
~2

2m

β

x2
0

+
m

2
ω2︸︷︷︸

=~ω
2

1
x20

x′2 + gx′4

ψβ(x′)

=

∫
dx′|psiβ(x′)|2

(
~ω
2

x′2

x2
0

(
1− β2

)
+

~ω
2
β + gx′4

)
=

√
β

x0

√
π

∫
dx′ e

−β x
′2
x20
~ω
2

(
x′2

x2
0

(
1− β2

)
+ β +

2g

~ω
x′4
)

=
1√
π

∫
du e−u

2~ω
2

(
u21− β2

β
+ β +

2g

~ω
x4

0

β2
u4

)
=

~ω
2

(
1− β2

β

1

2
+ β +

2g

~ω
x4

0

β2

3

4

)
In der letzten Zeile haben wir die Integrale

∫ ∞
−∞

du e−u
2

=
√
π,
∫ ∞
−∞

du e−u
2
u2 =

√
π/2 und

∫ ∞
−∞

du e−u
2
u4 = 3

√
π/4 benutzt. Zusammenfassend folgt

E(β) =
1

4
~ω
(
β +

1

β
+ 3

gx4
0

~ω
1

β2

)
. (8.77)

E(β) wird minimal für

0 = 1− 1

β2
min
− 6

gx4
0

~ω
1

β3
min

⇒ 6
gx4

0

~ω
1

β2
min

= βmin −
1

βmin
. (8.78)
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Einsetzen in Gl. (8.77) ergibt

E(βmin) =
1

8
~ω
(

3βmin −
1

βmin

)
, (8.79)

wobei βmin die kubische Gleichung (8.78) löst,

β3
min − β2

min − 6
gx4

0

~ω
= 0. (8.80)

Die reellen und positiven Lösungen sind mit dem Cardano-Verfahren zu finden.
Mit der Abkürzung κ =

2

9
√

3
' 0.13 können die Lösungen explizit angegeben

werden:

κ >
2gx4

0

~ω
: βmin =

√
4

3
cos

(
1

3
arccos

(
2gx4

0

~ωκ

))
,

κ <
2gx4

0

~ω
: βmin =

3

√
3

2

((
2gx4

0

~ω
+ ν

)1
3

+

(
2gx4

0

~ω
− ν
)1

3

)
, (8.81)

ν =

√(
2gx4

0

~ω

)2

− κ2.

Einsetzen von βmin in Gl. (8.79) ergibt die gesuchte obere Schranke an die Grundzu-
standsenergie des anharmonischen Oszillators.

Quantitativ zeigt sich, dass die Variationsnäherung nach Rayleigh-Ritz erstaunlich
gute Resultate für E0 liefert – und das selbst bei starker Kopplung. Im Gegensatz

dazu ist Störungstheorie jedoch nur sinnvoll für kleine Kopplungen
2gx4

0

~ω
.
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8.5 Van der Waals-Wechselwirkung

Ein besonders praxisrelevanter Effekt, die van der Waals-Wechselwirkung zwischen
neutralen Atomen, ist ebenfalls ein Paradebeispiel der Störungstheorie, das wir im
Folgenden andiskutieren. Wir betrachten zwei Wasserstoffatome, deren Protonen
um Abstand R voneinander entfernt sind. Es seien x und y jeweils die Vektoren
von Proton zum jeweiligen Elektron:

Die Wechselwirkungsenergien sind die Summe der Coulomb-Energien (ohne Pro-
ton-Elektron-Wechselwirkung der jeweiligen Atome):

V = e2

(
1

|R|
+

1

|R + y − x|
− 1

|R + y|
− 1

|R− x|

)
. (8.82)

Sind die Atome weit voneinander entfernt (im Vergleich zu den Atomradien), R�
a, können wir das Potential nach y/|R| und x/|R| entwickeln; die Terme 0. und
1. Ordnung verschwinden, und es bleibt bis zur 2. Ordnung:

V ' e2

(
x · y
R3
− 3(x ·R)(y ·R)

R5

)
. (8.83)

Das Wechselwirkungspotential V hat damit die Form von zwei Dipol-Wechselwir-
kungen ex und ey, die durch den Abstand R voneinander getrennt sind. Sei
R ∼ e3, so folgt

V =
e2

R3
(x1y1 + x2y2 − 2x3y3) =:

e2

R3

∑
i,j

xiMijyj, (8.84)

Mij =

 1 0 0

0 1 0

0 0 −2

 . (8.85)

Für große R können wir V als Störung des Falles zweier nicht miteinander wech-
selwirkender Wasserstoffatome betrachten. Das freie Problem ist

H0 = H1 + H2, (8.86)
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mit Hi|ni, αi〉 = εni|ni, αi〉, wobei αi = {`i,mi}, und Hi, |ni, αi〉, εni den jeweiligen
Wasserstoff-Hamilton-Operatoren, Eigenfunktionen und Energien, entsprechen. Das
freie System ist also in einem Produkt-Eigenzustand.

|n, α〉 ≡ |n1, α1;n2, α2〉 = |n1, α1〉 ⊗ |n2, α2〉, (8.87)

mit den Energien
εn = εn1 + εn2. (8.88)

(NB: in der Ortsdarstellung ist das Tensorprodukt zweier Zustandsvektoren gleich
dem Produkt der Wellenfunktionen, d.h. 〈x,y|n, α〉 = ψn1,α1(x)ψn2,α2(y).)
Für die Störungstheorie benötigen wir die Matrixelemente

Vnα,n′α′ = 〈n, α|V |n′, α′〉

=
e2

R3

∑
i,j

〈n1, α1|xi|n′1, α′1〉Mij〈n2, α2|yj|n′2, α′2〉 (8.89)

Wir finden also die gleichen Matrixelemente wie beim Stark-Effekt. Ebenso wie
dort gelten die Auswahlregeln für elektrische Dipolübergänge m = m′, ∆` = ±1.
Sind die Atome in angeregten Zuständen, muss jeweils die Störmatrix im en-

tarteten Unterraum diagonalisiert werden und die Wechselwirkungsenergie ist ∼
1/R3. Sind beide Atome im Grundzustand (oder auch nur eines), ist V00 = 0 und
die Energiekorrekturen sind von 2. Ordnung.
Im Grundzustand gilt:

E
(2)
0 =

e4

R6

∑
n′,α′;n′ 6=0

|〈0|x ·My|n′, α′〉|2

ε0 − εn′
(8.90)

= −e
2

a

(
a6

R6

)
e2

a5

∑
α′,n′ 6=0

|〈0|x ·My|n′, α′〉|2

ε0 − εn′︸ ︷︷ ︸
:=ξ

(8.91)

Weil e2/a die Dimension einer Energie hat, muss ξ dimensionslos sein, d.h. ξ ist
eine Zahl. Außerdem haben wir ausgenutzt, dass εn′ 6=0 > ε0, so dass E(2)

0 < 0

negativ ist. Damit ist die van der Waals-Wechselwirkung zwischen zwei Wasser-
stoffatomen im Grundzustand immer attraktiv:

E0 = ε10 + ε20 +

(
−e

2

a

)(
a6

R6

)
ξ + . . . , ξ > 0. (8.92)

Für zwei Wasserstoffatome ergibt sich (ohne Rechnung) ξ ' 6.5.
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Zwei Atome im Grundzustand, die kein permanentes Dipolmoment besitzen,
ziehen sich dennoch über eine Dipol-Wechselwirkung an. Die fluktuierenden La-
dungsverteilungen in den jeweiligen Atomen beeinflussen sich gegenseitig, dass
die Ladungsverteilungen nicht mehr drehinvariant sind. Die nun asymmetrischen
Ladungsverteilungen ziehen sich dann mit einer 1/R6-Wechselwirkung an.
Unsere Näherung verliert bei sehr kleinen Abständen R ∼ a ihre Gültigkeit. Zum

einen können wir das Potential nicht mehr für R � a entwickeln, zum anderen
wird bei kleinen Abständen das Pauli-Prinzip relevant. Letzteres führt zur Ab-
stoßungen der Atome, wenn die Wellenfunktionen sich beginnen zu überlappen.
(NB: für sehr große Abstände hingegen werden relativistische Retardierungseffekte
wichtig, die zwar nichts am Vorzeichen der Wechselwirkung ändern, aber die 1/R6-
Abhängigkeit in eine 1/R7-Abhängigkeit umwandeln).
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