Thermal excitation spectrum from entanglement in an expanding quantum string

Stefan Flörchinger (Heidelberg U.)

Center for Frontiers in Nuclear Science (CFNS), Stony Brook University, Nov 16, 2017

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

based on

• J. Berges, S. Floerchinger & R. Venugopalan, *Thermal excitation* spectrum from entanglement in an expanding QCD string

• J. Berges, S. Floerchinger & R. Venugopalan [to appear]

[arxiv:1707.05338]

Entanglement and deep inelastic scattering

- How strongly entangled is the nuclear wave function?
- What is the entropy of quasi-free partons and can it be understood as a result of entanglement? [Kharzeev, Levin (2017)]

$$S = \ln[xG(x)]$$

- Does saturation at small Bjorken-x have an entropic meaning?
- Entanglement entropy and entropy production in the color glass condensate [Kovner, Lublinsky (2015)]
- Could entanglement entropy help for a non-perturbative extension of the parton model?
- Entropy of perturbative and non-perturbative Pomeron descriptions [Shuryak, Zahed (2017)]

Motivation

- ullet Elementary particle collision experiments such as $e^+\ e^-$ collisions show thermal-like features.
- Example: particle multiplicities

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

- Conventional thermalization by collisions unlikely.
- Alternative explanations needed.

Rapidity distribution

[open (filled) symbols: e^+e^- (pp), Grosse-Oetringhaus & Reygers (2010)]

- Rapidity distribution $dN/d\eta$ has plateau around midrapidity
- Only logarithmic dependence on collision energy

$QCD\ strings$

- Particle production from QCD strings.
- e. g. Lund model (Pythia).
- Different regions in a string are entangled.
- ullet Subinterval A is described by reduced density matrix

$$\rho_A = \mathsf{Tr}_B \rho.$$

- Reduced density matrix is of mixed state form.
- Could this lead to thermal-like effects?

$Microscopic\ model$

QCD in 1+1 dimensions described by 't Hooft model

$$\mathscr{L} = -\bar{\psi}_i \gamma^{\mu} (\partial_{\mu} - ig\mathbf{A}_{\mu})\psi_i - m_i \bar{\psi}_i \psi_i - \frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}$$

- ullet Fermionic fields ψ_i with sums over flavor species $i=1,\ldots,N_f$
- ullet SU (N_c) gauge fields ${f A}_{\mu}$ with field strength tensor ${f F}_{\mu
 u}$
- Gluons are not dynamical in two dimensions
- ullet Gauge coupling g has dimension of mass
- Non-trivial, interacting theory, cannot be solved exactly
- \bullet Spectrum of excitations known for $N_c \to \infty$ with $g^2 N_c$ fixed ['t Hooft (1974)]

Schwinger model

• QED in 1+1 dimension

$$\mathscr{L} = -\bar{\psi}_i \gamma^{\mu} (\partial_{\mu} - iqA_{\mu}) \psi_i - m_i \bar{\psi}_i \psi_i - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

- Geometric confinement
- U(1) charge related to string tension $q = \sqrt{2\sigma}$
- For single fermion one can bosonize theory exactly [Coleman, Jackiw, Susskind (1975)]

$$S = \int d^2x \sqrt{g} \left\{ -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} M^2 \phi^2 - \frac{m q e^{\gamma}}{2\pi^{3/2}} \cos \left(2\sqrt{\pi}\phi + \theta\right) \right\}$$

- ullet Schwinger bosons are dipoles $\phi \sim ar{\psi} \psi$
- Mass is related to U(1) charge by $M=q/\sqrt{\pi}=\sqrt{2\sigma/\pi}$
- Massless Schwinger model m=0 leads to free bosonic theory

Transverse coordinates

- So far dynamics strictly confined to 1+1 dimensions
- Transverse coordinates may fluctuate, can be described by Nambu-Goto action $(h_{\mu\nu} = \partial_{\mu}X^{m}\partial_{\nu}X_{m})$

$$\begin{split} S_{\text{NG}} &= \int d^2x \sqrt{-\det h_{\mu\nu}} \, \left\{ -\sigma + \ldots \right\} \\ &\approx \int d^2x \sqrt{g} \, \left\{ -\sigma - \frac{\sigma}{2} g^{\mu\nu} \partial_{\mu} X^i \partial_{\nu} X^i + \ldots \right\} \end{split}$$

ullet Two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^i with i=1,2.

Expanding string solution 1

 Consider string formed between (external) quark-anti-quark pair on trajectories

$$z = \pm t$$

- Coordinates: Bjorken time $\tau = \sqrt{t^2 z^2}$, rapidity $\eta = \operatorname{arctanh}(z/t)$
- Metric $ds^2 = -d\tau^2 + \tau^2 d\eta^2$
- ullet Symmetry with respect to longitudinal boosts $\eta o \eta + \Delta \eta$

Expanding string solution 2

ullet Schwinger boson field depends only on au

$$\bar{\phi} = \bar{\phi}(\tau)$$

Equation of motion

$$\partial_{\tau}^{2}\bar{\phi} + \frac{1}{\tau}\partial_{\tau}\bar{\phi} + M^{2}\bar{\phi} = 0.$$

• Gauss law: electric field $E=q\phi/\sqrt{\pi}$ must approach the U(1) charge of the external quarks $E\to q_{\rm e}$ for $\tau\to 0_+$

$$\bar{\phi}(\tau) \to \frac{\sqrt{\pi}q_{\mathsf{e}}}{q} \qquad (\tau \to 0_+)$$

Solution of equation of motion [Loshaj, Kharzeev (2011)]

$$ar{\phi}(au) = rac{\sqrt{\pi}q_{\mathsf{e}}}{q}J_0(M au)$$

Reduced density matrix

- Consider now physical processes such as hadron formation
- ullet Assume that these are local processes in some space region A

Reduced density matrix, trace over complement region B

$$\rho_A = \operatorname{Tr}_B \rho$$

- In general ρ_A mixed state density matrix even if ρ is pure
- ullet Reason: entanglement between regions A and B
- Characterization by entanglement entropy

$$S_A = -\mathsf{Tr}\left\{\rho_A \ln(\rho_A)\right\}$$

Gaussian states

- Theories with quadratic action typically have Gaussian density matrix
- Fully characterized by field expectation values

$$\bar{\phi}(x) = \langle \phi(x) \rangle, \qquad \bar{\pi}(x) = \langle \pi(x) \rangle$$

and connected two-point correlation functions, e. g.

$$\langle \phi(x)\phi(y)\rangle_c = \langle \phi(x)\phi(y)\rangle - \bar{\phi}(x)\bar{\phi}(y)$$

ullet If ho is Gaussian, also reduced density matrix ho_A is Gaussian

Entanglement entropy for Gaussian state

ullet Entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, to appear]

$$S_A = \frac{1}{2} \operatorname{Tr}_A \left\{ D \ln(D^2) \right\},\,$$

- Operator trace over region A only
- Matrix of correlation functions

$$D(x,y) = \begin{pmatrix} -i\langle\phi(x)\pi(y)\rangle_c & i\langle\phi(x)\phi(y)\rangle_c \\ -i\langle\pi(x)\pi(y)\rangle_c & i\langle\pi(x)\phi(y)\rangle_c \end{pmatrix}.$$

- Involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- ullet Expectation value $ar{\phi}$ does not appear explicitly
- ullet Coherent states and vacuum have equal entanglement entropy S_A

Rapidity interval

- Consider rapidity interval $(-\Delta \eta/2, \Delta \eta/2)$ at fixed Bjorken time τ
- Entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- Can be evaluated equivalently in interval $\Delta z = 2\tau \sinh(\Delta\eta/2)$ at fixed time $t = \tau \cosh(\Delta\eta/2)$
- Need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- Entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- Entanglement entropy density $dS/d\Delta\eta$ for bosonized massless Schwinger model $(M=\frac{q}{\sqrt{\pi}})$

Conformal limit

• For M au o 0 one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

$$S(\Delta z) = \frac{c}{3} \ln \left(\Delta z / \epsilon \right) + \text{constant}$$

with small length ϵ acting as UV cutoff.

Here this implies

$$S(\tau,\Delta\eta) = \frac{c}{3} \ln \left(2\tau \sinh(\Delta\eta/2)/\epsilon \right) + {\rm constant}$$

- ullet Conformal charge c=1 for free massless scalars or Dirac fermions.
- Additive constant not universal but entropy density is

$$\begin{split} \frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) = & \frac{c}{6} \mathrm{coth}(\Delta \eta / 2) \\ \rightarrow & \frac{c}{6} \qquad (\Delta \eta \gg 1) \end{split}$$

• Entropy becomes extensive in $\Delta \eta$!

Free massive fermions

 \bullet Entanglement entropy can also be calculated for free Dirac fermions of mass m

- Same universal plateau c/6 with c=1 at early time
- Conformal limit corresponds to non-interacting fermions
- Consistent with or without bosonization

Universal entanglement entropy density

 For very early times "Hubble" expansion rate dominates over masses and interactions

$$H = \frac{1}{\tau} \gg M = \frac{q}{\sqrt{\pi}}, m$$

- Theory dominated by free, massless fermions
- Universal entanglement entropy density

$$\frac{dS}{d\Delta\eta} = \frac{c}{6}$$

with conformal charge c

• For QCD in 1+1 dimensions (gluons not dynamical)

$$c = N_c \times N_f$$

From fluctuating transverse coordinates (Nambu-Goto action)

$$c = N_c \times N_f + 2 \approx 9 + 2 = 11$$

Experimental access to entanglement?

- Could longitudinal entanglement be tested experimentally?
- Unfortunately entropy density $dS/d\eta$ not straight-forward to access.
- Measured in e^+e^- is the number of charged particles per unit rapidity $dN_{\rm ch}/d\eta$ (rapidity defined with respect to the thrust axis)
- Around mid-rapidity logarithmic dependence on the collision energy.
- ullet Typical values for collision energies $\sqrt{s}=14-206$ GeV in the range

$$dN_{\rm ch}/d\eta\approx 2-4$$

• Entropy per particle S/N can be estimated for a hadron resonance gas in thermal equilibrium $S/N_{\rm ch}=7.2$ would give

$$dS/d\eta \approx 14 - 28$$

 This is an upper bound: correlations beyond one-particle functions would lead to reduced entropy.

Temperature and entanglement entropy

- For conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- For static interval of length l [Calabrese, Cardy (2004)]

$$S(T, l) = \frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh(\pi l T) \right) + \text{const}$$

Compare this to our result in expanding geometry

$$S(\tau,\Delta\eta) = \frac{c}{3} \ln \left(\frac{2\tau}{\epsilon} \sinh(\Delta\eta/2) \right) + \text{constant}$$

• Expressions agree for $l=\tau\Delta\eta$ (with metric $ds^2=-d\tau^2+\tau^2d\eta^2$) and time-dependent temperature

$$T = \frac{1}{2\pi\tau}$$

Modular or entanglement Hamiltonian 1

- Conformal field theory
- \bullet Hypersurface Σ with boundary on the intersection of two light cones
- Reduced density matrix
 [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$\rho_A = \frac{1}{Z_A} e^{-K}, \qquad \quad Z_A = \operatorname{Tr} e^{-K},$$

• Modular or entanglement Hamiltonian K.

Modular or entanglement Hamiltonian 2

• Modular or entanglement Hamiltonian is local expression

$$K = \int_{\Sigma} d\Sigma^{\mu} \, \xi^{\nu}(x) \, T_{\mu\nu}(x).$$

• Energy-momentum tensor $T_{\mu\nu}(x)$ and $\xi^{\nu}(x)$ is a vector field

$$\xi^{\mu}(x) = \frac{2\pi}{(k-p)^2} [(k-x)^{\mu}(x-p)(k-p) + (x-p)^{\mu} \times (k-x)(k-p) - (k-p)^{\mu}(x-p)(k-x)]$$

with end point of the future light cone k and starting point of the past light cone p.

• Inverse temperature and fluid velocity

$$\xi^{\mu}(x) = \beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

Modular or entanglement Hamiltonian 3

- For k very far in the future $\xi^{\mu}(x) \to 2\pi \, x^{\mu}$
- ullet Fluid velocity in au-direction & time-dependent temperature

$$T(\tau) = \frac{\hbar}{2\pi\tau}$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times!
- Hawking-Unruh temperature in Rindler wedge $T(x) = \hbar c/(2\pi x)$

Alternative derivation: mode functions

• Fluctuation field $\varphi = \phi - \bar{\phi}$ has equation of motion

$$\partial_{\tau}^{2}\varphi(\tau,\eta) + \frac{1}{\tau}\partial_{\tau}\varphi(\tau,\eta) + \left(M^{2} - \frac{1}{\tau^{2}}\frac{\partial^{2}}{\partial\eta^{2}}\right)\varphi(\tau,\eta) = 0$$

• Solution in terms of plane waves

$$\varphi(\tau, \eta) = \int \frac{dk}{2\pi} \left\{ a(k) f(\tau, |k|) e^{ik\eta} + a^{\dagger}(k) f^*(\tau, |k|) e^{-ik\eta} \right\}$$

Mode functions as Hankel functions

$$f(\tau, k) = \frac{\sqrt{\pi}}{2} e^{\frac{k\pi}{2}} H_{ik}^{(2)}(M\tau)$$

or alternatively as Bessel functions

$$\bar{f}(\tau, k) = \frac{\sqrt{\pi}}{\sqrt{2\sinh(\pi k)}} J_{-ik}(M\tau)$$

Bogoliubov transformation

Mode functions are related

$$\begin{split} & \overline{f}(\tau, k) = & \alpha(k) f(\tau, k) + \beta(k) f^*(\tau, k) \\ & f(\tau, k) = & \alpha^*(k) \overline{f}(\tau, k) - \beta(k) \overline{f}^*(\tau, k) \end{split}$$

Creation and annihilation operators are related by

$$\bar{a}(k) = \alpha^*(k)a(k) - \beta^*(k)a^{\dagger}(k)$$
$$a(k) = \alpha(k)\bar{a}(k) + \beta(k)\bar{a}^{\dagger}(k)$$

Bogoliubov coefficients

$$\alpha(k) = \sqrt{\frac{e^{\pi k}}{2\sinh(\pi k)}}$$
 $\beta(k) = \sqrt{\frac{e^{-\pi k}}{2\sinh(\pi k)}}$

• Vacuum $|\Omega\rangle$ with respect to a(k) such that $a(k)|\Omega\rangle = 0$ contains excitations with respect to $\bar{a}(k)$ such that $\bar{a}(k)|\Omega\rangle \neq 0$ and vice versa

Role of different mode functions

- \bullet Hankel functions $f(\tau,k)$ are superpositions of positive frequency modes with respect to Minkowski time t
- ullet Bessel functions $ar{f}(au,k)$ are superpositions of positive and negative frequency modes with respect to Minkowski time t
- ullet At very early time $1/ au\gg M$ conformal symmetry

$$ds^2 = \tau^2 \left[-d \ln(\tau)^2 + d\eta^2 \right]$$

- Hankel functions $f(\tau,k)$ are superpositions of positive and negative frequency modes with respect to conformal time $\ln(\tau)$
- ullet Bessel functions $ar{f}(au,k)$ are superpositions of positive frequency modes with respect to conformal time $\ln(au)$

Occupation numbers

Minkowski space coherent states have two-point functions

$$\langle \bar{a}^{\dagger}(k)\bar{a}(k')\rangle_{c} = \bar{n}(k) 2\pi \delta(k-k') = |\beta(k)|^{2} 2\pi \delta(k-k')$$
$$\langle \bar{a}(k)\bar{a}(k')\rangle_{c} = \bar{u}(k) 2\pi \delta(k+k') = -\alpha^{*}(k)\beta^{*}(k) 2\pi \delta(k+k')$$
$$\langle \bar{a}^{\dagger}(k)\bar{a}^{\dagger}(k')\rangle_{c} = \bar{u}^{*}(k) 2\pi \delta(k+k') = -\alpha(k)\beta(k) 2\pi \delta(k+k')$$

Occupation number

$$\bar{n}(k) = |\beta(k)|^2 = \frac{1}{e^{2\pi k} - 1}$$

 \bullet Bose-Einstein distribution with excitation energy $E=|k|/\tau$ and temperature

$$T = \frac{1}{2\pi\tau}$$

• Off-diagonal occupation number $\bar{u}(k) = -1/(2\sinh(\pi k))$ make sure we still have pure state

Local description

- Consider now rapidity interval $(-\Delta \eta/2, \Delta \eta/2)$
- Fourier expansion becomes discrete

$$\varphi(\eta) = \frac{1}{L} \sum_{n=-\infty}^{\infty} \varphi_n \ e^{in\pi \frac{\eta}{\Delta \eta}}$$

$$\varphi_n = \int_{-\Delta\eta/2}^{\Delta\eta/2} d\eta \ \varphi(\eta) \ \frac{1}{2} \left[e^{-in\pi \frac{\eta}{\Delta\eta}} + (-1)^n e^{in\pi \frac{\eta}{\Delta\eta}} \right]$$

Relation to continuous momentum modes by integration kernel

$$\varphi_n = \int \frac{dk}{2\pi} \sin(\frac{k\Delta\eta}{2} - \frac{n\pi}{2}) \left[\frac{1}{k - \frac{n\pi}{\Delta\eta}} + \frac{1}{k + \frac{n\pi}{\Delta\eta}} \right] \varphi(k)$$

Local density matrix determined by correlation functions

$$\langle \varphi_n \rangle$$
, $\langle \pi_n \rangle$, $\langle \varphi_n \varphi_m \rangle_c$, etc.

Emergence of locally thermal state

• Mode functions at early time

$$\bar{f}(\tau, k) = \frac{1}{\sqrt{2k}} e^{-ik\ln(\tau) - i\theta(k, M)}$$

• Phase varies strongly with k for $M \to 0$

$$\theta(k, M) = k \ln(M/2) + \arg(\Gamma(1 - ik))$$

ullet Off-diagonal term $ar{u}(k)$ have factors strongly oscillating with k

$$\langle \varphi(\tau, k) \varphi^*(\tau, k') \rangle_c = 2\pi \delta(k - k') \frac{1}{|k|} \times \left\{ \left[\frac{1}{2} + \bar{n}(k) \right] + \cos\left[2k \ln(\tau) + 2\theta(k, M)\right] \bar{u}(k) \right\}$$

cancel out when going to finite interval!

ullet Only Bose-Einstein occupation numbers $ar{n}(k)$ remain

Physics picture

- Coherent state vacuum at early time contains entangled pairs of quasi-particles with opposite wave numbers
- On finite rapidity interval $(-\Delta\eta/2,\Delta\eta/2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- ullet Technically limits $\Delta\eta o \infty$ and M au o 0 do not commute
 - $\Delta \eta \to \infty$ for any finite M au gives pure state
 - M au o 0 for any finite $\Delta \eta$ gives thermal state with $T=1/(2\pi au)$

Testing the mechanism with cold atoms

- Lieb-Liniger model for interacting bosonic atoms in D=1 dimensions has linear dispersion at small momenta $\omega=v_s\,p$
 - strong interaction $\gamma\gg 1$ sound velocity $v_s=v_F=\pi n/m$
 - weak interaction $\gamma \ll 1$ sound velocity $v_s = \sqrt{\gamma} n/m = \sqrt{gnm}$

strong interactios $\gamma \gg 1$ [De Rosi et al. (2017)]

• Effective metric for phonons

$$ds^2 = -v_s^2 dt^2 + dx^2$$

Expanding geometries in cold atom experiments

- Expanding geometries can be realized by interplay of
 - longitudinal expansion
 - time dependent change of sound velocity $v_s(t)$
 - time dependent gap or mass $M^2(t)$

Conclusions

- Rapidity intervals in an expanding string are entangled
- Entanglement comes in via boundary terms
- At very early times theory effectively conformal

$$\frac{1}{\tau} \gg m, q$$

- \bullet Entanglement entropy extensive in rapidity $\frac{dS}{d\Delta\eta}=\frac{c}{6}$
- Determined by conformal charge $c = N_c \times N_f + 2$
- Reduced density matrix for conformal field theory is of locally thermal form with temperature

$$T = \frac{\hbar}{2\pi\tau}$$

 \bullet Entanglement could be important ingredient to understand apparent "thermal effects" in e^+e^- and other collider experiments