
Gauge Theories
– Lecture Notes –

Prof. Dr. Holger Gies

Homepage: https://www.tpi.uni-jena.de/~gies/

Mail: holger.gies@uni-jena.de

https://www.tpi.uni-jena.de/~gies/


Inhaltsverzeichnis
1 Introduction and basic concepts 4

1.1 Physical origins of the idea of color . . . . . . . . . . . . . . . . . . 4
1.2 Basic concepts for gauge theories . . . . . . . . . . . . . . . . . . . 6

1.2.1 Elements of the theory of Lie groups and Lie algebras . . . . 7
1.2.2 Gauge invariant field theory actions . . . . . . . . . . . . . . 8

1.3 Classical Yang-Mills theory vs. hadron physics . . . . . . . . . . . . 11

2 Quantization of gauge theories 15
2.1 Elements of quantum field theory . . . . . . . . . . . . . . . . . . . 15
2.2 Quantization of gauge fields . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Background gauge and perturbation theory . . . . . . . . . . . . . . 26
2.4 Perturbative effective action . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Leading-log model of confinement . . . . . . . . . . . . . . . . . . . 38

3 Gauge fields on loops and lattices 42
3.1 Wegner-Wilson loop . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Wegner-Wilson loop in QED . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Gauge fields on the lattice . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Wegner-Wilson loop in strong-coupling expansion . . . . . . . . . . 52

4 Confinement and monopoles 56
4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Magnetic monopoles in abelian gauge theory . . . . . . . . . . . . . 59
4.3 Magnetic monopoles and confinement in compact U(1) gauge theory

in d = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2



Preface
These lecture notes have been prepared for a course on gauge theories as part
of an advanced theoretical physics curriculum. The course is a small sequel of
an introductory course on quantum field theory as it is taught at many German
universities during a Master program.

The course assumes a solid knowledge of theoretical physics on the Bachelor
level, as well as a good knowledge of quantum field theory including canonical
quantization and a bit of the path-integral formalism. The reader should be fa-
miliar with the basic concepts of Feynman diagrammar, perturbation theory, and
scattering theory. The present notes aim at extending this knowledge towards no-
nabelian gauge theories, which form the basis of our current understanding of
elementary particle physics.

Somewhat different from conventional presentations in textbooks aiming at an
exposition of the material for particle phenomology, the present notes are designed
to provide a first glance on the nonperturbative aspects of gauge theories focusing
on aspects of confinement and dynamical symmetry breaking, and thus on the
low-energy sector of the strong nuclear interactions.

These notes are based on various sets of handwritten lecture notes prepared for
several summer schools (including a course at the Heidelberg graduate days held
together with Jan M. Pawlowski on “Pictures of Confinement” many years back)
and have grown and improved over the years. This new version also contains a few
additions and is planned to replace the handwritten versions from now on1.

Jena, August 2025 Holger Gies

1Comments, suggestions, and hints at typos are more than welcome!
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1 Introduction and basic concepts

1.1 Physical origins of the idea of color
The idea of nonabelian gauge theories has many origins and probably dates back to
early attemps by W. Pauli to formulate a gauge theory for the weak interactions.
Pauli later appeared to have given up on this idea, since he thought that massless
excitations (similar to photons) where an inevitable consequence of such theories,
being in contradiction to the short-range nature of the weak interactions.

The concept of nonabelian gauge theories was later independently rediscovered
by C.N. Yang and R.L. Mills in 1954 (who were aware of the massless-excitation
problem, but didn’t care so much about it) and also independently at about the
same time by R. Shaw (a student of A. Salam) and R. Utiyama; nowadays, we
speak of nonabelian gauge theories and Yang-Mills theories synonymously.

The central idea at the time was to generalize the concept of gauge invariance
from electrodynamics with gauge group U(1) to the isospin degree of freedom
known from nuclear physics which is described by an SU(2) symmetry. This idea
is essentially realized in the electroweak sector of the standard model of particle
physics – even though the precise formulation took a while, included many twists
and turns, and goes along with many names (G. Glashow, S. Weinberg, A. Salam,
P. Higgs, F. Englert, R. Brout, J.C. Taylor, T. Kibble, and many more).

For the present course, we concentrate instead on the motivation for nonabelian
gauge theories from the strong interactions. Also in this case, it took a while to
realize that the interactions between fundamental constituents of nuclear matter
postulated as quarks in the 1960s (by M. Gell-Mann and G. Zweig) can be un-
derstood as a nonabelian gauge theory. The crucial step was the introduction of a
new quantum number, called color, by O.W. Greenberg, M.Y. Han and Y. Nambu
in 1964.

For the motivation of this quantum number, let us recall the experimental situa-
tion in the 1960s where more an more baryon resonances and mesons have been
discovered. Attemps at a classification of these states gave a strong hint at the
existence of quarks as the fundamental building blocks of hadrons.

The quarks carry spin 1/2 and are fermions (in order to be compatible with the
spin 1/2 and fermionic nature of protons and neutrons). Nowadays, we know of 6
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types of quarks, called flavors : up, down, strange, charm, bottom, and top,

flavor
u c t +

2

3
electric charge

d s b −1

3

(1.1)

Suitable combinations of these quarks yielded the hadrons known at that time, e.g.,
the proton (uud) and the neutron (udd). The experimental discovery of spin-3/2
resonances, however, was puzzling. Using a quantum mechanical notation, some of
the ∆ and Ω resonances can be written as

|∆++⟩ = |u ↑⟩|u ↑⟩|u ↑⟩
|Ω−⟩ = |s ↑⟩|s ↑⟩|s ↑⟩ (1.2)
|∆−⟩ = |d ↑⟩|d ↑⟩|d ↑⟩

With the arrows indicating the alignment of the spins in order to yield the total
spin 3/2 of these resonances. However, this configuration seemed to be in contra-
diction with the Pauli principle which requires an antisymmetric wave function
for fermions. The spin-3/2 resonances are fermions (in agreement with the spin-
statistics theorem), but the right-hand sides seem to be completely symmetric in
both the flavor quantum number as well as the spin quantum number.

A conclusion drawn at the time was that there must be another quantum number
(color) with respect to which the wave function is antisymmetric.

An immediate question was how many values this quantum number should take.
I.e., how many different colors Nc do quarks come in?

Several experimental hints became available to study this question. One of them
is the famous R ratio in electron-positron collisions. It measures the ratio of the
cross section for hadron production to the cross section for muon production,

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

∼ N2
c . (1.3)

Since the quarks can come in Nc different colors, the transition amplitudes for the
processes is proportional to Nc, such that the cross section as the square of the

amplitude is proportional to N2
c . The experimental value R ≈ 3 for energies above

the charm threshold thus suggests Nc = 3 colors(say red, green, and blue).
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Similarly, the decay of the neutral pion into two photons, π0 → γγ, is mediated
by a quark loop as a virtual intermediate state. The decay rate is proportional to
the number of colors Nc since each color contributes equally to the amplitude. The
experimental value for the decay rate again suggests Nc = 3.

π0

q

γ

γ

∼ Nc. (1.4)

In summary, the experimental evidence strongly suggests that quarks come in
three different colors, Nc = 3 and six flavors Nf = 6. Formalising this in terms of a
quark wave function ψ(x), this wave function is a vector in a Nc-dimensional color
space as well as a Nf-dimensional flavor space,

ψif (x), f = u, d, s, c, b, t, i = 1, 2, 3, (1.5)

where f labels the flavor and i labels the color. In the following, we focus on
the color degree of freedom and mostly ignore the flavor degree of freedom unless
stated otherwise.

1.2 Basic concepts for gauge theories
The above experiments suggest that there is at least a global symmetry in an
internal color space by which we can transform the spinors:

ψi → ψ′i = U ijψj. (1.6)

The decisive aspect of this symmetry exerting a strong influence on the resulting
dynamics, however, is that this symmetry turned out to be a local symmetry
analogous to the one of QED:

ψ′i(x) = U ij(x)ψj(x), (1.7)

where U(x) ∈ SU(Nc) is a matrix, being an element of the matrix group SU(Nc).
This is the set of complex unitary matrices with det (U) = 1.

This local symmetry property cannot be read off from kinematical observations
as the ones given above, but require a close look at the dynamics or bound-state
spectra of the system.
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1.2.1 Elements of the theory of Lie groups and Lie algebras
Let us first recall a few basic facts about the Lie groups SU(Nc) and their corre-
sponding Lie algebra su(Nc). The complex Nc ×Nc matrices U ij with

U †U = 1 = UU †, det (U) = 1 (1.8)

form a representation of SU(Nc). The exponential map

U = eiH , where H = H† hermitean Nc ×Nc matrix, (1.9)

parametrizes U in terms of
N2
c − 1

↑detU=1
(1.10)

real parameters. This implies that H can be spanned by N2
c −1 lineary independent

hermitean matrices which serve as generators of SU(Nc):

U = e−iwaτa , (τa)ij : generators of SU(Nc)
i,j=1...Nc , a=1...N2

c−1

. (1.11)

Here, wa are real parameters, and the τa can be chosen trace-free since

1 = det (U) = det (e−iwaτa) = e−iwa tr (τa). (1.12)

For the commutator [τa, τ b], we have

tr ([τa, τ b]) = tr (τaτ b − τ bτa) =
(cyclicity)

0, (trace-free),

[τa, τ b]† = [τ b†, τa†] = [τ b, τa] = −[τa, τ b], (anti-hermitean).
(1.13)

Hence, we can write [τa, τ b] = ih with h hermitean. Since h can be spanned by τa

again, we have
[τa, τ b] = ifabcτ c, (1.14)

where the fabc’s are the structure constants of the Lie algebra su(Nc) defined by
(1.14).

Conventionally, the τa’s are normalized to

tr (τaτ b) =
1

2
δab. (1.15)

A well-known example is given by Nc = 2, where τa =
1

2
σa (Pauli matrices) such

that
[τa, τ b] =

1

4
[σa, σb] =

1

4
2iϵabcσc = iϵabcτ c. (1.16)
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In this case the structure constants of su(2) are fabcsu(2) = ϵabc.
For all higher Nc, the generators can be constructed analogously to the Pauli

matrices, e.g. Nc = 3 : N2
c − 1 = 8, τa =

1

2
λa, where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(1.17)

These are the Gell-Mann matrices. The determination of the structure constants
is straightforward:

abc : 123 147 156 246 257 345 367 458 678

fabcsu(3) : 1
1

2
− 1

2

1

2

1

2

1

2
− 1

2

√
3

2

√
3

2

(1.18)

and correspondingly for the permutations of the indices.
The resulting representation of su(Nc) in terms of the τa is irreducible by con-

struction. It is called the fundamental representation. Of course, higher representa-
tions of the same algebra (1.14), [T a, T b] = ifabcT c, in terms of higher dimensional
matrices T a also exist. An important one follows directly from the Jacobi identity
for the commutator:

[[τa, τ b], τ c] + [[τ b, τ c], τa] + [[τ c, τa], τ b] = 0 (1.19)
⇒ fabdfdce + f bcdfdae + f cadfdbe = 0

⇒ (−if bad)(−if edc)− (−if bcd)(−if eda)︸ ︷︷ ︸
=(−ifead)(−ifbdc)

= if bed(−ifdac)

⇒
[
(−if b), (−if e)

]ac
= if bed(−ifd)ac. (1.20)

Hence, (T a)bc = −ifabc is also a representation of the su(Nc) Lie algebra, conse-
quentially generating a corresponding representation of SU(Nc) in terms of (N2

c −
1)× (N2

c − 1) matrices. This is the adjoint representation.

1.2.2 Gauge invariant field theory actions
We are aiming at a construction of a classical action for quark fields ψ(x) which
is invariant under local gauge transformations (1.7). Since the quarks are fermions

8



appearing as particles and antiparticles, they can be described by Dirac spinors.
In absence of any interaction, the kinetic term for Dirac fermions would be given

by S =

∫
d4x ψ̄(x)i/∂ψ(x), where we use the short form /∂ = γµ∂µ. However, this

kinetic term is not invariant under local gauge transformations (1.7) since

ψ̄′i(x)i/∂ψ′i(x) = ψ̄j(x)U †ji(x)i/∂U ik(x)ψk(x)

= ψ̄j(x)i/∂ψj(x) + ψ̄j(x)U †ji(x)(i/∂U ik(x))ψk. (1.21)

The additional term kann be compensated for by introducing a matrix-valued
gauge field

Aijµ (x) = Aaµ(x)(τ
a)ij, (1.22)

where Aµ(x) needs to transform as

A′
µ = UAµU

† − i

g
(∂µU)U

†. (1.23)

Here, we have introduced a coupling constant g for later convenience. With this
transformation property, a term of the form ψ̄ig /Aψ transforms as

iψ̄′ig /A
′
ψ′ = iψ̄U †(igUAµU † + (∂µU)U

†)γµUψ
= iψ̄ig /Aψ + ψ̄U †(i/∂U)ψ. (1.24)

Note that the last term corresponds precisely to the last term in Eq. (1.21). The
two terms can be combined into a gauge invariant kinetic term involving the so-
called covariant derivative

Dµ = (∂µ − igAµ), (1.25)

such that the kinetic term for the quark field can be written as

Lkin = ψ̄i /Dψ. (1.26)

In summary, the covariant derivative transforms homogeneously under local gauge
transformations,

D′
µ = UDµU

†. (1.27)

The local symmetry thus enforces the presence of a gauge field with an adjoint
index, i.e., with N2

c − 1 components

Aaµ(x), a = 1, . . . , N2
c − 1. (1.28)

The quantized excitations of this field are called gluons in the context of QCD,
analogously to photons in electrodynamics. Similarly to electrodynamics, we can
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construct a gluonic field strength tensor from the commutator of two covariant
derivatives,

[Dµ, Dν ] =: −igFµν
⇒ F a

µν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν . (1.29)

The last step is left as an exercise for the reader. From the definition of the field
strength tensor, note that there are several important differences to electrody-
namics: first, the field strength tensor is not linear in the gauge field because of
the last term in Eq. (1.29). Second, the field strength tensor is not gauge invari-
ant itself, but transforms homogeneously under gauge transformations, as is clear
from its definition in terms of covariant derivatives, F ′

µν = UFµνU
†. Nevertheless,

the corresponding expressions for the case of electrodynamics are reobtained if the
gauge group is replaced by an abelian U(1) group, since fabc = 0 in this case.

Despite the nontrivial transformation property of the field strength tensor, we
can nevertheless use it for the construction of a kinetic term for the gluon field:

Lgluon = −1

4
F a
µνF

µνa

= −1

2
trFµνF

µν

= −1

2
trU †UFµνU

†UF µν

= −1

2
tr(UFµνU

†)(UF µνU †) ≡ −1

2
trF ′

µνF
′µν (1.30)

In the second to last step, we have used the cyclic property of the trace.
Using the building blocks ψ, ψ̄, Dµ, and Fµν , we can, in principle, construct

many further gauge invariant combinations. However, the ones constructed above
represent a minimal set from which we can construct an interacting theory.

Including a mass term m for the quarks (or, more generally, a flavor-dependent
mass matrix), we obtain the classical action for chromodynamics,

SQCD =

∫
ddxLQCD with

LQCD = −1

4
F a
µνF

µνa + ψ̄i /Dψ −mψ̄ψ. (1.31)

Already the first term alone represents an interacting theory,

LYM = −1

4
F a
µνF

µνa, (1.32)

which is the celebrated Yang-Mills theory, sometimes also called gluodynamics.
The quadratic term in the field strength tensor (1.29) leads to self-interactions
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among the gauge fields, a hallmark of non-abelian gauge theories. Schematically,
we find interaction terms of the form

Lint
YM ∼ + . . . g(∂µAν)A

µAν + . . . g2(Aµaν)
2.

(1.33)

NB: Why do we focus on SU(Nc) and not on U(Nc)?
In principle, we can drop the condition detU = 1 for the symmetry transforma-

tions. Then, U can have an additional phase degree of freedom that comes with
another generator

(τ 0)ij =
1

2Nc

δij. (1.34)

Since this generator comutes with all others, [τ 0, τa] = 0, we have f 0ab = 0 and
thus

trFµνF
µν =

1

2

N2
c−1∑
a′=0

F a′

µνF
a′µν

=
1

2

N2
c−1∑
a=1

F a
µνF

aµν +
1

2
F 0
µνF

0µν , (1.35)

where F 0
µν = ∂µA

0
ν − ∂νA

0
µ is an abelian field strength tensor. The correspon-

ding gauge field A0
µ thus decouples from the nonabelian gauge fields Aaµ with

a = 1, . . . , N2
c − 1, and thus is similar to a photon field. The (perturbative) quan-

tization of a U(Nc) gauge theory therefore is nothing but that of a nonabelian
Yang-Mills theory with SU(Nc) gauge symmetry and a separate Maxwellian U(1)
theory; cf. the group isomorphism U(1) × SU(Nc) ∼= U(Nc). incidentally, in a
nonperturbative quantization, there can be additional degrees of freedom asso-
ciated with the U(1) part of the gauge symmetry depending on the quantization
procedure, as we will see in a later section.

1.3 Classical Yang-Mills theory vs. hadron physics
From electrodynamics, we are used to the fact that classical electrodynamics des-
cribes the interactions of charged particles with the electromagnetic field very well.
Quantum phenomena, where the description in terms of the field in terms of pho-
ton quanta becomes important, are typically quantitatively suppressed compared
to the classical description.
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Let us check in this subsection whether classical Yang-Mills theory can be simi-
larly useful. For this, we take a look at the classical equations of motion for the
gluon field as it can be derived from the Euler-Lagrange equations,

∂L
∂Aaµ

− ∂ν
∂L

∂(∂νAaµ)
= 0. (1.36)

In an exercise, we derive the explicit form:

Dab
µ F

bµν ≡ (∂µδ
ab + gfacbAcµ)F

bµν = jaν , (1.37)

where jaν = ψ̄gγντaψ. (NB: we obtain the same result also in absence of fermions
if we couple the gluon field to a generic source using Lsource = −jaνAaν .)

In (1.37), we encounter the covariant derivative in the adjoint representation:

Dab
µ = ∂µδ

ab + gfacbAcµ = (∂µ − igT cAcµ)
ab

with (T c)ab = −if cab,
(1.38)

cf. Eq. (1.20).
Let us, for example, consider a static quark-anti-quark pair as a simple model

for a meson,
ja0 = Q na (δ(3)(x⃗− x⃗1 )− δ(3)(x⃗− x⃗2 )). (1.39)

charge unit vector in color space
(n2=1)

quark position antiquark position

The equation of motion can fully be mapped onto classical electrodynamics, by
noting that a pseudo-abelian ansatz

Aaµ = naaµ, F a
µν = nafµν , (1.40)

with fabcnbnc = 0 leads to
∂µf

µν = jaνna. (1.41)

Hence, the solution is fully equivalent to that of a classical dipole field for the na

components of the chromoelectric field:
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q q̄

Correspondingly, the static potential corresponds to the Coulomb potential

V (r) ∼ 1

r
. (1.42)

However, this is in contradiction with the experimental observation. For instance,
if higher mesonic excitations with higher angular momentum J are studied, one
observes that their total (squared) mass is proportional to J :

J ∼ m2. (1.43)

These lines of proportionality are called
Regge trajectories.
In contrast to the classical analysis given
above, this observation can be described
by a string model for the field distribution
of a meson. Let us define this model based
on two simple assumptions:

J

m2

mesons with

different flavor

content

– the gluon field of a meson is stringlike with a constant energy
per length σ (string tension),

q q

L

– for higher excitations, the quarks on both ends rotate at almost
the speed of light.

Then the energy/mass of the system is (R = L/2)

m ≡ E = 2

R∫
0

σ√
1− v(r)2

dr = 2

R∫
0

σdr√
1− (r/R)2

= πσR, (1.44)
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whereas the angular momentum is

J = 2

R∫
0

σrv(r)√
1− v(r)2

dr =
2

R
σ

R∫
0

r2dr√
1− (r/R)2

=
1

2
πσR2, (1.45)

from which we read off that
J =

1

2πσ
m2. (1.46)

This is in agreement with the experimental observation. The slope of the Regge
trajectories gives

α′ =
1

2πσ
≃ 0.9(GeV)−2

or σ ≃ (420MeV)2.
(1.47)

A stringlike color electric field distribution can be associated with a linear poten-
tial,

V (r) ∼ r. (1.48)

This line-like field distribution between two quarks and the corresponding im-
possibility to isolate a single quark is called confinement. The comparison with
our conclusion from the classical equation of motion shows that classical Chromo-
dynamics is insufficient to describe this basic experimentally verified property of
the strong interactions. Therefore: Quantum effects modify the dynamics of QCD
qualitatively (not only quantitatively).
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2 Quantization of gauge theories
Let us first recall some basic elements of field quantization. In this course, we focus
on functional integral quantization techniques as they are most suitable for gauge
theories. For a more detailed introduction to quantum field theory (QFT), we refer
the reader to standard textbooks or lecture notes.

2.1 Elements of quantum field theory
In quantum field theory (QFT), all physical information is stored in correlation
functions. For instance, consider a collider experiment with two incident beams and
(n − 2) scattering products. All information about this process can be obtained
from the n-point function, a correlator of n quantum fields. In QFT, we obtain this
correlator by definition from the product of n field operators at different spacetime
points φ(xn) averaged over all possible field configurations (quantum fluctuations).

In Euclidean QFT, the field configurations are weighted with an exponential of
the action S[φ],

⟨φ(x1) . . . φ(xn)⟩ := N
∫
Dφφ(x1) . . . φ(xn) e−S[φ], (2.1)

where we fix the normalization N by demanding that ⟨1⟩ = 1. (NB: In canonical
quantization, Eq. (2.1) is related to the expectation value of the time-ordered
product of Heisenberg-picture field operators in the vacuum state.) We assume that
Minkowski-valued correlators can be defined from the Euclidean ones by analytic
continuation. We also assume that a proper regularized definition of the measure
can be given (for instance, using a spacetime lattice discretization), which we

formally write as
∫
Dφ →

∫
Λ

Dφ; here, Λ denotes an ultraviolet (UV) cutoff.

This regularized measure should also preserve the symmetries of the theory: for
a symmetry transformation U which acts on the fields, φ → φU , and leaves the
action invariant, S[φ]→ S[φU ] ≡ S[φ], the invariance of the measure implies∫

Λ

Dφ→
∫
Λ

DφU ≡
∫
Λ

Dφ. (2.2)

For simplicity, let φ denote a real scalar field. The following discussion also holds
for other fields such as fermions with minor modifications; the more elaborate
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modifications required for the case of a gauge field will be subject to subsequent
sections. All n-point correlators are summarized by the generating functional Z[J ],

Z[J ] ≡ eW [J ] =

∫
Dφ e−S[φ]+

∫
Jφ, (2.3)

with source term
∫
Jφ =

∫
dDx J(x)φ(x). All n-point functions are obtained by

functional differentiation:

⟨φ(x1) . . . φ(xn)⟩ =
1

Z[0]

(
δnZ[J ]

δJ(x1) . . . δJ(xn)

)
J=0

. (2.4)

Once the generating functional is computed, the theory is solved.
In Eq. (2.3), we have also introduced the generating functional of connected cor-

relators1, W [J ] = lnZ[J ], which, loosely speaking, is a more efficient way to store
the physical information. An even more efficient information storage is obtained
by a Legendre transform of W [J ]: the effective action Γ:

Γ[ϕ] = sup
J

(∫
Jϕ−W [J ]

)
. (2.5)

For any given ϕ, a special J ≡ Jsup = J [ϕ] is singled out for which
∫
Jϕ −W [J ]

approaches its supremum. Note that this definition of Γ automatically guarantees
that Γ is convex. At J = Jsup, we get

0
!
=

δ

δJ(x)

(∫
Jϕ−W [J ]

)
⇒ ϕ =

δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ
= ⟨φ⟩J . (2.6)

This implies that ϕ corresponds to the expectation value of φ in the presence of the
source J . The meaning of Γ becomes clear by studying its derivative at J = Jsup

δΓ[ϕ]

δϕ(x)
= −

∫
y

δW [J ]

δJ(y)

δJ(y)

δϕ(x)
+

∫
y

δJ(y)

δϕ(x)
ϕ(y) + J(x)

(2.6)
= J(x). (2.7)

This is the quantum equation of motion by which the effective action Γ[ϕ] governs
the dynamics of the field expectation value, taking the effects of all quantum
fluctuations into account.

1In this short introduction, we use but make no attempt at fully explaining the standard QFT
nomenclature; for the latter, we refer the reader to any standard QFT textbook, such as
[?, ?].
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From the definition of the generating functional, we can straightforwardly derive
an equation for the effective action:

e−Γ[ϕ] =

∫
Λ

Dφ exp

(
−S[ϕ+ φ] +

∫
δΓ[ϕ]

δϕ
φ

)
. (2.8)

Here, we have performed a shift of the integration variable, φ → φ + ϕ. We
observe that the effective action is determined by a nonlinear first-order functional
differential equation, the structure of which is itself a result of a functional integral.
An exact determination of Γ[ϕ] and thus an exact solution has so far been found
only for rare, special cases.

As a first example of a functional technique, a solution of Eq. (2.8) can be
attempted by a vertex expansion of Γ[ϕ],

Γ[ϕ] =
∞∑
n=0

1

n!

∫
dDx1 . . . d

Dxn Γ
(n)(x1, . . . , xn)ϕ(x1) . . . ϕ(xn), (2.9)

where the expansion coefficients Γ(n) correspond to the one-particle irreducible
(1PI) proper vertices. Inserting Eq. (2.9) into Eq. (2.8) and comparing the co-
efficients of the field monomials results in an infinite tower of coupled integro-
differential equations for the Γ(n): the Dyson-Schwinger equations. This functional
method of constructing approximate solutions to the theory via truncated Dyson-
Schwinger equations, i.e., via a finite truncation of the series Eq. (2.9) has its own
merits and advantages; their application to gauge theories is well developed; see,
e.g., [?, ?, ?, ?]. We will come back to this and other functional methods in later
sections.

2.2 Quantization of gauge fields
The naive attempt to define the quantum field theory of gluodynamics,

Z[J ] =

∫
DAe−SYM[A]+

∫
Ja
µA

a
µ , (2.10)

fails and generically leads to ill-defined quantities plagued by infinities. The rea-
son is that the measure DA contains a huge redundancy, since many gauge-field
configurations Aaµ are physically equivalent.

In practice, the problems arise from the fact that already the free propagator
following from the quadratic part of the action in Eq. (2.10) is ill-defined:

SYM[A] =
1

4

∫
dDxF a

µνF
a
µν

=
1

2

∫
dDxAaµ

[
−∂2δµν + ∂µ∂ν

]
Aaν +O(A3). (2.11)
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The operator in square brackets corresponds to the inverse of the free gluon pro-
pagator which we call DA, schematically,

DA
?
= [−∂21+ ∂ ⊗ ∂]−1 Fourier space−→ [p21− p⊗ p]−1. (2.12)

The right-hand side of Eq. (2.12) does not exist, since the operator p21 − p ⊗ p
has a zero eigenvalue with eigenvector ∼ pµ:

(p2δµν − pµpν)pν = p2pµ − pµp2 = 0. (2.13)

Defining the projector

(PL)µν = ∂µ
1

∂2
∂ν , (2.14)

the eigenvector with zero eigenvalue corresponds to the longitudinal component of
the gauge field:

AaL,µ = (PL)µνA
a
ν ⇒ (−∂2δµν + ∂µ∂ν)A

a
L,µ = 0. (2.15)

Already from the abelian case, we know that the longitudinal component of the
gauge field is a pure gauge degree of freedom which can be removed by a gauge
transformation, as with Aµ → Aµ+ ∂µω, the gauge function ω can be chosen such
that AaL,µ = 0. Therefore, it is not astonishing that this causes a zero-mode of the
inverse propagator also in the nonabelian case.

For a well-defined generating functional, the redundant degrees of freedom need
to be removed. Ideally, we would like to remove this redundancy completely by
picking one representative gauge field out of each set of gauge-equivalent fields.
The latter set is called a gauge orbit:

[Aorbit
µ ] =

{
Aωµ |Aµ = Aref

µ , U(ω) ∈ SU(N)
}
, (2.16)

where Aref
µ is a reference gauge field which is representative for the orbit, and Aωµ

is the gauge-transformed field,

Aωµ = U(ω)Aref
µ U(ω)

† − i

g
(∂µU(ω)) . (2.17)

with U(ω) = e−igω
aτa , ωa = ωa(x).

For the quantum theory, we would like to have a measure DA which picks ex-
actly one representative gauge-field configuration out of each gauge orbit. This is
intended by choosing a gauge condition (or gauge-fixing condition),

F [A] = τaFa[A] = 0, (2.18)
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for instance,
Fa[A] = ∂µA

a
µ, (2.19)

which is called the Lorenz gauge. Ideally, Eq. (2.18) should be satisfied by exact-
ly one representative gauge field Aaµ of each orbit. Unfortunately, this is actually
impossible for standard smooth gauge-fixing conditions, owing to topological ob-
structions.

To keep things simple, some essence of this is captured by the following simplified
example. Consider the “action”

S[r] = −1

2

r2

L2
, (2.20)

where r =
√
x21 + x22, and a “gauge invariance” corresponding to rotations about

the origin

x′ = U(ω)x =

(
cosω − sinω
sinω cosω

)(
x1
x2

)
, ω ∈ [0, 2π) =: I2π. (2.21)

“Gauge-invariant” observables O(r) have an expectation value defined by

⟨O⟩ =
∫
dx1dx2O(r)e−S[r]. (2.22)

Of course, no problem arises here from the angular redundancy, and we could even
decompose the measure into gauge-invariant and gauge-variant degrees of freedom
by going to polar coordinates,

dx1dx2 = rdrdω. (2.23)

with ω = arctan(x2/x1).
Since this is difficult in real gauge theories, let us try to solve this problem by

“gauge fixing” fully formulated in terms of x1 and x2; e.g.,

0 = F(x) = x2(ω). (2.24)
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Owing to the topology of the gauge orbit ∼ S1, the gauge condition is satisfied
by two points on the orbit.

Now consider the Faddeev-Popov determinant:

∆−1
FP[x] =

∫
I2π

dω δ
[
F [xω]

]
, (2.25)

which is gauge invariant:

∆−1
FP[x

ω̄] =

∫
I2π

dω δ
[
F [xω̄+ω]

]
=

∫
I2π

d(ω̄ + ω) δ
[
F [xω̄+ω]

]
(2.26)

=

∫
I2π

dω δ
[
F [xω]

]
= ∆−1

FP[x].

The Faddeev-Popov trick consists in inserting the following identity into the inte-
gral:

⟨O⟩ =

∫
dx1dx2O(r)e−S[r] · 1

=

∫
dx1dx2O(r)e−S[r]∆FP[x]

∫
I2π

dω δ
[
F [xω]

]
.

=

∫
I2π

dω

∫
dx1dx2O(r)e−S[r]∆FP[x]δ

[
F [xω]

]
. (2.27)

Now we use the gauge invariance of the measure in the plane, of the action, and
of the Faddeev-Popov determinant to write

⟨O⟩ =

∫
I2π

dω

∫
dxω1dx

ω
2 O(r)e−S[r

ω ]∆FP[x
ω]δ

[
F [xω]

]
=

(∫
I2π

dω

)∫
dx1dx2O(r)e−S[r]∆FP[x]δ

[
F [x]

]
. (2.28)
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In the last line, the integral over the gauge orbit ∼ S1 factorizes and can be
absorbed into the normalization; the remaining integral is a gauge-fixed integral.

Let us now compute the Faddeev-Popov determinant explicitly for our particular
gauge fixing (2.24):

∆−1
FP[x] =

∫
I2π

dω δ
[
F [xω]

]
=

∫
I2π

dω
1∣∣∣ δF [xω ]
δω

∣∣∣
∑
i

δ(ω − ωi). (2.29)

Here, we have used a functional notation in order to make contact with the field-
theoretic setting later; but, of course, in the present problem, all derivatives are
ordinary ones and the determinant notation, representing the Jacobian in the
multi-/infinite-dimensional case, is redundant here. The ωi are the solutions of the
gauge condition

0 = F [xω] (2.30)

We get explicitly

δF [xω]
δω

=
d

dω
(xω2 ) =

d

dω
(x1 sinω + x2 cosω)

= x1 cosω − x2 sinω.
= cosω(x1 − x2 tanω)

= cosω

(
x1 −

x22
x1

)
(2.31)

The corresponding solutions of the gauge condition are

ω1 = 0, ω2 = π, (x2 = 0). (2.32)

For the Faddeev-Popov determinant, we find

∆−1
FP[x] =

∫
I2π

dω
1

|x1 cosω|

(
δ(ω) + δ(ω − π)

)
=

2

|x1|
,

⇒ ∆FP[x] =
|x1|
2
. (2.33)
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In the full system, we get contributions from both gauge copies at ω = 0 and
ω = π. Imagine, we would only be interested in “perturbation theory” near ω = 0;
then ∆FP[x] would reduce to

∆−1
FP[x]|pert =

∫ ϵ

−ϵ
dω δ

(
x2(ω)

)
=

1

x1
. (2.34)

Since x1 > 0 near ω = 0, we can drop the absolute-value prescription. In this case,
we can represent the Faddeev-Popov determinant by a Grassmann integral,

∆FP[x]|pert = x1=̂ det
δF
δω

∣∣∣∣
ω=0

=

∫
dc̄dc e−c̄

δF
δω

|ω=0c, (2.35)

such that ∆FP[x] can be written in terms of a QFT contribution with a local action

Sgh = c̄
δF
δω

c, (2.36)

the so-called ghost action. We emphasize that this construction does not hold in
the same way beyond perturbation theory:

∆−1
FP[x]

?
=

∫
I2π

dω
1

det δF
δω
|ωi

∑
i

δ(ω − ωi) =
1

x1
+

1

−x1
= 0. (2.37)

We observe that dropping the absolute-value prescription in Eq. (2.33) has dra-
matic consequences. This would correspond to an insertion of ∞ into the integral
instead of an identity in Eq. (2.27).

In order to maintain the local ghost-action form, but still arrive at a nonper-
turbatively valid definition of the “theory”, we can confine the integral to the
“first Gribov region” DI , The first Gribov region includes the perturbative origin

x1 > 0, x2 = 0 and is bounded by the Gribov horizon which is defined by those
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configuration for which det
δF
δω

vanishes. Restricting the integral to this region al-
lows us to drop the absolute-value prescription for the definition of gauge invariant
expectation values:

⟨O⟩ =
∫
DI

dx1dx2O(r)e−S[r] det
δF
δω

δ
[
F [x]

]
. (2.38)

This is a nonperturbative definition which – except for a normalization – corre-
sponds to the full original integral.

Now, let’s go back to the field-theoretic case. In fact, the same type of reasoning
applies to the Faddeev-Popov quantization of gauge theories. As we have already
used a somewhat redundant notation for the toy model, most of the formulas given
above can literally be taken over to the gauge-theory case. For the gauge-fixed
generating functional, we get

Z[J ] =

∫
DI

DA 1

n[A]
det

δFa

δωb
δ
[
F [A]

]
e−SYM[A]+

∫
Ja
µA

a
µ , (2.39)

where n[A] takes care of the fact that there might be n[A] gauge-equivalent con-
figurations to a reference field Aµ even within the first Gribov region. Therefore,
n[A] counts the number of Gribov copies within the first Gribov region DI for a
given gauge field Aµ. Equation (2.39) represents a generating functional for gauge
theories with a well-defined gauge-fixing procedure.

For a quantitative treatment of Eq. (2.39), it is useful to write as many terms
as possible in the form of local contributions to the action. For instance, we can
use a Gaussian representation of the delta functional,

δ
[
F [A]

]
∼ e−

1
2α

∫
(F [A])2

∣∣∣
α→0

, (2.40)

which yields another contribution to the action,

⇒ e−Sgf , Sgf =
1

2α

∫
dDx (Fa[A])2. (2.41)

As discussed above, the Faddeev-Popov determinant can be exponentiated by
means of Grassmann-valued (anti-commuting) fields ca, c̄a called ghost fields :

det
δFa

δωb
=

∫
Dc̄Dc e−Sgh , Sgh =

∫
dDx c̄a

δFa

δωb
cb. (2.42)

These ghost fields live in the adjoint representation of the gauge group and trans-
form homogeneously under gauge transformations, e.g., c′ = UcU †, where c = caτa.
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Unfortunately, no local description for n[A] is known. In practice, one usually
ignores this factor and hopes that it does not affect the quantities of interest. This
is indeed the case in perturbation theory, where n[A] = 1 for all gauge fields near
the perturbative vacuum Aµ = 0. Beyond perturbation theory, however, this is an
approximation.

Let us study a concrete example. We start with the Lorenz gauge,

Fa[A] = ∂µA
a
µ. (2.43)

The corresponding gauge-fixing action reads

⇒ δ
[
F [A]

]
→ e−Sgf

∣∣∣∣
α→0

,

Sgf =
1

2α

∫
dDx (∂µA

a
µ)

2 = − 1

2α

∫
dDxAaµ∂µ∂νA

a
ν

=
1

2α

∫
Aaµ(PL)µνA

a
ν

=
1

2α

∫
AaLµ(−∂2)AaLµ, (2.44)

where the limit α → 0 is implicitly understood. This limit corresponds to the
Lorenz-Landau gauge or simply Landau gauge. (NB: In fact, it turns out that per-
turbation theory is independent of α; thus, one can also work at finite α. Frequently
used choices are α = 1 (Feynman gauge) or α = −3 (Yennie gauge).)

The gauge-fixing action involves the longitudinal projector PL defined in Eq. (2.14)
and gives a contribution only to the longitudinal part of the gauge field. In the
Landau-gauge limit, α → 0, all contributions from the AaL,µ components are sup-
pressed in the functional integral and decouple from physical amplitudes.

For the Faddeev-Popov operator, it is useful to study infinitesimal gauge trans-
formations first:

U(ω) = e−igω
aτa ≈ 1− igωaτa +O(ω2). (2.45)

From this, we can work out the infinitesimal gauge transformation of the gauge
field:

Aωµ = UAµU
† − i

g
(∂µU)U

†

= (1− igω)Aµ(1 + igω)− (∂µω) +O(ω2)

= Aµ − ig [Aµ, ω]︸ ︷︷ ︸
ifabcωaAb

µτ
c

−∂µω +O(ω2)

= Aaµτ
a + gfabcωaAbµτ

c − ∂µωaτa +O(ω2). (2.46)
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Writing Aωµ = Aµ+ δAµ+O(ω2), we can read off the infinitesimal variation of the
gauge field:

δAaµ = −∂µωa + gfabcωbAcµ. (2.47)

In terms of the adjoint covariant derivative (1.38), this can be written as

δAaµ = −Dab
µ [A]ωb. (2.48)

From here, we can immediately compute the Faddeev-Popov operator

δFa

δωb
=
δ(∂µA

ω,a
µ )

δωb
= ∂µ

δAω,aµ
δωb

= −∂µDab
µ [A]. (2.49)

In the Landau gauge (and actually in any Lorenz gauge independently of the value
of α), the ghost action thus reads

Sgh =

∫
dDx c̄a(−∂µDab

µ [A])cb =

∫
dDx ∂µc̄

aDab
µ [A]cb. (2.50)

Separating this into a free and an interaction part, we get

Sgh =

∫
dDx

(
∂µc̄

a∂µc
a + gfabc∂µc̄

aAbµc
c
)
. (2.51)

The last term obviously corresponds to a ghost-gluon interaction. In abelian gauge

theories, the structure constants fabc vanish, and there is no ghost-gluon interacti-
on. In this case, the ghosts completely decouple and can be ignored. In nonabelian
gauge theories, however, the ghosts are an essential ingredient of the theory.

Expanding the action about A = 0 in perturbation theory, the Faddeev-Popov
operator reduces to the negative Laplacian −∂2 which is a positive operator (e.g.,
on L2). (NB: it has only trivial zero modes corresponding to constant functions
which play no role.) Hence, the Gribov ambiguity is irrelevant in perturbation
theory.
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2.3 Background gauge and perturbation theory
In practice, it is difficult to make use out of the defining generating functional
(2.39) in particular because of the lack of an explicit representation of n[A] and
the restriction to the Gribov region. In order to get acquainted with the gauge-
fixed quantization, let us first confine ourselves to perturbation theory around the
trivial vacuum Aµ = 0 where the problems related to the Gribov ambiguity are
absent; we will come back to these in the later parts of this course.

Let us first analyze perturbation theory to lowest (nontrivial) order, starting
from Eq. (2.8), i.e., ignoring the complications from gauge fixing for a second,

e−Γ[ϕ] =

∫
Λ

Dφ e−S[ϕ+φ]+
∫ δΓ[ϕ]

δϕ
φ. (2.52)

Perturbation theory corresponds to a steepest-descent/saddle-point approximation
of the integral, for which we need

S[ϕ+ φ]−
∫
δΓ[ϕ]

δϕ
φ = S[ϕ] +

∫ (
δS[ϕ]

δϕ
− δΓ[ϕ]

δϕ

)
φ

+
1

2

∫ ∫
φ
δ2S[ϕ]

δϕδϕ︸ ︷︷ ︸
=:S(2)[ϕ]

φ+O(φ3) (2.53)

At the saddle point ϕ = ϕsp, the linear term in φ vanishes. Truncating the series
at quadratic order leaves us with a Gaussian integral:

e−Γ[ϕ] ≃ e−S[ϕ]
∫
Λ

Dφ e−
1
2

∫ ∫
φS(2)[ϕ]φ

= e−S[ϕ]N det
− 1

2
Λ S(2)[ϕ]. (2.54)

The normalization of the correlator ⟨1⟩ = 1 implies Γ[0] = 0 and thus fixes the

constant N =
(
det

1
2
ΛS

(2)[0]
)−1

. In conlusion, we have

Γ[ϕ] = S[ϕ] +
1

2
ln det

S(2)[ϕ]

S(2)[0]
+ . . . (2.55)

As can be seen upon expansion of the ln det in powers of ϕ, the ln det term cor-
responds to a sum of all possible one-loop diagrams with arbitrary number of
external legs, The ellipsis in Eq. (??) denotes higher-loop contributions which we
will neglect in the following. Since the loop expansion corresponds to a coupling
expansion, we expect this expansion to hold at weak coupling.
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Now we could try to do a saddle-point approximation of the full gauge-fixed
generating functional (2.39) along the same lines. However, here we encounter a
conceptual problem: On the one hand, we expect that a properly quantized gauge
theory results in a gauge-invariant effective action Γ[A] ≡ Γ[Aω]. On the other
hand, gauge fixing is necessary for integrating over the fluctuations.

This seeming paradox can be resolved with the aid of the background-field gauge
(or background gauge for short). In this gauge, we decompose the gauge field A
into a background field Ā and a fluctuation field Q,

Aµ = Āµ +Qµ, (2.56)

From a “quantum-field viewpoint”, the background field Ā is just an external pa-
rameter; gauge symmetry on the quantum level is carried by the fluctuation field
Q. This is expressed by the quantum transformation (QT):

Ā′
µ = Āµ,

Q′
µ = U(Āµ +Qµ)U

† − i

g
(∂µU)U

† − Āµ. (2.57)

with (Āµ + Qµ) transforming in total as usual. This is the symmetry which we
have to gauge fix for being able to do the functional integral. For this, we choose
the gauge condition

F̄a[Ā, Q] = Dab
µ [Ā]Qb

µ ≡ D̄ab
µ Q

b
µ = 0. (2.58)

The resulting gauge-fixed action reads

Sgf[Ā, Q] =
1

2α

∫
d4x (D̄ab

µ Q
b
µ)

2, (2.59)

where we have again introduced a gauge parameter α. The important observation
now is that Sgf – even though not being gauge invariant under QT – is invariant
under an additional symmetry, the background gauge transformation (BT):

Ā′
µ = UĀµU

† − i

g
(∂µU)U

†,

Q′
µ = UQµU

†. (2.60)
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Again, (Āµ+Qµ) transforms as usual. The invariance of Eq. (??) is obvious, since
D̄µ as well as Qµ transform homogeneously under BT.

The integration measure is also invariant under BT, DA→ DQ, since it corre-
spond to a shift in field space. For the Faddeev-Popov term, we need the infinite-
simal version of QT, using U ≃ 1 + igωaT a,

Q′
µ
a = Qa

µ + gfabcωb(Ācµ +Qc
µ)− ∂µωa

= Qa
µ − D̄ab

µ ω
b.

Thus, the Faddeev-Popov operator reads

δF̄a[Ā, Q]
δωb

= −Dac
µ [Ā]D̄cb

µ [Ā+Q] ⇒ ∆FP[Ā, Q] = det
(
−Dac

µ [Ā]Dcb
µ [Ā+Q]

)
.

(2.61)
Aiming at the quantum correlations, the source term in the generating functional
is coupled to Q only, e

∫
jA → e

∫
jQ. We end up with the generating functional in

background gauge,

Z̄[j, Ā] =

∫
DQ∆FP[Ā, Q] e

−SYM[Ā+Q]−Sgf[Ā,Q]+
∫
jQ, (2.62)

where we have ignored issues related to the Gribov problem for the time being.
Note that Z̄[j, Ā] is invariant under BT provided that the source j transforms
homogeneously, j′ = UjU †. Even a ghost-field representation of the Faddeev-Popov
determinant ∆FP is invariant under BT since it is reasonable to demand that the
ghost fields transform homogeneously as well.

Manifest BT invariance holds also for the effective action

Γ̄[Ā, Q] = sup
j

[
− ln Z̄[j, Ā] +

∫
jQ

]
. (2.63)

The crucial question now is how Γ̄[Ā, Q̄] is related to the original effective action
Γ[A] which we are actually interested in.

To answer this question, let us shift the integration variable Q→ Q− Ā. Then
Eq. (??) becomes

Z̄[j, Ā] = Z[j]e−
∫
jĀ, (2.64)

where Z[j] is the standard generating functional with an unusual gauge condition,

F [Q] ≡ F̄ [Ā, Q− Ā]. (2.65)

Correspondingly, the Legendre transform yields:

Γ̄[Ā, Q] = sup
j

[
− lnZ[j] +

∫
j(Q+ Ā)

]
= Γ[Q+ Ā]. (2.66)

28



Here, we rediscover the standard effective action with an unusual argument. From
the BT invariance of Γ̄[Ā, Q], we thus conclude that for A = Ā, i.e., Q = 0,

Γ[Ā] = Γ̄[Ā = A,Q = 0] (2.67)

is manifestly invariant under

Aµ → A′
µ = UAµU

† − i

g
(∂µU)U

†. (2.68)

In conclusion, Γ[A] in the background gauge inherits the manifest gauge invariance
from the background invariance. Furthermore, diagrams with Q =, i.e., vacuum
diagrams with Q fluctuations only as internal lines and Ā only as external legs are
sufficient to analyze the structure of the theory.

2.4 Perturbative effective action
As a first explicit step towards quantum Yang-Mills theory, let us compute the
perturbative effective action for gauge theories, using the background field method.
For a general field theory, we found in Eq. (2.55)

Γ[ϕ] = S[ϕ] +
1

2
ln det

S(2)[ϕ]

S(2)[0]
+ . . . (2.69)

for the one-loop approximation of Γ[ϕ]. Repeating the argument for gauge theories,
we obtain in the background gauge (for the expectation value of the fluctuation
field Q = 0):

e−Γ[Ā] =

∫
DQe−S[Ā+Q]−Sgf[Ā+Q]∆FP[Ā, Q]

= e−S[Ā]
∫
DQe−

1
2

∫
Qa

µ

(
S+Sgf

)(2)
ab
µν [Ā]Q

b
ν+O(Q3)

× ∆FP[Ā, 0]︸ ︷︷ ︸
already one ghost loop

+(higher loops)

= e−S[Ā]N
− 1

2

detM [Ā] ∆FP[Ā] + . . . (2.70)

where

Mab
µν [Ā] =

δ2(S + Sgf)[Ā]

δQa
µδQ

b
ν

= −D̄ac
α D̄

cb
α δµν + 2gfabcF c

µν [Ā] +

(
1− 1

α

)
D̄ac
µ D̄

cb
ν .

(2.71)
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Hence, the effective action at one-loop order reads

Γ[Ā] = S[Ā]+
1

2
ln detM [Ā]− ln det(−D̄2)+normalization+higher loops, (2.72)

where we used Eq. (2.61) for the Faddeev-Popov determinant ∆FP in the back-
ground gauge. (NB: If we include quarks, we will get another determinant from
the fermionic path integral:

− ln det(−i /D +m). (2.73)

where the global minus sign arises from the fermionic statistics of the quarks.)
The evaluation of these functional determinants for arbitrary Ā is difficult. The

resulting action will contain nonlinearities and nonlocalities. In the following, we
will be satisfied with the exploration of the nonlinearities; the nonlocalities will,
for instance, be small for slowly varying fields with

|∂µF a
νρ|

|F a
νρ|3/2

≪ 1(in a smooth gauge). (2.74)

The following further assumptions simplify the calculation; we consider

• a pseudo-abelian field:

Fµν = n̂aF a
µν , n̂a constant in color space, n̂an̂a = 1, (2.75)

• a constant pure magnetic field

F12 = −F21 = B = const., Fµν = 0 otherwise. (2.76)

• Feynman gauge α = 1.

(NB: for covariantly constant fields, DαFµν = 0, the effective action Γ[A] is
actually independent of α; beyond the Landau gauge α = 0, the gauge-fixing
condition δ[Fa] is not implemented exactly, but in a smeared-out fashion.)

Here, the gluonic fluctuation operator simplifies to

Mab
µν [Ā]

∣∣
α=1

= −D̄2abδµνδ
ab + 2gfabcF̄ c

µν , (2.77)

the first term being the covariant Laplacian, and the second term 2gfabcF̄ c
µν =

2ig(T c)abF̄ c
µν describes the interaction of the gluon spin with the background

field (cf. ∼ µ ·B).
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Let us perform the calculation within a few steps:

(1) Diagonalization in color space
All color-space dependence comes in the form of

(T c)abn̂c = −ifabcn̂c (2.78)

which is hermitian and can be diagonalized with eigenvalues

νℓ, ℓ = 1, . . . , N2
c − 1. (2.79)

being real and corresponding to “charges” of the gluons with respect to the color
axis n̂a. For SU(2) and SU(3), we have, e.g.,

SU(2): νℓ = −1, 0, 1

SU(3): νℓ = −1,−
1

2
,−1

2
, 0, 0,

1

2
,
1

2
, 1 for n̂a = δa3. (2.80)

In the following, we will only need the identity

N2
c−1∑
ℓ=1

ν2ℓ = tr n̂cT cn̂dT d = Nc. (2.81)

We find (Ā = A)

Γ1[A] =
1

2
ln detM [A]− ln det(−D2)

=
1

2
Tr lnM [A]− Tr ln(−D2)

=

N2
c−1∑
ℓ=1

{
Tr ln

[
−D̂2δµν + 2igνℓFµν

]
− Tr ln

[
−D̂2

]}
(2.82)

where we have defined
D̂µ = ∂µ − igνℓAµ. (2.83)

(2) Spectrum of the covariant Laplacian
Finding the spectrum of −D̂2 is indeed identical to the quantum mechanical par-
ticle with a unit mass in a constant magnetic field B with Hamiltonian −D̂2 = 2H.
The solution comes in the form of Landau levels,

Spect.
{
− D̂2

}
= p20 + p2z + g|νℓ|B (2n+ 1) , n = 0, 1, 2, . . . (2.84)
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(3) Spectrum of the gluon spin-field coupling
Since

Fµν =


0 0 0 0
0 0 B 0
0 −B 0 0
0 0 0 0

 , (2.85)

we find

Spect.
{
2igFµνT

cn̂c
}
=


0 multiplicity 2
+2g|νℓ|B
−2g|νℓ|B

(2.86)

where the first line corresponds to the longitudinal and time-like gluon polarizati-
ons, while the second and third line correspond to the two transverse polarizations
with spin aligned or anti-aligned with respect to the magnetic field.

From Eq. (2.82), we thus obtain

Γ1[A] =

N2
c−1∑
ℓ=1

{
2
1

2
Tr ln

[
−D̂2

]
+

1

2
Tr ln

[
−D̂2 + 2g|νℓ|B

]
+
1

2
Tr ln

[
−D̂2 − 2g|νℓ|B

]
− Tr ln

[
−D̂2

]}
(2.87)

The ghosts thus cancel the contributions from the longitudinal and time-like glu-
ons! This removes the overabundant gauge degrees of freedom.
(4) Transversal gluon modes

Spect.
{
− D̂2± 2g|νℓ|B

}
=

{
p20 + p2z + g|νℓ|B (2n+ 3)
p20 + p2z + g|νℓ|B (2n− 1)

, n = 0, 1, 2, . . . (2.88)

We observe that the spectrum contains negative modes for (p20 + p2z) < g|νℓ|B
and n = 0 in the second line. These “tachyonic” fluctuations are also called the
Nielsen-Olesen unstable mode. Its existence implies that fluctuations with long
wavelengths, i.e., p20+p

2
z small, do not cost any action if the gluon spin has a suitable

orientation with respect to the magnetic field. The covariant constant magnetic
field is thus not a minimum, but a saddle point of the action: We conclude that
this covariant constant magnetic field vacuum, also called the Savvidy vacuum, is
unstable.

Still, we can view F =const. as a technical assumption to do the calculation.
F =const. may still be a reasonable approximation for slowly varying fields.
(5) Trace computation
Using that the trace involves an integral over momentum space as well as a sum
over Landau levels,

Tr→ g|νℓ|BL2

2π

∞∑
n=0

∫
d2p

(2π/L)2
, (2.89)
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where the prefactor corresponds to the density of states per Landau level, and L
is the spatiotemporal box length with L4 = Ω being the spacetime volume, the
one-loop effective action becomes

Γ1[A] =

N2
c−1∑
ℓ=1

g|νℓ|BL2

2π

∞∑
n=0

∫
d2p

(2π/L)2

∑
λ=3,−1

ln(p20 + p2z + g|νℓ|B(2n+ λ)). (2.90)

Equation (2.90) contains divergences of different types:

• For small momenta, the integral runs into the unstable mode. This can be
dealt with by analytic continuation of the log, giving rise to an imaginary
part of Γ1, which can be interpreted as the decay rate of the unstable vacuum.
For the present purpose, this part is less relevant.

• For large momenta, the integral diverges logarithmically, since it receives
contributions from fluctuations on all scales; these divergences will turn out
to be indicative for the running of the coupling.

Let us deal with both types of divergences simultaneously with the aid of a ζ
function/propertime regularization. For this, we write the log as

lnx = lim
ϵ→0

(
1

ϵ
− iϵµ2ϵ

ϵΓ(ϵ)
lim
δ→0

∫ ∞

0

dT T ϵ−1e−ixT e−δT
)
, (2.91)

for x ∈ R. Here, the scale µ has been introduced to keep the right-hand side
dimensionless; we have [x] = 2, [T ] = −2, and thus [µ2ϵT ϵ] = 0.

The p0 and pz integrations and the n summation can now be performed straight-
forwardly, yielding

Γ1[A] = − lim
ϵ→0

Ω

16π2

N2
c−1∑
ℓ=1

(g|νℓ|B)2
(

µ2

2g|νℓ|B

)ϵ
1

ϵΓ(ϵ)

×
{∫ ∞

0

dT T ϵ−2

sinh(T )
+ iϵ

∫ ∞

0

dT T ϵ−2 sinT

}

= −Ω
N2

c−1∑
ℓ=1

(g|νℓ|B)2

16π2

[
11

6ϵ
− 11

6
ln
gB

µ2
+ const.

]
(2.92)

where the constant also contains an imaginary part. Using
∑
ℓ

ν2ℓ = Nc, the total
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one-loop effective action becomes

Γ[A] = S[A] + Γ1[A]

=

∫
d4x

[
1

2
B2 +

(
11

6ϵ

g2Nc

16π2
+ const.

)
B2

+
11

6
Nc

(gB)2

16π2
ln
gB

µ2

]
, (2.93)

which is expressed in terms of unrenormalized fields and coupling (i.e., the field am-
plitudes and couplings which we introduced at a microscopic scale). The physical
parameters are fixed in terms of a renormalization condition for the renormalized
quantities. Here, we use the Coleman-Weinberg renormalization condition:

∂L
∂
(
1
2
B2

R

)∣∣∣∣
gRBR=µ2

= 1, Γ =

∫
d4xL, (2.94)

which fixes the residue of the gluon propagator at the renormalization scale µ to
be = 1.

From the gauge invariance of the background-field effective action, we can derive
an important relation. Upon the transition from unrenormalized to renormalized
quantities, gauge-covariant objects have to stay gauge covariant, such as

Dab
µ = ∂µδ

ab + gfacbAcµ ≡ ∂µδ
ab + gRf

acbAcR,µ. (2.95)

Hence, the product gAµ = gRAR,µ must be RG invariant (in the background gau-
ge!). The RG rescalings of the coupling and the gauge field in Eq. (2.93) thus must
be of the form

B2
R = B2Z−1

F , g2R = g2ZF , (2.96)

with a common wave function renormalization ZF . From Eq. (2.93), we observe
that Eq. (2.94) is satisfied if

Z−1
F = 1− 2

11

6ϵ

g2Nc

16π2
+ const. (2.97)

The action then reads

Γ[A] =

∫
d4x

1

2
B2

R +
1

4
b0
1

2
(gRBR)

2 ln
(gRBR)

2

eµ4
, (2.98)

where
b0 =

11

3

Nc

8π2
. (2.99)
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Now, the RG scale µ is arbitrary. Changing µ together with an adjustment of gR

and BR should leave the physics invariant:

Γ[A] =

∫
d4x

[
B2

R

2

(
1 + b0g

2
R ln

µ′

µ

)
+

1

4
b0
(gRBR)

2

2
ln

(gRBR)
2

eµ′4

]
=

∫
d4x

[
B′

R
2

2
+

1

4
b0
(g′RB

′
R)

2

2
ln

(g′RB
′
R)

2

eµ′4

]
, (2.100)

where we have introduced the renormalized quantities at the new scale µ′,

B′
R
2 = BR

2(µ′) = B2
R(µ)

(
1 + b0g

2
R(µ) ln

µ′

µ

)
,

g′R
2 = gR

2(µ′) =
g2R(µ)

1 + b0g2R(µ) ln
µ′

µ

. (2.101)

Equation (2.100) is indeed formally identical to Eq. (2.98). However, since µ and
µ′ are considered to be physically different scales, Eq. (2.101) tells us how the
coupling changes upon a change of scales; we call it the running of the coupling.
For fixed g2R(µ) for a given µ, we observe that gR

2(µ′) decreases for increasing
µ′ > µ, g2R(µ

′) → 0 for µ′/µ → ∞. The coupling becomes asymptotically free
in the high-momentum region (in the UV). (Renaming µ′ to µ in (2.101) and µ
to some initial scale, say µ0), this is characterized by the negative sign of the β
function,

βg2 := µ
dg2R
dµ

= −b0g4R < 0, (2.102)

at one-loop order.
The effective action can be brought into an RG invariant form (from now on,

we drop the subscript R):

Γ[A] =
1

4

∫
d4x b0g

2F ln
2g2|F|
eκ2

, (2.103)

where F =
1

4
F a
µνF

a
µν =

1

2
B2 (or =

1

2
(B2 + E2) for general Euclidean fields) and

where we have introduced the RG invariant scale

κ2 = µ4e−4/(b0g2(µ)). (2.104)

The invariance of κ under the RG flow can be verified straightforwardly, µ∂µκ2 = 0.
The total result is rather surprising: We started with Yang-Mills theory which is
free of any scale. Upon quantization, the coupling turns into a scale-dependent
object. Choosing a certain value of g2 really means fixing g2 at a certain scale.
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So g2 is traded for a dimensionful scale κ. This phenomenon is called dimensional
transmutation.

Let us take a look at the plot of the effective action: We observe a minimum of
Γ at

2g2Fmin = κ2. (2.105)

Therefore, the perturbative one-loop vacuum prefers a non-vanishing gluon field
strength, a gluon condensate.

If we had included Nf massless quark flavors, we would have obtained a similar
result with

b0 =
1

8π2

(
11

3
Nc −

2

3
Nf

)
. (2.106)

The conclusion about asymptotic freedom as well as about the indications for a

gluon condensate remain valid as long as Nf <
11

2
Nc; for QCD with Nc = 3 and

Nf = 6, this is indeed the case.
Whereas the result for the β function is exact at one-loop order, the prediction

of asymptotic freedom is solid beyond perturbation theory, because higher loop
corrections become exceedingly small in the UV.

However, the indication for a gluon condensate from the minimum of the effective
action at one-loop order is less solid for a number of reasons. Let us start with two
of these reasons which are already clear at this point:

• The Savvidy vacuum with covariant constant field is unstable.

• Covariant constant fields distinguish a direction in spacetime ∼ B; hence,
Lorentz invariance is broken (contrary to observations in nature).

These two problems may be circumvented by a B field which is constant within
domains of length L ≲

√
gB

−1
, such that the unstable mode’s momenta are cut

off. If the domains are randomly oriented (cf. Weiss domains in a ferromagnet),
Lorentz invariance will be restored on scales > L. Together with the conservation
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of magnetic flux, this leads to the Kopenhagen vacuum or spaghetti vacuum picture
of the Yang-Mills vacuum. However, this is only a model which has been difficult
to handle computationally. But there are more points of criticism:

• The one-loop calculation is only reliable for small couplings g2/(4π) ≪ 1.
Let, for instance, g20/(4π)≪ 1 for g20 = g2(µ2

0 = B0) at some large reference
scale µ2

0 = B0 ≫ κ. Then, re-expressing µ2
0 in terms of κ, we find

g2(B) =
g20

1 + 1
2
b0g20 ln(B/µ

2
0)

=
g20

1
4
b0g20

(
ln B2

eκ2
− 1

) . (2.107)

We observe that the coupling diverges already at B2 = eκ2 which is before

the minimum of the effective action has been reached. Therefore, Γ is no
longer valid at the minimum.

• The assumption that the vacuum is dominated by slowly varying fields is
unjustified.

• Including quarks, we could estimate the quark condensate (chiral condensate)
from

⟨ψ̄ψ⟩ = N
∫
DΦ ψ̄ψ e−

∫
···−mψ̄ψ = − ∂

∂m
L(gB,m)

∣∣∣∣
m→0

→ 0, (2.108)

where Φ stands for all fields to be integrated over. Hence, the one-loop effec-
tive action does not predict chiral symmetry breaking, in contrast to pheno-
menology and lattice simulations.
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2.5 Leading-log model of confinement
Despite the obvious deficiencies of the one-loop calculation, consider the one-loop
effective action Γ[A] as the simplest example of a possible complete effective action
of QCD. The true action will, of course, depend on many more invariant operators
of more complicated color and Lorentz structures. But already the present simple
approximation features a nontrivial aspect: the gluon condensate.

Therefore, it is worthwhile to study the resulting quantum equations of motion;
for this, we need to go over to Minkowski space:

LE = −LM, F =
1

2
(B2 − E2). (2.109)

We furthermore rescale the coupling into the field strength for convenience,

g2F → F . (2.110)

The Minkowski space Lagrangian then reads

L = −1

4
b0F ln

2F
eκ2
− AaµJaµ, (2.111)

where we have included a source term which we choose to be provided by a static
quark antiquark pair at a distance R:

Ja0 = Qn̂a[δ(3)(x− x1)− δ(3)(x− x2)], |x1 − x2| = R. (2.112)

The quantum equations of motion read

Jaν = −∂µ
∂L

∂(∂µAaν)
= ∂µ

(
− ∂L
∂F

F aµν

)
≡ ∂µ (ϵ(F)F aµν) , (2.113)

where we have introduced the vacuum dielectric permittivity

ϵ(F) = − ∂L
∂F

=
1

4
b0 ln

2F
κ2
. (2.114)

The source-free quantum equations of motion can be satisfied by

(a) F a
µν = 0 (unstable)

(b) 2|F| = κ2 ⇒ ϵ(F) = 0 (stable) (2.115)

For pseudo-abelian sources, there is a pseudo-abelian solution, F a
µν = n̂aFµν , which

has to satisfy (in non-covariant notation):

∇ ·D = J0, ∇× E = 0,

∇×H = 0, ∇ ·B = 0, (2.116)
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supplemented by the material equations

D = ϵ(F)E, H = ϵ(F)B. (2.117)

To summarize, we have mapped the QCD vacuum onto nonlinear electrodynamics.
From ∇×H = 0, it follows that

0 =

∫
d3xA · (∇× (ϵB)) =

∫
d3x ϵB2 −

∮
df · ϵA×B, (2.118)

where the last term vanishes for a solution that approaches Eq. (2.115) (b) at
infinity. For a solution with ϵ ≥ 0, we obtain

B(x) = 0 ⇒
{

(I) B = 0, E2 > κ2

(II) ϵ = 0, 2F = κ2
. (2.119)

Region (I) is expected to be observed near the sources where the electric field
should show some resemblance with the Coulomb field. Region (II) is the vacuum
solution.

In fact, the quantum equations of motion can be solved in an analytic expansion
using a D-flux formulation, resulting in a quasi-linear partial differential equation
(PDE) for the flux potential. We will not review this (interesting) technical step
here, but just list a few of the final results: The static quarks are surrounded
by a bag of region (I) of ellipsoidal shape. Outside the bag, region (II) extends to
infinity: The thickness of the bag scales with R1/2. Regions (I) and (II) are causally
disconnected: the source distribution inside cannot exert any influence on the field
configuration outside; technically, the PDE turns from elliptic (I) to parabolic (II)
on the boundary. There, the normal second derivative, ∂2n, vanishes from the PDE.
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The static quark-antiquark potential for long and short distances R reads

Vstatic = −
∫
d3xL(A|QEoM)

=


κQR +

2

3
Q

3
2

√
2κ

πb0
ln(
√
κR),

√
κR≫ 1

− Q2

4πR

1

b0(ln
1√
κR

+ const)
,
√
κR≪ 1

(2.120)

We observe a linear confinement for large R and a log-modified Coulomb potential
for small R.

For heavy-quarkonium spectroscopy, the model shows reasonable agreement with
experimental data for

√
κ ≃ 229MeV. However, the string tension comes out

somewhat too small,

√
σ =

√
Qκ ≃ 246MeV, with Q =

√
4

3
for SU(3). (2.121)

which should be compared to the phenomenological value
√
σ ≃ 420MeV.

The predictions for the string thickness (string roughening) ∼ R1/2 and the
leading correction to linear confinement ∼ lnR should be compared with, e.g., the
bosonic string model, where the roughening scales like ∼ lnR (not yet measured
precisely on the lattice), and the static potential is

Vstatic, BS = σR− π(d− 2)

24R
+ . . . , for

√
σR≫ 1, (2.122)

where d is the number of spacetime dimensions and the subleading term is a
universal prediction of the bosonic string model (Lüscher term). The latter has
been confirmed quantitatively by lattice simulations.

To summarize, the leading-log model is a first and simple confinement model.
The mechanism for confinement arises in this model from the dielectric properties
of the quantum vacuum. Due to its perturbative origin, the model is, however,

40



not well founded and various quantitative details are in contradiction with other
methods.

Nevertheless, the possibility remains that a nonperturbative computation results
in an effective action (of more complicated structure) that supports a dielectric
confinement mechanism of the type described here.
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3 Gauge fields on loops and lattices
NOTE: In order to conform with the literature, we use a different

notation in this chapter. Gauge transformations are denoted by Ω(x),

e.g., AΩ
µ = ΩAµΩ

−1− i

g
(∂µΩ)Ω

−1 instead of U as in the preceding sections.

This is because U will be used for the link variables introduced below,
as is common in lattice gauge theory.

3.1 Wegner-Wilson loop
In view of the confinement problem, we would like to study a quark-antiquark pair
at large spatial separation R. Here, we encounter a problem: e.g., the correlations
between a quark field ψ(x) at position x and a conjugate quark field ψ̄(y) at y are
gauge dependent, since the fields at x and y in general transform differently under
a local gauge transformation Ω(x),

ψ(x)→ Ω(x)ψ(x), ψ̄(y)→ ψ̄(y)Ω−1(y). (3.1)

In order to compare quark fields at different points in a meaningful gauge-invariant
way with each other, we need to transport the color information of, say, ψ̄(y) to
the point x in a gauge-covariant manner.

Technically speaking, we are looking for a bi-local object U(y, x) which trans-
forms as

U(y, x)→ Ω(y)U(y, x)Ω−1(x), (3.2)
and which can be used to form gauge-invariant operators, e.g., ψ̄(y)U(y, x)ψ(x).
As a normalization, we require

U(x, x) = 1. (3.3)

For an infinitesimal distance y = x+ dx, we find

Ω(x+ dx)U(x+ dx, x)Ω−1(x)

= Ω(x)U(x, x)Ω−1(x) + dxµ(∂µΩ(x))U(x, x)Ω
−1(x)

+Ω(x)dxµ∂yµU(y, x)
∣∣
y=x

Ω−1(x) +O(dx2)

= 1+ dxµ
[
(∂µΩ(x))Ω

−1(x) + Ω(x)∂yµU(y, x)
∣∣
y=x

Ω−1(x)
]
+O(dx2).

(3.4)
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The term in square brackets looks similar to the gauge-transformed gauge po-
tential, if we identify ∂yµU(y, x)

∣∣
y=x

= igAµ(x). This observation suggests that
U(x+ dx, x) can be represented by

U(x+ dx, x) = 1+ igAµ(x)dx
µ, (3.5)

and Eq. (4.4) read from right to left shows that this choice has the desired trans-
formation properties. For finite separations y−x, U(y, x) can be constructed from
a product of U(x+ dx, x)’s,

U(y, x) = lim
N→∞

N∏
n=1

U(yn, yn−1), yn = x+ n
y − x
N

, n = 0, . . . , N. (3.6)

If Aµ was a constant number and dxµ = (y − x)µ/N , we would conclude that

U(y, x) = lim
N→∞

(1 + ig
Aµ(y − x)µ

N
)N = eigAµ(y−x)µ . For a number-valued function

Aµ(x) as in U(1) gauge theories, we find U(y, x) = eig
∫ y
x Aµ(z)dzµ .

However, for a matrix-valued Aµ(x) = Aaµτ
a, we have to take care of the non-

commuting nature of two Aµ(x)’s at neighboring positions. The result in this case
can formally be written as

U(y, x) = P exp

(
ig

∫ y

x

Aµ(z)dzµ

)
. (3.7)

The symbol P means path ordering. For instance, in a Taylor expansion of Eq. (4.7),
matrices Aµ(z) which are attached to a certain point z are ordered from later (left)
to earlier (right) positions along the path from x to y, e.g.,

P
[∫ y

x

Aµ(z)dzµ

]2
= P

∫ y

x

dzµ

∫ y

x

dwνAµ(z)Aν(w) (3.8)

=

∫ y

x

dzµ

∫ y

z

dwνAµ(w)Aν(z) +

∫ y

x

dzν

∫ z

x

dwµAµ(z)Aν(w).

Equation (4.6) is, of course, path-ordered by construction. Also by construction,
U transforms as

U(y, x)[AΩ]→ Ω(y)U(y, x)[A]Ω−1(x). (3.9)

The object U(y, x)[A] constitutes a mapping of paths in coordinate space into the
gauge group. In Eq. (4.6), we have used a specific straight line path. Whereas
U(y, x)[A] is generally path dependent, the gauge transformation property (4.9) is
only sensitive to the end points x and y; any other path in Eq. (4.6) would also
lead to the desired transformation property Eq. (4.9).
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Consider now the important case, where the path is a closed contour C:

C : {xµ(s)|xµ(0) = xµ(1), s ∈ [0, 1]}. (3.10)

A fully gauge-invariant object is then given by

W (C) = trU(C) = trP exp

(
ig

∮
C
Aµ(z)dzµ

)
, (3.11)

since
WΩ(C) = tr

[
Ω(x(1))U(C)Ω−1(x(0))

]
= trU(C) = W (C). (3.12)

This is the Wegner-Wilson loop which plays a key role in confining gauge theories.
Note that the exponent can be written as

ig

∮
C
Aµ(z)dzµ =

∫
d4z Cjaµ(z)A

a
µ(z), (3.13)

where
Cjaµ(x) = ig

∮
C
dzµ δ

(4)(x− z)τa (3.14)

can be viewed as a source term of a charged particle in fundamental representation
propagating along the closed contour C in spacetime (NB: the “i” is due to our
Euclidean conventions). Alternatively, Cjaµ(x) can be interpreted as a source term
for a quark-antiquark pair being created at some initial time, then propagating
some distance and then annihilating again at a later time. The Wegner-Wilson

loop expectation value therefore is nothing but the generating functional for a
special source Cjaµ(x):

⟨W (C)⟩ = 1

Z[0]
Z[Cj] =

1

Z[0]

∫
DA∆FP[A] e

−SYM−Sgf+
∫ CjaµA

a
µ , (3.15)
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where the path-ordering prescription is implicitly understood.
The meaning of the Wegner-Wilson loop can heuristically be understood in terms

of its quantum mechanical analogue; here, the connection between the functional
integral (path integral) and the Hamiltonian formulation of quantum mechanics
is most immediate. In Euclidean quantum mechanics, we get for the partition
function of a particle moving in d = 3 for a given time T in the presence of some
interaction with j:

Z[j] =

∫
d3xi⟨xi|e−H(j)T |xi⟩

=

∫
d3xi

∫ x(T )=xi

x(0)=xi

Dx e−S[x,j]

= Tr e−H(j)T ,

=
∞∑
n=0

⟨n|e−H(j)T |n⟩ =
∞∑
n=0

e−En(j)T

= e−E0(j)T

[
1 +

∞∑
n=1

e−(En−E0)T

]
. (3.16)

Since En>0 > E0, we find for large times T that the partition function is dominated
by the ground state energy E0(j),

E0(j) = − lim
T→∞

1

T
lnZ[j]. (3.17)

Transfering this reasoning to quantum gauge theory suggests that the Wegner-
Wilson loop expectation value (3.15) is related to the energy associated with the
creation and annihilation of a quark-antiquark pair. Choosing a contour as in the
figure, corresponding to a quark-antiquark pair that remains static at a distance R
for a time T , we expect the ground-state energy to dominate ⟨W (C)⟩ in the limit
T → ∞, and to correspond to the static potential V (R) between the quark and
antiquark:

V (R) = − lim
T→∞

1

T
ln⟨W (C)⟩. (3.18)

(NB: The connection between V (R) and ⟨W (C)⟩ can indeed more rigorously be
shown in QFT with the aid of the transfer matrix formalism.)

Confinement in gauge theories is therefore signaled by

V (R) = σR for large R,
⇒ ⟨W (C)⟩ ∼ e−σRT = e−σA, (3.19)

where A = RT is the area encircled by the contour C: C = ∂A.
Equation (3.19) expresses the famous area law of the Wegner-Wilson loop which

serves as an important criterion for confinement.
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3.2 Wegner-Wilson loop in QED
As an illustration, let us compute the Wegner-Wilson expectation value in U(1)
gauge theory in Feynman gauge:

⟨W (C)⟩ = 1

Z

∫
DAe−

1
4

∫
FµνFµν− 1

2α

∫
(∂µAµ)2+

∫ CjµAµ

, (3.20)

Using α = 1 (Feynman gauge) and

1

4

∫
FµνF

µν =
1

2

∫
Aµ(−∂2 + ∂µ∂ν)A

ν ,

1

2α

∫
(∂µA

µ)2 =
1

2

∫
Aµ(−∂µ∂ν)Aν , (3.21)

we get

⟨W (C)⟩ =
1

Z

∫
DAe−

1
2

∫
Aµ(−∂2)Aν+

∫ CjµAµ

=
1

Z

∫
DAe−

1
2

∫
(Aµ−A0µ)(−∂2)(Aν−Aν

0)e
1
2

∫ Cjν
1

(−∂2)
Cjν
,

where A0µ =
1

(−∂2)
Cjν . (3.22)

The seeming source dependence in the first exponential drops out by shifting the
integration variable Aµ → Aµ + A0µ. The integral is thus exactly equal to the
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normalization factor Z, and we obtain

⟨W (C)⟩ = e
1
2

∫ Cjν
1

(−∂2)
Cjν
. (3.23)

The symbol
1

(−∂2)
denotes nothing but the Green’s function of the 4-dimensional

Laplacian,
(−∂2)G = 1, i.e., − ∂2xG(x− y) = δ(4)(x− y), (3.24)

which can be determined as

G(x− y) =
∫

d4k

(2π)4
eik(x−y)

k2
=

1

4π2(x− y)2
. (3.25)

This is the Euclidean photon propagator in spacetime in Feynman gauge. In U(1)
gauge theory, the source term for a static e+e− pair reads (cf. Eq. (3.14)):

Cjµ(x) = ie

∮
C
dzµ δ

(4)(x− z), (3.26)

where C denotes the rectangular contour in a previous figure. The exponent in
Eq. (3.23) thus reads

1

2

∫
Cjν(x)

1

(−∂2)
Cjν(x) = −e

2

2

1

4π2

∮
C
dzν

∮
C
dz′ν

1

(z − z′)2
. (3.27)

Now, dzµdz′ν is only nonzero if both differentials are parallel for our contour C, i.e.,
if zµ and z′ν lie on the same or opposite sides. Representing the photon exchange
by a wavy line, there are four types of contributions, cf. Fig. 3.1: The latter two

Abbildung 3.1: Different contributions to the exponent of the Wegner-Wilson loop
expectation value in QED due to photon exchange between diffe-
rent segments of the rectangular contour C.

describe the electromagnetic self-interactions of a particle, contributing to the
(naively divergent) self-energy. For the interactions between the e+e− pair, these
terms are irrelevant, and we drop them.
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The remaining integrals can straightforwardly be performed. For the relevant
limit T/R → ∞, only the first diagram type contributes by a finite amount, cf.
exercises. For this integral, we obtain:

1

2

∫
Cjν(x)

1

(−∂2)
Cjν(x) = − e2

2π2

(
−T
R

arctan
T

R
+

1

2
ln

(
1 +

T 2

R2

))
. (3.28)

This implies for the static potential (3.18):

V (R) = − lim
T→∞

1

T
ln e

− e2

2π2

−T
R
arctan

T

R︸ ︷︷ ︸
→π/2

+ 1
2
ln
(
1+T2

R2

)


= − lim
T→∞

1

T

e2

2π2

T

R

π

2

= − e2

4πR
, (3.29)

which exactly corresponds to the Coulomb potential!

3.3 Gauge fields on the lattice
In section 3.1, we have constructed U(y, x), which acts as a parallel transporter of
color information, from a sequence of infinitesimal steps, see Eq. (4.6). Note, howe-
ver, that the desired gauge-transformation property, U(y, x)→ Ω(y)U(y, x)Ω−1(x),
is already present for the infinitesimal step. Since there is an infinitesimal one-to-
one correspondence between U(x+dx, x) (for arbitrary dx) and Aµ(x), cf. Eq. (4.5),

U(x+ dx, x) = 1+ igAµ(x)dxµ, (3.30)

this suggests that a gauge theory can fully be formulated in a discrete fashion on a
spacetime lattice in terms of the variables U(x+ dx, x) with full gauge symmetry.

Consider a hypercubic lattice with lattice spacing a. Let us denote the sites by
x, and a unit vector pointing into the µ direction by µ̂. A neighboring site to x
in µ direction is then denoted by x + aµ̂. To every link between two neighboring
sites, we associate a parallel transporter

Uxµ ≡ U(x, x+ aµ̂) ∈ SU(Nc), (3.31)

The inverse is given by

U−1
xµ ≡ U(x+ aµ̂, x) = U †

xµ. (3.32)
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Ux,1 Ux+a1̂,1 Ux+2a1̂,1

Ux,2

Ux+a2̂,2

Ux+2a2̂,2

Abbildung 3.2: A 2D lattice with link variables Uxµ ≡ Ux,x+aµ̂ connecting neigh-
boring sites.

Considering a as an infinitesimal distance, the link variable can be related to the
gauge field Aµ as in Eq. (3.30),

Uxµ = 1− igaAµ(x). (3.33)

Gauge transformations are defined on the sites, Ωx, and the links transform as

Uxµ → ΩxUxµΩ
−1
x+aµ̂. (3.34)

The links encode all gauge-field information and can thus be viewed as the true
gauge-field degrees of freedom. The relation between the links and continuum gauge
fields is not unique; e.g., equally valid definitions to order a are (cf. Eq. (3.30)):

Uxµ = 1− igaAµ(x+ 1
2
aµ̂), or Uxµ = exp (−igaAµ(x+ 1

2
aµ̂)) . (3.35)

Here, we have associated the gauge-field coordinate with the link “center of mass”,
i.e., lying halfway between the two neighboring sites. Let us now introduce the
plaquette variable

Uµν = Ux,x+aµ̂Ux+aµ̂,x+aµ̂+aν̂Ux+aµ̂+aν̂,x+aν̂Ux+aν̂,x

= UxµUx+aµ̂,νU
†
x+aν̂,µU

†
xν , (3.36)

To order a2 and using the 2nd definition of Eq. (3.35) for this purpose, Uµν is given
by

Uµν = e−igaAµ(x+
a
2
µ̂)e−igaAν(x+aµ̂+

a
2
ν̂)eigaAµ(x+aν̂+

a
2
µ̂)eigaAν(x+

a
2
ν̂). (3.37)
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x x+ aν̂

x+ aµ̂+ aν̂x+ aµ̂

x̃

Abbildung 3.3: Plaquette associated with the site x, or x̃ on the dual lattice.

Denoting the center of the plaquette by x̃ = x+ a
2
µ̂+ a

2
ν̂, the last line reads:

Uµν = e−igaAµ(x̃−a
2
ν̂)e−igaAν(x̃+

a
2
µ̂)eigaAµ(x̃+

a
2
ν̂)eigaAν(x̃−a

2
µ̂)

=
[
1− g2a2AµAν + g2a2AµAν + g2a2AνAµ − g2a2AµAν

+
i

2
ga2∂νAµ −

i

2
ga2∂µAν +

i

2
ga2∂νAµ −

i

2
ga2∂µAν +O(a3)

]
x̃

=
[
1− iga2 (∂µAν − ∂νAµ − ig[Aµ, Aν ])

]
+O(a3)

=
[
1− iga2Fµν

]
+O(a3).

= e−iga
2Fµν +O(a3). (3.38)

In the first step, we have already made use of the fact that all terms linear in a and
those ∼ AµAµ cancel. Now consider the quantity (where β denotes a normalization
constant)

Sp = β

(
1− 1

Nc

Re trUµν
)

= β

(
1− 1

Nc

Re tr e−iga
2Fµν . . .

)

= β

1− 1

Nc

tr1︸︷︷︸
=Nc

+
ga2

Nc

Re tr iFµν︸ ︷︷ ︸
=0

+
g2a4

2Nc

Re trFµνFµν +O(a6)

 (3.39)

where there is no summation over µ, ν implied. In summary, we have

Sp =
βg2a4

2Nc

trFµνFµν +O(a6). (3.40)

Summing over all possible plaquettes, we define the Wilson action on a lattice

SW =
∑
p

Sp = β
∑
x̃

∑
µ<ν

(1− 1

Nc

Re trUµν)

=
∑
x̃

1

2

∑
µ,ν

βg2a4

2Nc

trFµν(x)Fµν(x) +O(a6)

−−→
a→0

β
g2

2Nc

∫
d4x

1

2
trFµν(x)Fµν(x), (3.41)

50



where the last line uses the standard Einstein sum convention again. The conti-
nuum limit of the Wilson action coincides with the Yang-Mills action provided we
choose

β =
2Nc

g2
. (3.42)

(The real part Re in Eq. (3.39) is introduced in order to keep the action real also
to higher orders in a.)

The quantum gauge theory is finally defined by integrating over all possible
values for the gauge variables Uxµ,

Z =

∫
DU e−SW [U ], where DU =

∏
x,µ

dUxµ, (3.43)

and dUxµ denotes the Haar measure on SU(Nc). Given a parametrization of U
in terms of coordinates ωa on group space, e.g., U = e−iω

aτa , the Haar measure
corresponds to the reparametrization invariant measure with respect to coordinate
transformations,

dU = ν
√

det g
∏
a

dωa, (3.44)

where

gab = (2) tr

(
∂U

∂ωa
∂U †

∂ωb

)
. (3.45)

Here, the factor “(2)” holds for all SU(Nc > 1) but is replaced by “(1)” for U(1).
Equation (3.45) denotes the induced metric on group space, and the normalization
ν can be chosen such that ∫

dU = 1. (3.46)

The metric transforms covariantly under coordinate transformations, ω′a = fa(ω),

g′ab =
∂ωc

∂ω′a
∂ωd

∂ω′b gcd, (3.47)

implying that Jacobian factors from coordinate transformations cancel explicitly
in Eq. (3.44),

dU ′ = ν
√
det g′

∏
a

dω′a = ν
√

det g
∏
a

dωa = dU. (3.48)

A special case of coordinate transformations is given by left and right translations
in group space,

U → U ′ = ΩU, or U ′ = UΩ, (3.49)
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(i.e., U ′(ω′)) = ΩU(ω) can be viewed as a coordinate transformation ω′ = f(ω)).
Hence, the Haar measure is simultaneously left- and right-invariant,

dU ′ = d(ΩU) = d(UΩ) = dU. (3.50)

A simple illustration of all this is given by the Haar measure on U(1):

U = e−iω, ω ∈ [0, 2π) ⇒ dU =
dω

2π
,

∫
dU = 1. (3.51)

Consider Ω = eiα (e.g. left translation). Then,

U ′(ω′) = e−iω
′
= ΩU(ω) = e−i(ω−α) ⇒ ω′ = ω − α. (3.52)

Of course, explicit representations can be worked out for the Haar measure of
SU(Nc), but this will not be a matter of concern here.

Let us finally remark that the partition function (3.43) is finite for finite lattices
and compact gauge groups; hence, correlators and observables can immediately be
computed,

⟨O(U)⟩ = 1

Z

∫
DU O(U)e−SW [U ]. (3.53)

In particular, gauge fixing is not necessary for non-perturbative lattice computa-
tions.

3.4 Wegner-Wilson loop in strong-coupling
expansion

The Wegner-Wilson loop on the lattice is simply given by the (trace over the)
product of link variables along the contour C,

W (C) = tr
∏
C

U, (3.54)

and its expectation value reads

⟨W (C)⟩ = 1

Z

∫
DU tr

∏
C

U e−S[U ], (3.55)

with S being the Wilson action ∼ 1

g2
, cf. Eq. (3.41),

S[U ] =
2Nc

g2

∑
x̃

∑
µν

(
1− 1

Nc

Re trUµν
)
. (3.56)
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Abbildung 3.4: Rectangular lattice enclosed by a Wilson line (contour) C.

We may try to compute Eq. (3.56) in a strong-coupling expansion,
1

g2
→ 0. This

is reminiscent to a high-temperature expansion in statistical mechanics, where the

Boltzmann weight e−βH is expanded for small β =
1

kBT
. For this, we need some

elementary integrals over group space; by construction, we have∫
dU = 1. (3.57)

Furthermore, we have the following basic integrals:∫
dU Uij(ℓxµ) = 0, (3.58)∫

dU Uij(ℓxµ)U
†
kl(ℓyν) =

1

Nc

δikδjlδℓxµℓyν , (3.59)

where ℓxµ denotes the link starting at site x in direction µ. These integrals can be
derived using an explicit parametrization.

A strong-coupling expansion of Eq. (3.55) corresponds to a Taylor expansion of
the exponential e−S[U ] ∼ e

− 1
g2

∑
trUµν . To zeroth order, we get

⟨W (C)⟩(0) = 1

Z

∫
DU tr

∏
C

U = 0, (3.60)

since at any link ℓ, we have Eq. (3.58). We observe that any link of the Wegner-
Wilson loop can contribute only, if there is another link “on top of it”, such that
there product has a singlet component according to Eq. (3.59). This happens to
be the case when a link on the contour is multiplied by a conjugate link being
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part of a plaquette. To lowest non-vanishing order in
1

g2
, this implies that the

Wegner-Wilson loop area has to be tiled completely by plaquettes
For an area of side lingth I × J (in units of the lattice spacing a), this makes

2 · I · J + I + J pairs of links, contributing a factor
(

1

Nc

)2IJ+I+J

to the Wegner-

Wilson loop expectation value according to Eq. (3.59). The contraction of the
Kronecker deltas from Eq. (3.59) as well as from the prefactor of the action (3.56),
we obtain further contributions of this form. The final result reads for Nc = 3:

⟨W (C)⟩(1) = 3

(
β

18

)IJ

(1 +O(β)) = 3

(
β

18

)T
a

R
a

(1 +O(β)), β =
6

g2
(3.61)

to lowest order in
1

g2
. For the static potential, we thus obtain

V (R) = − lim
T→∞

1

T
ln⟨W (C)⟩

= − lim
T→∞

1

T
ln

[
3

(
β

18

)T
a

R
a

+ . . .

]

≃
(
− ln

β

18

)
R

a2
≡ σR, (3.62)

where σ = −a−2 ln
β

18
is the string tension.

The strong-coupling expansion therefore produces a linearly confining potential.
The strong-coupling expansion hence gives analytical insight into the structure of
the theory at large bare coupling. However, it turns out to be difficult to relate the
strong-coupling expansion to the parameter region where the renormalized coup-
ling takes on physically relevant values. (NB: the coupling used here corresponds
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to the bare coupling defined at the lattice cutoff scale a−1. Since we are interested
in the continuum limit a → 0, this coupling goes to zero because of asymptotic
freedom. This regime is thus far away from the regime where the strong-coupling
expansion can be expected to give reliable results.) The result (3.62), though con-
ceptually highly interesting, does therefore not serve as a proof of confinement.
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4 Confinement and monopoles

4.1 Prerequisites
A class of popular models of confinement is based on the idea of a dual Meis-
sner effect. In order to understand this duality hypothesis, let us first sketch the
Meissner-Ochsenfeld effect which is a characteristic feature of superconductivity.

Type-I superconductivity can be described by a condensation of Cooper pairs
which are bosonic electron composites. Cooper pairs occupy the same quantum
state. This condensate is associated with a macroscopic wave function

Φ(x, t) =
√
|q|N · χ(x, t), (4.1)

where q = −2e is the charge of a Cooper pair, N denotes the number of Cooper
pairs and χ(x, t) is a normalized wave function of one Cooper pair.

The macroscopic charge density is

ρ(x, t) = −|Φ(x, t)|2 = qN |χ(x, t)|2. (4.2)

The conservation of the number of Cooper pairs implies a continuity equation,

∂ρ

∂t
+∇ · j = 0, (4.3)

where j is the current density. From Eq. (4.2) together with the Schrödinger equa-

tion, iℏ∂tΦ = HΦ, with H = − ℏ2

2m
D2, D = ∇ − i

q

ℏ
A, we obtain the Cooper

current
j =

ℏ
2im

(Φ∗DΦ− (DΦ)∗Φ) . (4.4)

For a homogeneous superconductor with ρ(x) ≃ ρ = const., and

Φ(x, t) =
√
|ρ|eiφ(x,t), (4.5)

the current simplifies to

j =
ρℏ
m

(
∇φ− q

ℏ
A
)
. (4.6)
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The interaction between the Cooper current and a magnetic field, obeying Max-
well’s equations,

∇×B =
j

ϵ0c2
, ∇ ·B = 0, (4.7)

implies

−∇2B = ∇× (∇×B) =
1

ϵ0c2
∇× j = − ρq

mϵ0c2
B,

⇒ ∇2B =
1

λ2L
B, (4.8)

where λL =

√
mϵ0c2

ρ|q|
is the London penetration depth. Consider, e.g., a magnetic

field close to a superconductor,

Abbildung 4.1: Magnetic field close to a superconductor exhibiting the Meissner
effect.

then the field inside the superconductor has to obey Eq. (4.8), yielding

B(z) = B0(e
−z/λL , 0, 0), z ≥ 0. (4.9)

The magnetic field vanishes exponentially inside the superconductor. This is the
Meissner-Ochsenfeld effect.

For a Type-II superconductor, the magnetic field can penetrate the supercon-
ductor in form of thin magnetic flux tubes, called Abrikosov vortices. This is also
called the Shubnikov phase.

The flux through the vortex yields

ΦB =

∮
γ

dx ·A =
ℏ
q

∮
γ

dx · ∇φ =
2πℏ
q
n, n ∈ Z, (4.10)

where γ is a closed contour around the vortex.
In the second step, we have used Eq. (4.6) together with the fact that the current

vanishes far away from the vortex core, since j = ϵ0c
2∇×B and B = 0 inside the
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Abbildung 4.2: Abrikosov vortices penetrating a Type-II superconductor.

Abbildung 4.3: Contour γ around a magnetic vortex in a superconductor.

superconducting bulk. In Eq. (4.10), we have also used that the phase φ has to be
single-valued, i.e., φ can change only by integer multiples of 2π when going around

the contour γ. This results in flux quantization, ΦB = nΦ0, where Φ0 =
2πℏ
|q|

is

the flux quantum.
Now, imagine that we have two magnetic monopoles of opposite charge “N” and

“S” at our disposal. If we bring these monopoles into a Type-II superconductor,
the Meissner-Ochsenfeld effect enforces a string-like flux distribution.

The static potential between the monopoles would then be linear inside the
superconductor, V NS

s.c. (R) ∼ σR in contrast to the vacuum potential, V NS
vac (R) ∼

1

R
. (NB: Incidentally, if monopoles existed, the flux distribution inside a Type-I

superconductor would also be string-like for two-static monopoles).
This gedanken experiment gives rose to a confinement picture in QCD based on
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Abbildung 4.4: Magnetic flux string between two monopoles in a Type-II super-
conductor.

a hypothetical dual Meissner effect (t’Hooft, Mandelstam 1976):

superconductor QCD vacuum

magn. Meissner effect electric Meissner effect
magnetic flux quantization electric flux quantization

(OK, since quark charges are quantized)

condensation of electric charges condensation of magnetic charges
(Cooper pairs) (magnetic monopole pairs?)

(4.11)
The obvious question is: are there field configurations in Yang-Mills theories with
a monopole-like charge content?

4.2 Magnetic monopoles in abelian gauge theory
The source-free Maxwell equations exhibit a duality symmetry between electric
and magnetic fields, E ← B, B → −E. Promoting this symmetry to hold also
in the presence of sources requires the existence of magnetic charges (monopoles)
and currents. E.g., electro-magneto statics is described by

∇ · E = ρ, ∇ ·B = ρM, (4.12)

where ρM denotes the magnetic charge density. The magnetic field of a δ-like
magnetic point source at the origin, ρM(r) = gδ(3)(r), is given by

B =
g

4π

r̂

r2
, (4.13)

which is just the analogue of the electric Coulomb field with magnetic coupling g
replacing the electric charge. However, representing this field by a gauge potential
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Abbildung 4.5: Magnetic monopole with Dirac string (infinitely long, infinitely
thin solenoid) along the negative z-axis.

requires a singular structure,

g =

∫
V

d3xρM =

∫
V

d3x∇ ·B ?
=

∫
V

d3x∇ · (∇×A) = 0. (4.14)

If A is non-singular but regular, the last term vanishes.
The monompole potential can be constructed from that of an idealized infinitely

long solenoid:

A =
g

4πr

1− cos θ

r sin θ
ϕ̂ ≡ g

4π
(1− cos θ)∇ϕ, (4.15)

which produces the magnetic field (4.13) everywhere except on the negative z-axis
(θ = π), where it is singular. This singularity is known as the Dirac string :

B = ∇×A =
g

4π

r̂

r2
+ g δ(x)δ(y)Θ(−z)ẑ, (4.16)

where the second term describes the magnetic flux of a solenoid along the negative
z axis.

Can the solenoid be detected in the limit of vanishing thickness and infinite
length? Classically, the answer would be no. However, quantum mechanically, the
answer can be yes because of the Aharonov-Bohm effect:

But even the Aharonov-Bohm effect remains invisible for a solenoid flux being
a multiple of the flux quantum:

Φ =
2πℏ
q
n

∥
Φsolenoid = g

⇒
qg

2πℏ
= n ∈ Z, (4.17)

60



Abbildung 4.6: Aharonov-Bohm effect: Electron wavefunction split into two parts
encircling a solenoid with magnetic flux Φ. The interference pattern
depends on Φ even if the electrons never pass through a region with
non-vanishing magnetic field.

since then the interference pattern is shifted by an integer multiple of 2π. The last
equation is the famous Dirac quantization condition relating electric charge q and
magnetic charge g. It states that the existence of even a single magnetic monopole
in the universe requires all electric charges to be quantized.

4.3 Magnetic monopoles and confinement in
compact U(1) gauge theory in d = 3
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