Entanglement in hadronization (remote talk)

Stefan Floerchinger (Heidelberg U.)

Workshop on Novel Probes of the Nucleon Structure in SIDIS,

$$
\mathrm{e}+\mathrm{e}-\mathrm{and} \mathrm{pp}(\mathrm{FF} 2019)
$$

Duke University, 16/03/2019.

The thermal model puzzle

- elementary particle collision experiments such as $e^{+} e^{-}$collisions show some thermal-like features
- particle multiplicities well described by thermal model

[Becattini, Casterina, Milov \& Satz, EPJC 66, 377 (2010)]
- conventional thermalization by collisions unlikely
- more thermal-like features difficult to understand in Pythia [Fischer, Sjöstrand (2017)]
- alternative explanations needed

QCD strings

- particle production from QCD strings
- Lund string model (e. g. Pythia)
- different regions in a string are entangled
- subinterval A is described by reduced density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

- reduced density matrix is of mixed state form
- could this lead to thermal-like effects?

Entropy and entanglement

- consider a split of a quantum system into two $A+B$

- reduced density operator for system A

$$
\rho_{A}=\operatorname{Tr}_{B}\{\rho\}
$$

- entropy associated with subsystem A: entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\}
$$

- globally pure state $S=0$ can be locally mixed $S_{A}>0$
- coherent information $I_{B\rangle A}=S_{A}-S$ can be positive

Microscopic model

- QCD in $1+1$ dimensions described by 't Hooft model

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i g \mathbf{A}_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
$$

- fermionic fields ψ_{i} with sums over flavor species $i=1, \ldots, N_{f}$
- $\operatorname{SU}\left(N_{c}\right)$ gauge fields \mathbf{A}_{μ} with field strength tensor $\mathbf{F}_{\mu \nu}$
- gluons are not dynamical in two dimensions
- gauge coupling g has dimension of mass
- non-trivial, interacting theory, cannot be solved exactly
- spectrum of excitations known for $N_{c} \rightarrow \infty$ with $g^{2} N_{c}$ fixed ['t Hooft (1974)]

Schwinger model

- QED in $1+1$ dimension

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i q A_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

- geometric confinement
- $\mathrm{U}(1)$ charge related to string tension $q=\sqrt{2 \sigma}$
- for single fermion one can bosonize theory exactly [Coleman, Jackiw, Susskind (1975)]

$$
\begin{aligned}
S=\int d^{2} x \sqrt{g}\{ & -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} M^{2} \phi^{2} \\
& \left.-\frac{m q e^{\gamma}}{2 \pi^{3 / 2}} \cos (2 \sqrt{\pi} \phi+\theta)\right\}
\end{aligned}
$$

- Schwinger bosons are dipoles $\phi \sim \bar{\psi} \psi$
- scalar mass related to $\mathrm{U}(1)$ charge by $M=q / \sqrt{\pi}=\sqrt{2 \sigma / \pi}$
- massless Schwinger model $m=0$ leads to free bosonic theory

Transverse coordinates

- so far dynamics strictly confined to $1+1$ dimensions
- transverse coordinates may fluctuate, can be described by Nambu-Goto action ($h_{\mu \nu}=\partial_{\mu} X^{m} \partial_{\nu} X_{m}$)

$$
\begin{aligned}
S_{\mathrm{NG}} & =\int d^{2} x \sqrt{-\operatorname{det} h_{\mu \nu}}\{-\sigma+\ldots\} \\
& \approx \int d^{2} x \sqrt{g}\left\{-\sigma-\frac{\sigma}{2} g^{\mu \nu} \partial_{\mu} X^{i} \partial_{\nu} X^{i}+\ldots\right\}
\end{aligned}
$$

- two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^{i} with $i=1,2$

Expanding string solution 1

- external quark-anti-quark pair on trajectories $z= \pm t$
- coordinates: Bjorken time $\tau=\sqrt{t^{2}-z^{2}}$, rapidity $\eta=\operatorname{arctanh}(z / t)$
- metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$
- symmetry with respect to longitudinal boosts $\eta \rightarrow \eta+\Delta \eta$

Expanding string solution 2

- Schwinger boson field depends only on τ

$$
\bar{\phi}=\bar{\phi}(\tau)
$$

- equation of motion

$$
\partial_{\tau}^{2} \bar{\phi}+\frac{1}{\tau} \partial_{\tau} \bar{\phi}+M^{2} \bar{\phi}=0 .
$$

- Gauss law: electric field $E=q \phi / \sqrt{\pi}$ must approach the $\mathrm{U}(1)$ charge of the external quarks $E \rightarrow q_{\mathrm{e}}$ for $\tau \rightarrow 0_{+}$

$$
\bar{\phi}(\tau) \rightarrow \frac{\sqrt{\pi} q_{\mathrm{e}}}{q} \quad\left(\tau \rightarrow 0_{+}\right)
$$

- solution of equation of motion [Loshaj, Kharzeev (2011)]

$$
\bar{\phi}(\tau)=\frac{\sqrt{\pi} q_{\mathrm{e}}}{q} J_{0}(M \tau)
$$

Gaussian states

- theories with quadratic action often have Gaussian density matrix
- fully characterized by field expectation values

$$
\bar{\phi}(x)=\langle\phi(x)\rangle, \quad \bar{\pi}(x)=\langle\pi(x)\rangle
$$

and connected two-point correlation functions, e. g.

$$
\langle\phi(x) \phi(y)\rangle_{c}=\langle\phi(x) \phi(y)\rangle-\bar{\phi}(x) \bar{\phi}(y)
$$

- if ρ is Gaussian, also reduced density matrix ρ_{A} is Gaussian

Functional representation

- Schrödinger functional representation of quantum field theory
- pure state $|\Psi\rangle$ has functional

$$
\Psi[\phi]=\langle\phi \mid \Psi\rangle
$$

with field "positions" ϕ_{n}

- density matrix

$$
\rho\left[\phi_{+}, \phi_{-}\right]=\left\langle\phi_{+}\right| \rho\left|\phi_{-}\right\rangle
$$

- fields and conjugate momenta

$$
\phi_{m}, \quad \pi_{m}=-i \frac{\delta}{\delta \phi_{m}}
$$

- canonical commutation relation

$$
\left[\phi_{m}, \pi_{n}\right]=i \delta_{m n}
$$

Symplectic transformations

- combined field

$$
\chi=\binom{\phi}{\pi^{*}}, \quad \chi^{*}=\binom{\phi^{*}}{\pi}
$$

- commutation relation as symplectic metric

$$
\left[\chi_{m}, \chi_{n}^{*}\right]=\Omega_{m n}, \quad \Omega=\Omega^{\dagger}=\left(\begin{array}{cc}
0 & i \mathbb{1} \\
-i \mathbb{1} & 0
\end{array}\right),
$$

- symplectic transformations $S_{m n}$

$$
\chi_{m} \rightarrow S_{m n} \chi_{n}, \quad \chi_{m}^{*} \rightarrow \chi_{n}^{*}\left(S^{\dagger}\right)_{n m}, \quad S \Omega S^{\dagger}=\Omega,
$$

have unitary representations on Gaussian states

Williamson's theorem and entropy

- Covariance matrix

$$
\Delta_{m n}=\frac{1}{2}\left\langle\chi_{m} \chi_{n}^{*}+\chi_{n}^{*} \chi_{m}\right\rangle_{c}
$$

transforms as

$$
\Delta \rightarrow S \Delta S^{\dagger} \neq S \Delta S^{-1}
$$

- Williamson's theorem: can find $S_{m n}$ such that

$$
\Delta \rightarrow \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{1}, \lambda_{2}, \ldots\right),
$$

- symplectic eigenvalues $\lambda_{j}>0$
- Heisenbergs uncertainty principle: $\lambda_{j} \geq 1 / 2$
- von Neumann entropy

$$
S=\sum_{j}\left\{\left(\lambda_{j}+\frac{1}{2}\right) \ln \left(\lambda_{j}+\frac{1}{2}\right)-\left(\lambda_{j}-\frac{1}{2}\right) \ln \left(\lambda_{j}-\frac{1}{2}\right)\right\}
$$

- pure state: $\lambda_{j}=1 / 2, S=0$

Entanglement entropy for Gaussian state

- entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

$$
S_{A}=\frac{1}{2} \operatorname{Tr}_{A}\left\{D \ln \left(D^{2}\right)\right\}
$$

- operator trace over region A only
- matrix of correlation functions

$$
D(x, y)=\left(\begin{array}{ll}
-i\langle\phi(x) \pi(y)\rangle_{c} & i\langle\phi(x) \phi(y)\rangle_{c} \\
-i\langle\pi(x) \pi(y)\rangle_{c} & i\langle\pi(x) \phi(y)\rangle_{c}
\end{array}\right)
$$

- involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- expectation value $\bar{\phi}$ does not appear explicitly
- coherent states and vacuum have equal entanglement entropy S_{A}

Rapidity interval

- consider rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ at fixed Bjorken time τ
- entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- can be evaluated equivalently in interval $\Delta z=2 \tau \sinh (\Delta \eta / 2)$ at fixed time $t=\tau \cosh (\Delta \eta / 2)$
- need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- entanglement entropy density $d S / d \Delta \eta$ for bosonized massless Schwinger model ($M=\frac{q}{\sqrt{\pi}}$)

Conformal limit

- For $M \tau \rightarrow 0$ one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994)]

$$
S(\Delta z)=\frac{c}{3} \ln (\Delta z / \epsilon)+\text { constant }
$$

with small length ϵ acting as UV cutoff.

- Here this implies

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln (2 \tau \sinh (\Delta \eta / 2) / \epsilon)+\text { constant }
$$

- Conformal charge $c=1$ for free massless scalars or Dirac fermions.
- Additive constant not universal but entropy density is

$$
\begin{aligned}
\frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) & =\frac{c}{6} \operatorname{coth}(\Delta \eta / 2) \\
& \rightarrow \frac{c}{6} \quad(\Delta \eta \gg 1)
\end{aligned}
$$

- Entropy becomes extensive in $\Delta \eta$!

Universal entanglement entropy density

- for very early times "Hubble" expansion rate dominates over masses and interactions

$$
H=\frac{1}{\tau} \gg M=\frac{q}{\sqrt{\pi}}, m
$$

- theory dominated by free, massless fermions
- universal entanglement entropy density

$$
\frac{d S}{d \Delta \eta}=\frac{c}{6}
$$

with conformal charge c

- for QCD in $1+1 \mathrm{D}$ (gluons not dynamical, no transverse excitations)

$$
c=N_{c} \times N_{f}
$$

- from fluctuating transverse coordinates (Nambu-Goto action)

$$
c=N_{c} \times N_{f}+2 \approx 9+2=11
$$

Temperature and entanglement entropy

- for conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

$$
S(T, l)=\frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh (\pi L T)\right)+\text { const }
$$

- compare this to our result in expanding geometry

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln \left(\frac{2 \tau}{\epsilon} \sinh (\Delta \eta / 2)\right)+\text { const }
$$

- expressions agree for $L=\tau \Delta \eta$ (with metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$) and time-dependent temperature

$$
T=\frac{1}{2 \pi \tau}
$$

Modular or entanglement Hamiltonian 1

- conformal field theory
- hypersurface Σ with boundary on the intersection of two light cones
- reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$
\rho_{A}=\frac{1}{Z_{A}} e^{-K}, \quad Z_{A}=\operatorname{Tr} e^{-K}
$$

- modular or entanglement Hamiltonian K

Modular or entanglement Hamiltonian 2

- modular or entanglement Hamiltonian is local expression

$$
K=\int_{\Sigma} d \Sigma_{\mu} \xi_{\nu}(x) T^{\mu \nu}(x)
$$

- energy-momentum tensor $T^{\mu \nu}(x)$ of excitations
- vector field

$$
\begin{aligned}
\xi^{\mu}(x)=\frac{2 \pi}{(q-p)^{2}} & {\left[(q-x)^{\mu}(x-p)(q-p)\right.} \\
& \left.+(x-p)^{\mu}(q-x)(q-p)-(q-p)^{\mu}(x-p)(q-x)\right]
\end{aligned}
$$

end point of future light cone q, starting point of past light cone p

- inverse temperature and fluid velocity

$$
\xi^{\mu}(x)=\beta^{\mu}(x)=\frac{u^{\mu}(x)}{T(x)}
$$

Modular or entanglement Hamiltonian 3

- for $\Delta \eta \rightarrow \infty$: fluid velocity in τ-direction, τ-dependent temperature

$$
T(\tau)=\frac{\hbar}{2 \pi \tau}
$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times !
- Hawking-Unruh temperature in Rindler wedge $T(x)=\hbar c /(2 \pi x)$

Alternative derivation: mode functions

- fluctuation field $\varphi=\phi-\bar{\phi}$ has equation of motion

$$
\partial_{\tau}^{2} \varphi(\tau, \eta)+\frac{1}{\tau} \partial_{\tau} \varphi(\tau, \eta)+\left(M^{2}-\frac{1}{\tau^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \varphi(\tau, \eta)=0
$$

- solution in terms of plane waves

$$
\varphi(\tau, \eta)=\int \frac{d k}{2 \pi}\left\{a(k) f(\tau,|k|) e^{i k \eta}+a^{\dagger}(k) f^{*}(\tau,|k|) e^{-i k \eta}\right\}
$$

- mode functions as Hankel functions

$$
f(\tau, k)=\frac{\sqrt{\pi}}{2} e^{\frac{k \pi}{2}} H_{i k}^{(2)}(M \tau)
$$

or alternatively as Bessel functions

$$
\bar{f}(\tau, k)=\frac{\sqrt{\pi}}{\sqrt{2 \sinh (\pi k)}} J_{-i k}(M \tau)
$$

Bogoliubov transformation

- mode functions are related

$$
\begin{aligned}
& \bar{f}(\tau, k)=\alpha(k) f(\tau, k)+\beta(k) f^{*}(\tau, k) \\
& f(\tau, k)=\alpha^{*}(k) \bar{f}(\tau, k)-\beta(k) \bar{f}^{*}(\tau, k)
\end{aligned}
$$

- creation and annihilation operators are related by

$$
\begin{aligned}
& \bar{a}(k)=\alpha^{*}(k) a(k)-\beta^{*}(k) a^{\dagger}(k) \\
& a(k)=\alpha(k) \bar{a}(k)+\beta(k) \bar{a}^{\dagger}(k)
\end{aligned}
$$

- Bogoliubov coefficients

$$
\alpha(k)=\sqrt{\frac{e^{\pi k}}{2 \sinh (\pi k)}} \quad \beta(k)=\sqrt{\frac{e^{-\pi k}}{2 \sinh (\pi k)}}
$$

- vacuum $|\Omega\rangle$ with respect to $a(k)$ such that $a(k)|\Omega\rangle=0$ contains excitations with respect to $\bar{a}(k)$ such that $\bar{a}(k)|\Omega\rangle \neq 0$ and vice versa

Role of different mode functions

- Hankel functions $f(\tau, k)$ are superpositions of positive frequency modes with respect to Minkowski time t
- Bessel functions $\bar{f}(\tau, k)$ are superpositions of positive and negative frequency modes with respect to Minkowski time t
- at very early time $1 / \tau \gg M, m$ conformal symmetry

$$
d s^{2}=\tau^{2}\left[-d \ln (\tau)^{2}+d \eta^{2}\right]
$$

- Hankel functions $f(\tau, k)$ are superpositions of positive and negative frequency modes with respect to conformal time $\ln (\tau)$
- Bessel functions $\bar{f}(\tau, k)$ are superpositions of positive frequency modes with respect to conformal time $\ln (\tau)$

Occupation numbers

- Minkowski space coherent states have two-point functions

$$
\begin{aligned}
\left\langle\bar{a}^{\dagger}(k) \bar{a}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{n}(k) 2 \pi \delta\left(k-k^{\prime}\right)=|\beta(k)|^{2} 2 \pi \delta\left(k-k^{\prime}\right) \\
\left\langle\bar{a}(k) \bar{a}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{u}(k) 2 \pi \delta\left(k+k^{\prime}\right)=-\alpha^{*}(k) \beta^{*}(k) 2 \pi \delta\left(k+k^{\prime}\right) \\
\left\langle\bar{a}^{\dagger}(k) \bar{a}^{\dagger}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{u}^{*}(k) 2 \pi \delta\left(k+k^{\prime}\right)=-\alpha(k) \beta(k) 2 \pi \delta\left(k+k^{\prime}\right)
\end{aligned}
$$

- occupation number

$$
\bar{n}(k)=|\beta(k)|^{2}=\frac{1}{e^{2 \pi k}-1}
$$

- Bose-Einstein distribution with excitation energy $E=|k| / \tau$ and temperature

$$
T=\frac{1}{2 \pi \tau}
$$

- off-diagonal occupation number $\bar{u}(k)=-1 /(2 \sinh (\pi k))$ make sure we still have pure state

Local description

- consider now rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$
- Fourier expansion becomes discrete

$$
\begin{gathered}
\varphi(\eta)=\frac{1}{L} \sum_{n=-\infty}^{\infty} \varphi_{n} e^{i n \pi \frac{\eta}{\Delta \eta}} \\
\varphi_{n}=\int_{-\Delta \eta / 2}^{\Delta \eta / 2} d \eta \varphi(\eta) \frac{1}{2}\left[e^{-i n \pi \frac{\eta}{\Delta \eta}}+(-1)^{n} e^{i n \pi \frac{\eta}{\Delta \eta}}\right]
\end{gathered}
$$

- relation to continuous momentum modes by integration kernel

$$
\varphi_{n}=\int \frac{d k}{2 \pi} \sin \left(\frac{k \Delta \eta}{2}-\frac{n \pi}{2}\right)\left[\frac{1}{k-\frac{n \pi}{\Delta \eta}}+\frac{1}{k+\frac{n \pi}{\Delta \eta}}\right] \varphi(k)
$$

- local density matrix determined by correlation functions

$$
\left\langle\varphi_{n}\right\rangle, \quad\left\langle\pi_{n}\right\rangle, \quad\left\langle\varphi_{n} \varphi_{m}\right\rangle_{c}, \quad \text { etc. }
$$

Emergence of locally thermal state

- mode functions at early time

$$
\bar{f}(\tau, k)=\frac{1}{\sqrt{2 k}} e^{-i k \ln (\tau)-i \theta(k, M)}
$$

- phase varies strongly with k for $M \rightarrow 0$

$$
\theta(k, M)=k \ln (M / 2)+\arg (\Gamma(1-i k))
$$

- off-diagonal term $\bar{u}(k)$ have factors strongly oscillating with k

$$
\begin{aligned}
\left\langle\varphi(\tau, k) \varphi^{*}\left(\tau, k^{\prime}\right)\right\rangle_{c} & =2 \pi \delta\left(k-k^{\prime}\right) \frac{1}{|k|} \\
& \times\left\{\left[\frac{1}{2}+\bar{n}(k)\right]+\cos [2 k \ln (\tau)+2 \theta(k, M)] \bar{u}(k)\right\}
\end{aligned}
$$

cancel out when going to finite interval !

- only Bose-Einstein occupation numbers $\bar{n}(k)$ remain

Physics picture

- coherent state vacuum at early time contains entangled pairs of quasi-particles with opposite wave numbers
- on finite rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- technically limits $\Delta \eta \rightarrow \infty$ and $M \tau \rightarrow 0$ do not commute
- $\Delta \eta \rightarrow \infty$ for any finite $M \tau$ gives pure state
- $M \tau \rightarrow 0$ for any finite $\Delta \eta$ gives thermal state with $T=1 /(2 \pi \tau)$

Particle production in massive Schwinger model [ongoing work with Lara Kuhn, Jürgen Berges]

- for expanding strings
- asymptotic particle number depends on $g \sim m / q$
- exponential suppression for large fermion mass $g \gg 1$

$$
\frac{N}{\Delta \eta} \sim e^{-0.55 \frac{m}{q}+7.48 \frac{q}{m}+\ldots}=e^{-0.55 \frac{m}{\sqrt{2 \sigma}}+7.48 \frac{\sqrt{2 \sigma}}{m}+\ldots}
$$

Conclusions

- rapidity intervals in an expanding string are entangled
- at very early times theory effectively conformal

$$
\frac{1}{\tau} \gg m, q
$$

- entanglement entropy extensive in rapidity $\frac{d S}{d \Delta \eta}=\frac{c}{6}$
- determined by conformal charge $c=N_{c} \times N_{f}+2$
- reduced density matrix for conformal field theory is of locally thermal form with temperature

$$
T=\frac{\hbar}{2 \pi \tau}
$$

- asymptotic particle number in massive Schwinger model scales exponentially with large particle mass

$$
d N / d \eta \sim e^{-0.55 \frac{m}{\sqrt{2 \sigma}}}
$$

- entanglement could be important ingredient to understand apparent "thermal effects" in $e^{+} e^{-}$and other collider experiments

Backup

Rapidity distribution

[open (filled) symbols: $\mathrm{e}^{+} \mathrm{e}^{-}$(pp), Grosse-Oetringhaus \& Reygers (2010)]

- rapidity distribution $d N / d \eta$ has plateau around midrapidity
- only logarithmic dependence on collision energy

Experimental access to entanglement?

- could longitudinal entanglement be tested experimentally?
- unfortunately entropy density $d S / d \eta$ not straight-forward to access
- measured in $e^{+} e^{-}$is the number of charged particles per unit rapidity $d N_{\mathrm{ch}} / d \eta$ (rapidity defined with respect to the thrust axis)
- typical values for collision energies $\sqrt{s}=14-206 \mathrm{GeV}$ in the range

$$
d N_{\mathrm{ch}} / d \eta \approx 2-4
$$

- entropy per particle S / N can be estimated for a hadron resonance gas in thermal equilibrium $S / N_{\mathrm{ch}}=7.2$ would give

$$
d S / d \eta \approx 14-28
$$

- this is an upper bound: correlations beyond one-particle functions would lead to reduced entropy

