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Organization of the lectures

@ two main blocks: 1) Ising model, 2) SU(2) Yang-Mills theory

@ lectures and exercises: theory and practical implementations

Lecture goals:
@ critical phenomena in spin models
@ Monte-Carlo simulations, algorithms
@ gauge theory and gauge invariance

@ simulations of non-perturbative phenomena (confinement)



Organization of the lectures

@ lectures: 11.3. (14:00-15:30) 1) Ising and spin models,
12.3. (10:00-11:30) 2) Monte-Carlo methods,
13.3. (10:00-11:30) 3) gauge theories and lattice
discretization,
14.3. (10:00-11:30) Yang-Mills theory on the lattice,
15.3. (9:00-10:30) 4) Towards lattice QCD
@ exercises 1: 11.3.(15:30-16:30), introduction to first exercises:
Ising model
@ exercises 2: 12.3. (14:00-15:30), practical implementations,
solutions
@ exercises 3: 13.3. (14:00-15:30), exercises Yang-Mills theory
@ exercises 4: 14.3. (14:00-15:30), practical implementations,
solutions

https://www.tpi.uni-jena.de/~gbergner/compmethws2324.html
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General motivation

Goal is quantum field theory on a space-time lattice:

@ particle physics: relativistic quantum theory

@ path integral formulation

@ non-perturbative method: numerical lattice simulations
Approach starting from statistical mechanics:

@ space-time lattice (Euclidean) < lattice of atoms in solid
state physics

e Path x(t) <> spin configuration
o exp(—Se[x]/h) < exp(=H({s})/(ksT))
@ continuum limit <> critical phenomena (phase transitions)



Literature
Many different examples for Ising model simulations in various
programming languages are avaiable online.
o Wipf, “Statistical Approach to Quantum Field Theory”,
Springer (2013)
The following books contain further information on simulations of
pure gauge theory on the lattice:
o Gattringer, Lang, "Quantum Chromodynamics on the
Lattice”, Springer (2010)
@ Montvay, Miinster, “Quantum Fields on a Lattice”,
Cambridge University Press (1994)
@ Smit, “Introduction to Quantum Field on a Lattice”,
Cambridge Lecture Notes in Physics (2002)
@ Rothe, “Lattice Gauge Theories An Introduction” World
Scientific (2005)



Goal of the first lecture: 1) Ising model

@ introduction to physical applications
@ thermodynamic quantities and observables
@ basic analytic results for later comparison with data

@ methods are in close connection to methods in lattice QFT



The Ising model
Simplified model for of a ferromanget:
@ elementary magnets (spins s, € {—1,1}) in Crystal-Lattice

@ observations for T < T, (Curie-temperature): spontaneous
magnetization

first approximation: only nearest neighbor interactions

H({sx})=—J Z SxSy — thX

<X,y>

< x,y > pairs of next neighbors; h external magnetic field

ferromagnetic: J > 0, antiferromagnetic J < 0

expectation (J > 0): state with aligned spins favored, jump in
preferred direction depending on the sign of h, thermal
fluctuations might destroy alignment



The Ising model, some historical notes

@ 1920: W. Lenz, E. Ising: Solution for 1D Ising model (no
spontaneous magnetization)

@ 1936: R. Peierls: Proof of spontaneous magnetization in 2D
@ 1944: L. Onsager: analytic solution in 2D
D > 2 no know analytical solution
Approximation methods:
@ high and low temperature expansion
@ mean field approximation
@ numerical simulations ...

Ising model has become a standard model for statistical physics,
which is used as a test and benchmark for new methods. (Even the
most modern tools like conformal bootstrap or tensor networks.)



The canonical ensemble

o lattice A: x = (x1,...,x9), x* = nta, n* =1,..., NH,
[P = aNF, V = szl L*, (lattice spacing normalized to
a=1)

@ spin at every lattice point: s, € T, Ising model spin:

T={-1,1}

o Configuration w = {s[x €A}, w A =TV =T xT x ...

e thermodynamic partition function (8 =1/(kgT))

Zy(8,4,h) =Y _exp(—BH({s}))
{sx}
@ P probability of configuration {sx} in thermodynamic
ensemble:

P({sx}, 8,4, h) = exp(—AH({sx}))

_
ZV(/Ba -/7 h)



Thermodynamic quantities

@ thermodynamic average of observable O

1

(O)v(B,J,h) = Zv(B.J. 1) Z O({sx}) exp(—BH({sx}))
T s
@ e. g. (macroscopic) magnetization in volume V:
1 d
MV:VESX; <M>V:*%fV(B7J7h)

o free energy, free energy density

Fu(B. 1) = 5108 2y (3. )i (8, 4,h) = 3 FulB. ). h)



Thermodynamic quantities

@ internal energy

8 log Zv (3, 4, h)

Uv(B,J,h):<H>:—7fzexp —FH({s3) = —55

{Sx

@ magnetic susceptibility

xm = 7 (M)y = B((M?)y — (M)T))

dh

@ specific heat



Correlation functions, correlation length
@ correlation function
G (x1, ..., Xn) = (SqSxs - - - Sx,)
@ two point correlation function
G0 —x0) = (5450) ~ exp(—|x1 — x| /€)

with correlation length £ ((M) = 0) determining long range
behavior

@ large distances: clustering

(Sx15%) ~ (Sx)(Sx)

@ Hence at (M) # 0:
6B —x2) = (5450) = (S4)(5e) ~ exp(—Dxa —xl/¢)



Ising model in one dimension
Ising chain, periodic boundary conditions, (K = 5J)

H({sx}) = —JZSX5X+1 — thX

ZV(ﬁ) _ Z eK5152+%ﬁh(51+52)eKSQS3+%ﬁh(SQ+S3) .

51,525--+3SN

Z T5152 T5253 e TSI\/Sl = tI‘TN

51,52;.+3SN

transfer matrix (s = {+1,—1}):

K+8h -K
e e
T= < oK oK—ph )



Solution of the Ising model in one dimension
Diagonalization of transfer matrix

T—RDRL R=( 7 =Sy ). p_(* 0
siny  cosvy 0 A

Ay = X <cosh Bh 4+ y\/sinh? Bh + e4K>

. e 2K sinh Bh
sin 2’)/ = : 0S 27 =
\V/sinh? Bh + e—4K V/sinh? Bh + e—4K
partition function
A
Zv(B) =tr TN = AV MV = AN+ pY), p="<1



Ising chain thermodynamics
Diagonalization of transfer matrix:

1 1 1
fy = ——=log Ay — — log(1 + p" o =—=log\
v=—glogly BNog( +p") =N 5 log A+
1—pN sinh Bh
(M) = ———— oS 27 = N_00
14 pN 7 \/sinh? Bh + e—4K

spontaneous magnetization only in the limit of T — 0
@ U lowered by alignment of spins
@ s, — —s, for part of the spins leads to AU = 4J at the
boundary
@ However: increase of entropy AS = kglog N, since N possible
positions of boundary
= no lower F = U — TS for aligned spins



Two dimensional Ising model

@ 1936 shortly after Wilhelm Lenz and Ernst Ising found no
phase transition in 1D: proof of T, > 0 in 2D

@ 1941 Kramers and Wannier T, from duality transformations
argument based on analysis of regions with aligned spins

@ 1944 Lars Onsager: exact solutions form transfer matrix
method



Phase diagram of the Ising model

external magnetic field:
@ alignment of spins along magnetic field, disturbed by thermal
fluctuations
h — 0:
@ low temperatures: ordered (aligned) spins, spontaneous
magnetization (M, ,_ for h — 0, ,_)
@ high temperatures: thermal fluctuations dominant, disordered
spins
There can be a phase transition between these two phases at a
finite temperature (T¢).



Critical behavior

@ relevant for critical behavior is the behavior of quantities in
thermodynamic limit f = limy _ fy
Phase transitions, order parameter ((M)) shows non-analytic
behavior
o first order: discontinuity of first derivative of partition function
(order parameter)
@ second order: second derivative of partition function shows
discontinuous behavior (susceptibility or specific heat)
critical exponents characterize critical behavior
T — T
M) ~ P = 7’ =
(M) -
xm~e !
Cy ~e “, E~ve?



Phase diagram Ising model

second order endpoint
=

first order




Two dimensional Ising model in numerical simulations

Ve
:

@ configurations at K = 0.4, K ~ K., K = 0.5 (700 x 700
Gitter)

@ simulations show transition from ordered to disordered state

o T = T, scale invariance, domains on every scale



Solution by Onsager

longer calculations, solution for free energy

2 jus
—Bf = log cosh(2K) — 2K + = /2 d9 log (1 + V1 — K2sin? 9)
™ Jo
_ 2tanh(2K)
~ cosh(2K)

u(T), Cy depend on elliptic integrals; singularities of Cy, indicate
phase transition at 2K, = log(1 + v/2)

Magnetization:
T>Ts (M)=0

T < Tet (M) = (1 —sinh4(2K))"/®



Approximation methods for the Ising model

Besides numerical simulations, a number of approximation
methods have been established for the Ising model

@ mean field approximation
@ high temperature expansion
@ low temperature expansion

General problem: Representation of non-analytic behavior at T, in
expansions



Low temperature expansion

Consider excitation of completely aligned state Eg = —dVJ — Vh
taking into account the number of such configurations. Spins in
region X flipped: number of spins determined by volume n = |X|,
boundary of volume (pairs of misaligned spins) p = |0X|

Zy = e Pbo Zz”quv(n, p), z= e 20h =728,
n,p

Gy number of configurations with n and p.
alternatively (h=0): H=Eo +2J3 _, (1 —d(sx,5y))

Zy = e*fBEo Z ef2ﬁJnf[{5x}]

Sx

ns number of bonds with different sign on both sides



Low temperature expansion

Zy = e PB(1 4+ Vazu* 4 2V22u0 + V(2* + 623 + (V — 5)2%/2)u® +...)

,,,,,,,,,,,,,,,,,,,,,,,,,,

Derivative of f is magnetization
(M) =1 —2zu* — 82%u° — (82* + 362° — 102%)u® + . ..

critical temperature can be determined from convergence radius of
expansion



Low temperature expansion

Convergence radius R = lim;_o =21 e , determined by fit of

a 1 1441

a1 u? uz |

To determine uc (T¢) and 3 (critical exponent).

Low temperature expansion:
@ Ansatz: expansion around configuration that minimizes H

@ Similar to semiclassical expansion or weak coupling expansion
in QFT



High temperature expansion

High temperatures, expansion for § < 1
naive expansion (h = 0):

Zv=S"T] &= =% J] (1+Kss, + (stsy)z

{Sx} <X7.y> {Sx} <X7}/>

Summation over all spin configurations: contributions with odd
number of spins at a lattice point vanish.

2V
Zy =2 (1+K27+ )



High temperature expansion

More efficient expansion (character expansion):
el = cosh(K)(1 + vsys,), v = tanh(K)

Zy = (cosh K)?" Z H (14 vsysy)

{sx} <x,y>

Zy = (cosh K)2V2Y (1+W* +2WP + ..

_________




High temperature expansion

Expansion of susceptibility can be derived from the expansion of
two point function ((M) = 0)

1

Graphs with insertions s, and s, .
x = 14 4v + 12v? 4 36v3 + 100v* + 276v° + 740v° + . ..

High temperature expansion comparable to expansion in lattice
QFT

@ ,strong coupling” expansion

@ hopping parameter expansion



Mean field approximation

Main idea of this approach:

@ interaction of neighboring spins replaced by interaction with
mean field

@ self consistency equation for mean field
@ factorization of Boltzmann measure
@ mean field approximation predicts phase transition

@ precision depends on coordination number: the larger the
number of interacting spins the better the precision

Tems = 2dJ



Summary

Ising model

@ playground for investigations of numerical methods and
approximations

o lattice QFT: closely related to physics of statistical models

@ 2D Ising model: Exact solutions allow benchmark of numerical
methods

@ 3D and higher: only numerical solutions and approximation
methods



