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Organization of the lectures

two main blocks: 1) Ising model, 2) SU(2) Yang-Mills theory

lectures and exercises: theory and practical implementations

Lecture goals:

critical phenomena in spin models

Monte-Carlo simulations, algorithms

gauge theory and gauge invariance

simulations of non-perturbative phenomena (confinement)
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Organization of the lectures

lectures: 11.3. (14:00-15:30) 1) Ising and spin models,
12.3. (10:00-11:30) 2) Monte-Carlo methods,
13.3. (10:00-11:30) 3) gauge theories and lattice
discretization,
14.3. (10:00-11:30) Yang-Mills theory on the lattice,
15.3. (9:00-10:30) 4) Towards lattice QCD

exercises 1: 11.3.(15:30-16:30), introduction to first exercises:
Ising model

exercises 2: 12.3. (14:00-15:30), practical implementations,
solutions

exercises 3: 13.3. (14:00-15:30), exercises Yang-Mills theory

exercises 4: 14.3. (14:00-15:30), practical implementations,
solutions

https://www.tpi.uni-jena.de/~gbergner/compmethws2324.html
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General motivation

Goal is quantum field theory on a space-time lattice:

particle physics: relativistic quantum theory

path integral formulation

non-perturbative method: numerical lattice simulations

Approach starting from statistical mechanics:

space-time lattice (Euclidean) ↔ lattice of atoms in solid
state physics

Path x(t) ↔ spin configuration

exp(−SE [x ]/~) ↔ exp(−H({s})/(kBT ))

continuum limit ↔ critical phenomena (phase transitions)
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Literature
Many different examples for Ising model simulations in various
programming languages are avaiable online.

Wipf, “Statistical Approach to Quantum Field Theory”,
Springer (2013)

The following books contain further information on simulations of
pure gauge theory on the lattice:

Gattringer, Lang, “Quantum Chromodynamics on the
Lattice”, Springer (2010)

Montvay, Münster, “Quantum Fields on a Lattice”,
Cambridge University Press (1994)

Smit, “Introduction to Quantum Field on a Lattice”,
Cambridge Lecture Notes in Physics (2002)

Rothe, “Lattice Gauge Theories An Introduction” World
Scientific (2005)
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Goal of the first lecture: 1) Ising model

introduction to physical applications

thermodynamic quantities and observables

basic analytic results for later comparison with data

methods are in close connection to methods in lattice QFT
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The Ising model
Simplified model for of a ferromanget:

elementary magnets (spins sx ∈ {−1, 1}) in Crystal-Lattice

observations for T < Tc (Curie-temperature): spontaneous
magnetization

first approximation: only nearest neighbor interactions

H({sx}) = −J
∑
<x ,y>

sxsy − h
∑
x

sx

< x , y > pairs of next neighbors; h external magnetic field

ferromagnetic: J > 0, antiferromagnetic J < 0

expectation (J > 0): state with aligned spins favored, jump in
preferred direction depending on the sign of h, thermal
fluctuations might destroy alignment
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The Ising model, some historical notes

1920: W. Lenz, E. Ising: Solution for 1D Ising model (no
spontaneous magnetization)

1936: R. Peierls: Proof of spontaneous magnetization in 2D

1944: L. Onsager: analytic solution in 2D

D > 2 no know analytical solution
Approximation methods:

high and low temperature expansion

mean field approximation

numerical simulations . . .

Ising model has become a standard model for statistical physics,
which is used as a test and benchmark for new methods. (Even the
most modern tools like conformal bootstrap or tensor networks.)

8/30



The canonical ensemble
lattice Λ: x = (x1, . . . , xd), xµ = nµa, nµ = 1, . . . ,Nµ,
Lµ = aNµ, V =

∏d
µ=1 L

µ, (lattice spacing normalized to
a = 1)
spin at every lattice point: sx ∈ T , Ising model spin:
T = {−1, 1}
Configuration w = {sx |x ∈ Λ}, w : Λ→ T V = T × T × . . .

thermodynamic partition function (β = 1/(kBT ))

ZV (β, J, h) =
∑
{sx}

exp(−βH({sx}))

P probability of configuration {sx} in thermodynamic
ensemble:

P({sx}, β, J, h) =
1

ZV (β, J, h)
exp(−βH({sx}))
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Thermodynamic quantities

thermodynamic average of observable O

〈O〉V (β, J, h) =
1

ZV (β, J, h)

∑
{sx}

O({sx}) exp(−βH({sx}))

e. g. (macroscopic) magnetization in volume V :

MV =
1

V

∑
x

sx ; 〈M〉V = − ∂

∂h
fV (β, J, h)

free energy, free energy density

FV (β, J, h) = − 1

β
logZV (β, J, h); fV (β, J, h) =

1

V
FV (β, J, h)
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Thermodynamic quantities

internal energy

UV (β, J, h) = 〈H〉 = − 1

ZV

∂

∂β

∑
{sx}

exp(−βH({sx})) = − ∂

∂β
logZV (β, J, h)

magnetic susceptibility

χM =
∂

∂h
〈M〉V = β(〈M2〉V − 〈M〉2V )

specific heat

CV =
1

V

∂

∂T
UV = 〈H2〉 − 〈H〉2
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Correlation functions, correlation length

correlation function

G (n)(x1, . . . , xn) = 〈sx1sx2 . . . sxn〉

two point correlation function

G (2)(x1 − x2) = 〈sx1sx2〉 ∼ exp(−|x1 − x2|/ξ)

with correlation length ξ (〈M〉 = 0) determining long range
behavior

large distances: clustering

〈sx1sx2〉 ≈ 〈sx1〉〈sx2〉

Hence at 〈M〉 6= 0:

G̃ (2)(x1 − x2) = 〈sx1sx2〉 − 〈sx1〉〈sx2〉 ∼ exp(−|x1 − x2|/ξ)
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Ising model in one dimension
Ising chain, periodic boundary conditions, (K = βJ)

H({sx}) = −J
N∑

x=1

sxsx+1 − h
N∑

x=1

sx

ZV (β) =
∑

s1,s2,...,sN

eKs1s2+
1
2
βh(s1+s2)eKs2s3+

1
2
βh(s2+s3) · · ·

=
∑

s1,s2,...,sN

Ts1s2Ts2s3 · · ·TsN s1 = trTN

transfer matrix (s = {+1,−1}):

T =

(
eK+βh e−K

e−K eK−βh

)
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Solution of the Ising model in one dimension
Diagonalization of transfer matrix

T = RDR−1; R =

(
cos γ − sin γ
sin γ cos γ

)
; D =

(
λ+ 0
0 λ−

)

λ± = eK
(

coshβh ±
√

sinh2 βh + e−4K
)

sin 2γ =
e−2K√

sinh2 βh + e−4K
; cos 2γ =

sinhβh√
sinh2 βh + e−4K

partition function

ZV (β) = trTN = λN+ + λN− = λN+(1 + pN); p =
λ−
λ+

< 1
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Ising chain thermodynamics
Diagonalization of transfer matrix:

fV = − 1

β
log λ+ −

1

βN
log(1 + pN)→N→∞ f = − 1

β
log λ+

〈M〉 =
1− pN

1 + pN
cos 2γ →N→∞

sinhβh√
sinh2 βh + e−4K

spontaneous magnetization only in the limit of T → 0

U lowered by alignment of spins

sx → −sx for part of the spins leads to ∆U = 4J at the
boundary

However: increase of entropy ∆S = kB logN, since N possible
positions of boundary

⇒ no lower F = U − TS for aligned spins
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Two dimensional Ising model

1936 shortly after Wilhelm Lenz and Ernst Ising found no
phase transition in 1D: proof of Tc > 0 in 2D

1941 Kramers and Wannier Tc from duality transformations
argument based on analysis of regions with aligned spins

1944 Lars Onsager: exact solutions form transfer matrix
method
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Phase diagram of the Ising model

external magnetic field:

alignment of spins along magnetic field, disturbed by thermal
fluctuations

h→ 0:

low temperatures: ordered (aligned) spins, spontaneous
magnetization (M+/− for h→ 0+/−)

high temperatures: thermal fluctuations dominant, disordered
spins

There can be a phase transition between these two phases at a
finite temperature (Tc).
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Critical behavior

relevant for critical behavior is the behavior of quantities in
thermodynamic limit f = limV→∞ fV

Phase transitions, order parameter (〈M〉) shows non-analytic
behavior

first order: discontinuity of first derivative of partition function
(order parameter)

second order: second derivative of partition function shows
discontinuous behavior (susceptibility or specific heat)

critical exponents characterize critical behavior

〈M〉 ∼ εβ; ε =
|T − Tc |

Tc

χM ∼ ε−γ

CV ∼ ε−α, ξ ∼ ε−ν

18/30



Phase diagram Ising model

Tc

0
first order

second order endpoint

T

h

erster Ordnung

Endpunkt zweiter Ordnung

T

M
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Two dimensional Ising model in numerical simulations

’config.txt’ matrix ’config.txt’ matrix ’config.txt’ matrix

configurations at K = 0.4, K ≈ Kc , K = 0.5 (700× 700
Gitter)

simulations show transition from ordered to disordered state

T ≈ Tc scale invariance, domains on every scale
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Solution by Onsager

longer calculations, solution for free energy

−βf = log cosh(2K )− 2K +
2

π

∫ π
2

0
dθ log

(
1 +

√
1− κ2 sin2 θ

)
κ =

2 tanh(2K )

cosh(2K )

u(T ), CV depend on elliptic integrals; singularities of CV indicate
phase transition at 2Kc = log(1 +

√
2)

Magnetization:

T > Tc : 〈M〉 = 0

T < Tc : 〈M〉 =
(
1− sinh−4(2K )

)1/8
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Approximation methods for the Ising model

Besides numerical simulations, a number of approximation
methods have been established for the Ising model

mean field approximation

high temperature expansion

low temperature expansion

General problem: Representation of non-analytic behavior at Tc in
expansions
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Low temperature expansion

Consider excitation of completely aligned state E0 = −dVJ − Vh
taking into account the number of such configurations. Spins in
region X flipped: number of spins determined by volume n = |X |,
boundary of volume (pairs of misaligned spins) p = |∂X |

ZV = e−βE0
∑
n,p

znupGV (n, p), z = e−2βh, u = e−2βJ ,

GV number of configurations with n and p.
alternatively (h = 0): H = E0 + 2J

∑
<x ,y>(1− δ(sx , sy ))

ZV = e−βE0
∑
sx

e−2βJnf [{sx}]

nf number of bonds with different sign on both sides
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Low temperature expansion

ZV = e−βE0(1 + Vzu4 + 2Vz2u6 + V (z4 + 6z3 + (V − 5)z2/2)u8 + . . .)

Derivative of f is magnetization

〈M〉 = 1− 2zu4 − 8z2u6 − (8z4 + 36z3 − 10z2)u8 + . . .

critical temperature can be determined from convergence radius of
expansion

〈M〉 =
∑

alu
2l ∼

(
1− u2

u2c

)β
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Low temperature expansion

Convergence radius R = liml→∞
al

al−1
, determined by fit of

al
al−1

=
1

u2c
− 1 + β

u2c

1

l

To determine uc (Tc) and β (critical exponent).

Low temperature expansion:

Ansatz: expansion around configuration that minimizes H

Similar to semiclassical expansion or weak coupling expansion
in QFT
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High temperature expansion

High temperatures, expansion for β � 1
naive expansion (h = 0):

ZV =
∑
{sx}

∏
<x ,y>

eKsx sy =
∑
{sx}

∏
<x ,y>

(1 + Ksxsy +
(Ksxsy )2

2!
+ . . .)

Summation over all spin configurations: contributions with odd
number of spins at a lattice point vanish.

ZV = 2V (1 + K 2 2V

2
+ . . .)
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High temperature expansion

More efficient expansion (character expansion):
eKsx sy = cosh(K )(1 + vsxsy ), v = tanh(K )

ZV = (coshK )2V
∑
{sx}

∏
<x ,y>

(1 + vsxsy )

ZV = (coshK )2V 2V
(
1 + Vv4 + 2Vv6 + . . .

)
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High temperature expansion

Expansion of susceptibility can be derived from the expansion of
two point function (〈M〉 = 0)

χ =
1

V

∑
x ,y

〈sxsy 〉

Graphs with insertions sx and sy .

χ = 1 + 4v + 12v2 + 36v3 + 100v4 + 276v5 + 740v6 + . . .

High temperature expansion comparable to expansion in lattice
QFT

”
strong coupling“ expansion

hopping parameter expansion
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Mean field approximation

Main idea of this approach:

interaction of neighboring spins replaced by interaction with
mean field

self consistency equation for mean field

factorization of Boltzmann measure

mean field approximation predicts phase transition

precision depends on coordination number: the larger the
number of interacting spins the better the precision

Tc,mf = 2dJ
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Summary

Ising model

playground for investigations of numerical methods and
approximations

lattice QFT: closely related to physics of statistical models

2D Ising model: Exact solutions allow benchmark of numerical
methods

3D and higher: only numerical solutions and approximation
methods
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