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Entropy and information

[Claude Shannon (1948), also Ludwig Boltzmann, Willard Gibbs (~1875)]
@ consider a random variable x with probability distribution p(x)
@ information content or “surprise” associated with outcome x

i(x)
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i(z) = —Inp(x) j
2
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@ entropy is expectation value of information content

S(p) = Zp ) Inp(z

S=0 S =1n(2) S =21In(2)

p(x)
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Thermodynamics

[ Antoine Laurent de Lavoisier, Nicolas Léonard Sadi Carnot, Hermann von Helmholtz, Rudolf
Clausius, Ludwig Boltzmann, James Clerk Maxwell, Max Planck, Walter Nernst, Willard Gibbs, ]

@ micro canonical ensemble: maximum entropy S for given conserved
quantities £/, N in given volume V'

@ starting point for development of thermodynamics ...

_Llon K P
S(E,N, V), dS = 7dE — £dN + ZdV

@ ... grand canonical ensemble with density operator ...

1

_ — & (H—pN)
= — T
p=e

o ... Einsteins probability for classical thermal fluctuations ...

AW ~ e%© g
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Fluid dynamics

@ uses thermodynamics locally

@ evolution from conservation laws

V. T" () =0, VuN"(z) =0.

o local dissipation = local entropy production
V" (z) = ds(x) + V- 3(z) >0
@ in Navier-Stokes approximation with shear viscosity 1, bulk viscosity ¢

1
Vst = T [QnUWUW + C(Vpup)Q]

@ how to understand this in quantum field theory?



Entropy in quantum theory

[John von Neumann (1932)]
S =—-Tr{plnp}

@ based on the quantum density operator p

o for pure states p = |¢)(¢)| one has S =0

for diagonal mixed states p =} p;[J){jl

S:—ijlnpj>0

J

@ unitary time evolution conserves entropy

~Te{(UpU In(UpU™)} = —Tr{pIn p} — S = const.

@ quantum information is globally conserved
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Quantum entanglement

o Can quantum-mechanical description of physical reality be considered
complete? [Albert Einstein, Boris Podolsky, Nathan Rosen (1935), David Bohm (1951)]

=— (\ Mall)s =1 1)alTs)

(I =)al <)B — | <)al =)B)

ws

@ Bertlemann’s socks and the nature of reality [John Stewart Bell (1980)]
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Entropy and entanglement

@ consider a split of a quantum system into two A + B

B

(+)

o reduced density operator for system A

pa = Tre{p}

@ entropy associated with subsystem A

Sa=—-Tra{palnpa}

@ pure product state p = pa ® pp leads to S4 =0
@ pure entangled state p # pa ® pp leads to S4 >0

@ S, is called entanglement entropy
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Entanglement entropy in relativistic quantum field theory

B

(+)

@ entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa =tre {p}

o for relativistic quantum field theories it is infinite
const _ . . -
Sa=—5 / d*26vh + subleading divergences + finite
€ A

o UV divergence proportional to entangling surface

o relativistic quantum fields are very strongly entangled already in vacuum

Theorem [Helmut Reeh & Siegfried Schlieder (1961)]: local operators in region A
can create all (non-local) particle states
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Entanglement entropy in non-relativistic quantum field theory

[Natalia Sanchez-Kuntz & Stefan Floerchinger, in preparation]

@ non-relativistic quantum field theory for Bose gas

S = /dtddﬁla: [zat + = + u] ¢ — 202"

o Bogoliubov dispersion relation

o (ﬁ2 +2>\)~ cs|p] for p < +/2MMp (phonons)
AN P} % for p>+2MMp (particles)

w =

B

()

2

p
2M

@ entanglement entropy Sa vanishes for p =0 and w =
o for large region A like in relativistic theory

o inverse healing length \/2M Ap acts as UV regulator
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Relative entropy

classical relative entropy or Kullback-Leibler divergence

S(pllg) = ij n(p;/q;)

@ not symmetric distance measure, but a divergence

S(pllg) >0 and S(plle) =0 <= p=gq

@ quantum relative entropy of two density matrices (also a divergence)

S(pllo) = Tr{p(Inp— Ino)}

@ signals how well state p can be distinguished from a model o
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Significance of Kullback-Leibler divergence

Uncertainty deficit
o true distribution p; and model distribution g;

o uncertainty deficit is expected surprise (—Ing;) = — 3. p; Ing; minus
real information content — Zj pjInp;

S(plla) = Zpg Ing; — <—ij 1npj>
J

Asymptotic frequencies
o true distribution ¢; and frequency after NV drawings p; = w
@ probability to find frequencies p; for large N goes like

e~ N5(la)

@ probability for fluctuation around expectation value (p;) = ¢, tends to
zero for large N and when divergence S(p||q) is large
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Advantages of relative entropy

Continuum limit p; — f(x)dx q; — g(x)dx

@ not well defined for entropy

S ==Y ptup; - [ duf(a) n f@) + nde

o relative entropy remains well defined

Spllg) = S(£llg) :/dwf(w)ln(f(fr)/g(w))

Local quantum field theory
@ entanglement entropy S(pa) for spatial region divergent in relativistic QF T
o relative entanglement entropy S(palloa) well defined

@ rigorous definition in terms of Tomita—Takesaki theory of modular
automorphisms on von-Neumann algebras [Huzihiro Araki (1976)]

B

(+)
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Momnotonicity of relative entropy

[Goran Lindblad (1975)]

@ monotonicity of relative entropy
SWN(p)IN(e)) < S(plo)

with A/ completely positive, trace-preserving map

e AN unitary time evolution

SWN(p)IN(0)) = S(plo)

o N open system evolution with generation of entanglement to environment

SWN(p)IN(0)) < S(plo)

@ basis for many proofs in quantum information theory

@ leads naturally to second-law type relations

11,27



Thermodynamics from relative entropy

[Stefan Floerchinger & Tobias Haas, arXiv:2004.13533 (2020)]
o relative entropy has very nice properties
@ but can thermodynamics be derived from it ?

@ can entropy be replaced by relative entropy ?
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Principle of maximum entropy

[Edwin Thompson Jaynes (1963)]

o take macroscopic state characteristics as fixed, e. g.

energy F, particle number N, momentum p),

@ principle of maximum entropy: among all possible microstates o (or
distributions ¢) the one with maximum entropy S is preferred

S(Jthermal) = max

o why? assume S(o) < max, than o would contain additional information
not determined by macroscopic variables, which is not available

@ maximum entropy = minimal information
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Principle of minimum expected relative entropy

[Stefan Floerchinger & Tobias Haas, arXiv:2004.13533 (2020)]

o take macroscopic state characteristics as fixed, e. g.

energy E, particle number N, momentum p),

@ principle of minimum expected relative entropy: preferred is the model o
from which allowed states p are least distinguishable on average

(S(pllonermar)) = / Dp S(pllotema) = min

o similarly for classical probability distributions

(S(pllg)) = / Dp S(pg) = min

@ need to define measures Dp and Dp on spaces of probability distributions
p and density matrices p, respectively
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Measure on space of probability distributions

consider set of normalized probability distributions p in agreement with
macroscopic constraints

manifold with local coordinates ¢ = {¢',... ¢™}

integration in terms of coordinates

/Dp:/d§1-~d£mu(£1,m7€m)

want this to be invariant under coordinate changes & — ¢'(&)

possible choice is Jeffreys prior as integral measure [Harold Jeffreys (1946)]

u(&) = const x \/det gas(&)

uses Riemannian metric go3(€) on space of probability distributions:
Fisher information metric [Ronald Aylmer Fisher (1925)]

gonl€) = 3 21O O ©

dE  9Er
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Permutation invariance

@ can now integrate functions of p

[ osw) = [ @ 1)

o consider maps {p1,...p~} = {pPuq), .- - P} where j —TI(j) is a
permutation, abbreviated p — II(p)

e want to show Dp = DII(p) such that

[ pwsw)= [ oty

@ convenient to choose coordinates

@y forj=1,...,.N —1,
b= 1= (2 — ... = (VN2 forj=N.
wich allows to write
/Dp:i/ldﬁlmd@’é 1- N(&”)Q :/Dn(p)
QN -1 a=1
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Minimizing expected relative entropy

@ consider now the functional
B(q,A) = /Dp [S(plq) +A (Z i — 1)}

@ variation with respect to g;

! Dj
0=0B= /D {—J+A:|5'
:;;: P 3 q;

leads by permutation invariance to the uniform distribution

1
qj':<pj>:ﬁ

@ microcanonical distribution has minimum expected relative entropy!

@ least distinguishable within the set of allowed distributions
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Measure on space of density matrices

@ measure on space of density matrices Dp can be defined similarly in terms
of coordinates £ but using now quantum Fisher information metric

as(€) = T { S0E) 200N

@ definition uses symmetric logarithmic derivative such that

1 1
zp(dnp) + 5 (dlnp)p = dp

@ appears also as limit of relative entropy for states that approach each other

S(pl€ +O)IP(E)) = 590 (€)AEdE" + ..
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Unitary transformations as isometries

@ consider unitary map

p(€) = p' (&) =Up()U" = p(¢')

@ again normalized density matrix but at coordinate point ¢’

induced map on coordinates £ — £'(£) is an isometry

9ap(6)de¥de” = gap(€')de*de"®

@ can be used to show invariance of measure such that

[ poto)= [ Dot
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Minimizing expected relative entropy on density matrices

@ consider now the functional

B / DpS(pllo) = / d"€ 1(€) S(p(6)]|0)

@ minimization 0 = § B leads to microcanonical density matrix
1
Oom = —1

N

on space allowed by macroscopic constraints

o anyway only possibility for unique minimum o = UonU'
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Microcanonical ensemble

@ microcanonical ensemble

1
om =~ 0(H — E(om))5(N — N(om))

m

@ relative entropy of arbitrary state p to microcanonical state

—S(p) + S(om) for E(p) = E(om)
S(pllom) = and N(p) = N(om)
+00 else

o differential for dE(p) = dE(om) and dN(p) = dN(om)

dS(pllom) = = dS(p) + dS(om)
=—dS(p) + BdE(p) — BudN (p)

@ gives an alternative definition of temperature
1
b=7
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Canonical and grand-canonical ensemble

@ transition to canonical and grand-canonical ensembles follows the usual

construction

1 _
Oge = —e B(H—pN)

o relative entropy of arbitrary state p to grand-canonical state o

S(plloge) = = S(p) + S(oec) + B (E(p) — E(ogc))
— B (N(p) — N(og))-

o differential

dS(plloge) = — dS(p) + BdE(p) — BudN(p)
+ (E(p) — E(0g)) dB
— (N(p) = N(oge)) d(Bp),

o choices for § = 1/T and p such that E(p) = E(og) and N(p) = N(og)
extremize relative entropy S(p||ogc)
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Thermal fluctuations and relative entropy

@ “mesoscopic”’ quantities £ fluctuate in thermal equilibrium, for example
energy in a subvolume

o traditional theory goes back to Einsteins work on critical opalescence
[Albert Einstein (1910)]
AW ~ % qg¢

@ entropy can be replaced by relative entropy between state p(&) (where ¢ is
sharp) and thermal state o (where it £ is fluctuating)

AW = %e*S@(@””)\/det gap(€)d™E

o resembles closely probability for fluctuations in frequencies p; = Nw))

~ e NS(lla)
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Third law of thermodynamics

[Walter Nernst (1905)]

many equivalent formulations available already

[Max Planck (1911)]: entropy S approaches a constant for T' — 0 that is
independent of other thermodynamic parameters

lim S(o) = Sy = const
T=0

new formulation with relative entropy: relative entropy S(po||o) between
ground state po and a thermodynamic model state o approaches zero for
T—0

lim S =0

lim S (pollo)

second law can also be formulated with relative entropy
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Local thermal equilibrium in a quantum field theory

@ consider non-equilibrium situation with

o true density matrix p
o local equilibrium approximation

o= %e— J A8, {Bu (=) TH o(z) N*}

reduced density matrices pa = Tre{p} and o4 = Tre{c}

e o is very good model for p in region A when

Sa = TrA{pA(lnpA — anA)} —0

@ does not imply that globally p = o

B

(+)
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Towards fluid dynamics in the context of quantum field theory

[Neil Dowling, Stefan Floerchinger & Tobias Haas, in preparation]

|
|

@ local description of quantum field theories in space-time regions bounded
by two light cones [e. g. Rudolf Haag (1992), Huzihiro Araki (1992)]

@ unitary evolution for isolated systems, CPTP map otherwise

@ clarify the role of entanglement for local dissipation in fluids

Vus'(z) >0
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Conclusions € outlook

@ thermodynamics can be formulated in terms of relative entropy

@ interesting new “functional integral” in spaces of probability distributions
and density matrices

@ connections to quantum information and information geometry

@ entanglement properties of relativistic quantum fields rather interesting
@ experimental tests with cold atoms?

@ local form of second law & relativistic fluid dynamics

o functional integral representation for relative modular operators and for
relative entropy
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Backup



Quantum field dynamics

Quantum
field theory

FIuid. Information
dynamics theory

hypothesis

local dissipation = quantum entanglement generation

@ quantum information is spread

locally, quantum state approaches mixed state form

full loss of local quantum information = local thermalization



