Functional renormalization and information geometry

Stefan Floerchinger (Friedrich-Schiller-Universität Jena)

Expolring new topics with functional renormalization, May 2023
Physikzentrum Bad Honnef
[Ronald A. Fisher, Calyampudi R. Rao, Shun'ich Amari, Nikolai N. Chentsov, ...]

- studies spaces of probability distributions $p(x, \xi)$ with parameters ξ^{α}
- Fisher information metric (symmetric, positive semi-definite)

$$
G_{\alpha \beta}(\xi)=\int d x p(x, \xi)\left(\frac{\partial}{\partial \xi^{\alpha}} \ln p(x, \xi)\right)\left(\frac{\partial}{\partial \xi^{\beta}} \ln p(x, \xi)\right)
$$

- unique Riemannian metric that is invariant under sufficient statistics [Chentsov 1972]
- higher geometric structure: pair of dual connections, non-metricity etc. [Amari, Chentsov, ...]
- extension to quantum states $\rho(\xi)$
- geometric structure follows from a divergence or relative entropy

$$
D(p \| q)=\int d x p(x) \ln (p(x) / q(x))
$$

Sufficient statistics and Chentsov's theorem

- start from random variable x with probability distribution $p(x, \xi)$ where ξ^{α} are parameters
- consider map to new random variable $x \rightarrow y=f(x)$ with probability distribution $q(y, \xi)$
- information about ξ^{α} could get lost in the map
- new random variable y is called sufficient statistic for ξ when no information about ξ is lost:

$$
p(x, \xi)=p(x \mid y, \xi) q(y, \xi)=r(x) q(y, \xi) \quad \text { factorizes }
$$

or

$$
p(x \mid y, \xi)=\frac{p(x, \xi)}{q(y, \xi)}=r(x) \quad \text { independent of } \quad \xi^{\alpha}
$$

- Chentsov's invariance property: for sufficient statistic

$$
\begin{aligned}
G_{\alpha \beta}(\xi) & =\int d x p(x, \xi)\left(\frac{\partial}{\partial \xi^{\alpha}} \ln p(x, \xi)\right)\left(\frac{\partial}{\partial \xi^{\beta}} \ln p(x, \xi)\right) \\
& =\int d y q(y, \xi)\left(\frac{\partial}{\partial \xi^{\alpha}} \ln q(y, \xi)\right)\left(\frac{\partial}{\partial \xi^{\beta}} \ln q(y, \xi)\right)
\end{aligned}
$$

Square roots of probabilities

- Fisher information metric

$$
\begin{aligned}
G_{\alpha \beta}(\xi) & =\int d x p(x, \xi)\left(\frac{\partial}{\partial \xi^{\alpha}} \ln p(x, \xi)\right)\left(\frac{\partial}{\partial \xi^{\beta}} \ln p(x, \xi)\right) \\
& =4 \int d x\left(\frac{\partial}{\partial \xi^{\alpha}} \sqrt{p(x, \xi)}\right)\left(\frac{\partial}{\partial \xi^{\beta}} \sqrt{p(x, \xi)}\right)
\end{aligned}
$$

- for discrete random variable, take coordinates

$$
p_{j}=\xi_{j}^{2}, \quad j=1, \ldots, N .
$$

- normalization implies

$$
\xi_{1}^{2}+\ldots+\xi_{N}^{2}=1
$$

- Fisher information metric is just induced Euclidean metric on the sphere!

Relative entropy

- classical relative entropy or Kullback-Leibler divergence

$$
D(p \| q)=\sum_{j} p_{j} \ln \left(p_{j} / q_{j}\right)
$$

- not symmetric distance measure, but a divergence

$$
D(p \| q) \geq 0 \quad \text { and } \quad D(p \| q)=0 \quad \Leftrightarrow \quad p=q
$$

- quantum relative entropy of two density matrices (also a divergence)

$$
D(\rho \| \sigma)=\operatorname{Tr}\{\rho(\ln \rho-\ln \sigma)\}
$$

- signals how well state ρ can be distinguished from a model σ
- Gibbs inequality: $D(\rho \| \sigma) \geq 0$
- $D(\rho \| \sigma)=0$ if and only if $\rho=\sigma$

Significance of Kullback-Leibler divergence

Uncertainty deficit

- true distribution p_{j} and model distribution q_{j}
- uncertainty deficit is expected surprise $\left\langle-\ln q_{j}\right\rangle=-\sum_{j} p_{j} \ln q_{j}$ minus real information content $-\sum_{j} p_{j} \ln p_{j}$

$$
D(p \| q)=-\sum_{j} p_{j} \ln q_{j}-\left(-\sum_{j} p_{j} \ln p_{j}\right)
$$

Asymptotic frequencies

- true distribution q_{j} and frequency after N drawings $p_{j}=\frac{N\left(x_{j}\right)}{N}$
- probability to find frequencies p_{j} for large N (similar: Sanov theorem)

$$
\sim e^{-N D(p \| q)}
$$

- probability for fluctuation around expectation value $\left\langle p_{j}\right\rangle=q_{j}$ tends to zero for large N and when divergence $D(p \| q)$ is large

Advantages of relative entropy: continuum limit

- consider transition from discrete to continuous distributions

$$
p_{j} \rightarrow f(x) d x \quad q_{j} \rightarrow g(x) d x
$$

- not well defined for entropy

$$
S=-\sum p_{j} \ln p_{j} \xrightarrow{\natural}-\int d x f(x)[\ln f(x)+\ln d x]
$$

- relative entropy remains well defined

$$
D(p \| q) \rightarrow D(f \| g)=\int d x f(x) \ln (f(x) / g(x))
$$

Entanglement entropy in relativistic quantum field theory

B

A

- entanglement entropy of region A is a local notion of entropy

$$
S_{A}=-\operatorname{tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\} \quad \rho_{A}=\operatorname{tr}_{B}\{\rho\}
$$

- for relativistic quantum field theories it is infinite already in vacuum state

$$
S_{A}=\frac{\text { const }}{\epsilon^{d-2}} \int_{\partial A} d^{d-2} \sigma \sqrt{h}+\text { subleading divergences }+ \text { finite }
$$

- UV divergence proportional to surface area
- relativistic quantum fields are very strongly entangled already in vacuum
- theorem [Helmut Reeh \& Siegfried Schlieder (1961)]: local operators in region A can create all (non-local) particle states

Advantages of relative entropy: Local quantum field theory

B

A

- entanglement entropy $S\left(\rho_{A}\right)$ for spatial region divergent!
- relative entanglement entropy is $D\left(\rho_{A} \| \sigma_{A}\right)$ well defined!
- rigorous definition in terms of Tomita-Takesaki theory of modular automorphisms on von-Neumann algebras [Huzihiro Araki (1976)]
- divergence / relative entropy right concept to advance
[Stefan Floerchinger \& Tobias Haas, PRE 102, 052117 (2020)]
[Neil Dowling, Stefan Floerchinger \& Tobias Haas, PRD 102, 105002 (2020)]
- relative entropy has very nice properties
- but can thermodynamics be derived from it ? yes !
- can entropy be replaced by relative entropy ? yes !
- first step to understand local thermalization and emergent fluid dynamics on this basis

Information geometry for Euclidean quantum fields
[S. Floerchinger, 2303.04081 and 2303.04082]

- consider classical statistical field theories
- or bosonic quantum fields with real action in Euclidean space
- work out what information geometry has to say
- derive flow equation for divergence functional

Probabilities for Euclidean fields: exponential family

- probability density for Euclidean field theory with respect to measure $D \chi$

$$
p[\chi, J]=\exp \left(-I[\chi]+J^{\alpha} \phi_{\alpha}[\chi]-W[J]\right)
$$

- uses abstract index notation

$$
J^{\alpha} \phi_{\alpha}=\int_{x} \sum_{n} J_{n}(x) \phi_{n}(x)
$$

- partition function

$$
e^{W[J]}=\int D \chi \exp \left(-I[\chi]+J^{\alpha} \phi_{\alpha}[\chi]\right)
$$

- sources J^{α} could also compromise coupling constants
- will be considered as coordinates on space of probability distributions
- known as exponential family in information geometry
- exponential family is closed with respect to affine transformations

$$
J^{\alpha} \rightarrow J^{\prime \alpha}=M_{\beta}^{\alpha} J^{\beta}+c^{\alpha}
$$

- affine transformations respect convexity of $W[J]$
- so-called e-geodesics

$$
J^{\alpha}(t)=(1-t) J^{\prime \alpha}+t J^{\prime \prime \alpha}
$$

characterized by differential equation

$$
\frac{d^{2}}{d t^{2}} J^{\alpha}(t)+\left(\Gamma_{\mathrm{E}}\right)_{\beta}{ }_{\gamma}^{\alpha}[J]\left(\frac{d}{d t} J^{\beta}(t)\right)\left(\frac{d}{d t} J^{\gamma}(t)\right)=0
$$

where the connection vanishes in terms of source coordinates

$$
\left(\Gamma_{\mathrm{E}}\right)_{\beta}{ }_{\gamma}^{\alpha}[J]=0
$$

Fisher information metric

- Fisher information metric

$$
\begin{aligned}
G_{\alpha \beta}[J] & =\int D \chi p[\chi, J] \frac{\delta}{\delta J^{\alpha}} \ln p[\chi, J] \frac{\delta}{\delta J^{\beta}} \ln p[\chi, J] \\
& =-\int D \chi p[\chi, J] \frac{\delta^{2}}{\delta J^{\alpha} \delta J^{\beta}} \ln p[\chi, J]
\end{aligned}
$$

- Fisher-Rao distance between nearby probability distributions

$$
d s^{2}=G_{\alpha \beta}[J] d J^{\alpha} d J^{\beta}
$$

- for the exponential family

$$
G_{\alpha \beta}[J]=\frac{\delta^{2}}{\delta J^{\alpha} \delta J^{\beta}} W[J]=\left\langle\phi_{\alpha}[\chi] \phi_{\beta}[\chi]\right\rangle-\left\langle\phi_{\alpha}[\chi]\right\rangle\left\langle\phi_{\beta}[\chi]\right\rangle
$$

- equal to connected two-point correlation function!
- generalization of Zamolodchikov metric for conformal field theories

Expectation value coordinates

- can also use field expectation values as coordinates for $p[\chi, \Phi]$

$$
\Phi_{\alpha}=\left\langle\phi_{\alpha}[\chi]\right\rangle=\frac{\delta}{\delta J^{\alpha}} W[J]=\int D \chi p[\chi, J] \phi_{\alpha}[\chi]
$$

- best described in terms of quantum effective action

$$
\Gamma[\Phi]=\sup _{J}\left(J^{\alpha} \Phi_{\alpha}-W[J]\right)=-\inf _{J}\left(-\int D \chi p[\chi, J] \ln p[\chi, J]\right)
$$

- Fisher-Rao distance

$$
d s^{2}=G_{\alpha \beta}[J] \delta J^{\alpha} \delta J^{\beta}=G^{\alpha \beta}[\Phi] \delta \Phi_{\alpha} \delta \Phi_{\beta}=\delta J^{\alpha} \delta \Phi_{\beta}
$$

- Fisher metric in expectation value coordinates

$$
G^{\alpha \beta}[\Phi]=-\int D \chi p[\chi, \Phi] \frac{\delta^{2}}{\delta \Phi_{\alpha} \delta \Phi_{\beta}} \ln p[\chi, \Phi]=\frac{\delta^{2} \Gamma[\Phi]}{\delta \Phi_{\alpha} \delta \Phi_{\beta}}
$$

- another affine structure, dual to the one for sources

$$
\Phi_{\alpha} \rightarrow \Phi_{\alpha}^{\prime}=N_{\alpha}{ }^{\beta} \Phi_{\beta}+d_{\alpha}
$$

- defines so-called m-connection

Divergence functional in source coordinates

- functional generalization of Kullback-Leibler divergence

$$
D\left[J \| J^{\prime}\right]=\int D \chi p[\chi, J] \ln \left(p[\chi, J] / p\left[\chi, J^{\prime}\right]\right)
$$

- compares two probability distributions in asymmetric way
- non-negative

$$
D\left[J \| J^{\prime}\right] \geq 0
$$

- equals Fisher-Rao distance for close-by distributions

$$
D\left[J \| J^{\prime}\right]=\frac{1}{2} G_{\alpha \beta}[J] \delta J^{\alpha} \delta J^{\beta}+\ldots
$$

- characterizes probabilities for large deviations (Sanovs theorem)
- can be written as Bregman divergence

$$
D\left[J \| J^{\prime}\right]=\left(J^{\alpha}-J^{\prime \alpha}\right) \frac{\delta W[J]}{\delta J^{\alpha}}-W[J]+W\left[J^{\prime}\right]
$$

- functional derivatives w.r.t. second argument yield connected correlation functions !

Divergence functional in expectation value coordinates

- Divergence functional in terms of expectation values

$$
\begin{aligned}
D\left[\Phi \| \Phi^{\prime}\right] & =\int D \chi p[\chi, \Phi] \ln \left(p[\chi, \Phi] / p\left[\chi, \Phi^{\prime}\right]\right) \\
& =\Gamma[\Phi]-\Gamma\left[\Phi^{\prime}\right]-\frac{\delta \Gamma\left[\Phi^{\prime}\right]}{\delta \Phi_{\lambda}^{\prime}}\left(\Phi_{\lambda}-\Phi_{\lambda}^{\prime}\right)
\end{aligned}
$$

- functional derivatives w.r.t. first argument yield one-particle irreducible correlation functions (for $n \geq 2$)

$$
D^{(n, 0)}\left[\Phi \| \Phi^{\prime}\right]=\Gamma^{(n)}[\Phi],
$$

- mixed representation generates connected and 1-P.I. correlation functions

$$
D\left[\Phi \| J^{\prime}\right]=\Gamma[\Phi]+W\left[J^{\prime}\right]-J^{\prime \alpha} \Phi_{\alpha}
$$

- divergence functional in source coordinates

$$
e^{-D\left[J \| J^{\prime}\right]}=\frac{e^{W[J]-J^{\alpha} \Phi_{\alpha}}}{e^{W\left[J^{\prime}\right]-J^{\prime \alpha} \Phi_{\alpha}}}=\frac{\int D \chi \exp \left(-I[\chi]+J^{\alpha}\left(\phi_{\alpha}[\chi]-\Phi_{\alpha}\right)\right)}{\int D \tilde{\chi} \exp \left(-I[\tilde{\chi}]+J^{\prime \alpha}\left(\phi_{\alpha}[\tilde{\chi}]-\Phi_{\alpha}\right)\right)}
$$

- well defined as ratio of functional integrals
- similar in expectation value coordinates

Geometry from divergence

- Fisher metric from functional derivative of divergence

$$
G_{\alpha \beta}[J]=-\left.\frac{\delta^{2}}{\delta J^{\alpha} \delta J^{\prime \beta}} D\left[J \| J^{\prime}\right]\right|_{J=J^{\prime}}
$$

- transforms automatically as a metric under coordinate changes $J \rightarrow K[J]$
- m-connection symbols

$$
\left(\Gamma_{\mathrm{M}}\right)_{\alpha \beta \gamma}[J]=-\left.\frac{\delta^{2}}{\delta J^{\alpha} \delta J^{\gamma}} \frac{\delta}{\delta J^{\prime \beta}} D\left[J \| J^{\prime}\right]\right|_{J=J^{\prime}}
$$

- e-connection symbols

$$
\left(\Gamma_{\mathrm{E}}\right)_{\alpha \beta \gamma}[J]=-\left.\frac{\delta}{\delta J^{\beta}} \frac{\delta^{2}}{\delta J^{\prime \alpha} \delta J^{\prime \beta}} D\left[J \| J^{\prime}\right]\right|_{J=J^{\prime}}
$$

- automatically transform like connections under $J \rightarrow K[J]$
- information geometry nicely encoded in divergence functional !
- expectation values are another useful coordinate choice

Regularized probability distribution

- introduce now quadratic regulator in probability density

$$
p_{k}[\phi, J]=\exp \left(-S[\phi]-\frac{1}{2} R_{k}^{\alpha \beta} \phi_{\alpha} \phi_{\beta}+J^{\alpha} \phi_{\alpha}-W_{k}[J]\right)
$$

- with modified partition function

$$
e^{W_{k}[J]}=\int D \phi \exp \left(-S[\phi]-\frac{1}{2} R_{k}^{\alpha \beta} \phi_{\alpha} \phi_{\beta}+J^{\alpha} \phi_{\alpha}\right) .
$$

- regulator can be chosen to suppress fluctuations, e. g.

$$
R_{k}^{\alpha \beta}=k^{2} \delta^{\alpha \beta}
$$

Divergence functionals with regulator

- divergence functional with regulator

$$
\begin{aligned}
\tilde{D}_{k}\left[J \| J^{\prime}\right] & =\int D \phi p_{k}[\phi, J] \ln \left(p_{k}[\phi, J] / p_{k}\left[\phi, J^{\prime}\right]\right) \\
& =\left(J^{\alpha}-J^{\prime \alpha}\right) \frac{\delta W_{k}[J]}{\delta J^{\alpha}}-W_{k}[J]+W_{k}\left[J^{\prime}\right]
\end{aligned}
$$

- flowing divergence in expectation value coordinates with regulator terms subtracted

$$
\begin{aligned}
D_{k}\left[\Phi \| \Phi^{\prime}\right] & =\tilde{D}_{k}\left[\Phi \| \Phi^{\prime}\right]-\frac{1}{2} R_{k}^{\alpha \beta}\left(\Phi_{\alpha}-\Phi_{\alpha}^{\prime}\right)\left(\Phi_{\beta}-\Phi_{\beta}^{\prime}\right) \\
& =\Gamma_{k}[\Phi]-\Gamma_{k}\left[\Phi^{\prime}\right]-\frac{\delta \Gamma_{k}\left[\Phi^{\prime}\right]}{\delta \Phi_{\lambda}^{\prime}}\left(\Phi_{\lambda}-\Phi_{\lambda}^{\prime}\right)
\end{aligned}
$$

Limit of large and small regulator

- for large k saddle point approximation becomes valid

$$
\lim _{k \rightarrow \infty} D_{k}\left[\Phi \| \Phi^{\prime}\right]=S[\Phi]-S\left[\Phi^{\prime}\right]-\frac{\delta}{\delta \Phi_{\alpha}^{\prime}} S\left[\Phi^{\prime}\right]\left(\Phi_{\alpha}-\Phi_{\alpha}^{\prime}\right)
$$

- for small k the full Kullback-Leibler divergence functional is recovered

$$
\lim _{k \rightarrow 0} D_{k}\left[\Phi \| \Phi^{\prime}\right]=D\left[\Phi \| \Phi^{\prime}\right]
$$

Flow equation for the divergence functional

- exact flow equation

$$
\begin{aligned}
& \frac{\partial}{\partial k} D_{k}\left[\Phi \| \Phi^{\prime}\right]=\frac{1}{2}\left(\frac{\partial}{\partial k} R_{k}^{\alpha \beta}\right)\left[\left(D_{k}^{(2,0)}\left[\Phi \| \Phi^{\prime}\right]+R_{k}\right)_{\alpha \beta}^{-1}\right. \\
& \left.-\left(D_{k}^{(1,1)}\left[\Phi \| \Phi^{\prime}\right]+R_{k}\right)_{\alpha \lambda}^{-1}\left(D_{k}^{(0,2)}\left[\Phi \| \Phi^{\prime}\right]+R_{k}\right)^{\lambda \kappa}\left(D_{k}^{(1,1)}\left[\Phi \| \Phi^{\prime}\right]+R_{k}\right)_{\kappa \beta}^{-1}\right]
\end{aligned}
$$

- close relative of Polchinskis and Wetterichs equations
- starting point for approximate solutions
- can be used to flow from large to small regulators
- flow vanishes when $\Phi=\Phi^{\prime}$
- general coordinates changes possible
- information geometry concepts can be applied to quantum and statistical field theories
- divergence functional encodes the information about geometry: metric, e-connection, m-connection etc.
- divergence functional is generating functional for connected and one-particle irreducible correlation functions
- new exact flow equation for divergence functional

Backup

Advantages / disadvantages of divergence functional

- information theoretic meaning
- positivity $D\left[\Phi \| \Phi^{\prime}\right] \geq 0$ instead of convexity for $\Gamma[\Phi]$
- geometric realization
- connected correlation functions: e-connection
- one-particle irreducible: m-connection
- general coordinate changes $\Phi \rightarrow \Psi[\Phi]$

$$
D\left[\Psi \| \Psi^{\prime}\right]=D\left[\Phi[\Psi] \| \Phi^{\prime}\left[\Psi^{\prime}\right]\right]
$$

preserve geometric structure

- equilibrium expectation value $\Phi_{\text {eq }}$ corresponding to $J=0$ must be known in addition

Entropy and information
[Claude Shannon (1948), also Ludwig Boltzmann, Willard Gibbs (~1875)]

- consider a random variable x with probability distribution $p(x)$
- information content or "surprise" associated with outcome x

- entropy is expectation value of information content

$$
S(p)=\langle i(x)\rangle=-\sum_{x} p(x) \ln p(x)
$$

Entropy in quantum theory
[John von Neumann (1932)]

$$
S=-\operatorname{Tr}\{\rho \ln \rho\}
$$

- based on the quantum density operator ρ
- for pure states $\rho=|\psi\rangle\langle\psi|$ one has $S=0$
- for diagonal mixed states $\rho=\sum_{j} p_{j}|j\rangle\langle j|$

$$
S=-\sum_{j} p_{j} \ln p_{j}>0
$$

- unitary time evolution conserves entropy

$$
-\operatorname{Tr}\left\{\left(U \rho U^{\dagger}\right) \ln \left(U \rho U^{\dagger}\right)\right\}=-\operatorname{Tr}\{\rho \ln \rho\} \quad \rightarrow \quad S=\text { const. }
$$

- quantum information is globally conserved

Quantum entanglement

- Can quantum-mechanical description of physical reality be considered complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

$$
\begin{aligned}
\psi & =\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}-|\downarrow\rangle_{A}|\uparrow\rangle_{B}\right) \\
& =\frac{1}{\sqrt{2}}\left(|\rightarrow\rangle_{A}|\leftarrow\rangle_{B}-|\leftarrow\rangle_{A}|\rightarrow\rangle_{B}\right)
\end{aligned}
$$

- Bertlemann's socks and the nature of reality [Bell (1980)]

Entropy and entanglement

- consider a split of a quantum system into two $A+B$

B

A

- reduced density operator for system A

$$
\rho_{A}=\operatorname{Tr}_{B}\{\rho\}
$$

- entropy associated with subsystem A

$$
S_{A}=-\operatorname{Tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\}
$$

- pure product state $\rho=\rho_{A} \otimes \rho_{B}$ leads to $S_{A}=0$
- pure entangled state $\rho \neq \rho_{A} \otimes \rho_{B}$ leads to $S_{A}>0$
- S_{A} is called entanglement entropy

Classical statistics

- consider system of two random variables x and y
- joint probability $p(x, y)$, joint entropy

$$
S=-\sum_{x, y} p(x, y) \ln p(x, y)
$$

- reduced or marginal probability $p(x)=\sum_{y} p(x, y)$
- reduced or marginal entropy

$$
S_{x}=-\sum_{x} p(x) \ln p(x)
$$

- one can prove: joint entropy is greater than or equal to reduced entropy

$$
S \geq S_{x}
$$

- globally pure state $S=0$ is also locally pure $S_{x}=0$
- consider system with two subsystems A and B
- combined state ρ, combined or full entropy

$$
S=-\operatorname{Tr}\{\rho \ln \rho\}
$$

- reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}\{\rho\}$
- reduced or entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\}
$$

- for quantum systems entanglement makes a difference

$$
S \nsupseteq S_{A}
$$

- coherent information $I_{B\rangle A}=S_{A}-S$ can be positive!
- globally pure state $S=0$ can be locally mixed $S_{A}>0$

Entanglement entropy in non-relativistic quantum field theory
[Natalia Sanchez-Kuntz \& Stefan Floerchinger, PRA 103, 043327 (2021)]

- non-relativistic quantum field theory for Bose gas

$$
S=\int d t d^{d-1} x\left\{\varphi^{*}\left[i \partial_{t}+\frac{\vec{\nabla}^{2}}{2 m}+\mu\right] \varphi-\frac{\lambda}{2} \varphi^{* 2} \varphi^{2}\right\}
$$

- Bogoliubov dispersion relation

$$
\omega=\sqrt{\frac{\vec{p}^{2}}{2 M}\left(\frac{\vec{p}^{2}}{2 M}+2 \lambda \rho\right)} \approx\left\{\begin{array}{llll}
c_{s}|\vec{p}| & \text { for } & p \ll \sqrt{2 M \lambda \rho} & \text { (phonons) } \\
\frac{\vec{p}^{2}}{2 M} & \text { for } \quad p \gg \sqrt{2 M \lambda \rho} & \text { (particles) }
\end{array}\right.
$$

- low momentum regime like theory of massless relativistic scalar particles
- high momentum regime non-relativistic
- what atre the entanglement properties?
- for $\rho=0$ the entanglement entropy vanishes

Entanglement entropy in Bose-Einstein condensates
[Natalia Sanchez-Kuntz \& Stefan Floerchinger, PRA 103, 043327 (2021)]

- one-dimensional Bose-Einstein condensate with subregion A of length L
- reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}\{\rho\}$
- Rényi entanglement entropy

$$
S_{\alpha}=-\frac{1}{\alpha-1} \ln \operatorname{Tr}\left\{\rho_{A}^{\alpha}\right\}
$$

- inverse healing length $1 / \xi=\sqrt{2 M \lambda \rho}$ acts like UV regulator
- at large $L \gg \xi$ we confirm CFT behaviour with $b_{\alpha}=c \frac{\alpha+1}{6 \alpha}$

Monotonicity of relative entropy

[Göran Lindblad (1975)]

- monotonicity of relative entropy

$$
S(\mathcal{N}(\rho) \mid \mathcal{N}(\sigma)) \leq S(\rho \mid \sigma)
$$

with \mathcal{N} completely positive, trace-preserving map

- \mathcal{N} unitary time evolution

$$
S(\mathcal{N}(\rho) \mid \mathcal{N}(\sigma))=S(\rho \mid \sigma)
$$

- \mathcal{N} open system evolution with generation of entanglement to environment

$$
S(\mathcal{N}(\rho) \mid \mathcal{N}(\sigma))<S(\rho \mid \sigma)
$$

- basis for many proofs in quantum information theory
- leads naturally to second-law type relations
[Edwin Thompson Jaynes (1963)]
- take macroscopic state characteristics as fixed, e. g.

$$
\text { energy } E, \quad \text { particle number } N, \quad \text { momentum } \vec{p},
$$

- principle of maximum entropy: among all possible microstates σ (or distributions q) the one with maximum entropy S is preferred

$$
S\left(\sigma_{\text {thermal }}\right)=\max
$$

- why? assume $S(\sigma)<$ max, than σ would contain additional information not determined by macroscopic variables, which is not available
- maximum entropy $=$ minimal information

Principle of minimum expected relative entropy
[Stefan Floerchinger \& Tobias Haas, PRE 102, 052117 (2020)]

- take macroscopic state characteristics as fixed, e. g.

$$
\text { energy } E, \quad \text { particle number } N, \quad \text { momentum } \vec{p},
$$

- principle of minimum expected relative entropy: preferred is the model σ from which allowed states ρ are least distinguishable on average

$$
\left\langle S\left(\rho \| \sigma_{\text {thermal }}\right)\right\rangle=\int D \rho S\left(\rho \| \sigma_{\text {thermal }}\right)=\min
$$

- similarly for classical probability distributions

$$
\langle S(p \| q)\rangle=\int D p S(p \| q)=\min
$$

- need to define measures $D p$ and $D \rho$ on spaces of probability distributions p and density matrices ρ, respectively

Measure on space of probability distributions

- consider set of normalized probability distributions p in agreement with macroscopic constraints
- manifold with local coordinates $\xi=\left\{\xi^{1}, \ldots, \xi^{m}\right\}$
- integration in terms of coordinates

$$
\int D p=\int d \xi^{1} \cdots d \xi^{m} \mu\left(\xi^{1}, \ldots, \xi^{m}\right)
$$

- want this to be invariant under coordinate changes $\xi \rightarrow \xi^{\prime}(\xi)$
- possible choice is Jeffreys prior as integral measure [Harold Jeffreys (1946)]

$$
\mu(\xi)=\text { const } \times \sqrt{\operatorname{det} g_{\alpha \beta}(\xi)}
$$

- uses Riemannian metric $g_{\alpha \beta}(\xi)$ on space of probability distributions: Fisher information metric [Ronald Aylmer Fisher (1925)]

$$
g_{\alpha \beta}(\xi)=\sum_{j} p_{j}(\xi) \frac{\partial \ln p_{j}(\xi)}{\partial \xi^{\alpha}} \frac{\partial \ln p_{j}(\xi)}{\partial \xi^{\beta}}
$$

Permutation invariance

- can now integrate functions of p

$$
\int D p f(p)=\int d^{m} \xi \mu(\xi) f(p(\xi))
$$

- consider maps $\left\{p_{1}, \ldots p_{\mathcal{N}}\right\} \rightarrow\left\{p_{\Pi(1)}, \ldots p_{\Pi(\mathcal{N})}\right\}$ where $j \rightarrow \Pi(j)$ is a permutation, abbreviated $p \rightarrow \Pi(p)$
- want to show $D p=D \Pi(p)$ such that

$$
\int D p f(p)=\int D p f(\Pi(p))
$$

- convenient to choose coordinates

$$
p_{j}= \begin{cases}\left(\xi^{j}\right)^{2} & \text { for } j=1, \ldots, \mathcal{N}-1, \\ 1-\left(\xi^{1}\right)^{2}-\ldots-\left(\xi^{\mathcal{N}-1}\right)^{2} & \text { for } j=\mathcal{N}\end{cases}
$$

wich allows to write

$$
\int D p=\frac{1}{\Omega_{\mathcal{N}}} \int_{-1}^{1} d \xi^{1} \cdots d \xi^{\mathcal{N}} \delta\left(1-\sqrt{\sum_{\alpha=1}^{\mathcal{N}}\left(\xi^{\alpha}\right)^{2}}\right)=\int D \Pi(p)
$$

Minimizing expected relative entropy

- consider now the functional

$$
B(q, \lambda)=\int D p\left[S(p \| q)+\lambda\left(\sum_{i} q_{i}-1\right)\right]
$$

- variation with respect to q_{j}

$$
0 \stackrel{!}{=} \delta B=\sum_{j} \int D p\left[-\frac{p_{j}}{q_{j}}+\lambda\right] \delta q_{j}
$$

leads by permutation invariance to the uniform distribution

$$
q_{j}=\left\langle p_{j}\right\rangle=\frac{1}{\mathcal{N}}
$$

- microcanonical distribution has minimum expected relative entropy!
- least distinguishable within the set of allowed distributions
- measure on space of density matrices $D \rho$ can be defined similarly in terms of coordinates ξ but using now quantum Fisher information metric

$$
g_{\alpha \beta}(\xi)=\operatorname{Tr}\left\{\frac{\partial \rho(\xi)}{\partial \xi^{\alpha}} \frac{\partial \ln \rho(\xi)}{\partial \xi^{\beta}}\right\}
$$

- definition uses symmetric logarithmic derivative such that

$$
\frac{1}{2} \rho(d \ln \rho)+\frac{1}{2}(d \ln \rho) \rho=d \rho
$$

- appears also as limit of relative entropy for states that approach each other

$$
S(\rho(\xi+d \xi) \| \rho(\xi))=\frac{1}{2} g_{\alpha \beta}(\xi) d \xi^{\alpha} d \xi^{\beta}+\ldots
$$

Unitary transformations as isometries

- consider unitary map

$$
\rho(\xi) \rightarrow \rho^{\prime}(\xi)=U \rho(\xi) U^{\dagger}=\rho\left(\xi^{\prime}\right)
$$

- again normalized density matrix but at coordinate point ξ^{\prime}
- induced map on coordinates $\xi \rightarrow \xi^{\prime}(\xi)$ is an isometry

$$
g_{\alpha \beta}(\xi) d \xi^{\alpha} d \xi^{\beta}=g_{\alpha \beta}\left(\xi^{\prime}\right) d \xi^{\prime \alpha} d \xi^{\prime \beta}
$$

- can be used to show invariance of measure such that

$$
\int D \rho f(\rho)=\int D \rho f\left(U \rho U^{\dagger}\right)
$$

Minimizing expected relative entropy on density matrices

- consider now the functional

$$
B=\int D \rho S(\rho \| \sigma)=\int d^{m} \xi \mu(\xi) S(\rho(\xi) \| \sigma)
$$

- minimization $0 \stackrel{!}{=} \delta B$ leads to microcanonical density matrix

$$
\sigma_{\mathrm{m}}=\frac{1}{\mathcal{N}} \mathbb{1}
$$

on space allowed by macroscopic constraints

- anyway only possibility for unique minimum $\sigma_{\mathrm{m}}=U \sigma_{\mathrm{m}} U^{\dagger}$

Microcanonical ensemble

- microcanonical ensemble

$$
\sigma_{\mathrm{m}}=\frac{1}{Z_{\mathrm{m}}} \delta\left(H-E\left(\sigma_{\mathrm{m}}\right)\right) \delta\left(N-N\left(\sigma_{\mathrm{m}}\right)\right)
$$

- relative entropy of arbitrary state ρ to microcanonical state

$$
S\left(\rho \| \sigma_{\mathrm{m}}\right)= \begin{cases}-S(\rho)+S\left(\sigma_{\mathrm{m}}\right) & \text { for } E(\rho) \equiv E\left(\sigma_{\mathrm{m}}\right) \\ & \text { and } N(\rho) \equiv N\left(\sigma_{\mathrm{m}}\right) \\ +\infty & \text { else }\end{cases}
$$

- differential for $d E(\rho) \equiv d E\left(\sigma_{\mathrm{m}}\right)$ and $d N(\rho) \equiv d N\left(\sigma_{\mathrm{m}}\right)$

$$
\begin{aligned}
d S\left(\rho \| \sigma_{\mathrm{m}}\right) & =-d S(\rho)+d S\left(\sigma_{\mathrm{m}}\right) \\
& =-d S(\rho)+\beta d E(\rho)-\beta \mu d N(\rho)
\end{aligned}
$$

- gives an alternative definition of temperature

$$
\beta=\frac{1}{T}
$$

- transition to canonical and grand-canonical ensembles follows the usual construction

$$
\sigma_{\mathrm{gc}}=\frac{1}{Z} e^{-\beta(H-\mu N)}
$$

- relative entropy of arbitrary state ρ to grand-canonical state σ_{gc}

$$
\begin{aligned}
S\left(\rho \| \sigma_{\mathrm{gc}}\right)= & -S(\rho)+S\left(\sigma_{\mathrm{gc}}\right)+\beta\left(E(\rho)-E\left(\sigma_{\mathrm{gc}}\right)\right) \\
& -\beta \mu\left(N(\rho)-N\left(\sigma_{\mathrm{gc}}\right)\right) .
\end{aligned}
$$

- differential

$$
\begin{aligned}
d S\left(\rho \| \sigma_{\mathrm{gc}}\right)= & -d S(\rho)+\beta d E(\rho)-\beta \mu d N(\rho) \\
& +\left(E(\rho)-E\left(\sigma_{\mathrm{gc}}\right)\right) d \beta \\
& -\left(N(\rho)-N\left(\sigma_{\mathrm{gc}}\right)\right) d(\beta \mu)
\end{aligned}
$$

- choices for $\beta=1 / T$ and μ such that $E(\rho)=E\left(\sigma_{\mathrm{gc}}\right)$ and $N(\rho)=N\left(\sigma_{\mathrm{gc}}\right)$ extremize relative entropy $S\left(\rho \| \sigma_{\mathrm{gc}}\right)$
- "mesoscopic" quantities ξ fluctuate in thermal equilibrium, for example energy in a subvolume
- traditional theory goes back to Einsteins work on critical opalescence [Albert Einstein (1910)]

$$
d W \sim e^{S(\xi)} d \xi
$$

- entropy can be replaced by relative entropy between state $\rho(\xi)$ (where ξ is sharp) and thermal state σ (where it ξ is fluctuating)

$$
d W=\frac{1}{Z} e^{-S(\rho(\xi) \| \sigma)} \sqrt{\operatorname{det} g_{\alpha \beta}(\xi)} d^{m} \xi
$$

- resembles closely probability for fluctuations in frequencies $p_{j}=\frac{N\left(x_{j}\right)}{N}$

$$
\sim e^{-N S(p \| q)}
$$

[Walter Nernst (1905)]

- many equivalent formulations available already
- [Max Planck (1911)]: entropy S approaches a constant for $T \rightarrow 0$ that is independent of other thermodynamic parameters

$$
\lim _{T \rightarrow 0} S(\sigma)=S_{0}=\text { const }
$$

- new formulation with relative entropy: relative entropy $S\left(\rho_{0} \| \sigma\right)$ between ground state ρ_{0} and a thermodynamic model state σ approaches zero for $T \rightarrow 0$

$$
\lim _{T \rightarrow 0} S\left(\rho_{0} \| \sigma\right)=0
$$

- second law can also be formulated with relative entropy

Local thermal equilibrium in a quantum field theory

- consider non-equilibrium situation with
- true density matrix ρ
- local equilibrium approximation

$$
\sigma=\frac{1}{Z} e^{-\int d \Sigma_{\mu}\left\{\beta_{\nu}(x) T^{\mu \nu}+\alpha(x) N^{\mu}\right\}}
$$

- reduced density matrices $\rho_{A}=\operatorname{Tr}_{B}\{\rho\}$ and $\sigma_{A}=\operatorname{Tr}_{B}\{\sigma\}$
- σ is very good model for ρ in region A when

$$
S_{A}=\operatorname{Tr}_{A}\left\{\rho_{A}\left(\ln \rho_{A}-\ln \sigma_{A}\right)\right\} \rightarrow 0
$$

- does not imply that globally $\rho=\sigma$

Local form of second law for open systems 1
[Neil Dowling, Stefan Floerchinger \& Tobias Haas, PRD 102, 105002 (2020)]

- local description of quantum field theories in space-time regions bounded by two light cones [e. g. Rudolf Haag (1992), Huzihiro Araki (1992)]
- unitary evolution for isolated systems, more generally CPTP map

$$
\rho\left(\tau_{0}\right) \rightarrow \mathcal{N}\left(\rho\left(\tau_{0}\right)\right)=\rho\left(\tau_{1}\right)
$$

Local form of second law for open systems 2
[Neil Dowling, Stefan Floerchinger \& Tobias Haas, PRD 102, 105002 (2020)]

- compare to global equilibrium state

$$
\sigma=\frac{1}{Z} \exp \left[-\int_{\Sigma(\tau)} d \Sigma_{\mu}\left\{\beta_{\nu} T^{\mu \nu}+\alpha N^{\mu}\right\}\right]
$$

with entropy current

$$
s^{\mu}=-\beta_{\nu} T^{\mu \nu}-\alpha N^{\mu}+p \beta^{\mu}
$$

- relative entropy

$$
\begin{aligned}
S(\rho \| \sigma) & =\operatorname{Tr}\{\rho(\ln (\rho)-\ln (\sigma))\} \\
= & -S(\rho)+\ln (Z)+\operatorname{Tr}\left\{\rho \int d \Sigma_{\mu}\left(\beta_{\nu} T^{\mu \nu}+\alpha N^{\mu}\right)\right\} \\
= & -S(\rho)+\int d \Sigma_{\mu}\left\{-s^{\mu}(\sigma)+\beta_{\nu}\left[T^{\mu \nu}(\rho)-T^{\mu \nu}(\sigma)\right]+\alpha\left[N^{\mu}(\rho)-N^{\mu}(\sigma)\right]\right\}
\end{aligned}
$$

- monotonicity of relative entropy

$$
\Delta S(\rho \| \sigma)=S\left(\rho\left(\tau_{1}\right) \| \sigma\left(\tau_{1}\right)\right)-S\left(\rho\left(\tau_{0}\right) \| \sigma\left(\tau_{0}\right)\right) \leq 0
$$

- allows to formulate local forms of the second law for fluids

Local form of second law for open systems 3
[Neil Dowling, Stefan Floerchinger \& Tobias Haas, PRD 102, 105002 (2020)]

- assume now that one can write

$$
\Delta S(\rho)=S\left(\rho\left(\tau_{1}\right)\right)-S\left(\rho\left(\tau_{0}\right)\right)=\int_{\Omega} d^{d} x \sqrt{g} \mathfrak{s}(\rho)(x)
$$

- find from monotonicity of relative entropy a local form of the second law

$$
\mathfrak{s}(\rho)+\beta_{\nu} \nabla_{\mu} T^{\mu \nu}(\rho)+\alpha \nabla_{\mu} N^{\mu}(\rho) \geq 0
$$

- next step: time evolution for isolated fluids

Quantum field dynamics

- new hypothesis

$$
\text { local dissipation }=\text { quantum entanglement generation }
$$

- quantum information is spread
- locally, quantum state approaches mixed state form
- full loss of local quantum information $=$ local thermalization

