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The thermal model puzzle
elementary particle collision experiments such as e+ e− collisions
show some thermal-like features
particle multiplicities well described by thermal model500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

conventional thermalization by collisions unlikely
more thermal-like features difficult to understand in Pythia
[Fischer, Sjöstrand (2017)]

alternative explanations needed 1 / 30



QCD strings

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

Lund string model (e. g. Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix

ρA = TrBρ

reduced density matrix is of mixed state form

could this lead to thermal-like effects?
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Entropy and entanglement
consider a split of a quantum system into two A+B

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

reduced density operator for system A

ρA = TrB{ρ}

entropy associated with subsystem A: entanglement entropy

SA = −TrA{ρA ln ρA}

globally pure state S = 0 can be locally mixed SA > 0

coherent information IB〉A = SA − S can be positive
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Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]
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Schwinger model
QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
scalar mass related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Transverse coordinates

so far dynamics strictly confined to 1+1 dimensions

transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hµν = ∂µX

m∂νXm)

SNG =

∫
d2x
√
−dethµν {−σ + . . .}

≈
∫
d2x
√
g
{
−σ − σ

2
gµν∂µX

i∂νX
i + . . .

}
two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates Xi with i = 1, 2
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Expanding string solution 1

z

t

external quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

metric ds2 = −dτ2 + τ2dη2

symmetry with respect to longitudinal boosts η → η + ∆η
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Expanding string solution 2
Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ/
√
π must approach the U(1) charge

of the external quarks E → qe for τ → 0+

φ̄(τ)→
√
πqe

q
(τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =

√
πqe

q
J0(Mτ)
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Gaussian states

theories with quadratic action often have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Functional representation
Schrödinger functional representation of quantum field theory

pure state |Ψ〉 has functional

Ψ[φ] = 〈φ|Ψ〉

with field “positions” φn

density matrix
ρ[φ+, φ−] = 〈φ+|ρ|φ−〉

fields and conjugate momenta

φm, πm = −i δ

δφm

canonical commutation relation

[φm, πn] = iδmn
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Symplectic transformations

combined field

χ =

(
φ
π∗

)
, χ∗ =

(
φ∗

π

)

commutation relation as symplectic metric

[χm, χ
∗
n] = Ωmn, Ω = Ω† =

(
0 i1
−i1 0

)
,

symplectic transformations Smn

χm → Smnχn, χ∗m → χ∗n(S†)nm, SΩS† = Ω,

have unitary representations on Gaussian states
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Williamson’s theorem and entropy
Covariance matrix

∆mn =
1

2
〈χmχ∗n + χ∗nχm〉c

transforms as
∆→ S∆S† 6= S∆S−1

Williamson’s theorem: can find Smn such that

∆→ diag(λ1, λ2, . . . , λ1, λ2, . . .),

symplectic eigenvalues λj > 0

Heisenbergs uncertainty principle: λj ≥ 1/2

von Neumann entropy

S =
∑
j

{(
λj +

1

2

)
ln

(
λj +

1

2

)
−
(
λj −

1

2

)
ln

(
λj −

1

2

)}

pure state: λj = 1/2, S = 0
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Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA =
1

2
TrA

{
D ln(D2)

}
operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

p

q

τ = const
η = const

region A

region B

z

t

consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at
fixed time t = τ cosh(∆η/2)

need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

entanglement entropy density dS/d∆η for bosonized massless
Schwinger model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5
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Conformal limit
For Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff.

Here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

Conformal charge c = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

Entropy becomes extensive in ∆η !
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Universal entanglement entropy density
for very early times “Hubble” expansion rate dominates over masses
and interactions

H =
1

τ
�M =

q√
π
,m

theory dominated by free, massless fermions

universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

c = Nc ×Nf

from fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πLT )

)
+ const

compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ const

expressions agree for L = τ∆η (with metric ds2 = −dτ2 + τ2dη2)
and time-dependent temperature

T =
1

2πτ
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Modular or entanglement Hamiltonian 1

p

q

τ = const
η = const

region A

region B

z

t

conformal field theory

hypersurface Σ with boundary on the intersection of two light cones

reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,

Huerta (2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

modular or entanglement Hamiltonian is local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x).

energy-momentum tensor Tµν(x) of excitations

vector field

ξµ(x) = 2π
(q−p)2 [(q − x)µ(x− p)(q − p)

+ (x− p)µ(q − x)(q − p)− (q − p)µ(x− p)(q − x)]

end point of future light cone q, starting point of past light cone p

inverse temperature and fluid velocity

ξµ(x) = βµ(x) =
uµ(x)

T (x)
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Modular or entanglement Hamiltonian 3

p

q

τ = const
η = const

region A

region B

z

t

for ∆η →∞: fluid velocity in τ -direction, τ -dependent temperature

T (τ) =
~

2πτ

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c/(2πx)
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Alternative derivation: mode functions
fluctuation field ϕ = φ− φ̄ has equation of motion

∂2
τϕ(τ, η) +

1

τ
∂τϕ(τ, η) +

(
M2 − 1

τ2

∂2

∂η2

)
ϕ(τ, η) = 0

solution in terms of plane waves

ϕ(τ, η) =

∫
dk

2π

{
a(k)f(τ, |k|)eikη + a†(k) f∗(τ, |k|)e−ikη

}
mode functions as Hankel functions

f(τ, k) =

√
π

2
e
kπ
2 H

(2)
ik (Mτ)

or alternatively as Bessel functions

f̄(τ, k) =

√
π√

2 sinh(πk)
J−ik(Mτ)
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Bogoliubov transformation

mode functions are related

f̄(τ, k) =α(k)f(τ, k) + β(k)f∗(τ, k)

f(τ, k) =α∗(k)f̄(τ, k)− β(k)f̄∗(τ, k)

creation and annihilation operators are related by

ā(k) =α∗(k)a(k)− β∗(k)a†(k)

a(k) =α(k)ā(k) + β(k)ā†(k)

Bogoliubov coefficients

α(k) =

√
eπk

2 sinh(πk)
β(k) =

√
e−πk

2 sinh(πk)

vacuum |Ω〉 with respect to a(k) such that a(k)|Ω〉 = 0 contains
excitations with respect to ā(k) such that ā(k)|Ω〉 6= 0 and vice versa
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Role of different mode functions

Hankel functions f(τ, k) are superpositions of positive frequency
modes with respect to Minkowski time t

Bessel functions f̄(τ, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time t

at very early time 1/τ �M,m conformal symmetry

ds2 = τ2
[
−d ln(τ)2 + dη2

]
Hankel functions f(τ, k) are superpositions of positive and negative
frequency modes with respect to conformal time ln(τ)

Bessel functions f̄(τ, k) are superpositions of positive frequency
modes with respect to conformal time ln(τ)
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Occupation numbers
Minkowski space coherent states have two-point functions

〈ā†(k)ā(k′)〉c = n̄(k) 2π δ(k − k′) = |β(k)|2 2π δ(k − k′)
〈ā(k)ā(k′)〉c = ū(k) 2π δ(k + k′) = −α∗(k)β∗(k) 2π δ(k + k′)

〈ā†(k)ā†(k′)〉c = ū∗(k) 2π δ(k + k′) = −α(k)β(k) 2π δ(k + k′)

occupation number

n̄(k) = |β(k)|2 =
1

e2πk − 1

Bose-Einstein distribution with excitation energy E = |k|/τ and
temperature

T =
1

2πτ

off-diagonal occupation number ū(k) = −1/(2 sinh(πk)) make sure
we still have pure state
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Local description
consider now rapidity interval (−∆η/2,∆η/2)

Fourier expansion becomes discrete

ϕ(η) =
1

L

∞∑
n=−∞

ϕn e
inπ η

∆η

ϕn =

∫ ∆η/2

−∆η/2

dη ϕ(η)
1

2

[
e−inπ

η
∆η + (−1)neinπ

η
∆η

]
relation to continuous momentum modes by integration kernel

ϕn =

∫
dk

2π
sin(k∆η

2 − nπ
2 )

[
1

k − nπ
∆η

+
1

k + nπ
∆η

]
ϕ(k)

local density matrix determined by correlation functions

〈ϕn〉, 〈πn〉, 〈ϕnϕm〉c, etc.
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Emergence of locally thermal state

mode functions at early time

f̄(τ, k) =
1√
2k
e−ik ln(τ)−iθ(k,M)

phase varies strongly with k for M → 0

θ(k,M) = k ln(M/2) + arg(Γ(1− ik))

off-diagonal term ū(k) have factors strongly oscillating with k

〈ϕ(τ, k)ϕ∗(τ, k′)〉c = 2πδ(k − k′) 1

|k|
×
{[

1
2 + n̄(k)

]
+ cos [2k ln(τ) + 2θ(k,M)] ū(k)

}
cancel out when going to finite interval !

only Bose-Einstein occupation numbers n̄(k) remain
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Physics picture

coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute

∆η → ∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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Particle production in massive Schwinger model
[ongoing work with Lara Kuhn, Jürgen Berges]
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Figure 1: Potential of the coherent background field V (�) = 1
2M2�2 + J cos (2

p
⇡� + ✓) for vacuum angles

✓ = 0 (left) and ✓ = ⇡ (right). The different colors represent different coupling strengths g = 2
p
⇡J

M2 .
The dots indicate the initial value �(0) = �vac +

p
⇡.

the potential has one minimum at � = 0. As g becomes larger the number of minima increases: for ✓ = 0 and
g > 1

2
p
⇡

there are two global minima which, for sufficiently large g, are accompanied by further local minima;
for ✓ = ⇡ the potential always has exactly one global minimum, but as g gets larger than approximately 1.3
further local minima emerge.
The initial condition �(0) can be obtained by noting its relation to the electric field E = ep

⇡
�[3]. Due to

the vacuum angle ✓ there is a constant background electric field [4]. The strength of this field is given by the
absolute minimum �vac of the potential in figure 1. Additionally we have to consider the electric field generated
by the two charges: Classically the electric field of two relativistic point charges ±e flying in opposite directions
is given by E = ±e⇥(⌧) which goes to e for ⌧ ! 0+. Furthermore one can assume that for ⌧ ! 0+ quantum
effects are negligible [5] and the electric field produced by the charges is

p
⇡ at ⌧ = 0+. In total the initial value

of the coherent field is given by the sum �(0) = �vac +
p
⇡.

Starting from this value the field rolls down the potential and ends up oscillating around one of the minima. On
this way it might transit from one minimum to another. The oscillation can be explained by the production of
quark-antiquark pairs in an electric field. At first the pairs are on top of each other, then they separate where
the quarks/antiquarks move towards the positive/negative initial charge [6]. During this process the electric
field performs work and changes sign. This occurs repeatedly, each time less quark-antiquark pairs are created
and eventually the electric field falls off to one of the minima.

0 20 40 60
M ⌧

�1

0

1

2

�

✓ = 0

g = 0.2

g = 0.4

g = 2.0

g = 3.0

0 10 20 30
M ⌧

�0.5

0.0

0.5

1.0

1.5

�

✓ = ⇡

g = 0.2

g = 1.2

g = 2.0

g = 3.0

Figure 2: Background field for vacuum angle ✓ = 0 (left) and ✓ = ⇡ (right) with different couplings g . The
dashed lines indicate the position of the minimum around which � oscillates for M⌧ � 1.

In figure 2 the behavior of � is shown for different values of g and ✓ = 0,⇡. In the beginning all curves behave
similar (except for being shifted due to different initial values). The reason for this is, that, as one can see in

2
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Figure 6: Total particle number per rapidity interval N
�⌘ at M⌧ = 510.0 in dependence of the coupling g for

✓ = 0 (left), where the fit was made for 3.5  g  7.0 and ✓ = ⇡ (right), where the fit was made for
2.2  g  7.0.

6 Conclusion
We considered a quark-antiquark pair in 1+1 dimensions and investigated particle production after a collision.
At first we analyzed the behavior of a coherent field. We observe an oscillation and transition between the
minima of the potential (figure 1 and 2).
Then we added small fluctuations and computed the mode functions f (figure 3). These are growing for some
combinations of ✓, g and k what is also visible in the particle spectra (figure 4 and 5) which show clear maxima
at finite k.
The spectra were computed in dependence of the momentum k in Bjorken coordinates. Translating them into
Minkowski space requires knowledge of momentum and the exact trajectory of the produced particles which
probably is not accessible in experiment.
In addition to the spectra, another result of our calculations are the total particle numbers per rapidity interval
(figure 6). We observe maxima at those g where the background field � changes its asymptotic value, i.e. where
it oscillates around another minimum of the potential in figure 1 for large M⌧ . For large g (large fermion masses
m � e) the total particle number per rapidity interval shows a Boltzmanian decay and a temperature can be
assigned to the particles, which could be measured in experiments.
Furthermore, our results could be improved by considering backreactions from the fluctuations to the background
field and performing one or higher loop calculations. Additionally, the effect of tunneling should be taken into
account. Especially in the case of large g the background field will decay from the false vacuum to the true one.
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for expanding strings

asymptotic particle number depends on g ∼ m/q
exponential suppression for large fermion mass g � 1

N

∆η
∼ e−0.55mq +7.48 q

m+... = e
−0.55 m√

2σ
+7.48

√
2σ
m +...
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Conclusions
rapidity intervals in an expanding string are entangled
at very early times theory effectively conformal

1

τ
� m, q

entanglement entropy extensive in rapidity dS
d∆η = c

6

determined by conformal charge c = Nc ×Nf + 2
reduced density matrix for conformal field theory is of locally thermal
form with temperature

T =
~

2πτ

asymptotic particle number in massive Schwinger model scales
exponentially with large particle mass

dN/dη ∼ e−0.55 m√
2σ

entanglement could be important ingredient to understand apparent
“thermal effects” in e+e− and other collider experiments
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Figure 11. Left panel: comparison of η (p + p(p̄)) and yT distributions (e+e−) at different
energies. The variable yT is the rapidity with respect to the thrust axis of the e+e− collision. Right
panel: the width λ of the η distributions (p + p(p̄)) and yT distributions (e+e−) as a function of√

s. Note that the difference between inelastic and non-single diffractive collisions is neglected
by fitting the combined p + p(p̄) data with λ = a + b ln

√
s. In the case of the Landau model

⟨Nch⟩/(dNch/dy |y =0) =
√

2πL where L = ln(
√

s/(2mp)) is shown. Data points for e+e− from
[8, 62, 110–114].

which √
spp ≈ (2 ÷ 3)

√
see. For the shown cases the dNch/dη distribution in p + p(p̄) are

broader than the dNch/dyT distributions. This might indicate the contribution from beam-
particle fragmentation in p + p(p̄). Note, however, that based on the Landau hydrodynamic
picture a simple relation between dNch/dη|p+p,

√
s

η=0 and dNch/dyT |e
+e−,

√
s/3

yT =0 was suggested
in [103, 105]. The width λ of the distribution defined as λ = ⟨Nch⟩/dNch/dη|η=0 and
λ = ⟨Nch⟩/dNch/dyT |yT =0, respectively, is shown in the right panel of figure 11. Based on the
QCD calculation in [106], λ is expected to scale linearly with

√
ln s. As shown in figure 11

this form does not describe the p+p(p̄) data which are well parameterized with λ = a +b ln s.
The Landau hydrodynamic model also predicts a linear

√
ln s dependence of λ [107–109] and

hence also fails to describe the p + p(p̄) data.
It will be interesting to see whether this universality of multiplicities in e+e− and p +p(p̄)

collisions also holds at LHC energies. This universality appears to be valid at least up to
Tevatron energies despite its rather weak theoretical foundation (see section 2.6). Under
the assumptions that K2 remains constant at about 0.35 also at LHC energies and that the
extrapolation of the e+e− data with the 3NLO QCD form is still reliable at

√
s ≈ 5 TeV

one can use the fit of p + p(p̄) data to predict the multiplicities at the LHC. This yields
⟨Nch⟩ ≈ 70.9 at 7 TeV, ⟨Nch⟩ ≈ 79.7 at 10 TeV and ⟨Nch⟩ ≈ 88.9 at 14 TeV. Extrapolating
the ratio λ = ⟨Nch⟩/(dNch/dη)η=0 with the form λ = a + b ln

√
s (see figure 11), these

multiplicities correspond to dNch/dη|η=0 ≈ 5.5 at 7 TeV, dNch/dη|η=0 ≈ 5.9 at 10 TeV and
dNch/dη|η=0 ≈ 6.4 at 14 TeV.

3.6. Moments

The moments of the multiplicity distributions as defined in section 2.2 will now be used to
identify general trends as a function of

√
s and to study the validity of KNO scaling. First
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[open (filled) symbols: e+e− (pp), Grosse-Oetringhaus & Reygers (2010)]

rapidity distribution dN/dη has plateau around midrapidity

only logarithmic dependence on collision energy



Experimental access to entanglement ?

could longitudinal entanglement be tested experimentally?

unfortunately entropy density dS/dη not straight-forward to access

measured in e+e− is the number of charged particles per unit
rapidity dNch/dη (rapidity defined with respect to the thrust axis)

typical values for collision energies
√
s = 14− 206 GeV in the range

dNch/dη ≈ 2− 4

entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Nch = 7.2 would give

dS/dη ≈ 14− 28

this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy


