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Effective dissipation

dissipation is generation of entropy

von Neumann definition
S = −Trρ ln ρ

entropy measures information
maximal information for pure state with S = 0
minimal information for thermal state S = max.

∣∣
E,~p,N

unitary evolution conserves entropy!

what information is really accessible and relevant?
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Entanglement entropy

consider splitting of system into two parts A+B

reduced density matrix
ρA = TrB{ρ}

entanglement entropy

SA = −TrA{ρA ln ρA}

C-theorem & A-theorem

local entropy production ↔ entanglement generation
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Dissipation and effective field theory

RG equations for the dissipative terms?

universality in the effective dissipative sector?

what dissipative terms are relevant for dynamics close to (quantum) phase
transitions?
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Close-to-equilibrium situations

out-of-equilibrium situations

close-to-equilibrium: description by field expectation values and
thermodynamic fields

more complete description by following more fields explicitly

example: viscous fluid dynamics plus additional fields

usually discussed in terms of
phenomenological constitutive relations
as a limit of kinetic theory
in AdS/CFT

want non-perturbative formulation in terms of QFT concepts

analytic continuation as an alternative to Schwinger-Keldysh

direct generalization of equilibrium formalism
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Local equilibrium states

dissipation: energy and momentum get transferred to a heat bath

even if one starts with pure state T = 0 initially, dissipation will generate
nonzero temperature

close-to-equilibrium situations: dissipation is local

convenient to use general coordinates with metric

gµν(x)

need approximate local equilibrium description with temperature T (x) and
fluid velocity uµ(x), will appear in combination

βµ(x) =
uµ(x)

T (x)

global thermal equilibrium corresponds to βµ Killing vector

∇µβν(x) +∇νβµ(x) = 0
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Local equilibrium

similarity between local density matrix and translation operator

eβ
µ(x)Pµ ←→ ei∆x

µPµ

functional integral with periodicity in imaginary direction

φ(xµ − iβµ(x)) = ±φ(xµ)

partition function Z[J ], Schwinger functional W [J ] in Euclidean domain

Z[J ] = eWE [J] =

∫
Dφe−SE [φ]+

∫
x Jφ

first defined on Euclidean manifold Σ×M at constant time

approximate local equilibrium at all times: hypersurface Σ can be shifted

x

�0

x

�(x)d� d�

(a) Global thermal equilibrium (b) Local thermal equilibrium

FIG. 2. Comparison between the global thermal equilibrium (a) and local thermal equilibrium

states (b).

where aī ⌘ �e��uī, �
0
īj̄ ⌘ �īj̄ + uīuj̄, and we used g̃0̄0̄ = �Ñ2 + ÑīÑ

ī = �e2�. In this

parametrization, the square root of determinant of metric becomes
p�g̃ = Ñ

p
� = e�

p
�0.

This parametrization of the Massieu-Planck functional was discussed in Ref. [28]. Following

Ref. [28], we can easily see that this metric is invariant under the local transformation (the

Kaluza-Klein gauge transformation),
8
>>>><
>>>>:

t̃ ! t̃ + �(x̄),

x̄ ! x̄,

aī(x̄) ! aī(x̄) � @ī�(x̄),

(42)

where �(x̄) is an arbitrary function of the spatial coordinates. We note that �īj̄ nonlinearly

transforms under this transformation since �0īj̄ does not change, so that � is not gauge

invariant. This symmetry enables us to restrict possible terms that appear in the Massieu-

Planck functional [28]. For example, aī appears in the Massieu-Planck functional only

through the gauge invariant combination such as the field strength, fīj̄ ⌘ @īaj̄ � @j̄aī.

In addition to the above symmetry associated with the imaginary time translation, the

Massieu-Planck functional has the (d � 1)-dimensional spatial di↵eomorphism, x̄ ! x̄0(x̄).

This spatial di↵eomorphism invariance also restricts possible terms that could appear in the

Massieu-Planck functional. For example, �0 appears only in combination with dd�1x̄, i.e.,

dd�1x̄
p
�0 = d⌃t̄Ne��. In Sec. IV, we will write down the possible form of the Massieu-

Planck functional within the derivative expansion using these symmetric properties.

Although we only consider the neutral scalar field, the extension to a system with finite

chemical potential is straightforward: We may replace the partial derivative @⌧ with the

covariant one, D⌧ ⌘ (@⌧ � e�µ), in which the additional term e�µ = ⌫/�0 is Kaluza-Klein

11
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Effective action

defined in euclidean domain by Legendre transform

ΓE [Φ] =

∫
x

Ja(x)Φa(x)−WE [J ]

with expectation values

Φa(x) =
1

√
g(x)

δ

δJa(x)
WE [J ]

quantum or 1-PI effective action has correlation functions including all
quantum fluctuations !

euclidean field equation

δ

δΦa(x)
ΓE [Φ] =

√
g(x) Ja(x)

resembles classical equation of motion for J = 0

need analytic continuation to obtain a viable equation of motion
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Two-point functions

consider homogeneous background fields and global equilibrium

βµ =

(
1

T
, 0, 0, 0

)

propagator and inverse propagator

δ2

δJa(−p)δJb(q)
WE [J ] = Gab(iωn,p) δ(p− q)

δ2

δΦa(−p)δΦb(q)
ΓE [Φ] = Pab(iωn,p) δ(p− q)

from definition of effective action∑
b

Gab(p)Pbc(p) = δac
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Spectral representation

Källen-Lehmann spectral representation

Gab (ω,p) =

∫ ∞
−∞

dz
ρab(z

2 − p2, z)

z − ω

with ρab ∈ R
correlation functions can be analytically continued in ω = −uµpµ
branch cut or poles on real frequency axis ω ∈ R but nowhere else

different propagators follow by evaluation of Gab in different regions

Re(ω)

Im(ω)

Matsubara

retarded

advanced

Feynman

∆M
ab(p) =Gab (iωn,p )

∆R
ab(p) =Gab

(
p0 + iε,p

)
∆A
ab(p) =Gab

(
p0 − iε,p

)
∆F
ab(p) =Gab

(
p0 + iε sign

(
p0) ,p )
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Inverse propagator

spectral representation for Gab implies that inverse propagator Pab(ω,p)
can have zero-crossings for ω = p0 ∈ R
has in general branch-cut for ω = p0 ∈ R

so far reference frame with uµ = (1, 0, 0, 0)

more general: analytic continuation with respect to

ω = −uµpµ

use decomposition

Pab(p) = P1,ab(p)− isI(−uµpµ)P2,ab(p)

with sign function
sI(ω) = sign(Im ω)

both functions P1,ab(p) and P2,ab(p) are regular (no discontinuities)
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Sign operator in position space

[Floerchinger, JHEP 1609 (2016) 099]

in position space, sign function becomes operator

sI (−uµpµ) = sign (Im(−uµpµ))

→ sign
(
Im
(
iuµ ∂

∂xµ

))
= sign

(
Re
(
uµ ∂

∂xµ

))
= sR

(
uµ ∂

∂xµ

)
geometric representation in terms of Lie derivative

sR(Lu) or sR(Lβ)

sign operator appears also in analytically continued quantum effective
action Γ[Φ]
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Analytically continued 1 PI effective action

[Floerchinger, JHEP 1609 (2016) 099]

analytically continued quantum effective action defined by analytic
continuation of correlation functions

quadratic part

Γ2[Φ] =
1

2

∫
x,y

Φa(x)
[
P1,ab(x− y) + P2,ab(x− y)sR

(
uµ ∂

∂yµ

)]
Φb(y)

higher orders correlation functions less understood: no spectral
representation

use inverse Hubbard-Stratonovich trick: terms quadratic in auxiliary field
can be integrated out

allows to understand analytic structures of higher order terms
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Equations of motion

can one obtain causal and real renormalized equations of motion from the
1 PI effective action?

naively: time-ordered action / Feynman iε prescription:

δ

δΦa(x)
Γtime ordered[Φ] =

√
g Ja(x)

this does not lead to causal and real equations of motion !
[e.g. Calzetta & Hu: Non-equilibrium Quantum Field Theory (2008)]
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Retarded functional derivative

[Floerchinger, JHEP 1609 (2016) 099]

real and causal dissipative field equations follow from analytically
continued effective action

δΓ[Φ]

δΦa(x)

∣∣∣
ret

=
√
gJ(x)

to calculate retarded variational derivative determine

δΓ[Φ]

by varying the fields δΦ(x) including dissipative terms

set signs according to

sR(uµ∂µ) δΦ(x)→ −δΦ(x), δΦ(x) sR(uµ∂µ)→ +δΦ(x)

proceed as usual

opposite choice of sign: field equations for backward time evolution

leads to causal equations of motion
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Damped harmonic oscillator 1

equation of motion
mẍ+ cẋ+ kx = 0

or
ẍ+ 2ζω0ẋ+ ω2

0x = 0

with ω0 =
√
k/m and ζ = c/

√
4mk

what is effective action for damped oscillator? This does not work:∫
dω

2π

m

2
x∗(ω)

[
ω2 + 2i ω ζω0 − ω2

0

]
x(ω)

consider inverse propagator

ω2 + 2i sI(ω)ω ζω0 − ω2
0

with
sI(ω) = sign (Imω)

zero crossings (poles in the eff. propagator) are broadened to branch cut
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Damped harmonic oscillator 2

take for effective action

Γ[x] =

∫
dω

2π

m

2
x∗(ω)

[
−ω2 − 2i sI(ω)ω ζω0 + ω2

0

]
x(ω)

=

∫
dt

{
−1

2
mẋ2 +

1

2
c x sR(∂t)ẋ+

1

2
kx2

}
where the second line uses

sI(ω) = sign(Imω)→ sign(Im i∂t) = sign(Re ∂t) = sR(∂t)

variation gives up to boundary terms

δΓ =

∫
dt

{
mẍ δx+

1

2
c δx sR(∂t)ẋ−

1

2
c ẋ sR(∂t)δx+ kx δx

}
Set now sR(∂t)δx→ −δx and δx sR(∂t)→ δx. Defines δΓ

δx
|ret.

equation of motion for forward time evolution

δΓ

δx

∣∣∣
ret

= mẍ+ cẋ+ kx = 0
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Scalar field with O(N) symmetry

consider effective action (with ρ = 1
2
ϕjϕj)

Γ[ϕ, gµν , β
µ] =

∫
ddx
√
g

{
1

2
Z(ρ, T )gµν∂µϕj∂νϕj + U(ρ, T )

+
1

2
C(ρ, T ) [ϕj , sR(uµ∂µ)] βν∂νϕj

}

variation at fixed metric gµν and βµ gives

δΓ =

∫
ddx
√
g

{
Z(ρ, T )gµν∂µδϕj∂νϕj +

1

2
Z′(ρ, T )ϕmδϕm gµν∂µϕj∂νϕj

+ U ′(ρ, T )ϕmδϕm

+
1

2
C(ρ, T ) [δϕj , sR(uµ∂µ)]βν∂νϕj

+
1

2
C(ρ, T ) [ϕj , sR(uµ∂µ)]βν∂νδϕj

+
1

2
C′(ρ, T )ϕmδϕm [ϕj , sR(uµ∂µ)]βν∂νϕj

}

set now δϕj sR(uµ∂µ)→ δϕj and sR(uµ∂µ) δϕj → −δϕj
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Scalar field with O(N) symmetry

field equation becomes

−∇µ [Z(ρ, T )∂µϕj ] +
1

2
Z′(ρ, T )ϕj∂µϕm∂

µϕm

+U ′(ρ, T )ϕj + C(ρ, T )βµ∂µϕj = 0

generalized Klein-Gordon equation with additional damping term
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Causality

[Floerchinger, JHEP 1609 (2016) 099]

consider derivative of field equation (in flat space with
√
g = 1)

δ

δΦb(y)

δΓ

δΦa(x)

∣∣∣∣
ret

=
δ

δΦb(y)
Ja(x)

inverting this equation gives retarded Green’s function

δ

δJb(y)
Φa(x) = ∆R

ab(x, y)

only non-zero for x future or null to y

Causality: Field expectation value Φa(x) can only be influenced by the
source Jb(y) in or on the past light cone X
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Where do energy & momentum go?

modified variational principle leads to equations of motion with dissipation

but what happens to the dissipated energy and momentum?

and other conserved quantum numbers?

what about entropy production?
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Energy-momentum tensor expectation value

analogous to field equation, obtain by retarded variation

δΓ[Φ, gµν , β
µ]

δgµν(x)

∣∣∣∣
ret

= −1

2

√
g 〈Tµν(x)〉

leads to Einstein’s field equation when Γ[Φ, gµν , β
µ] contains

Einstein-Hilbert term

useful to decompose

Γ[Φ, gµν , β
µ] = ΓR[Φ, gµν , β

µ] + ΓD[Φ, gµν , β
µ]

where reduced action ΓR contains no dissipative / discontinuous terms
and ΓD only dissipative terms

energy-momentum tensor has two parts

〈Tµν〉 = (T̄R)µν + (T̄D)µν
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General covariance

infinitesimal general coordinate transformations as a gauge transformation
of the metric

δgGµν(x) = gµλ(x)
∂ελ(x)

∂xν
+ gνλ(x)

∂ελ(x)

∂xµ
+
∂gµν(x)

∂xλ
ελ(x)

temperature / fluid velocity field transforms as vector

δβµG(x) = −βν(x)
∂εµ(x)

∂xν
+
∂βµ(x)

∂xν
εν(x)

also fields Φa transform in some representation, e. g. as scalars

δΦGa (x) = ελ(x)
∂

∂xλ
Φa(x)

reduced action is invariant

ΓR[Φ + δΦG, gµν + δgGµν , β
µ + βµG] = ΓR[Φ, gµν , β

µ]
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Situation without dissipation

consider first situation without dissipation Γ[Φ, gµν , β
µ] = ΓR[Φ, gµν ]

field equation implies (for J = 0)

δ

δΦa(x)
ΓR[Φ, gµν ] = 0

gauge variation of the metric

δΓR =

∫
ddx
√
g ελ(x)∇µ〈Tµλ(x)〉

general covariance δΓR = 0 and field equations imply covariant
energy-momentum conservation

∇µ 〈Tµλ(x)〉 = 0
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Situation with dissipation
[Floerchinger, JHEP 1609 (2016) 099]

consider now situation with dissipation. General covariance of ΓR:

δΓR =

∫
ddx

{
δΓR

δΦa
δΦGa +

√
g ελ∇µ(T̄R)µλ +

δΓR

δβµ
δβµG

}
= 0

reduced action not stationary with respect to field variations

δΓR

δΦa(x)
= − δΓD

δΦa(x)

∣∣∣∣
ret

=: −√g(x)Ma(x)

reduced energy-momentum tensor not conserved

∇µ(T̄R)µλ(x) = −∇µ(T̄D)µλ(x)

dependence on βµ(x) cannot be dropped

δΓR

δβµ(x)
=:
√
g(x)Kµ(x)

general covariance implies four additional differential equations that
determine βµ

Ma∂λΦa +∇µ(T̄D)µλ = ∇µ [βµKλ] +Kµ∇λβµ
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Entropy production
[Floerchinger, JHEP 1609 (2016) 099]

contraction of previous equation with βλ gives

Maβ
λ∂λΦa + βλ∇µ(T̄D)µλ = ∇µ

[
βµβλKλ

]
consider special case

√
g Kµ(x) =

δΓR
δβµ(x)

=
δ

δβµ(x)

∫
ddx
√
g U(T )

with grand canonical potential density U(T ) = −p(T ) and temperature

T =
1√

−gµνβµβν

using s = ∂p/∂T gives entropy current

βµβλKλ = sµ = suµ

local form of second law of thermodynamics

∇µsµ = Maβ
λ∂λΦa + βλ∇µ(T̄D)µλ ≥ 0
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Energy-momentum tensor for scalar field

analytic action

Γ[ϕ, gµν , β
µ] =

∫
ddx
√
g

{
1

2
Z(ρ, T )gµν∂µϕj∂νϕj + U(ρ, T )

+
1

2
C(ρ, T ) [ϕj , sR(uµ∂µ)] βν∂νϕj

}
energy-momentum tensor

〈Tµν(x)〉 =Z(ρ, T )∂µϕj∂
νϕj

−
(
gµν + uµuνT

∂

∂T

){
1

2
Z(ρ, T )gµν∂µϕj∂νϕj + U(ρ, T )

}

generalizes Tµν for scalar field and Tµν = (ε+ p)uµuν + gµνp for ideal
fluid with pressure p = −U and enthalpy density ε+ p = sT = −T ∂

∂T
U .

general covariance and covariant conservation law imply

∇µ〈Tµν(x)〉 = 0 =⇒ Differential eqs. for βµ(x)
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Entropy production for scalar field

entropy current

sµ = βµβλKλ = −βµ T ∂

∂T

{
1

2
Z(ρ, T )gαβ∂αϕj∂βϕj + U(ρ, T )

}

generalized entropy density

sG = − ∂

∂T

{
1

2
Z(ρ, T )gαβ∂αϕj∂βϕj + U(ρ, T )

}

entropy generation positive semi-definite for C(ρ, T ) ≥ 0

∇µsµ = C(ρ, T ) (βµ∂µϕj) (βν∂νϕj) ≥ 0

for fluid at rest uµ = (1, 0, 0, 0)

∇µsµ = ṡG =
C(ρ, T )

T 2
ϕ̇jϕ̇j

entropy increases when ϕj oscillates. Example: reheating after inflation
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Ideal fluid

consider effective action

Γ[gµν , β
µ] = ΓR[gµν , β

µ] =

∫
ddx
√
g U(T )

with effective potential U(T ) = −p(T ) and temperature

T =
1√

−gµνβµβν

variation of gµν at fixed βµ lead to ideal fluid form

Tµν = (ε+ p)uµuν + pgµν

where ε+ p = Ts = T ∂
∂T
p is the enthalpy density

general covariance or covariant conservation ∇µTµν = 0 leads to

uµ∂µε+ (ε+ p)∇µuµ = 0,

(ε+ p)uµ∇µuν + ∆νµ∂µp = 0.
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Viscous fluid

analytic action

Γ[gµν , β
µ] =

∫
x

{
U(T ) +

1

4
[gµν , sR(Lu)] (2η(T )σµν + ζ(T )∆µν∇ρuρ)

}
with projector

∆µν = uµuν + gµν

and

σµν =

(
1

2
∆µα∆µβ +

1

2
∆µβ∆µα − 1

d− 1
∆µν∆αβ

)
∇αuβ

leads to

〈Tµν〉 = − 2√
g

δΓ[gµν ,β
µ]

δgµν

∣∣
ret

= (ε+ p)uµuν + pgµν − 2ησµν − ζ∆µν∇ρuρ

describes viscous fluid with shear viscosity η(T ) and bulk viscosity ζ(T )

entropy production

∇µsµ =
1

T

[
2ησµνσ

µν + ζ(∇ρuρ)2]
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Conclusions

effective dissipation can arise in quantum field theories due to effective
local loss of information

equations of motion for close-to-equilibrium theories can be obtained from
analytic continuation

general covariance and energy-momentum conservation lead to equations
for fluid velocity and entropy production

local form of second law of thermodynamics is implemented on the level of
the effective action Γ[Φ]

interesting applications
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Outlook

proper understanding of local dissipation in terms of entanglement entropy
[J. Berges, S. Floerchinger, R. Venugopalan, PLB 778 (2018) 442; JHEP 1804 (2018)145]

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

causal dissipative relativistic fluid dynamics needs hyperbolic equations
[S. Floerchinger, E. Grossi, 1711.06687]
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Backup slides



Double time path formalism

formalism for general, far-from-equilibrium situations: Schwinger-Keldysh
double time path

can be formulated with two fields Φ = 1
2
(φ+ + φ−), χ = φ+ − φ−

in principle for arbitrary initial density matrices, in praxis mainly Gaussian
initial states

allows to treat also dissipation

useful also to treat initial state fluctuations or forced noise in classical
statistical theories

difficult to recover thermal equilibrium, in particular non-perturbatively



Equations of motion from the Feynman action ?

consider damped harmonic oscillator as example. Time-ordered or
Feynman action is obtained from analytic action by replacing
sI(ω)→ sign(ω)

Γtime ordered[x] =

∫
dω

2π

m

2
x∗(ω)

[
−ω2 − 2i|ω| ζω0 + ω2

0

]
x(ω)

field equation δ
δx(t)

Γtime ordered[x] = J(t) would give[
−ω2 − 2i|ω| ζω0 + ω2

0

]
x(ω) = J(ω)

violates reality constraint x∗(ω) = x(−ω) for J∗(ω) = J(−ω)

solution not causal

x(t) =

∫
t′

∆F (t− t′)J(t′)

because Feynman propagator ∆F (t− t′) not causal.

in contrast, retarded variation of analytic action leads to real and causal
equation of motion



Tree-like structures

discontinuous terms in analytic action could be of the form

ΓDisc[Φ] =

∫
ddx
√
g
{
f [Φ](x) sR

(
uµ(x) ∂

∂xµ

)
g[Φ](x)

}
more general, tree-like structure are possible such as

ΓDisc[Φ] =

∫
x,y

{
f [Φ](x) sR

(
uµ(x) ∂

∂xµ

)
g[Φ](x, y) sR

(
uµ(y) ∂

∂yµ

)
h[Φ](y)

}
or

ΓDisc[Φ] =

∫
x,y,z

{
f [Φ](x) sR

(
uµ(x) ∂

∂xµ

)
g[Φ](x, y, z) sR

(
uµ(y) ∂

∂yµ

)
h[Φ](y)

× sR

(
uµ(z) ∂

∂zµ

)
j[Φ](z)

}
for retarded variation calculate δΓ and set sR(uµ∂µ)→ −1 if derivative
operator points towards node that is varied and sR(uµ∂µ)→ 1 if derivative
operator points in opposite direction



Analytic continuation of renormalization group equations
[Floerchinger, JHEP 1205 (2012) 021]

consider a point p2
0 − ~p2 = m2 where P1(m2) = 0.

one can expand around this point

P1 = Z(−p2
0 + ~p2 +m2) + · · ·

P2 = Zγ2 + · · ·

leads to Breit-Wigner form of propagator (with γ2 = mΓ)

G(p) =
1

Z

−p2
0 + ~p2 +m2 + i s(p0)mΓ

(−p2
0 + ~p2 +m2)2 +m2Γ2

.

a few parameters describe the singular structure of the propagator
Flow of the discontinuity coe�cient �2

1

!10 !8 !6 !4 !2 0
!0.00002

0

0.00002

0.00004

0.00006

0.00008

�2
1/⇤2

ln(k/⇤)

black solid line: evaluation at p0 = m1

red dashed line: evaluation at p0 = 0



Truncation for relativistic scalar O(N) theory

Γk =

∫
t,~x

{
N∑
j=1

1

2
φ̄j P̄φ(i∂t,−i~∇) φ̄j

+
1

4
ρ̄ P̄ρ(i∂t,−i~∇) ρ̄+ Ūk(ρ̄)

}

with ρ̄ = 1
2

∑N
j=1 φ̄

2
j .

Goldstone propagator massless, expanded around p0 − ~p2 = 0

P̄φ(p0, ~p) ≈ Z̄φ (−p2
0 + ~p2)

radial mode is massive, expanded around p2
0 − ~p2 = m2

1

P̄φ(p0, ~p) + ρ̄0P̄ρ(p0, ~p) + Ū ′k + 2ρ̄Ū ′′k

≈ Z̄φZ1

[
(−p2

0 + ~p2 +m2
1)− is(p0) γ2

1

]



Flow of the effective potential

∂tUk(ρ)
∣∣
ρ̄

=
1

2

∫
p0=iωn,~p

{
(N − 1)

~p2 − p2
0 + U ′ + 1

Z̄φ
Rk

+
1

Z1 [(~p2 − p2
0)− i s(p0)γ2

1 ] + U ′ + 2ρU ′′ + 1
Z̄φ
Rk

}
1

Z̄φ
∂tRk.

summation over Matsubara frequencies p0 = i2πTn can be done using
contour integrals.

radial mode has non-zero decay width since it can decay into Goldstone
excitations.

use Taylor expansion for numerical calculations

Uk(ρ) = Uk(ρ0,k) +m2
k(ρ− ρ0,k) +

1

2
λk(ρ− ρ0,k)2


