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1 What is a fluid?

Organizational issues

• There is a webpage to accompany this lecture: http://www.thphys.uni-heidelberg.de/

~floerchinger/lectures/

• A list of books on fluid dynamics is provided on the webpage. The standard (and maybe most

important for this course) reference is Landau & Lifshitz. It has been translated to many

languages, including German.

• The first lecture will follow partly the book by Faber.

• Lecture notes will be provided eventually but it may take some time.

• On May 16th there is no lecture because of Pentecost (Pfingsten).
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Solid state versus fluid

• Apply a shear force to a solid body: It is not possible to deform it. For elastic bodies, there

is a restoring force that is proportional to the displacement. Depending on the material, the

body may break if the shear force becomes too strong.

• For fluids, even a small shear force leads to a deformation. There is no restoring force pro-

portional to the displacement. (But there might be resistance or friction which is usually

proportional to the velocity of the movement.)

• Microscopically, the constituents of a solid body have a strong binding force, whereas the

constituents of a fluid (typically atoms or molecules) can move with respect to each other

more or less freely.

• It can also depend on the strength and time-scale of the external shear whether a material acts

more like a fluid or a solid state. For example, materials like pitch (Pech) or asphalt are in

principle liquids but with such a high viscosity that they resemble also solids. See for example

the Pitch drop experiment http://smp.uq.edu.au/content/pitch-drop-experiment.

Liquid versus gas

• The distinction between liquids (such as water) and gases (such as air) is less rigid. In a

liquid, the constituents are closer together whereas in a gas there is a considerable mean free

path between scatterings. For air at normal pressure one has for example a mean free path

of about 7× 10−8 m. For water this is about 2× 10−10 m.

• Besides the density, also other properties such as viscosity and compressibility differ between

liquids and gases. We will come to this later.

• Nevertheless, for sufficiently large observational length scale, liquids like water and gases like

air can be described by similar equations as we will see. Both are fluids.

• Water and air may be the most important fluids for many applications of fluid dynamics in

everyday life. But there are many more substances that can be described as fluids in one

way or the other. For example blood, the outer earth’s core, liquid helium, the quark-gluon

plasma, interstellar dust, or the dark matter in the universe. More details in due course.

More on stress forces

• Consider a small cube of side length a (and volume V = a3) filled with a fluid. We assume

first that the fluid is not moving. The surface elements pointing to the outside can be written

as

d ~A = |dA|~n,

where ~n with ~n2 = 1 is a normal vector orthogonal to the surface element.

• The momentum of the fluid cell can we written as

Pj =

∫
dVPj ,

where j = 1, 2, 3 and Pj is a momentum density.

• Newton’s law for the fluid in the cube can be written as

∂

∂t
Pj = Fj ,

where Fj is the sum of forces transmitted to the fluid in the cube from outside via the surface.
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Figure 1. Some examples of fluid phenomena that can be described by the methods we will discuss in

these lectures.

• One can write the force on the surface element in the following form

−Fj =

∫
dAi Tij ,

where the integral goes over the surface of the cube and where Tij is the so-called stress tensor.

• The components of Tij can be illustrated as the components of the force acting on the different

surface elements from within the fluid. For example, for constant Tij and a surface element

where the normal vector ~n points in x1-direction, ~n = (1, 0, 0), the force is given by −Fj =

a2T1j and similar for the other surfaces of the cube.

• We now discuss the properties of Tij in a little more detail. We assume that the fluid density

ρ is smooth or for simplicity even constant within the fluid cube. If we make the cube smaller

and smaller, a → 0, the forces on the whole fluid must average to zero because otherwise a

finite, non-zero force would accelerate a very small mass of fluid inside the cube (the fluid

mass in the cube goes like a3 → 0). The acceleration would be very fast and lead to an

instantaneous motion. This implies that Tij must be a continuous function.

• Similarly, one must have T12 = T21 and so on. Otherwise, a non-zero torque (Drehmoment)

would result of order

(T12 − T21)a3,

which would rotationally accelerate the fluid cube with moment of inertia (Trägheitsmoment)

of order a5 very quickly.

• Finally, consider a fluid in mechanical equilibrium. In that case one must have

T11 = T22 = T33 = p, T12 = T23 = T31 = 0.
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This is known as Pascal’s law. In more general situation we will discuss the form of Tij in

more detail later on.

A first fluid dynamics problem: the syringe

• Before we dive deeper into the theory of fluids, let us look at a first problem. Consider a

syringe (Spritze) as it is used for medical injections filled with a liquid resembling water. It

has a barrel of cylindrical form with length significantly larger that its radius. At one end

there is a piston of area A and at the other a small hole leading into a needle with length l

and internal radius a .

• We assume that the surface of the barrel is smooth such that there is no resistance to of the

liquid when it flows along it. For the needle we do not assume this and rather assume so-called

no-slip boundary conditions.

• The question we will pose ourselves is: What is the discharge rate Q defined as volume per

unit time of liquid that flows out of the needle, for a given force F applied to the piston. We

are here interested in the steady state motion (not the initial acceleration phase).

• The force can be quantified in terms of the difference between the pressure directly in front

of the piston pP and atmospheric pressure pA outside the needle as

F = (pP − pA)A

and we may therefore also study the relation between Q and p∗ = (pP − pA), the so-called

excess pressure.

• It is useful to have a few numbers in mind. A typical syringe may have a capacity of 3 ml

and a needle with inner radius a = 0.2 mm and length L = 3 cm. A full load of water can

be discharged in about 10 seconds. That would give Q = 0.3 ml/s and a mean velocity along

the needle of

U =
Q

πa2
≈ 2.5 m/s.

What do we need to describe the fluid

• What are the parameters and fields that one may need to follow to describe a fluid? One,

for sure, is the fluid velocity field which will denote by ~v(t, ~x). Obviously, in SI units one has

[v] = m/s.

• Another relevant field is the density ρ(t, ~x) and it is convenient to work with mass density

instead of say particle number density. So one has [ρ] = kg/m3. Under typical laboratory

conditions, water has a density of about ρ = 103 kg/m3, air has ρ = 1.2 kg/m3.

• Of direct importance is also the pressure p in units [p] = Pa = N/m
2
. Standard conditions

correspond to p = 105 N/m2 but due to gravity, the pressure is obviously usually higher under

water.

• In principle, also the temperature T (t, ~x) can be a relevant field. Units are [T ] = K.

• One material property that might be relevant is the sound velocity cs (measured in [cs] = m/s)

which is related to the compressibility. (More details later.) For water at normal conditions

one has cs = 1500 m/s, for air cs = 340 m/s.
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• Another one is the heat capacity density cp that tells how much energy needs to be injected

(at constant pressure) to heat a certain volume of fluid by one degree in temperature. Units

are [cP ] = J/(m3 K). Water at normal conditions has about cP = 4.2× 106 J/(m3 K), air has

about cP = 103 J/(m3 K).

• Velocity of sound and heat capacity density are examples for thermodynamic properties.

• Another relevant fluid property is the shear viscosity η (with units [η] =kg/(m s)) as well as

the bulk viscosity ζ (equal units). Water at normal conditions has η = 10−3 kg/(m s) and

the ratio of bulk viscosity to shear viscosity is ζ/η ≈ 3. The shear viscosity of air at normal

conditions is about η = 1.8× 10−5 kg/(m s).

• Also heat conductivity κ (in units [κ] =J/(m s K)) could play a role. Water at normal

conditions has about κ = 0.6 J/(m s K), air has κ = 0.025 J/(m s K). Viscosities and

conductivities are transport properties.

• More general, also chemical properties such as concentrations, reaction rates etc. could play

a role or for charged fluids the charge density and electric conductivity.

Some estimates for the syringe problem

• The above quantities could in principle play a role for the dynamic properties of a fluid. But

what is really important in a concrete situation, say for the syringe problem?

• Can temperature change substantially? The total amount of work done per unit time is p∗Q.

Assume for example p∗ = 104 N/m2. If all the work would go into heat of the fluid, by how

much would the temperature change over the length of the needle? One has

p∗Q = cPQ∆T

Using the heat capacity density of water leads to a temperature change ∆T of a view mK.

This is clearly very small compared to the temperature of water at normal conditions and can

therefore be neglected. So we can safely assume T =const.

• The importance of compressibility can be quantified by the Mach number, which is the ratio

of a typical fluid velocity to the velocity of sound,

Ma =
characteristic flow velocity

sound velocity
.

Here one would take

Ma = U/cs.

If the Mach number is small, changes in density are usually of minor importance for the flow

problem at hand. In other words, density inhomogeneities are very quickly leveled out so that

they do not affect the flow pattern itself. For the syringe problem one has Ma = 2.5/1500

which is clearly quite small. To good approximation one can therefore assume ρ = const. A

flow with small Mach number is called subsonic, one with large Ma is called supersonic.

• The importance of viscosity can be quantified in terms of the Reynolds number,

Re =
2aρU

η
=

2aU

ν
.
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In the second equation we have introduced the so-called kinematic viscosity ν = η/ρ. Quite

generally, one defines the Reynolds number for a given flow problem as

Re =
characteristic size · characteristic flow velocity

kinematic viscosity
.

The factor of 2 in the above expression is purely conventional and due to the fact that for

pipe-like problems, the Reynolds number is usually defined by the diameter instead of the

radius.

A large Reynolds number implies a large separation between the scale of the fluid motion (a

in our case) and the scale of viscosity. Typically, if Re is small, flow patterns are laminar,

while they become turbulent for very large Re. What small and large means depends on the

situation, however.

A typical value for the kinematic viscosity of water is ν = 10−6m2/s (air would have ν =

1.5× 10−5 m2/s). Together with a = 2× 10−4 m and U = 2.5 m/s this leads to Re = 1000.

• Another interesting characteristic is the Knudsen number which is defined by

Kn =
mean free path

characteristic size
.

The Knudsen number has to be small in order to use a fluid approximation (instead of kinetic

theory which follows particle positions and momenta in a more explicit way). For water, the

mean free path is about 2 × 10−10 m and taking a = 2 × 10−4 m as characteristic size gives

Kn = 10−6, which is quite small, indeed.

Dimensional anaysis

• Every physics student knows that it is useful to check the dimensions of the variables in order

to make a first guess for the answer to a specific problem. As an exercise, we will now do this

for the syringe problem.

• First, a general remark on units is in order. In non-relativistic fluid dynamics, one is free to

choose units for length, time, mass and temperature freely. All other quantities (e.g. energy)

can be expressed in derived units (e. g. 1J = 1kg m2/s2).

• Physical relations have to hold in every possible system of units, or units on both sides of an

equation have to match.

• We want to know the discharge rate Q (with dimension [Length]3[Time]−1 or m3s−1 in SI

units) as a function of the excess pressure p∗ (with dimension kg m−1s−2) as well as on the

length l and radius a of the needle.

• The answer could also depend on density ρ (with dimensions kg m−3) as well as viscosity η

and sound velocity cs. The effects of changes in temperature are small so that nothing else is

expected to enter.

• We can now build dimensionless combinations. One is obviously a/l, another one is

p∗a4

ρQ2
.

Viscosity η and sound velocity cs could enter in terms of Re and Ma.
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• There are actually no more independent, dimensionless combinations. It must therefore be

possible to write a relation between Q and p∗ in the form

p∗a4

ρQ2
= f

(a
l
,Re,Ma

)
.

• Because Ma= 2.5/1500 � 1 it should be a good approximation to set Ma= 0. The viscosity

can not be neglected here because it due to friction that Q has actually a limiting value for

constant force or pressure p∗. It remains to determine

f̃
(a
l
,Re

)
= f

(a
l
,Re, 0

)
.

To do this we actually need to develop the theory of fluids as we shall do next.
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2 Symmetries and conservation laws

We now develop the theory of fluid dynamics in a systematic way. The starting point are quite

general conservation laws that follow ultimately from basic principles of quantum field theory and

general relativity.

Origin of conservation laws

• Because of Noether’s theorem, continuous symmetries of the microscopic laws imply conser-

vation laws.

• For example the symmetry with respect to U(1) transformations of the Schrödinger wave

function for an electron

ψ(t, ~x)→ ψ′(t, ~x) = eiαψ(t, ~x)

is related to the conservation of charge. Similar symmetries imply for example the conservation

of baryons in the Standard model.

• Conservation of momentum is a consequence of a symmetry with respect to spatial translations

~x→ ~x+ ∆~x.

• Conservation of energy is a consequence of symmetry under translations in time t→ t+ ∆t.

• Conservation of angular momentum is a consequence of symmetry with respect to rotations

xi → Rijxj ,

where Rij is an orthogonal matrix, RRT = 1.

• In general relativity, space and time are curved and translation symmetry with respect to

temporal and spatial translations is in general not given any more. However, a covariant form

of energy- and momentum conservation still holds. It is due to general covariance which might

be seen as the freedom to use arbitrary coordinate systems.

Particle number and mass conservation laws in local form

• Consider some volume V with boundary A = ∂V . The total number of particles in the volume

is

N(t) =

∫
V

d3xn(t, ~x),

where n(t, ~x) is the particle number density.

• For fluid dynamics one assumes that N � 1 such that the discreteness of particle number is

not important.

• The conservation of particle number implies that N can only change if there is a a net influx

or out-flux of particles. We describe this by Rout which might be positive or negative. It can

be written as

Rout(t) =

∫
A=∂V

dAjnj(t, ~x) =

∫
V

d3x ∂jnj(t, ~x),

where nj(t, ~x) with j = 1, 2, 3 are the components of the particle number current density. For

the second equation we have used Gauss’s theorem. We also use here and below the Einstein

summation convention implying that indices that appear twice have to be summed over.

Moreover, we use the abbreviation ∂j = ∂
∂xj

for the partial spatial derivative and sometime

∂t = ∂
∂t for the partial derivative with respect to time.
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• The conservation of particle number is

∂

∂t
N(t) +Rout(t) =

∫
V

d3x

{
∂

∂t
n(t, ~x) + ∂jnj(t, ~x)

}
= 0.

Because this holds for any volume V one must have

∂

∂t
n(t, ~x) + ∂jnj(t, ~x) = 0.

This is the particle number conservation law in local form.

• In non-relativistic physics particle numbers may change by chemical reactions, but no mass can

be created or destroyed. The mass density is denoted by ρ(t, ~x). We will often assume a simple

material where only one particle species with mass m is present and one has ρ(t, ~x) = mn(t, ~x).

The mass density current will be denoted by ρj(t, ~x) = mnj(t, ~x) and the conservation law

for mass becomes

∂tρ+ ∂jρj = 0.

Energy and momentum conservation

• Energy conservation works very similar to mass conservation,

∂tE + ∂jEj = 0

except that we still need to specify the energy density E (t, ~x) and the corresponding current

or energy flux density Ej(t, ~x).

• Momentum conservation can be written in terms of the momentum density Pk and the

momentum flux density Pjk

∂

∂t

∫
V

d3xPk +

∫
∂V

dAjPjk =

∫
V

d3x {∂tPk + ∂jPjk} = 0.

Because this holds for any volume, one has the local momentum conservation law

∂tPk + ∂jPjk = 0.

In the absence of centrifugal forces, the momentum flux density must be symmetric, Pjk =

Pkj because otherwise strong rotational forces would act on a small fluid cell. We will

concentrate on this situation below.

Symmetry transformations

• The conservation laws are consequences of invariances with respect to certain symmetry trans-

formations on the microscopic level. They will be the basis for developing the theory of fluid

dynamics. For that purpose it is useful to study how the fields

ρ, ρj , E ,Ej , Pk,Pjk

transform with resect to certain symmetry transformation.

• We start with translations in space which we formulate as transformations for the fields ρ(t, ~x)

etc. If ρ(t, ~x) has a maximum at some position ~x0, we want the transformed field to have a

maximum at ~x0 + ∆~x. The field transforms as

ρ(t, ~x)→ ρ′(t, ~x) = ρ(t, ~x−∆~x).

– 9 –



• Translations in time work similar,

ρ(t, ~x)→ ρ′(t, ~x) = ρ(t−∆t, ~x).

• For the current densities the transformation law is analogous. Doing the translations in space

and time together means

ρ(t, ~x)→ρ′(t, ~x) = ρ(t−∆t, ~x−∆~x),

ρj(t, ~x)→ρ′j(t, ~x) = ρj(t−∆t, ~x−∆~x),

• The conservation law is invariant under translations in the sense that if (ρ, ρj) is a conserved

field configuration, this is also the case for (ρ′, ρ′j),

∂tρ
′(t, ~x) + ∂jρ

′
j(t, ~x) = ∂tρ(t−∆t, ~x−∆~x) + ∂jρj(t−∆t, ~x−∆~x) = 0.

This works completely analogous for (E , Ej) and (Pk, Pjk).

• Consider now rotations. We transform the fields such that a configuration with maximum at

~x0 is mapped to one with maximum at R~x where R with RRT = 1 is the rotation matrix.

The transformation for the mass density is

ρ(t, ~x)→ ρ′(t, ~x) = ρ(t, R−1~x). (2.1)

• The current density ρj has also a direction which needs to be rotated, as well. The transfor-

mation law is

ρj(t, ~x)→ ρ′j(t, ~x) = Rjkρk(t, R−1~x).

• We also need to know how derivatives of fields transform. Consider for example

∂jρ(t, ~x)→ ∂jρ
′(t, ~x) = ∂jρ(t, R−1~x) = (R−1)kj(∂kρ)(t, R−1~x).

• The combination ∂jρj transforms therefore like

∂jρj(t, ~x)→ (R−1)kjRjm(∂kρm)(t, R−1~x) = δkm(∂kρm)(t, R−1~x) = (∂kρk)(t, R−1~x).

This implies, that the conservation law ∂tρ+∂jρj is also invariant under rotations. For energy

density and energy current density (E ,Ej), the argument is completely analogous.

• The momentum density Pk is itself a vector field. It transforms under rotations like

Pk(t, ~x)→P ′
k(t, ~x) = RkmPm(t, R−1~x).

The momentum flux density is a tensor with respect to rotations. It transforms like

Pjk(t, ~x)→P ′
jk(t, ~x) = RjmRknPmn(t, R−1~x).

Exercise: Show that the momentum conservation law is invariant under rotations.
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Galilei boosts

• The non-relativistic laws of physics are also invariant under Galilei boost transformations,

(t, ~x)→ (t, ~x+ ∆~v t),

where ∆~v is the velocity of the boost. The equations of motion for a non-relativistic fluid are

supposed to invariant under these transformations, as well. The transformation behavior of

the fields

ρ, ρj , E ,Ej , Pk,Pjk

with respect to Galilei boosts is a little more involved than for translations and rotations.

• We start with mass density and mass density current. The density transforms like

ρ(t, ~x)→ ρ′(t, ~x) = ρ(t, ~x−∆~v t).

Accordingly,

∂tρ(t, ~x)→ ∂tρ
′(t, ~x) = (∂tρ)(t, ~x−∆~v t)−∆vj∂jρ(t, ~x−∆~vt).

In order for the mass conservation law to be invariant, one must have the following transfor-

mation behavior of the mass current

ρj(t, ~x)→ ρ′j(t, ~x) = ρj(t, ~x−∆~vt) + ∆vjρ(t, ~x−∆~v t).

This leads indeed to

∂jρj(t, ~x)→ ∂jρ
′
j(t, ~x) = ∂jρj(t, ~x−∆~vt) + ∆vj∂jρ(t, ~x−∆~v t).

• Consider now the momentum density. The boost changes the momentum by the additional

center of mass motion

Pk(t, ~x)→P ′
k(t, ~x) = Pk(t, ~x−∆~v t) + ∆vk ρ(t, ~x−∆~v t)

Accordingly, one has

∂tPk(t, ~x)→ ∂tP
′
k(t, ~x) =(∂tPk)(t, ~x−∆~v t)−∆vj∂jPk(t, ~x−∆~v t)

+ ∆vk (∂tρ)(t, ~x−∆~v t)−∆vk∆vj ∂jρ(t, ~x−∆~v t)

=(∂tPk)(t, ~x−∆~v t)−∆vj∂jPk(t, ~x−∆~v t)

−∆vk ∂jρj(t, ~x−∆~v t)−∆vk∆vj ∂jρ(t, ~x−∆~v t)

In the last equation, we have used the conservation law for mass in the form ∂tρ = −∂jρj .

• In order for the conservation law for momentum to be invariant under Galilei transformations

one needs the following transformation law of the momentum flux density

Pjk(t, ~x)→P ′
jk(t, ~x) =Pjk(t, ~x−∆~v t) + ∆vjPk(t, ~x−∆~v t)

+ ∆vk ρj(t, ~x−∆~v t) + ∆vk∆vj ρ(t, ~x−∆~v t).
(2.2)

It is, however, required that the momentum flux density is symmetric Pjk = Pkj . One can

therefore conclude that mass current density and momentum density are actually equal,

ρj(t, ~x) = Pj(t, ~x).
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• One can actually define the fluid velocity field vj(t, ~x) such that

ρj(t, ~x) = Pj(t, ~x) = ρ(t, ~x)vj(t, ~x).

This has the correct transformation behavior with respect to Galilei boost if the fluid velocity

field transforms like

vj(t, ~x)→ vj(t, ~x−∆~v t) + ∆vj .

• For the momentum flux density it is actually useful to write

Pjk = ρ vivj + Tij

The transformation with respect to Galilei transformations comes out correctly if the stress

tensor transforms simply like

Tij(t, ~x)→ T ′ij(t, ~x) = Tij(t, ~x−∆~v t). (2.3)

• It remains to discuss the energy density and energy flux density. The energy density has one

part from the macroscopic kinetic motion of the fluid and one part from the fluids internal

energy

E =
1

2
ρ~v2 + ε.

The transformation behavior follows from the one of the fields ρ, ~v and

ε(t, ~x)→ ε′(t, ~x) = ε(t, ~x−∆~v t).

The energy flux density can be written as

Ej =

(
1

2
ρ~v2 + ε

)
vj + viTij + qj .

The first term is simply the transportation of kinetic and internal energy with the fluid motion.

The second is an energy transport connected to momentum transport described by the stress

tensor Tij . The last term is also called the heat flow vector. Without proof, we state that the

energy conservation law ∂tE + ∂jEj = 0 is invariant with respect to Galilei boosts if the heat

flow vector field has the simple transformation behavior

qj(t, ~x)→ q′j(t, ~x) = qj(t, ~x−∆~v t). (2.4)

Exercise: Check this.

The symmetry group of non-relativistic fluids

• Exercise: Show that the symmetry transformations of non-relativistic mechanics which consist

of translations in space and time, spatial rotations and Galilei boosts constitute a group in

the mathematical sense of the word.
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3 Thermodynamics

Foundations of Thermodynamics

• We recall that thermodynamics gives an effective, statistical description of a system with

many degrees of freedom.

• It is based on a maximization of entropy (ρ̂ is the quantum mechanical density operator, Ω is

the available phase-space volume)

S = −kB〈ln ρ̂〉 = kB ln Ω

for given conserved quantities such as energy E, particle number N and for fixed volume V .

• A system in thermodynamic equilibrium is actually completely described by the conserved

variables E, N and the volume and all other thermodynamic quantities can be expressed

in terms of these, for example in the micro-canonical ensemble staring from the entropy

S(E,N, V ) with the differential

dS =
1

T
dE − µ

T
dN +

p

T
dV, (3.1)

where T is the temperature, µ is the chemical potential and p is the pressure.

• The relations(
∂S

∂E

)
N,V

=
1

T
,

(
∂S

∂N

)
E,V

= −µ
T
,

(
∂S

∂V

)
E,N

=
p

T

can actually be seen as the definitions of the temperature, chemical potential and pressure.

• For a homogeneous fluid at rest it is useful to work with the internal energy density ε = E/V ,

particle number density n = N/V and entropy density s = S/V . One finds from (3.1)

dS = V ds+ sdV =
V

T
dε+

ε

T
dV − µV

T
dn− µn

T
dV +

p

T
dV.

For a homogeneous fluid, the change of V does not modify the densities s, ε and n. One

obtains therefore two separate equations, the Gibbs-Duhem relation

ε+ p = Ts+ µn, (3.2)

and for the entropy density s(ε, n) the differential

ds =
1

T
dε− µ

T
dn. (3.3)

Thermodynamic potentials and Legendre transforms

• The function s(ε, n) can be inverted to give ε(s, n) and the differential relation (3.3) implies

dε = Tds+ µdn.

• Other thermodynamic potentials can be obtained from the above relations by Legendre trans-

forms. For example, the free energy density f = ε− Ts has the differential

df = dε− Tds− sdT = −sdT + µdn.

It is a function of the variables T and n.
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• Particularly important is the pressure because it corresponds to the thermodynamic potential

density of the grand canonical ensemble. From (3.2) one obtains

dp = −dε+ Tds+ sdT + µdn+ ndµ = sdT + ndµ. (3.4)

The last relation is known as the differential Gibbs-Duhem relation. It states that for a

homogeneous fluid in equilibrium, pressure cannot be varied independent of T and µ.

Equation of state

• Because for a macroscopic system in equilibrium, all thermodynamic ensembles are equivalent,

one can actually construct all thermodynamic observables from the function p(T, µ) alone.

This is useful because p(T, µ) is what one can best determine from microscopic calculations,

for example in terms of quantum field theory.

• Because of this property, the function p(T, µ) or an equivalent relation are sometimes called

equation of state.

• Entropy density and particle number density are directly obtained from p(T, µ) by

s =

(
∂p

∂T

)
µ

, n =

(
∂p

∂µ

)
T

.

• Once a thermodynamic quantity has been expressed in terms of p(T, µ) it is a function of T

and µ only.

• It is possible to change the variables T and µ for two other independent variables, for example

ε and n.

• If more then one particle number is conserved, there are several chemical potentials and

accordingly more thermodynamic variables are needed.

Changes in thermodynamic variables and Jacobi determinant

• For manipulating expressions in thermodynamics, it is useful to work with the Jacobi deter-

minant for a change of variables

∂(x, y)

∂(a, b)
=

∣∣∣∣(∂x∂a )b (∂x∂b )a
(∂y∂a )b (∂y∂b )a

∣∣∣∣ =

(
∂x

∂a

)
b

(
∂y

∂b

)
a

−
(
∂x

∂b

)
a

(
∂y

∂a

)
b

.

• Note the symmetry properties

∂(x, y)

∂(a, b)
= −∂(x, y)

∂(b, a)
= −∂(y, x)

∂(a, b)
=
∂(y, x)

∂(b, a)
.

• As a special case, one has
∂(x, y)

∂(a, y)
=

(
∂x

∂a

)
y

• Two subsequent changes of variables imply

∂(x, y)

∂(a, b)

∂(a, b)

∂(m,n)
=

∂(x, y)

∂(m,n)

• Because of
∂(x, y)

∂(x, y)
= 1

the Jacobi determinant has in particular the property

∂(x, y)

∂(a, b)
=

(
∂(a, b)

∂(x, y)

)−1

.

– 14 –



Heat capacity densities

• The heat capacity densities cV and cP describe the amount of heat dQ = TdS associated with

a change in temperature at fixed volume and pressure, respectively.

• As an exercise, we derive the following relation relating cV to p(T, µ),

cV =
T

V

(
∂S

∂T

)
V,N

= T

(
∂s

∂T

)
n

= T
∂(s, n)

∂(T, n)
= T

∂(s, n)

∂(T, µ)

∂(T, µ)

∂(T, n)

= T

∂(s,n)
∂(T,µ)

∂(T,n)
∂(T,µ)

=
T
(
∂2p
∂T 2

∂2p
∂µ2 − ∂2p

∂T∂µ
∂2p
∂T∂µ

)
∂2p
∂µ2

.

(3.5)

• Similarly, one obtains (exercise)

cP =
T

V

(
∂S

∂T

)
P,N

=
T

1/n

(
∂(s/n)

∂T

)
P

=
T

n2

(
n2 ∂

2p

∂T 2
− 2sn

∂2p

∂T∂µ
+ s2 ∂

2p

∂µ2

)
. (3.6)

Compressibility

• The isothermal and adiabatic compressibilities describe changes in the volume or density

associated with a change in pressure at fixed temperature or entropy per particle.

• As an exercise, derive the following relations

κT =− 1

V

(
∂V

∂p

)
T,N

=
1

n

(
∂n

∂p

)
T

=
1

n2

∂2p

∂µ2
,

κS =− 1

V

(
∂V

∂p

)
S,N

=
1

n

(
∂n

∂p

)
s/n

=

∂2p
∂T 2

∂2p
∂µ2 − ∂2p

∂T∂µ
∂2p
∂T∂µ

n2 ∂
2p

∂T 2 − 2sn ∂2p
∂T∂µ + s2 ∂

2p
∂µ2

.

(3.7)

• Similarly, one can obtain for the thermal expansion coefficient

α =
1

V

(
∂V

∂T

)
P,N

= − 1

n

(
∂n

∂T

)
P

=
1

n2

(
s
∂2p

∂µ2
− n ∂2p

∂T∂µ

)
. (3.8)

Sound velocity

• We will see later that the square of the sound velocity cs is related to ∂p/∂ρ at fixed entropy

per particle s/n.

• One can obtain the following expression in terms of p(T, µ) (exercise)

c2s =

(
∂p

∂ρ

)
s/n

=
n2 ∂

2p
∂T 2 − 2sn ∂2p

∂T∂µ + s2 ∂
2p
∂µ2

ρ
(
∂2p
∂T 2

∂2p
∂µ2 − ∂2p

∂T∂µ
∂2p
∂T∂µ

) . (3.9)

Fluid in global thermal equilibrium at rest

• A fluid at rest (i. e. with vanishing velocity ~v = 0) and in global thermal equilibrium is char-

acterized by translational symmetries in time and space as well as spatial rotation symmetry.

Due to rotation symmetry, the mass current ρj and momentum density Pj as well as energy

flux density Ej vanish in equilibrium. The momentum flux density Pjk can only have a term

∼ δjk. The conserved currents are

ρ = mn, ρj = 0, E = ε, Ej = 0, Pk = 0, Pjk = δjkp.
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• Only two thermodynamic variables are independent, however. One might take them to be T

and µ and the other quantities p(T, µ), n(T, µ) = ∂
∂µp(T, µ) and

ε(T, µ) = −p(T, µ) + T
∂p

∂T
+ µ

∂p

∂µ

are dependent. They are related to T and µ by the equation of state.

• Alternatively, one could take ρ and ε as independent variables and use the equation of state

to relate p to them.

Exercise: Derive an equation for p(ε, ρ) by starting from the entropy density in the micro-

canonic ensemble s(ε, n).

Fluid in global thermal equilibrium in motion

• Let us now consider a fluid that is moving with a constant fluid velocity ~v. It is assumed

to be still in equilibrium in the sense that no entropy is being produced. We will obtain the

description by making a Galilei transformation from the fluid rest frame.

• The transformation laws that have been discussed give for a boost with ∆~v = ~v the trans-

formed fields

ρ = mn, ρj = ρvj , E =
1

2
ρ~v2 + ε, Ej =

(
1

2
ρ~v2 + ε+ p

)
vj ,

Pk = ρvj , Pjk = ρvivj + δjkp.

• Because all fields are constant in time and space, the conservation laws are obviously fulfilled.
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4 Fluid dynamic equations of motion

Implications of the conservation laws

• We now consider a fluid in motion in the more realistic situation where the conserved fields

ρ, ρj , E ,Ej , Pk,Pjk

are not homogeneous (i. e. constant) in space.

• We will derive equations of motion based on the conservation laws

∂tρ+ ∂jρj = 0, ∂tE + ∂jEj = 0, ∂tPk + ∂jPjk = 0.

These are 1+1+3=5 independent differential equations.

• From Galilei invariance we saw that it is possible and useful to write the conserved fields as

ρ, ρj = ρ vj ,

Pk = ρ vj , Pjk = ρ vjvk + Tjk,

E =
1

2
ρ~v2 + ε, Ej =

(
1

2
ρ~v2 + ε

)
vj + viTij + qj .

(4.1)

The fields ρ, vj , Tjk, ε and qj have 1 + 3 + 6 + 1 + 3 = 14 components or field degrees of

freedom. (Note that naively, the conserved fields have 4 + 4 + 9 = 17 degrees of freedom.

Three of them have already been fixed by the implications of Galilei invariance in the form

ρj = Pj .)

• We now study the implications of the conservation laws. The first is for conservation of mass,

∂tρ+ vj∂jρ+ ρ ∂jvj = 0. (4.2)

This equation is sometimes also called the continuity equation. It describes how the mass

density evolves in time for given fluid velocity field vj .

• It is interesting to observe that the time derivative enters in terms of the combination

Dt = ∂t + vj∂j .

This is actually an example for a covariant derivative. Under Galilei transformations one has

∂tρ(t, ~x)→ ∂tρ
′(t, ~x) = (∂tρ)(t, ~x−∆~vt)−∆vj∂jρ(t, ~x−∆~vt)

and

vj(t, ~x)→ v′j(t, ~x) = v(t, ~x) + ∆vj

such that Dtρ has the simple transformation law

Dtρ(t, ~x)→ Dtρ
′(t, ~x) = (Dtρ)(t, ~x−∆~vt).

The covariant derivative describes a change along the flow lines of the fluid. Locally, i. e. for

a given coordinate point (t, ~x), one can boost to the fluid rest frame where vj(t, ~x) = 0 and

therefore Dt = ∂t.
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• Let us now consider the momentum conservation law. It becomes

∂tPk + ∂jPjk = ∂t(ρ vk) + ∂j(ρ vjvk + Tjk) = 0,

or

ρ (∂t + vj∂j) vk + ∂jTjk = 0. (4.3)

We have used in the last equation the mass conservation law (4.2). Observe that again a

Galilei covariant derivative appears. It is instructive to check that (4.3) is invariant under

Galilei transformations.

• The momentum conservation law in (4.3) describes the time evolution of the fluid velocity vj
for given mass density ρ and stress tensor Tjk.

• Finally, the energy conservation law can be brought to the following form with the help of

the conservation laws for mass and momentum,

(∂t + vj∂j) ε+ ε ∂jvj + (∂jvk)Tjk + ∂jqj = 0. (4.4)

This equation describes the time evolution of the energy density ε for given fluid velocity vj ,

stress tensor Tij and heat flux qj .

Fluid dynamic derivative expansion

• Together, the conservation laws (4.2), (4.3) and (4.4) constitute 5 differential equations the

describe how ρ, ε and vj evolve in time. To solve them (for given initial conditions) we need

9 additional equations for the 6 components of the stress tensor Tjk and the 3 components of

the heat flux qj .

• For a homogeneous situation we know already that

Tjk = δjk p, qj = 0, (4.5)

where p is related to ε and ρ by the thermodynamic equilibrium relation, the equation of

state p = p(ε, ρ). Deviations from these relations must therefore involve derivatives of the

fluid fields.

• Fluid dynamics as a physical theory is organized as an expansion in derivatives. It describes

situations with a homogeneous thermal equilibrium as well as small deviations around that

in the sense that the fluid fields must be varying slowly enough in time and space to make

the derivative expansion justified.

• The lowest order of the derivative expansion consists in neglecting all terms with derivatives

in the constitutive relations and in using the relations (4.5) also for a fluid which is not

homogeneous. That leads to the equations of ideal fluid dynamics, which we discuss now first.

Ideal fluid equations of motion

• We now discuss the implications of the conservation laws for an ideal fluid, which is specified

by the constitutive relations (4.5).

• The continuity equation is independent of any ideal fluid approximation. It remains of the

form (4.2).
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• Consider now the conservation of momentum (4.3). It becomes with (4.5)

ρ ∂tvk + ρ vj∂jvk + ∂kp = 0. (4.6)

This is known as the Euler equation (after Leonard Euler (1707-1783)).

• We have assumed here that no external force is acting on the fluid. If this is the case, the

momentum conservation equation and accordingly Euler’s equation are modified,

ρ ∂tvk + ρ vj∂jvk + ∂kp = Fk,

where Fk is a force density. For example, for a fluid in a gravitational field one has Fk = ρ gk
where gk is the acceleration due to gravity.

• The energy conservation law (4.4) reads for an ideal fluid using (4.5) to

∂tε+ vj∂jε+ (ε+ p)∂jvj = 0. (4.7)

• There is an alternative way of stating the energy conservation law. For that, one use the

differential of entropy density

ds =
1

T
dε− µ

T
dn =

1

T
dε− µ

mT
dρ,

to write

∂ts =
1

T
∂tε−

µ

mT
∂tρ (4.8)

and similar for the spatial derivative. One can then combine (4.7) and the continuity equation

(4.2) to

∂ts+ vj∂js+

(
ε+ p

T
− µρ

mT

)
∂jvj = 0.

The expression in the bracket can be written as

ε+ p

T
− µρ

mT
=
ε+ p− µn

T
= s

where we have used the Gibbs-Duhem relation (3.2). In summary, one obtains

∂ts+ ∂j(svj) = 0. (4.9)

The last equation has an interesting physical interpretation: For an ideal fluid, the entropy

is conserved, in addition to mass, energy and momentum. One says: Ideal fluid dynamics is

non-dissipative.

• Beyond the ideal fluid approximation, one does not have any reason to expect such a con-

servation law. In contrast, the second law of thermodynamics states that entropy can never

decrease. In the presence of dissipation, the entropy will actually increase.

Dissipative fluid equations of motion

• We now consider corrections to the constitutive relations at first order in gradients. The stress

tensor Tjk must transform as a tensor under rotations and according to (2.3) under Galilei

transformations. Also, we are looking for a correction to the ideal fluid constitutive relation

(4.5) that is of first order in derivatives.
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• With respect to rotations, one can decompose a general symmetric tensor like Tjk into a trace-

less part Tjk − 1
3δjkTii and the trace Tii which transforms like a scalar. The only traceless

and symmetric tensor of first order in derivatives of the fluid fields ρ, ε and vj is proportional

to

σjk =
1

2
∂jvk +

1

2
∂kvj −

1

3
δjk∂ivi.

For the trace, the following terms could in principle appear

∂ivi, (∂t + vj∂j)ε, (∂t + vj∂j)ρ.

However, the conservation laws (4.2) and (4.4) imply

(∂t + vj∂j)ρ = −ρ∂jvj ,
(∂t + vj∂j)ε = −ε∂jvj − (∂jvk)Tjk − ∂jqj .

• To lowest order in derivatives, one can therefore write

Tjk = δjkp(ε, ρ)− 2 η(ε, ρ)σjk − δjk ζ(ε, ρ)∂ivi.

The coefficient η is the shear viscosity and ζ is the bulk viscosity. They are both functions of

two independent thermodynamic variables, e. g. ε and ρ or T and µ.

• The momentum conservation law becomes now (in the absence of external forces)

ρ (∂t + vj∂j) vk + ∂kp− ∂j
[
η

(
∂jvk + ∂kvj −

2

3
δjk∂ivi

)]
− ∂k [ζ∂ivi] = 0. (4.10)

This is the Navier-Stokes equation (named after Claude Louis Marie Henri Navier (1785 -

1836) and Georg Gabriel Stokes (1819 - 1903)). One can often assume that η and ζ are

constant in space. In that case, the Navier-Stokes equation becomes

ρ ∂tvk + ρ vj∂jvk + ∂kp− η∂j∂jvk −
(
ζ + 1

3η
)
∂k∂jvj = 0. (4.11)

• The heat flux qj must be a vector under rotations and transform with respect to Galilei

transformations according to (2.4). To first order in derivatives of the fluid fields ρ, ε and vj ,

two terms could appear

∂jε and ∂jρ.

To see which combination of them is physically relevant, we have to consider the generalization

of (4.9). For small deviations from an equilibrium situation we can still use the differential

(4.8) and obtain

∂ts+ ∂j(svj) +
1

T
(∂jvk)(Tjk − δjkp(ε, ρ)) +

1

T
∂jqj = 0.

The entropy current should actually have a part proportional to the heat flux (cf. dQ = TdS)

sj = svj +
qj
T

and with ∂j
qj
T = 1

T ∂jqj − qj
∂jT
T 2 one obtains

∂ts+ ∂jsj = − 1

T
(∂jvk)(Tjk − δjkp(ε, ρ))− 1

T 2
qj∂jT.
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• Entropy production is positive, ∂ts+ ∂jsj ≥ 0, for

Tjk − δjkp(ε, ρ) = −2ησjk − δjkζ∂ivi

with η ≥ 0 and ζ ≥ 0 and

qj = −κ(ε, ρ)∂jT

where κ(ε, q) ≥ 0 is the heat conductivity or thermal conductivity. Indeed, that results in

∂ts+ ∂jsj =
1

T

[
2ησjkσjk + ζ(∂jvj)

2
]

+
κ

T 2
[∂jT ]

2 ≥ 0.

• Note that the heat flux can be written as a linear combination of ∂jε and ∂jρ, indeed.

Exercise: show this explicitly.

• The energy conservation law becomes for the first order theory

(∂t + vj∂j) ε+ (ε+ p) ∂jvj − 2η σjkσjk − ζ(∂jvj)
2 − ∂j(κ ∂jT ) = 0. (4.12)

The continuity equation (4.2), the Navier-Stokes equation (4.10) and the energy conservation

equation in the form (4.12) provide a closed set of differential equations that can be used

to propagate the fields ρ, vj and ε in time. To solve them one also needs the thermody-

namic equation of state p(ε, ρ) and the transport coefficients η, ζ and κ as a function of the

thermodynamic variables ε and ρ.

• For some purposes it is useful to have also an equation for the entropy per unit mass s/ρ.

One finds by combining previous equations

∂t(s/ρ) + vj∂j(s/ρ) =
1

ρT

[
2ησjkσjk + ζ(∂jvj)

2
]

+
1

ρT
∂j [κ∂jT ] .
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5 Ideal fluid flows

We discuss now solutions to the ideal fluid equations of motion. Of course, these solutions depend

also on boundary conditions for different situations. The ideal fluid equations of motion describe

situations where dissipative properties do not play any role, i. e. shear and bulk viscosity as well as

heat conductivity can be neglected.

Isentropic flows

• The continuity equation (4.2) and the entropy conservation law (4.9) (valid for ideal fluids)

imply also

∂t

(
s

ρ

)
+ vj∂j

(
s

ρ

)
= 0.

A particular simple solution to this equation is

s

ρ
= const.

In particular, if s/ρ is spatially constant, it will also not change in time.

• Flows where this is a good approximation are called isentropic.

• To describe isentropic flows, the following thermodynamic identities are useful

d

(
ε+ p

ρ

)
=

1

m
d

(
sT + µn

n

)
=

1

m

[
Td
( s
n

)
+
s

n
dT + dµ

]
= Td

(
s

ρ

)
+

1

ρ
dp

where we have used the Gibbs-Duhem relation (3.2) and the differential of pressure (3.4). In

particular, for isentropic flows one has

1

ρ
∂kp = ∂k

(
ε+ p

ρ

)
.

• Moreover it is useful to use the following vector identity(
~v × ~∇× ~v

)
k

= εkmnεnrsvm∂rvs = (δkrδms − δksδmr)vm∂rvs = ∂k

(
~v2

2

)
− vm∂mvk

• With this, Euler’s equation (4.6) becomes

∂tvk − (~v × ~∇× ~v)k + ∂k

(
ε+ p

ρ
+
~v2

2

)
= 0. (5.1)

Bernoulli’s equation

• Stationary or steady flows describe situations where the fluid fields are independent of time

such that e. g. ∂tvk = 0.

• Because the first term in (5.1) vanishes for stationary flows and the second term is orthogonal

to vk one obtains

vk∂k

(
ε+ p

ρ
+
~v2

2

)
= 0.

This is Bernoulli’s equation. It states that the expression in bracket is constant along the flow

lines.
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• One can in fact show using the continuity equation and entropy conservation for stationary

flows that

vj∂j

(
s

ρ

)
= 0,

which implies that that Bernoulli’s equation does not need the assumption of an isentropic

flow.

• For an incompressible fluid one has ∂jρ = 0. In that case one can directly show from Euler’s

equation (4.6) for a stationary flow

vj∂j

(
1

2
ρ~v2 + p

)
= 0. (5.2)

The combination 1
2ρ~v

2 is sometimes called dynamic pressure. Along flow lines, the sum of

thermodynamic pressure and dynamic pressure is constant. In regions of high fluid velocity,

the pressure p must be smaller. This allows to understand the under-pressure on the upper

side of aerofoils (Tragflächen) or how a simple water aspirator (Wasserstrahlpumpe) works.

Vorticity

• The field ~w = ~∇× ~v or

wj = εjkl∂kvl (5.3)

is called fluid vorticity. Indeed it describes circular motion. Consider for example some area

A with boundary ∂A = C. One has∫
A

wjdAj =

∫
A

(εjkl∂kvl)dAj =

∮
C

vjdxj ,

where we have used Stokes’ theorem. The integral along the line is a measure of circular

motion.

• For isentropic flows one obtains by taking the curl of Euler’s equation (5.1) an equation for

the time evolution of vorticity

∂twk − (~∇× (~v × ~w))k = 0. (5.4)

Kelvin’s circulation theorem

• Another interesting property of ideal flows is the conservation of circulation. Consider the

following line integral

Γ =

∮
C

vj(x)dxj ,

the so-called velocity circulation. The integral goes around some closed curve C = ∂A. We

now consider how this quantity changes in time if the line elements are transported along the

fluid with the fluid velocity.

• The time derivative is

d

dt
Γ =

∮
C

(
d

dt
vj(x)

)
dxj +

∮
C

vj(x)

(
d

dt
dxj

)
.

In the first expression one can use

d

dt
vj = (∂t + vk∂k) vj = −∂j

(
ε+ p

ρ

)
,
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in the second expression
d

dt
dxj = dvj .

Using Stokes theorem gives

d

dt
Γ = −

∫
A

[
εjkl∂k∂l

(
ε+ p

ρ

)]
dAj +

∮
C

d

(
~v2

2

)
.

The first term vanishes as it is the curl of a gradient. The second term vanishes because a

closed integral of a total differential vanishes.

• In summary one obtains
d

dt
Γ = 0

which is known as Kelvin’s theorem or theorem of circulation.

• One can apply Kelvin’s theorem to an infinitesimal small contour dC = ∂dA and finds∮
dC

vjdxj =

∫
dA

[εjkl∂kvl] dAj = wjdAj = const.

Intuitively speaking, the vorticity moves with the fluid.

• One might be tempted to think that vorticity cannot appear in the flow if it is absent on some

surface upstream / in the past (see also (5.4)). However, tho points have to be taken into

account:

– Real fluids are not completely isentropic and inhomogeneous heating can produce vor-

ticity.

– The circulation theorem cannot be applied along boundary surfaces (the circle cannot be

closed). Vorticity can be generated by boundary layers and be transported downstream.

Potential flows

• Potential flows are such that one can write the fluid velocity as a gradient

vj = ∂jφ, (5.5)

with some scalar function φ, the so-called velocity potential. Because ~∇× ~∇φ = 0, potential

flows are vorticity-free. Also, the circulation along any curve vanishes,∮
vjdxj = 0

and in particular there cannot be any closed flow lines.

• Euler’s equation for an isentropic potential flow reads

∂k

(
∂tφ+

ε+ p

ρ
+
~v2

2

)
= 0.

By integration one finds

∂tφ+
ε+ p

ρ
+
~v2

2
= c(t)

and in fact one can choose φ such that c(t) = 0. (There is a gauge symmetry φ → φ + f(t)

which does not change ~v = ~∇φ.)

• For stationary, isentropic potential flows one has a stronger form of Bernoulli’s equation where

ε+ p

ρ
+
~v2

2
= const,

with a constant that is the same for all flow lines.
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Incompressible flows

• For situations where the density ρ is constant in space and time one speaks of an incompressible

flow. Usually density inhomogeneities propagate with the speed of sound cS and if the flow

pattern changes slowly compared to that one has often

ρ = const.

• The continuity equation (4.2) reduces to

∂jvj = 0. (5.6)

• Because of ρ = const and s = const one has only the three components of vj left as variables

that need to be determined. One can take as equations (5.6) and the equation for vorticity

(5.4). Indeed, for given boundary conditions and vorticity wk one can uniquely reconstruct

the velocity from (5.3) and (5.6). This is analogous to the situation in magnetostatics where

the magnetic field is fixed by

∂jBj = 0, εkmn∂mBn = µ0 jk.

The evolution equation (5.4) determines the change of vorticity with time. The pressure can

be reconstructed a posteriori from Euler’s equation.

Incompressible potential flows

• For isentropic, incompressible potential flows, the equations become particularly simple. Be-

cause of (5.5) and (5.6) one has

∂j∂jφ = ∆φ = 0. (5.7)

• The integrated version of Euler’s equation reads for an incompressible potential flow

∂tφ+
p

ρ
+

1

2
(∂jφ)2 = c(t). (5.8)

• On a boundary given by the surface of some (moving) body, the fluid velocity must be parallel

to the surface or the normal component has to vanish. This gives rise to von Neumann - type

boundary conditions

nj∂jφ = 0.

• Consider some body moving through a fluid (isentropic, incompressible potential flow). The

velocity potential φ is governed by the instantaneous equation (??) and depends via the

boundary condition on the velocity of the body but not on the acceleration.

• It is illuminating to compare the equations for the idealized situation of an isentropic, incom-

pressible and vorticity free fluid to those of electrostatics or magnetostatics in free space (no

charges and currents)

~∇ · ~v = 0,
~∇× ~v = 0,

~∇ · ~E = 0,
~∇× ~E = 0,

~∇ · ~B = 0,
~∇× ~B = 0.

Solutions can therefore be found in a similar way as we will use below.
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Potential flow past a sphere

• Consider the problem of a spherical ball falling through a fluid. If it goes too slow, viscosity

will become important. If it goes too fast, whirls will develop and ultimately turbulence. For

intermediate velocities, the assumptions we made for an incompressible potential flow match

approximately.

• We will consider the problem in the reference frame of the sphere (which we take to have

radius a). The equations we have to solve are

∆φ = 0 (r > a)

with boundary condition
∂φ

∂r
= 0 (r = a)

corresponding to vanishing velocity component normal to the surface of the sphere. Very far

away from the surface, the fluid velocity should be in z-direction

∂φ

∂z
= v0 (r � a).

• Without the sphere, the velocity potential would be

φ = v0z + const.

This is obviously a solution to the Laplace equation. We will now add to this another solution

(for r > a). We take over intuition and knowledge from electrostatics. In particular, a solution

that fits to the axial symmetries of the present problem is a dipole in z direction. So let’s try

the following

φ = v0z +
pz

r3
= v0r cos θ +

p cos θ

r2
.

By construction, this is a solution to the Laplace equation for r > 0. The boundary condition

on the surface is
∂φ

∂r
= v0 cos θ − 2

p cos θ

r3
= 0 (r = a),

which is fulfilled for p = 1
2v0a

3.

• In summary, the velocity potential is

φ = v0z

(
1 +

a3

2r3

)
.

The fluid velocity follows as a gradient

~v = ~∇φ = v0

 − 3a3xz
2r5

− 3a3yz
2r5

1− a3(2z2−x2−y2)
2r5

 .
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6 Two-dimensional incompressible potential flows

Some problems can be described by two-dimensional fluid equations, for example if the fluid velocity

in the third direction is simply constant (usually zero) or if the fluid is confined by some external

potential. It is not always possible to neglect the effects of viscosity but we will assume so for the

discussion in the present section. Also, we concentrate on flows with small Mach number which can

be treated as incompressible.

Flow potential and topology

• The two components of the velocity (v1, v2) satisfy the equations

∂1v1 + ∂2v2 = 0, ∂1v2 − ∂2v1 = 0, (6.1)

where the first equation is the two-dimensional version of (5.6) and the second corresponds

to the condition of vanishing vorticity w3 = ε3kl∂kvl = 0.

• Due to the second relation, the two-dimensional velocity can be written locally as the gradient

of the velocity potential

v1 = ∂1φ, v2 = ∂2φ.

With this, the second relation is automatic and the first relation implies ∆φ = 0.

• The velocity potential is given by the line integral

φ(~x) =

∫ ~x

~v(~y) · d~y

In a simply connected domain (where all curves can be contracted to a point), this gives a

unique definition of φ (up to an irrelevant additive constant). In a multiply connected domain,

the potential as defined by the integral above may depend on the path. Consider for example

a domain with two holes. The value of a closed integral

Γ =

∮
~v(~x) · d~x

must be given by the velocity circulation Γ1 around the first hole and Γ2 around the second

hole and the winding numbers w1 and w2 as

Γ = w1Γ1 + w2Γ2.

Winding numbers are topological properties of curves.

Stream function

• Because of the first relation in (6.1), one can also introduce a so-called stream function ψ with

v1 = ∂2ψ, v2 = −∂1ψ

such that the first relation is automatic while the second relation implies ∆ψ = 0.

• The fluid velocity is orthogonal to the gradient of the stream function,

~v · ~∇ψ = v1∂1ψ + v2∂2ψ = −v1v2 + v2v1 = 0,

which implies that lines of constant ψ correspond to the flow or streamlines. Moreover, because

the equipotential lines are always orthogonal to the fluid velocity they are also orthogonal to

the streamlines.
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Complex potential

• The definitions of φ and ψ imply the relations

∂1φ = ∂2ψ, ∂2φ = −∂1ψ.

These differential equations are actually equivalent to the so-called Cauchy-Riemann relations.

As a consequence, the pair (φ(x), ψ(x)) is not only a R2 valued function of the argument

(x1, x2) ∈ R2. One can actually supplement them with a complex structure and define

w(z) = φ(z) + iψ(z), z = x1 + ix2.

By virtue of the above differential equations, w(z) is actually a well defined, analytic function

of the complex variable z with derivative

dw

dz
=

∂φ

∂x1
+ i

∂ψ

∂x1
=

∂ψ

∂x2
− i ∂φ

∂x2
= v1 − iv2.

• The magnitude of the flow velocity is accordingly

|v| =
√
v2

1 + v2
2 =

∣∣∣∣dwdz
∣∣∣∣

• In other words, any solution to the equations that determine an incompressible potential flow

in d = 2 dimensions defines an analytic function w(z) and any analytic function w(z) corre-

sponds to a solution of these fluid equations. This is obviously a very powerful correspondence

that we will use for some further discussion below.

Simple examples

• As a first example, consider for some c = c1 + ic2 ∈ C the linear function w(z) = cz + const.

The velocity is homogeneous v1 = c1, v2 = −c2. In polar coordinates c = |v| e−iα where α is

the angle of the flow velocity to the x1 axis.

• Consider w(z) = 1
2Az

2 for some A ∈ R. The flow profile v1 = Ax1, v2 = −Ax2 corresponds

to a stagnation point at z = 0. It describes also a corner flow in a sector of angle π/2.

• Consider more general w(z) = 1
nAz

n. The flow velocity is

v1 − iv2 = |v| e−iα = Azn−1 = Arn−1ei(n−1)θ

where z = x1 + ix2 = reiθ. Obviously, the flow velocity is in positive radial direction if the

complex phase of the flow field ei(1−n)θ equals the complex phase of the position eiθ i.e. for

einθ = 1 or θ = 0, 2π
n ,

4π
n , . . . and in negative radial direction for einθ = −1 or θ = π

n ,
3π
n , . . ..

One can therefore describe by w(z) = 1
nAz

n an edge flow in the segment 0 < θ < π/n. For

n = 1/2 one reaches the maximum sector angle and the flow is around a line (or a thin plate

from the three-dimensional viewpoint).

Line integrals

• Consider the following complex line integral along some curve that is closed in the anti-

clockwise sense,∮
C

dw

dz
dz =

∮
C

(v1dx1 + v2dx2) + i

∮
C

(v1dx1 − v2dx1) = ΓC + iQC .
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The first term or real part ΓC is just the velocity circulation along C while the second term

or imaginary term QC describes actually the fluid volume flow through the curve C. Indeed,

QC =

∮
C

(v1dx1 − v2dx1) =

∮
(v1n1 + v2n2)dl

where (n1, n2) is the outward pointing normal vector for a curve closed in the anti-clockwise

sense in the complex plane. The residue theorem implies∮
C

dw

dz
dz = 2πi

∑
Res

(
dw

dz

)
where the sum on the right hand side goes over the residues of dw/dz inside the domain

enclosed by C. For a function w(z) that is analytic everywhere in that region, the right hand

side vanishes. However, if the line encloses a hole in the domain of the flow, for example by

some body, there can be non-zero contributions.

• Consider now the the example w(z) = c ln z. This function is locally analytic but has a branch

cut (e.g. on the negative x1-axis) and a logarithmic singularity at z = 0. The derivative

dw

dz
=
c

z

has obviously a pole at the origin.

• For c ∈ R, the flow field is

v1 = c
x1

x2
1 + x2

2

, v2 = c
x2

x2
1 + x2

2

,

which corresponds to a source of mass at the origin. The volume outflow per unit time is

given by the contour integral along any curve that encloses the origin and the residue theorem

gives QC = 2πc.

• Consider now c = −ic̃ with c̃ ∈ R. In that case the flow field is

v1 = −c̃ x2

x2
1 + x2

2

, v2 = c̃
x1

x2
1 + x2

2

,

which corresponds to a vortex line at the origin of the x1-x2-plane and along the third di-

rection. This flow field has vanishing vorticity everywhere (except at the origin where it is

singular) but the velocity circulation is non-zero for a loop that encloses the origin. Its value

is measured by the real part of the contour integral and one finds by the residue theorem

Γc = 2πc̃.

• The values of ΓC and QC for the above two examples can also be evaluated directly from

w(z) according to

ΓC + iQC =

∮
dw

dz
dz =

∮
dw.

Because w(z) = c ln z has a discontinuity of value 2πic one finds ΓC + iQC = 2πic.

Flow around a circular cylinder

• Let’s consider a flow around a cylinder of radius a and with uniform velocity v1 = U, v2 = 0

at infinity. The boundary |z| = a should correspond to a stream line, i. e. Imw(z) = const.

Moreover, for |z| > a, the function w(z) should be analytic. A possibility is

w(z) = U

(
z +

a2

z

)
.
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This is not unique, however. One can add a vortex term which has constant imaginary part

for fixed |z|,

w(z) = U

(
z +

a2

z

)
− iΓ

2π
ln z.

• Concentrate first on the simpler case of Γ = 0. In polar coordinates z = reiθ

φ = U

(
r +

a2

r

)
cos θ, ψ = U

(
r − a2

r

)
sin θ.

The fluid velocity in radial and azimuthal directions follow as

ur =
∂φ

∂r
= U

(
1− a2

r2

)
cos θ, uθ =

1

r

∂φ

∂θ
= −U

(
1 +

a2

r2

)
sin θ.

• On the surface there is obviously slip (as expected for an ideal fluid)

uθ = −2U sin θ.

The slip vanishes at the stagnation points and has a maximum magnitude 2U in between.

• Taking now also non-vanishing circulation Γ into account gives for the velocities

ur =
∂φ

∂r
= U

(
1− a2

r2

)
cos θ, uθ = −U

(
1 +

a2

r2

)
sin θ +

Γ

2πr
.

and therefore at r = a

uθ = −2U sin θ +
Γ

2πa
.

Interestingly, nonzero Γ shifts the stagnation points and they merge to a single point for

|Γ|
4πaU

= 1.

For even larger value, the stagnation point moves away from the cylinder surface.

• Let us now consider the pressure in order to determine the force per unit length acting on the

cylinder. Bernoulli’s theorem gives

p+
1

2
ρ~v2 = const.

Using ~v2 = u2
r + u2

θ gives

p

ρ
= const− 2U2 sin2 θ +

UΓ

πa
sin θ (r = a).

Interestingly, the pressure is symmetric with respect to reflection about the vertical axis

θ → π − θ. This implies that there is no drag force (parallel to the flow velocity at infinity)

and it is a pure lift force (orthogonal to the fluid velocity at infinity). This is an instance of

d’Alembert’s paradox.

• The contribution to y-component of the force by an infinitesimal surface element is dFL =

−pa sin θdθ and the net force (per unit length) is

FL = ρ

∫ 2π

0

(
2U2 sin2 θ − UΓ

πa
sin θ

)
a sin θ dθ = −ρUΓ.

We will see that there is actually a general theorem which gives the same result.
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Conformal maps

• Consider an analytic map between complex variables

Z = f(z), z = f−1(Z).

One can use this to define a complex potential for the new variable Z

W (Z) = w(f−1(Z)).

At points where f−1(Z) is analytic and where w(z) is analytic, the function W (Z) is analytic

and gives a solution of the two-dimensional fluid equations.

• Because of W (Z) = w(z), the potential and stream lines in the new variable are the images

Z = f(z) from the old potential and stream lines.

• The fluid velocity follows from

V1 − iV2 =
dW

dZ
=
dw/dz

dZ/dz
=
v1 − iv2

f ′(z)
.

• Consider two corresponding points z0 and Z0 = f(z0) and let f (n)(z0) be the first non-

vanishing derivative at that point. Small deviations from that point are related by

δZ =
(δz)n

n!
f (n)(z0),

and the corresponding angles

arg δZ = n arg δz + arg f (n)(z0).

Accordingly, angle differences are related by

arg δZ1 − arg δZ2 = n(arg δz1 − arg δz2).

Usually, n = 1 in which case angles between lines are preserved. That is actually the reason

for the name conformal.

• Simple examples for conformal maps are linear transformations

Z = az + b.

They correspond to translations, rotations and dilatations of the flow profile.

Exercise (simple): Work this out in more detail.

• A non-trivial example is the Joukowski transformation

Z = z +
c2

z
.

When combined with a linear transformation, it allows to map the flow around a circular

cylinder to the flow around elliptic cylinders, flat plates and more interesting aerofoil-like

shapes.

Exercise (advanced): Use the Joukowski transformation to obtain (with different angle of

attack and circulation) the flow past an elliptic cylinder, past a flat plate, past symmetric

aerofoils and past asymmetric aerofoils.
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Kutta-Joukowski condition

• So far we have not specified what actually determines the circulation around some body in a

flow field that is uniform at large distances. For circular cylinders we have found solutions of

the ideal fluid equations for any value of Γ.

• In reality, the circulation is actually determined by physics beyond the ideal fluid approxima-

tion. For wing-like structures with a sharp trailing edge, the Kutta-Joukowski condition says

that the circulation is such that the flow profile is regular (non-singular) at the trailing edge.

This is not a theorem but a plausible hypothesis that is experimentally confirmed in many

situations.

Blasius’s theorem

• We consider now the force (per unit length) acting on a body in a two-dimensional flow

profile. It is transmitted by the pressure on the surface so can be calculated by an integral

along the boundary. The force transmitted via a small surface element ds with angle θ is

(dF1, dF2) = p(− sin θ, cos θ)ds and therefore

F1 − iF2 =

∫
p(− sin θ − i cos θ)ds = −i

∫
pe−iθds = −i

∮
pe−2iθdz

where we have used dz = eiθds.

• Use now Bernoulli’s equation p = − 1
2ρ|v|

2 and |v|e−iθ = dw/dz. That gives

F1 − iF2 =
iρ

2

∮ (
dw

dz

)2

dz,

a result known as Blasius’s theorem.

Kutta-Joukowski lift theorem

• We now consider a body of arbitrary shape in a flow that is uniform with velocity U (in x1

direction) very far away from the body. Use a coordinate system such that the origin is inside

the body. One can expand
dw

dz
= U +

a1

z
+
a2

z2
+ . . .

which is a Laurent series. We use that no singularities can appear outside the body and that

dw/dz approaches U for z →∞.

• Blasius’s theorem gives for the force

F1 − iF2 =
iρ

2

∮ (
U +

a1

z
+
a2

z2
+ . . .

)2

dz.

The closed integral can be evaluated with the residue theorem giving

F1 − iF2 = −2πρUa1.

• Calculate now also the velocity circulation for the above expansion

Γ =

∮
dw

dz
dz =

∮ (
U +

a1

z
+
a2

z2
+ . . .

)
dz = 2πia1.
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• In summary, one finds F1−iF2 = iρUΓ which shows again the the drag force vanishes, F1 = 0,

while the lift force

F2 = −ρU Γ

is the product of the distant velocity U , the mass density ρ and the velocity circulation Γ.

It is important to keep in mind that all the mathematical results in the present section have been

derived under the strongly simplifying assumption of an isentropic, incompressible, vorticity-free

two-dimensional flow profile. It is a different (and important) question whether these assumptions

are justified to answer a specific question in a specific situation about a physical phenomenon.
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7 Laminar viscous flows

We will now discuss some simple solutions of the fluid equations with viscosity. You should be able

to find them yourself.

Shear flow between moving plates

• Exercise: Consider a fluid with constant density and viscosities between two infinite plates

in the x-y-plane at z = 0 and z = h. The plate at z = h is moving in the x-direction with

velocity U . Assuming no-slip boundary conditions at the two plates and a stationary flow,

what is the fluid velocity profile? What force per unit area that is needed on the plates to

keep the stationary situation?

Flow between plates with pressure gradients

• Exercise: Consider again the situation with two infinite plates at z = 0 and z = h but now

assume that they are not moving. Assume that there is a pressure gradient in the x-direction

but approximate the mass density ρ and viscosities as constant. Find the stationary flow

profile corresponding to no-slip boundary conditions at the plates and determine the average

fluid velocity as a function of the pressure gradient.

Pipe flow

• Exercise: Consider now the flow though a pipe with radius R with a pressure gradient along

the pipe ∆p/∆l. Assuming constant density and viscosities, and no-slip boundary conditions

at r = R, what is the flow profile in the pipe? Determine the volume of fluid per unit time Q

that flows though the pipe and show that is satisfies the law of Hagen-Poiseulle,

Q =
πR4

8η

∆p

∆l
.
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8 Small perturbations

In this section we will consider realistic fluids with realist thermodynamic equation of state and

non-vanishing shear and bulk viscosity as well as heat conductivity. We will be interested in small

perturbations around static fluid configurations.

Stability versus instability

• We have constructed solutions to the equations that govern a fluid, namely continuity equa-

tion, Navier-Stokes equation and the energy conservation law. Besides finding such solutions,

it is important to know whether they are stable or unstable.

• For solutions that are linearly stable, arbitrarily small (linear) perturbations around them

decrease in time and / or space. For linearly unstable solutions, such small perturbations

grow in time or space, whereas for marginally stable solutions linear perturbations remain

constant.

• It can also happen that a solution is stable with respect to very small (linear) perturbations,

but unstable with respect to perturbations with somewhat larger amplitude.

• If a solution is unstable, small fluctuations around it grow and lead to deviations from this

solution. Sometimes this leads to another laminar solution, sometimes also to turbulence.

• To investigate linear stability, one writes the fluid fields in the form

ρ = ρ̄+ δρ, ε = ε̄+ δε, vj = v̄j + δvj ,

where ρ̄, ε̄ and v̄j describe the background solution to be investigated and δρ, δε and δvj the

small perturbations around it. Because the perturbations are small and because ρ̄, ε̄ and v̄j
are a solution to the fluid equations, one can use linearized equations for the perturbations.

These linearized equations depend on the background solution, of course. We will see for

specific examples how this goes.

Background in static, homogeneous and isotropic equilibrium

• We consider as a background a static fluid in a homogeneous and isotropic equilibrium con-

figuration. These symmetries will be helpful in solving the equations for the perturbations.

For simplicity, we work in the reference frame where the fluid is at rest v̄j = 0.

• The background configuration is characterized by a (constant) mass density ρ̄ and internal

energy density ε̄. The pressure p̄ and all other thermodynamic variables are related via the

thermodynamic equation of state.

• Viscosities and heat conductivity are also determined by the background energy and mass

density,

η̄ = η(ε̄, ρ̄), ζ̄ = ζ(ε̄, ρ̄), κ̄ = κ(ε̄, ρ̄).

Small perturbations

• We now consider small perturbations in the fluid fields, i. e. we write

ρ(t, ~x) = ρ̄+ δρ(t, ~x), ε(t, ~x) = ε̄+ δε(t, ~x), vj(t, ~x) = δvj(t, ~x).

and we assume that the perturbations are so small that only terms of linear order need to be

considered in their equation of motion.
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• The equations of motion for the perturbations are given by the linearized continuity equation

∂tδρ+ ρ̄∂jδvj = 0,

the linearized equation for energy density

∂tδε+ (ε̄+ p̄)∂jδvj − κ̄
(
∂T
∂ρ

)
ε
∂2
j δρ− κ̄

(
∂T
∂ε

)
ρ
∂2
j δε = 0,

and the linearized Navier-Stokes equation

ρ̄∂tδvk +
(
∂p
∂ρ

)
ε
∂kδρ+

(
∂p
∂ε

)
ρ
∂kδε− η̄∂2

j δvk − (ζ̄ + 1
3 η̄)∂k∂jδvj = 0.

Symmetries and decomposition of perturbations

• The background configuration that we have chosen is invariant under translations in time t→
t+ ∆t, translations in space ~x→ ~x+ ∆~x and rotations xi → Rijxj . (It is not invariant under

Galilei boosts.) These symmetries are also helpful to solve the equations for the perturbations.

More specific, it is useful to work with a decomposition into eigenfunctions with respect to

these transformations.

• Consider translations in time and space. The perturbations transform like

δρ(t, ~x)→ δρ′(t, ~x) = δρ(t−∆t, ~x−∆~x).

Now consider the Fourier decomposition

δρ(t, ~x) =

∫
dω

2π

∫
d3k

(2π)3
δρ(ω,~k) e−iωt+i

~k~x.

(Because of δρ(t, ~x) ∈ R one has δρ∗(ω,~k) = δρ(−ω,−~k).) Translations in space and time

become

δρ(ω,~k)→ δρ′(ω,~k) = eiω∆t−i~k∆~xδρ(ω,~k).

This shows that the Fourier modes are eigenfunctions of translations.

• Consider now rotations. While δρ and δε transform as scalars, the fluid velocity δ~v transforms

as a vector and in a similar way gradients like ~∇ρ which in Fourier space are proportional

to the wavevector ~k. However, the scalar product ~k · δ~v transforms again as a scalar. It is

therefore useful to decompose the fluid velocity according to

δvj(t, ~x) = ∂jδφ(t, ~x) + δvTj (t, ~x), δvj(ω,~k) = ikjδφ(ω,~k) + δvTj (ω,~k)

where the longitudinal part (the velocity component parallel to ~k in Fourier space) is charac-

terized by the velocity potential φ and the transverse part (the velocity component orthogonal

to ~k in Fourier space) by vTj (t, ~x) which is a solenoidal field, ∂jv
T
j (t, ~x) = 0.

• The decomposition into eigenfunctions with respect to translations and rotations has the

advantage that linear equations can be solved for each mode separately. Indeed, the different

modes can be characterized by the wave-numbers ω, ~k (which characterize temporal and

spatial translations) and by two polarizations for the transverse vectors (characterization of

behavior with respect to rotations). Modes with different wave-numbers do not mix in a sense

that becomes more clear below. A manifestation of this principle is that the partial differential

equations for δρ(t, ~x) etc will become algebraic equations in the Fourier domain.
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Linear equations in Fourier space

• After Fourier transform and using the decomposition for δvj one obtains for the linear equa-

tions of motion in the scalar sector (k2 = ~k2)

−iω δρ− ρ̄ k2δφ = 0,

−iω δε− (ε̄+ p̄)k2δφ+ κ̄
(
∂T
∂ρ

)
ε
k2δρ+ κ̄

(
∂T
∂ε

)
ρ
k2δε = 0,

−iωρ̄ δφ+
(
∂p
∂ρ

)
ε
δρ+

(
∂p
∂ε

)
ρ
δε+ (ζ̄ + 4

3 η̄)k2δφ = 0.

In the vector sector one obtains

−iωρ̄ δvTk + η̄k2δvTk = 0.

Observe that the scalar and vector sectors decouple, indeed.

• Let us first discuss the vector sector because it is quite simple. The dispersion relation is

ω = −i η̄
ρ̄
k2.

This the dispersion relation of diffusion type with a diffusion constant D = ν̄ = η̄/ρ̄. The

frequency is imaginary, corresponding to an exponential decay in time ∼ e−ν̄k2t of the modes

with wavenumber ~k. Note that in the ideal fluid limit one has ν̄ → 0 and the transverse

velocity modes have the dispersion relation ω = 0 corresponding to no time evolution.

• The equation that govern the scalar sector can be written as
−iω 0 −ρ̄k2

κ̄
(
∂T
∂ρ

)
ε
k2 −iω + κ̄

(
∂T
∂ε

)
ρ
k2 −(ε̄+ p̄)k2(

∂p
∂ρ

)
ε

(
∂p
∂ε

)
ρ

−iωρ̄+ (ζ̄ + 4
3 η̄)k2


δρδε
δφ

 = 0.

Non-trivial solutions correspond to a vanishing determinant of the matrix on the left hand side.

In other words: solutions are eigenvectors with eigenvalue zero. They only exist for certain

values of ω which fulfill the so-called dispersion relation. The latter is obtained precisely by

setting the determinant to zero. One obtains thus (we drop the bars)

ω3 + iω2k2
[
ζ+ 4

3η

ρ + κ
(
∂T
∂ε

)
ρ

]
− ωk4

[
ζ+ 4

3η

ρ κ
(
∂T
∂ε

)
ρ

]
−ωk2

[
ε+ p

ρ

(
∂p
∂ε

)
ρ

+
(
∂p
∂ρ

)
ε

]
− ik4κ

[(
∂T
∂ε

)
ρ

(
∂p
∂ρ

)
ε
−
(
∂T
∂ρ

)
ε

(
∂p
∂ε

)
ρ

]
= 0

(8.1)

• The following thermodynamic identity is useful

c2s =
(
∂p
∂ρ

)
s/n

=
ε+ p

ρ

(
∂p
∂ε

)
ρ

+
(
∂p
∂ρ

)
ε

Exercise: use ds = 1
T dε−

µ
T dn and ε+ p = Ts+ µn to derive this.

• Consider first the simpler case η = ζ = κ = 0. One has simply

ω
(
ω2 − c2sk2

)
= 0,

with the solutions ω = 0 and ω = ±csk. The latter are the two sound modes and show that

cs is indeed the propagation velocity for a compression wave in an ideal fluid. The solutions

are plane waves without damping e−i(±cskt−
~k~x).
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• Consider now κ = 0 but non-vanishing viscosities. The dispersion relation becomes

ω
(
ω2 + iωk2 ζ+

4
3η

ρ − c2sk2
)

= 0

There is still one solution with ω = 0 and the two sound modes become

ω = −i ζ+
4
3η

2ρ k2 ±
√
c2s −

ζ+ 4
3η

4ρ k.

In this form, the dispersion relation shows that a plane wave gets damped by an imaginary

part in the frequency proportional to a combination of shear and bulk viscosity divided by

mass density. The imaginary part of ω is always negative for c2s ≥ 0 and ζ, η ≥ 0. These are

the conditions that sound modes are damped and the equilibrium configuration is stable with

respect to density perturbations.

• Consider now non-vanishing viscosities and heat conductivity but assume conditions of con-

stant pressure p =const. The dispersion relation becomes

ω

[
ω + i

ζ+
4
3η

ρ k2

] [
ω + iκ

(
∂T
∂ε

)
ρ
k2
]

= 0.

The mode with ω = 0 and ω = −i ζ+
4
3η

ρ k2 are remnants of the sound modes for p =const., while

the third mode with ω = −iκ
(
∂T
∂ε

)
ρ
k2 describe heat conduction. Because of dε = Tds+ µdn

one has (
∂ε
∂T

)
ρ

= T
(
∂s
∂T

)
= cp

which is the heat capacity density at constant pressure.

• The dispersion relation for heat conduction under conditions of constant pressure is therefore

ω = −i κ
cp
k2

and describes the diffusive transport of heat. The solution is of the form e
− κ
cp
k2t

. Stability

requires cp ≥ 0 for κ ≥ 0.

• For the most general case where heat conductivity and viscosities are non-vanishing and

pressure inhomogeneities are present, the requirement of linear stability is that (8.1) has only

solutions ω with negative imaginary parts. We will not go into further details here.

Kelvin-Helmholtz instability

• We consider now a situation with a proper instability within the ideal fluid approximation.

Consider a flow that is homogeneous everywhere except for a discontinuity along some surface.

More specific, we take the discontinuity to be along the plane with z = 0 and assume v̄j = 0

for z < 0 and v̄j = (v̄, 0, 0) for z > 0. The pressure is assumed to be constant p̄ = const and

the density to be ρ̄ = ρ̄+ for z > 0 and ρ̄ = ρ̄− for z < 0. One can check easily that this is

indeed a solution to the continuity equation (4.2) and Euler equation (4.6).

• Consider now a small perturbation of the fluid velocity δvj and pressure δp on the upper side.

The linearized continuity equation for an incompressible fluid gives

∂jδvj = 0,
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Figure 2. Kelvin-Helmholtz clouds that formed due to a velocity shear between layers in the atmosphere.

the linearized Euler equation gives

ρ̄+

(
∂

∂t
δvj + v̄

∂

∂x
δvj

)
+ ∂jδp = 0.

Taking the divergence of this equation and using the linearized continuity equation gives

∆δp = 0.

In the region z < 0 the equations are analogous, except that there is no background velocity.

• We make for the perturbation in pressure the ansatz

δp = p̂±e
−iωt+ikx∓kz,

where the upper (lower) sign corresponds to z > 0 (z < 0) respectively. This solves the

Laplace equation, indeed, and falls off exponentially for large |z|

• Denote the horizontal position of the boundary surface by δh(t, x). One has for the fluid

velocity at z > 0
∂

∂t
δh = δvz − v̄

∂

∂x
δh

and for δh ∼ e−iωt+ikx this becomes

δvz = −i(ω − v̄k)δh.

This can now be used in the z-component of the linearized Euler equation to give

ρ̄+ (ω − v̄k)
2
δh+ kδp+ = 0.

In a similar way one obtains for z < 0

ρ̄−ω
2δh− kδp− = 0.
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• The pressure on both sides of the discontinuity must be equal, p+ = p−. That leads to[
ρ̄−ω

2 + ρ̄+ (ω − v̄k)
2
]
δh = 0.

The solutions to this equation have frequencies

ω = v̄k
ρ+ ± i

√
ρ̄+ρ̄−

ρ̄+ + ρ̄−

which shows that there is always a mode with positive imaginary part corresponding to an

exponential growth. This indicates an instability known as Kelvin-Helmholtz instability. The

effect is responsible e. g. for the (strong) water waves excited by (strong) winds or interesting

patterns one can sometimes observe at boundary layers in the atmosphere.
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9 Fluids in a gravitational field

We discuss here what happens when fluids are subject to gravity or when the gravitational equations

and the fluid equations are solved together.

Fluid in external gravitational field

• First we discuss the conservation equations for fluids in a gravitational field in the approx-

imation where the fluid is subject to the gravitational acceleration but does not change the

gravitational field in any noticeable way itself. This is a good approximation for water in the

ocean or air in the atmosphere, for example.

• The gravitational acceleration is

gj = −∂jϕ,

where ϕ is the gravitational or Newton potential.

• Because of the gravitational acceleration, the momentum in a fluid cell is now not conserved

any more and one has

∂tPk + ∂jPjk = ρgk = −ρ∂jϕ.

• There is now in addition to the kinetic and internal energy of the fluid also a potential

energy of the fluid which is locally ρϕ. Note, however, that the absolute value of ϕ does

not have a physical significance in Newtonian gravity. In particular, if we would add to ϕ a

time-dependent but spatially homogeneous term, the energy would be changed but the forces

would not be modified. Accordingly, the energy conservation law becomes

∂tE + ∂jEj = ρ∂tϕ.

• The mass conservation law is not modified by gravity.

• With these modifications one can now go through the derivation of the fluid equations again.

The decomposition of (ρ, ρj) and (Pk,Pjk) in (4.1) remains unchanged. For energy density

and energy flux density one has now

E =
1

2
ρ~v2 + ε+ ρϕ, Ej =

(
1

2
ρ~v2 + ε+ ρϕ

)
vj + viTij + qj .

• The mass conservation equation (4.2) is unchanged and the momentum conservation law

becomes

ρ (∂tvk + vj∂jvk) + ∂jTjk = ρgk.

For an ideal fluid this leads to Euler’s equation with the force term ρgk on the right hand side

and similar in the first order viscous approximation for the Navier-Stokes equation.

• The energy conservation law can be brought to the form (4.4). Additional terms involving

ϕ all cancel out in the final expression. This implies also that the entropy evolution remains

unchanged.
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Hydrostatic equilibrium

• We now discuss solutions of the fluid equations in a gravitational field in a static situation

with vanishing fluid velocity. From the Navier-Stokes equation and (4.4) one finds

∂kp = ρgk = −ρ∂kϕ, ∂kT = 0.

The second equation implies T = const and one can use the differential of pressure dp =

sdT + ndµ = sdT + ρd(µ/m) to obtain

∂k

( µ
m

+ ϕ
)

= 0.

The gravitational potential acts like a position dependent chemical potential. For example, if

ϕ = gz one has a thermal ensemble described by

µ = µ0 − gz, T = T0

and all thermodynamic quantities can be related to this for a given equation of state.

• The condition of constant temperature is only given for a complete mechanical and ther-

mal equilibrium. One may, however, also have situations where temperature is not constant

but there is nevertheless a mechanical equilibrium in the sense that the fluid is not moving

macroscopically. In the presence of a temperature gradient and non-vanishing heat conduc-

tivity, there will be microscopic processes of heat conduction that counteract the temperature

gradient, for example by collisional or radiative heat conduction.

• A fluid with a temperature gradient pointing against the gravitational acceleration can be

unstable. The basic reason is that density usually decreases increasing temperature. A macro-

scopic motion can result from the buoyancy effect which is called convection.

Gravity surface waves

• A fluid in a gravitational field has an equilibrium configuration such that µ decreases with

height z. For fluids with a first order phase transition such as water, the density jumps for

some value µc (and corresponding height z) from a dense state (liquid) to a less dense state

(vapor / gas). We now consider excitations of such a surface.

• We concentrate on the incompressible fluid approximation and on a potential flow. The

equation (5.8) gets modified by the gravitational field term and reads

∂tφ+
p

ρ
+

1

2
~v2 + gz = const.

Here we are interested in small amplitudes so we can drop 1
2~v

2. Denote by z = h(t, x, y) the

position of the surface. On that surface we assume constant pressure. The term p/ρ = const

can be eliminated by absorbing a position independent term. That leads to the following

equation describing the surface,

∂tρ+ gh = 0.

• To linear order one has also for the vertical component of the fluid velocity

vz = ∂th =
∂

∂z
φ.

One can combine this to the following equation describing the surface(
∂2
t φ+ g

∂

∂z
φ

)
z=0

= 0.

In addition to this, for an incompressible flow one has ∆φ = 0.
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• Solutions are given by linear compositions of plane waves of the form

φ = Ae−iωt+ik1x+ik2y±kz

It is easy to see that this satisfies the Laplace equation for k =
√
k2

1 + k2
2. In deep water we

need to take the solution that decays exponentially for z → −∞ which corresponds to the

upper sign. From the surface condition one obtains the dispersion relation

ω =
√
gk.

• The surface gravity waves are dispersive, which means that the phase velocity

vph =
ω

k
=

√
g

k
=

√
gλ

2π

depends on the wavelength λ.

Group velocity

• The velocity of wave packets is actually given by the group velocity

(vgr)j =
∂ω

∂kj
.

To show this, consider a configuration

h(t, ~x) =

∫
d3k

(2π)3
e−iω(~k)t+i~k~x h̃(~k),

where h̃(~k) is centered around some wave vector ~k0 so that one can expand

ω = ω(~k0) + (vgr)j(k − k0)j + . . . .

One has then

h(t, ~x) = e−iω(~k0)t+i~k0~x

∫
d3k

(2π)3
e−i(k−k0)j((vgr)jt−xj) h̃(~k).

The term before the integral is a pure phase factor and the integral depends only on

(vgr)jt− xj

which shows that indeed, the wave packet moves with velocity vgr.

• For the surface gravity waves one has

vgr =
1

2

√
g

k
=

1

2
vph.

Surface tension

• Fluids like water have also a surface tension which plays a role for short wavelength sur-

face excitations. To take it into account we add a corresponding term to the equation that

determines the surface position

∂tφ+ gh− σ

ρ

(
∂2

∂x2
+

∂2

∂y2

)
h = 0.

One can understand this as a surface tension energy term which adds to the potential energy

gh (both divided by ρ).
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• The two equations for φ become[
∂2
t φ+ g

∂

∂z
φ− σ

ρ

(
∂2

∂x2
+

∂2

∂y2

)
∂

∂z
φ

]
z=0

= 0, ∆φ = 0.

Solutions can be obtained similar as above. The dispersion relation becomes

ω =

√
gk +

σ

ρ
k3.

• The phase velocity

vph =
ω

k
=

√
g

k
+
σ

ρ
k

equals the group velocity

vgr =
∂ω

∂k
=

g + 3σρ k
2

2
√
gk + σ

ρ k
3

for g = σ
ρ k

2 or λ∗ = 2π/k = 2π
√

gρ
σ . For water, this wavelength is about 1.7 cm. Waves

with smaller wavelengths λ� λ∗ are essentially dominated by the surface tension and called

capillary waves while those with λ� λ∗ are surface gravity waves.

• Exercise: Discuss the effect of gravity and surface tension for the Kevin-Helmholtz instability.

• Exercise: Discuss gravity waves in a fluid with finite average vertical depth ∆z.
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10 Newtonian cosmology

A non-relativistic fluid coupled to Newtonian gravitational fields can be used to construct a simple

model for the cosmological expansion. For a more realistic and more detailed description one

needs general relativity and some understanding of relativistic fluid dynamics, but some interesting

elements of cosmology can already be discussed with the equations we derived so far.

Self-gravitating fluids

• We now consider a fluid that is not only moving in the gravitational field due to some external

source but that is actually gravitating and therefore the source of a gravitational field, itself.

• We need one more equation in addition to the fluid equations we have derived before which

is for the gravitational field itself. It can be written

∂kgk = −∂k∂kϕ = −4πGN ρ (10.1)

where GN ≈ 6.67× 10−11m3/(kg s2) is Newtons gravitational constant.

Cosmological expansion

• Consider now the following ansatz for the fluid and gravitational fields

ρ(t, ~x) =ρ0

[
a0

a(t)

]3

,

vj(t, ~x) =xj

[
ȧ(t)

a(t)

]
,

gj(t, ~x) =− xj
[

4πGN

3
ρ

]
,

(10.2)

together with spatially constant pressure p(t, ~x) = p(t) and inner energy density ε(t, ~x) = ε(t).

• Equation (10.2) describes a fluid velocity that points away from the origin everywhere. Two

arbitrary points move away from each other with a velocity that is proportional to their

distance. The factor of proportionality

H(t) =
ȧ(t)

a(t)

is the Hubble parameter or Hubble rate of expansion. The mass density gets diluted by this

expansion and falls off with the third power of the scale factor a(t). The latter is a dimen-

sionless function of time and its overall size is usually chosen such that a(t0) = a0 = 1 for

some time t0 corresponding to today.

• It is easy to see that (10.2) satisfies the the mass conservation equation and Newton’s equation

(10.1). From the Navier-Stokes equation one finds

ä(t)

a(t)
= −4πGN

3
ρ. (10.3)

This can also be written as

Ḣ +H2 = −4πGN

3
ρ,

which shows that this equation should be understood as an evolution equation for the Hubble

parameter. This equation is known as the second Friedmann equation for a matter dominated

universe.
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• One can rewrite (10.4)

d

dt
ȧ2 = 2äȧ = −8πGN

3
ρ a2 ȧ

a
=

d

dt

8πGN

3
ρ a2.

Integration leads to
ȧ2

a2
+
K

a2
=

8πGN

3
ρ, (10.4)

which is the first Friedmann equation for a matter dominated universe. The combination

K/a2 is the spatial curvature. It arises here as an integration constant. Observations have

shown that k = 0 to good approximation and we will specialize to this case in the following.

• For K = 0 and using ρ ∼ 1/a3 one can directly integrate (10.4) and finds

a(t) = a0

(
t− ts
t0 − ts

)2/3

.

At the time t = ts the scale factor vanishes and according to (10.2) the mass density diverges.

If the universe was always matter dominated, that would correspond to the time of the big

bang. One may choose units such that ts = 0.

• The Hubble parameter is for the above solution for ts = 0

H =
ȧ

a
=

2

3t

and can be used to estimate the age of the universe. The so-called deceleration parameter is

q = − äa
ȧ2

= − Ḣ

H2
− 1 =

1

2

and because q > 0 one says that a matter dominated universe is decelerating. Recent mea-

surements suggest q < 0, however, which is one of the strongest indications that our present

universe contains in addition to non-relativistic matter another component, so-called dark

energy.

• The evolution equation for inner energy becomes

∂tε(t) + 3(ε(t) + p(t))

[
ȧ(t)

a(t)

]
− 9ζ(t)

[
ȧ(t)

a(t)

]2

= 0.

For given equation of state and bulk viscosity this can be solved and determines then the

temperature as a function of time. Usually one has for T = 0 also ε = p = 0 and ζ = 0 so

that T = 0 is a solution (e.g. cold dark matter).

• Instructive is also the equation for entropy per unit mass. One finds (exercise)

∂t(s/ρ) =
9H2ζ

ρT
.

For an expanding fluid with non-zero bulk viscosity, the entropy per unit mass increases due

to the expansive motion. Interestingly, because the expansion rate H = ȧ/a enters in square,

this is actually the same for a contractive motion.
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Symmetries

• The solution (10.2) is obviously invariant with respect to rotations about the origin. One

says: it is isotropic. It is also invariant under a modified form of spatial translations

ρ(t, ~x)→ ρ(t, ~x−∆x), vj(t, ~x)→ vj(t, ~x−∆x) + ∆xj

[
ȧ

a

]
,

and similar for the other fields.

Small perturbations

• Take now the above discussed solution as a background and consider small perturbations

around it. Write

ρ = ρ̄+ δρ, vj = v̄j + δvj , gj = ḡj + δgj , p = p̄+ δp,

and obtain the linearized equations of motion

∂tδρ+ 3Hδρ+Hxj∂jδρ+ ρ̄ ∂jδvj =0,

∂tδvk +Hδvk +Hxj∂jδvk +
1

ρ̄
∂kδp =δgk,

∂jδgj = −4πGNδρ, εjkl∂kδgl =0.

(10.5)

• We concentrate on an ideal fluid with η = ζ = κ = 0 and assume it to be isentropic,

s/ρ = const. One can then write

δp =

(
∂p

∂ρ

)
s/ρ

δρ = c2sδρ,

with adiabatic sound velocity cs.

• We use now Fourier transform in the spatial domain and write

δρ(t, ~x) =

∫
d3q

(2π)3
ei~p·~x(a0/a(t))δρ(t, ~q).

The factor a0/a(t) in the exponent has been introduced in order to get rid of the apparent

explicit ~x-dependence of eq. (10.5). It describes a stretching of waves with the expansion or a

conventional Fourier transform with respect to comoving coordinates ~x(a0/a(T )). One finds

now

∂tδρ+ 3Hδρ+ i
(a0

a

)
ρ̄ qjδvj =0,

∂tδvk +Hδvk + i
(a0

a

) c2s
ρ̄
qkδρ =δgk,

i
(a0

a

)
qjδgj = −4πGNδρ, εjklqkδgl =0.

(10.6)

• The two equations for δgj have the obvious solution

δgj =

(
a

a0

)
i4πGNqj

~q2
δρ.
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• To solve the other equations decompose velocity into transverse vector and scalar part

δvj(t, ~x) = ∂jδφ(t, ~x) + δvTj (t, ~x), δvj(ω, ~q) = i
(a0

a

)
qjδφ(ω, ~q) + δvTj (ω, ~q),

and one introduces the density contrast

δ(t, ~q) =
δρ(t, ~q)

ρ̄(t)
.

• The transverse velocity modes decouple

∂tδv
T
j (t, ~q) +H(t)δvTj (t, ~q) = 0,

while the velocity potential is governed by the equation

∂tδφ+Hδφ =

[
−c2s +

4πGNρ̄

~q2

(
a

a0

)2
]
δ.

The equation for the density perturbation becomes

∂tδ = ~q2
(a0

a

)2

δφ.

• The transverse or rotational modes decay simply with the scale factor,

δvTj (t, ~q) =

(
a0

a(t)

)
δvTj (t0, ~q).

In contract, the compressional modes have a more interesting behavior. By combing equations,

one finds

δ̈ + 2
ȧ

a
δ̇ +

[
c2s~q

2
(a0

a

)2

− 4πGNρ̄

]
δ = 0. (10.7)

Jeans analysis

• We first analyze (10.7) with the artificial simplification a = a0 = const,

δ̈ +
[
c2s~q

2 − 4πGNρ̄
]
δ = 0.

Because cs and ρ̄ are now also assumed to be independent of time, one can solve this equation

by plane waves δ ∼ e−iωt and finds the dispersion relation

ω2 = c2s~q
2 − 4πGNρ̄.

• For large wave vectors ~q2 � 4πGNρ̄/c
2
s this is the conventional dispersion relation of sound

waves. However, in the opposite limit ~q2 → 0, the two frequencies are

ω = ±i
√

4πGNρ̄.

One of them is exponentially growing, while the other is exponentially damped. The boundary

between oscillating and growing/decaying behavior is given by the Jeans wave number or

corresponding wavelength

qJ =

√
4πGNρ̄

c2s
, λJ =

√
πc2s
GNρ̄

.

The growth rate or “e-folding rate” for ~q2 < q2
j is given by

Imω = cs
(
q2
J − ~q2

)1/2
.

In reality the Jeans wavelength changes during the evolution of the universe and marks the

boundary between oscillations due to effects of pressure at small scales and gravitational

collapse on larger scales.
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Pressure-less expansion

• We now consider the full evolution equation for the density contrast (10.7) for the special

case of vanishing sound velocity cs = 0. This corresponds to a pressure-less non-relativistic

gas wich is often called “dust”. Using H = ȧ/a = 2/(3t) and 4πGNρ̄ = 3H2/2 = 2/(3t2) one

finds

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0.

• This differential equation of second order has two independent solutions,

δ ∼ t2/3, δ ∼ t−1,

one of them growing, the other decaying. This shows that the density contrast does in reality

not grow exponentially as the Jeans approximation suggests, but only algebraically.

• In the present approximation of an ideal, pressure-less fluid, the density contrast grows uni-

formly, independent of the wave-number. This changes when a non-zero viscosity of sound is

taken into account or dissipative terms such as shear and bulk viscosity and heat conductivity.

• We have concentrated here on a linear analysis. For the real cosmological fluid that is a

good approximation at early times, when the deviations from a homogeneous and isotropic

background solution are small. However, at late times, structures form in the Universe such as

Galaxy clusters and Galaxies (so-called large scale structure). The density contrast grows then

locally large and a linear treatment looses validity. By formulating a perturbative approach,

one can take some non-linear effects into account or one can use numerical techniques, so-called

N -body simulations. It is one of the current research challenges in cosmology to understand

non-linear structure formation with semi-analytic techniques in order to better understand

late-time cosmology and the physics of dark matter and dark energy.
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11 Kinetic theory

Fluid dynamics is an effective theory which arises as a particular limit of another, more microscopic

theoretical description. This can be for example many-body quantum theory or quantum field

theory at non-vanishing temperature and density. However, for certain situations the quantum

specific aspects of the microscopic theory might be less important and in can be described in terms

of classical concepts. We now discuss the description of classical particles coupled to gravity in the

framework of kinetic theory as an example.

The Boltzmann and Vlasov equations

• We consider a set of particles with mass m that interact gravitationally and via collisions.

We describe them in terms of the phase-space distribution function f(~p; t, ~x). From the latter

one can obtain for example the mass density as

ρ(t, ~x) =

∫
~p

mf(~p; t, ~x), (11.1)

with
∫
~p

=
∫

d3p
(2π)3 .

• Each particle moves between collisions on trajectories that are governed by the classical equa-

tions of motion, i. e.
d

dt
pj = −m∂jϕ

where ϕ is the gravitational potential.

• The distribution function f(~p; t, ~x) changes in time because particle move with the velocity

vj = pj/m, because particle momenta change according to the equation above, and because

of collisions. That can be expressed in terms of the equation

d

dt
f(~p; t, ~x) =

∂

∂t
f(~p; t, ~x) +

pj
m

∂

∂xj
f(~p; t, ~x)−m(∂jϕ)

∂

∂pj
f(~p; t, ~x) = (∂tf(~p; t, ~x))collisions

(11.2)

This is the equation named after Ludwig Eduard Boltzmann. In situations where the collision

term can be neglected and the right hand side vanishes, it is called Vlasov equation.

• The gravitational field is governed by the Poisson equation

∂j∂jϕ(t, ~x) = 4πGNρ(t, ~x) = 4πGN

∫
~p

f(~p; t, ~x).

Because of this constraint, the Vlasov equation is non-linear, already.

• The collision term can in general be rather complicated because it depends on all the details

of scattering physics. When only elastic two-to-two collisions play a role, it can be written as

(∂tf(~p; t, ~x))collisions =

∫
~q2,~q3~q4

w(~p, ~q2; ~q3, ~q4) [f(~q3; t, ~x)f(~q4; t, ~x)− f(~p; t, ~x)f(~q2; t, ~x)]

where w(~q1, ~q2; ~q3, ~q4) is the transition probability per unit time for incoming particles with

momenta ~q1 and ~q2 to outgoing particles with momenta ~q3 and ~q4.

• The transition probability has the symmetry properties

w(~q1, ~q2; ~q3, ~q4) = w(~q2, ~q1; ~q4, ~q3) = w(~q3, ~q4; ~q1, ~q2).
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Conservation laws

• Energy and momentum conservation imply that one can write

w(~p, ~q2; ~q3, ~q4) = σ(~p, ~q2; ~q3, ~q4) δ(3)(~q1 + ~q2 − ~q3 − ~q4) δ
(
~q21
2m +

~q22
2m −

~q23
2m −

~q24
2m

)
,

where σ(~p, ~q2; ~q3, ~q4) contains the details of the scattering process.

• The symmetry and conservation properties of w(~q1, ~q2; ~q3, ~q4) imply (exercise)∫
~p

(∂tf(~p; t, ~x))collisions = 0,

∫
~p

pj (∂tf(~p; t, ~x))collisions = 0,

∫
~p

~p2

2m
(∂tf(~p; t, ~x))collisions = 0.

Moments of the distribution function

• Moments of the distribution function with respect to ~p yield the conserved fields. The mass

density is given in (11.1), the momentum density or mass current is

Pk(t, ~x) = ρk(t, ~x) = ρ(t, ~x)vj(t, ~x) =

∫
~p

pk f(~p; t, ~x).

The momentum flux density is given by

Pjk(t, ~x) = ρ(t, ~x)vj(t, ~x)vk(t, ~x) + Tjk(t, ~x) =

∫
~p

pjpk
m

f(~p; t, ~x),

and the energy and energy flux densities are given by

E (t, ~x) =

∫
~p

(
~p2

2m
+ ϕ(t, ~x)m

)
f(~p; t, ~x),

Ej(t, ~x) =

∫
~p

(
~p2

2m
+ ϕ(t, ~x)m

)
pj
m
f(~p; t, ~x).

• By taking moments of the Boltzmann equation, one recovers the conservation laws. For

example, the integral of (11.2) gives

∂

∂t

∫
~p

mf(~p; t, ~x) +
∂

∂xj

∫
~p

pjf(~p; t, ~x)−m∂jϕ
∫
~p

∂

∂pj
f(~p; t, ~x) = m

∫
~p

(∂tf(~p; t, ~x))collisions .

The third term is a boundary term in momentum space and vanishes because f(~p; t, ~x) vanishes

for large |~p|. The right hand side vanishes as argued above. One recovers therefore

∂tρ(t, ~x) + ∂jρj(t, ~x) = 0.

• In a similar way one recovers

∂tPk + ∂jPjk = −ρ∂kϕ, ∂tE + ∂jEj = ρ∂tϕ.
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Transport properties from Boltzmann equation

• From a kinetic theory description, one can not only recover the macroscopic conservation

laws, but one can also derive expressions for transport properties like shear and bulk viscosity

or heat conductivity. To that end one first studies the solution of Boltzmann’s equation

corresponding to thermal equilibrium (given by the Boltzmann distribution) and then small

perturbations around it that correspond to non-vanishing shear stress, bulk viscous pressure

or heat flux. Solving the linearized Boltzmann equation leads then to expressions for the

transport terms for a given form of the scattering probability w(~q1, ~q2; ~q3, ~q4).

• The actual calculations are somewhat involved and we do not have the space here to go into

the details. We just quote the results for a simple, non-relativistic gas with elastic two-to-

two cross section σel (a billiard ball model), and mean thermal particle velocity v̄ =
√

3T/m

(obtained from 〈 12m~v
2〉 = 3

2T ) with respect to the fluid rest frame and mean free time between

collisions

τ =
1

σel v̄ n
.

The shear and bulk viscosities are

η = nT τ =
mv̄

3σel
, ζ = 0,

and the heat conductivity is

κ =
5

2
nT τ =

5mv̄

6σel
.

We use here units where kB = 1. Note that η is independent of density n. This result was

first obtained by Maxwell. He was surprised that η does not depend on density and started

to perform some measurements himself to confirm this (see http://www-outreach.phy.cam.

ac.uk/camphy/museum/area1/exhibit1.htm).

• The fact that viscosity and heat conductivity grow large when σel becomes small has the

following reason. As we have discussed before, viscosity describes the (diffusive) transport of

momentum while heat conductivity describes the transport of energy. This transport is more

efficient when the particles that carry the momentum can travel large distances between the

scatterings where they change direction of motion.

Moments of the Vlasov equation

• The properties of conventional fluids such as air or water are to a large extend dominated

by the collision term in Boltzmann’s equation. There are, however, also situations where it

can be neglected. We have so far only included a gravitational force term but one can also

consider charged particles where the electromagnetic force would appear in Vlasov’s equation

(more general all long-range forces). One can thereby describe an electro-magnetic plasma.

• A fluid that is presumably described rather well by the collision-less Boltzmann or Vlasov

equation with gravitational force is dark matter during late time cosmology. We now derive

some equations by taking moments of the Vlasov’s equation to describe this.

• By multiplying the Vlasov equation subsequently by m, pj and ~p2

2m + mϕ, one obtains the

conservation equations for mass, momentum and energy, as before. The mass density ρ(t, ~x)

and fluid velocity vj(t, ~x) can be defined via the mass current and momentum density as in

section (4). The conservation laws lead to the same continuity equation (4.2), the momentum

conservation law can be written in the form (4.3) with an additional acceleration term from

the gravitational force and the energy conservation law in the form (4.4).
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• In summary, the first few moments of the Vlasov equation imply

∂tρ+ vj∂jρ+ ρ∂jvj =0,

ρ (∂t + vj∂j) vk + ∂jTjk =ρgk,

(∂t + vj∂j) ε+ ε ∂jvj + (∂jvk)Tjk + ∂jqj =0.

(11.3)

Together with the Poisson equation for gk = −∂kϕ, these equations specify how ρ, vk and ε

change in time. However, in order to solve them, one needs to know also the stress tensor Tjk
and the heat current qj .

• The stress tensor can be related to the distribution function f(~p; t, ~x) by the following expres-

sion

Tjk(t, ~x) = m

∫
~p

(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)
f(~p; t, ~x).

When all the particle velocities equal the local fluid velocity, the stress tensor vanishes. That

would be the case for a fluid at vanishing temperature T = 0. (Note, however, that we have

assumed a classical point of view here. In reality, for a fluid / gas at very small temperature,

quantum corrections become important. Bosonic particles would form a condensate, whereas

fermionic particles would form a Fermi sphere.)

• The inner energy and heat current have the following expressions in terms of distribution

functions

ε(t, ~x) =

∫
~p

m

2

(
~p

m
− ~v(t, ~x)

)2

f(~p; t, ~x),

qj(t, ~x) =

∫
~p

m

2

(
~p

m
− ~v(t, ~x)

)2
pj
m
f(~p; t, ~x),

and they correspond to the kinetic energy density and kinetic energy current in the local fluid

rest frame.

• An approximation that is often investigated for the description of dark matter is the one of a

vanishing stress tensor Tjk = 0. This corresponds formally to a fluid of cold particles without

any velocity dispersion. For dark matter at early times, i.e. before non-linear structures form,

this should be a good approximation. The equations for ρ(t, ~x) and vj(t, ~x) are then the ones

of an ideal, pressure-less fluid.

• Beyond that approximation, let us derive an evolution equation for the stress tensor. From

the definition, we obtain

∂tTjk(t, ~x) =m

∫
~p

{(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)
∂tf(t, ~x)

− (∂tvj)
(pk
m
− vk

)
f(t, ~x)−

(pj
m
− vj

)
(∂tvk)f(t, ~x)

}
.

The terms in the second line vanish by the definition of the fluid velocity ~v. In the first line

one can use Vlasov’s equation to replace ∂tf . Using then also partial integration leads to

∂tTjk(t, ~x) =−m(∂lϕ)

∫
~p

∂

∂pl

[(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)]
f(t, ~x)

−m
∫
~p

(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

) pl
m

∂

∂xl
f(t, ~x).

– 53 –



After performing the derivatives with respect to pl one finds that the contribution from the

first term vanishes - again by the definition of ~v. For the second term we wite

∂tTjk(t, ~x) =−m
∫
~p

(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)( pl
m
− vl(t, ~x)

) ∂

∂xl
f(t, ~x)

− vlm
∫
~p

(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

) ∂

∂xl
f(t, ~x)

=− ∂

∂xl
Tjkl(t, ~x) +m

∫
~p

∂

∂xl

[(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)( pl
m
− vl(t, ~x)

)]
f(t, ~x)

− vl
∂

∂xl
Tjk(t, ~x) +m

∫
~p

∂

∂xl

[(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)]
f(t, ~x)

where we have used the definition

Tjkl(t, ~x) = m

∫
~p

(pj
m
− vj(t, ~x)

)(pk
m
− vk(t, ~x)

)( pl
m
− vl(t, ~x)

)
f(t, ~x).

The remaining derivatives with respect to the fluid velocity can be performed and one finds

the final equation

∂tTjk +
∂

∂xl
Tjkl +

(
∂

∂xl
vj

)
Tkl +

(
∂

∂xl
vk

)
Tjl +

(
∂

∂xl
vl

)
Tjk + vl

∂

∂xl
Tjk = 0.

• Interestingly, for a situation without any velocity dispersion one has Tjk = 0 and Tjkl = 0

and as a consequence ∂tTkl = 0. However, it is unclear whether that is a stable solution.
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12 Superfluids

Most substances become solid when they are cooled down to very small temperatures. There are,

however, also some noticeable exceptions. In particular, 4He consists of bosonic atoms and has at

low temperatures a phase transition from a normal fluid state to a superfluid. The reason is the

formation of a Bose-Einstein type condensate, as we will discuss below.

Macroscopic wavefunction

• At very small temperatures, a macroscopically large number of bosonic particles can occupy

a single wave function which thereby becomes important also for the collective, fluid dynamic

motion.

• At vanishing temperature, the macroscopic wave-function ψ(t, ~x) has an equation of motion

of the form

i~∂tψ(t, ~x) = − ~2

2m
~∇2ψ(t, ~x) + λ|ψ(t, ~x)|2ψ(t, ~x). (12.1)

This is known as the Gross-Pitaevskii equation. While the first and second term are ki-

netic terms, the third cubic is describing interactions among particles. We have assumed for

simplicity a point-like interaction as it is approximately realized in cold atomic gases.

• Under translations in time and space, the wave function transforms simply as

ψ(t, ~x)→ ψ′(t, ~x) = ψ(t−∆t, ~x−∆x),

and it is easy to see that this is a symmetry of (12.1).

• Another interesting symmetry is the global U(1) symmetry

ψ(t, ~x)→ eiαψ(t, ~x).

• Galilei transformations are slightly more involved,

ψ(t, ~x)→ ψ′(t, ~x) = ψ(t, ~x−∆~v t) exp

[
i

~

(
m∆~v · ~x− 1

2
m(∆~v)2t

)]
,

but one easily checks that this is a symmetry of (12.1), indeed.

• A homogeneous condensate at rest is described by a constant wave function

ψ(t, ~x) =
√
n0 e

−iµt/~. (12.2)

It is clear that this breaks the U(1) symmetry but also Galilei symmetry. (The condensate is

at rest only in one reference frame.) This is an example for spontaneous symmetry breaking

where the equations of motion remain symmetric but the symmetry breaking in on the level

of the solution.

Superfluid flow

• In the reference frame where the condensate moves with velocity ~v, the wave function is of

the form

ψ(t, ~x) =
√
n0e

iS =
√
n0 exp

[
i

~
(
m~v · ~x−

(
1
2m~v

2 + µ
)
t
)]
.

The velocity is given by the gradient of the phase S,

~v =
~
m
~∇S.

– 55 –



Moreover, the phase S satisfies the equation

~ ∂tS = −
(

1

2
m~v2 + µ

)
.

• The above equation for S holds a priori only in equilibrium. However, according to the

general principles of fluid dynamics, it should also hold locally to lowest order in a derivative

expansion. By taking the divergence, one obtains

∂tvj + ∂j

(
1

2
~v2 +

µ

m

)
= 0.

This is the evolution equation for the fluid velocity of an ideal potential flow at constant

temperature. Indeed, using dp = sdT + ρd(µ/m) one can rewrite the equation

ρ [∂tvk + vj∂jvk] + (∂kp)T = 0

which is Euler’s equation.

• We found that the condensate ψ follows the evolution equation of an ideal fluid, i.e. it seems

to have no viscosity. There is a more detailed criterion which we discuss below.

Fluid equations from Gross-Pitaevskii equation

• We have obtained the equation of motion for vk by boosting the equilibrium solution to the

Gross-Pitaevskii equation. Now we discuss another way to derive it.

• One can show easily that it follows from (12.1) that the following mass density and current

are conserved

ρ = mψ∗ψ, ρj =
~
2i

[ψ∗∂jψ − (∂jψ
∗)ψ] ,

i.e. one has ∂tρ+ ∂jρj = 0.

• One can also write the macroscopic wave function as

ψ =

√
ρ

m
eiφ

m
~

and one finds

ρj = ρ ∂jφ.

This shows that φ plays the role of a velocity potential.

• One can also use this decomposition directly in (12.1) which gives then two real equations for

ρ and φ. One of them is the conservation law for mass, the other one is

∂tφ+
1

2
(~∇φ)2 − ~2

2m2

1
√
ρ
~∇2√ρ+

λ

m2
ρ.

This equation determines the phase or superfluid velocity potential φ(t, ~x).

• Comparison to the discussion above shows that the descriptions can be matched, except for

the third term in the above equation which is sometimes called quantum pressure term. It is

∼ ~2 and of higher orders in spatial derivatives. Fluid dynamics is organized as a gradient

expansion and one would have to take this term into account only at higher order in the

expansion.
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Excitations

• We now investigate the condensate and small perturbations around it in more detail. First,

the ansatz (12.2) in (12.1) gives

µ = λn0.

In the next step, we take small perturbations into account by writing

ψ(t, ~x) = [
√
n0 + δψ(t, ~x)] e−iµt/~.

and expanding (12.1) to linear order. That gives

i~∂tδψ(t, ~x) = − ~2

2m
~∇2δψ(t, ~x) + λn0δψ(t, ~x) + λn0δψ

∗(t, ~x).

• We now search for solutions in Fourier space by expanding (now in units with ~ = 1)

δψ(t, ~x) =

∫
dω

2π

∫
d3p

(2π)3

{
u(ω, ~p)e−iωt+i~p~x + v∗(ω, ~p)eiωt+i~p~x

}
.

One obtains the system of equations(
−ω + ~p2

2m + λn0 λn0

λn0 ω + ~p2

2m + λn0

)(
u

v

)
= 0.

The dispersion relation is obtained via the determinant as

−ω2 +

(
~p2

2m

)2

+
~p2

2m
2λn0 = 0.

Note that for small momentum |~p|, the frequency is essentially linear in |~p|.

• The excitations around a Bose-Einstein condensate are bosonic quasi-particles called phonons.

For small momentum they have a dispersion relation like sound waves with velocity of sound

cs =
dω

dp

∣∣∣
p=0

=
√
λn0/m.

For large momentum p, the dispersion relation approach that of conventional free particles,

ω = ~p2/(2m).

Landau’s criterion of superfluidity

• We now discuss a situation where a certain quantity of the fluid described by the condensate

ψ flows with a velocity ~v past some body or through a capillary. If the energy and momentum

of the fluid are E = E0 and ~P = ~P0 = 0 in the fluid rest frame, they are

E′ = E + ~P~v +
1

2
M~v2 = E0 +

1

2
M~v2, ~P ′ = ~P +M~v = M~v,

in the rest frame of the body. We used here first the general transformation of some anergy

E and momentum ~P under Galilei transformations and then the particular values for the

homogeneous state.

• Consider now an excitation of some type of the fluid with energy ε(~p) and momentum ~p. In

the fluid rest frame we have now E = E0 + ε(~p) and ~P = ~p. The energy and momentum in

the rest frame of the capillary are then

E′ = E0 + ε(~p) + ~p · ~v +
1

2
M~v2, ~P ′ = ~p+M~v.

Comparison to the corresponding relation for the homogeneous state shows that the energy

and momentum associated to the excitation are ε(~p) + ~p · ~v and ~p, respectively.
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• Now, the point is that at small temperature, excitations will only be created in the fluid in

appreciable numbers when it is energetically favorable, i.e. for

ε(~p) + ~p · ~v < 0.

If this relation is not fulfilled for any momentum ~p, no excitations that could transport mo-

mentum out of a local fluid cell will be created. This means that there is no viscosity and the

flow is superfluid.

• Usually, the above relation is fulfilled for some velocities |~v| > vc for some direction ~p. The

critical velocity vc describes up to which fluid velocity the fluid remains a superfluid. For

larger velocities, excitations get created and superfluidity breaks down.

• Landau’s criterion is rather general and can be applied for many situations with different

dispersion relation ε(~p). As an example, consider the dispersion relation for cold atomic gases

with repulsive contact interaction λ > 0. One has

ε(~p) =

√(
~p2

2m

)2

+
~p2

2m
2λn0

and the critical velocity follows as

vc =
√
λn0/m.

For this present model one has vc = cs but that is not the general case. The sound velocity

is determined by dω/dp at vanishing momentum, while the critical velocity is determined via

a global condition.

Quantized vortices

• An interesting feature of a superfluid is that velocity circulation is quantized. As we have seen,

the velocity potential equals the complex phase of the macroscopic wave function. Consider

a line integral which may be topologically non-trivial (i. e. not necessarily be reducible to a

point). One has

Γ =

∮
C

(vs)jdxj =

∮
C

∂jφdxj = k
2π~
m

= k
h

m

where k ∈ Z is some integrer. This is because the phase of the macroscopic wave function ψ

must change by a multiple of 2π.

• We have found that the superfluid velocity circulation is quantized (Onsager 1947). It can

only change by discrete units

∆Γ =
h

m
.

• In an otherwise homogeneous condensate one can have vortex lines with velocity circulation

quantized as discussed above. At the center of such a vortex line, the density ρ goes to zero

which avoids a singularity in the wave function.

• Let us determine the angular momentum (within a certain volume) of such a vortex line

L =

∫
V

d3x{ρrv},

where r is the distance from the core and v is the azimuthal component of the superfluid

velocity. Using v = k~/(mr) gives

L =

∫
V

d3x
ρ

m
k~ = Nk~, .

In the last step we assumed that ρ is essentially constant, ρ = mN/V . Each particle carries

on average an angular momentum k~.
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Two fluid model

• At zero temperature the fluid is entirely superfluid and does not carry any quasiparticle

excitations or any other form of entropy. However, at non-zero temperature this changes.

• One can model the situation at temperatures that are non-vanishing but small enough such

that there is still a condensate, as a fluid with two components: a superfluid and a normal

one. The entropy is carried entirely by the normal component, while the superfluid component

describes the motion of the condensate.

• The mass density and current are decomposed into two components

ρ(t, ~x) =ρs(t, ~x) + ρn(t, ~x),

ρj(t, ~x) =ρs(t, ~x) (vs)j(t, ~x) + ρn(t, ~x) (vn)j(t, ~x),

and the mass conservation law reads

∂tρ+ ∂jρj = ∂tρs + ∂tρn + ρs∂j(vs)j + ρn∂j(vn)j + (vs)j∂jρs + (vn)j∂jρn = 0.

• In a similar way one can now write the momentum flux density, energy density, energy flux

density etc. and derive the fluid dynamic equations of motion. The equations are somewhat

involved because there are now two velocities ~vs and ~vn. We will not go further into the

details here.
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