\triangleright Idea: study the dependence of correlation functions on the scale k

- ▷ Various options:
 - $k = \Lambda$: Wilson, Wegner-Houghton, "coarse graining"

constant physics, cutoff/UV insensitivity

• $k = \mu$: Gell-Mann-Low

constant physics, fixing scale insensitivity

• $k = m_{\rm R}$: Callan, Symanzik (CS)

compare theories with different masses

 \triangleright Idea: study the dependence of correlation functions on the scale k

- ▷ Various options:
 - $k = \Lambda$: Wilson, Wegner-Houghton, "coarse graining"

constant physics, cutoff/UV insensitivity

• $k = \mu$: Gell-Mann-Low

constant physics, fixing scale insensitivity

• $k = m_{\rm R}$: Callan, Symanzik (CS)

compare theories with different masses

- ▷ Advantage of CS idea:
 - start with massive theories

⇒ suppressed fluctuations

connect with differential equation to small mass theories

 \implies regime with strong correlations

 \triangleright Callan-Symanzik: $m^2 \rightarrow m^2 + k^2$

▷ Flow of master formula:

$$\partial_k Z_k[J] = \int \mathcal{D}\phi \left(-\frac{1}{2} \int d^4 x (\partial_k k^2) \phi(x) \phi(x) \right) e^{-S[\phi] - \frac{1}{2} \int \frac{k^2}{2} \phi^2 + \int J\phi}$$

 \triangleright Callan-Symanzik: $m^2 \rightarrow m^2 + k^2$

▷ Flow of master formula:

$$\partial_k Z_k[J] = \int \mathcal{D}\phi \left(-\frac{1}{2} \int d^4 x (\partial_k k^2) \phi(x) \phi(x) \right) e^{-S[\phi] - \frac{1}{2} \int \frac{k^2}{2} \phi^2 + \int J\phi}$$

$$= -\frac{1}{2} \int d^4 x (\partial_k k^2) G_k^{(2)}(x, x)$$

$$= -\frac{1}{2} \operatorname{Tr} \left[(\partial_k k^2) G_k^{(2)} \right]$$

 \triangleright Callan-Symanzik: $m^2 \rightarrow m^2 + k^2$

▷ Flow of master formula:

$$\partial_{k} Z_{k}[J] = \int \mathcal{D}\phi \left(-\frac{1}{2} \int d^{4}x (\partial_{k}k^{2})\phi(x)\phi(x) \right) e^{-S[\phi] - \frac{1}{2} \int \frac{k^{2}}{2}\phi^{2} + \int J\phi}$$
$$= -\frac{1}{2} \int d^{4}x (\partial_{k}k^{2}) G_{k}^{(2)}(x,x)$$
$$= -\frac{1}{2} \operatorname{Tr} \left[(\partial_{k}k^{2}) G_{k}^{(2)} \right]$$

 \triangleright Legendre transformation to $\Gamma[\phi]$:

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \left[\frac{(\partial_k k^2)}{\Gamma_k^{(2)} + k^2} \right]$$

Problem: still UV divergent in D=4

Wetterich Equation

> Idea: replace mass deformation by momentum dependent function

$$\frac{1}{2}\int (m^2+k^2)\phi^2 \to \frac{1}{2}\int d^4p\,\phi(-p)\,(m^2+R_k(p))\,\phi(p)$$

▷ RG flow equation:

(WETTERICH'93)

$$\partial_t \Gamma_k \equiv k \partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \partial_t R_k (\Gamma_k^{(2)} + R_k)^{-1}$$

"Exact" Renormalization Group

RG trajectory:

RG trajectory:

 \triangleright regulator function R_k

$\begin{array}{rcl} & \text{RG flow in Theory Space} \\ \partial_t \Gamma_k &=& \displaystyle \frac{1}{2} \ \text{Tr} \ \frac{1}{\Gamma_k^{(2)} + R_k} \ \partial_t R_k \end{array}$

OK!

▷ e.g., chiral symmetry

$$R_k^{\psi} = R_k^{\psi}(i\partial)$$

$$R_k^{\psi} = R_k^{\psi}(i\partial)$$

$\begin{aligned} & \text{RG flow in Theory Space} \\ \partial_t \Gamma_k &= \frac{1}{2} \text{Tr} \; \frac{1}{\Gamma_k^{(2)} + R_k} \, \partial_t R_k \end{aligned}$

OK!

$$R_k^{\psi} = R_k^{\psi}(i\partial)$$

OK!

$$R_k^{\psi} = R_k^{\psi}(i\partial)$$

Lesson

RG flow equation

... exact equation

RG flow equation (+ b.c.)

... can serve as definition of QFT

- Wilsonian momentum-shell integration
 ...treats physics scale by scale
- key element: scale-dependent exact propagator:

$$G_k(x,y) = \frac{1}{\Gamma_k^{(2)} + R_k}(x,y)$$

classical action of the Euclidean anharmonic oscillator

$$S[x] = \int d\tau \left(\frac{1}{2}\dot{x}^2 + \frac{1}{2}\omega^2 x^2 + \frac{1}{24}\lambda x^4\right)$$

truncated effective action

$$\Gamma_{k}[x] = \int d\tau \left(\frac{1}{2}\dot{x}^{2} + V_{k}(x)\right), \qquad V_{k}(x) = V_{0,k} + \frac{1}{2}\omega_{k}^{2}x^{2} + \frac{1}{24}\lambda_{k}x^{4}\dots$$

second functional derivative

$$\Gamma_k^{(2)}[x] = \partial_\tau^2 + V_k''(x)$$

⊳ e.g., linear regulator

(LITIM'00)

$$R_k(p^2) = (k^2 - p^2) \,\theta(k^2 - p^2)$$

▷ flow equation

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \left[\partial_t R_k \left(\Gamma_k^{(2)}[\phi] + R_k \right)^{-1} \right] \\ = L_\tau \int \frac{dp_\tau}{2\pi} \frac{k^2 \,\theta(k^2 - p_\tau^2)}{k^2 + V_k''(x)}$$

▷ flow of the potential

$$\partial_t \mathbf{V}_k(x) = rac{1}{\pi} rac{k^3}{k^2 + V_k^{\prime\prime\prime}(x)}$$

polynomial expansion

$$V_k(x) = \frac{1}{2}\omega_k^2 x^2 + \frac{1}{24}\lambda_k x^4 \cdots + E_{0,k} + \text{const.}_k$$

(const._k fixed such that $\frac{d}{dk}E_{0,k} = 0$ for $\omega_k = 0$) \triangleright "coupling" flows ($\sim \beta$ functions)

$$x^{0}: \qquad \frac{d}{dk}E_{0,k} = \frac{1}{\pi}\left(\frac{k^{2}}{k^{2}+\omega_{k}^{2}}-1\right)$$
(1)

$$x^{2}: \qquad \frac{d}{dk}\omega_{k}^{2} = -\frac{2}{\pi}\frac{k^{2}}{(k^{2}+\omega_{k}^{2})^{2}}\frac{\lambda_{k}}{2}$$
(2)

$$x^{4}: \qquad \frac{d}{dk}\lambda_{k} = \frac{24}{\pi}\frac{k^{2}}{(k^{2}+\omega_{k}^{3})^{2}}\left(\frac{\lambda_{k}}{2}\right)^{2}+\dots$$
(3)

A Simple Example: 0 + 1 dimensional QFT \triangleright truncate to (1) ($\omega_k \rightarrow \omega$)

$$\boldsymbol{E}_0 = \boldsymbol{E}_{0,k \to 0} = \frac{1}{2}\,\omega \qquad (\text{HO})$$

 \triangleright truncate to (1)+(2) and solve perturbatively

$$E_0 = \frac{1}{2}\omega + \frac{3}{4}\omega\left(\frac{\lambda}{24\omega^3}\right) - \frac{82}{40}\omega\left(\frac{\lambda}{24\omega^3}\right)^2 + \dots$$

compare with perturbation theory

(BENDER&WU)

$$E_0 = \frac{1}{2}\omega + \frac{3}{4}\omega\left(\frac{\lambda}{24\omega^3}\right) - \frac{105}{40}\omega\left(\frac{\lambda}{24\omega^3}\right)^2 + \dots$$

 \implies "1-loop" exact, "2-loop" \sim 20% error

▷ truncate to (1) $(\omega_k \rightarrow \omega)$

$$\boldsymbol{E}_0 = \boldsymbol{E}_{0,k \to 0} = \frac{1}{2}\,\omega \qquad (\text{HO})$$

truncate to (1)+(2) and solve perturbatively

$$\boldsymbol{E}_{0} = \frac{1}{2}\omega + \frac{3}{4}\omega\left(\frac{\lambda}{24\omega^{3}}\right) - \frac{82}{40}\omega\left(\frac{\lambda}{24\omega^{3}}\right)^{2} + \dots$$

compare with perturbation theory

(BENDER&WU)

$$E_0 = \frac{1}{2}\omega + \frac{3}{4}\omega\left(\frac{\lambda}{24\omega^3}\right) - \frac{105}{40}\omega\left(\frac{\lambda}{24\omega^3}\right)^2 + \dots$$

 \implies "1-loop" exact, "2-loop" \sim 20% error

 \triangleright truncate to (1) $(\omega_k \rightarrow \omega)$

$$\boldsymbol{E}_0 = \boldsymbol{E}_{0,k \to 0} = \frac{1}{2}\,\omega \qquad (\text{HO})$$

truncate to (1)+(2) and solve perturbatively

$$E_0 = \frac{1}{2}\omega + \frac{3}{4}\omega\left(\frac{\lambda}{24\omega^3}\right) - \frac{82}{40}\omega\left(\frac{\lambda}{24\omega^3}\right)^2 + \dots$$

compare with perturbation theory

(BENDER&WU)

$$E_0 = \frac{1}{2}\omega + \frac{3}{4}\omega\left(\frac{\lambda}{24\omega^3}\right) - \frac{105}{40}\omega\left(\frac{\lambda}{24\omega^3}\right)^2 + \dots$$

 \implies "1-loop" exact, "2-loop" \sim 20% error

A Simple Example: 0 + 1 dimensional QFT \triangleright ground state energy E_0/E_{HO} vs. $\frac{\lambda}{24}$ ($\omega = 1, m = \frac{1}{2}$)

▷ strong-coupling limit

$$\boldsymbol{E}_{0} = \left(\frac{\lambda}{24}\right)^{1/3} \left[\alpha_{0} + \mathcal{O}(\lambda^{-2/3})\right]$$

$$\alpha_0 = 0.66798...$$
 (janke& Kleinert)

$$|\alpha_0|_{(2)} = 0.6920...$$
 error: 4%

$$\alpha_0|_{(3)} = 0.6620...$$
 error: <1%

Lesson

· RG flow equation

... encodes perturbative & nonperturbative physics

already in simple approximations

• key element: scale-dependent exact propagator:

$$G_k(x,y) = \frac{1}{\Gamma_k^{(2)} + R_k}(x,y)$$

many applications

RG trajectory:

RG trajectory:

$\begin{array}{rcl} & \text{RG flow in Theory Space} \\ \partial_t \Gamma_k &=& \displaystyle \frac{1}{2} \ \text{Tr} \ \frac{1}{\Gamma_k^{(2)} + R_k} \ \partial_t R_k \end{array}$

Abstract viewpoint: FRG provides vector field on theory space

search for RG trajectories that can be completed to arbitrarily high scales

 \implies fundamental theory

candidates: fixed points

⇒ bare action ([^]= microscopic action) is a result rather than an initial condition

Quantum field theory \longleftrightarrow gravity

Problem of Physics?

- expected typical scale of QG effects: $M_{\text{Planck}} \sim 10^{19} \text{GeV}$
- early/late universe cosmology ?
- astrophysical singularities ?
- hierarchy problems (gauge hierarchy, cosmological constant & coincidence problem)

Minimum requirements: compatibility with observed physics

- existence of semiclassical GR regime
- $D = 4 = D_{\text{RG, cr}}$
- · compatibility with observed matter content of the universe

$\mathsf{QFT} \leftrightarrow \mathsf{Gravity}$

(GOROFF, SAGNOTTI'85'86; VAN DE VEN'92)

▷ perturbative quantization fails

$$\Gamma_{\rm div}^{2\text{-loop}} = \frac{1}{\epsilon} \frac{209}{2880} \frac{1}{(16\pi^2)^2} \int d^4x \, \sqrt{g} C_{\mu\nu\rho\sigma} C^{\rho\sigma\lambda\tau} C_{\lambda\tau}{}^{\mu\nu}$$

 \implies Any quantum theory of gravity has to explain the fate of C^3

Spacetime Dimensionality

▷ (perturbative) QFT:

$$\delta(\gamma) = d - \sum_{i} n_{E_i}[\phi_i] + \sum_{\alpha} n_{V_{\alpha}} \delta(V_{\alpha})$$

 \implies RG critical dimension:

$$D_{\text{RG, cr}} = \begin{cases} 4 & (\text{gauge + matter, Yukawa/Higgs}) \\ 2 & (\text{gravity, pure fermionic matter}) \end{cases}$$

(macroscopic) universe:

"It is not known whether the fact that space time has just four dimensions is a mere coincidence or is logically connected with this property." (J. ZINN-JUSTIN, IN "QFT AND CRITICAL PHENOMENA")

Quantizing Gravity

"I know of only one promising approach to this problem"

(S. WEINBERG, IN "CRITICAL PHENOMENA FOR FIELD THEORISTS" (1976))

Asymptotic Safety

Necessity of Renormalizability

• IR physics well separated from UV physics

```
(... no/mild cutoff \Lambda dependence)
```

• # of physical parameters $\Delta < \infty$

 \implies

 \ldots or countably ∞

(... predictive power)

 \implies realized by perturbative RG ...

(WEINBERG'76)

⊳ FP regime:

$$\partial_t g_i = \mathbf{B}_i^j (g_j - g_{*j}) + \dots$$

stability matrix

$$\mathbf{B}_i^{\ j} = \frac{\partial \beta_i(\boldsymbol{g}_*)}{\partial \boldsymbol{g}_j}$$

▷ critical exponents:

 $\{\Theta\} = \operatorname{spect}(-B_i^j)$

"Theory Space"

Mechanisms of Asymptotic Safety

Dimensional Balancing

Non-Gaußian Fixed Points

 \triangleright coupling \bar{g} with canonical dimension $\delta_{\bar{g}}(D)$ in spacetime dimension D:

$$[\bar{g}] = \delta_{\bar{g}}(D)$$

▷ critical RG dimension:

$$\delta_{\bar{g}}(D_{\mathrm{RG,\,cr}})=0$$

 \triangleright perturbative β function in $D_{\text{RG, crit}}$, e.g.:

$$\beta_{\bar{g}} = b_0 \, \bar{g}^2 + \dots$$

 \implies if $b_0 < 0$: theory is asymptotically free (and safe)

Non-Gaußian Fixed Points

▷ away from $D_{\text{RG, cr}}$ (+ analyticity in *D*):

$$eta_{ar{g}} = rac{b_0(D)}{k^{\delta_{ar{g}}(D)}}\,ar{g}^2 + \dots$$

 \triangleright dimensionless coupling in units of a given scale k

$$g=rac{ar{g}}{k^{\delta(ar{g};D)}}$$

▷ RG flow of dimensionless coupling:

$$krac{d}{dk}g\equiveta_g=-\delta_{ar{g}}(D)g+b_0(D)\,g^2$$

Non-Gaußian Fixed Points

▷ RG flow of dimensionless coupling:

 \implies NGFP g_* for:

 $\operatorname{sign}(\delta_{\bar{g}}(D)) = \operatorname{sign}(b_0(D))$

 \implies $g_* > 0$ for:

Example: Fermionic Systems

▷ for instance, Nambu–Jona-Lasinio / Gross-Neveu in 3 dimensions:

$$\Gamma_{k} = \int d^{3}x \bar{\psi} i \partial \!\!\!/ \psi + \frac{1}{2} \, \overline{\lambda} (\bar{\psi} \psi)^{2} + \dots \quad , \quad [\bar{\lambda}] = -1$$

\implies asymptotically safe

 \triangleright proven to all orders in 1/ $N_{\rm f}$ expansion:

Example: 3D Gross-Neveu model

▷ exact mapping to Yukawa model:

(STRATONOVICH'58, HUBBARD'59)

$$\Gamma[\psi,\sigma] = \int d^3x \left(\frac{N_{\rm f} Z_{\sigma}}{2} (\partial \sigma)^2 + \bar{\psi} (Z_{\psi} i \partial \!\!\!/ + i \bar{h} \sigma) \psi + N_{\rm f} U(\sigma) \right)$$

▷ non-Gaußian fixed point in Yukawa model:

(BRAUN, HG, SCHERER'10)

Example: 3D Gross-Neveu model

 \triangleright exact large- $N_{\rm f}$ fixed point effective potential

(BRAUN, HG, SCHERER'10)

$$u_*(\rho) = -\frac{2d-8}{3d-4}\rho_2 F_1\left(1-\frac{d}{2}, 1; 2-\frac{d}{2}; \frac{(d-4)(d-2)}{6d-8}\frac{d}{d_\gamma v_d}\rho\right), \rho = \frac{\sigma^2}{2}$$

▷ exact critical exponents:

$$\Theta = 1, -1, -1, -3, -5, -7, \dots$$

 \implies dim S = 1 physical parameter

Example: 3D Gross-Neveu model

$>$ critical exponents beyond large- $N_{ m f}~(u=1/\Theta^1)$ (BRA							RAUN,HG,SCHERER'	10)
		Θι	0.995 0.990 0.985 0.980	****				
			0 20	40 6 N _f	0 80	100		
	N_{f}	Θ^1	Θ^2	Θ^3	Θ^4	Θ^5	Θ^6	
	2	0.9821	-0.8722	-1.0916	-3.5135	-6.0514	-8.5820	
	4	0.9775	-0.9240	-1.1010	-3.3910	-5.7739	-8.2429	
	12	0.9903	-0.9735	-1.0506	-3.1810	-5.3665	-7.6004	
	50	0.9975	-0.9936	-1.0143	-3.0510	-5.1062	-7.1789	
	100	0.9987	-0.9968	-1.0073	-3.0263	-5.0550	-7.0934	
	∞	1	-1	-1	-3	-5	-7	

ightarrow matches even with $N_{\rm f} \rightarrow 0$ limit (Ising model),

 \triangleright excellent agreement with lattice simulations (available for $N_{\rm f}=2$)

Quantum Einstein Gravity

(REUTER'96)

effective action in Einstein-Hilbert truncation

$$\Gamma_k = \frac{1}{16\pi G_k} \int d^D x \sqrt{g} (-R + 2\Lambda_k)$$

▷ running dim'less Newton's constant in D = 4: $g = k^2 G_k$, $\Lambda_k = 0$

$$\partial_t g = 2 g - c g^2 + \mathcal{O}(g^3), \quad c = c[R_k] > 0$$

- (DOU, PERCACCI'97)
 - (SOUMA'99)
- (LAUSCHER, REUTER'01'02)
- (REUTER, SAUERESSIG'01)
 - (NIEDERMAIER'02)
 - (LITIM'03)
- (CODELLO, PERCACCI'06)
- (CODELLO, PERCACCI, RAHMEDE'07'08)
 - (MACHADO, SAUERESSIG'07)
- (BENEDETTI, MACHADO, SAUERESSIG'09)
 - (EICHHORN, HG, SCHERER'09)
 - (DONKIN, PAWLOWSKI'12)
- (CHRISTIANSEN, LITIM, PAWLOWSKI, RODIGAST'12)
- (CHRISTIANSEN, MEIBOHM, PAWLOWSKI, REICHERT'15)
 - (FALLS'15;CHRISTIANSEN'16)
 - (DENZ, PAWLOWSKI, REICHERT'16)

Quantum Einstein Gravity

(REUTER'96)

▷ effective action in Einstein-Hilbert truncation (Dou, PERCACCI'97)							
1 ((Souma'99)						
$\Gamma_k = \frac{1}{16\pi G_k} \int d^D x \sqrt{g} (-R + 2\Lambda_k)$	(LAUSCHER, REUTER'01'02)						
	(REUTER, SAUERESSIG'01)						
\triangleright running G_k and Λ_k	(NIEDERMAIER'02)						
in $D=4$: $g=k^2G_k,\lambda=\Lambda_k/k^2$	(Lітім'03)						
e.g., sharp cutoff	(CODELLO, PERCACCI'06)						
	(CODELLO, PERCACCI, RAHMEDE'07'08)						
$\partial_t g = (2+\eta)g$	(MACHADO, SAUERESSIG'07)						
g g g g g	(BENEDETTI, MACHADO, SAUERESSIG'09)						
$\partial_t \lambda = -2(2-\eta)\lambda - \frac{2}{\pi} \left[5 \ln[1-2\lambda] - 2\zeta(3) + \frac{2}{2}\eta \right]$	(EICHHORN, HG, SCHERER'09)						
anomalous graviton dimension:	(DONKIN, PAWLOWSKI'12)						
	TIANSEN, LITIM, PAWLOWSKI, RODIGAST'12)						
$\eta = -\frac{2g}{2} \left[\frac{10}{1-2\lambda} + 5\ln(1-2\lambda) - \zeta(2^{2}) \right]$	6N, MEIBOHM, PAWLOWSKI, REICHERT'15)						
$b\pi + 5g \lfloor 1 - 2\lambda$	(FALLS'15;CHRISTIANSEN'16)						
	(DENZ, PAWLOWSKI, REICHERT'16)						

RG flow of Quantum Einstein Gravity

▷ critical exponents:

$$Re\Theta_{1,2}\simeq 2$$

From Quantum to Classical Gravity

(HG,KNORR,LIPPOLDT'15)

RG trajectories interconnecting the transplanckian and classical regimes exist

▷ : physical trajectory:

$$g\lambdaert_{k
ightarrow"}\simeq+3 imes10^{-122}$$

Fate of two-loop counterterm

> operator expansion with background field method

Flow of Einstein-Hilbert + Goroff-Sagnotti

effective action

(HG,KNORR,LIPPOLDT,SAUERESSIG'16)

$$\Gamma_k = \Gamma_k^{EH} + \Gamma_k^{GS}$$

Einstein-Hilbert

$$\Gamma_k^{EH} = \frac{1}{16\pi G_k} \int d^D x \sqrt{g} (-R + 2\Lambda_k)$$

Goroff-Sagnotti:

$$\Gamma_{k}^{GS} = \bar{\sigma}_{k} \int d^{D}x \sqrt{g} \, C_{\mu\nu\rho\sigma} C^{\rho\sigma\lambda\tau} C_{\lambda\tau}{}^{\mu\nu}$$

dimensionless coupling constants

$$g = k^2 G_k, \quad \lambda = \Lambda_k / k^2, \quad \sigma = \bar{\sigma}_k k^2$$

Flow of Einstein-Hilbert + Goroff-Sagnotti

▷ Fluctuations with GS vertex:

(HG,KNORR,LIPPOLDT,SAUERESSIG'16)

$$\Gamma^{GS(2)} \sim \sigma {\it C}^{\mu
u}_{lphaeta} + {\cal O}({\it R}^2)$$

⊳ BUT:

$$\mathrm{tr} \mathcal{C}^{\mu
u}_{lphaeta}=0$$

 \implies Two-loop counterterm does not directly feed back into EH

⇒ Fixed point in Einstein-Hilbert sector is maintained asymptotic safety

Flow of Einstein-Hilbert + Goroff-Sagnotti

▷ Einstein-Hilbert:

(HG,KNORR,LIPPOLDT,SAUERESSIG'16)

$$\partial_t g = (2 + \eta_N) g \partial_t \lambda = (\eta_N - 2) \lambda + \frac{g}{2\pi} \left(\frac{5}{1 - 2\lambda} - 4 - \frac{5}{6} \eta_N \frac{1}{1 - 2\lambda} \right)$$

Goroff-Sagnotti

$$\partial_t \sigma = c_0 + (2 + c_1) \sigma + c_2 \sigma^2 + c_3 \sigma^3$$

$$\begin{split} c_0 &= \frac{1}{64\pi^2(1-2\lambda)} \left(\frac{2-\eta_N}{2(1-2\lambda)} + \frac{6-\eta_N}{(1-2\lambda)^3} - \frac{5\eta_N}{378} \right), \\ c_1 &= \frac{3g}{16\pi(1-2\lambda)^2} \left(5(6-\eta_N) + \frac{23(8-\eta_N)}{8(1-2\lambda)} - \frac{7(10-\eta_N)}{10(1-2\lambda)^2} \right), \\ c_2 &= \frac{g^2}{2(1-2\lambda)^3} \left(\frac{233(12-\eta_N)}{10} - \frac{9(14-\eta_N)}{7(1-2\lambda)} \right), \\ c_3 &= \frac{6\eta_3^3(18-\eta_N)}{(1-2\lambda)^4} \neq 0. \end{split}$$

 $g_* > 0 \implies c_3 > 0$

⇒ asymtotic safety

extends to (irrelevant) GS term

Phase portrait

(HG,KNORR,LIPPOLDT,SAUERESSIG'16)

crossover to classical regime persists

Towards apparent convergence in Quantum Gravity

 \implies promising path towards systematic scheme

establishing asymptotic safety

Lesson

• FRG facilitates a search for quantizable theories

candidates: RG fixed points

- Wilsonian renormalization extends beyond perturbative realm
 UV complete and predictive
- Asymptotic safety in fermion systems and in gravity

... perturbatively nonrenormalizable, but nonperturbatively renormalizable

Functional RG interconnects all physical scales

... from Planck to Hubble

Lesson

• FRG facilitates a search for quantizable theories

candidates: RG fixed points

- Wilsonian renormalization extends beyond perturbative realm
 UV complete and predictive
- Asymptotic safety in fermion systems and in gravity

... perturbatively nonrenormalizable, but nonperturbatively renormalizable

Functional RG interconnects all physical scales

... from Planck to Hubble

• Why D=4?

... no news yet

... holds, I think, the supreme position among the laws of Nature.

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations ...

... then so much the worse for Maxwell's equations.

If it is found to be contradicted by observation

. . .

... well, these experimentalists do bungle things sometimes.

But if your theory is found to be against the flow of the renormalization group ...

I can give you no hope; there is nothing for it but to collapse in deepest humiliation.