Pair production of phonons in Bose-Einstein condensates with curved and expanding acoustic metric

Stefan Floerchinger (Uni Jena)

Physics of Intense Fields (PIF 2022), Online, 02/09/2022

STRUCTURES

Team & publications

Derthaler Group, Heidelberg University

Álvaro Parra-López, Mireia Tolosa-Simeón, Natalia Sánchez-Kuntz, Tobias Haas, Helmut Strobel, Stefan Floerchinger, Markus K. Oberthaler, *Quantum field simulator for dynamics in curved spacetime*, arXiv:2202.10441

- Mireia Tolosa-Simeón, Álvaro Parra-López, Natalia Sánchez-Kuntz, Tobias Haas, Celia Viermann, Marius Sparn, Nikolas Liebster, Maurus Hans, Elinor Kath, Helmut Strobel, Markus K. Oberthaler, Stefan Floerchinger, *Curved and expanding spacetime geometries in Bose-Einstein condensates*, arXiv:2202.10399
- Natalia Sánchez-Kuntz, Álvaro Parra-López, Mireia Tolosa-Simeón, Tobias Haas, Stefan Floerchinger, *Scalar quantum fields in cosmologies with 2+1 spacetime dimensions*, Phys. Rev. D 105, 105020 (2022)

Quantum origin of fluctuations

- Universe was almost homogeneous at early times
- small fluctuations magnified by gravitational attraction
- primordial fluctuations most likely quantum fluctuations maginfied by inflation

[Mukhanov & Chibisov (1981), Hawking (1982), Starobinsky (1982), Guth & Pi (1982),

Bardeen, Steinhardt & Turner (1983), Fischler, Ratra & Susskind (1985)]

Non-relativistic quantum fields

• Bose-Einstein condensate in two dimensions

[Gross (1961), Pitaevskii (1961)]

$$\begin{split} \Gamma[\Phi] &= \int \mathsf{d}t \, \mathsf{d}^2 x \Biggl\{ \hbar \Phi^*(t,\mathbf{x}) \left[i \frac{\partial}{\partial t} - V(t,\mathbf{x}) \right] \Phi(t,\mathbf{x}) \\ &- \frac{\hbar^2}{2m} \nabla \Phi^*(t,\mathbf{x}) \nabla \Phi(t,\mathbf{x}) - \frac{\lambda(t)}{2} \Phi^*(t,\mathbf{x})^2 \Phi(t,\mathbf{x})^2 \Biggr\} \end{split}$$

- ${\mbox{\circ}}$ traping potential $V(t,{\mbox{x}})$ and coupling strength $\lambda(t)$
- can be realized and controlled experimentally

[Oberthaler group, KIP Heidelberg]

Superfluid and small excitations

• Complex non-relativistic field can be decomposed

$$\Phi = e^{iS_0} \left(\sqrt{n_0} + \frac{1}{\sqrt{2}} \left[\phi_1 + i\phi_2 \right] \right)$$

- ullet real fields ϕ_1 and ϕ_2 describe excitations on top of the superfluid
- stationary superfluid density $n_0(\mathbf{x})$ and vanishing superfluid velocity

$$\mathbf{v} = \frac{\hbar}{m} \boldsymbol{\nabla} S_0 = 0$$

Sound waves / phonons

- small energy excitations are sound waves or phonons
- propagate with finite velocity, similar to light
- local speed of sound

$$c_S(t, \mathbf{x}) = \sqrt{\frac{\lambda(t) n_0(\mathbf{x})}{m}}$$

sound waves propagate along

$$ds^{2} = -dt^{2} + \frac{1}{c_{S}(t, \mathbf{x})^{2}} (d\mathbf{x} - \mathbf{v}dt)^{2} = 0$$

• acoustic metric for $\mathbf{v} = \mathbf{0}$

$$g_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0\\ 0 & \frac{1}{c_S(t,\mathbf{x})^2} & 0\\ 0 & 0 & \frac{1}{c_S(t,\mathbf{x})^2} \end{pmatrix}$$

Relativistic scalar field

• low energy theory for phonons (with $\phi=\phi_2/\sqrt{2m}$)

$$\Gamma[\phi] = \int \mathrm{d}t \, \mathrm{d}^2 x \, \sqrt{g} \left\{ -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right\}$$

- metric determinant $\sqrt{g} = \sqrt{-\det(g_{\mu\nu})}$
- acoustic metric depends on space and time like the space-time metric in Einsteins theory of general relativity !
- phonons behave like real, massless, relativistic scalar field in a curved spacetime !

$Density \ profiles$

 \bullet assume specifically for $r = |\mathbf{x}| < R$

$$n_0(r) = \bar{n}_0 \times \left[1 - \frac{r^2}{R^2}\right]^2$$

- experimental realization with optical trap and digital micromirror device
- approximate realization in harmonic trap

Acoustic spacetime geometry

 \bullet variable transform to $0 \leq u < \infty$

• leads to Friedmann-Lemaitre-Robertson-Walker metric

$$ds^{2} = -dt^{2} + a^{2}(t)\left(\frac{du^{2}}{1 - \kappa u^{2}} + u^{2}d\varphi^{2}\right)$$

negative spatial curvature

$$\kappa = -4/R^2$$

scale factor

$$a(t) = \sqrt{\frac{m}{\bar{n}_0} \frac{1}{\lambda(t)}}$$

Hyperbolic geometry

Experimental realization in a Bose-Einstein condensate

Particle production

• time-dependent scattering length induces time-dependent metric

$$ds^2 = -dt + u^2 t \left(\frac{du^2}{1 - \kappa u^2} + u^2 d\varphi^2 \right)$$

particle concept works well in regions I and III but not in region II
 vacuum state in region I leads to state with particles in region III
 expanding space produces particles !

analytic calculations possible for power law scale factors

 $a(t) = \operatorname{const} \times t^{\gamma}$

Mode functions and Bogoliubov transforms

• field gets expanded in modes

$$\phi(t, u, \varphi) = \int_{k, m} \left[\hat{a}_{km} \mathcal{H}_{km}(u, \varphi) v_k(t) + \hat{a}_{km}^{\dagger} \mathcal{H}_{km}^*(u, \varphi) v_k^*(t) \right]$$

- spatial part $\mathcal{H}_{km}(u, \varphi)$ can be expressed in terms of spherical harmonics at complex angular momenta in hyperbolic geometry
- mode functions satisfy

$$\ddot{v}_k(t) + 2\frac{\dot{a}(t)}{a(t)}\dot{v}_k(t) + \frac{k^2 + |\kappa|/4}{a^2(t)}v_k(t) = 0$$

- vacuum state only unique for $\dot{a}(t) = 0$ where $v_k(t) \sim e^{-i\omega_k t}$
- Bogoliubov transforms between different choices of \hat{a}_{km} and vacuum states

Observation of particle production

rescaled density contrast

$$\delta_c(t, \mathbf{x}) = \sqrt{rac{n_0(\mathbf{x})}{ar{n}_0^3}} \left[n(t, \mathbf{x}) - n_0(\mathbf{x})
ight] \sim \partial_t \phi(t, \mathbf{x})$$

• allows to test relativistic scalar field

Density contrast correlation function

correlation function

 $\langle \delta_c(\mathbf{x}) \delta_c(\mathbf{y}) \rangle$

• before and after expansion

Time dependent correlation functions after expansion

- analgous to baryon accoustic or Sakharov oscillations in cosmology
- optical resolution important for detailed shape

Expansion history

Oscillations in Fourier space

• Fourier spectrum of excitations

$$S_k(t) = rac{1}{2} + N_k + A_k \cos(2\omega_k(t-t_{
m f}) + artheta_k)$$

- decelerated, coasting and accelerated expansion
- good agreement with analytic theory (solid lines)

Quantum recurrences

- uniform expansion with a(t) = Qt is special
- $\bullet\,$ shows quantum recurrences of the incoming vacuum state at special values of wavenumber $k\,$

$$k_n = \frac{a_{\rm f} - a_{\rm i}}{\Delta t} \left[\left(\frac{n\pi}{\ln\left(a_{\rm f}/a_{\rm i}\right)} \right)^2 + \frac{1}{4} \right]^{\frac{1}{2}},$$

with integer $n = 1, 2, 3, \ldots$

- at these points one has trivial Bogoliubov coefficient $\beta_k = 0$
- can be seen experimentally as a discontinuity in the phase !

Conclusion

- Bose-Einstein condensates can be quantum simulators for quantum fields in curved spacetime
- Symmetric spaces with constant curvature can be realized with specific radial density profiles
- Experimental realization in two spatial dimensions
- Time-dependent coupling allows to simulate expansion
- Particle production by time-dependent scale factor
- Oscillations after expansion allow detailed investigations
- Quantum information theoretic aspects also accessible
- Extensions to three dimensions, other geometries, other field content, and more, are possible

BACKUP

Geometries with constant spatial curvature

Propagating sound waves

Previous work on analoge gravity and cold atom cosmology

- W. G. Unruh, Experimental Black-Hole Evaporation?, PRL 46, 1351 (1981)
- M. Visser, Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Gravity 15, 1767 (1998)
- L. J. Garay, J. R. Anglin, J. I. Cirac, P. Zoller, Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, PRL 85, 4643 (2000)
- G. E. Volovik, Superfluid analogies of cosmological phenomena, Phys. Rep. 351, 195 (2001); The Universe in a Helium Droplet (OUP, 2003)
- M. Visser, C. Barceló, S. Liberati, Analogue Models of and for Gravity, Gen. Relativ. Gravit. 34, 1719 (2002)
- C. Barceló, S. Liberati, M. Visser, Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions, PPA 68, 053613 (2003)
- P. O. Fedichev, U. R. Fischer, Gibbons-Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose- Einstein-Condensed Gas, PRL 91, 240407 (2003)
- U. R. Fischer, R. Schützhold, Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates, PRA 70, 063615 (2004)
- M. Uhlmann, Y. Xu, R. Schützhold, Aspects of cosmic inflation in expanding Bose-Einstein condensates, New J. Phys. 7, 248 (2005)
- E. A. Calzetta, B. L. Hu, Early Universe Quantum Processes in BEC Collapse Experiments, Int. J. Theor. Phys. 44, 1691 (2005)
- P. Jain, S. Weinfurtner, M. Visser, C. W. Gardiner, Analog model of a Friedmann-Robertson-Walker universe in Bose-Einstein condensates: Application of the classical field method, PRA 76, 033616 (2007)
- A. Prain, S. Fagnocchi, S. Liberati, Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates, PRD 82, 105018 (2010).
- C. Barceló, S. Liberati, M. Visser, Analogue Gravity, Living Rev. Relativ. 14, 3 (2011)
- N. Bilić, D. Tolić, FRW universe in the laboratory, PRD 88, 105002 (2013)

- C.-L. Hung, V. Gurarie, and C. Chin, From Cosmology to Cold Atoms: Observation of Sakharov Oscillations in a Quenched Atomic Superfluid, Science 341, 1213 (2013).
- J. Schmiedmayer, J. Berges, Cold atom cosmology, Science 341, 1188 (2013)
- J. Rodriguez-Laguna, L. Tarruell, M. Lewenstein, A. Celi, Synthetic Unruh effect in cold atoms, PRA 95, 013627 (2017).
- S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, G. K. Campbell, A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab, PRX 8, 021021 (2018)
- M. Wittemer et al., Phonon Pair Creation by Inflating Quantum Fluctuations in an Ion Trap, PRL 123, 180502 (2019)
- C. Gooding, S. Biermann, S. Erne, J. Louko, W. G. Unruh, J. Schmiedmayer, S. Weinfurtner, Interferometric Unruh Detectors for Bose-Einstein Condensates, PRL 125, 213603 (2020)
- S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh, G. A. Lawrence, Measurement of Stimulated Hawking Emission in an Analogue System, PRL 106, 021302 (2011)
- Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys. 12, 959 (2016)
- J. R. Muñoz de Nova, K. Golubkov, V. I. Kolobov, J. Steinhauer, Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature 569, 688–691 (2019)
- S. Banik et al., Hubble Attenuation and Amplification in Expanding and Con- tracting Cold-Atom Universes, 2107.08097
- J. Steinhauer et al., Analogue cosmological particle creation in an ultracold quantum fluid of light, 2102.08279 (2021)
- A. Chatrchyan, K. T. Geier, M. K. Oberthaler, J. Berges, P. Hauke, Analog cosmological reheating in an ultracold Bose gas, PRA 104, 023302 (2021)
- S. Butera, I. Carusotto, Particle creation in the spin modes of a dynamically oscillating two-component Bose-Einstein condensate, PRD 104, 083503 (2021)