Quantum field simulator for dynamics in curved spacetime

Stefan Floerchinger (Uni Jena)

Quantum effects in Gravitational Fields, Leipzig, September 1, 2023

FRIEDRICH-SCHILLER-
UNIVERSITAT
JENA

- Quantum field simulator for dynamics in curved spacetime [Nature 611, 260 (2022)]
- Curved and expanding spacetime geometries in Bose-Einstein condensates [Phys. Rev. A 106, 033313 (2022)]
- Scalar quantum fields in cosmologies with $2+1$ spacetime dimensions [Phys. Rev. D 105, 105020 (2022)]

Previous work on analoge gravity and cold atom cosmology

- W. G. Unruh, Experimental Black-Hole Evaporation?, PRL 46, 1351 (1981)
- M. Visser, Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Gravity 15, 1767 (1998)
- L. J. Garay, J. R. Anglin, J. I. Cirac, P. Zoller, Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, PRL 85, 4643 (2000)
- G. E. Volovik, Superfluid analogies of cosmological phenomena, Phys. Rep. 351, 195 (2001); The Universe in a Helium Droplet (OUP, 2003)
- M. Visser, C. Barceló, S. Liberati, Analogue Models of and for Gravity, Gen. Relativ. Gravit. 34, 1719 (2002)
- C. Barceló, S. Liberati, M. Visser, Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions, PPA 68, 053613 (2003)
- P. O. Fedichev, U. R. Fischer, Gibbons-Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose- Einstein-Condensed Gas, PRL 91, 240407 (2003)
- U. R. Fischer, R. Schützhold, Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates, PRA 70, 063615 (2004)
- M. Uhlmann, Y. Xu, R. Schützhold, Aspects of cosmic inflation in expanding Bose-Einstein condensates, New J. Phys. 7, 248 (2005)
- E. A. Calzetta, B. L. Hu, Early Universe Quantum Processes in BEC Collapse Experiments, Int. J. Theor. Phys. 44, 1691 (2005)
- P. Jain, S. Weinfurtner, M. Visser, C. W. Gardiner, Analog model of a Friedmann-Robertson-Walker universe in Bose-Einstein condensates: Application of the classical field method, PRA 76, 033616 (2007)
- A. Prain, S. Fagnocchi, S. Liberati, Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates, PRD 82, 105018 (2010).
- C. Barceló, S. Liberati, M. Visser, Analogue Gravity, Living Rev. Relativ. 14, 3 (2011)
- N. Bilić, D. Tolić, FRW universe in the laboratory, PRD 88, 105002 (2013)
- C.-L. Hung, V. Gurarie, and C. Chin, From Cosmology to Cold Atoms: Observation of Sakharov Oscillations in a Quenched Atomic Superfluid, Science 341, 1213 (2013).
- J. Schmiedmayer, J. Berges, Cold atom cosmology, Science 341, 1188 (2013)
- J. Rodriguez-Laguna, L. Tarruell, M. Lewenstein, A. Celi, Synthetic Unruh effect in cold atoms, PRA 95, 013627 (2017).
- S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, G. K. Campbell, A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab, PRX 8, 021021 (2018)
- M. Wittemer et al., Phonon Pair Creation by Inflating Quantum Fluctuations in an Ion Trap, PRL 123, 180502 (2019)
- C. Gooding, S. Biermann, S. Erne, J. Louko, W. G. Unruh, J. Schmiedmayer, S. Weinfurtner, Interferometric Unruh Detectors for Bose-Einstein Condensates, PRL 125, 213603 (2020)
- S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh, G. A. Lawrence, Measurement of Stimulated Hawking Emission in an Analogue System, PRL 106, 021302 (2011)
- Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys. 12, 959 (2016)
- J. R. Muñoz de Nova, K. Golubkov, V. I. Kolobov, J. Steinhauer, Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature 569, 688-691 (2019)
- S. Banik et al., Hubble Attenuation and Amplification in Expanding and Con- tracting Cold-Atom Universes, 2107.08097
- J. Steinhauer et al., Analogue cosmological particle creation in an ultracold quantum fluid of light, 2102.08279 (2021)
- A. Chatrchyan, K. T. Geier, M. K. Oberthaler, J. Berges, P. Hauke, Analog cosmological reheating in an ultracold Bose gas, PRA 104, 023302 (2021)
- S. Butera, I. Carusotto, Particle creation in the spin modes of a dynamically oscillating two-component Bose-Einstein condensate, PRD 104, 083503 (2021)

Evolution of cosmic large-scale structure
Darkmatter
[Springel, Frenk \& White, Nature 440, 1137 (2006)]

Quantum origin of fluctuations

- Universe was almost homogeneous at early times
- small fluctuations magnified by gravitational attraction
- primordial quantum fluctuations from inflation
[Mukhanov \& Chibisov (1981), Hawking (1982), Starobinsky (1982), Guth \& Pi (1982), Bardeen, Steinhardt \& Turner (1983), Fischler, Ratra \& Susskind (1985)]

Ultracold quantum gases

- can be very well controlled experimentally
- develop and test quantum field theory
- finite density, finite temperature
- out-of-equilibrium
- quantum information
- renormalization group ...

Non-relativistic quantum fields

- Bose-Einstein condensate in two dimensions
[Gross (1961), Pitaevskii (1961)]

$$
\begin{aligned}
\Gamma[\Phi]= & \int \mathrm{d} t \mathrm{~d}^{2} x\left\{\hbar \Phi^{*}(t, \mathbf{x})\left[i \frac{\partial}{\partial t}-V(t, \mathbf{x})\right] \Phi(t, \mathbf{x})\right. \\
& \left.-\frac{\hbar^{2}}{2 m} \boldsymbol{\nabla} \Phi^{*}(t, \mathbf{x}) \nabla \Phi(t, \mathbf{x})-\frac{\lambda(t)}{2} \Phi^{*}(t, \mathbf{x})^{2} \Phi(t, \mathbf{x})^{2}\right\}
\end{aligned}
$$

- low energy theory for bosonic atoms
- optical trap potential $V(t, \mathbf{x})$
- coupling strength $\lambda(t)$

- allow to control scattering length or effective s-wave interaction strength through magnetic field B
- can be made time-dependent by varying magnetic field

$$
\frac{\lambda(t)}{2} \Phi^{*}(t, \mathbf{x})^{2} \Phi(t, \mathbf{x})^{2}
$$

Experimental realization

[Markus K. Oberthaler group, Uni Heidelberg]

Superfluid and small excitations

- Complex non-relativistic field can be decomposed

$$
\Phi=e^{i S_{0}}\left(\sqrt{n_{0}}+\frac{1}{\sqrt{2}}\left[\phi_{1}+i \phi_{2}\right]\right)
$$

- real fields ϕ_{1} and ϕ_{2} describe excitations on top of the superfluid
- low energy field $\phi_{2}(t, \mathbf{x})$
- stationary superfluid density $n_{0}(\mathbf{x})$ and vanishing superfluid velocity

$$
\mathbf{v}=\frac{\hbar}{m} \boldsymbol{\nabla} S_{0}=0
$$

- small energy excitations are sound waves or phonons
- propagate with finite velocity, similar to light
- local speed of sound

$$
c_{S}(t, \mathbf{x})=\sqrt{\frac{\lambda(t) n_{0}(\mathbf{x})}{m}}
$$

- sound waves propagate along

$$
d s^{2}=-d t^{2}+\frac{1}{c_{S}(t, \mathbf{x})^{2}}(d \mathbf{x}-\mathbf{v} d t)^{2}=0
$$

- acoustic metric for vanishing fluid velocity $\mathbf{v}=0$

$$
g_{\mu \nu}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{c_{S}(t, \mathbf{x})^{2}} & 0 \\
0 & 0 & \frac{1}{c_{S}(t, \mathbf{x})^{2}}
\end{array}\right)
$$

Relativistic scalar field

- Low energy theory for phonons (with $\phi=\phi_{2} / \sqrt{2 m}$)

$$
\Gamma[\phi]=\int \mathrm{d} t \mathrm{~d}^{2} x \sqrt{g}\left\{-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right\}
$$

- metric determinant $\sqrt{g}=\sqrt{-\operatorname{det}\left(g_{\mu \nu}\right)}$
- acoustic metric depends on space and time like the space-time metric in general relativity
- phonons behave like a real, massless, relativistic scalar field in a curved spacetime!
- quantum simulator for QFT in curved space

Density profiles

- assume specifically for $r=|\mathbf{x}|<R$

$$
n_{0}(r)=\bar{n}_{0} \times\left[1-\frac{r^{2}}{R^{2}}\right]^{2}
$$

- experimental realization with optical trap and digital micromirror device
- approximate realization in harmonic trap

Acoustic spacetime geometry

- variable transform to $0 \leq u<\infty$
- leads to Friedmann-Lemaitre-Robertson-Walker metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(\frac{d u^{2}}{1-\kappa u^{2}}+u^{2} d \varphi^{2}\right)
$$

- negative spatial curvature

$$
\kappa=-4 / R^{2}
$$

- scale factor

$$
a(t)=\sqrt{\frac{m}{\bar{n}_{0}} \frac{1}{\lambda(t)}}
$$

Hyperbolic geometry

- start with Minkowski space $d s^{2}=d X^{2}+d Y^{2}-d Z^{2}$
- consider hyperboloid ("mass shell") $X^{2}+Y^{2}-Z^{2}=-R^{2} / 4$
- stereographic projection to Poincaré disc

Poincaré disc and M. C. Eschers circle limit series

Circle limit III, M. C. Escher, 1959.

Experimental realization in a Bose-Einstein condensate

mean density difference

Geometries with constant spatial curvature

Propagating sound waves

Particles as representations of space-time symmetries [Eugene P. Wigner (1939)]

- translations in space and time \leftrightarrow momentum, energy, mass
- rotations and Lorentz boosts \leftrightarrow spin / helicity
- what happens when translational symmetries get broken?

Expansion and particle production

- time-dependent scattering length induces time-dependent metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(\frac{d u^{2}}{1-\kappa u^{2}}+u^{2} d \varphi^{2}\right)
$$

- particle concept works well in regions I and III but not in region II
- vacuum state in region I leads to state with particles in region III
- expanding space leads to particle production
- analytic calculations possible for power law scale factors

$$
a(t)=\text { const } \times t^{\gamma}
$$

Laplace operator

- Laplace-Beltrami operator with spatial curvature

$$
\Delta= \begin{cases}|\kappa|\left[\frac{1}{\sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)+\frac{1}{\sin ^{2} \theta} \partial_{\varphi}^{2}\right] & \text { for } \kappa>0 \\ \partial_{u}^{2}+\frac{1}{u} \partial_{u}+\frac{1}{u^{2}} \partial_{\varphi}^{2} & \text { for } \kappa=0 \\ |\kappa|\left[\frac{1}{\sinh \sigma} \partial_{\sigma}\left(\sinh \sigma \partial_{\sigma}\right)+\frac{1}{\sinh ^{2} \sigma} \partial_{\varphi}^{2}\right] & \text { for } \kappa<0\end{cases}
$$

- eigenfunctions

$$
\mathcal{H}_{k m}(u, \varphi)=\left\{\begin{array}{llll}
Y_{l m}(\theta, \varphi) & \text { for } \kappa>0 & \text { with } & l \in \mathbb{N}_{0}, m \in\{-l, \ldots, l\} \\
X_{k m}(u, \varphi) & \text { for } \kappa=0 & \text { with } & k \in \mathbb{R}_{0}^{+}, m \in \mathbb{Z} \\
W_{l m}(\sigma, \varphi) & \text { for } \kappa<0 & \text { with } & l \in \mathbb{R}_{0}^{+}, m \in \mathbb{Z}
\end{array}\right.
$$

- eigenvalues with $k=|\kappa| l$

$$
h(k)= \begin{cases}-k(k+\sqrt{|\kappa|}) & \text { for } \quad \kappa>0 \\ -k^{2} & \text { for } \quad \kappa=0 \\ -\left(k^{2}+\frac{1}{4}|\kappa|\right) & \text { for } \quad \kappa<0\end{cases}
$$

- positive spatial curvature $\kappa>0$: spherical harmonics

$$
Y_{l m}(\theta, \varphi)=\sqrt{\frac{(l-m)!}{(l+m)!}} e^{i m \varphi} P_{l m}(\cos \theta)
$$

- vanishing spatial curvature $\kappa=0$: Bessel functions

$$
X_{k m}(u, \varphi)=e^{i m \varphi} J_{m}(k u)
$$

- negative spatial curvature $\kappa<0$: sperical harmonics with complex angular momentum

$$
W_{l m}(\sigma, \varphi)=(-i)^{m} \frac{\Gamma(i l+1 / 2)}{\Gamma(i l+m+1 / 2)} e^{i m \varphi} P_{i l-1 / 2}^{m}(\cosh \sigma)
$$

Mode functions and Bogoliubov transforms

- field gets expanded in modes

$$
\phi(t, u, \varphi)=\int_{k, m}\left[\hat{a}_{k m} \mathcal{H}_{k m}(u, \varphi) v_{k}(t)+\hat{a}_{k m}^{\dagger} \mathcal{H}_{k m}^{*}(u, \varphi) v_{k}^{*}(t)\right]
$$

- temporal mode functions satisfy

$$
\ddot{v}_{k}(t)+2 \frac{\dot{a}(t)}{a(t)} \dot{v}_{k}(t)+\frac{k^{2}+|\kappa| / 4}{a^{2}(t)} v_{k}(t)=0
$$

- vacuum state only unique for $\dot{a}(t)=0$ where $v_{k}(t) \sim e^{-i \omega_{k} t}$
- Bogoliubov transforms between different choices of $\hat{a}_{k m}$ and vacuum states

Bogoliubov transforms

- in region I one has positive frequency modes v_{k} and corresponding operators. Define vacuum

$$
\hat{a}_{k m}|\Omega\rangle=0
$$

- similar in region III positive frequency modes u_{k} with

$$
\hat{b}_{k m}|\Psi\rangle=0
$$

- Bogoliubov transform mediates between them

$$
u_{k}=\alpha_{k} v_{k}+\beta_{k} v_{k}^{*}, \quad v_{k}=\alpha_{k}^{*} u_{k}-\beta_{k} u_{k}^{*}
$$

- operators are related by

$$
\hat{b}_{k m}=\alpha_{k}^{*} \hat{a}_{k m}-\beta_{k}^{*}(-1)^{m} \hat{a}_{k,-m}^{\dagger}
$$

- condition $\left|\alpha_{k}\right|^{2}-\left|\beta_{k}\right|^{2}=1$
- constant term in spectrum $N_{k}=\left|\beta_{k}\right|^{2}$
- oscilating term $\Delta N_{k}=\operatorname{Re}\left[\alpha_{k} \beta_{k} e^{2 i \omega_{k} t}\right]$

Cosmology in $d=2+1$ spacetime dimensions

- analytic solutions for many choices of

$$
a(t)=\text { const } \times t^{\gamma}
$$

- correlation function in momentum space proportional to

$$
S_{k}(t)=\frac{1}{2}+N_{k}+\left|c_{k}\right| \cos \left(\theta_{k}+2 \omega_{k} t\right)
$$

- depends on number of e-folds, exponent γ and time after expansion ceases

- power law expansion

$$
a(t)=\text { const } \times t^{\gamma}
$$

- can be decelerating, coasting or accelerating

Observation of particle production

- rescaled density contrast

$$
\begin{aligned}
\delta_{c}(t, \mathbf{x}) & =\sqrt{\frac{n_{0}(\mathbf{x})}{\bar{n}_{0}^{3}}}\left[n(t, \mathbf{x})-n_{0}(\mathbf{x})\right] \\
& \sim \partial_{t} \phi(t, \mathbf{x})
\end{aligned}
$$

- allows to access correlation functions of relativistic scalar field by observation of density fluctuations

Density contrast correlation function

- correlation function

$$
\left\langle\delta_{c}(\mathbf{x}) \delta_{c}(\mathbf{y})\right\rangle
$$

- before and after expansion

Time dependent correlation functions after expansion

- analgous to baryon accoustic or Sakharov oscillations in cosmology
- optical resolution important for detailed shape

Baryon acoustic oscillations

I SDSS data
$-\Omega_{M} h^{2}=0.12$
$-\Omega_{\mathrm{M}} h^{2}=0.13$
$-\Omega_{\mathrm{M}} h^{2}=0.14$
$-\Lambda$ CDM model without baryon
acoustic oscillations (BAO)

Oscillations in Fourier space

- Fourier spectrum of excitations

$$
S_{k}(t)=\frac{1}{2}+N_{k}+A_{k} \cos \left(2 \omega_{k}\left(t-t_{f}\right)+\vartheta_{k}\right)
$$

- decelerated, coasting and accelerated expansion
- good agreement with analytic theory (solid lines)

Quantum recurrences

- uniform expansion with $a(t)=Q t$ is special
- shows quantum recurrences of the incoming vacuum state at special values of wavenumber k

$$
k_{n}=\frac{a_{\mathrm{f}}-a_{\mathrm{i}}}{\Delta t}\left[\left(\frac{n \pi}{\ln \left(a_{\mathrm{f}} / a_{\mathrm{i}}\right)}\right)^{2}+\frac{1}{4}\right]^{\frac{1}{2}}
$$

with integer $n=1,2,3, \ldots$

- at these points one has trivial Bogoliubov coefficient $\beta_{k}=0$
- can be seen experimentally as a discontinuity in the phase!

The scattering analogy 1
see e. g. [Mukhanov \& Winitzki (2007)]

- evolution equation

$$
\ddot{v}_{k}(t)+2 \frac{\dot{a}(t)}{a(t)} \dot{v}_{k}(t)+\frac{k^{2}+|\kappa| / 4}{a^{2}(t)} v_{k}(t)=0
$$

- can be rewritten with rescaled mode function and conformal time

$$
\psi_{k}(\eta)=\sqrt{a(t)} v_{k}(t), \quad \quad d t=a(t) d \eta
$$

- results in stationary Schrödinger equation

$$
\frac{d^{2}}{d \eta^{2}} \psi_{k}(\eta)+[E-V(\eta)] \psi_{k}(\eta)=0
$$

with

$$
E=-h(k)=k^{2} \quad V(\eta)=\left(\frac{1}{4} \dot{a}^{2}+\frac{1}{2} \ddot{a} a\right)
$$

- particle production maps to scattering problem
- early time positive frequency solution = transmitted wave moving left
- late time positive frequency solution = incoming wave moving left
- late time negative frequency solution $=$ reflected wave moving right
- exmple: coasting universe $a(t)=Q t$

$$
V(\eta)=\frac{1}{4} Q^{2} \theta\left(\eta-\eta_{\mathrm{i}}\right) \theta\left(\eta_{\mathrm{f}}-\eta\right)+\frac{1}{2} Q\left[\delta\left(\eta-\eta_{\mathrm{i}}\right)-\delta\left(\eta-\eta_{\mathrm{f}}\right)\right]
$$

- can be solved analytically, full transmission for

$$
k_{n}=\frac{a_{\mathrm{f}}-a_{\mathrm{i}}}{\Delta t}\left[\left(\frac{n \pi}{\ln \left(a_{\mathrm{f}} / a_{\mathrm{i}}\right)}\right)^{2}+\frac{1}{4}\right]^{\frac{1}{2}}
$$

Possible future extensions

- different expansion histories, contracting universes, cyclic universes, etc.
- $d=3+1$ space-time dimensions
- time-dependent spatial curvature
- other spatial geometries
- complex fields, anti-particles
- massive fields
- fluctuating geometries
- fermions
- detailed study of space-time horizons
- quantum information / entanglement
- expectation values and corralation functions of composite operators like energy-momentum tensor
- matter-anti-matter asymmetry (?)
- ...

Fermions

[M. Tolosa-Simeón, M. Scherer, S. Floerchinger, Analog of cosmological particle production in moiré Dirac materials, arxiv:2307.09299]

- twisted bilayer graphene

$$
\Gamma[\Psi]=\int d t d^{2} x \sqrt{g}\left\{-\bar{\Psi}(x) \gamma^{\alpha} e_{\alpha}^{\mu}(t) \partial_{\mu} \Psi(x)-\Psi(x) \Delta(t) \Psi(x) / v_{F}(t)\right\}
$$

- time-dependent tetrad

$$
e_{\alpha}^{\mu}(t)=\left(\begin{array}{ccc}
1 / v_{F}(t) & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- time-dependent gap or mass parameter $\Delta(t)$

Fermionic particle production
[M. Tolosa-Simeón, M. Scherer, S. Floerchinger, Analog of cosmological particle production in moiré Dirac materials, arxiv:2307.09299]

- time dependence of ratio Δ / v_{F}

- leads to particle production

Conclusion

- Bose-Einstein condensates can act as quantum simulators for quantum fields in curved spacetime
- symmetric spaces with constant curvature can be realized with specific density profiles
- experimental realization achieved in two spatial dimensions
- time-dependent coupling allows to simulate expansion
- particle production by time-dependent scale factor
- oscillations after expansion allow detailed investigations
- quantum information theoretic aspects should be accessible
- fermion production in expanding geometry could be realized with twisted bilayer graphene
- extensions to three dimensions, other geometries, different field content, and more, to come

Backup

Bogoliubov dispersion relation

- Quadratic part of action for excitations

$$
S_{2}=\int d t d^{3} x\left\{-\frac{1}{2}\left(\phi_{1}, \phi_{2}\right)\left(\begin{array}{cc}
-\frac{\nabla^{2}}{2 m}+2 \lambda n_{0} & \partial_{t} \\
-\partial_{t} & -\frac{\nabla^{2}}{2 m}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}\right\}
$$

- Dispersion relation

$$
\omega=\sqrt{\left(\frac{\mathbf{p}^{2}}{2 m}+2 \lambda \phi_{0}^{2}\right) \frac{\mathbf{p}^{2}}{2 m}}
$$

becomes linear for

$$
\mathbf{p}^{2} \ll 4 \lambda m n_{0}=\frac{2}{\xi^{2}}
$$

Renormalization in two dimensions
[S. Floerchinger, C. Wetterich, Superfluid Bose gas in two dimensions, PRA 79, 013601 (2009)]

- scale-dependent coupling in two dimensions

$$
k \frac{\partial}{\partial k} \lambda=\frac{\lambda^{2}}{4 \pi}
$$

- sound velocity and critical temperature

Expansion and hold time dependence

- initial state not necessarily vacuum
- allow finite temperature T, leads to enhanced fluctuations

---- $T=0.1 \mathrm{~T}_{\mathrm{c}}$ \qquad $\mathrm{T}=0.2 \mathrm{~T}_{\mathrm{c}}$
...... T=0.3T

More e-folds

- correlation functions in position space with Gaussian window function for UV regularization

Power spectra

Horizons and inflation

