Exercises Monte-Carlo simulation I: Ising model

Georg Bergner

TPI FSU Jena
WWU Miinster



Aufgabenstellung.

Main tasks

@ implementation of Metropolis algorithm for the two
dimensional Ising model

@ determine the magnetization as a function of the temperature
© localization of the phase transition according to the
mag. susceptibility
Additional tasks:
@ determine further observables like U and Cy
@ determine correct error estimates using autocorrelation time
© compare to the analytic predictions

In the following: A short summary from topics in the lecture.



The Ising model

@ elementary magnets (spins s, € —1,1) on a crystal lattice,
first approximation: nearest neighbor interactions, cubic lattice

H({sx})=—J Z SxSy — thX
<X,y>

< x,y > all nearest neighbor pairs; h external magnetic field
@ ferromagnetic interaction: J > 0

@ magnetization in volume V:

1
= oY s



Thermal averages

e thermal partition function (5 =1/(kgT))

Z(B) =) _exp(~AH)
{s:}
@ P probability for state {sx} in thermal ensemble

P({sc}.5) = Z(lﬂ) exp(—BH({5:}))

o thermal average of M



Monte-Carlo sampling

@ importance sampling: good approximation from subset of
configurations
e generate N configurations ({sy};) distributed according to P

@ thermal average

N
Z ({sx}i)

@ use update process (Markov chain) to generate distribution
{Sx}i — {Sx}i+1

2 \



Update process

Main conditions for update algorithm
Q ergodicity
@ detailed balance: transition probability W of Monte-Carlo
process

P{s})W({sx}i, {sx}j) = PUsd)W({sij, {sx}i)

Detailed balance guarantees that the probability P is a fixed point
of the process

> PUsIIWEsdi{sd) = D PUs W (s {sch)
{sx}i {sx}i

= P({s}))



Metropolis update

@ propose new configuration {s,}; with trial probability
T({sx}is {sx}))

@ accept with acceptance probability

P{s3)) T({sx}), {sx}i) 1)
P{{sc ) T{se}in {sxc}i)

o if rejected next configuration same as {sy};

A({sx}is {sx};) = min (

Proof simple:

P({s<}1) T({sx}is {5 i) A({sx}is {sx})
= P({sx})) T({sx}js {5 i) Al{sx s {sx}i)



Single spin flip Metropolis update in Ising model

T({sx}i, {sx}i+1): single spin flip s, — —sy
microreversibility: T({sx}i, {sx}i+1) = T({sx}i+1,{sx}i)
acceptance probability

A({sx}is {sx}i+1) = min(exp(—BdH), 1)

(]

difference depends only on local part

O0H = H({Sx}i+1) - H({Sx}i) = Hx({sx}i+1) - HX({SX}I')

if rejected set {sy}i+1 to old configuration {sy};



Observables and physics of the Ising model

@ transition from high temperature disordered to low
temperature ordered phase at T..

o low temperature: spontaneous magnetization (M).
o magnetic susceptibility xpy = & ((M?) — (M)?) has a peak at
Te
Further interesting observables:
@ energy (H)

o specific heat: C, = & ((E2) — (E)) (or derivative dE/dT)

e Binder cumulant: U =1 — 32#22

@ correlation length



Error analysis

Naive error estimate:

SMwe = | g (M — (M 2o

Two caveats:
@ simulations need equilibration in the beginning: Compare runs
with complete up/down initial configuration.
@ consequent configurations not independent: Create averages

of subsets of the data (binning) to have independent samples.
Estimate the autocorrelation time 7



Autocorrelation

Autocorrelation function

7 SV MMy — (M)3,0)
(M2)pc — (M)yc

Integrated autocorrelation time

~ et/Texp

C(t) =

1 o0
Tine = 5 + ; C(t)

Ideally Texp & Tine, real data Tine < Texp

@ plot 7, as a function of summation length and check for
plateau / maximum

@ reasonable cut of sum: t with first negative value of C(t)



Hints for the implementation

@ periodic boundary conditions are assumed

@ one local update changes only spin at a single point; iteration
through all lattice points x required

@ one measurements after each iteration over complete lattice
— average results for thermal average

Efficiency:
@ local change of spin leads only to small change of H

SH = 0Hy = —J Js, > s,

y€up, down neighbors of x

@ 95y = (Sx)new — (Sx)old = —2(5x)old = 2(Sx )new Vvery simple for

Ising model



Hints for the implementation of accept step

Probablility

A({sx}is {sx}it1) = min (exp(—=50H), 1)

@ choose random number r in interval (0, 1]
e calculate h = exp(—3dH)

@ accept if r < h, reject otherwise



