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Preface

At present, this is a collection of notes that eventually want to become lecture
notes. At the moment, the emphasis is on notes, sometimes containing item lists
rather than full sentences. They are clearly still in its infancy.

These notes are based on a German version of my lecture notes on the physics
of scales which I gave for the first time in the summer term 2004 in Heidelberg
and which have evolved quite a bit over the years. This new English version also
contains a few additions and is planned to replace the handwritten German version
in the future.

In comparison to my lecture notes on the functional RG for gauge theories
prepared for an ECT* school at Trento in 2006, the present set of notes is meant
to cover the more introductory material as a prerequisite for the advanced (and
topic-wise more focused) material.

Comments, suggestions, and hints at typos are more than welcome!

Jena, April 2024 Holger Gies


https://arxiv.org/abs/hep-ph/0611146

1 Introduction

This lecture course covers several aspects of the “Physics of Scales” as it is formal-
ized within the concept of the renormalization group. In the following, I will try
to provide a nontechnical first glance at these aspects, the corresponding guiding
questions and resulting pictures.

1.1

Perturbative quantum field theory

Observation: correlation functions in QFT — if computed in (naive) perturbation
theory — generically contain divergencies.

This is technically dealt with by a regularization prescription that renders
objectsto be computed finite and quantitatively controls the divergencies.
An example is given by a UV cutoff A, i.e., a high-energy (“ultraviolet”)
scale beyond which potentially divergent momentum integrals are cut off by
hand.

this is followed by a (still technical) procedure of renormalization guided by
the idea that physical quantities and correlation functions should be finite
and independent or at least insensitive to the precise value of A; in the
ideal case, these quantities should exist in the limit A — oo. This idea is
realized by choosing the parameters such as coupling constants, masses, field
amplitudes of a given quantum field theory such that correlation functions
feature the required properties.

This observation and the resulting procedure goes along with a number of ob-
vious questions:

Under which conditions is this procedure possible? The answer to this ques-
tion leads to the classification of perturbatively renormalizable theories.

Are the predictions of the theory independent of the technical steps such as
the regularization procedure?

Which role does the cutoff play?

Why are (almost) all theories realized in nature, i.e. in the standard model
of elementary particle physics, renormalizable in perturbative QFT?



1.2 Critical Phenomena

Observation: rather different systems with many degrees of freedom and com-
plex interactions exhibit quantitatively identical properties in the vicinity of phase
transitions. These properties turn out to be describable with only a few variables
and scale relations (universality). These scale relations very often follow power
laws, e.g., ¢ ~ [t|°. Here, the physical meaning of ¢ and ¢ depends on the system,
but many very different systems can have the same critical exponent [, being a
number.

As a particularity, 5 can be non-rational and depend only on the dimensionality
and the symmetries of the system (+ very few other details), but does not depend
on the details of the interaction or microscopic degrees of freedom.

This universality can be understood using the renormalization group (RG) ideas
a la Kadanoff, Wilson, and others.

e start from a microscopic theory (defined in terms of a Hamiltonian or ac-
tion) and average successively over fluctuations from small to large length
scales (coarse graining). Based on this procedure, a scale-dependent aver-
aged Hamiltonian or action can be obtained.

e universality results if this averaging procedure (RG transformation) exhibits
a fixed point. If the fixed point has suitable properties, many microscopically
different systems may approach the fixed point upon the averaging procedure.
Examples are given by ferromagnets, liquid-gas phase transitions, binary
mixtures, superfluids, polymeres, thermal SU(2) Yang-Mills theory, etc.

e [t turns out that fixed-point properties can often be described by a renor-
malizable (quantum) field theory!

e In turn, renormalizable quantum field theories can be understood (and de-
fined) as statistical systems at a critical point.

Let us add a few remarks to the observation of scaling relations. In fact, scaling
relations are also known in classical systems. They are characteristic for systems
where 3only a single scale is relevant. Consider, for instance, Kepler’s third law,
T ~ a2 which has a large degree of universality, as it applies to small planets like
Mercury as well as to the large and more distant gas giants. This is a scaling
relation that follows from a simple consideration:

The Kepler problem is essentially defined in terms of the Newton potential
which is inversely proportional to the relative distance of the two gravitationally
interacting bodies,

1
V(r) ~ —, implying 7V (r) ~ const. (1.1)
r
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Figure 1.1: Sketch of “Theory Space”. Consider an abstract space in which each
point corresponds to a theory, e.g. defined in terms of a Hamiltonian or
an action. Averaging or coarse graining produces a sequence of effective
Hamiltonians. Universality arises if the averaging procedure for very
different microscopic theories is attracted by a fixed point in theory
space. Near the fixed point, all these different theories are described
by similar Hamiltonians.

kg m?
Now, V is an energy scale, e.g., in SI units we have [V] = g2 . As the mass units

are taken care off by the masses of the bodies together with Newton’s constant, we
3
m
note that [rV] ~ —-. Since 7V (r) ~ const., any time scale in the problem must
S

be proportional to T%, provided r is a proxy for a dominant single length scale in
the system. Since characteristic distances r scale with the semi-major axis a, we
end up with the scale relation between the period and the semi-major axis 7" ~ ag,
corresponding to Kepler’s third law.

In this example, the other lengths scales, e.g., the radii of the two bodies R; and
Ry are much smaller than the characteristic distance scale r and thus “decouple”
from the period. The universality expressed through Kepler’s third law (applicable
to all planets) comes about because of this decoupling of length scales. Note that

exponent 3 involved in this scaling relation is a rational number. This is rather

generic for classical scaling laws: the corresponding exponents are typically rational
or even integer numbers.

For systems dominated by statistical or quantum fluctuations, the exponents
found in scaling relations are often non-rational. Consider a ferromagnet near the
critical Curie temperature. A microscopic scale is given by the typical distance a of
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Figure 1.2: In the Kepler problem, there is a clear scale separation between the
typical distance r of the two bodies and the radii R; and R, of the
bodies.

the atoms or molecules dominating the microscopic spin. Think of a as a distance
of nearest neighbors on a lattice. On the other hand, the correlation length &
near the critical temperature can grow large, as the spins in large patches of the
material tend to be aligned. Let us now study local fluctuations of the spins on
some length scale r, where a << r < £. It turns out that the correlation function
(Green’s function) G(r) of the local fluctuations obeys a Laplace equation (as is
natural for systems with local interactions). Hence, the Green’s function behaves
as

1
G(r) ~ for o K r < €. (1.2)

In analogy to the classical case, we would expect that the microscopic lattice
spacing a can be completely neglected compared to the macroscopic scales r and
&. Hence, a natural ansatz for the Green’s function taking £ into account is

?

1
Gr) £~ F(r/€), (13)
where f is some dimensionless function of a dimensionless argument approaching a
constant for small argument. If so, we straightforwardly obtain a prediction for the
magnetic susceptibility which is obtained from the correlation function through

X ~ /G(r)d3r e (1.4)

This suggests the simple scaling relation that y ~ &? with a “classical” integer
exponent. However, this exponent is in contradiction with the experimental result!

The reason is that the critical behavior is characterized by fluctuations on all
length scales. Hence, there are also small-size fluctuations that still know about



the lattice spacing a. We therefore need to take a still into account in our ansatz
for the correlation function, replacing Eq. (1.3) by

2

G(r) =

S|

fr/&,a/¢), (1.5)

It turns out that the dependence of f on a/¢ follows a power law ~ (a/§)" for
small a/& with 7 being a small number. Therefore, the magnetic susceptibility
becomes

X ~ /G(r)d3r ~al £277, (1.6)

The exponent 2 — 1 does not follow from a naive (classical) dimensional analysis
of the Green’s function equation. Hence, the deviation n > 0 is an example for an
anomalous dimension.

1.3 RG-based construction/definition of QFTs

Problem: the analysis of divergencies in correlation functions or matrix elements
beyond perturbation theory is difficult; e.g., a full nonperturbative analysis of the
Schwinger functional, cf. below, in continuum quantum field theory is not available
in general.

Idea: a single RG step is finite. Here, an RG step, for instance, in momentum
space corresponds to an integration over a finite momentum interval. Since this
integration interval is bounded and the integrand is finite in any momentum in-
terval, a single RG step is well defined. This suggests to aim at a construction
of the integration over all fluctuations in terms of an infinite sequence or sum of
RG steps. In the limit of infinitesimal momentum intervals this sum becomes an
integral. If only the change or a physical quantity from RG step to RG step is
monitored we arrive at a formulation in terms of a differential equation.

Technically, this is formulated in the language of RG flow equations. It is con-
venient to formulate such flow equations not for individual physical quantities,
but for generating functionals such as the Schwinger functional or the effective
action of a QFT, or an effective Hamiltonian of a statistical system. In many
parts of these notes, we will focus on the effective action I' or its fluctuation aver-
aged variant, the effective average action I', that describes the dynamics of field
expectation values at an RG momentum scale k. The RG flow equation for I’y is
given by the Wetterich equation introduced in later sections. Its solution repre-
sents a continuous RG trajectory in theory space interconnecting the microscopic
action Sy of a system to be quantized, I'y—y = Sy with the full quantum effec-
tive action I' = I',—y. The latter corresponds to the generating functional of 1PI
(one-particle-irreducible) correlation functions.
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Figure 1.3: Illustration of the RG flow of a generating functional such as the ef-
fective action I' in an abstract theory space. Given a starting point
in terms of a microscopic action to be quantized, the flow equa-
tion describes an RG trajectory in the space of all possible actions
parametrized by a momentum scale parameter k. Once, all fluctua-
tions are averaged over, i.e., at k = 0 corresponding to macroscopic
length scales or low momentum scales, we arrive at the effective action
that describes the physics observable in low-energy experiments.

1.4 QFTs in the high-energy limit

The possibility to formulate general quantum field theories with a UV cutoff A or
some similar regularization scale allows us to consider rather general — not neces-
sarily perturbatively renormalizable — quantum field theories. In such a general
case, the UV cutoff can become a physical parameter, i.e., it characterizes a scale
below which the QFT description is valid, being replaced by a different theory
beyond A. Such cases where A remains as a physical parameter are called effective
(quantum) field theories (EFT). Historically, Fermi’s theory of § decay has been
such an effective field theory. It is a valid and useful description of the weak nu-
clear force at low energies, but needs to be replaced by the full electroweak Higgs
sector of the standard model at higher energies.

Perturbatively renormalizable theories have the additional property that physi-
cal observables do not depend on A, and therefore a large part of the dependence
on the detailed form of the microscopic theory at the high scale A drops out and is



irrelevant for experimental measurements. Still, the question persists as to whether
the limit A — oo can be taken within such a QFT. There are two possible answers,
both are interesting:

e Yes, the limit A — oo can be taken. In this case, the corresponding QFT
gives meaningful predictions at any energy scale. Therefore, it can, in prin-
ciple, be valid to arbitrarily high-energy scales. It is therefore a candidate
for a truly fundamental description of nature.

e No, the limit A — oo may lead to inconsistencies or contradictions with
experiment. In this case, the theory intrinsically predicts the existence of
a maximum possible value of the UV scale A.., beyond which the theory
cannot be extended. In this case, the corresponding QFT predicts its own
breakdown, i.e., the true description of nature must be replaced by a different
theory at or already below this scale A,,.x. More precisely, the corresponding
QFT cannot make any predictions that probe energy or momentum scales
that exceed A ax.

In the first case, we may have arrived at a microscopically complete description
of nature (beware: hubris!), even though this does not exclude the possibility that
the theory is ultimately still replaced by some other description at higher scales
not yet tested by experiment.

In the second case, we encounter a rather particular property of quantum field
theories: namely, a quantum field theory with a A,.« predicts its own failure.
This is a clear indication for the necessary existence of new physics, i.e., for a
yet to be discovered better theory. In the standard model of particle physics, the
hypercharge U(1) sector of the standard-model gauge theories appears to have
such a A So far, this is the only intrinsic hint that the standard model cannot
be a complete and consistent description of nature.

While perturbative renormalizability is a useful and systematic tool to analyze
the RG behavior of QFTs, there is no robust reason for nature to be perturbatively
describable at high energies. Another obvious question therefore is as to whether
the classification of pertubatively renormalizable is incomplete and may miss the-
ories which are nonperturbatively renormalizable, i.e., consistent and potentially
higher-energy complete, but may look nonrenormalizable from a perturbative per-
spective.

In fact, such scenarios have by now been established — for some theories even
with a certain amount of mathematical rigor. A prominent example is given by
Weinberg’s asymptotic safety scenario.

Whether or not Einstein’s gravity theory or certain variants of gravity theories
belong to the class of nonperturbatively renormalizable theories is a subject of
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contemporary research. So far, gravity is the only known (and observed) funda-
mental interaction that is not perturbatively renormalizable. While it works very
well as an effective quantum field theory below a high-energy scale (presumably
the Planck scale), perturbative quantization and reasoning leads to inconsistencies.
Therefore, gravity is a playground where nonperturbative quantization methods
can make a real difference in our comprehension of nature.
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