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Entropy and information

[Claude Shannon (1948)]
@ random variable x with probability distribution p(x)
@ information content or “surprise” of outcome x
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o Entropy is expectation value of information content

S = Zp )YInp(x

S=0 S =1n(2) S =21In(2)




Entropy in quantum theory

[John von Neumann (1932)]

@ based on the quantum density operator p

S =-Tr{plnp}

e for pure states p = [1))(¢)| one has S =0

o for mixed states p = >, p;|i;)(1);] one has S = =3 p;Inp; >0
@ unitary time evolution conserves entropy

~Tr(UpUN In(UpUT) = —=Trplnp — S = const.

@ global characterization of quantum state



Entropy at thermal equilibrium

@ micro canonical ensemble: maximal entropy S for given conserved
quantities £/, N in given volume V

universality at equilibrium

starting point for development of thermodynamics

_1 Il P
S(E,N,V), dS = 5dE — ZdN + ZdV

grand canonical ensemble with density operator

P = %6 T (H= #N) Z:Tr{e_%(H_#N)}



Ideal fluid dynamics

thermal equilibrium

™ = eulu” + p(ufu” + g""), NH = nut, st = syt

fluid velocity u*

thermodynamic equation of state p(7', u) with dp = sdT + ndpu
local thermal equilibrium approximation: u*(x), T'(z), p(x)
neglect gradients: lowest order of a derivative expansion
evolution of u(z), T(x) and p(x) from conservation laws

vV, TH (xz) =0, V.N"(z) = 0.

entropy current also conserved

Vst (x) = 0.



Out-of-equilibrium

quantum field theory out-of-equilibrium is less well understood

interesting topic of current research

is non-equilibrium dynamics also governed by information?

approach to equilibrium

@ universality



Quantum entanglement

[Einstein, Podolski, Rosen (1935)]

two quantum systems A and B can be in a product state

[Yproduct) = | T)al L) B

@ or in an entangled state

Wfentangied) = % (1Al 05 — | D al 1)

entanglement: measurement of system B — prediction for system A
o Einstein: "Spukhafte Fernwirkung'




Reduced density matrix

@ quantum density matrix for system A + B in pure state

p=|vYaB)(Wag|

o reduced density matrix for subsystem A

pa = Tre{p}

e product state p = [Vproduct) (Vproduct| leads to

pa=11001= (g )

° entangled state pP= ‘¢entang|ed><wentangled| leads to

1

pA=§|¢><T|+§¢><¢|=(5

N= O
N—



Entanglement entropy

consider system A + B in globally pure state

reduced density p4 = Trp{p} is mixed if A and B entangled
reduced density p4 = Trg{p} is pure if A and B not entangled
Entanglement entropy quantifies degree of entanglement

Sa=—=Tra{palnpa}

product state S4 =0
entangled state S4 > 0



Classical statistics

consider system of two random variables = and y

joint probability p(z,y) , joint entropy

S=-> vle.y)np(e,y)

z,Y

reduced or marginal probability p(z) = >_, p(z,y)

reduced or marginal entropy

Zp )Inp(z

one can prove: joint entropy is greater than or equal to reduced
entropy
S>5,

globally pure state S = 0 is also locally pure S, =0



Quantum statistics

@ consider system with two subsystems A and B
@ combined state p , combined or full entropy

S =—-Tr{plnp}

o reduced density matrix p4 = Trp{p}
o reduced or entanglement entropy

Sa=—-Tra{palnpa}

o for quantum systems entanglement makes a difference

S# 54

e coherent information Igy4 = S4 — S can be positive !
o globally pure state S = 0 can be locally mixed S4 > 0



Quantum field theory

o field theory: one degree of freedom per space point ¢(x)

@ states specified at constant time ¢ or on any Cauchy hypersurface
t

o fields in different spatial regions can be entangled



The thermal model puzzle

e ¢t e collisions show thermal-like features
@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely

@ more thermal-like features difficult to understand in PYTHIA
[Fischer, Sjéstrand (2017)]

@ alternative explanations needed



QCD strings

==

B A B

particle production from QCD strings

e. g. Lund model (Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix of mixed form

pa = Tre{p}

characterization by entanglement entropy

Sa=-Tr{palnpa}

o could this lead to thermal-like effects?



Microscopic model

QCD in 1+1 dimensions described by 't Hooft model
. . 1
L=~y (Op — igA L)Y — miinh; — itl’ F, F"
fermionic fields ¢; with sums over flavor species i =1,..., Ny
SU(NV.) gauge fields A, with field strength tensor F,,,
gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass
non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — co with g2, fixed
['t Hooft (1974)]



Schwinger model
e QED in 1+1 dimension

L = 7151'7;%8# - iquW mﬂ/&% - [LVFMV

@ geometric confinement
@ U(1) charge related to string tension ¢ = v/20

@ for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S = /dzx\@{ — lgwamam — %M%Q

mqe

27375 cos(2f¢+9)}

@ Schwinger bosons are dipoles ¢ ~ 1)
@ mass is related to U(1) charge by M = q/\/7m = \/20/7

@ massless Schwinger model m = 0 leads to free bosonic theory



Ezxpanding string solution

@ external quark-anti-quark pair on trajectories z = =+t
e coordinates: Bjorken time T = v/t? — 22, rapidity n = arctanh(z/t)
e metric ds? = —d7? 4 12dn?

@ symmetry with respect to longitudinal boosts n — 1 + An

16 /37



Coherent field evolution

@ Schwinger boson field depends only on 7
¢ = o(r)
@ equation of motion
_ 1 _ _
02p + ;&d) + M?%*¢ =0.

e Gauss law: electric field E = g¢/+/7 must approach the U(1) charge
of the quarks E — ¢ for 7 — 0

¢(r) = VT (r—04)

@ solution to equation of motion [Loshaj, Kharzeev (2011)]

¢() = V/m Jo(Mr)



Gaussian states

o theories with quadratic action typically have Gaussian density matrix

o fully characterized by field expectation values

o(z) = (o(2)), m(z) = (7 (z))

and connected two-point correlation functions, e. g.

(D(@)d(y))e = ($(2)d(y)) — d(x)(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian



Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

1
Sa=5Tra {DIn(D?)},

@ operator trace over region A only

@ matrix of correlation functions

_ (—io@)m(y))e  i{d(x)d(y))e
Do) = (i<ﬂ($)ﬂ(y)>c i<7f(l‘)¢(y)>c> '

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly
@ coherent states and vacuum have equal entanglement entropy S4



Rapidity interval

T =const
n = const
————— region A
region B
z

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at
fixed time ¢t = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions



Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless
Schwinger model (M = \/L;)

dS/dAn
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[Berges, Floerchinger, Venugopalan (2017)]
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Conformal limat

o for M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/e) + constant

with small length € acting as UV cutoff

here this implies

S(r,An) = %ln (27 sinh(An/2)/€) + constant

conformal charge ¢ = 1 for free massless scalars or Dirac fermions

additive constant not universal but entropy density is

0 c

—>g (An>1)

entropy becomes extensive in An !



Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses

and interactions

1
H=>->M=-"L n
T

V3

theory dominated by free, massless fermions

@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
e for QCD in 141 dimensions (gluons not dynamical)

C:NCXNf

from fluctuating transverse coordinates (Nambu-Goto action)

c=N.XNy+2=9+2=11



Fxperimental access to entanglement ¢

o could longitudinal entanglement be tested experimentally?

@ entropy density dS/dn not straight-forward to access

@ measured is number of charged particles per unit rapidity

o typical values for collision energies /s = 14 — 206 GeV in the range

ANy /dn =~ 2 — 4

@ entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Ng, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy



Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = <In <T sinh(wLT)) + const

3 mTe

compare this to our result in expanding geometry
c 2T .
S(r,An) = 3 In ( smh(An/2)> + const
€
expressions agree for L = 7An (with metric ds?> = —dr? + 72dn?)

and time-dependent temperature



Modular or entanglement Hamiltonian

@ conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e_K, ZA:Tre_K
Z

@ modular or entanglement Hamiltonian local expression

K= /E 45, &,(2) T" (2)

26 /37



Time-dependent temperature

t

@ energy-momentum of excitations around coherent field T (x)
combination of fluid velocity and temperature £#(z) = 7?((;”))
fluid velocity in T-direction & time-dependent temperature

[Berges, Floerchinger, Venugopalan (2017)]
h
(1) = 5—

T onr

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T'(x) = QZCI




Physics picture

@ alternative derivation via mode functions & Bogoliubov transforms
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

e on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Ay — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
o M7 — 0 for any finite An gives thermal state with T'=1/(277)



Entanglement dynamics in cold atom experiments

@ entanglement can be directly accessed in cold atom experiments
[Oberthaler group, Greiner group]
@ expanding geometries could be realized by interplay of

e longitudinal expansion
o time dependent change of sound velocity vs(¢)

K Decelerating Universes 3l Coasting Universe Accelerating Universe




Little bangs in the laboratory

kinetic
freeze-out
lumpy initial hadronization
energy density ‘

== N |
QGP phase |
quark and gluon
degrees of freedom
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overlap zone fluctuations
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distributions and
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ced particles




Fluid dynamics

@ long distances, long times or strong enough interactions
@ matter or quantum fields form a fluid!
@ needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear viscosity n(7T’, i)

bulk viscosity ¢(7', i)

heat conductivity (7', u)

relaxation times, ...

@ ab initio calculation of fluid properties difficult but fixed by
microscopic properties in Zqcp



Thermodynamics of QCD
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[Bazavov et al. (HotQCD) (2014)] [Borsényi et al. (2016)]

e thermodynamic equation of state p(T) rather well understood now
@ also p # 0 is being explored

@ progress in computing power




Transport coefficients

e from perturbation theory / effective kinetic theory at leading order
[Arnold, Moore, Yaffe (2003)]

TS
M) =k iog(i/g)

@ next-to-leading order also understood now
[Ghiglieri, Moore, Teaney (2015-2018)]

e form AdS/CFT correspondence (very strong coupling)
[Kovtun, Son, Starinets (2003)]

>

w |3

h
4
o for viscous relativistic fluid (first order approximation)

Vst = 2n0,,0" + ((V,u”)?



Dissipation

dissipation is defined as entropy generation

d
£S>O

or for extensive entropy S = [ dX, s locally

Vst >0

second law of thermodynamics
o effective loss of information

local dissipation = entanglement generation 7



Big bang — little bang analogy

Dark Energy kinetic
Accelerated Expansion freeze-out
Afterglow Light )
Pattern  Dark Ages Development of \. e [ y e ——
/ Galaxies, Panets,etc. lumpy initial =

£ correlations of
energy density duced particles
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froedom
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collision ‘¥’

. quantum
1st Stars overlap zone fuctuations
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Big Bang Expansion

137 billion years v~ 0 fin/c -1 fin/c © ~ 10 fm/c <~ 10 fm/c

e cosmol. scale: MPc= 3.1 x 102 m e nuclear scale: fm=10"'" m
o Gravity + QED + Dark sector e QCD
@ one big event @ very many events

@ dynamical description as a fluid

@ all information must be reconstructed from final state



The dark matter fluid

o high energy nuclear collisions

Zacp —  fluid properties

o late time cosmology

fluid properties —  ZLyark matter

@ until direct detection of dark matter it can only be observed via
gravity
GHY =8rGn THY

so all we can access is
"

dark matter

@ strong motivation to study heavy ion collisions and cosmology
together!



Conclusions

@ quantum field theory & information theory are entangled !
@ could be essential element for universal non-equilibrium theory

@ entanglement helps to understand “thermal effects” in eTe™ and
other collider experiments

e at very early times theory effectively conformal = >m,q

o entanglement entropy extensive in rapidity - dAn =3

o reduced density matrix for excitations at early times thermal T' = ;2

27T

@ experiments with cold atoms could allow to investigate
entanglement directly

@ interesting relations to black hole physics and cosmology



BACKUP



Rapidity distribution
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o rapidity distribution dN/dn has plateau around midrapidity

@ only logarithmic dependence on collision energy



Transverse coordinates

@ So far dynamics strictly confined to 14+1 dimensions

@ Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X™0,Xn)

Sng = /dzx\/fdethm, {(—o+4...}

~ /d%\/g{—a - 29" 0, X'0,X 4. y

e Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with i =1, 2.



Free massive fermions

o Entanglement entropy can also be calculated for free Dirac fermions
of mass m

dS/dAn
0.4

0.3+

0.2+

0.1F

0.0 An

0 5 10 15 20 25
mr=1,10"", 1072 107, 107*, and 107°
@ Same universal plateau ¢/6 with ¢ = 1 at early time

o Conformal limit corresponds to non-interacting fermions
o Consistent with or without bosonization



Alternative derivation: mode functions

e Fluctuation field ¢ = ¢ — ¢ has equation of motion

32s0(7n)+1<9<p(777) Mz—iai o(r,n) =0
T ) = T ) 2877 )

@ Solution in terms of plane waves

o, / DK ak) fr, (KD + al (k) £ (r, [K)e )

@ Mode functions as Hankel functions
1 k) = YTt 1D (a17)

or alternatively as Bessel functions

Jr

o0 = e

J_ir(MT)



Bogoliubov transformation

@ Mode functions are related

@ Bogoliubov coefficients

ek e—Tk
alk) = 2sinh(mk) Alk) = 2sinh(mk)

e Vacuum |(2) with respect to a(k) such that a(k)|2) = 0 contains
excitations with respect to a(k) such that a(k)|2) # 0 and vice versa



Role of different mode functions

@ Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

o Bessel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

o At very early time 1/7 > M conformal symmetry

ds* = 7% [—dIn(1)? + dn’*]

@ Hankel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(r, k) are superpositions of positive frequency
modes with respect to conformal time In(7)



Occupation numbers
@ Minkowski space coherent states have two-point functions
(@' (k)a(k’))e = a(k) 2w (k — k') = |B(k)[* 27 6(k — k)
(K)a(k'))e = a(k) 27 6(k + k') = —a*(k)B* (k) 21 5 (k + k)
k)a'(K))e = u*(k) 2 6(k + k') = —a(k)B(k) 2m 6 (k + k)

@ Occupation number

(k) = |B(k)|* = ﬁ

@ Bose-Einstein distribution with excitation energy F = |k|/T and
temperature

o Off-diagonal occupation number u(k) = —1/(2sinh(7k)) make sure
we still have pure state



Local description
o Consider now rapidity interval (—An/2, An/2)

@ Fourier expansion becomes discrete

1 = o
sp(’r’) = Z Z SDn elTI,TrTn

n—=—oo

An/2 1l inmn -
©n =/ dn (n) 5 [6*”’“7 + (—1)%””“&7}
,An/Q 2

@ Relation to continuous momentum modes by integration kernel

o(k)

An An

dk . kA o 1 1
<pn:/27r81n(2"—2)[ T

@ Local density matrix determined by correlation functions

{on), (), (On®m)e, etc.



Emergence of locally thermal state

@ Mode functions at early time

r 1 —ikIn(7)—10(k
f(T k?) — 2ke kln(r)—i0(k,M)

@ Phase varies strongly with k& for M — 0

0(k, M) = kIn(M/2) + arg(T(1 — ik))

o Off-diagonal term (k) have factors strongly oscillating with k

(o, k)" (7))o = 2k — k’%
x {[& +n(k)] + cos 2k In(r) + 20(k, M)] u(k)}

cancel out when going to finite interval !

@ Only Bose-Einstein occupation numbers 7(k) remain



Entanglement and deep inelastic scattering

o How strongly entangled is the nuclear wave function?

o What is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

S = In[zG(x)]

o Does saturation at small Bjorken-z have an entropic meaning?

@ Entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015)]

@ Could entanglement entropy help for a non-perturbative extension of
the parton model?

e Entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



