Entropy and quantum field theory

Stefan Flörchinger (Heidelberg U.)

Technische Universität München, 08.02.2018

Entropy and information

[Claude Shannon (1948)]

- consider a random variable x with probability distribution $p(x)$
- information content or "surprise" associated with outcome x

- Entropy is expectation value of information content

$$
S=\langle i(x)\rangle=-\sum_{x} p(x) \ln p(x)
$$

$S=0$

$S=\ln (2)$

$S=2 \ln (2)$

Entropy at thermal equilibrium

- micro canonical ensemble: maximal entropy S for given conserved quantities E, N in given volume V
- universality at equilibrium
- starting point for development of thermodynamics ...

$$
S(E, N, V), \quad d S=\frac{1}{T} d E-\frac{\mu}{T} d N+\frac{p}{T} d V
$$

- ... grand canonical ensemble with density operator ...

$$
\rho=\frac{1}{Z} e^{-\frac{1}{T}(H-\mu N)}
$$

- ... Matsubara formalism for quantum fields ...

Ideal fluid dynamics

- thermal equilibrium

$$
T^{\mu \nu}=\epsilon u^{\mu} u^{\nu}+p\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right), \quad N^{\mu}=n u^{\mu}, \quad s^{\mu}=s u^{\mu}
$$

- fluid velocity u^{μ}
- thermodynamic equation of state $p(T, \mu)$ with $d p=s d T+n d \mu$
- local thermal equilibrium approximation: $u^{\mu}(x), T(x), \mu(x)$
- neglect gradients: lowest order of a derivative expansion
- evolution of $u^{\mu}(x), T(x)$ and $\mu(x)$ from conservation laws

$$
\nabla_{\mu} T^{\mu \nu}(x)=0, \quad \nabla_{\mu} N^{\mu}(x)=0
$$

- entropy current also conserved

$$
\nabla_{\mu} s^{\mu}(x)=0
$$

Out-of-equilibrium

- quantum field theory out-of-equilibrium is less well understood
- interesting topic of current research
- is non-equilibrium dynamics also governed by information?
- approach to equilibrium
- universality

Entropy in quantum theory

[John von Neumann (1932)]

$$
S=-\operatorname{Tr} \rho \ln \rho
$$

- based on the quantum density operator ρ
- for pure states $\rho=|\psi\rangle\langle\psi|$ one has $S=0$
- for mixed states $\rho=\sum_{j} p_{j}|j\rangle\langle j|$ one has $S=-\sum_{j} p_{j} \ln p_{j}>0$
- unitary time evolution conserves entropy

$$
-\operatorname{Tr}\left(U \rho U^{\dagger}\right) \ln \left(U \rho U^{\dagger}\right)=-\operatorname{Tr} \rho \ln \rho \quad \rightarrow \quad S=\text { const. }
$$

- global characterization of quantum state

Entropy and entanglement

- consider a split of a quantum system into two $A+B$

- reduced density operator for system A

$$
\rho_{A}=\operatorname{Tr}_{B}\{\rho\}
$$

- entropy associated with subsystem A

$$
S_{A}=-\operatorname{Tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\}
$$

- pure product state $\rho=\rho_{A} \otimes \rho_{B}$ leads to $S_{A}=0$
- pure entangled state $\rho \neq \rho_{A} \otimes \rho_{B}$ leads to $S_{A}>0$
- S_{A} is called entanglement entropy

Classical statistics

- consider system of two random variables x and y
- joint probability $p(x, y)$, joint entropy

$$
S=-\sum_{x, y} p(x, y) \ln p(x, y)
$$

- reduced or marginal probability $p(x)=\sum_{y} p(x, y)$
- reduced or marginal entropy

$$
S_{x}=-\sum_{x} p(x) \ln p(x)
$$

- one can prove: joint entropy is greater than or equal to reduced entropy

$$
S \geq S_{x}
$$

- globally pure state $S=0$ is also locally pure $S_{x}=0$

Quantum statistics

- consider system with two subsystems A and B
- combined state ρ, combined or full entropy

$$
S=-\operatorname{Tr}\{\rho \ln \rho\}
$$

- reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}\{\rho\}$
- reduced or entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\}
$$

- for quantum systems entanglement makes a difference

$$
S \nsupseteq S_{A}
$$

- coherent information $I_{B\rangle A}=S_{A}-S$ can be positive!
- globally pure state $S=0$ can be locally mixed $S_{A}>0$

The thermal model puzzle

- elementary particle collision experiments such as $e^{+} e^{-}$collisions show thermal-like features
- particle multiplicities well described by thermal model

[Becattini, Casterina, Milov \& Satz, EPJC 66, 377 (2010)]
- conventional thermalization by collisions unlikely
- alternative explanations needed

- particle production from QCD strings
- e. g. Lund model (Pythia)
- different regions in a string are entangled
- subinterval A is described by reduced density matrix of mixed form

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

- characterization by entanglement entropy

$$
S_{A}=-\operatorname{Tr}\left\{\rho_{A} \ln \left(\rho_{A}\right)\right\}
$$

- could this lead to thermal-like effects?

Microscopic model

- QCD in $1+1$ dimensions described by 't Hooft model

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i g \mathbf{A}_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
$$

- fermionic fields ψ_{i} with sums over flavor species $i=1, \ldots, N_{f}$
- $\operatorname{SU}\left(N_{c}\right)$ gauge fields \mathbf{A}_{μ} with field strength tensor $\mathbf{F}_{\mu \nu}$
- gluons are not dynamical in two dimensions
- gauge coupling g has dimension of mass
- non-trivial, interacting theory, cannot be solved exactly
- spectrum of excitations known for $N_{c} \rightarrow \infty$ with $g^{2} N_{c}$ fixed ['t Hooft (1974)]

Schwinger model

- QED in $1+1$ dimension

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i q A_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

- geometric confinement
- $\mathrm{U}(1)$ charge related to string tension $q=\sqrt{2 \sigma}$
- for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

$$
\begin{aligned}
S=\int d^{2} x \sqrt{g}\{ & -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} M^{2} \phi^{2} \\
& \left.-\frac{m q e^{\gamma}}{2 \pi^{3 / 2}} \cos (2 \sqrt{\pi} \phi+\theta)\right\}
\end{aligned}
$$

- Schwinger bosons are dipoles $\phi \sim \bar{\psi} \psi$
- mass is related to $\mathrm{U}(1)$ charge by $M=q / \sqrt{\pi}=\sqrt{2 \sigma / \pi}$
- massless Schwinger model $m=0$ leads to free bosonic theory

Expanding string solution

- external quark-anti-quark pair on trajectories $z= \pm t$
- coordinates: Bjorken time $\tau=\sqrt{t^{2}-z^{2}}$, rapidity $\eta=\operatorname{arctanh}(z / t)$
- metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$
- symmetry with respect to longitudinal boosts $\eta \rightarrow \eta+\Delta \eta$

Coherent field evolution

- Schwinger boson field depends only on τ

$$
\bar{\phi}=\bar{\phi}(\tau)
$$

- equation of motion

$$
\partial_{\tau}^{2} \bar{\phi}+\frac{1}{\tau} \partial_{\tau} \bar{\phi}+M^{2} \bar{\phi}=0 .
$$

- Gauss law: electric field $E=q \phi / \sqrt{\pi}$ must approach the $\mathrm{U}(1)$ charge of the external quarks $E \rightarrow q_{\mathrm{e}}$ for $\tau \rightarrow 0_{+}$

$$
\bar{\phi}(\tau) \rightarrow \frac{\sqrt{\pi} q_{\mathrm{e}}}{q} \quad\left(\tau \rightarrow 0_{+}\right)
$$

- solution of equation of motion [Loshaj, Kharzeev (2011)]

$$
\bar{\phi}(\tau)=\frac{\sqrt{\pi} q_{\mathrm{e}}}{q} J_{0}(M \tau)
$$

Gaussian states

- theories with quadratic action typically have Gaussian density matrix
- fully characterized by field expectation values

$$
\bar{\phi}(x)=\langle\phi(x)\rangle, \quad \bar{\pi}(x)=\langle\pi(x)\rangle
$$

and connected two-point correlation functions, e. g.

$$
\langle\phi(x) \phi(y)\rangle_{c}=\langle\phi(x) \phi(y)\rangle-\bar{\phi}(x) \bar{\phi}(y)
$$

- if ρ is Gaussian, also reduced density matrix ρ_{A} is Gaussian

Entanglement entropy for Gaussian state

- entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, 1712.09362]

$$
S_{A}=\frac{1}{2} \operatorname{Tr}_{A}\left\{D \ln \left(D^{2}\right)\right\}
$$

- operator trace over region A only
- matrix of correlation functions

$$
D(x, y)=\left(\begin{array}{ll}
-i\langle\phi(x) \pi(y)\rangle_{c} & i\langle\phi(x) \phi(y)\rangle_{c} \\
-i\langle\pi(x) \pi(y)\rangle_{c} & i\langle\pi(x) \phi(y)\rangle_{c}
\end{array}\right)
$$

- involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- expectation value $\bar{\phi}$ does not appear explicitly
- coherent states and vacuum have equal entanglement entropy S_{A}

Rapidity interval

- consider rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ at fixed Bjorken time τ
- entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- can be evaluated equivalently in interval $\Delta z=2 \tau \sinh (\Delta \eta / 2)$ at fixed time $t=\tau \cosh (\Delta \eta / 2)$
- need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- entanglement entropy density $d S / d \Delta \eta$ for bosonized massless Schwinger model ($M=\frac{q}{\sqrt{\pi}}$)

[Berges, Floerchinger, Venugopalan (2017)]

Conformal limit

- for $M \tau \rightarrow 0$ one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

$$
S(\Delta z)=\frac{c}{3} \ln (\Delta z / \epsilon)+\mathrm{constant}
$$

with small length ϵ acting as UV cutoff

- here this implies

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln (2 \tau \sinh (\Delta \eta / 2) / \epsilon)+\text { constant }
$$

- conformal charge $c=1$ for free massless scalars or Dirac fermions
- additive constant not universal but entropy density is

$$
\begin{aligned}
\frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) & =\frac{c}{6} \operatorname{coth}(\Delta \eta / 2) \\
& \rightarrow \frac{c}{6} \quad(\Delta \eta \gg 1)
\end{aligned}
$$

- entropy becomes extensive in $\Delta \eta$!

Universal entanglement entropy density

- for very early times "Hubble" expansion rate dominates over masses and interactions

$$
H=\frac{1}{\tau} \gg M=\frac{q}{\sqrt{\pi}}, m
$$

- theory dominated by free, massless fermions
- universal entanglement entropy density

$$
\frac{d S}{d \Delta \eta}=\frac{c}{6}
$$

with conformal charge c

- for QCD in $1+1$ dimensions (gluons not dynamical)

$$
c=N_{c} \times N_{f}
$$

- from fluctuating transverse coordinates (Nambu-Goto action)

$$
c=N_{c} \times N_{f}+2 \approx 9+2=11
$$

Modular or entanglement Hamiltonian

- conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$
\rho_{A}=\frac{1}{Z_{A}} e^{-K}, \quad \quad Z_{A}=\operatorname{Tr} e^{-K}
$$

- modular or entanglement Hamiltonian local expression

$$
K=\int_{\Sigma} d \Sigma_{\mu} \xi_{\nu}(x) T^{\mu \nu}(x)
$$

Time-dependent temperature

- energy-momentum of excitations around coherent field $T^{\mu \nu}(x)$
- combination of fluid velocity and temperature $\xi^{\mu}(x)=\frac{u^{\mu}(x)}{T(x)}$
- fluid velocity in τ-direction \& time-dependent temperature
[Berges, Floerchinger, Venugopalan (2017)]

$$
T(\tau)=\frac{\hbar}{2 \pi \tau}
$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times !
- Hawking-Unruh temperature in Rindler wedge $T(x)=\frac{\hbar c}{2 \pi x}$

Physics picture

- alternative derivation via mode functions \& Bogoliubov transforms [Berges, Floerchinger, Venugopalan, 1712.09362]
- coherent state vacuum at early time contains entangled pairs of quasi-particles with opposite wave numbers
- on finite rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- technically limits $\Delta \eta \rightarrow \infty$ and $M \tau \rightarrow 0$ do not commute
- $\Delta \eta \rightarrow \infty$ for any finite $M \tau$ gives pure state
- $M \tau \rightarrow 0$ for any finite $\Delta \eta$ gives thermal state with $T=1 /(2 \pi \tau)$

Entanglement dynamics in cold atom experiments

- entanglement can be directly accessed in cold atom experiments [Oberthaler group, Greiner group]
- expanding geometries can be realized by interplay of
- longitudinal expansion
- time dependent change of sound velocity $v_{s}(t)$
- time dependent gap or mass $M^{2}(t)$

Dissipation

- dissipation can be defined as (effective) entropy generation

$$
\frac{d}{d t} S>0
$$

- for extensive entropy $S=\int_{\Sigma} d \Sigma_{\mu} s^{\mu}$ one has locally

$$
\nabla_{\mu} s^{\mu}>0
$$

- related to effective loss of information
- second law of thermodynamics: entropy gets produced, not destroyed
- local dissipation - entanglement generation (?)

Dissipation and the quantum effective action

- dissipation usually discussed on the level of equations of motion
- one would like to have a formulation in terms of an effective action
- fluctuations \& correlation functions
- renormalization
- effective field theories
- coupling to gravity
- one possibility: Schwinger-Keldysh double time path formalism
- another possibility: analytic continuation of the 1PI effective action [Floerchinger, JHEP 1609, 099 (2016)]

Local equilibrium es partition function

[Floerchinger, JHEP 1609, 099 (2016)]

- local equilibrium with $T(x)$ and $u^{\mu}(x)$

$$
\beta^{\mu}(x)=\frac{u^{\mu}(x)}{T(x)}
$$

- similarity between local density matrix and translation operator

$$
e^{\beta^{\mu}(x) \mathscr{P}_{\mu}} \quad \longleftrightarrow \quad e^{i \Delta x^{\mu} \mathscr{P}_{\mu}}
$$

- represent partition function as functional integral with periodicity

$$
\phi\left(x^{\mu}-i \beta^{\mu}(x)\right)= \pm \phi\left(x^{\mu}\right)
$$

- partition function $Z[J]$, Schwinger functional $W[J]$ in Euclidean

$$
Z[J]=e^{W_{E}[J]}=\int D \phi e^{-S_{E}[\phi]+\int_{x} J \phi}
$$

One-particle irreducible or quantum effective action

- in Euclidean domain $\Gamma[\phi]$ defined by Legendre transform

$$
\Gamma_{E}[\Phi]=\int_{x} J_{a}(x) \Phi_{a}(x)-W_{E}[J]
$$

with expectation values

$$
\Phi_{a}(x)=\frac{1}{\sqrt{g}(x)} \frac{\delta}{\delta J_{a}(x)} W_{E}[J]
$$

- Euclidean field equation

$$
\frac{\delta}{\delta \Phi_{a}(x)} \Gamma_{E}[\Phi]=\sqrt{g}(x) J_{a}(x)
$$

resembles classical equation of motion for $J=0$

- need analytic continuation to obtain a viable equation of motion

Two-point functions

- homogeneous background field and global equilibrium

$$
\beta^{\mu}=\left(\frac{1}{T}, 0,0,0\right)
$$

- propagator and inverse propagator

$$
\begin{aligned}
& \frac{\delta^{2}}{\delta J_{a}(-p) \delta J_{b}(q)} W_{E}[J]=G_{a b}(p)(2 \pi)^{4} \delta^{(4)}(p-q) \\
& \frac{\delta^{2}}{\delta \Phi_{a}(-p) \delta \Phi_{b}(q)} \Gamma_{E}[\Phi]=P_{a b}(p)(2 \pi)^{4} \delta^{(4)}(p-q)
\end{aligned}
$$

- from definition of effective action

$$
\sum_{b} G_{a b}(p) P_{b c}(p)=\delta_{a c}
$$

Spectral representation

- Källen-Lehmann spectral representation

$$
G_{a b}(\omega, \mathbf{p})=\int_{-\infty}^{\infty} d z \frac{\rho_{a b}\left(z^{2}-\mathbf{p}^{2}, z\right)}{z-\omega}
$$

with $\rho_{a b} \in \mathbb{R}$

- correlation functions can be analytically continued in $\omega=-u^{\mu} p_{\mu}$
- branch cut or poles on real frequency axis $\omega \in \mathbb{R}$ but nowhere else
- different propagators follow by evaluation of $G_{a b}$ in different regions

Variational principle with effective dissipation

[Floerchinger, JHEP 1609, 099 (2016)]

- decompose inverse two-point function

$$
P_{a b}(p)=P_{1, a b}(p)-i s_{\mathbf{I}}\left(-u^{\mu} p_{\mu}\right) P_{2, a b}(p)
$$

with $s_{1}(\omega)=\operatorname{sign}(\operatorname{lm} \omega)$

- in position space, replace

$$
\begin{aligned}
& s_{\mathrm{I}}\left(-u^{\mu} p_{\mu}\right)=\operatorname{sign}\left(\operatorname{lm}\left(-u^{\mu} p_{\mu}\right)\right) \\
& \rightarrow \operatorname{sign}\left(\operatorname{lm}\left(i u^{\mu} \frac{\partial}{\partial x^{\mu}}\right)\right)=\operatorname{sign}\left(\operatorname{Re}\left(u^{\mu} \frac{\partial}{\partial x^{\mu}}\right)\right)=s_{\mathrm{R}}\left(u^{\mu} \frac{\partial}{\partial x^{\mu}}\right)
\end{aligned}
$$

- this symbol appears also in $\Gamma[\Phi]$

Retarded functional derivative

[Floerchinger, JHEP 1609, 099 (2016)]

- real and causal dissipative field equations follow from analytically continued effective action

$$
\left.\frac{\delta \Gamma[\Phi]}{\delta \Phi_{a}(x)}\right|_{\mathrm{ret}}=\sqrt{g} J(x)
$$

- to calculate retarded variational derivative determine

$$
\delta \Gamma[\Phi]
$$

by varying the fields $\delta \Phi(x)$ including dissipative terms

- set signs according to

$$
s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right) \delta \Phi(x) \rightarrow-\delta \Phi(x), \quad \delta \Phi(x) s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right) \rightarrow+\delta \Phi(x)
$$

- proceed as usual
- opposite choice of sign: field equations for backward time evolution

Damped harmonic oscillator 1

- equation of motion

$$
m \ddot{x}+c \dot{x}+k x=0
$$

or with $\omega_{0}=\sqrt{k / m}$ and $\zeta=c / \sqrt{4 m k}$

$$
\ddot{x}+2 \zeta \omega_{0} \dot{x}+\omega_{0}^{2} x=0
$$

- is there an action for damped oscillator? This does not work:

$$
\int \frac{d \omega}{2 \pi} \frac{m}{2} x^{*}(\omega)\left[\omega^{2}+2 i \omega \zeta \omega_{0}-\omega_{0}^{2}\right] x(\omega)
$$

- consider inverse propagator

$$
\omega^{2}+2 i s_{\mathrm{I}}(\omega) \omega \zeta \omega_{0}-\omega_{0}^{2}
$$

with sign function

$$
s_{\mathrm{I}}(\omega)=\operatorname{sign}(\operatorname{lm} \omega)
$$

Damped harmonic oscillator 2

- effective action

$$
\begin{aligned}
\Gamma[x] & =\int \frac{d \omega}{2 \pi} \frac{m}{2} x^{*}(\omega)\left[-\omega^{2}-2 i s_{।}(\omega) \omega \zeta \omega_{0}+\omega_{0}^{2}\right] x(\omega) \\
& =\int d t\left\{-\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} c x s_{\mathrm{R}}\left(\partial_{t}\right) \dot{x}+\frac{1}{2} k x^{2}\right\}
\end{aligned}
$$

where the second line uses

$$
s_{1}(\omega)=\operatorname{sign}(\operatorname{Im} \omega) \rightarrow \operatorname{sign}\left(\operatorname{Im} i \partial_{t}\right)=\operatorname{sign}\left(\operatorname{Re} \partial_{t}\right)=s_{\mathrm{R}}\left(\partial_{t}\right)
$$

- variation gives up to boundary terms

$$
\delta \Gamma=\int d t\left\{m \ddot{x} \delta x+\frac{1}{2} c \delta x s_{\mathrm{R}}\left(\partial_{t}\right) \dot{x}-\frac{1}{2} c \dot{x} s_{\mathrm{R}}\left(\partial_{t}\right) \delta x+k x \delta x\right\}
$$

- set now $s_{\mathrm{R}}\left(\partial_{t}\right) \delta x \rightarrow-\delta x$ and $\delta x s_{\mathrm{R}}\left(\partial_{t}\right) \rightarrow \delta x$. Defines $\left.\frac{\delta \Gamma}{\delta x}\right|_{\text {ret }}$.
- equation of motion for forward time evolution

$$
\left.\frac{\delta \Gamma}{\delta x}\right|_{\mathrm{ret}}=m \ddot{x}+c \dot{x}+k x=0
$$

Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

- analysis of general covariance leads to entropy production law

$$
\nabla_{\mu} s^{\mu}=\left.\frac{1}{\sqrt{g}} \frac{\delta \Gamma_{D}}{\delta \Phi_{a}}\right|_{\mathrm{ret}} \beta^{\lambda} \partial_{\lambda} \Phi_{a}+\beta_{\mu} \nabla_{\nu}\left(-\left.\frac{2}{\sqrt{g}} \frac{\delta \Gamma_{D}}{\delta g_{\mu \nu}}\right|_{\mathrm{ret}}\right)
$$

- should be positive by second law of thermodynamics
- so far only understood close-to-equilibrium
- e.g. for viscous fluid

$$
\nabla_{\mu} s^{\mu}=\frac{1}{T}\left[2 \eta \sigma_{\mu \nu} \sigma^{\mu \nu}+\zeta\left(\nabla_{\rho} u^{\rho}\right)^{2}\right]
$$

Fluid dynamics

- long distances, long times or strong enough interactions
- quantum fields form a fluid!
- needs macroscopic fluid properties
- equation of state $p(T, \mu)$
- shear viscosity $\eta(T, \mu)$
- bulk viscosity $\zeta(T, \mu)$
- heat conductivity $\kappa(T, \mu)$
- relaxation times, ...
- ab initio calculation of transport properties difficult but in principle fixed by microscopic properties encoded in lagrangian
- standard model of high energy nuclear collisions based on relativistic dissipative fluid dynamics
- ongoing experimental and theoretical effort to understand this better

Big bang - little bang analogy

- cosmol. scale: MPc= $=3.1 \times 10^{22} \mathrm{~m}$
- Gravity + QED + Dark sector
- one big event
- nuclear scale: $\mathrm{fm}=10^{-15} \mathrm{~m}$
- QCD
- very many events
- dynamical description as a fluid
- all information must be reconstructed from final state

Fluid dynamic perturbation theory for heavy ions

[Floerchinger \& Wiedemann, PLB 728, 407 (2014)]
[ongoing work with E. Grossi, J. Lion, A. Mazeliauskas]

- goal: determine QCD fluid properties from experiments
- so far: numerical fluid simulations e.g. [Heinz \& Snellings (2013)]
- new idea: solve fluid equations for smooth and symmetric background and order-by-order in perturbations
- less numerical effort - more systematic studies
- good convergence properties [Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007 (2015)]
- similar to cosmological perturbation theory

Dissipation in cosmology

[Floerchinger, Tetradis \& Wiedemann, PRL 114, 091301 (2015)]
Evolution of energy density in first order viscous fluid dynamics

$$
u^{\mu} \partial_{\mu} \epsilon+(\epsilon+p) \nabla_{\mu} u^{\mu}-\zeta \Theta^{2}-2 \eta \sigma^{\mu \nu} \sigma_{\mu \nu}=0
$$

with

- bulk viscosity ζ
- shear viscosity η

For $\vec{v}^{2} \ll c^{2}$ and Newtonian potentials $\Phi, \Psi \ll 1$

$$
\begin{aligned}
& \dot{\epsilon}+\vec{v} \cdot \vec{\nabla} \epsilon+(\epsilon+p)\left(3 \frac{\dot{a}}{a}+\vec{\nabla} \cdot \vec{v}\right) \\
& =\frac{\zeta}{a}\left[3 \frac{\dot{a}}{a}+\vec{\nabla} \cdot \vec{v}\right]^{2}+\frac{\eta}{a}\left[\partial_{i} v_{j} \partial_{i} v_{j}+\partial_{i} v_{j} \partial_{j} v_{i}-\frac{2}{3}(\vec{\nabla} \cdot \vec{v})^{2}\right]
\end{aligned}
$$

Fluid dynamic backreaction

[Floerchinger, Tetradis \& Wiedemann, PRL 114, 091301 (2015)]
Expectation value of energy density $\bar{\epsilon}=\langle\epsilon\rangle$

$$
\frac{1}{a} \dot{\bar{\epsilon}}+3 H(\bar{\epsilon}+\bar{p}-3 \bar{\zeta} H)=D
$$

with dissipative backreaction term

$$
\begin{aligned}
D= & \frac{1}{a^{2}}\left\langle\eta\left[\partial_{i} v_{j} \partial_{i} v_{j}+\partial_{i} v_{j} \partial_{j} v_{i}-\frac{2}{3} \partial_{i} v_{i} \partial_{j} v_{j}\right]\right\rangle \\
& +\frac{1}{a^{2}}\left\langle\zeta[\vec{\nabla} \cdot \vec{v}]^{2}\right\rangle+\frac{1}{a}\langle\vec{v} \cdot \vec{\nabla}(p-6 \zeta H)\rangle
\end{aligned}
$$

- D vanishes for unperturbed homogeneous and isotropic universe
- D has contribution from shear \& bulk viscous dissipation and thermodynamic work done by contraction against pressure gradients
- dissipative terms in D are positive semi-definite
- for spatially constant viscosities and scalar perturbations only

$$
D=\frac{\bar{\zeta}+\frac{4}{3} \bar{\eta}}{a^{2}} \int d^{3} q P_{\theta \theta}(q)
$$

Dissipation of perturbations

[Floerchinger, Tetradis \& Wiedemann, PRL 114, 091301 (2015)]

- Dissipative backreaction does not need negative effective pressure

$$
\frac{1}{a} \dot{\bar{\epsilon}}+3 H\left(\bar{\epsilon}+\bar{p}_{\text {eff }}\right)=D
$$

- D is an integral over perturbations, could become large at late times.
- Can it potentially accelerate the universe?
- Need additional equation for scale parameter a
- Use trace of Einstein's equations $R=8 \pi G_{N} T^{\mu}{ }_{\mu}$

$$
\frac{1}{a} \dot{H}+2 H^{2}=\frac{4 \pi G_{N}}{3}\left(\bar{\epsilon}-3 \bar{p}_{\text {eff }}\right)
$$

does not depend on unknown quantities like $\left\langle\left(\epsilon+p_{\text {eff }}\right) u^{\mu} u^{\nu}\right\rangle$

- To close the equations one needs equation of state $\bar{p}_{\text {eff }}=\bar{p}_{\text {eff }}(\bar{\epsilon})$ and dissipation parameter D

Deceleration parameter

[Floerchinger, Tetradis \& Wiedemann, PRL 114, 091301 (2015)]

- assume now vanishing effective pressure $\bar{p}_{\text {eff }}=0$
- obtain for deceleration parameter $q=-1-\frac{\dot{H}}{a H^{2}}$

$$
-\frac{d q}{d \ln a}+2(q-1)\left(q-\frac{1}{2}\right)=\frac{4 \pi G_{N} D}{3 H^{3}}
$$

- for $D=0$ attractive fixed point at $q_{*}=\frac{1}{2}$ (deceleration)
- for $D>0$ fixed point shifted towards $q_{*}<0$ (acceleration)

Conclusions

- quantum field theory \& information theory are entangled !
- could be essential element for universal non-equilibrium theory
- entanglement helps to understand "thermal effects" in $e^{+} e^{-}$and other collider experiments
- at very early times theory effectively conformal $\frac{1}{\tau} \gg m, q$
- entanglement entropy extensive in rapidity $\frac{d S}{d \Delta \eta}=\frac{c}{6}$
- reduced density matrix for excitations at early times thermal $T=\frac{\hbar}{2 \pi \tau}$
- experiments with cold atoms could allow to investigate entanglement directly
- effectively dissipative dynamics can have interesting consequences for cosmology

Backup

Coarse graining etc.

- entropy in quantum system can emerge when
- system is divided into pieces with reduced density matrix
- subsystems are composed again as mixed states
- cuts may divide
- different regions
- high-momentum and low-momentum
- "system" and "bath"
- entropy in classical systems from coarse graining phase space
- entropy in kinetic theory from neglecting two-particle correlations (Boltzmann's "Stosszahlansatz")

Transverse coordinates

- So far dynamics strictly confined to $1+1$ dimensions
- Transverse coordinates may fluctuate, can be described by Nambu-Goto action ($h_{\mu \nu}=\partial_{\mu} X^{m} \partial_{\nu} X_{m}$)

$$
\begin{aligned}
S_{\mathrm{NG}} & =\int d^{2} x \sqrt{-\operatorname{det} h_{\mu \nu}}\{-\sigma+\ldots\} \\
& \approx \int d^{2} x \sqrt{g}\left\{-\sigma-\frac{\sigma}{2} g^{\mu \nu} \partial_{\mu} X^{i} \partial_{\nu} X^{i}+\ldots\right\}
\end{aligned}
$$

- Two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^{i} with $i=1,2$.

Free massive fermions

- Entanglement entropy can also be calculated for free Dirac fermions of mass m

- Same universal plateau $c / 6$ with $c=1$ at early time
- Conformal limit corresponds to non-interacting fermions
- Consistent with or without bosonization

Rapidity distribution

[open (filled) symbols: $\mathrm{e}^{+} \mathrm{e}^{-}$(pp), Grosse-Oetringhaus \& Reygers (2010)]

- Rapidity distribution $d N / d \eta$ has plateau around midrapidity
- Only logarithmic dependence on collision energy

Experimental access to entanglement?

- Could longitudinal entanglement be tested experimentally?
- Unfortunately entropy density $d S / d \eta$ not straight-forward to access.
- Measured in $e^{+} e^{-}$is the number of charged particles per unit rapidity $d N_{\mathrm{ch}} / d \eta$ (rapidity defined with respect to the thrust axis)
- Around mid-rapidity logarithmic dependence on the collision energy.
- Typical values for collision energies $\sqrt{s}=14-206 \mathrm{GeV}$ in the range

$$
d N_{\mathrm{ch}} / d \eta \approx 2-4
$$

- Entropy per particle S / N can be estimated for a hadron resonance gas in thermal equilibrium $S / N_{\mathrm{ch}}=7.2$ would give

$$
d S / d \eta \approx 14-28
$$

- This is an upper bound: correlations beyond one-particle functions would lead to reduced entropy.

Temperature and entanglement entropy

- For conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- For static interval of length l [Calabrese, Cardy (2004)]

$$
S(T, l)=\frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh (\pi l T)\right)+\text { const }
$$

- Compare this to our result in expanding geometry

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln \left(\frac{2 \tau}{\epsilon} \sinh (\Delta \eta / 2)\right)+\text { constant }
$$

- Expressions agree for $l=\tau \Delta \eta$ (with metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$) and time-dependent temperature

$$
T=\frac{1}{2 \pi \tau}
$$

Alternative derivation: mode functions

- Fluctuation field $\varphi=\phi-\bar{\phi}$ has equation of motion

$$
\partial_{\tau}^{2} \varphi(\tau, \eta)+\frac{1}{\tau} \partial_{\tau} \varphi(\tau, \eta)+\left(M^{2}-\frac{1}{\tau^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \varphi(\tau, \eta)=0
$$

- Solution in terms of plane waves

$$
\varphi(\tau, \eta)=\int \frac{d k}{2 \pi}\left\{a(k) f(\tau,|k|) e^{i k \eta}+a^{\dagger}(k) f^{*}(\tau,|k|) e^{-i k \eta}\right\}
$$

- Mode functions as Hankel functions

$$
f(\tau, k)=\frac{\sqrt{\pi}}{2} e^{\frac{k \pi}{2}} H_{i k}^{(2)}(M \tau)
$$

or alternatively as Bessel functions

$$
\bar{f}(\tau, k)=\frac{\sqrt{\pi}}{\sqrt{2 \sinh (\pi k)}} J_{-i k}(M \tau)
$$

Bogoliubov transformation

- Mode functions are related

$$
\begin{aligned}
& \bar{f}(\tau, k)=\alpha(k) f(\tau, k)+\beta(k) f^{*}(\tau, k) \\
& f(\tau, k)=\alpha^{*}(k) \bar{f}(\tau, k)-\beta(k) \bar{f}^{*}(\tau, k)
\end{aligned}
$$

- Creation and annihilation operators are related by

$$
\begin{aligned}
& \bar{a}(k)=\alpha^{*}(k) a(k)-\beta^{*}(k) a^{\dagger}(k) \\
& a(k)=\alpha(k) \bar{a}(k)+\beta(k) \bar{a}^{\dagger}(k)
\end{aligned}
$$

- Bogoliubov coefficients

$$
\alpha(k)=\sqrt{\frac{e^{\pi k}}{2 \sinh (\pi k)}} \quad \beta(k)=\sqrt{\frac{e^{-\pi k}}{2 \sinh (\pi k)}}
$$

- Vacuum $|\Omega\rangle$ with respect to $a(k)$ such that $a(k)|\Omega\rangle=0$ contains excitations with respect to $\bar{a}(k)$ such that $\bar{a}(k)|\Omega\rangle \neq 0$ and vice versa

Role of different mode functions

- Hankel functions $f(\tau, k)$ are superpositions of positive frequency modes with respect to Minkowski time t
- Bessel functions $\bar{f}(\tau, k)$ are superpositions of positive and negative frequency modes with respect to Minkowski time t
- At very early time $1 / \tau \gg M$ conformal symmetry

$$
d s^{2}=\tau^{2}\left[-d \ln (\tau)^{2}+d \eta^{2}\right]
$$

- Hankel functions $f(\tau, k)$ are superpositions of positive and negative frequency modes with respect to conformal time $\ln (\tau)$
- Bessel functions $\bar{f}(\tau, k)$ are superpositions of positive frequency modes with respect to conformal time $\ln (\tau)$

Occupation numbers

- Minkowski space coherent states have two-point functions

$$
\begin{aligned}
\left\langle\bar{a}^{\dagger}(k) \bar{a}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{n}(k) 2 \pi \delta\left(k-k^{\prime}\right) \\
\left\langle\bar{a}(k) \bar{a}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{u}(k) 2 \pi \delta\left(k+k^{\prime}\right)=-\alpha^{*}(k) \beta^{*}(k) 2 \pi \delta\left(k-k^{\prime}\right) \\
\left\langle\bar{a}^{\dagger}(k) \bar{a}^{\dagger}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{u}^{*}(k) 2 \pi \delta\left(k+k^{\prime}\right)
\end{aligned}=-\alpha(k) \beta(k) 2 \pi \delta\left(k+k^{\prime}\right) ~ \$
$$

- Occupation number

$$
\bar{n}(k)=|\beta(k)|^{2}=\frac{1}{e^{2 \pi k}-1}
$$

- Bose-Einstein distribution with excitation energy $E=|k| / \tau$ and temperature

$$
T=\frac{1}{2 \pi \tau}
$$

- Off-diagonal occupation number $\bar{u}(k)=-1 /(2 \sinh (\pi k))$ make sure we still have pure state

Local description

- Consider now rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$
- Fourier expansion becomes discrete

$$
\begin{gathered}
\varphi(\eta)=\frac{1}{L} \sum_{n=-\infty}^{\infty} \varphi_{n} e^{i n \pi \frac{\eta}{\Delta \eta}} \\
\varphi_{n}=\int_{-\Delta \eta / 2}^{\Delta \eta / 2} d \eta \varphi(\eta) \frac{1}{2}\left[e^{-i n \pi \frac{\eta}{\Delta \eta}}+(-1)^{n} e^{i n \pi \frac{\eta}{\Delta \eta}}\right]
\end{gathered}
$$

- Relation to continuous momentum modes by integration kernel

$$
\varphi_{n}=\int \frac{d k}{2 \pi} \sin \left(\frac{k \Delta \eta}{2}-\frac{n \pi}{2}\right)\left[\frac{1}{k-\frac{n \pi}{\Delta \eta}}+\frac{1}{k+\frac{n \pi}{\Delta \eta}}\right] \varphi(k)
$$

- Local density matrix determined by correlation functions

$$
\left\langle\varphi_{n}\right\rangle, \quad\left\langle\pi_{n}\right\rangle, \quad\left\langle\varphi_{n} \varphi_{m}\right\rangle_{c}, \quad \text { etc. }
$$

Emergence of locally thermal state

- Mode functions at early time

$$
\bar{f}(\tau, k)=\frac{1}{\sqrt{2 k}} e^{-i k \ln (\tau)-i \theta(k, M)}
$$

- Phase varies strongly with k for $M \rightarrow 0$

$$
\theta(k, M)=k \ln (M / 2)+\arg (\Gamma(1-i k))
$$

- Off-diagonal term $\bar{u}(k)$ have factors strongly oscillating with k

$$
\begin{aligned}
\left\langle\varphi(\tau, k) \varphi^{*}\left(\tau, k^{\prime}\right)\right\rangle_{c} & =2 \pi \delta\left(k-k^{\prime}\right) \frac{1}{|k|} \\
& \times\left\{\left[\frac{1}{2}+\bar{n}(k)\right]+\cos [2 k \ln (\tau)+2 \theta(k, M)] \bar{u}(k)\right\}
\end{aligned}
$$

cancel out when going to finite interval !

- Only Bose-Einstein occupation numbers $\bar{n}(k)$ remain

Entanglement and deep inelastic scattering

- How strongly entangled is the nuclear wave function?
- What is the entropy of quasi-free partons and can it be understood as a result of entanglement? [Kharzeev, Levin (2017)]

$$
S=\ln [x G(x)]
$$

- Does saturation at small Bjorken- x have an entropic meaning?
- Entanglement entropy and entropy production in the color glass condensate [Kovner, Lublinsky (2015)]
- Could entanglement entropy help for a non-perturbative extension of the parton model?
- Entropy of perturbative and non-perturbative Pomeron descriptions [Shuryak, Zahed (2017)]

