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Fluid dynamics

long distances, long times or strong enough interactions
quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T , µ)
shear + bulk viscosity η(T , µ), ζ(T , µ)
heat conductivity κ(T , µ), . . .
relaxation times, ...
electrical conductivity σ(T , µ)

fixed by microscopic properties encoded in Lagrangian LQCD

old dream of condensed matter physics: understand the fluid properties!
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p + πbulk)∆
µν + πµν

Nµ = n uµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T , µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply
equation for energy density ε

equation for fluid velocity uµ

equation for particle number density n

Need further evolution equations [e.g Israel & Stewart]
equation for shear stress πµν

equation for bulk viscous pressure πbulk

τbulk uµ∂µπbulk + . . .+πbulk = −ζ ∇µuµ

equation for diffusion current νµ

non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Remarks

derivation from quantum effective action Γ[φ] wanted
[Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]

expectation values and correlation functions of interest
underlying principle: most excitations or modes relax quickly
[Kadanoff & Martin (1963)]

exception: conserved quantities like energy, momentum or particle density
(“hydrodynamic modes”)
but: some non-hydrodynamic modes are needed for causality
how to obtain additional equations of motion for them?
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One-particle irreducible or quantum effective action

partition function Z [J ], Schwinger functional W [J ]

Z [J ] =
∫

Dχ eiS[χ]−i
∫

x{J(x)χ(x)}

quantum effective action Γ[φ] defined by Legendre transform

Γ[φ] =

∫
x

J(x)φ(x)− W [J ]

with expectation values φ(x) = δW [J ]/δJ(x)
includes all quantum and statistical fluctuations !
equation of motion for field expectation values

δ

δφ(x)Γ[φ] = J(x)

functional renormalization group: flow equation for Γ[φ]
can be used in and out of equilibrium
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Covariant energy-momentum conservation
quantum effective action Γ[φ, g] at stationary matter fields

δ

δφ(x)Γ[φ, g] = 0

energy-momentum tensor defined by

δΓ[φ, g] = 1
2

∫
ddx√g Tµν(x)δgµν(x)

diffeomorphism is gauge transformation of metric

gµν(x) → gµν(x) +∇µεν(x) +∇νεµ(x)

from invariance of Γ[φ, g] under diffeomorphisms

∇µTµν(x) = 0

work here in Riemann geometry with Levi-Civita connection

δΓ ρ
µ ν =

1
2gρλ (∇µδgνλ +∇νδgµλ −∇λδgµν)
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Why curved space?

spacetime metric gµν(x) provides source for Tµν(x)
metric is actually a gauge field
full renormalized Tµν(x) follows from variation of Γ[φ, g]
can still evaluate everything in flat space in the end
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Why non-Riemannian geometry?

can one learn more by studying further deformations of geometry?
some equations of motion for non-ideal fluids still missing
can still evaluate everything in Riemannian geometry / flat space in the
end
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Local scaling or Weyl gauge transformations
transforms matter fields

φ(x) → e−∆φζ(x)φ(x)

scales metric
gµν(x) → e2ζ(x)gµν(x)

Weyl gauge field (Abelian)

Bµ(x) → Bµ(x)− ∂µζ(x)

variation of effective action with respect to Bµ(x) gives a current Wµ(x)
equation of motion from variation with respect to ζ(x)

∇ρW ρ(x) = 2
d
[
Tµ

µ(x)− U µ
µ(x)

]
in general not conserved but right hand side can be calculated
vanishes for conformal field theories in flat space
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Non-Riemannian geometry

[Floerchinger & Grossi, Phys. Rev. D 105, 085015 (2022)]

general connection

Γ ρ
µ σ =

1
2gρλ (∂µgσλ + ∂σgµλ − ∂λgµσ)+C ρ

µ σ

+B̂ ρ
µ σ + B̂ ρ

σµ − B̂ρ
µσ+Bµδ

ρ
σ + Bσδ

ρ
µ − Bρgµσ

contorsion C ρ
µ σ = gauge field for local Lorentz transformations

Weyl gauge field Bµ = gauge field for local dilatations
proper non-metricity B̂ ρ

µ σ = gauge field for local shear transformations
together form the group GL(d) of basis changes in tangent space / the
frame bundle
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Hypermomentum current

[von der Heyde, Kerlick & Hehl (1976)]
[Floerchinger & Grossi, Phys. Rev. D 105, 085015 (2022)]

in Non-Riemannian geometry, affine connection Γ ρ
µ σ(x) can be varied

independent of the metric gµν(x)

δΓ =

∫
ddx√g

{
1
2U µν(x)δgµν(x)−

1
2S µ σ

ρ (x)δΓ ρ
µ σ(x)

}
with new symmetric tensor U µν and hypermomentum current S µ σ

ρ

hypermomentum current can be decomposed further

S µ σ
ρ = Qµ σ

ρ + Wµ δ σ
ρ + Sµ σ

ρ + Sσµ
ρ + S µσ

ρ

with
spin current Sµρσ = −Sµσρ

dilatation current Wµ

shear current Qµρσ = Qµσρ, Qµρ
ρ = 0
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Extended symmetries

local Lorentz transformations, local dilatations and local shear
transformation are extended symmetries: they change the quantum
effective action Γ but in a specific way
extended symmetries ⇒ non-conserved Noether currents
example: Partial Conservation of Axial Current (PCAC) relations: not a
symmetry in the presence of quark masses but still very useful
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Extended symmetries 2
[Floerchinger & Grossi, Phys. Rev. D 105, 085015 (2022)]

consider transformation of fields

φ(x) → φ(x) + idξj(x)Tjφ(x)

might be non-Abelian with structure constants

[Tk,Tl] = if j
kl Tj

introduce external gauge field and covariant derivative

Dµφ(x) =
(
∇µ − iAj

µ(x)Tj

)
φ(x)

gauge field transforms as usual

Aj
µ(x) → Aj

µ(x) + f j
kl Ak

µ(x)dξl(x) +∇µdξj(x)
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Extended symmetries 3
[Floerchinger & Grossi,Phys. Rev. D 105, 085015 (2022)]

change of effective action Γ[φ,A]

Γ[φ+ idξjTjφ,Aj
µ+ f j

kl Ak
µdξl +∇µdξj] = Γ[φ]+

∫
ddx√g

{
Ij(x) dξj(x)

}

define current through

J µ
j (x) = 1

√g
δΓ

δAj
µ(x)

obtain conservation-type relation (for δΓ/δφ = 0)

DµJ µ
j (x) = ∇µJ µ

j (x) + f l
jk Ak

µ(x)J µ
l (x) = −Ij(x)

global symmetry Ij(x) = 0 ⇒ conserved Noether current
extended symmetry Ij(x) 6= 0 but known at macroscopic level ⇒
non-conserved Noether current

13 / 18



Equations of motion for dilatation and shear current

[Floerchinger & Grossi, Phys. Rev. D 105, 085015 (2022)]

variation of connection contains Levi-Civita part and non-Riemannian part

δΓ ρ
µ σ =

1
2gρλ (∇µδgσλ +∇σδgµλ −∇λδgµσ) + δC ρ

µ σ + δD ρ
µ σ

variation at δC ρ
µ σ = δD ρ

µ σ = 0 gives energy-momentum tensor

Tµν = U µν +
1
2∇ρ (Qρµν + W ρgµν)

new equation of motion for shear current

∇ρQρµν = 2
[
Tµν − U µν − gµν

d (Tσ
σ − U σ

σ)

]

similar for Wey current
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Spin current
[..., Floerchinger & Grossi, Phys. Rev. D 105, 085015 (2022)]

tetrad formalism: vary tetrad V A
µ and spin connection Ω AB

µ

δΓ =

∫
ddx√g

{
T µ

A(x)δV A
µ (x)− 1

2Sµ
AB(x)δΩ

AB
µ (x)

}
with

canonical energy-momentum tensor T µ
A

spin current Sµ
AB

symmetric energy-momentum tensor in Belinfante-Rosenfeld form

Tµν(x) = T µν(x) + 1
2∇ρ [Sρµν(x) + Sµνρ(x) + Sνµρ(x)]

equation of motion for spin current

∇µSµρσ = T σρ − T ρσ

non-conserved Noether current
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Example: Scalar field
action for scalar field in d spacetime dimensions

Γ =

∫
ddx√g

{
−1

2gµν∇µϕ∇νϕ− U (ϕ)− 1
2ξRϕ2

}
,

co-covariant derivative

∇µϕ = (∂µ −∆ϕBµ)ϕ =

(
∂µ − d − 2

2 Bµ

)
ϕ

how does this extend to non-Riemannian space? Is R replaced by the
generalized Riemann scalar R ?
in that case one finds hypermomemtum current

S µ σ
ρ = −d − 2

2d δσρ ∂
µϕ2 − ξgµσ∂ρϕ

2 + ξδµρ∂
σϕ2.

Weyl current (vanishes for conformal choice of ξ)

Wµ =

(
ξ

2d − 2
d − d − 2

2d

)
∂µϕ2
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Implications for relativistic fluid dynamics

dilatation current, shear current and spin current provide additional
information about quantum fields out-of-equilibrium
their contribution to energy-momentum tensor comes with derivatives and
vanishes in equilibrium or for ideal fluids
new equations of motion for “non-hydrodynamic” modes
can one formulate non-ideal relativistic fluid dynamics on this basis?
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Conclusions

studying quantum field theory in non-Riemannian geometry can be useful
coupling to general connection subtle, but can arise through
renormalization effects
new divergence-type equations of motion
dilatation current, shear current and spin current
extended symmetries ⇒ non-conserved Noether currents
fluid dynamics ⇔ non-equilibrium quantum field theory
to do: extension to fluids with additional charges

18 / 18


