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The ideas of information geometry

[Ronald A. Fisher, Calyampudi R. Rao, Shun’ich Amari, Nikolai N. Chentsov, ..]

e studies spaces of probability distributions p(z,£) with parameters £

o Fisher information metric (symmetric, positive semi-definite)

Gu(©) = [ o029 (g m9(2.9)) (25 W (e.6))

@ unique Riemannian metric that is invariant under sufficient statistics
[Chentsov 1972]

o higher geometric structure: pair of dual connections, non-metricity etc.
[Amari, Chentsov, ..]

@ extension to quantum states p(§)

@ geometric structure follows from a divergence or relative entropy

D(pllg) = /dxp ) In(p(z)/a())
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Sufficient statistics and Chentsov’s theorem

start from random variable z with probability distribution p(z, &) where £
are parameters
consider map to new random variable x — y = f(z) with probability
distribution ¢(y, &)
information about £* could get lost in the map
new random variable y is called sufficient statistic for & when no
information about ¢ is lost:
p(z,€) = p(aly, £)q(y,€) = r(z)q(y,§)  factorizes
” (2.)
p x7 . «@
p(z|y, &) = = r(z) independent of ¢
a(y,€)
Chentsov'’s invariance property: for sufficient statistic

Gus(€) = [ @rp0.) (5 m30.)) (05 (2.

:/dy a(y,6) (aga In Q(y,é“)) (855 In q(y, 6))



Square roots of probabilities

o Fisher information metric
1o}
Gur(©) = [ o029 (5 1p(2.9)) (2 10 p(e:6))

1 [ (/w8 (s V@8

o for discrete random variable, take coordinates

p]:€j27 ]:LvN

@ normalization implies

S+, . +&v=1

o Fisher information metric is just induced Euclidean metric on the sphere!
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Relative entropy

o classical relative entropy or Kullback-Leibler divergence

D(pllq) = ZP7 In(p;/ 4)

@ not symmetric distance measure, but a divergence

D(pllg) >0 and D(pllg) =0 & p=gq

@ quantum relative entropy of two density matrices (also a divergence)

D(pllo) = Tr{p(lnp —Ino)}

@ signals how well state p can be distinguished from a model o
@ Gibbs inequality: D(p|lo) >0
e D(p|lo)=0ifandonly if p=0¢
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Significance of Kullback-Leibler divergence

Uncertainty deficit
o true distribution p; and model distribution g;

® uncertainty deficit is expected surprise (—In ¢;) = — >, p;In ¢; minus real
information content — ijj In p;

D(pllq) = Zm In g; — (—ij lnp.7>
J

Asymptotic frequencies
e true distribution ¢; and frequency after N drawings p; = %

@ probability to find frequencies p; for large N (similar: Sanov theorem)

e~ ND(ll9)

@ probability for fluctuation around expectation value (p;) = ¢; tends to zero
for large N and when divergence D(p||q) is large
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Advantages of relative entropy: continuum limit

@ consider transition from discrete to continuous distributions

pj — f(z)dz g — g(z)dx

@ not well defined for entropy

S = —ijlnpj EN —/da:f(z) [Inf(z) + In dz]

o relative entropy remains well defined

D(plla) = D(flg) = / dz f(z) n(f () /()
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Entanglement entropy in relativistic quantum field theory

B

()

entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa = trp{p}

for relativistic quantum field theories it is infinite already in vacuum state

const
ed—2

Sa = / d26vh + subleading divergences + finite
a4

o UV divergence proportional to surface area
o relativistic quantum fields are very strongly entangled already in vacuum
@ theorem [Helmut Reeh & Siegfried Schlieder (1961)]: local operators in region A

can create all (non-local) particle states



Advantages of relative entropy: Local quantum field theory

(+)

@ entanglement entropy S(pa) for spatial region divergent !
o relative entanglement entropy is D(pal|oca) well defined !

@ rigorous definition in terms of Tomita—Takesaki theory of modular
automorphisms on von-Neumann algebras [Huzihiro Araki (1976)]

o divergence / relative entropy right concept to advance
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Thermodynamics from relative entropy

[Stefan Floerchinger & Tobias Haas, PRE 102, 052117 (2020)]
[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]

relative entropy has very nice properties

but can thermodynamics be derived from it 7 yes !

@ can entropy be replaced by relative entropy 7 yes !

o first step to understand local thermalization and emergent fluid dynamics
on this basis

Quantum
field theory
Fluidl Information
dynamics theory
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Information geometry for Fuclidean quantum fields

[S. Floerchinger, 2303.04081 and 2303.04082]

o consider classical statistical field theories
@ or bosonic quantum fields with real action in Euclidean space
e work out what information geometry has to say

o derive flow equation for divergence functional
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Probabilities for Euclidean fields: exponential family

probability density for Euclidean field theory with respect to measure Dy

plx, J] = exp (—I[x] + J% pa[x] — W[J])

uses abstract index notation

560 = [ 32 I@on(o)

partition function

@ sources J* could also compromise coupling constants
o will be considered as coordinates on space of probability distributions

@ known as exponential family in information geometry
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Affine geometry for sources

@ exponential family is closed with respect to affine transformations

I = J =M% +

o affine transformations respect convexity of W[J]

@ so-called e-geodesics
JO) = =t)J*+ eI
characterized by differential equation
& . N d s d ., B
E‘] () + (Te) %, [V] <E‘] (t)) (E‘] (1)) =0

where the connection vanishes in terms of source coordinates

(Te),™ 7] = 0
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Fisher information metric

o Fisher information metric

1 1
GaplJ] I/Dpro T 57a el Jl 575 nplx, J]
62
:*/DXP[X, J]WIDP[)& J]

o Fisher-Rao distance between nearby probability distributions

ds® = GoplJ]dJ*dJ?

o for the exponential family

Gasld] = s7oms W] = (6a0slx]) — (6l (85N)

@ equal to connected two-point correlation function !

o generalization of Zamolodchikov metric for conformal field theories
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Ezxpectation value coordinates
@ can also use field expectation values as coordinates for p[x, @]

@0 = (9a0) = 552 W) = [ Dxolx. T 9nld

J

best described in terms of quantum effective action

I[e] = sgp(Ja% - W[J]) = —inf <—/Dxp[x7 J] Inplx, J])

Fisher-Rao distance

ds® = Gup[J])6J%0J° = G*P[D] 60,0P5 = 616D

o Fisher metric in expectation value coordinates
52 5°T[®)]

af3 _ o el 0l
G[P] = /Dxp[xﬂ’] 50,005 In p[x, @] 50,005

@ another affine structure, dual to the one for sources

D, — D, = NPy + do

defines so-called m-connection
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Divergence functional in source coordinates

e functional generalization of Kullback-Leibler divergence

D[J||.J'] :/Dxp[x, J)In (plx, J1/plx, J'])

@ compares two probability distributions in asymmetric way

@ non-negative
DI’} >0

e equals Fisher-Rao distance for close-by distributions

DT = L Guslo 0.0 + .

@ characterizes probabilities for large deviations (Sanovs theorem)

@ can be written as Bregman divergence

SWIJ]
6Je

DI = (J* = J%) - W+ W[J]

o functional derivatives w.r.t. second argument yield connected correlation
functions !
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Divergence functional in expectation value coordinates

o Divergence functional in terms of expectation values

D[®||®'] = / Dx p[x, @] In (p[x, ®]/p[x, ])

_OT[@']

=I[®] - T[@'] T

(@) — @)

o functional derivatives w.r.t. first argument yield one-particle irreducible
correlation functions (for n > 2)

D" (@(|9] = T [®)],

@ mixed representation generates connected and 1-P.l. correlation functions

D[®||J'] =T[®] + W[J'] — J“®,
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Functional integral representations

o divergence functional in source coordinates

=PI _ W=7 %a _ I Dx exp(=I[x] + J*(¢alx] — Pa))
eWl=7%a [ Dy exp (=I[X] + J'*(¢a[X] — Pa))

o well defined as ratio of functional integrals

@ similar in expectation value coordinates
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Geometry from divergence

o Fisher metric from functional derivative of divergence

62

Gasl/] = = 572577

DN,

o transforms automatically as a metric under coordinate changes J — K[J]

@ m-connection symbols

52 ) /
(Tm)asy[J] = 5795 57 DL, -
@ e-connection symbols
) 52
(Pe)assl) = — 575 570575 DI TN

@ automatically transform like connections under J — K[J]
o information geometry nicely encoded in divergence functional !

@ expectation values are another useful coordinate choice
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Regularized probability distribution

@ introduce now quadratic regulator in probability density

6] = exp (=516 = JR9uds + 760 - WiLT]).

e with modified partition function

Wil = / Dé exp (—S[¢] ~ SR Guds + J“cfva) :

@ regulator can be chosen to suppress fluctuations, e. g.

Ry? = k6P
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Divergence functionals with requlator

o divergence functional with regulator

mWﬂ:/MwWﬂMm¢Wmmﬂ)

A CLCU VAT IR AT

o flowing divergence in expectation value coordinates with regulator terms
subtracted

- 1 .
Di[®||®'] =Di[®]|®] — iRkﬁ(% — @) (Pp — D)

ST [®']
50,

=Tk[®] — T[] - (o — @)
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Limit of large and small requlator

o for large k saddle point approximation becomes valid

0

ES[@ (@6 — @)

Jim Dy[@|@] = S[@] - S[@'] -

o for small k the full Kullback-Leibler divergence functional is recovered

lim D,[@] '] = D[®| &'
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Flow equation for the divergence functional

@ exact flow equation

0 / 10 ,a , / -
arDiele] =5 (%Rkﬁ) {(D,(f V1019 + Ri)op

— (DD (@)@ + Ri)or (DOP[@]1@7] + Ri)N (DY [@]|9] + Ri)a

o close relative of Polchinskis and Wetterichs equations
@ starting point for approximate solutions

@ can be used to flow from large to small regulators

o flow vanishes when ® = @’

@ general coordinates changes possible
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Conclusions

@ information geometry concepts can be applied to quantum and statistical
field theories

e divergence functional encodes the information about geometry: metric,
e-connection, m-connection etc.

o divergence functional is generating functional for connected and
one-particle irreducible correlation functions

@ new exact flow equation for divergence functional
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Advantages / disadvantages of divergence functional

@ information theoretic meaning
e positivity D[®||®'] > 0 instead of convexity for ['[®]
@ geometric realization

e connected correlation functions: e-connection
e one-particle irreducible: m-connection

@ general coordinate changes ® — W[P]
D[¥||¥'] = D[@[w]||®[¥']]

preserve geometric structure

@ equilibrium expectation value ®.q corresponding to J = 0 must be known
in addition



Entropy and information

[Claude Shannon (1948), also Ludwig Boltzmann, Willard Gibbs (~1875)]
@ consider a random variable z with probability distribution p(z)
@ information content or “surprise” associated with outcome z

i(x)
8

i(z) = —Inp(z) i
2

X
0.0 02 04 06 0.8 1.0 Ped

@ entropy is expectation value of information content

S(p) = Zp ) Inp(z

s=o0 S = In(2) S =2In(2)



Entropy in quantum theory

[John von Neumann (1932)]
S =—Tr{plnp}

@ based on the quantum density operator p

o for pure states p = |1)) (1| one has S =0

o for diagonal mixed states p =}, p;|) (J|
S = —ijlnpj >0
J
@ unitary time evolution conserves entropy

—Te{(UpUN) In(UpU")} = =Tr{pIn p} — S = const.

@ quantum information is globally conserved



Quantum entanglement

e Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

(| Daldys =14 al e)

(I =)al <) = )al =)B)

&\H%\

@ Bertlemann’s socks and the nature of reality [Bell (1980)]

nat
pink




Entropy and entanglement

e consider a split of a quantum system into two A + B

B

(+)

@ reduced density operator for system A

pa = Trz{p}

@ entropy associated with subsystem A

Sa=—Tra{palnpa}

@ pure product state p = pa ® pp leads to Sy, =0
@ pure entangled state p # pa ® pp leads to Sy > 0

S4 is called entanglement entropy



Classical statistics

consider system of two random variables z and y

joint probability p(z,y) , joint entropy

§=—> plz,y)np(z,y)

Y

reduced or marginal probability p(z) =3 p(z,y)

reduced or marginal entropy

Sy = Zp )In p(z

@ one can prove: joint entropy is greater than or equal to reduced entropy

52 S

globally pure state S = 0 is also locally pure S; =0



Quantum statistics

e consider system with two subsystems A and B

@ combined state p , combined or full entropy

S =—-Tr{plnp}

o reduced density matrix pa = Trp{p}

@ reduced or entanglement entropy

Sa=—Tra{palnpa}

o for quantum systems entanglement makes a difference

S # Sa

e coherent information Iz 4 = S4 — S can be positive!

o globally pure state S = 0 can be locally mixed S4 > 0



Entanglement entropy in non-relativistic quantum field theory

[Natalia Sanchez-Kuntz & Stefan Floerchinger, PRA 103, 043327 (2021)]

@ non-relativistic quantum field theory for Bose gas

S = /dtcl'JI ! {gp [zat—i- u] ©— 2g0*2g02

@ Bogoliubov dispersion relation

2 (2 cs| P for p < +2MMp (phonons)
w = W(W—i—Z)\p)z 2 ]
7 for p>2MMp (particles)

o low momentum regime like theory of massless relativistic scalar particles
@ high momentum regime non-relativistic
e what atre the entanglement properties?

o for p = 0 the entanglement entropy vanishes



Entanglement entropy in Bose-Finstein condensates
[Natalia Sanchez-Kuntz & Stefan Floerchinger, PRA 103, 043327 (2021)]

nonrelativistic region relativistic region
41 4
a=1
3t 1
a=;
s o ¢ a3 — baIn(X)+Cqy
(%)
* a=4
TF « a=10
Ol oo oo oo o oo i
1076 107 1072 1 102 10%
x=L/¢&
e one-dimensional Bose-Einstein condensate with subregion A of length L
o reduced density matrix pa = Trp{p}
@ Rényi entanglement entropy
Sa = L In Tr{p%}
P pa
e inverse healing length 1/& = \/2MM\p acts like UV regulator
o at large L > & we confirm CFT behaviour with b, = c”%—tf



Momnotonicity of relative entropy

[Géran Lindblad (1975)]

@ monotonicity of relative entropy
SN (PN () < S(plo)

with A/ completely positive, trace-preserving map

e N unitary time evolution

SN (p)INV(0)) = S(plo)

@ N open system evolution with generation of entanglement to environment

SN (p)IN(0)) < S(plo)

@ basis for many proofs in quantum information theory

o leads naturally to second-law type relations



Principle of maximum entropy

[Edwin Thompson Jaynes (1963)]

@ take macroscopic state characteristics as fixed, e. g.

energy F, particle number N, momentum p,

@ principle of maximum entropy: among all possible microstates o (or
distributions ¢) the one with maximum entropy S is preferred

S(Othermal) = max

e why? assume S(0) < max, than o would contain additional information
not determined by macroscopic variables, which is not available

@ maximum entropy = minimal information



Principle of minimum expected relative entropy

[Stefan Floerchinger & Tobias Haas, PRE 102, 052117 (2020)]

o take macroscopic state characteristics as fixed, e. g.

energy F, particle number N, momentum 7,

@ principle of minimum expected relative entropy: preferred is the model o
from which allowed states p are least distinguishable on average

(S (o otrermat)) = / Dp S(p||othermat) = min

o similarly for classical probability distributions

(S(plla) = / Dp S(pllq) = min

o need to define measures Dp and Dp on spaces of probability distributions
p and density matrices p, respectively



Measure on space of probability distributions
o consider set of normalized probability distributions p in agreement with
macroscopic constraints

o manifold with local coordinates ¢ = {¢',... £™}

@ integration in terms of coordinates

/Dp:/dsl---df’"u(él,...,i’”>

@ want this to be invariant under coordinate changes & — £'(¢)

@ possible choice is Jeffreys prior as integral measure [Harold Jeffreys (1946)]

w(&) = const x \/det gas(&)

@ uses Riemannian metric gos(€) on space of probability distributions:
Fisher information metric [Ronald Aylmer Fisher (1925)]

s(6) = 3 i) 2L 2n()

J




Permutation invariance
@ can now integrate functions of p

/ Dpf(p) = / 47€ u(€) F(p(€))

e consider maps {p1,...pxv} = {Pr@), - - - Py} where j — TI(j) is a
permutation, abbreviated p — TI(p)

e want to show Dp = DII(p) such that

[ ovio) = [ Dpsae)

@ convenient to choose coordinates

@y forj=1,....N —1,
PV 1— @)= = ()2 forj=A.

wich allows to write

1
/Dp:i/ detodeNs |1 -
On J_1

N

€| = [ o)

a=1



Minimizing expected relative entropy

@ consider now the functional

B(q, ) = /Dp

S(pllg) + A (Z g — 1>]
@ variation with respect to g;
! bj
0=0B= /Dp{f—Jr/\]&qv
leads by permutation invariance to the uniform distribution
1

¢ = (pj) = N

@ microcanonical distribution has minimum expected relative entropy!

o least distinguishable within the set of allowed distributions



Measure on space of density matrices

@ measure on space of density matrices Dp can be defined similarly in terms
of coordinates £ but using now quantum Fisher information metric

oe) = r{ S0 O

o definition uses symmetric logarithmic derivative such that

1 1
5p(dInp) + §(dlnp)p =dp

@ appears also as limit of relative entropy for states that approach each other

S(p(€ + dE)E)) = 5 9np(E)dE™dE" + ...



Unitary transformations as isometries

@ consider unitary map

p(&) = p' (&) = Up() U = p(&")

@ again normalized density matrix but at coordinate point &’

@ induced map on coordinates £ — £'(£) is an isometry

9ap(£)dE” d€” = gap(€')dg'* dg'”

@ can be used to show invariance of measure such that

/Dpf(p)=/Dpf(UpUT)



Minimizing expected relative entropy on density matrices

o consider now the functional

B— / DpS(pllo) = / 47€ u(€) S(p()l|o)

1
@ minimization 0 = ¢ B leads to microcanonical density matrix

1
om = —1

N

on space allowed by macroscopic constraints

e anyway only possibility for unique minimum o = Uoy UT



Microcanonical ensemble

@ microcanonical ensemble

1
o = Z5(H — E(0m))3(N — N(om))

o relative entropy of arbitrary state p to microcanonical state

—S(p) + S(om) for E(p) = E(om)
S(pllom) = and N(p) = N(om)
+00 else

o differential for dE(p) = dE(om) and dN(p) = dN(om)

dS(pllom) = — dS(p) + dS(om)
=—dS(p) + B dE(p) — BudN(p)

@ gives an alternative definition of temperature

1
=7



Canonical and grand-canonical ensemble

@ transition to canonical and grand-canonical ensembles follows the usual

construction

1 g
Ugc:Ee B(H—pN)

o relative entropy of arbitrary state p to grand-canonical state ogc

S(plloge) = — S(p) + S(ogc) + B (E(p) — E(0gc))
— Bu(N(p) — N(0og))-

o differential

dS(pllge) = — dS(p) + B dE(p) — Byu dN(p)
+ (E(p) - o)) dB
— (N(p) = N(ow)) d(Bu),

@ choices for 8 = 1/T and p such that E(p) = E(og) and N(p) = N(ogc)
extremize relative entropy S(p||ogc)



Thermal fluctuations and relative entropy

@ “mesoscopic” quantities £ fluctuate in thermal equilibrium, for example
energy in a subvolume

@ traditional theory goes back to Einsteins work on critical opalescence
[Albert Einstein (1910)]
AW ~ e5®) q¢

@ entropy can be replaced by relative entropy between state p(§) (where € is
sharp) and thermal state o (where it £ is fluctuating)

AW = e 5001 fet g (€) d"¢

N(z))
N

@ resembles closely probability for fluctuations in frequencies p; =

—NS(plla)

~ e



Third law of thermodynamics

[Walter Nernst (1905)]
@ many equivalent formulations available already
@ [Max Planck (1911)]: entropy S approaches a constant for 7" — 0 that is
independent of other thermodynamic parameters

lim S(o) = Sy = const
T—0

@ new formulation with relative entropy: relative entropy S(po||lo) between
ground state po and a thermodynamic model state o approaches zero for
T—0

lim S o)=0
lim S(pollo)

second law can also be formulated with relative entropy



Local thermal equilibrium in a quantum field theory

consider non-equilibrium situation with

e true density matrix p
e local equilibrium approximation

o= %e, J 42, {8y (2) THY +a(2)N")

reduced density matrices p4 = Trp{p} and o4 = Trp{o}

@ o is very good model for p in region A when

SA = TrA{pA(lnpA — an'A)} —0

does not imply that globally p = o

(+)

B



Local form of second law for open systems 1

[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]

|
|

o local description of quantum field theories in space-time regions bounded
by two light cones [e. g. Rudolf Haag (1992), Huzihiro Araki (1992)]

@ unitary evolution for isolated systems, more generally CPTP map

p(10) = N(p(70)) = p(71)



Local form of second law for open systems 2
[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]

@ compare to global equilibrium state

U:lexp 7/ d¥, {8, T"" + aN"}
4 =(r)

with entropy current

st = -8, T — aN" + pB*

o relative entropy
S(pllo) = Tr{p(In(p) —In(0)) }
=—S(p)+In(2) + Tr{p/ dx, (BV THY 4 aNu)}

— =80+ [ d=u{ = (o) + B[ (p) — T (@)] + a[N(p) — N ()]}

@ monotonicity of relative entropy

AS(pllo) = S(p(r1)llo (1)) = S(p(0)[lo(10)) <0

o allows to formulate local forms of the second law for fluids



Local form of second law for open systems 3
[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]

@ assume now that one can write

AS(p):5(p(71))—5(p(70)):/ﬂddw 9 5(p)(x)

o find from monotonicity of relative entropy a local form of the second law

s(p) + BV T (p) + aV.N"(p) > 0

@ next step: time evolution for isolated fluids

|
|




Quantum field dynamics

Quantum
field theory

FIuid_ Information
dynamics theory

new hypothesis

local dissipation = quantum entanglement generation

quantum information is spread

locally, quantum state approaches mixed state form

o full loss of local quantum information = local thermalization



