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Entropy and information

[Claude Shannon (1948)]
@ consider a random variable & with probability distribution p(x)

@ information content or “surprise” associated with outcome z
i(x)
8

i(2) = ~Inp(a) .
2

X
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o Entropy is expectation value of information content

S = Zp )YInp(x

S=0 S =1n(2) S =21In(2)



Entropy at thermal equilibrium

@ micro canonical ensemble: maximal entropy S for given conserved
quantities £, N in given volume V

universality at equilibrium

starting point for development of thermodynamics ...

_1 4 p
S(E,N,V), dS = ZdE — dN + ZdV

@ ... grand canonical ensemble with density operator ...

1
p= Ee*%(H*uN)

@ ... Matsubara formalism for quantum fields ...



Ideal fluid dynamics

thermal equilibrium

™ = eulu” + p(ufu” + g""), NH = nut, st = syt

fluid velocity u*

thermodynamic equation of state p(7', u) with dp = sdT + ndpu
local thermal equilibrium approximation: u*(x), T'(z), p(x)
neglect gradients: lowest order of a derivative expansion
evolution of u(z), T(x) and p(x) from conservation laws

vV, TH (xz) =0, V.N"(z) = 0.

entropy current also conserved

Vst (x) = 0.



Out-of-equilibrium

quantum field theory out-of-equilibrium is less well understood

interesting topic of current research

is non-equilibrium dynamics also governed by information?

approach to equilibrium

@ universality



Entropy in quantum theory

[John von Neumann (1932)]

S=—-Trplnp

based on the quantum density operator p
for pure states p = 1) (¥)| one has S =0
for mixed states p =} p;[j)(j| one has S = -3, p;Inp; >0

unitary time evolution conserves entropy

~Tr(UpUN In(UpUT) = —=Trplnp — S = const.

global characterization of quantum state



Entropy and entanglement

@ consider a split of a quantum system into two A + B

==

B A B

reduced density operator for system A

pa = Tre{p}

@ entropy associated with subsystem A

Sa=—Tra{palnpa}

@ pure product state p = p4 ® pp leads to Sy =0
e pure entangled state p # py ® pp leads to Sy > 0
@ S, is called entanglement entropy



Classical statistics

consider system of two random variables = and y

joint probability p(z,y) , joint entropy

S=-> vle.y)np(e,y)

z,Y

reduced or marginal probability p(z) = >_, p(z,y)

reduced or marginal entropy

Zp )Inp(z

one can prove: joint entropy is greater than or equal to reduced
entropy
S>5,

globally pure state S = 0 is also locally pure S, =0



Quantum statistics

@ consider system with two subsystems A and B
@ combined state p , combined or full entropy

S =—-Tr{plnp}

o reduced density matrix p4 = Trp{p}
o reduced or entanglement entropy

Sa=—-Tra{palnpa}

o for quantum systems entanglement makes a difference

S# 54

e coherent information Ipy4 = 54 — S can be positive!
o globally pure state S = 0 can be locally mixed S4 > 0



The thermal model puzzle

@ elementary particle collision experiments such as e™ e~ collisions
show thermal-like features

@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely
@ alternative explanations needed



QCD strings

==

B A B

particle production from QCD strings

e. g. Lund model (Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix of mixed form

pa=Trgp

characterization by entanglement entropy

Sa=-=Tr{paln(pa)}

o could this lead to thermal-like effects?



Microscopic model

QCD in 1+1 dimensions described by 't Hooft model
. . 1
L=~y (Op — igA L)Y — miinh; — itl’ F, F"
fermionic fields ¢; with sums over flavor species i =1,..., Ny
SU(NV.) gauge fields A, with field strength tensor F,,,
gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass
non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — co with g2, fixed
['t Hooft (1974)]



Schwinger model
e QED in 1+1 dimension

L = 7151'7;%8# - iquW mﬂ/&% - [LVFMV

@ geometric confinement
@ U(1) charge related to string tension ¢ = v/20

@ for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S = /dzx\@{ — lgwamam — %M%Q

mqe

27375 cos(2f¢+9)}

@ Schwinger bosons are dipoles ¢ ~ 1)
@ mass is related to U(1) charge by M = q/\/7m = \/20/7

@ massless Schwinger model m = 0 leads to free bosonic theory



Ezxpanding string solution

@ external quark-anti-quark pair on trajectories z = =+t
e coordinates: Bjorken time T = v/t? — 22, rapidity n = arctanh(z/t)
e metric ds? = —d7? 4 12dn?

@ symmetry with respect to longitudinal boosts n — 1 + An



Coherent field evolution

@ Schwinger boson field depends only on 7

¢ = o(7)
@ equation of motion
026+ 10:0+ MG =0,

o Gauss law: electric field E = g¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 04

- VTGe
o(7) — .

(1= 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

d7) = Y2 (o)



Gaussian states

o theories with quadratic action typically have Gaussian density matrix

o fully characterized by field expectation values

o(z) = (o(2)), m(z) = (7 (z))

and connected two-point correlation functions, e. g.

(D(@)d(y))e = ($(2)d(y)) — d(x)(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian



Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, 1712.09362]

1
Sa=5Tra {DIn(D?)},

@ operator trace over region A only

@ matrix of correlation functions

_ (—io@)m(y))e  i{d(x)d(y))e
Do) = (i<ﬂ($)ﬂ(y)>c i<7f(l‘)¢(y)>c> '

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly
@ coherent states and vacuum have equal entanglement entropy S4



Rapidity interval

T =const
n = const
————— region A
region B
z

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at
fixed time ¢t = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions



Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless
Schwinger model (M = \/L;)

dS/dAn
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[Berges, Floerchinger, Venugopalan (2017)]



Conformal limat

o for M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

S(Az) = gln (Az/e) + constant

with small length € acting as UV cutoff

here this implies

S(r,An) = %ln (27 sinh(An/2)/€) + constant

conformal charge ¢ = 1 for free massless scalars or Dirac fermions

additive constant not universal but entropy density is

0 c

—>g (A > 1)

entropy becomes extensive in An !



Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses

and interactions

1
H=>->M=-"L n
T

V3

theory dominated by free, massless fermions

@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
e for QCD in 141 dimensions (gluons not dynamical)

C:NCXNf

from fluctuating transverse coordinates (Nambu-Goto action)

c=N.XNy+2=9+2=11



Modular or entanglement Hamiltonian

@ conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e_K, ZA:Tre_K
Z

@ modular or entanglement Hamiltonian local expression

K= /E 45, &,(2) T" (2)

21/48



Time-dependent temperature

t

@ energy-momentum of excitations around coherent field T (x)
combination of fluid velocity and temperature £#(z) = 7?((;”))
fluid velocity in T-direction & time-dependent temperature

[Berges, Floerchinger, Venugopalan (2017)]
h
(1) = 5—

T onr

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T'(x) = QZCI




Physics picture

@ alternative derivation via mode functions & Bogoliubov transforms
[Berges, Floerchinger, Venugopalan, 1712.09362]

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

e on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Ay — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
o M7 — 0 for any finite An gives thermal state with T'=1/(277)



Entanglement dynamics in cold atom experiments

@ entanglement can be directly accessed in cold atom experiments
[Oberthaler group, Greiner group]

@ expanding geometries can be realized by interplay of
e longitudinal expansion
o time dependent change of sound velocity vs(¢)
o time dependent gap or mass M?>(t)




Dissipation

dissipation can be defined as (effective) entropy generation

d
%S>O

o for extensive entropy S = fz dX,,s" one has locally

Vst >0

related to effective loss of information

@ second law of thermodynamics: entropy gets produced, not
destroyed
o local dissipation - entanglement generation (?)



Dissipation and the quantum effective action

dissipation usually discussed on the level of equations of motion

@ one would like to have a formulation in terms of an effective action
fluctuations & correlation functions

renormalization

effective field theories

coupling to gravity

@ one possibility: Schwinger-Keldysh double time path formalism

another possibility: analytic continuation of the 1PI effective action
[Floerchinger, JHEP 1609, 099 (2016)]



Local equilibrium & partition function
[Floerchinger, JHEP 1609, 099 (2016)]

(a) Global thermal equilibrium (b) Local thermal equilibrium
E (/’_ ‘ lb.
T T

o local equilibrium with T'(z) and u*(z)

Bip) — w (@)
pH(x) = T(z)

&
=

@ similarity between local density matrix and translation operator
B (@) Py RINTEN

@ represent partition function as functional integral with periodicity
p(a" —if(x)) = +o(a")
e partition function Z[.J], Schwinger functional W[J] in Euclidean

21J] = eWeld] /D¢,e—sE[¢]+fx Jo



One-particle vrreducible or quantum effective action

@ in Euclidean domain I'[¢] defined by Legendre transform
Tp[@] = / (@) () — WilJ]

with expectation values

1 0

P = i) 30,

Wgl[J]

o Euclidean field equation

s8] = VA() Ju(o)

resembles classical equation of motion for J =0

@ need analytic continuation to obtain a viable equation of motion



Two-point functions

@ homogeneous background field and global equilibrium

9 = (7.0.00)

@ propagator and inverse propagator
52

6Ja(—p)dJs(q)
62

5®a(—p)d®s(q)

We[J] = Gas(p) (27)*6 (p - q)

T[®] = Puy(p) 21)*6 (p - q)

o from definition of effective action

Z Gab(p)Pbc(p) = 5ac
b



Spectral representation

o Kallen-Lehmann spectral representation

oo

2 2
o) = [ a2 B

o Z—w
with Pab €R
e correlation functions can be analytically continued in w = —u*p,,

@ branch cut or poles on real frequency axis w € R but nowhere else

o different propagators follow by evaluation of G, in different regions

Im(w)
Matsubara .
A(ILLZ (p) =Gy (anv P )
retarded Feynman Azlz%b (p) =G (po + i€, p )
Re(w) .
etttk ittt Afb (p) =Gap (p() — 1€, p)
Agy(p) =Gap (p° + ic sign (°) , p)




Variational principle with effective dissipation

[Floerchinger, JHEP 1609, 099 (2016)]

@ decompose inverse two-point function
Pay(p) = Prav(p) — isi(—u"pu) Poab(p)

with s(w) = sign(Im w)

@ in position space, replace

s1 (—u"py) = sign (Im(—u"p,))

— sign (Im (iu”52;)) = sign (Re (u"527)) = sr (u" 52

@ this symbol appears also in I'[®]



Retarded functional derivative
[Floerchinger, JHEP 1609, 099 (2016)]
@ real and causal dissipative field equations follow from analytically
continued effective action

oT[@] |
5(I)a(l’) ret o \/gj(x)

@ to calculate retarded variational derivative determine
O [ D]

by varying the fields 6®(x) including dissipative terms
@ set signs according to

sr(ut0,) 00(z) — —dP(x), 00 (z) sr(ut0,) = +00(z)

@ proceed as usual

@ opposite choice of sign: field equations for backward time evolution



Damped harmonic oscillator 1

@ equation of motion
mi+ct+kr=20

or with wg = \/k/m and ¢ = ¢/vV4mk

i+ 2Cwod + wir =0

@ is there an action for damped oscillator? This does not work:

/;l—(: %m*(m) [w? +2iwCwy —wj] z(w)

@ consider inverse propagator
2 . 2
w” + 20 51(w) w Cwp — wj

with sign function
si(w) = sign (Imw)



Damped harmonic oscillator 2

o effective action

I[x] :/d—w %x*(w) [—w? — 2i s1(w) w Cwo + wg | z(w)

s
1 1 1
:/dt {mez + 5635 SR(at)i + Qkxz}
where the second line uses

si(w) = sign(Imw) — sign(Imid;) = sign(Re d;) = sr(0)
@ variation gives up to boundary terms

or :/dt {mjé ox + %c&r Sr(O¢)E — %c:ﬁ sr(O¢)ox + kx (536}

@ set now sg(0;)0x — —dx and dx sg(9¢) — dx. Defines %Let.
@ equation of motion for forward time evolution

or

=mi+ct+kzr=0
ox

ret




Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

@ analysis of general covariance leads to entropy production law

ret >

1 6T
V/LS# N % (SCI)[: retﬂAa)\q)a * ﬂltvy <

29T
V909w

@ should be positive by second law of thermodynamics
@ so far only understood close-to-equilibrium

e e.g. for viscous fluid

1
Vst = T [2770,“,0‘“’ + C(Vpu")z}



Fluid dynamics

o long distances, long times or strong enough interactions
@ quantum fields form a fluid!
@ needs macroscopic fluid properties
e equation of state p(7T', i)
shear viscosity n(T', i)
bulk viscosity ¢(T', )
heat conductivity (T, u)
relaxation times, ...

@ ab initio calculation of transport properties difficult but in principle
fixed by microscopic properties encoded in lagrangian

@ standard model of high energy nuclear collisions based on relativistic
dissipative fluid dynamics
@ ongoing experimental and theoretical effort to understand this better



Big bang — little bang analogy

Dark Energy kinetic
Accelerated Expansion freeze-out
Afterglow Light )
Pattern  Dark Ages Development of \. e [ y e ——
/ Galaxies, Panets,etc. lumpy initial =

£ correlations of
energy density duced particles

-
3
g
N
3
3

quark and gluon
froedom

S N vrd

collision ‘¥’

. quantum
1st Stars overlap zone fuctuations
about 400 million yrs.

Big Bang Expansion

137 billion years v~ 0 fin/c -1 fin/c © ~ 10 fm/c <~ 10 fm/c

e cosmol. scale: MPc= 3.1 x 102 m e nuclear scale: fm=10"'" m
o Gravity + QED + Dark sector e QCD
@ one big event @ very many events

@ dynamical description as a fluid

@ all information must be reconstructed from final state



Fluid dynamic perturbation theory for heavy ions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

[ongoing work with E. Grossi, J. Lion, A. Mazeliauskas]

Muttipole moment, £

Angular scale

@ goal: determine QCD fluid properties from experiments
@ so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]

@ new idea: solve fluid equations for smooth and symmetric
background and order-by-order in perturbations

@ less numerical effort — more systematic studies

@ good convergence properties [Floerchinger et al., PLB 735, 305 (2014),
Brouzakis et al. PRD 91, 065007 (2015)]

@ similar to cosmological perturbation theory



Dissipation in cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Evolution of energy density in first order viscous fluid dynamics
u e+ (e + p)V, ut — (O — 200t 0, =0

with
@ bulk viscosity ¢
@ shear viscosity 1

For 72 < ¢? and Newtonian potentials &, ¥ « 1

—

é+T-Ve+ (e+Dp) (3%+§-6)

. — 2 .
= % {3% + V. 17:| + g {&vjﬁivj + (%Ujajvi — %(V . 5)2



Fluid dynamic backreaction
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density € = (€)
le+3H(e+p—3CH)=D
with dissipative backreaction term
D = a%(n [@vj@ivj + 0;v;0;v; — %@»viajvjb
+ % (C[V - ) + 3TV (p— 6¢CH))

D vanishes for unperturbed homogeneous and isotropic universe

@ D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

dissipative terms in D are positive semi-definite

for spatially constant viscosities and scalar perturbations only

e
D= %/Cf'q Poo(q)



Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

o Dissipative backreaction does not need negative effective pressure

%é+3H(€+ﬁefF) =D

D is an integral over perturbations, could become large at late times.

Can it potentially accelerate the universe?

Need additional equation for scale parameter a

Use trace of Einstein's equations R = 87GNT™,
%H +2H? = 47rGN (€ — 3Perr)

does not depend on unknown quantities like ((€ + pesr)utu”)

o To close the equations one needs equation of state Peff = Perr(€)
and dissipation parameter D



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

@ assume now vanishing effective pressure pessr = 0

H
aH?

d e
—Tha T2 1) (q - %) = 47§HN3D

@ obtain for deceleration parameter ¢ = —1 —

e for D = 0 attractive fixed point at ¢, = % (deceleration)
e for D > 0 fixed point shifted towards g, < 0 (acceleration)
6

5t

QO’J

Zl L

OlE 4

So3

+ 2

CEN

= 0 A
-1 . . .
-1.0 -0.5 00 0.5 1.0

deceleration parameter ¢



Conclusions

@ quantum field theory & information theory are entangled !
@ could be essential element for universal non-equilibrium theory

@ entanglement helps to understand “thermal effects” in eTe™ and
other collider experiments

e at very early times theory effectively conformal % >m,q
e entanglement entropy extensive in rapidity % =35

o reduced density matrix for excitations at early times thermal T = 2

27T

@ experiments with cold atoms could allow to investigate
entanglement directly

o effectively dissipative dynamics can have interesting consequences
for cosmology



BACKUP



Coarse graining etc.

@ entropy in quantum system can emerge when

e system is divided into pieces with reduced density matrix
e subsystems are composed again as mixed states

cuts may divide

o different regions
e high-momentum and low-momentum
e ‘“system” and “bath”

@ entropy in classical systems from coarse graining phase space

entropy in kinetic theory from neglecting two-particle correlations
(Boltzmann's “Stosszahlansatz”)



Transverse coordinates

@ So far dynamics strictly confined to 14+1 dimensions

@ Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X™0,Xn)

Sng = /dzx\/fdethm, {(—o+4...}

~ /d%\/g{—a - 29" 0, X'0,X 4. y

e Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with i =1, 2.



Free massive fermions

o Entanglement entropy can also be calculated for free Dirac fermions
of mass m

dS/dAn
0.4

0.3+

0.2+

0.1F

0.0 An

0 5 10 15 20 25
mr=1,10"", 1072 107, 107*, and 107°
@ Same universal plateau ¢/6 with ¢ = 1 at early time

o Conformal limit corresponds to non-interacting fermions
o Consistent with or without bosonization



Rapidity distribution
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[open (filled) symbols: e™e™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o Rapidity distribution dN/dn has plateau around midrapidity
@ Only logarithmic dependence on collision energy



Fxperimental access to entanglement ¢

e Could longitudinal entanglement be tested experimentally?
o Unfortunately entropy density dS/dn not straight-forward to access.

@ Measured in ete™ is the number of charged particles per unit
rapidity dNcn/dn (rapidity defined with respect to the thrust axis)

@ Around mid-rapidity logarithmic dependence on the collision energy.
o Typical values for collision energies /s = 14 — 206 GeV in the range

ANy /dn ~ 2 — 4

o Entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Ng, = 7.2 would give

dS/dn =~ 14 — 28

o This is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy.



Temperature and entanglement entropy

o For conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o For static interval of length [ [Calabrese, Cardy (2004)]

1
S(T,1) = ‘I (T sinh(7rlT)> + const

3 e

o Compare this to our result in expanding geometry
c 2T
S(r,An) = 3 In ( S|nh(A77/2)> + constant
€

o Expressions agree for [ = 7An (with metric ds? = —d7? + 72dn?)
and time-dependent temperature

1
T=—
2nT



Alternative derivation: mode functions

e Fluctuation field ¢ = ¢ — ¢ has equation of motion

32s0(7n)+1<9<p(777) Mz—iai o(r,n) =0
T ) = T ) 2877 )

@ Solution in terms of plane waves

o, / DK ak) fr, (KD + al (k) £ (r, [K)e )

@ Mode functions as Hankel functions
1 k) = YTt 1D (a17)

or alternatively as Bessel functions

Jr

o0 = e

J_ir(MT)



Bogoliubov transformation

@ Mode functions are related

@ Bogoliubov coefficients

ek e—Tk
alk) = 2sinh(mk) Alk) = 2sinh(mk)

e Vacuum |(2) with respect to a(k) such that a(k)|2) = 0 contains
excitations with respect to a(k) such that a(k)|2) # 0 and vice versa



Role of different mode functions

@ Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

o Bessel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

o At very early time 1/7 > M conformal symmetry

ds* = 7% [—dIn(1)? + dn’*]

@ Hankel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(r, k) are superpositions of positive frequency
modes with respect to conformal time In(7)



Occupation numbers
@ Minkowski space coherent states have two-point functions
(@' (k)a(k’))e = a(k) 2w (k — k') = |B(k)[* 27 6(k — k)
(K)a(k'))e = a(k) 27 6(k + k') = —a*(k)B* (k) 21 5 (k + k)
k)a'(K))e = u*(k) 2 6(k + k') = —a(k)B(k) 2m 6 (k + k)

@ Occupation number

(k) = |B(k)|* = ﬁ

@ Bose-Einstein distribution with excitation energy F = |k|/T and
temperature

o Off-diagonal occupation number u(k) = —1/(2sinh(7k)) make sure
we still have pure state



Local description
o Consider now rapidity interval (—An/2, An/2)

@ Fourier expansion becomes discrete

1 = o
sp(’r’) = Z Z SDn elTI,TrTn

n—=—oo

An/2 1l inmn -
©n =/ dn (n) 5 [6*”’“7 + (—1)%””“&7}
,An/Q 2

@ Relation to continuous momentum modes by integration kernel

o(k)

An An

dk . kA o 1 1
<pn:/27r81n(2"—2)[ T

@ Local density matrix determined by correlation functions

{on), (), (On®m)e, etc.



Emergence of locally thermal state

@ Mode functions at early time

r 1 —ikIn(7)—10(k
f(T k?) — 2ke kln(r)—i0(k,M)

@ Phase varies strongly with k& for M — 0

0(k, M) = kIn(M/2) + arg(T(1 — ik))

o Off-diagonal term (k) have factors strongly oscillating with k

(o, k)" (7))o = 2k — k’%
x {[& +n(k)] + cos 2k In(r) + 20(k, M)] u(k)}

cancel out when going to finite interval !

@ Only Bose-Einstein occupation numbers 7(k) remain



Entanglement and deep inelastic scattering

o How strongly entangled is the nuclear wave function?

o What is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

S = In[zG(x)]

o Does saturation at small Bjorken-z have an entropic meaning?

@ Entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015)]

@ Could entanglement entropy help for a non-perturbative extension of
the parton model?

e Entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



