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Little bangs in the laboratory
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Microscopic description

Lagrangian

L = −1

2
tr FµνF

µν −
∑
f

ψ̄f (iγµDµ −mf )ψf

with

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν ], Dµ = ∂µ − igAµ

particle content

N2
c − 1 = 8 real massless vector bosons: gluons

Nc ×Nf massive Dirac fermions: quarks

quark masses

Up 2.3 MeV Charm 1275 MeV Top 173 GeV
Down 4.8 MeV Strange 95 MeV Bottom 4180 MeV
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Asymptotic freedom 9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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[Particle Data Group (2013)]

coupling constant small at high momentum transfer / energy scale

high-temperature QCD should be weakly coupled

low-temperature QCD should be strongly coupled
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Confinement - deconfinement

Deconfinement phase transition

Individual
nucleons plasma

Quark gluon

Density

When the nucleon density increases, they merge, enabling quarks and
gluons to hop freely from a nucleon to its neighbors

This phenomenon extends to the whole volume when the phase
transition ends

Note: if the transition was first–order, it would go through a mixed
phase containing a mixture of nucleons and plasma

CERN Summer School 2011 () QCD in Heavy Ion Collisions Cheile Grǎdiştei, Romania 23 / 70

for low temperature / density: quarks and gluons confined to hadrons

for high temperature / density: deconfined quarks and gluons

in between no sharp phase transition but continuous crossover
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by microscopic
properties in LQCD
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0

equation for fluid velocity uµ

(ε+ p+ πbulk)uµ∇µuν + ∆νµ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0

equation for particle number density n

uµ∂µn+ n∇µuµ +∇µνµ = 0
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Constitutive relations

Second order relativistic fluid dynamics:

equation for shear stress πµν

τshear P
ρσ
αβ u

µ∇µπαβ + πρσ + 2η P ρσαβ ∇αu
β + . . . = 0

with shear viscosity η(T, µ)

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + πbulk + ζ ∇µuµ + . . . = 0

with bulk viscosity ζ(T, µ)

equation for baryon diffusion current νµ

τheat ∆α
β u

µ∇µνβ + να + κ

[
nT

ε+ p

]2

∆αβ∂β
( µ
T

)
+ . . . = 0

with heat conductivity κ(T, µ)
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Bjorken boost invariance
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z @fmD

1

2

3

4

5

6
t @fm�cD

How does the fluid velocity look like?

Bjorkens guess: vz(t, x, y, z) = z/t

leads to an invariance under Lorentz-boosts in the z-direction

use coordinates τ =
√
t2 − z2, x, y, η = arctanh(z/t)

Bjorken boost symmetry is reasonably accurate close to mid-rapidity η ≈ 0
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Transverse expansion

for central collisions (r =
√
x2 + y2)

ε = ε(τ, r)

initial pressure gradient leads to radial flow(
vx
vy

)
=

(
x
y

)
f(τ, r)
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Non-central collisions

pressure gradients larger in reaction plane

leads to larger fluid velocity in this direction

more particles fly in this direction

can be quantified in terms of elliptic flow v2

particle distribution

dN

dφ
=
N

2π

[
1 + 2

∑
m

vm cos (m (φ− ψR))

]

symmetry φ→ φ+ π implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function

normalized two-particle correlation function

C(φ1, φ2) =
〈 dN
dφ1

dN
dφ2
〉events

〈 dN
dφ1
〉events〈 dNdφ2

〉events

= 1 + 2
∑
m

v2
m cos(m (φ1 − φ2))

surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

deviations from symmetric initial energy density distribution from
event-by-event fluctuations

one example is Glauber model
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Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid

fluctuating initial state
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Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

many numbers can be measured and compared to theory

can lead to detailed understanding of evolution
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Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]

solves evolution equations for fluid + gravity

expands in perturbations around homogeneous background

detailed understanding how different modes evolve

very simple equations of state p = w ε

viscosities usually neglected η = ζ = 0

photons and neutrinos are free streaming
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Fluid dynamic perturbation theory for heavy ion collisions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

solves evolution equations for relativistic QCD fluid

expands in perturbations around event-averaged solution

leads to linear + non-linear response formalism

good convergence properties
[Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007 (2015)]

comparison to cosmology rather direct
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Fluid dynamic simulations

second order relativistic fluid dynamics simulated numerically

fluctuating initial conditions

η/s is varied to find experimentally favored value

u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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FIG. 1 (color online). Gluon multiplicity distribution in the
IP-Glasma model.
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FIG. 2 (color online). Identified particle transverse momentum
spectra including all resonances up to 2 GeV compared to
experimental data from the ALICE Collaboration [34].
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FIG. 3 (color online). Root-mean-square anisotropic flow co-
efficients hv2

ni1=2 as a function of transverse momentum, com-
pared to experimental data by the ATLAS Collaboration using
the event plane (EP) method [4] (points). 200 events. Bands
indicate statistical errors. Experimental error bars are smaller
than the size of the points.
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the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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[Gale, Jeon, Schenke, Tribedy, Venugopalan (2013)]
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Collective behavior in large and small systems
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flow coefficients from higher order cumulants v2{n} agree:
→ collective behavior

elliptic flow signals also in pPb and pp!

can fluid approximation work for pp collisions?
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Questions and puzzles

how universal are collective flow and fluid dynamics?

what determines density distribution of a proton?

do we really understand elementary particle collision physics?

multi-parton interactions?

more elementary systems such as ep or e+e−?

PbPbPb p p p p e- e+ e-
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The thermal model puzzle

elementary e+e− collision experiments show thermal-like features

particle multiplicities well described by thermal model
500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

PbPbPb p p p p e- e+ e-

conventional thermalization by final state interactions unlikely

alternative explanations needed
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QCD strings and entanglement
[Berges, Floerchinger, Venugopalan (2017)]

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings
Lund model (Pythia)
different regions in a string are entangled
subinterval A has reduced density matrix of mixed form even if ρ is pure

ρA = TrB{ρ}

could this lead to thermal-like effects?
characterization by entanglement entropy

SA = −TrA {ρA ln(ρA)}

globally pure state S = 0 can be locally mixed SA > 0
coherent information IB〉A = SA − S can be positive
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Schwinger model

QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
mass is related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Expanding string solution

z

t

quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

Bjorken boost symmetry η → η + ∆η
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Coherent field evolution

Schwinger boson field expectation value depends only on τ

φ̄ = 〈φ〉 = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0

Gauss law: electric field E = qφ/
√
π must approach U(1) charge

φ̄(τ)→
√
π (for τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =
√
πJ0(Mτ)
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Gaussian states

theories with quadratic action often have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, 1712.09362]

SA =
1

2
TrA

{
D ln(D2)

}
operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

z

t

consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

entanglement entropy does not change by unitary time evolution with
endpoints kept fixed

can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at fixed
time t = τ cosh(∆η/2)

need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

entanglement entropy understood numerically for free massive scalars
[Casini, Huerta (2009)]

entanglement entropy density dS/d∆η for bosonized massless Schwinger
model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5
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Conformal limit

For Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff.

Here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

Conformal charge c = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

Entropy becomes extensive in ∆η !
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Universal entanglement entropy density

for very early times “Hubble” expansion rate dominates over masses and
interactions

H =
1

τ
�M =

q√
π
,m

theory dominated by free, massless fermions

universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

c = Nc ×Nf

from fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated at
non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πLT )

)
+ const

compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ const

expressions agree for L = τ∆η (with metric ds2 = −dτ2 + τ2dη2) and
time-dependent temperature

T =
1

2πτ
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Modular or entanglement Hamiltonian

p

q

τ = const
η = const

region A

region B

z

t

conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta

(2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x)

energy-momentum of excitations around coherent field Tµν(x)
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Time-dependent temperature

z

t

combination of fluid velocity and temperature ξµ(x) = uµ(x)
T (x)

for ∆η →∞: fluid velocity in τ -direction & time-dependent temperature
[Berges, Floerchinger, Venugopalan (2017)]

T (τ) =
~

2πτ

Entanglement between rapidity intervals leads to local thermal
density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c
2πx
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Physics picture

coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute
∆η → ∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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Conclusions

high energy nuclear collisions produce a relativistic QCD fluid!

interesting parallels between cosmology and heavy ion collisions

similar physics of evolving fluid fluctuations

experimental hints for collective flow also in pPb and pp collisions

expanding QCD strings: entanglement between rapidity intervals can lead
to thermal-like effects!
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Backup slides



QCD in two dimensions

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]



Alternative derivation: mode functions

fluctuation field ϕ = φ− φ̄ has equation of motion

∂2
τϕ(τ, η) +

1

τ
∂τϕ(τ, η) +

(
M2 − 1

τ2

∂2

∂η2

)
ϕ(τ, η) = 0

solution in terms of plane waves

ϕ(τ, η) =

∫
dk

2π

{
a(k)f(τ, |k|)eikη + a†(k) f∗(τ, |k|)e−ikη

}

mode functions as Hankel functions

f(τ, k) =

√
π

2
e
kπ
2 H

(2)
ik (Mτ)

or alternatively as Bessel functions

f̄(τ, k) =

√
π√

2 sinh(πk)
J−ik(Mτ)



Bogoliubov transformation

mode functions are related

f̄(τ, k) =α(k)f(τ, k) + β(k)f∗(τ, k)

f(τ, k) =α∗(k)f̄(τ, k)− β(k)f̄∗(τ, k)

creation and annihilation operators are related by

ā(k) =α∗(k)a(k)− β∗(k)a†(k)

a(k) =α(k)ā(k) + β(k)ā†(k)

Bogoliubov coefficients

α(k) =

√
eπk

2 sinh(πk)
β(k) =

√
e−πk

2 sinh(πk)

vacuum |Ω〉 with respect to a(k) such that a(k)|Ω〉 = 0 contains
excitations with respect to ā(k) such that ā(k)|Ω〉 6= 0 and vice versa



Role of different mode functions

Hankel functions f(τ, k) are superpositions of positive frequency modes
with respect to Minkowski time t

Bessel functions f̄(τ, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time t

at very early time 1/τ �M,m conformal symmetry

ds2 = τ2 [−d ln(τ)2 + dη2]
Hankel functions f(τ, k) are superpositions of positive and negative
frequency modes with respect to conformal time ln(τ)

Bessel functions f̄(τ, k) are superpositions of positive frequency modes
with respect to conformal time ln(τ)



Occupation numbers

Minkowski space coherent states have two-point functions

〈ā†(k)ā(k′)〉c = n̄(k) 2π δ(k − k′) = |β(k)|2 2π δ(k − k′)
〈ā(k)ā(k′)〉c = ū(k) 2π δ(k + k′) = −α∗(k)β∗(k) 2π δ(k + k′)

〈ā†(k)ā†(k′)〉c = ū∗(k) 2π δ(k + k′) = −α(k)β(k) 2π δ(k + k′)

occupation number

n̄(k) = |β(k)|2 =
1

e2πk − 1

Bose-Einstein distribution with excitation energy E = |k|/τ and
temperature

T =
1

2πτ

off-diagonal occupation number ū(k) = −1/(2 sinh(πk)) make sure we
still have pure state



Local description

consider now rapidity interval (−∆η/2,∆η/2)

Fourier expansion becomes discrete

ϕ(η) =
1

L

∞∑
n=−∞

ϕn e
inπ η

∆η

ϕn =

∫ ∆η/2

−∆η/2

dη ϕ(η)
1

2

[
e
−inπ η

∆η + (−1)ne
inπ η

∆η

]
relation to continuous momentum modes by integration kernel

ϕn =

∫
dk

2π
sin( k∆η

2
− nπ

2
)

[
1

k − nπ
∆η

+
1

k + nπ
∆η

]
ϕ(k)

local density matrix determined by correlation functions

〈ϕn〉, 〈πn〉, 〈ϕnϕm〉c, etc.



Emergence of locally thermal state

mode functions at early time

f̄(τ, k) =
1√
2k
e−ik ln(τ)−iθ(k,M)

phase varies strongly with k for M → 0

θ(k,M) = k ln(M/2) + arg(Γ(1− ik))

off-diagonal term ū(k) have factors strongly oscillating with k

〈ϕ(τ, k)ϕ∗(τ, k′)〉c = 2πδ(k − k′) 1

|k|
×
{[

1
2

+ n̄(k)
]

+ cos [2k ln(τ) + 2θ(k,M)] ū(k)
}

cancel out when going to finite interval !

only Bose-Einstein occupation numbers n̄(k) remain


