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Entropy and information

[Claude Shannon (1948), also Ludwig Boltzmann, Willard Gibbs (∼1875)]

consider a random variable x with probability distribution p(x)

information content or “surprise” associated with outcome x

i(x) = − ln p(x)
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entropy is expectation value of information content
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Thermodynamics

[..., Antoine Laurent de Lavoisier, Nicolas Léonard Sadi Carnot, Hermann von Helmholtz, Rudolf

Clausius, Ludwig Boltzmann, James Clerk Maxwell, Max Planck, Walter Nernst, Willard Gibbs, ...]

micro canonical ensemble: maximum entropy S for given conserved
quantities E,N in given volume V

starting point for development of thermodynamics ...

S(E,N, V ), dS =
1

T
dE − µ

T
dN +

p

T
dV

... grand canonical ensemble with density operator ...

ρ =
1

Z
e−

1
T

(H−µN)

... Einsteins probability for classical thermal fluctuations ...

dW ∼ eS(ξ)dξ
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Fluid dynamics

uses thermodynamics locally

T (x), µ(x), uµ(x), ...

evolution from conservation laws

∇µTµν(x) = 0, ∇µNµ(x) = 0.

local dissipation = local entropy production

∇µsµ(x) = ∂ts(x) + ~∇ · ~s(x) > 0

in Navier-Stokes approximation with shear viscosity η, bulk viscosity ζ

∇µsµ =
1

T

[
2ησµνσ

µν + ζ(∇ρuρ)2]
how to understand this in quantum field theory?



Entropy in quantum theory

[John von Neumann (1932)]

S = −Tr{ρ ln ρ}

based on the quantum density operator ρ

for pure states ρ = |ψ〉〈ψ| one has S = 0

for diagonal mixed states ρ =
∑
j pj |j〉〈j|

S = −
∑
j

pj ln pj > 0

unitary time evolution conserves entropy

−Tr{(UρU†) ln(UρU†)} = −Tr{ρ ln ρ} → S = const.

quantum information is globally conserved
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Quantum entanglement

Can quantum-mechanical description of physical reality be considered
complete? [Albert Einstein, Boris Podolsky, Nathan Rosen (1935), David Bohm (1951)]

ψ =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B)

=
1√
2

(| →〉A| ←〉B − | ←〉A| →〉B)

Bertlemann’s socks and the nature of reality [John Stewart Bell (1980)]
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Entropy and entanglement

consider a split of a quantum system into two A+B

A

B

reduced density operator for system A

ρA = TrB{ρ}

entropy associated with subsystem A

SA = −TrA{ρA ln ρA}

pure product state ρ = ρA ⊗ ρB leads to SA = 0

pure entangled state ρ 6= ρA ⊗ ρB leads to SA > 0

SA is called entanglement entropy
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Entanglement entropy in relativistic quantum field theory

A

B

entanglement entropy of region A is a local notion of entropy

SA = −trA {ρA ln ρA} ρA = trB {ρ}

for relativistic quantum field theories it is infinite

SA =
const

εd−2

∫
∂A

dd−2σ
√
h + subleading divergences + finite

UV divergence proportional to entangling surface

relativistic quantum fields are very strongly entangled already in vacuum

Theorem [Helmut Reeh & Siegfried Schlieder (1961)]: local operators in region A
can create all (non-local) particle states
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Entanglement entropy in non-relativistic quantum field theory

[Natalia Sanchez-Kuntz & Stefan Floerchinger, in preparation]

non-relativistic quantum field theory for Bose gas

S =

∫
dtdd−1x

{
ϕ∗
[
i∂t +

~∇2

2m
+ µ

]
ϕ− λ

2
ϕ∗2ϕ2

}

Bogoliubov dispersion relation

ω =

√
~p2

2M

(
~p2

2M
+ 2λρ

)
≈

{
cs|~p| for p�

√
2Mλρ (phonons)

~p2

2M
for p�

√
2Mλρ (particles)
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entanglement entropy SA vanishes for ρ = 0 and ω = ~p2

2M

for large region A like in relativistic theory

inverse healing length
√

2Mλρ acts as UV regulator
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Relative entropy

classical relative entropy or Kullback-Leibler divergence

S(p‖q) =
∑
j

pj ln(pj/qj)

not symmetric distance measure, but a divergence

S(p‖q) ≥ 0 and S(p‖q) = 0 ⇔ p = q

quantum relative entropy of two density matrices (also a divergence)

S(ρ‖σ) = Tr {ρ (ln ρ− lnσ)}

signals how well state ρ can be distinguished from a model σ
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Significance of Kullback-Leibler divergence

Uncertainty deficit

true distribution pj and model distribution qj

uncertainty deficit is expected surprise 〈− ln qj〉 = −
∑
j pj ln qj minus

real information content −
∑
j pj ln pj

S(p‖q) = −
∑
j

pj ln qj −

(
−
∑
j

pj ln pj

)

Asymptotic frequencies

true distribution qj and frequency after N drawings pj =
N(xj)

N

probability to find frequencies pj for large N goes like

e−NS(p‖q)

probability for fluctuation around expectation value 〈pj〉 = qj tends to
zero for large N and when divergence S(p‖q) is large
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Advantages of relative entropy

Continuum limit pj → f(x)dx qj → g(x)dx

not well defined for entropy

S = −
∑

pj ln pj
 → −

∫
dxf(x) [ln f(x) + ln dx]

relative entropy remains well defined

S(p‖q)→ S(f‖g) =

∫
dx f(x) ln(f(x)/g(x))

Local quantum field theory

entanglement entropy S(ρA) for spatial region divergent in relativistic QFT

relative entanglement entropy S(ρA‖σA) well defined

rigorous definition in terms of Tomita–Takesaki theory of modular
automorphisms on von-Neumann algebras [Huzihiro Araki (1976)]

A

B
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Monotonicity of relative entropy

[Göran Lindblad (1975)]

monotonicity of relative entropy

S(N (ρ)|N (σ)) ≤ S(ρ|σ)

with N completely positive, trace-preserving map

N unitary time evolution

S(N (ρ)|N (σ)) = S(ρ|σ)

N open system evolution with generation of entanglement to environment

S(N (ρ)|N (σ)) < S(ρ|σ)

basis for many proofs in quantum information theory

leads naturally to second-law type relations
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Thermodynamics from relative entropy

[Stefan Floerchinger & Tobias Haas, arXiv:2004.13533 (2020)]

relative entropy has very nice properties

but can thermodynamics be derived from it ?

can entropy be replaced by relative entropy ?

12 / 27



Principle of maximum entropy

[Edwin Thompson Jaynes (1963)]

take macroscopic state characteristics as fixed, e. g.

energy E, particle number N, momentum ~p,

principle of maximum entropy: among all possible microstates σ (or
distributions q) the one with maximum entropy S is preferred

S(σthermal) = max

why? assume S(σ) < max, than σ would contain additional information
not determined by macroscopic variables, which is not available

maximum entropy = minimal information
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Principle of minimum expected relative entropy

[Stefan Floerchinger & Tobias Haas, arXiv:2004.13533 (2020)]

take macroscopic state characteristics as fixed, e. g.

energy E, particle number N, momentum ~p,

principle of minimum expected relative entropy: preferred is the model σ
from which allowed states ρ are least distinguishable on average

〈S(ρ‖σthermal)〉 =

∫
Dρ S(ρ‖σthermal) = min

similarly for classical probability distributions

〈S(p‖q)〉 =

∫
Dp S(p‖q) = min

need to define measures Dp and Dρ on spaces of probability distributions
p and density matrices ρ, respectively
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Measure on space of probability distributions

consider set of normalized probability distributions p in agreement with
macroscopic constraints

manifold with local coordinates ξ = {ξ1, . . . , ξm}
integration in terms of coordinates∫

Dp =

∫
dξ1 · · · dξm µ(ξ1, . . . , ξm)

want this to be invariant under coordinate changes ξ → ξ′(ξ)

possible choice is Jeffreys prior as integral measure [Harold Jeffreys (1946)]

µ(ξ) = const×
√

det gαβ(ξ)

uses Riemannian metric gαβ(ξ) on space of probability distributions:
Fisher information metric [Ronald Aylmer Fisher (1925)]

gαβ(ξ) =
∑
j

∂pj(ξ)

∂ξα
∂ ln pj(ξ)

∂ξβ
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Permutation invariance

can now integrate functions of p∫
Dpf(p) =

∫
dmξ µ(ξ) f(p(ξ))

consider maps {p1, . . . pN } → {pΠ(1), . . . pΠ(N )} where j → Π(j) is a
permutation, abbreviated p→ Π(p)

want to show Dp = DΠ(p) such that∫
Dpf(p) =

∫
Dpf(Π(p))

convenient to choose coordinates

pj =

{
(ξj)2 for j = 1, . . . ,N − 1,

1− (ξ1)2 − . . .− (ξN−1)2 for j = N .

wich allows to write∫
Dp =

1

ΩN

∫ 1

−1

dξ1 · · · dξN δ

1−

√√√√ N∑
α=1

(ξα)2

 =

∫
DΠ(p)
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Minimizing expected relative entropy

consider now the functional

B(q, λ) =

∫
Dp

[
S(p‖q) + λ

(∑
i

qi − 1

)]

variation with respect to qj

0
!
= δB =

∑
j

∫
Dp

[
−pj
qj

+ λ

]
δqj

leads by permutation invariance to the uniform distribution

qj = 〈pj〉 =
1

N

microcanonical distribution has minimum expected relative entropy!

least distinguishable within the set of allowed distributions
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Measure on space of density matrices

measure on space of density matrices Dρ can be defined similarly in terms
of coordinates ξ but using now quantum Fisher information metric

gαβ(ξ) = Tr

{
∂ρ(ξ)

∂ξα
∂ ln ρ(ξ)

∂ξβ

}

definition uses symmetric logarithmic derivative such that

1

2
ρ(d ln ρ) +

1

2
(d ln ρ)ρ = dρ

appears also as limit of relative entropy for states that approach each other

S(ρ(ξ + dξ)‖ρ(ξ)) =
1

2
gαβ(ξ)dξαdξβ + . . .
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Unitary transformations as isometries

consider unitary map

ρ(ξ)→ ρ′(ξ) = Uρ(ξ)U† = ρ(ξ′)

again normalized density matrix but at coordinate point ξ′

induced map on coordinates ξ → ξ′(ξ) is an isometry

gαβ(ξ)dξαdξβ = gαβ(ξ′)dξ′αdξ′β

can be used to show invariance of measure such that∫
Dρf(ρ) =

∫
Dρf(UρU†)
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Minimizing expected relative entropy on density matrices

consider now the functional

B =

∫
DρS(ρ‖σ) =

∫
dmξ µ(ξ)S(ρ(ξ)‖σ)

minimization 0
!
= δB leads to microcanonical density matrix

σm =
1

N 1

on space allowed by macroscopic constraints

anyway only possibility for unique minimum σm = UσmU
†
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Microcanonical ensemble

microcanonical ensemble

σm =
1

Zm
δ(H − E(σm))δ(N −N(σm))

relative entropy of arbitrary state ρ to microcanonical state

S(ρ‖σm) =


−S(ρ) + S(σm) for E(ρ) ≡ E(σm)

and N(ρ) ≡ N(σm)

+∞ else

differential for dE(ρ) ≡ dE(σm) and dN(ρ) ≡ dN(σm)

dS(ρ‖σm) =− dS(ρ) + dS(σm)

=− dS(ρ) + β dE(ρ)− βµ dN(ρ)

gives an alternative definition of temperature

β =
1

T
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Canonical and grand-canonical ensemble

transition to canonical and grand-canonical ensembles follows the usual
construction

σgc =
1

Z
e−β(H−µN)

relative entropy of arbitrary state ρ to grand-canonical state σgc

S(ρ‖σgc) =− S(ρ) + S(σgc) + β (E(ρ)− E(σgc))

− βµ (N(ρ)−N(σgc)).

differential

dS(ρ‖σgc) =− dS(ρ) + β dE(ρ)− βµ dN(ρ)

+ (E(ρ)− E(σgc)) dβ

− (N(ρ)−N(σgc)) d(βµ),

choices for β = 1/T and µ such that E(ρ) = E(σgc) and N(ρ) = N(σgc)
extremize relative entropy S(ρ‖σgc)
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Thermal fluctuations and relative entropy

“mesoscopic” quantities ξ fluctuate in thermal equilibrium, for example
energy in a subvolume

traditional theory goes back to Einsteins work on critical opalescence
[Albert Einstein (1910)]

dW ∼ eS(ξ)dξ

entropy can be replaced by relative entropy between state ρ(ξ) (where ξ is
sharp) and thermal state σ (where it ξ is fluctuating)

dW =
1

Z
e−S(ρ(ξ)‖σ)

√
det gαβ(ξ) dmξ

resembles closely probability for fluctuations in frequencies pj =
N(xj)

N

∼ e−NS(p‖q)
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Third law of thermodynamics

[Walter Nernst (1905)]

many equivalent formulations available already

[Max Planck (1911)]: entropy S approaches a constant for T → 0 that is
independent of other thermodynamic parameters

lim
T→0

S(σ) = S0 = const

new formulation with relative entropy: relative entropy S(ρ0‖σ) between
ground state ρ0 and a thermodynamic model state σ approaches zero for
T → 0

lim
T→0

S(ρ0‖σ) = 0

second law can also be formulated with relative entropy
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Local thermal equilibrium in a quantum field theory

consider non-equilibrium situation with
true density matrix ρ
local equilibrium approximation

σ =
1

Z
e−

∫
dΣµ{βν(x)Tµν+α(x)Nµ}

reduced density matrices ρA = TrB{ρ} and σA = TrB{σ}
σ is very good model for ρ in region A when

SA = TrA{ρA(ln ρA − lnσA)} → 0

does not imply that globally ρ = σ

A

B
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Towards fluid dynamics in the context of quantum field theory

[Neil Dowling, Stefan Floerchinger & Tobias Haas, in preparation]

������

x

t

q

p

AA A

τ0

τ1



Ω

local description of quantum field theories in space-time regions bounded
by two light cones [e. g. Rudolf Haag (1992), Huzihiro Araki (1992)]

unitary evolution for isolated systems, CPTP map otherwise

clarify the role of entanglement for local dissipation in fluids

∇µsµ(x) ≥ 0
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Conclusions & outlook

thermodynamics can be formulated in terms of relative entropy

interesting new “functional integral” in spaces of probability distributions
and density matrices

connections to quantum information and information geometry

entanglement properties of relativistic quantum fields rather interesting

experimental tests with cold atoms?

local form of second law & relativistic fluid dynamics

functional integral representation for relative modular operators and for
relative entropy
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Backup



Quantum field dynamics

Quantum
field theory

Fluid 
dynamics

Information
theory

hypothesis

local dissipation = quantum entanglement generation

quantum information is spread

locally, quantum state approaches mixed state form

full loss of local quantum information = local thermalization


