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Preface

Lecture notes are only a largely incomplete replacement of face-to-face
lectures – as many of us have learned during the past one and a half
years of the pandemic.
I hope, the present lecture notes will still be useful for many, as they

cover a set of topics that may not have been assembled in a single text-
book before. They represent my attempt at creating a course that fits
in between a standard theory curriculum as is taught in many places
worldwide during a physics Bachelor program and a more advanced
graduate program on theoretical physics including, in particular, quan-
tum field theory.
This course assumes a solid knowledge of classical and analytical me-

chanics, electrodymamics, and a good knowledge of quantum theory,
but anticipates no experience with quantum field theory – even though
the highlights of this course may unfold their beauty only once some
knowledge on quantum field theory may have been acquired. Despite
its title with its appeal to elementary particle physics, the present
course cannot replace an experimental or phenomenological course on
particle and/or nuclear physics. Still, most of the applications and ex-
amples concern the realm of elementary particle physics and may serve
as a motivation to learn more about our current understanding of the
building blocks of nature and their interactions.
These notes are based on a set of handwritten lecture notes prepared

for the first version of the course held in the winter term 2016/2017
with extensions and improvements over the years. I am extraordinar-
ily grateful to Johannes Schmechel for his initiative to typeset these
notes in LATEX also including TikZ versions of the figures. His contin-
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uous work on this project has been a strong motivation to turn the
handwritten version into this – hopefully more useful – polished ver-
sion. This new version also contains a few additions and is planned to
replace the handwritten version from now on1.

Jena, October 2021 Holger Gies

1Comments, suggestions, and hints at typos are more than welcome!
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1 Introduction

1.1 Why Particles and Fields?

This course is meant to be a preparatory course for an in depth lec-
ture course on quantum field theory (QFT). In fact, QFT has be-
come the language of modern physics. Most prominently, QFT de-
scribes the physics of elementary particles and their interactions at the
most fundamental level that is currently accessible to observations in
the laboratory (i.e. at colliders) or in astrophysical or cosmological
data. QFT even has the potential to describe systems to arbitrarily
short-distance or arbitrarily high-energy scales (in contrast to classical
mechanics, electrodynamics or quantum mechanics). Moreover, QFT
provides also for useful tools for the description of condensed-matter
systems, many-body physics, critical phenomena, statistical systems,
phase transitions, etc.
It is therefore not astonishing that QFT exhibits a deep level of struc-
tural and technical complexity, challenging both – students and teach-
ers – in a compact lecture course.
The purpose of this course hence is to remove a large part of this com-
plexity by ignoring quantization. The remaining body of classical field
theory still offers a comprehensive playground where many physical
concepts and moreover observable physical phenomena can be learned
and understood.
Though the mathematics of this course deals with classical field theory,
the goal (behind the horizon) is QFT and its application to particle
physics. Hence, some applications and discussions center around ele-
mentary particle physics. As QFT supersedes the point-particle con-
cept, the word particle in the title does not allude to classical point
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particles, but to the modern understanding of particles as quantized
excitations of fields. As we stay within the realm of classical physics
in this course, a particle should be thought of as a classical excitation
of a field, such as a localized propagating wave.
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1.2 Examples of classical field theories

In classical field theory, each point in spacetime x ≡ (t, ~x) is associated
with a function φ (field amplitude)

x→ φ. (1.1)

Depending on the system, φ could be a real or a complex number,
φ ∈ R or φ ∈ C, or an N -tupel of such numbers φa, a = 1, . . . , N .
Examples are given by the electrostatic potential ϕ(x) ∈ R in classical
electrostatics, or the vector potential ~A(x) consisting of 3 components,
giving rise to a magnetic field ~B(x) = ~∇× ~A(x).
We typically assume φ(x) to be sufficiently smooth and differentiable
(e.g. φ ∈ C2) such that its dynamics can be governed by a differential
equation, the field equation or equation of motion (EoM). This ab-
stract notion is already familiar from classical electrodynamics, being
a paradigmatic example for a classical field theory.
The field equations for the electric and magnetic field components,
~E(x) and ~B(x), are given by the Maxwell equations, which in vacuum
read

~∇ · ~E = 0 ~∇× ~B − ∂

∂t
~E = 0

~∇ · ~B = 0 ~∇× ~E +
∂

∂t
~B = 0.

(1.2)

Here, we have already used the convention c ≡ 1 (i.e. all velocity-like
quantities are measured in fractions of the speed of light, or lengths
are measured by the time that light takes to propagate some distance).
Mathematically, the field equations are (coupled) partial differential
equations (PDEs), the solutions of which requires suitable boundary
conditions or/and initial data.
The Maxwell equations form a rather peculiar example, as the infor-
mation encoded in the 6 functions Ek(x), Bk(x), k ∈ {1, 2, 3} can also
be parametrized by the above mentioned 4 auxiliary functions of the
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electrostatic potential ϕ(x) and the vector potential ~A(x), where
~B(x) = ~∇× ~A(x)

~E(x) = −~∇ϕ(x)− ∂

∂t
~A(x).

(1.3)

Inserting (1.3) into (1.2), and using ~∇× ~∇ϕ = 0 and ~∇× ~∇× ~A = 0

(for smooth ϕ and ~A), the 2nd line of (1.2) is evidently satisfied, while
the 1st line boils down to

~∇2ϕ +
∂

∂t
(~∇ · ~A) = 0

~∇2 ~A− ∂2

∂t2
~A− ~∇(~∇ · ~A +

∂

∂t
ϕ) = 0,

(1.4)

forming 4 PDEs for the 4 unknown components of the fields ϕ and ~A.
This parametrization in terms of the potentials ϕ and ~A is even more
peculiar, as the choice of ϕ and ~A is not unique. For instance, if
ϕ and ~A are shifted according to

ϕ(x)→ ϕ′(x) = ϕ(x)− ∂

∂t
λ(x)

~A(x)→ ~A′(x) = ~A(x) + ~∇λ(x)
(1.5)

with an arbitrary function λ(x) ∈ R, the ~E and ~B fields in (1.3) remain
the same. While ~E and ~B can be measured in terms of forces acting on
(moving) charged particles, the values of ϕ and ~A at a given point x
can be shifted by (1.5) to any value and thus have no locally observable
meaning. This invariance under local shifts a la (1.5) is called a gauge
symmetry and characterizes a very special (and very important) class
of field theories.
For our present purpose, it is useful to choose λ(x) in such a way
that ϕ′ and ~A′ satisfy the following auxiliary condition (Lorenz gauge
condition):

~∇ · ~A′ + ∂

∂t
ϕ′ = 0. (1.6)
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If so, the field equations (1.4) for ϕ′ and ~A′ simplify to

~∇2ϕ′ − ∂2

∂t2
ϕ′ = 0

~∇2 ~A′ − ∂2

∂t2
~A′ = 0,

(1.7)

or simply �ϕ′ = 0, � ~A′ = 0, where � = −~∇2 +
∂2

∂t2
is the d’Alembert

operator.
Eqs. (1.7) are wave equations for all 4 field functions which hence
admit plane wave solutions:

ϕ′, ~A′ ∼ e−iωt+i~k·~x, with ω2 = ~k2 (1.8)

(for complexified fields, or </= of e−iωt+i~k·~x for real fields).
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In addition to gauge invariance, Maxwell’s equations also have an in-
variance with respect to the choice of coordinate systems. The corre-
sponding invariance is a relativistic invariance, and the corresponding
transformations between coordinate systems moving relative to each
other at constant speed β =

v

c
≡ v are the Lorentz transformations.

For instance, if two coordinate systems move relative to each other
along their common x direction, the Lorentz transformation reads

t′ = γ(t− βx) y′ = y

x′ = γ(x− βt) z′ = z, where γ =
1√

1− β2
.

(1.9)

Summarizing the spacetime coordinates in a (‘contravariant’) 4-vector
xµ = (t, x, y, z) ≡ (x0, x1, x2, x3) to be understood as column vector,
this transformation can be written in a matrix form

x′µ = Λµ
ν x

ν (summation over ν is implicity understood), (1.10)

where

Λ =


γ −βγ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 . (1.11)

Of course, by suitably applying rotation matrices, ~x′ = R~x, RTR =
1, R ∈ SO(3), the Lorentz transformations generalize to ‘boosts’ along
any other direction ~β, as well as to coordinate systems spatially rotated
relative to each other (as in classical mechanics). Recall that (1.9)
follows from Einstein’s postulate that the wave front of a flash of light
starting at a common origin of the coordinate systems propagate at
the same speed as measured in both systems. The position of such a
(spherical) wave front after time t (t′) is at

0 = t2 − (x2 + y2 + z2), 0 = t′2 − (x′2 + y′2 + z′2) (1.12)
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respectively. This suggests to introduce the Minkowski metric ,

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (1.13)

to write the propagation distance of the wave front in both systems as
0 = xµ gµν x

ν = x′µ gµν x
′ν. (1.14)

Using (1.10), we get
x′µ gµν x

′ν = Λµ
κ x

κ gµν Λν
λ x

λ

µ⇔κ , ν⇔λ
= xµ Λκ

µ gκλ Λλ
ν x

ν. (1.15)
Note that, in this context, xµ is not just any position in spacetime,
but a vector specifying the distance of the wave front from the origin.
From (1.15) we read off that Lorentz transformations Λ of such vectors
satisfy

gµν = gκλ Λκ
µ Λλ

ν. (1.16)
It is straightforward to verify that (1.11) satisfies this condition.

More generally, we call any 4× 4 matrix Λ that satisfies (1.16) for the
metric (1.13) a Lorentz transformation. Hence, (1.16) has the same
status for Lorentz transformations, as RTR = 1 (δij = δklR

k
iR

l
j)

has for rotations. The corresponding matrix group is SO(3, 1). We
will discuss this group in more detail in chapter 4.

Any 4-tupel vµ, µ = 0, 1, 2, 3, that transforms under changes of the
Lorentz system as

vµ = Λµ
ν v

ν (1.17)
is called a Lorentz 4-vector. Correspondingly, objects Tµ1,µ2 ... µn that
transform as

T′µ1,µ2 ... µn = Λµ1
ν1 Λµ2

ν2 . . . Λµn
νn T′ν1,ν2 ... νn (1.18)
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are called Lorentz tensors of rank n. It is useful to introduce ‘covariant’
vectors by defining

xµ := gµν x
ν = (t,−~x). (1.19)

With this notation, the light-front position discussed above can be
written as
0 = xµ x

µ = x′µ x
′µ, which makes it obvious that expressions with pair-

wise contracted upper and lower indices are Lorentz invariant. For
instance, the argument of the plane wave in (1.8) can be written as

−iωt + i~k · ~x = −ikµ xµ, (1.20)

where kµ = (ω,~k).
[NB: the fact that ω and ~k indeed transform as components of a 4-
vector is a manifestation of the relativistic Doppler effect.]
Hence, the plane-wave form of (1.8) is a relativistic invariant. This
translates into the invariance of the corresponding wave operator

� =
∂2

∂t2
− ~∇2. (1.21)

The trivial fact that
∂

∂xµ
xν =

{
1 for µ = ν

0 otherwise
(1.22a)

implies that
∂

∂xµ
xµ = 4 (1.22b)

holds in any Lorentz frame. This suggests to interpret
∂

∂xµ
as a co-

variant vector: ∂µ

∂µx
µ = 4, ∂µ =

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (1.23)

The corresponding contravariant vector operator is

∂µ = gµν∂ν, ∂µ =

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
, (1.24)
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where gµν denotes the inverse of gµν. Obviously, we have (g−1)µν = gµν
component-wise. We write

g−1g = 1, or in components gµνgνκ = δµκ. (1.25)

With this notation, we have

� =
∂2

∂t2
− ~∇2 = ∂µ∂

µ (1.26)

which makes Lorentz invariance manifest.

To conclude the discussion of classical electrodynamics, the form invari-
ance of Maxwell’s equations under Lorentz transformations becomes
manifest by noticing that ϕ(x) and ~A(x) also transform as compo-
nents of a 4-vector

Aµ(x) =
(
ϕ(x), ~A(x)

)
. (1.27)

The Lorenz gauge condition (1.6) is hence Lorentz invariant,

∂µA
µ = 0. (1.28)

From (1.3) it is clear that ~E and ~B cannot be arranged into 4-vectors.
Instead, their components can be arranged into a Lorentz tensor, the
field strength tensor

F µν = ∂µAν − ∂νAµ

(F )µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 ,
(1.29)

such that the 1st line of Maxwell’s equations read

∂µF
µν = 0. (1.30)

This is a set of 4 equations, ν = 0, 1, 2, 3 , that transform as a
4-vector under Lorentz transformations. In order to write the 2nd
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line of (1.2) into 4-notation, it is useful to introduce the Minkowskian
analogue of the Levi-Civita symbol

εµνκλ =


1 for µ = 0, ν = 1, κ = 2, λ = 3 and even permutations
−1 for odd permutations
0 if two indices are equal

.

(1.31)
This allows to introduce the dual field strength tensor

F̃ µν =
1

2
εµνκλFκλ, (1.32)

where Fκλ = gκµF
µνgνλ. More explicitly,

(
F̃
)µν

=


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 . (1.33)

By construction, we have

0 = ∂µF̃
µν =

1

2
εµνκλ∂µ (∂κAλ − ∂λAκ) , (1.34)

since the partial derivatives commute. This is also called the Bianchi
identity, which reproduces the 2nd line of (1.2). We close this section on
electrodynamics by noting that the whole formalism can be generalized
to non-vanishing charges and currents. Combining the charge density
ρ and the current density ~ into a 4-vector jµ = (ρ,~), the Maxwell
equation (1.30) reads (in Heaviside-Lorentz units)

∂µF
µν = jν, (1.35)

while (1.34) remains as it is. Since F µν (as well as F̃ µν) is antisymmet-
ric by construction, F µν = −F νµ, current conservation is manifest:

0 = ∂µ∂νF
µν = ∂νj

ν =
∂

∂t
ρ + ~∇ · ~ (1.36)

Classical electrodynamics is an obvious example for a classical field
theory with a high degree of structure both due to gauge symmetry as
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well as the vector and tensor nature of the field variables.
With this insight, we can ‘guess’ a much simpler field theory that
satisfies relativistic invariance:

�φ(x) = 0, (1.37)

where φ(x) is a scalar field that transforms trivially under Lorentz
transformations φ(x)→ φ′(x′) ≡ φ(x).
In fact, (1.37) is identical to the Klein-Gordon equation(

� + m2
)
φ(x) = 0 (1.38)

for the special case of vanishing mass m. (Here we use also the con-
vention ~ = 1.)

From our advanced quantum mechanics course, we know that the
Klein-Gordon equation also admits plane wave solutions,

φ ∼ e−iωt+i~k·~x = e−ikµxµ, (1.39)

where

kµk
µ = m2. (1.40)

The last equation is equivalent to

ω2 = ~k2 + m2 (1.41a)

which according to our conventions is identical to

E2 = ~p2c2 +
(
mc2

)2
, E = ~ω, ~p = ~~k. (1.41b)

This is nothing but the relativistic energy-momentum relation (dis-
persion relation) of a relativistic point-particle. Of course, in the
quantum mechanics course, the Klein-Gordon equation has been mo-
tivated by the relativistic dispersion relation (1.41) with the wave
equation (1.38) being a consequence of the correspondence principle
E → i∂t, ~p→ −i~∂x. From the viewpoint of field theory, the logic is
reversed: we have written down the simplest relativistic field equations

16



in (1.37) and (1.38) which turn out to support wave excitations that
obey the dispersion relation of a relativistic point particle.

[NB: in fact, leaving relativity and quantum mechanics aside, the Klein-
Gordon equation also appears in continuum mechanics: it describes the
propagation of longitudinal waves of (the continuum limit of) a chain
or net of oscillators with φ(x) corresponding to the amplitude of an
oscillator at point x; the speed c is related to the spring constants, and
m is a measure for a harmonic force pulling each oscillator back to its
rest position.]

Comparing the dispersion relation (1.41a/b) to that found for waves
in electrodynamics in (1.8), the latter appear to correspond to mass-
less relativistic particles satisfying ω2 = k2 or E = |~p|c, the quantized
version of which will be the photons.

Having obtained the (quantum mechanical) Klein-Gordon equation
from field theory considerations, it is a perfectly legitimate viewpoint
to interpret even the Schrödinger equation (at least mathematically)
as a wave equation of a classical field theory,

i∂tψ(x) = − 1

2m
~∇2ψ(x) + V (x)ψ(x). (1.42)

Obviously, the Schrödinger equation is not invariant under Lorentz
transformations, instead it is Galilei invariant (as Newton’s classical
mechanics). Correspondingly, its excitations give rise to dispersion re-

lations of a non-relativistic point particle E =
p2

2m
+ . . . .

One may justifiably object that there is still a clear distinction be-
tween field theories such as electrodynamics on the one hand side, and
quantum mechanical field equations on the other hand side, because
the quantum mechanical wave functions have a probabilistic interpre-
tation, P (x) = |ψ(x)|2, i.e. first, one needs to square the amplitude,
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and second, the result is a probability not a fully deterministic predic-
tion for a single measurement. However, this distinction becomes less
meaningful, if we keep in mind that a typical observable for electro-
magnetic waves is the intensity, I ∼ | ~E|2, | ~B|2, which is also related
to the square of the field amplitude.
Moreover, when we approach the regime of very small intensities (and
system sizes with actions of the order S ∼ ~), we expect quantum
effects to set in. Interestingly, it is not the Maxwell equations which
break down in this regime, but it is the interpretation of the ampli-
tudes that break down: the intensity then is related to the probability
of measuring radiation (a photon).

An important difference between the quantum mechanical and the
field theory viewpoint is the following: in quantum mechanics, we first
lift the space coordinates and momenta to operators ~x, ~p → ~̂x, ~̂p
with non-trivial commutation relations. Only once we formulate the
Schrödinger equation in position space, the coordinates become ‘c-
numbers’ again. In this manner, there is a fundamental difference
between space and time, as the latter t always remains a parameter.
By contrast, both time and space remain parameters on an equal foot-
ing in field theory. This holds also true in QFT, where (t, ~x) remain
parameters; instead the fields themselves are lifted to operators.

All of the examples of field theories mentioned so far are special in
the sense that their field equations are linear in the amplitude φ(x)
(or F µν, Aµ, ψ). As a consequence, the superposition principle holds:
if two solutions φ1(x) and φ2(x) exist, then also

φ(x) = αφ1(x) + βφ2(x) (1.43)

is a solution (with α, β = const).
This is generally no longer true if we consider non-linear theories. A
famous example is Einstein’s theory of general relativity, where the
field variable is a now dynamical metric gµν(x) and the field equation
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reads (in vacuum without cosmological constant)

Rµν −
1

2
Rgµν = 0. (1.44)

Here, the Ricci tensor Rµν and Ricci scalar R depend in a nonlinear
way on gµν (and its inverse) and derivatives thereof.

1.3 The action principle for classical field theories

All of the above given examples for field equations can be derived from
an action principle in much the same way as Hamilton’s principle gives
rise to equations of motion in classical mechanics. The corresponding
action turns out to be of the form

S[φ] =

∫
V

d4xL(φ, ∂µφ) (1.45)

Here, the action S is considered to be a functional of the field φ.
The integration measure d4x over spacetime is a Lorentz invariant,
as the Jacobian of the transformation, d4x → d4x′ = | det Λ|d4x,
involves the modulus of the determinant of Λ, which by virtue of (1.16)
satisfies (det Λ)2 = 1. If L transforms as a scalar, S is a Lorentz
invariant number for any field φ. The integration volume V may be
finite or extend over full Minkowski space. Since (1.45) involves a
volume integration, L is called the Lagrange density. We assume it to
be a function of the field φ and its first derivative ∂µφ, since the above
given field equations are of second order. As in classical mechanics, we
could also allow for higher derivatives at the expense of higher-order
field equations.
We look for those field configurations that extremize the action S. As
in classical mechanics, we assume that the general field can be written
as

φ(x, α) = φ(x) + αη(x), (1.46)

19



where φ(x) is the extremizing solution, α is a parameter and η(x) is
an arbitrary field variation that vanishes on the boundary of V :

η(x)|x∈∂V = 0. (1.47)

(I.e. if the general field has to satisfy specific boundary conditions on
∂V , these boundary conditions are completely carried by φ(x), i.e. the
extremizing field.)
With these assumptions, S has to be stationary at α = 0:

0 =
∂S[φ]

∂α

∣∣∣∣
α=0

=

∫
V

d4x

[
∂L
∂φ
η +

∂L
∂(∂µφ)

∂µη

]
α=0

.

Integrating the second term by parts, yields

0 =

∫
V

d4x

{[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
η(x)

}
α=0

+

[
∂L

∂(∂µφ)
η

]
∂V
α=0

. (1.48)

The last term is a surface term (to be evaluated along the normal of
the surface) which vanishes because of (1.47). Since the first term has
to vanish for any η(x), we conclude that

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0.

(1.49)

This is the field theory version of the Euler-Lagrange equation, rep-
resenting a necessary condition for φ(x) to be a local extremum of
the action functional S[φ]. Note that we have not specified the na-
ture of the field φ any further. If φ represents a multicomponent field
φa, a = 1, . . . , N where a can be any kind of index, we correspond-
ingly obtain N Euler-Lagrange equations

∂L
∂φa
− ∂µ

∂L
∂(∂µφa)

= 0. (1.50)

Let us start with the simplest example of a single-component real scalar
field φ(x) ∈ R. Since L must be a Lorentz scalar, the simplest term
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involving ∂µφ which we can write down is ∼ (∂µφ)(∂µφ). Because of
the necessary pairing of the Lorentz indices, this is invariant under
the additional symmetry φ → −φ (a Z2 symmetry, a transformation
group consisting of the elements Z2 =̂ {−1, 1}). If we wish to maintain
this symmetry also for the φ-dependent parts, the simplest Lagrange
density takes the form

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2, (1.51)

where the factors of
1

2
are pure convention and the parameter m has

been introduced to let the second term have the same dimensionality
(units) as the first term. Inserting (1.51) into (1.49), we find

∂L
∂φ

= −m2φ. (1.52a)

With

(∂κφ)(∂κφ) = gκλ(∂κφ)(∂λφ) and
∂(∂κφ)

∂(∂µφ)
= δλκ,

we get
∂L

∂(∂µφ)
=

1

2

∂

∂(∂µφ)
gκλ(∂κφ)(∂λφ)

=
1

2
gκλδµκ∂λφ +

1

2
gκλ∂κφδ

µ
λ

= ∂µφ (1.52b)

⇒ ∂µ
∂L

∂(∂µφ)
= ∂µ∂

µφ = �φ. (1.53)

In other words, the Euler-Lagrange equation reads

(� + m2)φ = 0, (1.54)

being identical to the Klein-Gordon equation. We conclude, that (1.51)
corresponds to the Lagrange density of Klein-Gordon theory. Several
comments are in order:
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1. We have arrived at (1.51) using symmetry arguments (Lorentz, Z2)
and simplicity. While symmetry is a clear defined criterion, sim-
plicity (or beauty) is rather vague. While classical field theory has
not much to offer as an alternative argument, quantum field theory
does have another consistency criterion that can (at least partly) re-
place simplicity, it goes under the name of renormalizability which
sounds (and at first sight is) technical, but goes to the very heart
of the existence, origin or emergence of quantum field theories (see
my lecture notes on ‘Physics of Scales’). To zeroth approximation,
renormalizability is related to dimensionality, see below.

2. Disregarding Z2 symmetry, an even simpler term would be a linear
term ∼ jφ with a parameter j or a function j(x). The resulting
field equation would be

(� + m2)φ(x) = j(x). (1.55)
Such a linear term hence would have the meaning of a source term.
Such a source term would break Z2 symmetry explicitly.

3. Let us clarify the notion of units or dimensionality in our conven-
tions where ~ = c = 1. For instance, from the dispersion relation
(1.41a), it is clear that energy, momentum and mass all carry the
same units which can be expressed in terms of an arbitrary unit
scale. In high-energy physics, the typical choice is the energy unit
of electron Volts eV with a GeV (= 109 eV) corresponding approx-
imately to the mass (≡ rest energy) of the proton. Solely counting
mass or energy dimensions, we write

[E] = [ω] = [pi] = [m] = 1. (1.56a)
Since the action carries the same unit as ~ = 1, the action itself is
dimensionless,

[S] = 0. (1.56b)
Since position times momentum has the unit of an action (as well
as angular momentum), we have

[x · p] = 0.
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With (1.56a) this implies that position carries an inverse mass di-
mension

[x] = −1. (1.56c)
Consequently, we have

[d4x] = −4, (1.56d)
and thus with (1.56b)

[L] = 4, (1.56e)
in four spacetime dimensions. From (1.56c) we deduce that

[∂µ] =

[
∂

∂xµ

]
= 1. (1.56f)

Combining these findings with the form of L in (1.51), we see that
the field amplitude itself must carry a mass dimension

[φ] = 1. (1.56g)

(Exercise: generalize these considerations to a Klein-Gordon field
in D dimensional spacetime.)

4. The linearity of the resulting field equation is in one-to-one cor-
respondence with the fact that the action / Lagrangian (1.51) is
quadratic in the fields. It is straightforward to construct more gen-
eral non-linear theories, e.g. by generalizing the mass term to a full
function,

L =
1

2
(∂µφ)(∂µφ)− V (φ). (1.57)

In analogy to classical mechanics, we call V (φ) a potential. Note,
however, that V (φ) generically does not give preference for a par-
ticle / excitation to be at a certain position in space(time), but for
the field to have a certain amplitude. Correspondingly, the first
term ∼ (∂µφ)(∂µφ) is called a kinetic term. Analogously to me-
chanics, it is a measure for how much action is stored in variations
of the field in time and space.
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Z2 symmetry is preserved if the potential satisfies V (φ) = V (−φ).
Considering its Taylor expansion about the origin in field space

V (φ) =
1

2
m2φ2 +

λ

4!
φ4 + . . . , (1.58)

we encounter a quartic term which, on the level of the equations of
motion, turns into a cubic interaction,

(� + m2)φ +
λ

3
φ3 + · · · = 0. (1.59)

The parameter λ is dimensionless, [λ] = 0, and serves as a measure
for the interaction of the field with itself. For small λ� 1, the dis-
persion relation of small amplitude fluctuations remains essentially
unmodified, and we expect approximate plane wave excitations of
mass m. For large couplings and/or large amplitudes, the nonlin-
earity will lead to sizeable modifications both of the wave form as
well as the dispersion relation.

We close this section by listing the actions that give rise to the field
equations discussed in the previous section:

1. Maxwell’s electrodynamics:

L = −1

4
FµνF

µν − JµAµ (1.60)

in presence of a current Jµ. The signs are chosen such that the
above given conventions are met.

2. Klein-Gordon theory for a complex field φ ∈ C:

L = (∂µφ
∗)(∂µφ)−m2φ∗φ. (1.61)

With the decomposition into to real fields

φ =
1√
2

(φ1 + iφ2), φ1,2 ∈ R, (1.62)

(1.61) splits into two copies of (1.51).
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3. Schrödinger theory for ψ(x) ∈ C:

L = ψ∗i∂tψ −
1

2m
(~∇ψ∗)(~∇ψ)− V (x)ψ∗ψ. (1.63)

The explicit verification of the corresponding field equations is left as
an exercise to the reader.

1.4 Functional differentiation

The variational calculus, introducing a variation parameter and an ar-
bitrary variation η(x), can be most conveniently formulated in terms
of functional differentiation. The latter is a directional derivative of a
c-number valued functional taken ‘into the direction of the function’
in function space. Its precise mathematical definition requires a care-
ful discussion of function spaces (see, e.g. Methods of Mathematical
Physics by Courant, Hilbert ’53). For our purposes, it suffices to work
with the (mostly) algebraic rules following from its definition (which
can equally well be worked out from the variational calculus above): a
functional derivative is linear

δ

δφ(x)
(αF1[φ] + βF2[φ]) = α

δF1[φ]

δφ(x)
+ β

δF2[φ]

δφ(x)
, (1.64)

and obeys a Leibniz rule
δ

δφ(x)
(F1[φ]F2[φ]) =

δF1[φ]

δφ(x)
F2[φ] + F1[φ]

δF2[φ]

δφ(x)
. (1.65)

The fundamental nontrivial derivative is
δφ(y)

δφ(x)
= δ(D)(y − x), (1.66)

where D is the number of spacetime dimensions, and δ(D) is the δ
distribution in the considered function space.
With this tool, let us verify that the extrema of the action S[φ] satisfy
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the Euler-Lagrange equations:

0 =
δS

δφ(x)
=

∫
d4y

δ

δφ(x)
L(φ, ∂µφ; y)

=

∫
d4y

(
δφ(y)

δφ(x)

∂L
∂φ

(y) +
δ∂yµφ(y)

δφ(x)

∂L
∂(∂µφ)

(y)

)
=

∫
d4y

(
δ(4)(y − x)

∂L
∂φ

(y) + ∂yµδ
(4)(y − x)

∂L
∂(∂µφ)

(y)

)
i.b.p.
=

∫
d4y

[
δ(4)(y − x)

(
∂L
∂φ

(y)− ∂yµ
∂L

∂(∂µφ)
(y)

)]
=

∂L
∂φ(x)

− ∂µ
∂L

∂(∂µφ(x))
. (1.67)

Note that L is a function of the field and its derivatives and thus only
partial derivatives of L have to be evaluated. The surface term of the
partial integration (i.b.p.) does not contribute for obvious reasons as
long as x is not on the boundary of the integration volume. If it was,
the functional directional derivative would correspond to a change or
variation of the boundary conditions imposed on the fields, which we
do not want to consider here. This restriction is equivalent to choosing
η(x)|∂V = 0 in the variational calculus.
Further examples of functional differentiation are discussed in the ex-
ercises.
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2 Aspects of classical field theory

In the introduction section, we have essentially derived (or rather mo-
tivated) the Lagrangian formulation of classical field theory in almost
complete analogy to classical mechanics. Let us continue to use this
analogy to apply further concepts of classical mechanics to field theory,
starting with the Hamiltonian formulation.

2.1 Hamiltonian formulation

Let us use the Klein–Gordon field as a simple example for the following
section. As in (1.57), we generalize the mass term to a full potential:

S[φ] =

∫
d4xL(φ, ∂µφ),

L =
1

2
(∂µφ)(∂µφ)− V (φ).

(2.1)

Let us first try to find a relativistic (covariant) Hamiltonian, naively
generalizing the rules of classical mechanics to field theory. For this,
we first define a field momentum conjugate to the field amplitude:

Πµ =
∂L
∂∂µφ

(2.1)
= ∂µφ. (2.2)

The corresponding Hamiltonian is then obtained by a Legendre trans-
form:

Hcov = Πµ ∂
µφ︸︷︷︸

=Πµ

− L︸︷︷︸
=1

2ΠµΠµ−V (φ)

=
1

2
ΠµΠµ + V (φ). (2.3)

At first glance, this looks similar to point particle Hamiltonians à la

H =
p2

2m
+ V (x). However, there is a problem: with (2.2), the kinetic
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term corresponds to
1

2
ΠµΠµ =

1

2
(∂tφ)2 − 1

2
(~∇φ)2.

Because of the minus sign, Hcov is not bounded from below even for
bounded potentials V (φ). Hence, Hcov cannot be interpreted as an
energy quantity related to a given field configuration.
This is not too surprising: By construction, Hcov is invariant under
Lorentz transformations, whereas the field energy is expected to trans-
form as a 0-component of a 4-vector (as for a point particle).

In order to preserve the energy interpretation for the Hamiltonian, we
give up manifest covariance for a moment and choose a fixed reference
frame with a time t, xµ = (t, ~x), such that the Lagrangian reads

L =
1

2
(∂µφ)(∂µφ)− V (φ) =

1

2
φ̇2 − 1

2
(~∇φ)2 − V (φ). (2.4)

Now we define the canonical momentum as in classical mechanics:

Π(~x) =
∂L
∂φ̇(~x)

= φ̇(~x), (2.5)

where the notation should indicate
that this definition holds at every
space point ~x, while the time t is
considered as an evolution parame-
ter as in classical mechanics. The
Hamiltonian formulation thus in-
duces a foliation of spacetimeM→
R3 ⊗R.

t R3

Again, we obtain the Hamiltonian by a Legendre transformation,

H = Π φ̇︸︷︷︸
=Π

− L︸︷︷︸
=1

2Π2−(~∇φ)2−V (φ)

=
1

2
Π +

1

2
(~∇φ)2 + V (φ). (2.6)

For potentials bounded from below, this is a manifestly bounded func-
tion of the field and the momentum. Its units correspond to those of
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an energy density. Hence, the three terms can be interpreted as the en-
ergy densities stored in or required by the time evolution ∼ Π2, spatial
field variations ∼ (~∇φ)2, or the excitation of field amplitudes ∼ V (φ).
As will be detailed in the exercises, the equation of motion follow now
directly from the corresponding Hamilton equations in complete anal-
ogy to classical mechanics. The construction can be briefly summarized
as follows:
φ(~x) and Π(~x) span the phase space. Using functional differentia-
tion, we can define Poisson brackets for general phase space functionals
A[φ,Π] , B[φ,Π]:

{A,B} =

∫
d3z

(
δA

δφ(~z)

δB

δΠ(~z)
− δB

δφ(~z)

δA

δΠ(~z)

)
. (2.7)

The fundamental Poisson brackets read
{φ(~x),Π(~y)} = δ(3)(~x− ~y),

{φ(~x), φ(~y)} = 0 = {Π(~x),Π(~y)}.
(2.8)

The canonical equations of motion then yield as usual

φ̇(~x) = {φ(~x), H}, Π̇(~x) = {Π(~x), H}, (2.9)

where we have used the Hamilton functional

H =

∫
d3yH(~y). (2.10)

Hence, H is also called the Hamiltonian density.

Inserting (2.6) into (2.9) leads to the field equation

0 = φ̈− ~∇2φ + V ′(φ) ≡ �φ + V ′(φ), (2.11)

as expected. We emphasize that (2.11) is a covariant field equation,
even though the Hamiltonian construction is not manifestly covariant
at intermediate stages.
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2.2 Symmetries and conservation laws

In classical mechanics, symmetries can be closely related to conserved
quantities as is captured by Noether’s theorem. In fact, the same re-
lation persists in classical field theory:

Let us consider an infinitesimal deformation of the field

φ(x)→ φ′(x) = φ(x) + δφ(x), (2.12)

where δφ(x) is considered to be an infinitesimal continuous deforma-
tion (finite deformations can be generated from successive infinitesimal
deformations). Equation (2.12) in considered to be a symmetry trans-
formation if the field equations remain invariant.

On the level of the Lagrangian, this implies that L is allowed to change
only up to a total derivative:

L → L′ = L + δL,
where δL = ∂µK

µ.
(2.13)

Then, the action changes by a surface term

δS =

∫
d4x δL =

∫
Ω

d4x ∂µK
µ =

∫
∂Ω

dσµK
µ (2.14)

If Kµ is sufficiently localized (which we assume in the following), δS
vanishes since δΩ is considered to be the boundary of our spacetime
volume Ω at spatial and temporal infinity. This implies that the action
is invariant under (2.12) & (2.13) and so are the equations of motion.

Noether’s theorem now relates this invariance to a conserved quan-
tity.
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Let φ → φ + δφ with δL = ∂µK
µ be an infinitesimal

symmetry transformation. Then, there is a 4-current,

Noether current: Jµ = Πµδφ−Kµ (2.15)

where Πµ =
∂L

∂(∂µφ)
, (2.16)

which is conserved, ∂µJ
µ = 0, (2.17)

if φ satisfies the equations of motion.

Proof:
Varying the Lagrangian yields

∂µK
µ = δL =

∂L
∂φ
δφ +

∂L
∂(∂µφ)

δ(∂µφ)︸ ︷︷ ︸
=∂µδφ

=

[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
δφ + ∂µ

 ∂L
∂(∂µφ)︸ ︷︷ ︸

=Πµ

δφ


(2.18)

Using the equations of motion, the term in [ ]-brackets
vanishes, and we find

0 = ∂µ(Πµδφ−Kµ) =: ∂µJ
µ (2.19)

�

If in addition the Noether current vanishes sufficiently fast towards
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spatial infinity |~x| → ∞, we find

0 =

∫
d3x ∂µJ

µ = ∂t

∫
d3x J0 −

∫
R3

d3x ~∇ · ~J

= ∂t

∫
d3x J0 −

∫
∂R3

d~r · ~J

︸ ︷︷ ︸
→0

= ∂t

∫
d3x J0 =: Q̇. (2.20)

The corresponding integral over the zero component of the current is
called the Noether charge,

Q =

∫
d3x J0, (2.21)

which by virtue of (2.20) is conserved. Note that discrete symmetries,
such as φ→ −φ, are not subject to Noether’s theorem, as they cannot
be formulated infinitesimally.

Let us illustrate the significance of Noethers theorem with the aid of
two examples.

Example 1: translations
Translations are part of the space-time symmetries which together
with the Lorentz transformations form the Poincaré group. Trans-
lation invariant systems do not feature a distinguished point in
spacetime. A translation

xµ → xµ′ = xµ − aµ, aµ = const (2.22)

acts on the field as

φ(x)→ φ′(x) = φ(x− a). (2.23)

For infinitesimal translations, we get

φ(x− a) = φ(x)− aµ∂µφ(x) +O(a2)

⇒ δφ(x) = −aµ∂µφ(x).
(2.24)
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Similarly, we get for the Lagrangian

L → L(x− a) = L(x)− aµ∂µL(x) +O(a2)

⇒ δL = −aµ∂µL(x) ≡ ∂µ(−aµL)

⇒ Kµ = −aµL.
(2.25)

From this, we get the Noether current

Jµ = Πµδφ−Kµ = Πµ(−aν∂νφ) + aµL
= −aν(Πµ∂νφ− gνµL) =: −aνT µν, (2.26)

where we have defined the canonical energy-momentum tensor

T µν =
∂L

∂(∂µφ)
∂νφ− gµνL (2.27)

which by Noether’s theorem satisfies

∂µT
µν = 0. (2.28)

The 00-component corresponds to the Hamiltonian density,

T 00 = Π0∂0φ− L ≡ Πφ̇− L = H. (2.29)

The associated conserved Noether charge

Q̇ = ∂t

∫
d3x J0 ⇒ ∂t

∫
d3xT 0ν =:

d

dt
P ν = 0 (2.30)

can be interpreted as the physical 4-momentum of the field (not to
be confused with the canonical momentum Πµ),

P µ :=

∫
d3xT 0µ =

∫
d3x (Π∂µφ− g0µL), (2.31)

the components of which read

P 0 =

∫
d3xT 00 = H (energy)

P i =

∫
d3xΠ∂iφ. (3-momentum)

(2.32)

(e.g. in Maxwell’s theory, P i is related to the Poynting vector.)
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Example 2: complex scalar field
In addition to spacetime symmetries also internal symmetries can
induce conservation laws. Let us consider the case of a complex
scalar field

L = ∂µφ
∗∂µφ−m2φ∗φ. (2.33)

The Lagrangian is invariant under phase rotations, δL = 0

φ→ eiαφ, φ∗ → e−iαφ∗ (2.34)

for α = const ∈ R. Infinitesimally, we have

φ→ φ + iαφ = φ + δφ, φ∗ → φ∗ − iαφ∗ = φ∗ + δφ∗. (2.35)

Since δL = 0, we have Kµ = 0 as well. Correspondingly, the
Noether current is

Jµ = Πµδφ + Π∗µδφ∗ = iα(φ∂µφ∗ − φ∗∂µφ)

= 2α=(φ∗∂µφ). (2.36)

Apart from the (irrelevant) factor α, we obtain the Klein-Gordon
current

jµ =
Jµ

α
= 2=(φ∗∂µφ), (2.37)

and the corresponding Noether charge

Q =

∫
d3x j0 = i

∫
d3x (φ∂0φ∗ − φ∗∂0φ). (2.38)

Both expressions (2.37) & (2.38) are familiar from relativistic quan-
tum mechanics: after reinterpreting the ‘negative energy states’ as
amplitudes, jµ corresponds to the electromagnetic current gener-
ated by a Klein-Gordon wave function, and Q to its electric charge,
which upon coupling to a Maxwell field generate ~E and ~B fields.

34



3 Nonlinear scalar field theories

In the preceding sections, we have already considered scalar field the-
ories with a general potential V (φ) as an example for a nonlinear gen-
eralization of Klein–Gordon theory, cf. (1.57),

L =
1

2
(∂µφ)(∂µφ)− V (φ). (3.1)

This class of models has a wide range of applications (in particle
physics, many–body physics, statistical physics, etc.) and features
a number of physical mechanisms. In the following, we concentrate
on their properties related to symmetry and (spontaneous) symmetry
breaking.

3.1 Z2 model

We have already discussed that (3.1) for a real scalar field entails a Z2

symmetry under
φ→ −φ (3.2)

if V (φ) = V (−φ). E.g., for

V (φ) =
1

2
m2φ2 +

λ

4!
φ4, (3.3)

the equation of motion is(
� + m2 +

λ

3!
φ2

)
φ = 0 (3.4)

from which it is obvious that for a given solution φ0(x) also −φ0(x) is
a solution of (3.4). (Of course, it may not satisfy the same boundary
conditions that have been imposed on φ0(x). In general, boundary
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conditions may break (violate) the Z2 symmetry explicitly.)

In any case, (3.4) has a trivial solution: φ = 0 which is sometimes
called the ‘vacuum solution’. Small excitations with amplitude φ <<< 1
propagate to leading order in a λ-expansion according to the ‘free’ (lin-
ear) Klein-Gordon equation
(�+m2)φ ≈ 0 +O(λ), justifying to say that excitations on top of the
vacuum have a mass m.

Let us now deform (3.3) a little and consider the potential

V (φ) = −1

2
µ2φ2 +

λ

4!
φ4. (3.5)

At first sight, this looks odd as one may be tempted to say that the
theory has a negative mass squared m2 ?

= −µ2. This is, however, not
true, as we should study the dispersion relation of excitations on top
of the vacuum in order to define a propagating mass.
The form of the potential re-
veals, that φ = 0 is not a sta-
ble solution. Any excitation will
drive the system towards one of
the minima

φ0 = ±
√

6µ2

λ
=: ±v. (3.6)

φ

V (φ)

+v−v

Hence, the role of the stable vacuum solution is now played by one of
the two cases φ0 = ±v. Let us study the excitations on top of the
‘right’ vacuum:

φ(x) = v + σ(x). (3.7)

The Lagrangian then reads

(
v =

√
6µ2

λ

)

L = −1

2
(∂µσ)(∂µσ)−

[
1

2
(2µ2)σ2 +

1

3!
λvσ3 +

1

4!
λσ4

]
. (3.8)
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For small excitations σ <<< 1, the equations of motion then read

(� + (2µ2))σ = 0 +O(λ). (3.9)

We conclude that these excitations behave like relativistic point parti-
cles with a mass =

√
2µ. In addition to the quartic ∼ φ4 interaction,

σ in (3.8) also exhibits a cubic interaction ∼ σ3,

Vσ(σ) =
1

2
(2µ2)σ2 +

1

3!
λvσ3 +

1

4!
λσ4. (3.10)

We observe that – while V (φ) is symmetric under φ → −φ – the
potential for σ is not, Vσ(σ) 6= Vσ(−σ). This is, of course, not too sur-
prising, because we have made a choice in (3.7) and picked the ‘right’
vacuum solution φ0 = +v. If we had picked the ‘left’ solution, the
conclusions about the massive excitation in (3.9) would have been the
same, as well as the result that the new potential for σ as the exci-
tation on top of the vacuum φ0 = −v would not exhibit aZ2 symmetry.

The mere fact that the vacuum solution has the property φ0 = ±v 6= 0
is already in conflict with the symmetry. In order to be ‘in the vacuum’
the field has to give preference to either a positive amplitude φ0 = +φ
or a negative amplitude φ0 = −φ. Once, the vacuum solution has
made this choice (we say ‘has broken the symmetry’) the symmetry is
no longer manifest for excitations on top of the vacuum.

It is useful to introduce some more nomenclature: if the vacuum config-
uration of a field corresponds to a nonzero amplitude, we say that the
field condenses. The value v of the amplitude in the vacuum is called
a condensate. As the vacuum configuration no longer respects the sym-
metry of the Lagrangian, we talk about spontaneous symmetry breaking .

The attribute ‘spontaneous’ characterizes the situation that the field,
in principle, has two (or, in general, several) options to relax towards a
vacuum. This should be contrasted with symmetry breaking induced
by boundary conditions or non-symmetric terms in the action, which
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are imposed explicitly in the form of additional conditions or parame-
ters.

3.2 O(N) model

Let us next promote the field φ to an N -component vector field

φa ∈ R, a = 1, . . . , N

with a Lagrangian

L =
1

2
(∂µφ

a)(∂µφa)− V (φ), (3.11)

where
V (φ) = −1

2
µ2φaφa +

λ

4!
(φaφa)2. (3.12)

Equivalently, we could use a vector notation

L =
1

2
(∂µ~φ)(∂µ~φ)−

[
−1

2
µ2~φ · ~φ +

λ

4!
(~φ · ~φ)2

]
. (3.13)

It is important to note that these vectors ~φ do not ‘point’ along certain
directions in space or spacetime, but denote directions in an internal
space ~φ ∈ RN .

In the form of (3.13), it is easy to see that the model is invariant
under transformations that leave the Euclidean scalar product in RN

invariant. These transformations form the group of orthogonal trans-
formations O(N); i.e. the field vector components φa are transformed
by N ×N matrices Uab

φa → Uabφb, (3.14)

which constitute a matrix representation of O(N). The scalar product
is invariant, if U satisfies

UabUac = (UT )baUac = (UTU)bc = 1bc = δbc = (UUT )bc. (3.15)
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As the field components φa are real, U corresponds to an orthogonal
N ×N matrix with real components.
For the above case with a
‘negative mass-like parameter’
−µ2, the potential has the form
as sketched on the right for
N = 2, where the dashed
line marks a circle in field
space, where the potential is
minimal. For general N ,
this minimum corresponds to
an (N − 1)-dimensional sphere
SN−1, which is defined by

φ1

φ2

V (φ)

φa0φ
a
0 = v2 =

6µ2

λ
. (3.16)

In contrast to the Z2 model there are not merely two points, but a
continuum of possible vacuum solutions. Let us choose a specific one

~φ0 =


0
0
...
v

 , v =

√
6µ2

λ
. (3.17)

Then, the O(N) symmetry is spontaneously broken, since a generic
O(N) transformation would rotate ~φ0 to a different point on SN−1.
Still, there is a subset of O(N) transformations that leaves ~φ0 invari-
ant. This is the set of rotations about the ~φ0-axis in field space. It is
possible to show that this subset forms again a group, namely O(N−1).
We say that the ground state (3.17) breaks the group O(N) sponta-
neously to O(N − 1).

Now, it is interesting to study the excitations on the top of the vacuum,
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which we parametrize by

~φ(x) =

(
~π(x)

v + σ(x)

)
, πi, i = 1, . . . , N − 1. (3.18)

In terms of the fields πi(x), σ(x), the Lagrangian reads

L =
1

2
(∂µπ

i)(∂µπi) +
1

2
(∂µσ)(∂µσ)− V (σ, πi), (3.19)

where

V (σ, πi) =
1

2
(2µ2)σ2 (3.20)

+

√
λ

6
µσ3 +

√
λ

6
µ(πi)2σ +

λ

4!
σ4 +

λ

12
(πi)2σ2 +

λ

4!

[
(πi)2

]2
.

Here, we observe:

• a scalar excitation σ(x) with mass

m2
σ = 2µ2. (3.21)

• The πi and σ fields are interacting as well as self-interacting. This
means that the field equations for πi and σ are mutually coupled
and nonlinear.

• The Lagrangian is invariant under transformations of πi by orthog-
onal
(N − 1)× (N − 1) matrices

πi → U ijπj where U ∈ O(N − 1). (3.22)

This reflects the residual O(N − 1) symmetry.

• The π field remains massless, as there is no purely quadratic term
in πi.

The last point is particularly important: the spontaneous breaking of a
continuous global symmetry O(N)→ O(N − 1) yields N − 1 massless
bosons (here: scalars). The latter are called Nambu-Goldstone bosons
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(or only ‘Goldstone bosons’), where the nomenclature comes from a
QFT / particle-physics context. The phenomenon, however, is equally
important in classical field theory, e.g. in applications to statistical
models (e.g. spin waves).

The number of Goldstone bosons is related to the symmetry-breaking
pattern, more specifically to the ‘number of broken generators’. The
latter are those generators of O(N) that generate transformations that
would not leave the chosen vacuum invariant. This statement is quan-
tifiable:

# of O(N) generators nO(N) =
1

2
N(N − 1)

# of O(N − 1) generators nO(N−1) =
1

2
(N − 1)(N − 2)

⇒ nO(N) − nO(N−1) = N − 1 =̂ # of πi fields. (3.23)

The present example is a special case of the more general Goldstone
theorem, see below, relating the appearance of Goldstone bosons and
their numbers to the number of spontaneously broken generators; it is
not restricted to the present O(N) case.

The notation in terms of σ and π fields is taken over from low-energy
models of Quantum Chromodynamics (QCD): QCD has an approxi-
mate chiral symmetry (to be discussed later). In the case, where only
‘up’ and ‘down’ quarks are considered, the symmetry corresponds to
independent ‘flavour’ rotations, i.e. unitary transformations, of left-
and right-handed components of the Dirac spinor fields. The symme-
try group is

SU(2)L × SU(2)R ≈ O(4). (3.24)
The σ field is also often called a ‘radial’ excitation, as it character-
izes field equations orthogonal to the SN−1 sphere (orthogonal to the
dashed line in the above figure), while the πi fields are excitations
within the SN−1 sphere. The σ excitation has to go ‘uphill’ in the
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potential V (σ, πi), and thus is massive. In QCD it is supposed to cor-
respond to a heavy scalar mesonic resonance (∼ O(1GeV)). The πi

excitations are excitations within SN−1, i.e. a ‘flat’ direction in the
potential landscape. In QCD, π1, π2π3 correspond to the light pions
with a mass ∼ 135MeV. This small mass arises from the fact that
the chiral symmetry is only approximate in QCD. It is also explicitly
broken by the quark mass terms. In the literature, O(N) models in
the form discussed here are also called ‘linear sigma models’.
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3.3 Goldstone theorem

The connection between the appearance of massless Goldstone bosons
and spontaneously broken symmetries is generally formulated within
Goldstone’s theorem. It holds both in classical field theory as well as
in quantum field theory. In both cases, the proof is essentially identical
except for the fact that the classical potential has to be replaced by the
effective potential in QFT (NB: the effective potential already includes
the effects of all quantum fluctuations.)

We start from the action that we write as

S[φ] =

∫
d4x (−V (φ) + terms with higher derivatives ). (3.25)

We assume that the derivative terms – if nonzero – only result in
deviations from the extremum of the action, such that the ground state
is homogeneous and thus determined by the minimum of the potential.
In other words, we assume that V (φ) is minimized by φa0 = const. in
space and time. Then

∂

∂φa
V

∣∣∣∣
φa(x)=φa0

= 0. (3.26)

Expanding about this minimum, we get

V (φ) = V (φ0) +
1

2
(φ− φ0)a(φ− φ0)b

∂2

∂φa∂φb
V (φ0) + . . . , (3.27)

since the linear term vanishes by virtue of (3.26). The coefficient of
the quadratic term

m2
ab :=

∂2

∂φa∂φb
V (φ0) (3.28)

is a symmetric matrix, the eigenvalues of which specify the masses of
the fields. Since φ0 is a minimum, these masses cannot be negative.

Next, we assume that the theory has a continuous symmetry (obeyed
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by the action as well as the quantization procedure in QFT) with the
transformed field of the form

φa → φa + δφa, (3.29)

where δφa can be some function of all fields δφa = δφa(φ). Considering
only constant fields, the invariance of the action implies invariance of
the potential,

V (φ) = V (φ + δφ) (3.30)

⇒ δφa
∂

∂φa
V (φ) = 0. (3.31)

Differentiating with respect to φb and setting φ = φ0, we get

0 =
∂(δφa)

∂φb

∣∣∣∣
φ0

(
∂V (φ0)

∂φa

)
︸ ︷︷ ︸

=0

+δφa(φ0)mab = δφa(φ0)mab. (3.32)

If the transformation leaves φ0 unchanged, then δφa(φ0) = 0, and
(3.32) is trivially satisfied. A spontaneously broken symmetry is pre-
cisely one for which δφa(φ0) 6= 0. In this case, δφa(φ0) is an eigenvector
of the mass matrix with eigenvalue zero.

This proves Goldstone’s theorem: every continuous symmetry of the
theory that is not a symmetry of the ground state φ0 gives rise to a
massless excitation corresponding to a Nambu-Goldstone boson.

3.4 Hidden symmetry & the Higgs mechanism

Though the Goldstone theorem has many applications in field theory
in condensed-matter as well as particle physics, it hampered progress
in particle physics for quite a while around ∼ 1960. While the use
of symmetries appeared technically and aesthetically helpful in the
construction of models for the weak (and strong) interactions, these
symmetries had to be broken in order to match with the data. If the
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breaking happens spontaneously, Goldstone’s theorem seemed to im-
ply the necessary occurrence of massless excitations – which, however,
were not observed. On the contrary, the potentially existing bosons
seemed to be rather heavy.

The essential breakthrough was stimulated by Anderson’s description
of superconductivity and the Meissner-Ochsenfeld-Effekt in condensed-
matter physics and then was transferred to nonabelian models and par-
ticle physics by Brout, Englert, Higgs, Hagen, Kibble and Guralnik,
leading to what is now known as the electroweak Higgs sector of the
standard model of particle physics.

We will study here the essentials with the aid of a simple model: scalar
QED (or abelian Higgs model):

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ) + µ2φ∗φ− λ

4!
4(φ∗φ)2, (3.33)

where φ =
1√
2

(φ1 +iφ2) ∈ C is a complex charged scalar field (e.g. the

charged pions). The gauge field Aµ occurs in the covariant derivative,

Dµ = ∂µ + ieAµ, (3.34)

and the field strength

Fµν = ∂µAν − ∂νAµ. (3.35)

The theory is symmetric under local U(1) transformations (gauge trans-
formations)

φ(x)→ e−ieΛ(x)φ(x), e−ieΛ(x) ∈ U(1)

Aµ(x)→ Aµ + ∂µΛ(x),
(3.36)

where Λ(x) is an arbitrary smooth function of spacetime.

With µ2 > 0, the potential part of (3.33), V = −µ2φ∗φ +
λ

4!
4(φ∗φ)2

45



has a ‘Mexican hat’ shape such that the minima of V satisfy

φ∗0φ0 =
1

2
v2, v =

√
6µ2

λ
(3.37)

as before (the factor 1/2 takes care of the different normalization of
the scalar fields ∈ C).

The fact that the symmetry is a local symmetry is an essential dif-
ference to the purely scalar cases, say the O(2) model, considered be-
fore: e.g. choosing φ0 to point into the φ2 direction everywhere is not a
meaningful statement, since the local transformation (3.36) can change
φ0 independently from one point to another.

The gauge symmetry (3.36) indeed suggests to parametrize φ(x) dif-
ferently than before.

φ(x) =
1√
2

ei
π(x)
v (v + σ(x))

=
1√
2

(v + σ(x) + iπ(x)) +O(π2).
(3.38)

The second line is reminiscent to the linear parametrization used be-
fore, however, the complete parametrization in the first line is nonlin-
ear.

For a given field configuration φ(x), Aµ(x), we are free to perform
a gauge transformation (in the Z2 model, this corresponds to choos-
ing the ‘right’ minimum without loss of generality; or in the O(N)
model, we chose φ0 = (0, 0, . . . , v)T ). Here we choose a special gauge
transformation with

Λ(x) =
π(x)

ev
. (3.39)
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Then:

φ(x)→ φ′(x) = e−ieΛ(x)φ(x)
(3.38)
=

(3.39)

1√
2

(v + σ(x))

Aµ(x)→ A′µ(x) = Aµ(x) +
1

ev
∂µπ(x).

(3.40)

In terms of the new fields σ(x), π(x), A′µ(x), the Lagrangian now reads

L = −1

4
F ′µνF

′µν +
1

2
(∂µσ)(∂µσ) +

1

2
e2v2A′µA

µ′

+
1

2
e2(A′µ)2σ(2v + σ)− 1

2
(2µ2)σ2 +O(σ3, σ4). (3.41)

We observe:

• σ occurs as a massive scalar as in the purely scalar models

• Additionally, the photon A′µ has acquired a mass term as in Proca
theory

• Most surprisingly, π(x) has vanished completely!

This last observation is, in fact, compatible with the counting of prop-
agating degrees of freedom: in the initial formulation, say, with a
standard scalar mass parameter V = +m2φ∗φ . . . , we had two real
scalar fields (φ1, φ2) and two photon polarization modes (two trans-
verse modes): 2 + 2 = 4.

Now, we find one real scalar field (σ) and three polarization modes
of a ‘massive’ photon (two transverse & one longitudinal). The would-
be Nambu-Goldstone boson π has been ‘eaten up’ by the photon. This
highlights the essentials of the Higgs (Anderson, Brout, Englert, Kib-
ble, Hagen, Guralnik) mechanism.

We finally emphasize that the above analysis involved a special choice
of gauge which we fixed by hand. The observations made above become
particularly transparent in this gauge choice. By choosing a gauge, the
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gauge symmetry is in some sense explicitly broken by hand. By a
somewhat unfortunate nomenclature, the Higgs mechanism is some-
times referred to as the ‘spontaneous breaking of gauge symmetry’. In
a strict sense, this is nonsense, as gauge symmetry cannot be broken
according to Elitzur’s theorem.

The point here is that particular gauges are convenient to identify
the excitations. The gauge symmetry is still intact and we could try
to look for the same physics in a different gauge. These circumstances
are therefore better referred to by the name ‘hidden symmetry’.
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4 Particles and Fields as Representations of the
Lorentz group

Even in absence of any internal symmetries, the symmetries of space-
time are an essential property. In relativistic field theories, these are
given by the Poincaré group consisting of spacetime translations and
Lorentz transformations. Some consequences of both have already been
discussed above. In the following, we detail how Lorentz invariance
is connected to a classification of fields. Analogous considerations can
also be performed for nonrelativistic field theories on the basis of Galilei
invariance.

4.1 Lorentz transformations

Let us take a closer look at Lorentz transformations, recalling first
some essential properties already listed in chapter 1: a Lorentz trans-
formation is a linear operation on spacetime vectors vµ,

vµ → vµ′ = Λµ
νv

ν, (4.1)

that preserves the scalar product in Minkowski space

v2 = gµνv
µvν ≡ vµvµ, g = diag(+,−,−,−). (4.2)

The transformation matrix Λµ
ν hence satisfies

gµνΛ
µ
ρΛ

ν
σ = gρσ. (4.3)

The transformation property of vectors generalizes to transformations
of arbitrary contravariant tensors

T ′µ1...µn = Λµ1
ν1 . . .Λ

µn
νnT

ν1...νn (4.4)
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of rank n.

There are only two constant invariant tensors. One is given by the
metric by virtue of (4.3). The other one is the totally anti-symmetric
tensor

εµνρσ, ε0123 := 1 (4.5)
with the usual rules for the Levi-Civita symbol. According to (4.4), it
transforms as

ε′µνρσ = Λµ
αΛν

βΛρ
γΛ

σ
δε
αβγδ

= εµνρσ det Λ,
(4.6)

where the second step makes use of the construction of the determinant
using the ε symbol.

From (4.3), we read off

(det Λ)2 = 1 ⇒ det Λ = ±1. (4.7)

So strictly speaking, ε is only invariant or those Lorentz transfor-
mations that have det Λ = +1, but changes sign under those with
det Λ = −1.

From 3d Euclidean space, we are already familiar with transforma-
tions that change the sign of ε: these are given by those orthogonal
transformations that convert a right-handed basis into a left-handed
one. Analogously, this applies to Minkowski space.

From (4.3), we can derive another fact:

(ρ=0=σ) 1 = (Λ0
0)2 − (Λi

0)2

⇒ (Λ0
0)2 = 1 + (Λi

0)2

⇒ Λ0
0 ≥ 1 or Λ0

0 ≤ −1 (4.8)

Transformations with Λ0
0 ≥ 1 preserve the direction of the time axis,

i.e. connect inertial frames where the dynamics evolves from smaller
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to larger values of the time coordinate. By contrast, transformations
with Λ0

0 ≤ −1 flip the direction of the time axis.

The set of all Lorentz transformations forms the group O(3, 1); more
precisely: the Λ’s discussed here form a matrix representation of this
group. This is analogous to the orthogonal transformations O(4) in
4-dimensional Euclidean space, additionally accounting for metric sig-
natures.

Equations (4.7) & (4.8) proof that this set can be decomposed into
disconnected components, as there is neither a path (1-parameter fam-
ily of Λ’s) that could possibly continuously interpolate between the
det Λ = +1 and det Λ = −1 transformations nor a path interpolat-
ing between the Λ’s with Λ0

0 ≥ 1 and Λ0
0 ≤ −1. This makes four

disconnected components, out of which those with
det Λ = +1, Λ0

0 ≥ 1 (4.9)
are called orthochronous proper Lorentz transformations. This is the
component that contains the unit element of the group Λµ

ν = δµν .

The other components are related to the orthochronous proper com-
ponent by a parity transformation (right ↔ left handed basis) and/or
a time inversion (t→ −t).

Obviously, the infinitesimal Lorentz transformations belong to the or-
thochronous proper component

Λµ
ν = δµν + εµν, εµν � 1. (4.10)

Expanding (4.3) to first order yields
gρσ + gµσε

µ
ρ + gργε

ν
σ +O(ε2) = gρσ (4.11)

⇒ ενµ + εµν = 0 (4.12)
Thus, εµν is an antisymmetric matrix with 6 independent parameters, 3
of which correspond to Lorentz boosts (being parametrized by a spatial
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velocity vector ~v) and further 3 describe spatial rotations (e.g. Euler
angles).

It is useful to write an infinitesimal Lorentz transformation as

v′µ = vµ + εµνv
ν =:

(
1− i

2
ερσMρσ

)µ
ν

V ν (4.13)

where
(Mρσ)µ ν = i(δµρgσν − δµσgρν) (4.14)

This way of writing the transformation separates the parameters ερσ

from the generators Mρσ of Lorentz symmetry that encode the alge-
braic structure. For any given set of fixed indices ρ, σ, Mρσ is a 4× 4
matrix (with indices µ ν in (4.14)). These matrices satisfy

[Mµν,Mρσ] = −i(gµρMνσ − gνρMµσ − gµσMνρ + gνσMµρ) . (4.15)

Equation (4.15) defines the Lie algebra of the generators of the Lorentz
group SO(3, 1) (the ‘S’ means det Λ = 1). From an abstract perspec-
tive, Eq. (4.14) defines a particular representation of this algebra in
terms of 4 × 4 matrices. Since Mσρ = −Mρσ, there are in total 6
generators of this algebra.

Independently of the representation, we obtain finite Lorentz trans-
formations (within the orthochronous proper component) by the expo-
nential map

Λ = e−
i
2ε
ρσMρσ ≈ 1− i

2
ερσMρσ +O(ε2). (4.16)

4.2 Fields as representations of the Lorentz group

Fields being the fundamental degrees of freedom of a field theory can
be classified according to their behaviour under Lorentz transforma-
tions. So far, we have mainly considered scalar fields which transform
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trivially,
φ′(x′) = φ(x), x′µ = Λµ

νx
ν. (4.17)

We have also already encountered the gauge field Aµ(x) which trans-
forms as a vector,

A′µ(x′) = Λµ
νA

ν(x). (4.18)
For a general N -tupel ϕi, i = 1 . . . N , the transformation rule reads

ϕ′i(x
′) = D(Λ)i

jϕj(x), (4.19)

where D(Λ) should be an N ×N matrix representation of the Lorentz
group. Which representations do exist?

Infinitesimally, we have

D(Λ)i
j = δji −

i

2
εµν(Sµν)i

j, (4.20)

where Sµν is an N × N matrix for each fixed set of µ, ν. In order to
correspond to a Lorentz transformation, Sµν has to satisfy the Lorentz
algebra (4.15), Sµν ≡ D(Mµν). Our goal is to classify all possible
finite dimensional choices of Sµν. For this, we first go back to the
representation Mµν and introduce

Ji :=
1

2
εijkM

jk,

Ki := Mi0 = −M0i, i, j, k = 1, 2, 3.
(4.21)

Using (4.15), it is straightforward to verify

[Ji, Jj] = iεijkJk,

[Ji, Kj] = iεijkKk,

[Ki, Kj] = −iεijkJk.

(4.22)

~J satisfies the angular momentum algebra and hence is evidently re-
lated to the generator of spatial rotations. ~K in turn corresponds to
the generator of Lorentz boosts.
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It is instructive to change the basis of generators once more and intro-
duce

~A =
1

2
( ~J + i ~K), ~B =

1

2
( ~J − i ~K). (4.23)

These satisfy
[Ai, Aj] = iεijkAk,

[Bi, Bj] = iεijkBk,

[Ai, Bj] = 0.

(4.24)

Therefore, the Lorentz algebra is equivalent to two sets of angular
momentum algebras which we call ~A and ~B spins. These spin alge-
bras obviously commute. We conclude that we can classify all possible
representations of the Lorentz algebra simply in terms of all possible
representations of these angular momentum algebras. The latter are
countable in terms of the eigenvalue of the squared spins ~A2, ~B2. For a
given total spin, the eigenvectors can further be labelled by the eigen-
values of a spin component, say A3 and B3

~A2|Aa〉 = A(A + 1)|Aa〉, A3|Aa〉 = a|Aa〉,
~B2|Bb〉 = B(B + 1)|Bb〉, B3|Bb〉 = b|Bb〉,
a = −A, . . . , A, b = −B, . . . , B.

(4.25)

For a given set of total spin quantum numbers A and B, the represen-
tation space is spanned by |Aa,Bb〉 = |Aa〉 ⊗ |Bb〉 and is

N = (2A + 1)(2B + 1) (4.26)

dimensional. Hence, the index i of the N -tuple field ϕi simply labels
all possible values of a and b

i = (a, b). (4.27)

In this fashion, we have found all possible irreducible representations
of the Lorentz algebra. Of course, by means of tensor products, we can
combine different representations to form further reducible representa-
tions.
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4.3 Spinors

Apart from the trivial scalar representation, the simplest representa-
tion is a spin 1

2
representation, e.g.

(A,B) =

(
0,

1

2

)
(4.28)

⇒ D( ~A) = 0, D( ~B) =
~σ

2
(σi : Pauli matrices).

The corresponding fields have two components,

ϕi → ξα, α = 1, 2. (4.29)

The representation of ~J and ~K are

D( ~J) =
~σ

2
, D( ~K) = i

~σ

2
. (4.30)

We can summarize the parameters εµν of the Lorentz transformation
into two 3-vectors:

(ε23, ε31, ε12) =: −~θ, (ε10, ε20, ε30) =: −~ω, (4.31)

such that the representation of the Lorentz transformation is given by

D(Λ) = ei~θ·D( ~J)+i~ω·D( ~K), (4.32)

or explicitly

aα
β := D(Λ)α

β =
[
e

i
2
~θ·~σ−1

2~ω·~σ
] β

α
(4.33)

⇒ ξ′α(x′) = aα
βξβ(x). (4.34)

As can be verified explicitly, the matrix a is a 2×2 matrix with complex
entries and satisfies

det a = 1. (4.35)
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Thus it has 6 real parameters which are exhausted by ~θ and ~ω. The
set of matrices of this type form the matrix group

S L ( 2 , C ). (4.36)

det = 1 linear transformations 2× 2 matrix complex components

We call the field ξα(x) also an SL(2,C) spinor. The above equations
(4.32) and (4.33) describe a homomorphism between the Lorentz group
SO(3, 1) and SL(2,C), where SL(2,C) covers each element of SO(3, 1)
twice (as is already familiar from SU(2)↔ SO(3) in quantum mechan-
ics). Let ~ω = 0. If we rotate θ1 by 2π, we have Λµ

ν = δνµ, whereas
a→ −a in SL(2,C). The identity is reached again after a 4π rotation.

To close this section, we can also study the complex conjugate spinor
(ξα)∗ ≡ ξα̇ (‘dotted’ spinor), which transforms as

η′α̇(x′) = a∗α̇
β̇ηβ̇(x)

(
a∗α̇

β̇ ≡
(
aα

β
)∗) (4.37)

From the complex conjugate form of a in (4.33) we can deduce back-
wards that this corresponds to a representation

D( ~A) = −~σ
∗

2
, D( ~B) = 0 (4.38)

which is an (A,B) =

(
1

2
, 0

)
representation.

4.4 Spinors and 4-vectors

Since the dimension of a representation of the Lorentz group is given
by
N = (2A+ 1)(2B + 1), 4-vectors (being related to integer spins) have
to be related to the mixed representation:

2× 2∗ :

(
0,

1

2

)
×
(

1

2
, 0

)
=

(
1

2
,
1

2

)
. (4.39)
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In practise, this implies that there must be a relation between an object
with indices (α, β̇) and one with index µ. For this, we define the
auxiliary objects

(σµ)αβ̇ = (1, ~σ), (σ̄µ)α̇β = (1,−~σ). (4.40)

It is suggestive to use the 2d ε tensor as a metric in spinor space, e.g.

(σ̄µ)α̇β := εα̇γ̇εβδ(σ̄µ)γ̇δ. (4.41)

Then it can straightforward be checked that σµ and σ̄µ are related by

(σ̄µ)α̇β =
[
(σµ)αβ̇

]∗
. (4.42)

With these definitions, it also follows that
1

2
Tr (σ̄µσν) = δµν , (σµ)αβ̇(σ̄µ)γ̇δ = 2δδαδ

γ̇

β̇
, (4.43)

and
σµσ̄ν + σνσ̄µ = σ̄µσν + σ̄νσµ = 2gµν. (4.44)

Using the explicit representation (4.33) for a Lorentz transformation
aα

β, we obtain the important formula

σµΛµ
ν = aσνa

†. (4.45)

This equation connects the Lorentz transformation of a 4-vector, Λµ
ν,

with the transformation matrices a and a† of a spinor and its complex
conjugate. This suggests to define the spinor representation of a 4-
vector

x := xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (4.46)

Eq. (4.45) now gives us the transformation properties

x′ = x′µ︸︷︷︸
=Λµνxν

σµ = σµΛµ
νx

ν (4.45)
= aσνa

†xν

= axa†. (4.47)
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In turn, we can construct a 4-vector out of two independent spinors
ξα, ηα̇:

Vµ := ξα(σµ)αβ̇η
β̇. (4.48)

By an argument inverse to (4.47), it is possible to show that Vµ trans-
forms as a 4-vector under Lorentz transformations if ξα and ηα̇ trans-
form as spinors.

The general relation between a vector and a mixed spinor object is
hence given by

Vαβ̇ = V µ(σµ)αβ̇, V µ =
1

2
(σ̄µ)β̇αVαβ̇. (4.49)

So far, we have written the Lorentz transformations a and a∗ of the
SL(2,C) spinors explicitly in terms of Pauli matrices. However, there
is also a representation of the generators in terms of objects that satisfy
the Lorentz algebra directly. These are given by

(σµν)α
β :=

i

2
(σµσ̄ν − σνσ̄µ)α

β,

(σ̄µν)α̇β̇ :=
i

2
(σ̄µσν − σ̄νσµ)α̇β̇

. (4.50)

Each of these two objects satisfy the Lorentz algebra (4.15) withMµν →
σµν or σ̄µν. So we have D1

2
(Mµν) =̂σµν or σ̄µν.

Hence, the Lorentz transformation can be written as

ξ′α(x′) = aα
βξβ(x) =

[
e−

i
4ε
µνσµν

] β

α
ξβ(x), (4.51)

or for ηα̇ = εα̇β̇ηβ̇ as

η′α̇(x′) = (εa∗εT )α̇β̇η
β̇(x) =

[
e−

i
4ε
µν σ̄µν

]α̇
β̇
ηβ̇(x). (4.52)
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4.5 Some aspects of spinor calculus

For a given spinor ξα, we wish to identify the dual spinor ξα such
that the inner product of the two forms a scalar product which is
invariant under Lorentz transformations. As already suggested in the
preceding section, this metric is given by the anti-symmetric tensor in
two dimensions,

εαβ = εα̇β̇ = εαβ = εα̇β̇ = iσ2 =

(
0 1
−1 0

)
, (4.53)

such that
ξα = εαβξβ, ηα̇ = εα̇β̇ηβ̇. (4.54)

The resulting Lorentz invariance of the inner product ξαξα = εαβξβξα
will be discussed in the exercises. Since ε is anti-symmetric, some care
is necessary, as some manipulations seem non-obvious if compared to
vector calculus in R3 or M. For instance,

ξα = −εαβξβ, ηα̇ = −εα̇β̇η
β̇

= ξβεβα = ηβ̇εβ̇α̇
, (4.55)

because: −εαβξβ = − εαβεβγ︸ ︷︷ ︸
=−δγα

ξγ = ξα.

In (4.55), we observe that no explicit sign appears if the indices are
arranged such that they are contracted from upper-left to lower-right,
or ‘NW - SO’ (North-West to South-East).

I.e., if we wish to drop the indices in our notation, we have to agree on
this convention:

ξζ := ξαζα = −ξαζα. (4.56)
Another useful notation is inspired by matrix multiplication rules (e.g.
also the scalar product of two Euclidean vectors ~x and ~y, ~x · ~y, can be
viewed as a matrix multiplication where the left vector is considered as
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transposed vector ~x ·~y = ~xT~y), where we consider the left-hand spinor
(not the dual spinor!) as a transposed spinor:

ξζ = ξαζα = εαβξβζα = ξβε
αβζα

= −ξβεβαζα = −ξTεζ = ξTεTζ, (4.57)

where
εT = −ε. (4.58)

In this latter notation, we can write Lorentz transformations in the
following manner:

ξ′α = aα
βξβ ⇒ ξ′ = aξ, (4.59a)

or ξ′T = ξTaT . (4.59b)
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5 Simple Spinor field theories

Having identified the spinor fields ξα(x), ηα̇(x) as the simplest non-
trivial representations of the Lorentz group, let us try to construct field
theories for these spinors by means of Lorentz-invariant Lagrangians.

5.1 Kinetic part

Using (4.49), we can immediately write a derivative in spinor space:

∂µ → ∂αβ̇ = (σµ)αβ̇∂µ. (5.1)

Whereas scalar fields involved always two derivatives to form a Lorentz
scalar (∂µφ)(∂µφ), it is already possible to write down a single deriva-
tive term in the spinor case which is nevertheless bilinear in the fields
and thus no total derivative:

η∗α(σµ)αβ̇∂µη
β̇ = η†σµ∂µη, (5.2)

where (ηα̇)∗ = (η∗)α.

Since the spinor fields are complex, Eq. (5.2) is not guaranteed to be
real. Hence, we may try

L ?
= η†σµ∂µη + h.c. = η†σµ∂µη + (∂µη

†)σµη

= ∂µ(η†∂µη). (5.3)

However, this combination projecting on the real part is a total deriva-
tive and hence does not give rise to nontrivial equations of motion.
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Therefore, the only combination left is the imaginary part

Lkin
L =

i

2
(η†σµ∂µη − (∂µη

†)σµη)

=:
i

2
η†σµ

↔
∂µη .

(5.4)

This is the simplest possible kinetic term. Here, we have introduced the
derivative operator

↔
∂ acting to the right as well as to the left including

a minus sign. Similarly, we obtain for ξ:

Lkin
R =

i

2
ξ∗β̇(σ̄µ)β̇α

↔
∂µξα

=
i

2
ξ†σ̄µ

↔
∂µξ .

(5.5)

Both Lagrangians exhibit a continuous symmetry of phase transforma-
tions,

ξ′(x) = eiθξ(x) , ξ∗′(x) = e−iθξ∗(x),

η′(x) = eiθ′η(x) , η∗′(x) = e−iθ′η∗(x),
(5.6)

that leave the action invariant. These symmetries are also called chiral
symmetries, each one forming a U(1) group: U(1)R, U(1)L.

5.2 Mass term

Analogously to bosonic field theories, we expect that a mass term in
the Lagrangian has to be quadratic in the fields such that excitations
propagate according to the relativistic dispersion relation of a point
particle. As the kinetic term is linear in derivatives (∼ 4-momenta),
we expect the quadratic term in the Lagrangian to be linear in the
mass.

The simplest quadratic Lorentz scalars are

ηα̇εα̇β̇η
β̇ = ηTεη, ξαε

αβξβ = ξTεξ. (5.7)
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Explicitly, this yields, e.g.

ηα̇εα̇β̇η
β̇ = η1η2 − η2η1. (5.8)

If the components η1 and η2 are ordinary commuting numbers, this
expression is identically zero.

However, with a glimpse into quantum theory, we expect the the con-
nection between spin and statistics eventually implies that the exci-
tations of the spinor fields obey Fermi-Dirac statistics (spin-statistics
theorem): in a quantum setting, we will associate η1 and η2 with op-
erators that create a spinor excitation above the vacuum. Since these
excitations have to anti-commute, we are actually forced to impose
η1η2 = −η2η1.

For operators, this property seems straightforwardly implementable.
Nevertheless, here we do not plan to quantize, but stay within classical
field theory. Still, we wish to realize the correct statistical properties
of the excitations.

Evidently, both requirements cannot be satisfied by pure numbers
η1, η2 ∈ C. Still, there exists a consistent set of numbers, defined
in terms of conventional algebraic axioms, that even facilitates the def-
inition of derivatives and integrals, with the special property that these
numbers anti-commute. These are the Grassmann numbers. If we in-
terpret η1, η2, ξ1, ξ2 to be Grassmann-valued, we have η1η2 = −η2η1,
and thus (5.8) is nonzero. (Grassmann numbers can be treated ab-
stractly; if we still wish to represent them in terms the body of the real
numbers, we are lead to matrix representations, see exercises.)
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Hence, a real mass term is given by

LmL = −1

2
(mLη

Tεη −m∗Lη†εη∗),

LmR = −1

2
(mRξ

†εξ∗ −m∗RξTεξ),
(5.9)

where the mass parameters mL and mR may be complex. Here we
have used (θχ)∗ = χ∗θ∗ for Grassmann numbers (as is familiar from
matrices). Also, ε† = εT = −ε has been used.

These mass terms are called Majorana masses. The Majorana mass
breaks the chiral symmetry U(1)L or U(1)R completely. If a Majorana
mass exists, the corresponding Noether charges are not conserved. In
particle physics, no Majorana mass term has been verified (yet). Still,
the mass of the neutrinos may be associated with a Majorana mass
term; if so, the non-conservation of the Noether charge would trans-
late into violations of lepton number conservation. A possible signature
in terms of a neutrinoless double β decay is actively searched for.
In condensed-matter systems, Majorana fermions can arise as an effec-
tive degree of freedom. This is currently a very active field of research.

Whereas the above kinetic and mass terms can exist for each repre-
sentation

(
1

2
, 0

)
and

(
0,

1

2

)
separately, there is another possible mass term,

which exists in the simultaneous presence of the two spinors:

LmD = −(mξ†η + m∗η†ξ). (5.10)

This is the Dirac mass term. It does not break the chiral symmetries
completely: choosing θ = θ′ in (5.6), the spinors transform as(

η′

ξ′

)
= eiθ

(
η
ξ

)
,

(
η∗′

ξ∗′

)
= e−iθ

(
η∗

ξ∗

)
. (5.11)

These simultaneous U(1)L and U(1)R transformations form also a U(1)
group which is called a ‘vector’ U(1)V. The corresponding Noether
charge is positive for η, ξ and negative for η∗, ξ∗. Hence, this symmetry
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is similar to the U(1) symmetry for a complex scalar. The Noether
charge can be associated with ‘particle number’ or electric charge upon
coupling to a Maxwell field.

5.3 The Dirac spinor

Whereas the kinetic terms as well as the Majorana mass term can be
formulated for each SL(2,C) spinor ξ or η (Weyl spinors) separately,
the Dirac mass term requires the simultaneous presence of both Weyl
spinors and provides for a bilinear coupling. Hence, it is useful to
introduce the combined 4-spinor

ψ(x) =

(
ηα̇(x)
ξα(x)

)
, (5.12)

which is a Dirac spinor, obviously belonging to the
(
1

2
, 0

)
⊕
(
0,

1

2

)
repre-

sentation of the Lorentz group. We obtain a compact notation for the
Lagrangians by also summarizing the (generalized) Pauli matrices as

γµ :=

(
0 (σ̄µ)α̇β

(σµ)αβ̇ 0

)
, (5.13)

or more explicitly

γ0 =

(
0 1

1 0

)
, ~γ =

(
0 ~σ
−~σ 0

)
. (5.14)

These are the Dirac matrices. They occur here in the so-called chiral
representation (several other representations are also used in the lit-
erature). Independently of the representation, the γ matrices satisfy
(c.f. (4.44))

γµγν + γνγµ = {γµ, γν} = 2gµν · 1. (5.15)
Equation (5.15) can be viewed as the defining property of the Dirac
matrices. Mathematically, the Dirac matrices generate a matrix rep-
resentation of a Clifford algebra, i.e. an algebra of elements that close
under the anti-commutator.
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The generator of Lorentz transformations in the Dirac representation
can also be constructed from those of the Weyl spinors, c.f. (4.50):
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σµν =
i

2
[γµ, γν] =

(
(σ̄µν)α

β 0

0 ( σµν )α̇β̇

)
. (5.16)

now 4× 4 2× 2

Hence, the Lorentz-transformed spinor reads

ψ′(x′) = D(1
2 ,0)⊗(0,12)

(Λ)ψ(x) =
(

e−
i
4ε
µνσµν

)
ψ(x) =: Aψ(x). (5.17)

The 4×4 matrix A is the direct analogue of the transformation matrix
a. From (4.51) and (4.52), we can read off

(Aψ(x))α̇α =

(
(εα∗εT )α̇β̇ 0

0 aα
β

)(
ηβ̇(x)
ξβ(x)

)
. (5.18)

Here, we have used the SL(2,C) spinor indices α̇, α in order to make the
SL(2,C) content explicit. Of course, working directly with the Dirac
spinor, it is more natural to summarize the components for α̇ = 1, 2 ,
α = 1, 2 into one index

ψγ(x), γ = 1, 2, 3, 4

of the 4-component spinor ψ(x).

With the aid of another definition,

Ā := γ0A
†γ0, (5.19)

together with (4.45), it is straightforward to verify that

ĀγµA = Λµ
νγ

ν. (5.20)

This equation emphasises the relation between the Lorentz transforma-
tions of the Dirac spinor and that of the ‘4-vector’ of Dirac matrices
γµ, as the transformations of the spinor indices of the γ’s (LHS) can
be written as a Lorentz transformation of the vector index (RHS).
The bar symbol in (5.19) is used to denote Dirac conjugation. In ad-
dition to complex conjugation, it involves a multiplication with γ0 for
each index. It is useful to think of γ0 as a spin metric, i.e., it relates
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spinor space to its corresponding dual vector space. The elements of
this dual space are Dirac conjugated spinors:

ψ̄ := ψ†γ0. (5.21)

In fact, this spinor occurs naturally if we consider the kinetic La-
grangian for the Dirac spinor

Lkin
D := Lkin

L + Lkin
R =

i

2
ψ̄γµ

↔
∂ψ

=
i

2
(ψ̄γµ∂µψ)− i

2
((∂µψ̄)γµψ)

= iψ̄γµ∂µψ −
i

2
∂µ(ψ̄γµψ). (5.22)

Hence, the action can be written as

Skin
D =

∫
d4x iψ̄γµ∂µψ .

(5.23)

Similarly, the Dirac mass term (for a real massm = m∗) can compactly
written as

LmD = −mψ̄ψ

SmD = −
∫

d4xmψ̄ψ . (5.24)

Let us start analyzing the symmetries of Dirac’s theory by briefly ver-
ifying the manifest Lorentz invariance:

SD =

∫
d4x (iψ̄γµ∂µψ −mψ̄ψ). (5.25)
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Since ψ′ = Aψ, it follows ψ̄′ = ψ̄Ā (using γ2
0 = 1). Let us explicitly

study the kinetic part:

ψ̄′γµ∂′µψ
′

= ψ̄ĀγµΛµ
ν∂νAψ

= ψ̄ĀγµAΛµ
ν∂νψ

(5.20)
= ψ̄Λµ

ργ
ρ Λµ

ν∂νψ︸ ︷︷ ︸
gµσΛσν∂ν

= ψ̄ gµνΛ
µ
ρΛ

σ
ν︸ ︷︷ ︸

gρν

γρ∂νψ

= ψ̄γν∂νψ. (5.26)

Of course, the invariance was already clear from the SL(2,C) construc-
tion. But this example shows manifestly that invariant scalars arise if
both vector as well as Dirac spinor indices are fully contracted. From
the invariance of the Dirac mass term in the SL(2,C) construction, it
follows that ĀA = 1 (which can be verified straightforwardly), such
that

ψ̄′ψ′ = ψ̄ψ (5.27)
transforms as a scalar. Similarly, we can justify that ψ̄γµψ transforms
as a vector and ψ̄σµνψ as a tensor under Lorentz transformations.

For an analysis of chiral symmetries in the Dirac notation, it is useful
to introduce

γ5 := iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (5.28)

where the first equality holds in general, and the second is particu-
lar for the chiral representation.

In the chiral representation, it is obvious that γ5 can be used to define
chiral projectors

PR =
1 + γ5

2
, PL =

1− γ5

2
, (5.29)

satisfying

P 2
R,L = PR,L, PRPL = 0 = PLPR and PR + PL = 1, (5.30)
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such that

ψR := PRψ =

(
0
ξα

)
, ψL := PLψ =

(
ηα̇

0

)
. (5.31)

Since we have γ5 → −γ5 under parity xi → −xi, the combination
ψ̄γ5ψ is a pseudovector under Lorentz transformations. Note that only
the open Lorentz indices are relevant for this classification. With re-
spect to spinor space, all these expressions are scalars anyway.

Concerning the chiral transformations U(1)L×U(1)R of ξ and η, these
can equivalently be represented by their linear combinations:

θ = θ′ : U(1)V : ψ′ = eiθψ , ψ̄′ = ψ̄e−iθ,

θ = −θ′ : U(1)A : ψ′ = eiγ5θψ , ψ̄′ = ψ̄eiγ5θ.
(5.32)

As discussed in the exercises, γ5 anticommutes with all γµ’s:

{γµ, γ5} = 0. (5.33)

With this property, we can verify the invariance of the kinetic term
under U(1)A, the so-called axial transformations:

U(1)A : ψ̄′γµ∂µψ = ψ̄eiγ5θγµ∂µeiγ5θψ

= ψ̄γµe−iγ5θ∂µeiγ5θψ = ψ̄γµ∂µψ.
(5.34)

The mass term ∼ −mψ̄ψ, however, is not invariant under axial trans-
formations.
By contrast, both kinetic and mass term are invariant under the vec-
tor transformations U(1)V in agreement with the observations in the
SL(2,C) formalism.

5.4 Dirac Equation

Since the Dirac spinor is a complex object (complex-Grassmann-valued),
we can use the same trick as for complex scalar fields and treat ψ and ψ̄
as formally independent for the variational principle. Hence, we obtain
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the equation of motion by varying the action (5.25) e.g. with respect
to ψ̄:

0 =
δ

δψ̄
SD = (iγµ∂µ −m)ψ(x) = 0. (5.35)

This is the Dirac equation. In the following, let us just recall a few
basic properties of this relativistic spinor theory. In order to verify
that m indeed has the meaning of mass in the sense of a relativistic
point particle, let us multiply (5.35) with (−iγν∂ν −m):

0 = (−iγν∂ν −m)(iγµ∂µ −m)ψ

= ( γµγν︸︷︷︸
=1

2
{γµ, γν}︸ ︷︷ ︸
=gµν

+ 1

2
[γµ, γν ]︸ ︷︷ ︸

antisym.

sym.︷︸︸︷
∂µ∂ν +m2)ψ

= (∂2 + m2)ψ(x). (5.36)
Here, we have used that a product of a symmetric and an antisym-
metric tensor vanishes. Hence, the solutions of the Dirac equation also
satisfy the Klein-Gordon equation and thus the solutions obey the rel-
ativistic energy-momentum relation with mass m.

This suggests as an ansatz
ψ(x) = u(p)e−ipx, where p2 = m2. (5.37)

In the chiral basis, the spinor u(p) has to satisfy the algebraic equation[(
0 σ̄ · p

σ · p 0

)
−
(
m 0
0 m

)]
u(p) = 0. (5.38)

We observe that

(p · σ)(p · σ̄) = pµpν
1

2
(σµσ̄ν + σνσ̄µ)︸ ︷︷ ︸

=gµν

= p2 = m2,

and hence the Dirac equation is solved by

u(p) =

(√
p · σ̄ξ√
p · σξ

)
, (5.39)
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where ξ is an arbitrary SL(2,C) spinor.

Let us verify this result explicitly:[(
0 σ̄ · p

σ · p 0

)
−
(
m 0
0 m

)](√
p · σ̄ξ√
p · σξ

)
=

(
σ̄p
√
p · σξ −m

√
p · σ̄ξ

σp
√
p · σ̄ξ −m√p · σξ

)
=

(√
p · σ̄(

√
(σ̄p)(σp)−m)ξ√

p · σ(
√

(σp)(σ̄p)−m)ξ

) √
(σ̄p)(σp) =m

= 0.

Possible base spinors are ξs =

(
1
0

)
,

(
0
1

)
(times a Grassmann-valued

number) such that (5.39) represents two solutions corresponding to
spin-up ξ1 or spin-down ξ2 along the 3-direction, i.e., eigenvalues to

p3σ3 =

(
p3 0
0 −p3

)
. The solutions are normalized to

ūr(p)us(p) = 2mδrs,

or u†r(p)us(p) = 2E~p δ
rs, E~p =

√
~p2 + m2.

(5.40)

which is straightforwardly verifiable. In addition, there are also ‘nega-
tive frequency’ solutions

ψ(x) = v(p)eipx, p2 = m2, p0 > 0, (5.41)

where v(p) =

( √
p · σ̄ηs

−
√
p · σ̄ηs

)
with spin base vectors ηs, s = 1, 2.

The latter are normalized to

v̄r(p)vs(p) = −2mδrs, v†r(p)vs(p) = −2E~p δ
rs. (5.42)

The u and v spinors are also mutually orthogonal,

ūr(p)vs(p) = v̄r(p)us(p) = 0. (5.43)

In particle-physics processes, one is often interested in spin-summed
results (e.g. if the spin of a single particle is not measured by the
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detector). For these, let us finally mention the following spin sums∑
s

us(p)ūs(p) = γ · p + m∑
s

vs(p)v̄s(p) = γ · p−m
(5.44)

The frequently occurring combination γµpµ = γ ·p is often abbreviated
by the Feynman slash

γµp
µ = /p.

5.5 Rarita-Schwinger spinors

So far, we have encountered the trivial spin-0 (scalar fields), and the
nontrivial spin-1

2
(Weyl spinors, Dirac spinors) representations of the

Lorentz group. In classical field theory, it is straightforward to con-
struct higher-spin representations and their corresponding free theo-
ries; interacting theories which satisfy all consistency criteria can be
more difficult.

As an example, let us study the spin-3
2
case. More concretely, we wish

to compose a field ψµ such that it unifies properties of a Dirac spinor
(with 4 spinor components with suppressed indices) as well as a vector
field with index µ = 0, 1, 2, 3. So, in total ψµ has 16 complex com-
ponents. Since vectors belong to the

(
1

2
,
1

2

)
representation, and Dirac

spinors to the
(
1

2
, 0

)
⊕
(
0,

1

2

)
representation, the general object ψµ is an

element of the tensor product space(
1

2
,
1

2

)
⊗
((

1

2
, 0

)
⊕
(

0,
1

2

))
=

[(
1

2
,
1

2

)
⊗
(

1

2
, 0

)]
⊕
[(

1

2
,
1

2

)
⊗
(

0,
1

2

)]
.

(5.45)
Now, recall from the summation of the angular momenta that the
tensor product of two spin-1

2
gives a spin-1 as well as a scalar spin-0
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component:
1

2
⊗ 1

2
= 1⊕ 0,

or, using the notation that counts the dimension of the Hilbert spaces,

2 ∗ 2 = 3 + 1. (5.46)

Hence, Eq. (5.45) yields(
1

2
,
1

2

)
⊗
((

1

2
, 0

)
⊕
(

0,
1

2

))
=

(
1,

1

2

)
⊕
(

0,
1

2

)
⊕
(

1

2
, 0

)
⊕
(

1

2
, 1

)
=

[(
1,

1

2

)
⊕
(

1

2
, 1

)]
︸ ︷︷ ︸

Rarita-Schwinger

⊕
[(

1

2
, 0

)
⊕
(

0,
1

2

)]
︸ ︷︷ ︸

Dirac spinor

.

(5.47)

We observe that this tensor product contains Dirac spinors as well as
the new

[(
1,

1

2

)
⊕
(
1

2
, 1

)]
terms, and thus is reducible into a Dirac part that

we already know, and a new part which we will call a Rarita-Schwinger
spinor (incidentally, Rarita and Schwinger’s original 3/4-page paper
deals with the full reducible object).

It is, in fact, easy to get rid of the Dirac part by noting that the
object (γµψµ) is a ‘scalar’ with respect to the Lorentz index structure
but still features a Dirac index. Hence for a general ψµ, the object
χ = γµψµ transforms as a Dirac spinor and thus corresponds to the(
1

2
, 0

)
⊕
(
0,

1

2

)
part of ψµ.

In turn, those fields ψµ that satisfy the irreducibility condition

γµψµ = 0 (5.48)

do not contain Dirac spinor elements and hence transform as
(
1,

1

2

)
⊕
(
1

2
, 1

)
representation of the Lorentz group.
The irreducibility condition (5.48) has important consequences for the
construction of a Lagrangian. For instance, one might naively try to
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write down a symmetrically looking mass term:

ψ̄µψµ = ψ̄µg
µνψν =

1

2
ψ̄µ{γµ, γν}ψν

=
1

2
ψ̄µγ

µ γνψν︸︷︷︸
=0

+
1

2
ψ̄µ γνγµ︸︷︷︸

=γµγν−[γµ,γν ]

ψν

=
1

2
ψ̄µγ

µγνψν −
1

2
ψ̄µ[γµ, γν]ψν

= iψ̄µσ
µνψν, σµν =

i

2
[γµ, γν]. (5.49)

We observe the mass term, in fact, has to be antisymmetric in the
Lorentz indices of the Rarita-Schwinger field. A similar argument ap-
plies to the building block of the kinetic term:

ψ̄µγν∂κψλ,

implying that all indices must be contracted in an antisymmetric fash-
ion. This is possible with the aid of the ε tensor. In order to preserve
parity invariance, we amend this building block with another γ5 factor.
The resulting Lagrangian for the Rarita-Schwinger field reads

L = −1

2
ψ̄µ(εµνκλγ5γν∂κ − imσµν)ψλ.

(5.50)

Correspondingly, the field equation yields

(εµνκλγ5γν∂κ − imσµν)ψλ = 0. (5.51)

Spin-3
2
fields are indeed known and used in physics for the description

of spin-3
2
bound states in the theory of strong interactions. An example

is given by the ∆ resonances of the nucleon which are bound states of
3 quarks with all spins 1

2
aligned to yield a spin-3

2
state ( ∆−: |ddd〉,

∆0: |udd〉, ∆+: |uud〉, ∆++: |uuu〉), each having a lifetime ∼ 5 ·10−24s
and commonly decaying to (p+, n0) and (π+, π−, π0) depending on the
charge state.
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Elementary particles of spin-3
2
which are not boundstates have not been

observed so far. In fact, a straightforward pertubative quantization of
spin-3

2
fields leads to inconsistencies (such theories turn out to be pertu-

batively nonrenormalizable). These inconsistencies can be (partly) re-
solved in supersymmetric theories, where the Rarita-Schwinger spinor
becomes the superpartner of the graviton and is called gravitino.

76



6 Interacting field theories with spinors

6.1 Yukawa theories

For the construction of scalar theories, we have used a criterion of
simplicity. For the interactions this has been partly related to the
dimensionality of the interaction terms, e.g. the λφ4-term in d = 4
dimensions has a dimensionless coupling constant [λ] = 0.
For a similar argument for spinor theories, we first need the dimen-
sionality of the spinor field. With regard to the kinetic term

Skin
D =

∫
d4x︸︷︷︸
−4

iψ̄γµ ∂µ︸︷︷︸
1

ψ, (6.1)

we read off that [ψ̄ψ] = 3 and hence

[ψ] =
3

2
. (6.2)

The same result follows from the mass term

−
∫

d4x︸︷︷︸
−4

m︸︷︷︸
1

ψ̄ψ︸︷︷︸
⇒3

.

Recalling that scalar fields have mass dimension [φ] = 1, the simplest
interaction term which yields a Lorentz scalar is

SYuk = −
∫

d4x︸︷︷︸
−4

h φ︸︷︷︸
1

ψ̄ψ︸︷︷︸
3

. (6.3)

This is the so-called Yukawa interaction describing the interaction of
two Dirac spinors with a scalar field. Here, h denotes a coupling con-
stant, which we call Yukawa coupling in the following, that is dimen-
sionless, [h] = 0. The Yukawa interaction therefore satisfies also our
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quantifiable criterion of simplicity. Historically, this has first been used
for the description of the pion (scalars) - nucleon (spinors) interaction.
The full action of a typical (simple) Yukawa theory is

S =

∫
d4x

[
ψ̄i/∂ψ +

1

2
(∂µφ)(∂µφ)− hφψ̄ψ − V (φ)

]
. (6.4)

Here we have ignored a possible Dirac mass term which would break
the axial symmetry. Actually, also the Yukawa interaction (6.3) breaks
the chiral symmetry because

ψ̄ψ
axial U(1)−→ ψ̄eiγ5θeiγ5θψ = ψ̄e2iγ5θψ. (6.5)

For generic θ ∈ [0, 2π] , e2iγ5θ is a nontrivial 4× 4 matrix which cannot
be compensated by a transformation of a real scalar field φ ∈ R.
However, if we choose θ =

π

2
, we have

e2iγ5θ = cos (2θ) + iγ5 sin (2θ) (in general)

θ =
π

2
: eiπγ5 = cos (π) = −1,

(6.6)

and hence: ψ̄ψ → −ψ̄ψ.
If we now combine this specific axial transformation with the Z2-
symmetry of the scalar field φ → −φ (provided that V (φ) is Z2

symmetric), the Yukawa theory of (6.4) is invariant under the discrete
symmetry:

φ→ −φ,
ψ → eiπ2γ5ψ,

ψ̄ → ψ̄eiπ2γ5.

(6.7)

Note that the Dirac mass term would not be compatible with (6.7).

In turn, if we impose the symmetry (6.7), the spinor field is mass-
less. The mass of the scalar field depends on the parameters in the
potential, e.g. if we have

V (φ) =
1

2
m2φ2 +

λ

4!
φ4, (6.8)
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the scalar field is massive.
Now, we know that the Z2 symmetry in the scalar sector can be broken
spontaneously if V (φ) has minima different from φ = 0, e.g. for

V (φ) = −1

2
µ2φ2 +

λ

4!
φ4 (6.9)

⇒ φmin = ±v = ±
√

6µ2

λ
. (6.10)

Let us assume that φ picks the value φmin = v as its ground state.
Expanding φ about this ground state φ(x) = v + σ(x), we find the
action (c.f. Eq. (3.8))

S =

∫
d4x

[
ψ̄i/∂ψ +

1

2
(∂µσ)(∂µσ)− hvψ̄ψ

−hσψ̄ψ −
[

1

2
(2µ2)σ2 +

1

3!
λvσ3 +

1

4!
λσ4

]]
. (6.11)

Here, we can read off the mass m2
σ = 2µ2 of the scalar excitation σ. In

addition, we observe the occurrence of a Dirac mass term −(hv)ψ̄ψ,
such that the Dirac spinors have also acquired a mass

mψ = hv = h

√
6µ2

λ
. (6.12)

The remaining terms are interactions of Yukawa type ∼ σψ̄ψ or scalar
self-interactions.
We conclude that the breaking of the Z2 symmetry in the scalar sector
also extends to the Yukawa sector, spontaneously generating a mass
for the Dirac spinor. The spinor mass is otherwise kept zero if the
symmetry is preserved. This is a first simple but non-trivial example
for the fact that Dirac spinor masses can be zero on the level of the
action but then be generated by spontaneous symmetry breaking in a
scalar sector.
The present model is often used as a toy-model for the sector of the
Standard model of particle physics involving only the Higgs boson and
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the top quark (as the heaviest quark). As the model only features a
discrete symmetry, no Goldstone bosons occur in the broken phase (as
is also true for the standard model, however, by virtue of the Higgs
mechanism involving a gauge symmetry).
It is instructive to also study this (toy-) standard model application of
the present model on the level of parameters and numbers. On the level
of the Lagrangian, we have 3 parameters: h, µ2, λ. This corresponds
to the number of measurable quantities in the top-Higgs sector of the
standard model:

Higgs boson mass : mH ' 125GeV (date: 2020)
top quark mass : mt ' 173GeV (date: 2020)

Fermi-constant
∼Higgs vacuum expectation value

: v =
(√

2GF

)−1
2 ' 246GeV (date: 2005)

Using the identification with our model parameters

mH ↔ mσ =
√

2µ2 =
√

2µ,

mt ↔ mψ = hv = h

√
6µ2

λ
,

v ↔ v =

√
6µ2

λ
⇔ λ =

6µ2

v2
,

(6.13)

we find
µ ' 88GeV,

h ' 0.70,

λ ' 0.77.

(6.14)

We observe that both coupling constants are of the order O(1). How-
ever, λ comes with a factor of (4!)−1 in the action. This is not the case
for the top-Yukawa coupling h. Even though the top-quark is very
short-lived with a lifetime of ∼ 5 · 10−25s and was difficult to discover
due to its high mass (discovery 1995 by CDF and DØ)1, it plays the
most important role for the dynamics of the theory at high energies

1Collider Detector at Fermilab (CDF) and the DØ experiment were two major experiments at the Tevatron Collider at the Fermi
National Accelerator Laboratory (Fermilab).
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among all the other quarks and leptons. Of course, for a proper discus-
sion in the context of particle physics, a full quantization of the theory
is necessary.

6.2 Yukawa vs. fermionic theories

In the purely scalar case, we have been able to construct a whole class
of models by promoting the real scalar φ ∈ R to a vector φa in an
internal symmetry space O(N). Naively, one may try to do the same
for Yukawa systems by promoting φ→ φa and similarly promoting the
Dirac spinor to multiple copies ψ → ψa, which are often called flavors
in the fermionic context, a = 1 . . . Nf.
However, it is not fully trivial to construct a Yukawa interaction from
such rather arbitrary building blocks (e.g. you may try to contract the
indices to get a scalar). Moreover, since φa ∈ RN for a = 1 . . . N , φa

transforms under O(N) whereas ψa, ψ̄a are complex fields and hence
ψ̄aψa is invariant under the unitary group U(Nf). So, the symmetries
would not fit for arbitrary contractions of fermionic and scalar indices.
In the above example, we have considered the action

S =

∫
d4x

[
ψ̄i/∂ψ +

1

2
(∂µφ)(∂µφ)− hφψ̄ψ − V (φ)

]
, (6.15)

being invariant under Z2 symmetry. However, the symmetry acted
rather differently on φ and ψ, c.f. Eq. (6.7). On the other hand, the
symmetry transformation looks equivalent on the level of φ and the
fermion bilinear

φ→ −φ,
ψ̄ψ → −ψ̄ψ. (6.16)

In fact, this can become a general construction principle for theories
with spinors and further fields for featuring invariance under bigger
continuous symmetries.

This construction principle becomes even more visible in a certain limit
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of the above theory. Let us take a look at the equations of motion:

(i/∂ − hφ)ψ = 0

∂2φ + V ′(φ) + hψ̄ψ = 0.
(6.17)

Obviously, we have two coupled partial differential equations featuring
a high degree of nonlinearity.

Let us study a particularly simple limit : let us assume that φ is
slowly varying or almost constant in spacetime φ ' const. Then, with
∂2φ ' 0, we get

hψ̄ψ + V ′(φ) = 0. (6.18)

For the simple case V (φ) =
1

2
m2φ2 +

λ

4!
φ4, we have

hψ̄ψ + m2φ +
λ

3!
φ3 = 0. (6.19)

Let us further assume that
λ

3!
� 1, then

φ = − h

m2
ψ̄ψ, (6.20)

which is naturally compatible with the symmetry. Even if we do not

assume
λ

3!
� 1 but include a full potential V (φ), (6.18) can in principle

be expressed as φ = f (ψ̄ψ) at least locally connecting the scalar to
a fermion bilinear. It is instructive to study the action (6.4) in the
simple limit λ� 1, ∂φ ' 0:

S =

∫
d4x

[
ψ̄i/∂ψ − hφψ̄ψ − 1

2
m2φ2

]
. (6.21)
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Using the equation of motion (6.20) for φ, we get an action depending
solely on the spinor field:

S =

∫
d4x

[
ψ̄i/∂ψ − h

(
− h

m2
ψ̄ψ

)
ψ̄ψ − 1

2
m2

(
− h

m2
ψ̄ψ

)2
]

=

∫
d4x

[
ψ̄i/∂ψ +

h2

2m2
(ψ̄ψ)2

]
=

∫
d4x

[
ψ̄i/∂ψ +

g

2
(ψ̄ψ)2

]
, g =

h2

m2
. (6.22)

This is the famous Gross-Neveu model, introduced by Gross and Neveu
in 1974 in two dimensions as a model with analogies to the strong in-
teractions. The precise statement is that the theory defined by (6.22)
purely in terms of spinors and that of (6.21) defined in terms of spinors
and scalars are completely identical by virtue of the equations of mo-
tion (6.20) of the scalar field.
Of course, beyond the limit λ→ 0 and for non vanishing scalar kinetic
terms, the equivalence is only approximate.
Incidentally in the quantized version, the exact equivalence between
(6.22) and (6.21) persists to hold. Moreover, the equivalence can even
hold upon inclusion of interactions and derivative terms for properties
of the long-range physics. This is an example of universality.

In turn, if we had started with the Gross-Neveu model (6.22), we could
have used the inverse construction, defining a scalar field

φ = −gψ̄ψ (6.23)

in order to write the action as

S =

∫
d4x

[
ψ̄i/∂ψ − φψ̄ψ − 1

2

1

g
φ2

]
. (6.24)

Writing g =
h2

m2
and rescaling φ → hφ would have lead to (6.21)

again. This construction that converts a non-linear fermionic theory
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into a bilinear (Gaußian) action is known as Hubbard-Stratonovich
transformation. Again, this transformation can also be performed on
the quantum level.

Let us use this construction to introduce Yukawa models with higher
symmetries. E.g. it is straightforward to upgrade the spinor content
to Nf flavors ψa, a = 1 . . . Nf:

S =

∫
d4x

[
ψ̄ai/∂ψa +

g

2
(ψ̄aψa)2

]
. (6.25)

This theory is invariant under flavor rotations,

ψa → Uabψb

ψ̄a → ψ̄bU †ba,
(6.26)

such that
U †U = 1, i.e. U ∈ U(Nf).

In absence of a mass term ∼ ψ̄aψa (which would also be U(Nf) in-
variant), the model also has the discrete Z2 axial symmetry (6.7),
transforming ψ̄aψa → −ψ̄aψa.

The structure of the interaction suggests to introduce a scalar field

φ = −gψ̄aψa, (6.27)

leading, as before, to the equivalent action

S =

∫
d4x

[
ψ̄ai/∂ψa − φψ̄aψa − 1

2

1

g
φ2

]
. (6.28)

Now, we can add kinetic terms and interaction terms for the scalar
field to arrive at a new Yukawa theory for Nf spinor flavors:

SYuk =

∫
d4x

[
ψ̄ai/∂ψa − hφψ̄aψa +

1

2
(∂µφ)(∂µφ)− V (φ)

]
. (6.29)

The model still has the full U(Nf) flavor symmetry. However, the scalar
sector is the same as before. In order to preserve the Z2 symmetry of
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the fermionic system, we only need a real scalar φ ∈ R and a Z2 sym-
metric potential V (−φ) = V (φ).

Upon spontaneous symmetry breaking by a suitable potential with
a minimum at φmin = v 6= 0, all flavors of fermions acquire the same
mass term:

−mψψ̄
aψa, mψ = hv. (6.30)

Most importantly, the breakdown of the Z2 symmetry does not imply
the breakdown of flavor symmetry. The mass term preserves the U(Nf)
symmetry.
In order to arrive at a more complex scalar sector, the axial/chiral
symmetry on the fermionic side has to be more complex as well.

6.3 Models with continuous chiral symmetry

In the exercises, we had already studied a fermionic model with con-
tinuous chiral symmetry:

SNJL =

∫
d4x

(
ψ̄i/∂ψ − g

2

(
(ψ̄ψ)2 − (ψ̄γ5ψ)2

))
. (6.31)

This is the famous Nambu-Jona-Lasinio model for the case of one
fermion flavor Nf = 1. The model has been inverted by Nambu
and Jona-Lasimio (and independently by Vaks and Larkin) in 1961
by transferring ideas from the BCS theory of superconductivity to the
description of nucleons and mesons in elementary particle physics. Up
to the present day it is frequently used as an effective low-energy model
of the strong interactions (low-energy QCD). The model is invariant
under

UV(1) : ψ → eiαψ, ψ̄ → ψ̄e−iα,

UA(1) : ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5,
(6.32)

as discussed in detail in the exercises. Hence it is also invariant under
both chiral symmetries UL(1),UR(1), which are a linear combination
of (6.32).
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In the spirit of the Hubbard-Stratonovich transformation, it is natural
to introduce two scalar fields,

φ1 = −g(ψ̄ψ), φ2 = −ig(ψ̄γ5ψ), (6.33)

in order to rewrite (6.31) as

SNJL =

∫
d4x

[
ψ̄i/∂ψ − φ1ψ̄ψ − iφ2ψ̄γ5ψ −

1

2

1

g
(φ2

1 + φ2
2)

]
. (6.34)

Since ψ̄ψ as well as ψ̄γ5ψ are separately invariant under UV(1), the
fields φ1 and φ2 transform trivially under this symmetry: φ1,2 → φ1,2.
The Noether charge of this UV(1) corresponds to particle number. This
implies that φ1 and φ2 do not carry particle number (=̂ electric charge)
and hence can be considered as neutral. In order to identify their
transformation under UA(1), we note that

eiαγ5 = 1 cos (α) + iγ5 sin (α). (6.35)

This implies that

ψ̄ψ → ψ̄eiαγ5eiαγ5ψ = ψ̄e2iαγ5ψ = ψ̄ψ cos (2α) + i sin (2α)ψ̄γ5ψ,

ψ̄γ5ψ → ψ̄eiαγ5γ5eiαγ5ψ = ψ̄γ5ψ cos (2α) + i sin (2α)ψ̄ψ.
(6.36)

We observe that the combination

φ1ψ̄ψ + iφ2ψ̄γ5ψ

is invariant under UA(1), iff φ1 and φ2 transform as(
φ1

φ2

)
→

(
cos (2α) sin (2α)
− sin (2α) cos (2α)

) (
φ1

φ2

)
. (6.37)

Interpreting φa, a = 1, 2 as an element of R2, Eq. (6.37) corresponds
to an SO(2) rotation in the φ1, φ2 plane. This rotation also leaves the
scalar mass term ∼ (φ2

1 + φ2
2) invariant as it corresponds to the scalar

product in R2. Since the symmetry groups SO(2) ' U(1) are isomor-
phic to one another the complex transformations of ψ and the real
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transformations of φ1, φ2 fit perfectly. Note, however that a full axial
rotation in UA(1) from α = 0 to α = 2π covers the SO(2) rotations
twice: 2α = 0 to 2α = 4π. In the language of Noether charges this
implies that the scalar carries twice the axial charge of the spinor.

These symmetry considerations allow us to finally construct a Yukawa
theory that exhibits the chiral symmetry of the NJL model,

SYuk−NJL =

∫
d4x

[
ψ̄i/∂ψ +

1

2
(∂µφa)(∂

µφa)− h(φ1ψ̄ψ + iφ2ψ̄γ5ψ)− V (φ)

]
,

(6.38)
where V (φ) depends on φa only through the scalar product φaφa. Note
that the symmetry fixes both Yukawa interactions to have the same
coupling h.

Let us now study the predictions of this model for the particle and
mass spectrum in the phase with spontaneous symmetry breaking if
V (φ) develops a vacuum expectation value at

φ0,aφ0,a = v2. (6.39)

Parametrizing the field as(
φ1(x)
φ2(x)

)
=

(
v + σ(x)
π(x)

)
, (6.40)

the action (6.38) becomes for V (φ) = −1

2
µ2φaφa +

λ

4!
(φaφa)

2:

SYuk−NJL =

∫
d4x

[
ψ̄i/∂ψ +

1

2
(∂µσ)(∂µσ) +

1

2
(∂µπ)(∂µπ)

1

2
− hvψ̄ψ − h(σψ̄ψ + iπψ̄γ5ψ)− V (σ, π)

]
,

(6.41)

where V (σ, π) is the same potential that we have studied in the context
of O(N) models in Eq. (3.20) for the case of only one π field. Hence,

87



we obtain the mass spectrum

mψ = hv,

mσ =
√

2µ2,

mπ = 0.

(6.42)

The masslessness of the π field is in agreement with Goldstones the-
orem. The fermions become massive. As the π field couples to ψ̄γ5ψ
which is a pseudoscalar fermion bilinear, also π must transform as a
pseudoscalar, i.e., with a minus sign under parity transformation.

In their original publications Nambu and Jona-Lasinio associated the
ψ’s with the nucleon (proton/neutron), the π-field with a light pion
and thus predicted the sigma meson as a heavy nucleon/anti-nucleon
bound state. Of course, quarks had not yet been invented in 1961. In
the modern use of the NJL model, ψ denotes the quarks and hence mψ

is interpreted as the constituent quark mass mψ ' 300MeV.

With regard to the Hubbard-Stratonovich transformation φ1 = v +
σ ∼ −g(ψ̄ψ), the nonvanishing expectation value of φ1 is also in-
terpreted as a nonvanishing chiral condensate 〈ψ̄ψ〉 (in quantum nota-
tion). Since the mesons (σ, π, . . . ) are bound states and not fundamen-
tal in contrast to the quarks, the formation of a bilinear condensate
is sometimes also called dynamical symmetry breaking. Quantitatively,
the vacuum expectation value is related to the pion decay constant
fπ = v ' 93MeV.
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7 Field theories of matter and gauge interactions

The most characteristic feature of particle physics is that the inter-
actions among fermionic matter building blocks is mediated by gauge
bosons such as the photon.1 The underlying local gauge symmetry that
we have already encountered in Maxwell’s theory is largely reponsible
for the resulting structures. In G. ’t Hooft’s words, we are under the
spell of the gauge principle.

7.1 (Quantum) Electrodynamics (QED)

Starting from the Maxwell Lagrangian (1.60) known from classical elec-
trodynamics,

L = −1

4
FµνF

µν − JµAµ, (7.1)

let us try to add fermionic electron/positron degrees of freedom in the
form of a Dirac spinor field ψ(x), while preserving the local gauge
symmetry under gauge transformations:

Aµ(x) → Aµ(x) + ∂Λ(x), Λ(x) : arbitrary. (7.2)

1NB: the Higgs boson is somewhat Janus-faced, it carries matter properties as well as mediates a force via Yukawa interactions.
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Assuming that the interaction can be written in terms of a suitable
choice for the source Jµ = Jµ[ψ̄, ψ], the action remains invariant,

S =

∫
d4x

−1

4
FµνF

µν︸ ︷︷ ︸
gauge invariant

−JµAµ


→

∫
d4x

[
−1

4
FµνF

µν − JµAµ − Jµ∂µΛ

]
i.b.p.
=

∫
d4x

[
−1

4
FµνF

µν − JµAµ + Λ∂µJµ

]
(7.3)

if the source is conserved,

∂µJµ = 0. (7.4)

Indeed, the free Dirac theory

SD =

∫
d4x

[
ψ̄i/∂ψ −mψ̄ψ

]
(7.5)

offers a conserved source: the Noether current jµ associated with UV(1)
vector symmetry

ψ → eiαψ, ψ̄ → ψ̄e−iα. (7.6)

We have determined the resulting Noether current in the exercises:

jµ = ψ̄γµψ, ∂µj
µ = 0. (7.7)

This suggest to identify Jµ with the Noether current,

Jµ = ejµ, (7.8)

where we have allowed for a coupling constant e that parametrizes the
strenght of the interactions between the Maxwell and the Dirac field.
Upon insertion of (7.8) into (7.1) and adding the Dirac action (7.5),
we arrive at

SQED =

∫
d4x

[
−1

4
FµνF

µν + ψ̄i /D[A]ψ −mψ̄ψ
]
, (7.9)
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where we have used the covariant derivative (c.f. (3.34))

Dµ[A] = ∂µ + ieAµ, and /D = γµDµ. (7.10)

Equation (7.9) denotes the classical action of Quantum Electrodynam-
ics (which becomes Quantum, of course, only upon quantization of the
fields).

Our construction guarantees, that SQED is invariant under the local
gauge symmetry (7.2) as well as the global vector symmetry (7.6) sep-
arately. However, the interesting observation now is that SQED is fully
invariant under a simultaneous local transformation of both fields:

Aµ(x) → Aµ(x) + ∂µΛ(x),

ψ(x) → e−ieΛ(x)ψ(x),

ψ̄(x) → ψ̄(x)eieΛ(x)ψ(x).

(7.11)

This is the same type of local U(1) symmetry that we have already
encountered for the abelian Higgs model in (3.33) and ff.

The essential building block is the covariant derivative Dµ[A], which
guarantees that

(Dµ[A]ψ) → e−ieΛ(x)(Dµ[A]ψ) (7.12)

– despite the partial derivative – transforms with a simple U(1) phase
factor. It is an instructive computation to verify (7.12) explicitly.

Already on this classical level, the theory (7.9) is useful, as (together
with a proton field) it offers the relativistic version of the quantum
mechanical hydrogen-problem, describing relativistic effects in atomic
physics rather accurately (c.f. your course on advanced quantum me-
chanics).

QED, however, celebrates its greatest successes in the quantized ver-
sion, e.g., for the quantitative description of the anomalous magnetic
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moment of the electron or Lamb shift effects in atoms.

Here, we plan to go beyond and wish to view this theory as a first
simple example of a gauge theory.

7.2 (Quantum) Chromodynamics (QCD)

The necessity of a further quantum number, i.e., another type of charge
for elementary constituents became clear from the observation of Baryon
resonances with three quarks in the same flavor and spin state,

|∆++〉 = |u ↑〉 |u ↑〉 |u ↑〉,
|Ω−〉 = |s ↑〉 |s ↑〉 |s ↑〉,
|∆−〉 = |d ↑〉 |d ↑〉 |d ↑〉,

(7.13)

seemingly contradicting Pauli’s exclusion principle. Upon adding a fur-
ther quantum number, the required antisymmetrization for the fermionic
constituents can be realized with respect to this new quantum num-
ber, called color. As a consequence, processes which can proceed via
different internal values of this quantum number become proportional
to it. An example is given by pion decay into two photons,

π0

q

γ

γ

∼ Nc. (7.14)

According to QFT, the decay proceeds via an internal quark fluctu-
ation. As the quarks now can occur in differently colored versions, the
process is proportional to the number of colors Nc. The experimen-
tal result is Nc = 3. I.e. in addition to the different quark flavors
f = u, d, s, c, b, t quarks also carry a color index i = 1, 2, 3:

ψ(x)
∧
= ψif(x). (7.15)
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In the following, we ignore the flavor and concentrate on the color in-
dex i = 1, 2, 3.

The above experiments suggest that there is at least a global symmetry
in an internal color space by which we can transform the spinors:

ψi → ψ′i = U ijψj. (7.16)

The decisive aspect of this symmetry exerting a strong influence on
the resulting dynamics, however, is that this symmetry turned out to
be a local symmetry analogous to the one of QED:

ψ′i(x) = U ij(x)ψj(x), (7.17)

where U(x) ∈ SU(Nc) is a matrix, being an element of the ma-
trix group SU(Nc). This is the set of complex unitary matrices with
det (U) = 1. This local symmetry property cannot be read off from
kinematical observations as the ones given above, but require a close
look at the dynamics or bound-state spectra of the system.

Let us first recall a few basic facts about the Lie groups SU(Nc) and
their corresponding Lie algebra. The complex Nc × Nc matrices U ij

with
U †U = 1 = UU †, det (U) = 1 (7.18)

form a representation of SU(Nc). The exponential map

U = eiH, where H = H† hermitean Nc ×Nc matrix, (7.19)

parametrizes U in terms of

N 2
c − 1

↑ detU=1
(7.20)

real parameters. This implies thatH can be spanned by N 2
c −1 lineary

independent hermitean matrices which serve as generators of SU(Nc):

U = e−iwaτ
a
, (τ a)ij : generators of SU(Nc)

i,j= 1...Nc , a= 1...N2
c−1

. (7.21)
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Here, wa are real parameters, and the τ a can be chosen trace-free since
1 = det (U) = det (e−iwaτ

a
) = e−iwa tr (τa). (7.22)

For the commutator [τ a, τ b], we have
tr ([τ a, τ b]) = tr (τ aτ b − τ bτ a) =

(cyclicity)
0, (trace-free),

[τ a, τ b]† = [τ b†, τ a†] = [τ b, τ a] = −[τ a, τ b], (anti-hermitean).

Hence, we can write [τ a, τ b] = ih with h hermitean. Since h can be
spanned by τ a again, we have

[τ a, τ b] = ifabcτ c, (7.23)
where the fabc’s are the structure constants of the Lie algebra su(Nc)
defined by (7.23). Conventionally, the τ a’s are normalized to

tr (τ aτ b) =
1

2
δab. (7.24)

A well-known example is given by Nc = 2, where τ a =
1

2
σa (Pauli

matrices) such that

[τ a, τ b] =
1

4
[σa, σb] =

1

4
2iεabcσc = iεabcτ c. (7.25)

In this case the structure constants of su(2) are fabcsu(2) = εabc. For all
higher Nc, the generators can be constructed analogously to the Pauli
matrices, e.g. Nc = 3 : N 2

c − 1 = 8, τ a =
1

2
λa, where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(7.26)
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These are the Gell-Mann matrices. The determination of the structure
constants is straightforward:

abc : 123 147 156 246 257 345 367 458 678

fabcsu(3) : 1
1

2
− 1

2

1

2

1

2

1

2
− 1

2

√
3

2

√
3

2
(7.27)

and correspondingly for the permutations of the indices.

The resulting representation of su(Nc) in terms of the τ a is irreducible
by construction. It is called the fundamental representation. Of course,
higher representations of the same algebra (7.23), [T a, T b] = ifabcT c,
in terms of higher dimensional matrices T a also exist. An important
one follows directly from the Jacobi identity for the commutator:

[[τ a, τ b], τ c] + [[τ b, τ c], τ a] + [[τ c, τ a], τ b] = 0

⇒ fabdf dce + f bcdf dae + f cadf dbe = 0

⇒ (−if bad)(−if edc)− (−if bcd)(−if eda)︸ ︷︷ ︸
=(−ifead)(−if bdc)

= if bed(−if dac)

⇒
[
(−if b), (−if e)

]ac
= if bed(−if d)ac. (7.28)

Hence, (T a)bc = −ifabc is also a representation of the su(Nc) Lie al-
gebra, consequentially generating a corresponding representation of
SU(Nc) in terms of (N 2

c − 1) × (N 2
c − 1) matrices. This is the ad-

joint representation.

Now, let us start with a free Dirac theory for a massive quark field
occurring in Nc colors:

LD = ψ̄ii/∂ψi −mψ̄iψi, i = 1 . . . Nc. (7.29)

As noted before, this theory is invariant under unitary global rotations
in color space,

ψi → U ijψj, ψ̄i → ψ̄j(U †)ji. (7.30)
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Using the representation (7.21), it is straightforward to show that the
corresponding Noether current is given by

jµa = ψ̄iγµτ aijψ
j, ∂µj

µa = 0. (7.31)

Identifying Jµa = −gjµa with a coupling constant2 g > 0 as the vector-
color current that we wish to couple to a photon-like color gauge field,
we recognize that this color gauge field also has to carry an adjoint
index:

LJ = −JA = −JµaAa
µ, a = 1 . . . N 2

c − 1. (7.32)
Adding the current term to the free Dirac theory, we obtain the La-
grangian

L = ψ̄ii /Dij[A]ψ̄j −mψ̄iψi, (7.33)
where the covariant derivative now takes the form

/Dij = γµDµ ij = γµ(∂µδij − igτ aijA
a
µ). (7.34)

Incidentally, note that – in order to preserve the invariance of (7.33)
under global color rotations – Aa

µ is not allowed to remain unmodified
under a global rotation. Writing

Aµ ij := τ aijA
a
µ (7.35)

or Aµ in short, the color gauge field has to transform as

Aµ → UAµU
† (7.36)

under global color rotations. Note that this is still in line with QED,
as for a U(1) symmetry the generator is a number, say τ |U(1) = 1, such
that UAµU

† = Aµ for QED.

However, inspired by QED we now wish to promote the invariance
to a local invariance. This is possible if the covariant derivative of the
spinor transforms as

/Dψ → U(x) /Dψ (7.37)
2In QED, we have e < 0.
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analogously to QED, cf. (7.12) such that

ψ̄i /Dψ → iψ̄ U †U︸︷︷︸
=1

/Dψ = ψ̄i /Dψ. (7.38)

This condition for the covariant derivative is met if we generalize (7.36)
to the local transformation rule

Aµ → A′µ = UAµU
† − i

g
(∂µU)U †. (7.39)

Check:

Dµψ → (∂µ − igA′µ)ψ′ = (∂µ − igUAµU
† − (∂µU)U †)Uψ

= U(∂µ − igAµ)ψ + �������(∂µU)ψ −
�����������

(∂µU)U †Uψ

= UDµψ. (7.40)

Having introduced a field Aµ that couples to the color charge of the
quarks similar to the photon-electron coupling, we finally need to spec-
ify its dynamics by constructing a kinetic term for Aµ on the level of
the action.

For this, we first note that the field strength in electrodynamics follows
from the commutator of covariant derivatives,

U(1) : [Dµ, Dν] = ieFµν. (7.41)

Taking the different sign conventions for the coupling into account, we
similarly define the field strength for SU(Nc) gauge theory using the
covariant derivatives:

Fµν :=
1

ig
[Dµ, Dν], Fµν ≡ F a

µντ
a. (7.42)

This field strength Fµν is matrix-valued in the su(Nc) algebra. As
discussed in the exercises, this leads us to

F a
µν = ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν. (7.43)

Since the covariant derivative transforms homogeneously,

Dµ → UDµU
† (cf. (7.37)), (7.44)
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also the field strength transforms homogeneously,

Fµν → UFµνU
† = F ′µν, (7.45)

and is thus not invariant componentwise in contrast to electrodynam-
ics.

Still, we can straightforwardly construct a gauge-invariant action

LYM = −1

4
F a
µνF

aµν (7.24)
≡ −1

2
F a
µνF

bµν Tr (τ aτ b)

= −1

2
Tr (FµνF

µν) (7.46)

= −1

2
Tr (U †UFµνU

†UF µν)

cyclicity
= −1

2
Tr ((UFµνU

†)(UF µνU †))

= −1

2
Tr (F ′µνF

′µν).

This is the celebrated Lagrangian of Yang-Mills theory, an SU(Nc)
bosonic theory of a vector field (spin-1) with a local symmetry. It is
important to realize that this action not only defines the kinetic terms
for Aa

µ,

Lkin
YM ' −

1

4
(∂µA

a
ν − ∂νAa

µ)(∂µAνa − ∂νAµa) (7.47)

but also contains self-interaction terms which are enforced by gauge
invariance (schematically)

Lint
YM ∼ + . . . g(∂µAν)A

µAν + . . . g2(Aµaν)
2.

(7.48)
Therefore, already the pure Yang-Mills part is a highly non-trivial in-
teracting theory unlike the pure Maxwell part. The gauge field ex-
citations are also called gluons, hence (7.46) describes gluodynamics.
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Read together with the Dirac part of the quarks (7.33), we arrive at
the classical action defining Quantum Chromodynamics (QCD)

SQCD =

∫
d4

[
−1

4
F a
µνF

aµν + ψ̄i /Dψ −mψ̄ψ
]
. (7.49)

Upon the inclusion of different quark flavors, each flavor may have a
different mass parameter m.

Let us finally take a quick look at the classical field equations. As dis-
cussed in the exercises, the Euler-Lagrange equations for the gauge/gluon
field lead to

Dab
µ F

bµν ≡ (∂µδ
ab + gfacbAc

µ)F bµν = jaν, (7.50)

where jaν = ψ̄gγντ aψ. Here, we encounter the covariant derivative in
the adjoint representation:

Dab
µ = ∂µδ

ab + gfacbAc
µ = (∂µ − igT cAc

µ)ab

with (T c)ab = −if cab.
(7.51)

Let us, for example, consider a static quark-anti-quark pair as a simple
model for a meson,

ja0 = Q na (δ(3)(~x− ~x1 )− δ(3)(~x− ~x2 )). (7.52)

charge unit vector in color space
(n2=1)

quark position antiquark position

The equation of motion can fully be mapped onto classical electrody-
namics, by noting that a pseudo-abelian ansatz

Aa
µ = naaµ, F a

µν = nafµν, (7.53)

with fabcnbnc = 0 leads to

∂µf
µν = jaνna. (7.54)
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Hence, the solution is fully equivalent to that of a classical dipole field
for the na components of the chromoelectric field:

q q̄

Correspondingly, the static potential corresponds to the Coulomb po-
tential

V (r) ∼ 1

r
. (7.55)

However, this is in contradiction with the experimental observation.
For instance, if higher mesonic excitations with higher angular mo-
mentum J are studied, one observes that their total (squared) mass is
proportional to J :

J ∼ m2. (7.56)
These lines of proportionality are
called Regge trajectories.
In contrast to the classical analysis
given above, this observation can
be described by a string model for
the field distribution of a meson.
Let us define this model based on
two simple assumptions:

J

m2

mesons with

different flavor

content

– the gluon field of a meson is stringlike with a constant energy
per length σ (string tension),

q q

L
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– for higher excitations, the quarks on both ends rotate at almost
the speed of light.

Then the energy/mass of the system is (R = L/2)

m ≡ E = 2

R∫
0

σ√
1− v(r)2

dr = 2

R∫
0

σdr√
1− (r/R)2

= πσR, (7.57)

whereas the angular momentum is

J = 2

R∫
0

σrv(r)√
1− v(r)2

dr =
2

R
σ

R∫
0

r2dr√
1− (r/R)2

=
1

2
πσR2, (7.58)

from which we read off that

J =
1

2πσ
m2. (7.59)

This is in agreement with the experimental observation. The slope of
the Regge trajectories gives

α′ =
1

2πσ
' 0.9(GeV)−2

or σ ' (430MeV)2.
(7.60)

A stringlike color electric field distribution can be associated with a
linear potential,

V (r) ∼ r. (7.61)
This line-like field distribution between two quarks and the correspond-
ing impossibility to isolate a single quark is called confinement. The
comparison with our conclusion from the classical equation of motion
shows that classical Chromodynamics is insufficient to describe this ba-
sic experimentally verified property of the strong interactions. There-
fore: Quantum effects modify the dynamics of QCD qualitatively (not
only quantitatively).
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8 Classical Field Theory for Particle Physics - an
example -

In this course, we have mainly discussed classical field theory aspects
which are relevant for particle physics. This included mainly the as-
pects of possible degrees of freedom (scalars, spinors, vectors, . . . ),
their symmetries (external spacetime and internal symmetries), and
the construction of interactions on the level of the classical action.
However, a thorough discussion of particle physics applications typi-
cally involves quantization, as it is the quantized excitations of these
fields which are relevant for computing observables. Also, some aspects
which could, in principle, be discussed on the classical level (‘tree-level
processes’), follow much more elegantly within the quantized formal-
ism making it less worthwhile to deal with the classical equations of
motion.
Still, the language of classical field theory does become even more

useful than the quantum notion of Fock spaces etc., as soon as the
corresponding experimental situation involves coherent classical fields.
In the following, we want to illustrate this with an example from ex-
perimental searches for new particles.

8.1 Axion Electrodynamics

The standard model of particle physics has various shortcomings, a
prominent one being the rather large number of parameters such as
fermion masses which do not seem to follow a natural pattern. Even
more serious is the fact that some parameters which, in principle, are
allowed to be sizeable seem to be zero or at least unnaturally small.
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Most prominently, there is an angle type of parameter θ (a combination
of a QCD parameter and the phase of the determinant of the quark
mass matrix) which would physically induce CP violation in the strong
interactions. If so, QCD bound states would be expected to show CP-
violating properties. An example would be given by an electric dipole
moment of the neutron ~dn. Measurements so far have only found an up-
per bound on a possibly non-zero value: |dn| < 3·10−26 ecm (data from
2015). The precise relation between |dn| and θ is difficult to compute
as is any bound-state property of QCD from first principles. However,
simple estimates translate the bound for |dn| as follows into a bound
for θ: given the diameter of the neutron ∼ 10−15 m and assuming a
linear dependence on θ, we may estimate

|dn| ' cθ · e 10−15 m = cθ · 10−13 ecm, (8.1)

where c is a constant to be determined from a full calculation. Generic
field theory computations often yield factors inversely proportional to
the phase space and thus to the volume of the 4-sphere. So a small
number one typically gets is c ' 1/(32π2) ' 10−3. Hence we conclude
that θ . 10−10. As θ is an angle ∈ [0, 2π] we would naturally expect it
to be of O(1), rendering θ = 10−10 or smaller rather unnatural. This
is the ‘strong-CP ’ problem.
Note that the strong-CP problem is not at all a problem of mathe-

matical consistency, but rather a problem of unlikeliness: if nature can
choose any value for θ in the interval 0 to 2π, why should it choose some
value so close or equal to zero. Of course, θ = 0 is not a mathemati-
cally nor logically excluded choice, but from a physicist’s perspective,
it seems to be on unnatural choice. Therefore, the strong-CP problem
is an example of a naturalness problem.
One possibility to ‘explain’ θ ' 0 is to impose a suitable symme-

try. This is not completely trivial as θ receives contributions from two
different origins (QCD + quark mass matrix). All requirements are
ultimately satisfied by models that lift θ to be the expectation value
of a dynamical field that acquires a suitable potential in a dynamical
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fashion. Ultimately, these models do not only predict (or post-dict)
θ = 0 but also feature the possibility of having excitations on top of
the vacuum, corresponding to a pseudo-scalar field: the ‘axion’.
To cut a long story short: the so-far only valid solution to the strong-

CP problem predicts another pseudo-scalar particle φ which in many
respects behave like the neutral pion π0. In particular, it has a non-zero
mass m and can couple to two photons π0 ↔ 2γ. The corresponding
effective classical field theory is:

LaxED =− 1

4
FµνF

µν +
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2

− 1

4
gφFµνF̃

µν, ‘Axion electrodynamics’,
(8.2)

which involves a coupling between the axion and the pseudo-scalar
invariant

− 1

4
FµνF

µν = ~E · ~B. (8.3)

This effective field theory involves two parameters m and g. Dimen-
sional analysis reveals that g must have an inverse mass dimension, so
g−1 corresponds to a mass scale.
In order to solve the strong-CP problem, g and m are related:

m

[1 meV]
∼ g

[1013 geV]−1
. (8.4)

The precise relation between g andm depends on the details of the un-
derlying model that embeds the additional symmetry into the context
of the standard model of particle physics. The fact that we haven’t
observed any direct signature of the axion puts severe constraints on
the coupling. Hence, the axion can be expected to be rather light (if
it exists).

8.2 Photon-Axion conversion

Now, the coupling ∼ φ~E ~B inspires to look at the following process:
consider a plain wave with electric field component ~e propagating
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across a magnetic field ~B with e ‖ ~B. Then, this interaction allows
for a mixing of the plane wave ~e with the axion field φ. So, even if
we start initially with a pure plane wave, the axion field will acquire a
non-zero amplitude after some distance of propagation inside the mag-
netic field. A quantitative analysis follows from the field equations.
Using a Weyl-Coulomb gauge (A0 = 0,∇· ~A = 0), the plane wave field
can be parametrized by a pure vector potential ~a, ~e = −~̇a.
Considering only the relevant case, where ~e ‖ ~B, with ~B being a

constant field pointing perpendicular to the direction of the plane wave
propagation,

z

~B

γ

~e ~e

we can write the interaction term as

−
∫

d4x
1

4
gφFµνF̃

µν =

∫
d4x gφ ~E · ~B

=

∫
d4x gφ eB =

∫
d4x ga φ̇B,

(8.5)

where e = |~e|, B = | ~B|, a = |~a|. In the last step, we have performed
a partial integration.
The interaction term hence contributes to both, the Maxwell as well

as the Klein-Gordon equation for ~a and φ, respectively:

�φ + m2φ− ge ~B = 0,

�a − gφ̇B = 0.
(8.6)

We are interested in solutions that propagate along the z direction,
hence a = a(z, t), φ = φ(z, t)

⇒ �→ ∂2
t − ∂2

z . (8.7)

Though both fields a and φ are real, it is useful to formally complexify
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the fields and perform a Fourier transformation to frequency space:

a(z, t) =

∫
dω e−iωta(ω, z),

φ(z, t) = −i

∫
dω e−iωtχ(ω, z).

(8.8)

Then (8.6) turns into equations for the frequency modes a(ω, z) and
χ(ω, z):

(−ω2 − ∂2
z + m2)(−iχ(ω, z))− igω a(ω, z)B = 0,

(−ω2 − ∂2
z)a(ω, z) + gω χ(ω, z)B = 0,

(8.9)

or in matrix notation[
1
(
ω2 + ∂2

z

)
−M

](χ
a

)
= 0, (8.10)

where M =

(
+m2 gωB
gωB 0

)
. (8.11)

Assuming a plane wave form in wave number space

{a, χ}(ω, z) = {a, χ}(ω)eikz (8.12)

leads us to the algebraic equation[
1
(
ω2 − k2

)
−M

](χ
a

)
= 0. (8.13)

Solutions exist if det
(
1
(
ω2 − k2

)
−M

)
= 0

⇒ (ω2 − k2 −m2)(ω2 − k2) = (gωB)2, (8.14)

the roots of which define the dispersion relations

k2
± = ω2 − (m2 − (gB)2)

(
cos 2θ ± 1

2 cos 2θ

)
, (8.15a)

where
tan 2θ =

2ωgB

m2 − (gB)2
. (8.15b)
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Here, we can see that θ can be interpreted as a mixing angle between
axion and photon.
In the limit of vanishing coupling or vanishing magnetic field gB → 0,

we have θ → 0 and hence k2
− = ω2, k2

+ = ω2 −m2. In this limit, k−
corresponds to the wave number of a free photon, and k+ to that of
the massive axion.
In the real experiment, a fixed scale is set by the frequency ω of

the propagating laser, and the wave numbers follow from the disper-
sion relation. The general solution of the equations of motion for a
propagating mode along the positive z direction reads

a(ω, z) = a−(ω)eik−z + tan2 θa+(ω)eik+z,

χ(ω, z) =
ω

k−
tan θa−(ω)eik−z − ω

k+
tan θa+(ω)eik+z.

(8.16)

Let us consider a monochromatic wave, a−(ω) = a+(ω) = const. for
one fixed ω, and an axion mass much smaller than the optical laser
frequency m2 � ω2. We also confine ourselves to a small mixing angle
θ � 1. Then, the induced axion amplitude reads (a+ = a− = aIN)

χ(ω, z) = aINθ
(
eik−z − eik+z,

)
(8.17)

where we keep k± in the phases as the wave numbers can be multiplied
by large values of z, but approximate k± ' ω in the prefactor.
Now, we use the fact that the classical field equations lead to am-

plitudes that can be interpreted as quantum mechanical probability
amplitudes. Hence, we arrive at the probability that an initial photon
amplitude is converted into an axion as a function of the length L of
propagation inside B:

P (γ → φ;L) =
|χ|2

(aIN)2
= |φ|2

∣∣eik−z − eik+z
∣∣2∣∣∣

z=L

= |φ|2(2− 2 cos ((k+ − k−)L)).

(8.18)
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In the above mentioned limits, the occurring quantities yield

|θ|2 =

(
ωgB

m2

)2

,

k+ − k− =
√
ω2 −m2 − ω = ω

(√
1− m2

ω2
− 1

)
' ω

(
1− m2

2ω2
− 1

)
= −m

2

2ω
.

(8.19)

Using 2− 2 cosx = 2 · (1− cosx) = 2 · 2 sin2 (x/2), we get

P (γ → φ;L) = 4

(
ωgB

m2

)2

sin2

(
m2L

4ω

)
. (8.20)

For a given length of the magnetic field, the probability in the small-
mass limit becomes

P (γ → φ;L)|m→0 '
1

4
(gBL)2, (8.21)

and thus independent of the mass.
When it comes to discovery experiments, it is not sufficient to convert

photons to axions, because we have no ‘axiometer’ that could measure
the axion amplitude. Instead one uses the following idea (Sikivie ’83,
van Bibber ’87):

wall

a ‘light-shining-through-wall’ experiment

~B ~B

γγ
Laser Photon-

detector

Shine a laser onto a wall and try to observe photons behind the wall.
Use a strong magnetic field to convert part of the photon wave (func-
tion) into an axion in front of the wall and back into a photon behind
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the wall. Since the axion is weakly interacting, it can transverse the
wall in contrast to photons. This type of experiments has a couple of
attractive features: the interaction regions (size of the ~B field) can be
macroscopic (in contrast to small collision points in colliders), and can
even be enhanced by the use of cavities.
The number of incoming photons can be very large & 1020, whereas

the detection of a single photon can already constitute a signal of
‘new physics’. Apart from exceedingly small processes from photon-
neutrino-pair processes or photon-graviton conversion, the experiment
is essentially background free.
A number of experiments (BFRT, BMV, GammeV, LISPS and ALPS)

have been performed. The non-observation of a signal constitute the
currently best laboratory bounds on axions, complementing astrophys-
ical bounds. Currently, a major upgrade of ALPS at DESY is in prepa-
ration.
To get a rough estimate on the sensitivity, we first note that the back-

conversion φ→ γ features the same probability as in (8.21). Assuming
that the magnetic field behind and in front of the wall have the same
length L, we have

P (γ → φ→ γ;L)|m→0 '
1

16
C(gBL)4, (8.22)

where C is an enhancement factor if cavities are used in order to en-
hance the photonic input power. For one cavity in front of the wall
C ∼ (N/2)4. The finesse N of the cavity can be of order N ∼ 103.
The current upgrade of ALPS even plans to put a locked cavity behind
the wall, which would give a C ∼ (N/2)8 improvement. Converting
the units into GeV, we have

P ' 1

16
C

(
g

[GeV]−1

B

[1Tesla]

L

[1m]

)4

(8.23)

withNγ being the number of incoming photons per second, the number
of reconverted photons per second behind the wall is Nobs = Nγ · P .
Having Nγ in excess of 1020, experiments with C = 1 already become
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sensitive to values of

g−1 ∼ 105 GeV = 102 Tesla

for meter-size fields and Tesla-strong fields. In fact, ALPS has reached
a sensitivity of g−1 & 107 GeV which is a factor of 1000 larger than
current collider energy scales. This demonstrates that a suitable design
of novel non-collider-type experiments can compete with or at least
complement collider searches for new hypothetical particles.
The search for axions has been and still is an active research area,

also because the axion could have significant relevance in astro physics
(stellar cooling) as well as cosmology (dark matter).
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