Quantum information and strongly interacting
theories

Stefan Flérchinger (Heidelberg U.)

Quark confinement and the hadron spectrum, Dublin, 04/08/2018.

ISOQUANT

UNIVERSITAT
HEIDELBERG
ZUKUNFT

SEIT 1386 SFB1225




Entanglement and QCD physics

@ how strongly entangled is the nuclear wave function?

e what is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

@ does saturation at small Bjorken-z have an entropic meaning?

@ entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]

@ could entanglement entropy help for a non-perturbative extension of
the parton model?

@ entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]
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The pure state entropy challenge

@ vacuum or proton in vacuum are pure states with S =0
@ constituents or subregions have entanglement entropy S > 0
@ can we understand this in detail (theory + experiment) ?
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Quantum information and relativistic fluid dynamics

@ Soft physics in heavy ion and hadron collisions surprisingly well
described by relativistic fluid dynamics

@ connection to underlying QCD dynamics not fully understood yet

fluid dynamics <> local thermal equilibrium

Vust(xz) >0

thermal equilibrium < entropy < information

local concept of entropy in quantum field theory <+ entanglement
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The thermal model puzzle
@ elementary particle collision experiments such as e™ e~ collisions
show some thermal-like features
@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely
@ more thermal-like features difficult to understand in PYTHIA
[Fischer, Sjostrand (2017)]

@ alternative explanations needed ,
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QCD strings

==

B A B

particle production from QCD strings
Lund string model (e. g. PYTHIA)

different regions in a string are entangled

subinterval A is described by reduced density matrix

pa = Trpp

o reduced density matrix is of mixed state form
could this lead to thermal-like effects?
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Entropy and entanglement

@ consider a split of a quantum system into two A + B

==

B A B

o reduced density operator for system A

pa = Trp{p}

@ entropy associated with subsystem A: entanglement entropy

Sa=-Tra{palnpa}

o globally pure state S = 0 can be locally mixed S4 > 0
e coherent information Ipy4 = Sa — S can be positive
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Microscopic model

@ QCD in 141 dimensions described by 't Hooft model

_ . _ 1 »
f = 7@[)1’7“(3/1, - 'LgA/L)"/)i - mﬂ/m/)z - §tr F/LVFM

e fermionic fields 1; with sums over flavor species ¢ = 1,..., Ny
o SU(IV,) gauge fields A, with field strength tensor F,,,,

@ gluons are not dynamical in two dimensions
"]

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — oo with ¢g?N, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 1+1 dimension

_ . _ 1 ,
L = =iy (Op — iqAL) Vi — mii; — 1 E, F"

@ geometric confinement
U(1) charge related to string tension ¢ = /20

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

5= [ @ova] - jau0.0 - e

maqe”
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Schwinger bosons are dipoles ¢ ~ 1))

scalar mass related to U(1) charge by M = q/v/7 = \/20/7
massless Schwinger model m = 0 leads to free bosonic theory
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Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by
Nambu-Goto action (h, = 0, X0, Xn)

Sy = [ d*z+/—deth,, {-o+...}

R~ /d%\/ﬁ{—a - %g””aMXj’a,,Xi +.. }

@ two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with i = 1,2
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Ezxpanding string solution 1

@ external quark-anti-quark pair on trajectories z = +t

e coordinates: Bjorken time 7 = /12 — 22, rapidity n = arctanh(z/t)
e metric ds? = —dr? + 12dn?

e symmetry with respect to longitudinal boosts n — n + An
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FExpanding string solution 2

@ Schwinger boson field depends only on 7

¢ =¢(7)
@ equation of motion

S _
02¢ + ;87¢+M2¢ = 0.

o Gauss law: electric field E = g¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 04

s ﬁQe

o(1) = p (1= 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = @% Jo(M7)
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Gaussian states

@ theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

d(x) = (¢(x)), m(x) = (m(x))

and connected two-point correlation functions, e. g.

(B(2)8(y))e = (d(2)(y)) — ¢(x)d(y)

e if p is Gaussian, also reduced density matrix p4 is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

1
Sa=5Tra {DIn(D?)}

@ operator trace over region A only
@ matrix of correlation functions

(ildam @) ilo@)o(w)).
Diw.y) = (—i<w<w>w<y>>c i<w<w>¢><y>>c>

@ involves connected correlation functions of field ¢(z) and canonically
conjugate momentum field m(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy S4
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Rapidity interval

T = const
n = const

————— region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless
Schwinger model (M = \/LE)
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Conformal limat

@ For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/€) + constant

with small length € acting as UV cutoff.
@ Here this implies

S(r,An) = gln (27 sinh(An/2)/¢) + constant

Additive constant not universal but entropy density is

0 c
— An) =—=coth(An/2
57 A0) =Scoth(80/2)

—>g (Anp>> 1)

Entropy becomes extensive in An !

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.
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Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses
and interactions

1 q
H=->M=-L
T > \/;f

theory dominated by free, massless fermions

,m

@ universal entanglement entropy density
as ¢
dAn 6

with conformal charge ¢
o for QCD in 141 D (gluons not dynamical, no transverse excitations)

C:NCXNf

from fluctuating transverse coordinates (Nambu-Goto action)

c=N.xN;+2~9+2=11
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = gln <7rTe sinh(ﬂLT)) + const

compare this to our result in expanding geometry
C

S(r,An) = 3 In (2: sinh(An/2)> + const

expressions agree for L = 7An (with metric ds?> = —dr? + 72dn?)
and time-dependent temperature

1
T=—
2rT
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Modular or entanglement Hamiltonian 1

----- region A
region B

z

e conformal field theory
o hypersurface ¥ with boundary on the intersection of two light cones

o reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e_K, ZA:Tre_K
Za

@ modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K:/ZdEH&,(:E)T‘“’(x).

@ energy-momentum tensor TH¥(x) of excitations
@ vector field
(@) = 2 lla— o) (@~ p)(a—p)
+ (z —p)" (g —2)(a —p) — (¢ —p)"(z — p)(g — )]
end point of future light cone ¢, starting point of past light cone p

@ inverse temperature and fluid velocity

ut(x)

&' (x) = () =
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Modular or entanglement Hamiltonian 3

——— 1=const
————— n = const
————— region A

region B

z

e for An — oo: fluid velocity in 7-direction, T-dependent temperature

T(r)=

T 2n7

o Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

e Hawking-Unruh temperature in Rindler wedge T'(x) = hc/(27mz)
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Alternative derivation: mode functions

o fluctuation field ¢ = ¢ — ¢ has equation of motion

1 1 9%
2 2 _
Oz (1, m) + ;&w(ﬂ n) + <M - ﬂan> o(r,m) =0
@ solution in terms of plane waves
plron) = [ 5o () KD)™ + al () £ e )

@ mode functions as Hankel functions
£ k) = YTt B8P (a17)

or alternatively as Bessel functions

NG

frk) = 2sinh(7k)

J_ix(MT)
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Bogoliubov transformation

@ mode functions are related

f(r, k) =a(k)f
)

(7,
f(r, k) =a”(k f(T,

o creation and annihilation operators are related by

a(k) =a* (K)a(k) — B* (k)a (k)
(k) =a(k)a(k) + B(k)a' (k)

=)

@ Bogoliubov coefficients

ek e—mk
alk) = 2sinh(mk) plk) = 2sinh(wk)

@ vacuum Q) with respect to a(k) such that a(k)|Q2) = 0 contains
excitations with respect to a(k) such that a(k)|€2) # 0 and vice versa
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Role of different mode functions

@ Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

o Bessel functions f(r, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

@ at very early time 1/7 > M, m conformal symmetry

ds®> =12 [76“11(7’)2 + an]

@ Hankel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(7, k) are superpositions of positive frequency
modes with respect to conformal time In(7)
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Occupation numbers

@ Minkowski space coherent states have two-point functions

(@'(k)a(k')e = n(k) 2w 8(k — k') = |B(k)[* 27 6(k — K)
(a(k)a(k'))e = a(k)2m6(k + k') = —a* (k)B* (k) 2m 6 (k + k')
(@' (k)a' (k")) = a* (k) 2m 8(k + k') = —a(k)B(k) 27 6(k + k')

(k) = |B(k)|* = W;_l

@ Bose-Einstein distribution with excitation energy E = |k|/7 and

temperature
1
T=_—
2nT
e off-diagonal occupation number @(k) = —1/(2sinh(7k)) make sure

we still have pure state
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Local description

o consider now rapidity interval (—An/2, An/2)
@ Fourier expansion becomes discrete

1 - INT AL
vn) =1 > pn R

n=—oo

An/2 1 oy Ly
Pn :/ dn ¢(n) 5 {G_WA” + (—1)"6"”?"}
—An/2 2

@ relation to continuous momentum modes by integration kernel

o(k)

dk . kAn 1 1
<pn—/27r§1n(2 5) k—%—i—k—i—%

@ local density matrix determined by correlation functions

(on), (7n)s (LnPm) e etc.
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Emergence of locally thermal state

@ mode functions at early time

7 1 —ikIn(7)—1
f(T k‘) — 2ke kln(T)—i0(k,M)

@ phase varies strongly with k for M — 0

0(k, M) = kIn(M/2) + arg(T'(1 — ik))

o off-diagonal term u(k) have factors strongly oscillating with k

(o(r, k)" (1, K)o = 2m8(k — k/)%
x { [ + (k)] + cos [2kIn(r) + 20(k, M)] u(k)}

cancel out when going to finite interval !

o only Bose-Einstein occupation numbers 7i(k) remain
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Physics picture

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

@ on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

e technically limits Anp — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
e M7 — 0 for any finite An gives thermal state with T'=1/(277)
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Conclusions

rapidity intervals in an expanding string are entangled
at very early times theory effectively conformal

1
- > m,q
-

entanglement entropy extensive in rapidity % =5

determined by conformal charge ¢ = N, x Ny + 2
reduced density matrix for conformal field theory is of locally thermal
form with temperature

T=—
2T

entanglement could be important ingredient to understand apparent
“thermal effects” in eTe™ and other collider experiments
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Rapidity distribution

S asp ® UA5 53 GeV NSD ® UAS 200 GeV NSD
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o rapidity distribution dN/dn has plateau around midrapidity
@ only logarithmic dependence on collision energy



Fxperimental access to entanglement ¢

o could longitudinal entanglement be tested experimentally?
e unfortunately entropy density d.S/dn not straight-forward to access

@ measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

o typical values for collision energies /s = 14 — 206 GeV in the range

ANy /dn ~ 2 — 4

@ entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Ng, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy



