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Entropy and information
[Claude Shannon (1948)]

random variable x with probability distribution p(x)

information content or “surprise” of outcome x

i(x) = − ln p(x)
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Entropy is expectation value of information content
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Entropy in quantum theory

[John von Neumann (1932)]

based on the quantum density operator ρ

S = −Tr{ρ ln ρ}

for pure states ρ = |ψ〉〈ψ| one has S = 0

for mixed states ρ =
∑
j pj |ψj〉〈ψj | one has S = −∑j pj ln pj > 0

unitary time evolution conserves entropy

−Tr(UρU†) ln(UρU†) = −Trρ ln ρ → S = const.

global characterization of quantum state
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Entropy at thermal equilibrium

micro canonical ensemble: maximal entropy S for given conserved
quantities E,N in given volume V

universality at equilibrium

starting point for development of thermodynamics

S(E,N, V ), dS =
1

T
dE − µ

T
dN +

p

T
dV

grand canonical ensemble with density operator

ρ =
1

Z
e−

1
T (H−µN), Z = Tr

{
e−

1
T (H−µN)

}
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Ideal fluid dynamics

thermal equilibrium

Tµν = εuµuν + p(uµuν + gµν), Nµ = nuµ, sµ = suµ

fluid velocity uµ

thermodynamic equation of state p(T, µ) with dp = sdT + ndµ

local thermal equilibrium approximation: uµ(x), T (x), µ(x)

neglect gradients: lowest order of a derivative expansion

evolution of uµ(x), T (x) and µ(x) from conservation laws

∇µTµν(x) = 0, ∇µNµ(x) = 0.

entropy current also conserved

∇µsµ(x) = 0.
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Out-of-equilibrium

quantum field theory out-of-equilibrium is less well understood

interesting topic of current research

is non-equilibrium dynamics also governed by information?

approach to equilibrium

universality
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Quantum entanglement

[Einstein, Podolski, Rosen (1935)]

two quantum systems A and B can be in a product state

|ψproduct〉 = | ↑〉A| ↓〉B

or in an entangled state

|ψentangled〉 =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B)

entanglement: measurement of system B → prediction for system A

Einstein: “Spukhafte Fernwirkung”
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Reduced density matrix
quantum density matrix for system A+B in pure state

ρ = |ψAB〉〈ψAB |

reduced density matrix for subsystem A

ρA = TrB{ρ}

product state ρ = |ψproduct〉〈ψproduct| leads to

ρA = | ↑〉〈↑ | =
(

1 0
0 0

)

entangled state ρ = |ψentangled〉〈ψentangled| leads to

ρA = 1
2 | ↑〉〈↑ |+ 1

2 | ↓〉〈↓ | =
(

1
2 0
0 1

2

)
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Entanglement entropy

consider system A+B in globally pure state

reduced density ρA = TrB{ρ} is mixed if A and B entangled

reduced density ρA = TrB{ρ} is pure if A and B not entangled

Entanglement entropy quantifies degree of entanglement

SA = −TrA{ρA ln ρA}

product state SA = 0

entangled state SA > 0
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Classical statistics

consider system of two random variables x and y

joint probability p(x, y) , joint entropy

S = −
∑

x,y

p(x, y) ln p(x, y)

reduced or marginal probability p(x) =
∑
y p(x, y)

reduced or marginal entropy

Sx = −
∑

x

p(x) ln p(x)

one can prove: joint entropy is greater than or equal to reduced
entropy

S ≥ Sx

globally pure state S = 0 is also locally pure Sx = 0
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Quantum statistics

consider system with two subsystems A and B

combined state ρ , combined or full entropy

S = −Tr{ρ ln ρ}

reduced density matrix ρA = TrB{ρ}
reduced or entanglement entropy

SA = −TrA{ρA ln ρA}

for quantum systems entanglement makes a difference

S � SA

coherent information IB〉A = SA − S can be positive !

globally pure state S = 0 can be locally mixed SA > 0
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Quantum field theory
field theory: one degree of freedom per space point φ(x)

states specified at constant time t or on any Cauchy hypersurface

x

t

fields in different spatial regions can be entangled
11 / 37



The thermal model puzzle
e+ e− collisions show thermal-like features
particle multiplicities well described by thermal model500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

conventional thermalization by collisions unlikely
more thermal-like features difficult to understand in Pythia
[Fischer, Sjöstrand (2017)]

alternative explanations needed
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QCD strings

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

e. g. Lund model (Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix of mixed form

ρA = TrB{ρ}

characterization by entanglement entropy

SA = −Tr {ρA ln ρA}

could this lead to thermal-like effects?
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Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]
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Schwinger model
QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
mass is related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Expanding string solution

z

t

external quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

metric ds2 = −dτ2 + τ2dη2

symmetry with respect to longitudinal boosts η → η + ∆η
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Coherent field evolution
Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ̄/
√
π must approach the U(1) charge

of the quarks E → q for τ → 0+

φ̄(τ)→ √π (τ → 0+)

solution to equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =
√
π J0(Mτ)
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Gaussian states

theories with quadratic action typically have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA =
1

2
TrA

{
D ln(D2)

}
,

operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)
.

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

p

q

τ = const
η = const

region A

region B

z

t

consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at
fixed time t = τ cosh(∆η/2)

need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

entanglement entropy density dS/d∆η for bosonized massless
Schwinger model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5

[Berges, Floerchinger, Venugopalan (2017)]
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Conformal limit
for Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff

here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

conformal charge c = 1 for free massless scalars or Dirac fermions

additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

entropy becomes extensive in ∆η !
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Universal entanglement entropy density
for very early times “Hubble” expansion rate dominates over masses
and interactions

H =
1

τ
�M =

q√
π
,m

theory dominated by free, massless fermions

universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

for QCD in 1+1 dimensions (gluons not dynamical)

c = Nc ×Nf

from fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Experimental access to entanglement ?

could longitudinal entanglement be tested experimentally?

entropy density dS/dη not straight-forward to access

measured is number of charged particles per unit rapidity

typical values for collision energies
√
s = 14− 206 GeV in the range

dNch/dη ≈ 2− 4

entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Nch = 7.2 would give

dS/dη ≈ 14− 28

this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πLT )

)
+ const

compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ const

expressions agree for L = τ∆η (with metric ds2 = −dτ2 + τ2dη2)
and time-dependent temperature

T =
1

2πτ

25 / 37



Modular or entanglement Hamiltonian

z

t

conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,

Huerta (2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian local expression

K =

∫

Σ

dΣµ ξν(x)Tµν(x)
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Time-dependent temperature

z

t

energy-momentum of excitations around coherent field Tµν(x)

combination of fluid velocity and temperature ξµ(x) = uµ(x)
T (x)

fluid velocity in τ -direction & time-dependent temperature
[Berges, Floerchinger, Venugopalan (2017)]

T (τ) =
~

2πτ

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !
Hawking-Unruh temperature in Rindler wedge T (x) = ~c

2πx
27 / 37



Physics picture

alternative derivation via mode functions & Bogoliubov transforms
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute

∆η →∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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Entanglement dynamics in cold atom experiments

entanglement can be directly accessed in cold atom experiments
[Oberthaler group, Greiner group]

expanding geometries could be realized by interplay of

longitudinal expansion
time dependent change of sound velocity vs(t)
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Little bangs in the laboratory
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties

thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by
microscopic properties in LQCD
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Thermodynamics of QCD

and thus the values of the temperature T used in the fits.
Based on the uncertainty analyses in the determination of
the lattice scale a (∼1.3%) and tuning of the ms to stay on
the LCP presented in Appendixes B and C, we assigned an
overall conservative 2% uncertainty in T, which we add
linearly to the error estimates already assigned by the
bootstrap process. In practice, at each T and for each
observable, we picked the minimum and maximum values
of the 1σ bootstrap envelope in the region T ! 2%. This
new envelope is then used as the final uncertainty band for
all the continuum results shown in the figures and
discussed below.
Our continuum extrapolated results for the trace anomaly

and other thermodynamic observables are shown in Fig. 5
and the data are given in Table I. For T < 150 MeV, the
trace anomaly is well approximated by the HRG estimate
shown by the solid line in Fig. 5 (left). For T > 150 MeV,
the Nτ ≥ 8lattice results are systematically higher than the
HRG estimate as shown in Fig. 3, and the slopes of the
HRG and continuum extrapolated curves start to differ as
shown in Fig. 5. In the peak region, ðϵ − 3pÞ=T4 has a
maximum of about 4.05(15) at T ∼ 204 MeV. This maxi-
mal value from simulations with the HISQ/tree action is
significantly smaller than our previous results with the p4
and asqtad actions which were incorporated in the HotQCD
parametrization [23] of the EoS, as well as in the s95p
parametrization of the EoS that is frequently used in
hydrodynamic models [45].
The final continuum extrapolated estimates of the

pressure, energy density and entropy density are shown
in Fig. 5 (right) and compared with HRG predictions for
T < 170 MeV. Again, there is reasonable agreement for
T < 150 MeV. Above T ¼ 150 MeV, HRG estimates
lie along the lower edge of the error-band of the lattice
estimates.

We can now compare our results with the results
obtained by the Wuppertal-Budapest Collaboration using
the stout action [26]. This comparison is shown in Fig. 6 for
the trace anomaly, the pressure and the entropy density. We
find good agreement in the trace anomaly with the stout
results over the full temperature range (130–400) MeV.
Note, however, that above the peak the central values
with the stout action lie systematically below ours. As a
result, our estimates of the pressure become systematically
larger for T > 200 MeV. By T ¼ 400 MeV, the difference
between the central values in the two calculations increases
to about 6%. The two results, however, still agree within
errors. The difference in the entropy density reaches about
7% by T ¼ 400 MeV, and in this case the two estimates
differ by about 2σ. These differences suggest that more
detailed calculations of the trace anomaly at higher temper-
atures are needed. In particular, it would be important to see
if the differences persist at higher temperatures where a
comparison with resummed perturbative calculations
should be possible (see Sec. V C).

A. Parametrization of the EoS

We close this section by providing an analytical para-
metrization of the pressure of (2 þ 1)-flavor QCD, sum-
marized in Table I, that can be used in phenomenological
applications and hydrodynamic modeling of strong inter-
action matter. We choose an ansatz that incorporates basic
features of the low and high temperature limits, i.e., it
ensures that the pressure becomes exponentially small at
low temperatures and approaches the ideal gas limit at high
temperatures. We find that the following parametrization
provides an excellent description of all bulk thermody-
namic observables discussed in the previous sections,
including the specific heat and speed of sound that require

FIG. 5 (color online). Spline fits to the trace anomaly for several values of the lattice spacing aT ¼ 1=Nτ and the result of our
continuum extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right-hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale error is
included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95π2=60 in the right panel
corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region, Tc ¼ ð154! 9Þ MeV.

A. BAZAVOV et al. PHYSICAL REVIEW D 90, 094503 (2014)
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Figure S7: The lattice result for the 2+1+1 flavor QCD pressure together with the fitted value of the
g6 order. We included the charm mass at tree-level. The perturbative result agrees with the data from
about 500 MeV temperature. Using the same fitted coe�cient we also calculated the e↵ect of the bottom
quark with the same method. The blue curve shows the EoS including the bottom contribution.

S4.1 The 2+1+1 flavor QCD equation of state

Now we show the complete result obtained from nf = 2 + 1 + 1 lattice QCD. Figure S8 depicts the trace
anomaly (left panel) and pressure (right panel). For comparison the 2+1 flavor results are also shown.

Plotting p/T 4 (which is the normalized free energy density), we can compare our result to other
approaches. At low temperatures the Hadron Resonance Gas model (using the 2014 PDG spectrum) gives
a good description of the lattice data. This was already observed in Ref. [S18].

In Ref. [S18] we gave a simple parametrization for the 2+1 flavor equation of state. Here we update
the 2+1 flavor parameters and provide a parametrization that covers the 100-1000 MeV temperature
range and describes the 2+1+1 lattice data, i.e. including the e↵ect of the charm quark. As before, the
parametrizing formula reads

I(T )

T 4
= exp(�h1/t � h2/t

2) ·
✓

h0 + f0
tanh(f1 · t + f2) + 1

1 + g1 · t + g2 · t2

◆
, (S11)

with t = T/200 MeV. The parameters are given in Table. S1, the resulting curves are shown in Fig. S8.
For completeness the nf = 2 + 1 parametrization is also shown.
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Figure S8: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories in our parametriza-
tion Eq. (S11). We also show the Hadron Resonance Gas model’s prediction for comparison.

10

[Bazavov et al. (HotQCD) (2014)] [Borsányi et al. (2016)]

thermodynamic equation of state p(T ) rather well understood now

also µ 6= 0 is being explored

progress in computing power
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Transport coefficients

from perturbation theory / effective kinetic theory at leading order
[Arnold, Moore, Yaffe (2003)]

η(T ) = k
T 3

g4 log(1/g)
,

next-to-leading order also understood now
[Ghiglieri, Moore, Teaney (2015-2018)]

form AdS/CFT correspondence (very strong coupling)
[Kovtun, Son, Starinets (2003)]

η

s
≥ ~

4π

for viscous relativistic fluid (first order approximation)

∇µsµ = 2η σρνσ
ρν + ζ(∇ρuρ)2
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Dissipation

dissipation is defined as entropy generation

d

dt
S > 0

or for extensive entropy S =
∫
dΣµs

µ locally

∇µsµ > 0

second law of thermodynamics

effective loss of information

local dissipation = entanglement generation ?
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Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD

very many events

dynamical description as a fluid

all information must be reconstructed from final state
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The dark matter fluid

high energy nuclear collisions

LQCD → fluid properties

late time cosmology

fluid properties → Ldark matter

until direct detection of dark matter it can only be observed via
gravity

Gµν = 8πGN T
µν

so all we can access is
Tµνdark matter

strong motivation to study heavy ion collisions and cosmology
together!
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Conclusions

quantum field theory & information theory are entangled !

could be essential element for universal non-equilibrium theory

entanglement helps to understand “thermal effects” in e+e− and
other collider experiments

at very early times theory effectively conformal 1
τ
� m, q

entanglement entropy extensive in rapidity dS
d∆η

= c
6

reduced density matrix for excitations at early times thermal T = ~
2πτ

experiments with cold atoms could allow to investigate
entanglement directly

interesting relations to black hole physics and cosmology
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Backup
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Figure 11. Left panel: comparison of η (p + p(p̄)) and yT distributions (e+e−) at different
energies. The variable yT is the rapidity with respect to the thrust axis of the e+e− collision. Right
panel: the width λ of the η distributions (p + p(p̄)) and yT distributions (e+e−) as a function of√

s. Note that the difference between inelastic and non-single diffractive collisions is neglected
by fitting the combined p + p(p̄) data with λ = a + b ln

√
s. In the case of the Landau model

⟨Nch⟩/(dNch/dy |y =0) =
√

2πL where L = ln(
√

s/(2mp)) is shown. Data points for e+e− from
[8, 62, 110–114].

which √
spp ≈ (2 ÷ 3)

√
see. For the shown cases the dNch/dη distribution in p + p(p̄) are

broader than the dNch/dyT distributions. This might indicate the contribution from beam-
particle fragmentation in p + p(p̄). Note, however, that based on the Landau hydrodynamic
picture a simple relation between dNch/dη|p+p,

√
s

η=0 and dNch/dyT |e
+e−,

√
s/3

yT =0 was suggested
in [103, 105]. The width λ of the distribution defined as λ = ⟨Nch⟩/dNch/dη|η=0 and
λ = ⟨Nch⟩/dNch/dyT |yT =0, respectively, is shown in the right panel of figure 11. Based on the
QCD calculation in [106], λ is expected to scale linearly with

√
ln s. As shown in figure 11

this form does not describe the p+p(p̄) data which are well parameterized with λ = a +b ln s.
The Landau hydrodynamic model also predicts a linear

√
ln s dependence of λ [107–109] and

hence also fails to describe the p + p(p̄) data.
It will be interesting to see whether this universality of multiplicities in e+e− and p +p(p̄)

collisions also holds at LHC energies. This universality appears to be valid at least up to
Tevatron energies despite its rather weak theoretical foundation (see section 2.6). Under
the assumptions that K2 remains constant at about 0.35 also at LHC energies and that the
extrapolation of the e+e− data with the 3NLO QCD form is still reliable at

√
s ≈ 5 TeV

one can use the fit of p + p(p̄) data to predict the multiplicities at the LHC. This yields
⟨Nch⟩ ≈ 70.9 at 7 TeV, ⟨Nch⟩ ≈ 79.7 at 10 TeV and ⟨Nch⟩ ≈ 88.9 at 14 TeV. Extrapolating
the ratio λ = ⟨Nch⟩/(dNch/dη)η=0 with the form λ = a + b ln

√
s (see figure 11), these

multiplicities correspond to dNch/dη|η=0 ≈ 5.5 at 7 TeV, dNch/dη|η=0 ≈ 5.9 at 10 TeV and
dNch/dη|η=0 ≈ 6.4 at 14 TeV.

3.6. Moments

The moments of the multiplicity distributions as defined in section 2.2 will now be used to
identify general trends as a function of

√
s and to study the validity of KNO scaling. First
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[open (filled) symbols: e+e− (pp), Grosse-Oetringhaus & Reygers (2010)]

rapidity distribution dN/dη has plateau around midrapidity

only logarithmic dependence on collision energy



Transverse coordinates

So far dynamics strictly confined to 1+1 dimensions

Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hµν = ∂µX

m∂νXm)

SNG =

∫
d2x
√
−dethµν {−σ + . . .}

≈
∫
d2x
√
g
{
−σ − σ

2
gµν∂µX

i∂νX
i + . . .

}

Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates Xi with i = 1, 2.



Free massive fermions

Entanglement entropy can also be calculated for free Dirac fermions
of mass m

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5

Same universal plateau c/6 with c = 1 at early time

Conformal limit corresponds to non-interacting fermions

Consistent with or without bosonization



Alternative derivation: mode functions
Fluctuation field ϕ = φ− φ̄ has equation of motion

∂2
τϕ(τ, η) +

1

τ
∂τϕ(τ, η) +

(
M2 − 1

τ2

∂2

∂η2

)
ϕ(τ, η) = 0

Solution in terms of plane waves

ϕ(τ, η) =

∫
dk

2π

{
a(k)f(τ, |k|)eikη + a†(k) f∗(τ, |k|)e−ikη

}

Mode functions as Hankel functions

f(τ, k) =

√
π

2
e
kπ
2 H

(2)
ik (Mτ)

or alternatively as Bessel functions

f̄(τ, k) =

√
π√

2 sinh(πk)
J−ik(Mτ)



Bogoliubov transformation

Mode functions are related

f̄(τ, k) =α(k)f(τ, k) + β(k)f∗(τ, k)

f(τ, k) =α∗(k)f̄(τ, k)− β(k)f̄∗(τ, k)

Creation and annihilation operators are related by

ā(k) =α∗(k)a(k)− β∗(k)a†(k)

a(k) =α(k)ā(k) + β(k)ā†(k)

Bogoliubov coefficients

α(k) =

√
eπk

2 sinh(πk)
β(k) =

√
e−πk

2 sinh(πk)

Vacuum |Ω〉 with respect to a(k) such that a(k)|Ω〉 = 0 contains
excitations with respect to ā(k) such that ā(k)|Ω〉 6= 0 and vice versa



Role of different mode functions

Hankel functions f(τ, k) are superpositions of positive frequency
modes with respect to Minkowski time t

Bessel functions f̄(τ, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time t

At very early time 1/τ �M conformal symmetry

ds2 = τ2
[
−d ln(τ)2 + dη2

]

Hankel functions f(τ, k) are superpositions of positive and negative
frequency modes with respect to conformal time ln(τ)

Bessel functions f̄(τ, k) are superpositions of positive frequency
modes with respect to conformal time ln(τ)



Occupation numbers
Minkowski space coherent states have two-point functions

〈ā†(k)ā(k′)〉c = n̄(k) 2π δ(k − k′) = |β(k)|2 2π δ(k − k′)
〈ā(k)ā(k′)〉c = ū(k) 2π δ(k + k′) = −α∗(k)β∗(k) 2π δ(k + k′)

〈ā†(k)ā†(k′)〉c = ū∗(k) 2π δ(k + k′) = −α(k)β(k) 2π δ(k + k′)

Occupation number

n̄(k) = |β(k)|2 =
1

e2πk − 1

Bose-Einstein distribution with excitation energy E = |k|/τ and
temperature

T =
1

2πτ

Off-diagonal occupation number ū(k) = −1/(2 sinh(πk)) make sure
we still have pure state



Local description
Consider now rapidity interval (−∆η/2,∆η/2)

Fourier expansion becomes discrete

ϕ(η) =
1

L

∞∑

n=−∞
ϕn e

inπ η
∆η

ϕn =

∫ ∆η/2

−∆η/2

dη ϕ(η)
1

2

[
e−inπ

η
∆η + (−1)neinπ

η
∆η

]

Relation to continuous momentum modes by integration kernel

ϕn =

∫
dk

2π
sin(k∆η

2 − nπ
2 )

[
1

k − nπ
∆η

+
1

k + nπ
∆η

]
ϕ(k)

Local density matrix determined by correlation functions

〈ϕn〉, 〈πn〉, 〈ϕnϕm〉c, etc.



Emergence of locally thermal state
Mode functions at early time

f̄(τ, k) =
1√
2k
e−ik ln(τ)−iθ(k,M)

Phase varies strongly with k for M → 0

θ(k,M) = k ln(M/2) + arg(Γ(1− ik))

Off-diagonal term ū(k) have factors strongly oscillating with k

〈ϕ(τ, k)ϕ∗(τ, k′)〉c = 2πδ(k − k′) 1

|k|
×
{[

1
2 + n̄(k)

]
+ cos [2k ln(τ) + 2θ(k,M)] ū(k)

}

cancel out when going to finite interval !

Only Bose-Einstein occupation numbers n̄(k) remain



Entanglement and deep inelastic scattering

How strongly entangled is the nuclear wave function?

What is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

S = ln[xG(x)]

Does saturation at small Bjorken-x have an entropic meaning?

Entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015)]

Could entanglement entropy help for a non-perturbative extension of
the parton model?

Entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]


