Thermal excitation spectrum from entanglement in an expanding quantum string

Stefan Flörchinger (Heidelberg U.)

Center for Frontiers in Nuclear Science (CFNS),
Stony Brook University, Nov 16, 2017

UNIVERSITÄT
HEIDELBERG
ZUKUNFT
SEIT 1386

based on

- J. Berges, S. Floerchinger \& R. Venugopalan, Thermal excitation spectrum from entanglement in an expanding QCD string [arxiv:1707.05338]
- J. Berges, S. Floerchinger \& R. Venugopalan [to appear]

Entanglement and deep inelastic scattering

- How strongly entangled is the nuclear wave function?
- What is the entropy of quasi-free partons and can it be understood as a result of entanglement? [Kharzeev, Levin (2017)]

$$
S=\ln [x G(x)]
$$

- Does saturation at small Bjorken- x have an entropic meaning?
- Entanglement entropy and entropy production in the color glass condensate [Kovner, Lublinsky (2015)]
- Could entanglement entropy help for a non-perturbative extension of the parton model?
- Entropy of perturbative and non-perturbative Pomeron descriptions [Shuryak, Zahed (2017)]

Motivation

- Elementary particle collision experiments such as $e^{+} e^{-}$collisions show thermal-like features.
- Example: particle multiplicities

[Becattini, Casterina, Milov \& Satz, EPJC 66, 377 (2010)]
- Conventional thermalization by collisions unlikely.
- Alternative explanations needed.

Rapidity distribution

[open (filled) symbols: $\mathrm{e}^{+} \mathrm{e}^{-}$(pp), Grosse-Oetringhaus \& Reygers (2010)]

- Rapidity distribution $d N / d \eta$ has plateau around midrapidity
- Only logarithmic dependence on collision energy

- Particle production from QCD strings.
- e. g. Lund model (Pythia).
- Different regions in a string are entangled.
- Subinterval A is described by reduced density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

- Reduced density matrix is of mixed state form.
- Could this lead to thermal-like effects?

Microscopic model

- QCD in $1+1$ dimensions described by 't Hooft model

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i g \mathbf{A}_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
$$

- Fermionic fields ψ_{i} with sums over flavor species $i=1, \ldots, N_{f}$
- $\operatorname{SU}\left(N_{c}\right)$ gauge fields \mathbf{A}_{μ} with field strength tensor $\mathbf{F}_{\mu \nu}$
- Gluons are not dynamical in two dimensions
- Gauge coupling g has dimension of mass
- Non-trivial, interacting theory, cannot be solved exactly
- Spectrum of excitations known for $N_{c} \rightarrow \infty$ with $g^{2} N_{c}$ fixed ['t Hooft (1974)]

Schwinger model

- QED in $1+1$ dimension

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i q A_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

- Geometric confinement
- $\mathrm{U}(1)$ charge related to string tension $q=\sqrt{2 \sigma}$
- For single fermion one can bosonize theory exactly [Coleman, Jackiw, Susskind (1975)]

$$
\begin{aligned}
S=\int d^{2} x \sqrt{g}\{ & -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} M^{2} \phi^{2} \\
& \left.-\frac{m q e^{\gamma}}{2 \pi^{3 / 2}} \cos (2 \sqrt{\pi} \phi+\theta)\right\}
\end{aligned}
$$

- Schwinger bosons are dipoles $\phi \sim \bar{\psi} \psi$
- Mass is related to $\mathrm{U}(1)$ charge by $M=q / \sqrt{\pi}=\sqrt{2 \sigma / \pi}$
- Massless Schwinger model $m=0$ leads to free bosonic theory

Transverse coordinates

- So far dynamics strictly confined to $1+1$ dimensions
- Transverse coordinates may fluctuate, can be described by Nambu-Goto action ($h_{\mu \nu}=\partial_{\mu} X^{m} \partial_{\nu} X_{m}$)

$$
\begin{aligned}
S_{\mathrm{NG}} & =\int d^{2} x \sqrt{-\operatorname{det} h_{\mu \nu}}\{-\sigma+\ldots\} \\
& \approx \int d^{2} x \sqrt{g}\left\{-\sigma-\frac{\sigma}{2} g^{\mu \nu} \partial_{\mu} X^{i} \partial_{\nu} X^{i}+\ldots\right\}
\end{aligned}
$$

- Two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^{i} with $i=1,2$.

Expanding string solution 1

- Consider string formed between (external) quark-anti-quark pair on trajectories

$$
z= \pm t
$$

- Coordinates: Bjorken time $\tau=\sqrt{t^{2}-z^{2}}$, rapidity $\eta=\operatorname{arctanh}(z / t)$
- Metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$
- Symmetry with respect to longitudinal boosts $\eta \rightarrow \eta+\Delta \eta$

Expanding string solution 2

- Schwinger boson field depends only on τ

$$
\bar{\phi}=\bar{\phi}(\tau)
$$

- Equation of motion

$$
\partial_{\tau}^{2} \bar{\phi}+\frac{1}{\tau} \partial_{\tau} \bar{\phi}+M^{2} \bar{\phi}=0 .
$$

- Gauss law: electric field $E=q \phi / \sqrt{\pi}$ must approach the $\mathrm{U}(1)$ charge of the external quarks $E \rightarrow q_{\mathrm{e}}$ for $\tau \rightarrow 0_{+}$

$$
\bar{\phi}(\tau) \rightarrow \frac{\sqrt{\pi} q_{\mathrm{e}}}{q} \quad\left(\tau \rightarrow 0_{+}\right)
$$

- Solution of equation of motion [Loshaj, Kharzeev (2011)]

$$
\bar{\phi}(\tau)=\frac{\sqrt{\pi} q_{\mathrm{e}}}{q} J_{0}(M \tau)
$$

Reduced density matrix

- Consider now physical processes such as hadron formation
- Assume that these are local processes in some space region A

- Reduced density matrix, trace over complement region B

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

- In general ρ_{A} mixed state density matrix even if ρ is pure
- Reason: entanglement between regions A and B
- Characterization by entanglement entropy

$$
S_{A}=-\operatorname{Tr}\left\{\rho_{A} \ln \left(\rho_{A}\right)\right\}
$$

Gaussian states

- Theories with quadratic action typically have Gaussian density matrix
- Fully characterized by field expectation values

$$
\bar{\phi}(x)=\langle\phi(x)\rangle, \quad \bar{\pi}(x)=\langle\pi(x)\rangle
$$

and connected two-point correlation functions, e. g.

$$
\langle\phi(x) \phi(y)\rangle_{c}=\langle\phi(x) \phi(y)\rangle-\bar{\phi}(x) \bar{\phi}(y)
$$

- If ρ is Gaussian, also reduced density matrix ρ_{A} is Gaussian

Entanglement entropy for Gaussian state

- Entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, to appear]

$$
S_{A}=\frac{1}{2} \operatorname{Tr}_{A}\left\{D \ln \left(D^{2}\right)\right\}
$$

- Operator trace over region A only
- Matrix of correlation functions

$$
D(x, y)=\left(\begin{array}{ll}
-i\langle\phi(x) \pi(y)\rangle_{c} & i\langle\phi(x) \phi(y)\rangle_{c} \\
-i\langle\pi(x) \pi(y)\rangle_{c} & i\langle\pi(x) \phi(y)\rangle_{c}
\end{array}\right)
$$

- Involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- Expectation value $\bar{\phi}$ does not appear explicitly
- Coherent states and vacuum have equal entanglement entropy S_{A}

Rapidity interval

- Consider rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ at fixed Bjorken time τ
- Entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- Can be evaluated equivalently in interval $\Delta z=2 \tau \sinh (\Delta \eta / 2)$ at fixed time $t=\tau \cosh (\Delta \eta / 2)$
- Need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- Entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- Entanglement entropy density $d S / d \Delta \eta$ for bosonized massless Schwinger model ($M=\frac{q}{\sqrt{\pi}}$)

Conformal limit

- For $M \tau \rightarrow 0$ one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

$$
S(\Delta z)=\frac{c}{3} \ln (\Delta z / \epsilon)+\mathrm{constant}
$$

with small length ϵ acting as UV cutoff.

- Here this implies

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln (2 \tau \sinh (\Delta \eta / 2) / \epsilon)+\text { constant }
$$

- Conformal charge $c=1$ for free massless scalars or Dirac fermions.
- Additive constant not universal but entropy density is

$$
\begin{aligned}
\frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) & =\frac{c}{6} \operatorname{coth}(\Delta \eta / 2) \\
& \rightarrow \frac{c}{6} \quad(\Delta \eta \gg 1)
\end{aligned}
$$

- Entropy becomes extensive in $\Delta \eta$!

Free massive fermions

- Entanglement entropy can also be calculated for free Dirac fermions of mass m

- Same universal plateau $c / 6$ with $c=1$ at early time
- Conformal limit corresponds to non-interacting fermions
- Consistent with or without bosonization

Universal entanglement entropy density

- For very early times "Hubble" expansion rate dominates over masses and interactions

$$
H=\frac{1}{\tau} \gg M=\frac{q}{\sqrt{\pi}}, m
$$

- Theory dominated by free, massless fermions
- Universal entanglement entropy density

$$
\frac{d S}{d \Delta \eta}=\frac{c}{6}
$$

with conformal charge c

- For QCD in $1+1$ dimensions (gluons not dynamical)

$$
c=N_{c} \times N_{f}
$$

- From fluctuating transverse coordinates (Nambu-Goto action)

$$
c=N_{c} \times N_{f}+2 \approx 9+2=11
$$

Experimental access to entanglement?

- Could longitudinal entanglement be tested experimentally?
- Unfortunately entropy density $d S / d \eta$ not straight-forward to access.
- Measured in $e^{+} e^{-}$is the number of charged particles per unit rapidity $d N_{\mathrm{ch}} / d \eta$ (rapidity defined with respect to the thrust axis)
- Around mid-rapidity logarithmic dependence on the collision energy.
- Typical values for collision energies $\sqrt{s}=14-206 \mathrm{GeV}$ in the range

$$
d N_{\mathrm{ch}} / d \eta \approx 2-4
$$

- Entropy per particle S / N can be estimated for a hadron resonance gas in thermal equilibrium $S / N_{\mathrm{ch}}=7.2$ would give

$$
d S / d \eta \approx 14-28
$$

- This is an upper bound: correlations beyond one-particle functions would lead to reduced entropy.

Temperature and entanglement entropy

- For conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- For static interval of length l [Calabrese, Cardy (2004)]

$$
S(T, l)=\frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh (\pi l T)\right)+\text { const }
$$

- Compare this to our result in expanding geometry

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln \left(\frac{2 \tau}{\epsilon} \sinh (\Delta \eta / 2)\right)+\text { constant }
$$

- Expressions agree for $l=\tau \Delta \eta$ (with metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$) and time-dependent temperature

$$
T=\frac{1}{2 \pi \tau}
$$

Modular or entanglement Hamiltonian 1

- Conformal field theory
- Hypersurface Σ with boundary on the intersection of two light cones
- Reduced density matrix
[Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$
\rho_{A}=\frac{1}{Z_{A}} e^{-K}, \quad Z_{A}=\operatorname{Tr} e^{-K},
$$

- Modular or entanglement Hamiltonian K.

Modular or entanglement Hamiltonian 2

- Modular or entanglement Hamiltonian is local expression

$$
K=\int_{\Sigma} d \Sigma^{\mu} \xi^{\nu}(x) T_{\mu \nu}(x)
$$

- Energy-momentum tensor $T_{\mu \nu}(x)$ and $\xi^{\nu}(x)$ is a vector field

$$
\begin{aligned}
\xi^{\mu}(x) & =\frac{2 \pi}{(k-p)^{2}}\left[(k-x)^{\mu}(x-p)(k-p)+(x-p)^{\mu}\right. \\
& \left.\times(k-x)(k-p)-(k-p)^{\mu}(x-p)(k-x)\right]
\end{aligned}
$$

with end point of the future light cone k and starting point of the past light cone p.

- Inverse temperature and fluid velocity

$$
\xi^{\mu}(x)=\beta^{\mu}(x)=\frac{u^{\mu}(x)}{T(x)}
$$

Modular or entanglement Hamiltonian 3

- For k very far in the future $\xi^{\mu}(x) \rightarrow 2 \pi x^{\mu}$
- Fluid velocity in τ-direction \& time-dependent temperature

$$
T(\tau)=\frac{\hbar}{2 \pi \tau}
$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times !
- Hawking-Unruh temperature in Rindler wedge $T(x)=\hbar c /(2 \pi x)$

Alternative derivation: mode functions

- Fluctuation field $\varphi=\phi-\bar{\phi}$ has equation of motion

$$
\partial_{\tau}^{2} \varphi(\tau, \eta)+\frac{1}{\tau} \partial_{\tau} \varphi(\tau, \eta)+\left(M^{2}-\frac{1}{\tau^{2}} \frac{\partial^{2}}{\partial \eta^{2}}\right) \varphi(\tau, \eta)=0
$$

- Solution in terms of plane waves

$$
\varphi(\tau, \eta)=\int \frac{d k}{2 \pi}\left\{a(k) f(\tau,|k|) e^{i k \eta}+a^{\dagger}(k) f^{*}(\tau,|k|) e^{-i k \eta}\right\}
$$

- Mode functions as Hankel functions

$$
f(\tau, k)=\frac{\sqrt{\pi}}{2} e^{\frac{k \pi}{2}} H_{i k}^{(2)}(M \tau)
$$

or alternatively as Bessel functions

$$
\bar{f}(\tau, k)=\frac{\sqrt{\pi}}{\sqrt{2 \sinh (\pi k)}} J_{-i k}(M \tau)
$$

Bogoliubov transformation

- Mode functions are related

$$
\begin{aligned}
& \bar{f}(\tau, k)=\alpha(k) f(\tau, k)+\beta(k) f^{*}(\tau, k) \\
& f(\tau, k)=\alpha^{*}(k) \bar{f}(\tau, k)-\beta(k) \bar{f}^{*}(\tau, k)
\end{aligned}
$$

- Creation and annihilation operators are related by

$$
\begin{aligned}
& \bar{a}(k)=\alpha^{*}(k) a(k)-\beta^{*}(k) a^{\dagger}(k) \\
& a(k)=\alpha(k) \bar{a}(k)+\beta(k) \bar{a}^{\dagger}(k)
\end{aligned}
$$

- Bogoliubov coefficients

$$
\alpha(k)=\sqrt{\frac{e^{\pi k}}{2 \sinh (\pi k)}} \quad \beta(k)=\sqrt{\frac{e^{-\pi k}}{2 \sinh (\pi k)}}
$$

- Vacuum $|\Omega\rangle$ with respect to $a(k)$ such that $a(k)|\Omega\rangle=0$ contains excitations with respect to $\bar{a}(k)$ such that $\bar{a}(k)|\Omega\rangle \neq 0$ and vice versa

Role of different mode functions

- Hankel functions $f(\tau, k)$ are superpositions of positive frequency modes with respect to Minkowski time t
- Bessel functions $\bar{f}(\tau, k)$ are superpositions of positive and negative frequency modes with respect to Minkowski time t
- At very early time $1 / \tau \gg M$ conformal symmetry

$$
d s^{2}=\tau^{2}\left[-d \ln (\tau)^{2}+d \eta^{2}\right]
$$

- Hankel functions $f(\tau, k)$ are superpositions of positive and negative frequency modes with respect to conformal time $\ln (\tau)$
- Bessel functions $\bar{f}(\tau, k)$ are superpositions of positive frequency modes with respect to conformal time $\ln (\tau)$

Occupation numbers

- Minkowski space coherent states have two-point functions

$$
\begin{aligned}
\left\langle\bar{a}^{\dagger}(k) \bar{a}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{n}(k) 2 \pi \delta\left(k-k^{\prime}\right)=|\beta(k)|^{2} 2 \pi \delta\left(k-k^{\prime}\right) \\
\left\langle\bar{a}(k) \bar{a}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{u}(k) 2 \pi \delta\left(k+k^{\prime}\right)=-\alpha^{*}(k) \beta^{*}(k) 2 \pi \delta\left(k+k^{\prime}\right) \\
\left\langle\bar{a}^{\dagger}(k) \bar{a}^{\dagger}\left(k^{\prime}\right)\right\rangle_{c} & =\bar{u}^{*}(k) 2 \pi \delta\left(k+k^{\prime}\right)=-\alpha(k) \beta(k) 2 \pi \delta\left(k+k^{\prime}\right)
\end{aligned}
$$

- Occupation number

$$
\bar{n}(k)=|\beta(k)|^{2}=\frac{1}{e^{2 \pi k}-1}
$$

- Bose-Einstein distribution with excitation energy $E=|k| / \tau$ and temperature

$$
T=\frac{1}{2 \pi \tau}
$$

- Off-diagonal occupation number $\bar{u}(k)=-1 /(2 \sinh (\pi k))$ make sure we still have pure state

Local description

- Consider now rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$
- Fourier expansion becomes discrete

$$
\begin{gathered}
\varphi(\eta)=\frac{1}{L} \sum_{n=-\infty}^{\infty} \varphi_{n} e^{i n \pi \frac{\eta}{\Delta \eta}} \\
\varphi_{n}=\int_{-\Delta \eta / 2}^{\Delta \eta / 2} d \eta \varphi(\eta) \frac{1}{2}\left[e^{-i n \pi \frac{\eta}{\Delta \eta}}+(-1)^{n} e^{i n \pi \frac{\eta}{\Delta \eta}}\right]
\end{gathered}
$$

- Relation to continuous momentum modes by integration kernel

$$
\varphi_{n}=\int \frac{d k}{2 \pi} \sin \left(\frac{k \Delta \eta}{2}-\frac{n \pi}{2}\right)\left[\frac{1}{k-\frac{n \pi}{\Delta \eta}}+\frac{1}{k+\frac{n \pi}{\Delta \eta}}\right] \varphi(k)
$$

- Local density matrix determined by correlation functions

$$
\left\langle\varphi_{n}\right\rangle, \quad\left\langle\pi_{n}\right\rangle, \quad\left\langle\varphi_{n} \varphi_{m}\right\rangle_{c}, \quad \text { etc. }
$$

Emergence of locally thermal state

- Mode functions at early time

$$
\bar{f}(\tau, k)=\frac{1}{\sqrt{2 k}} e^{-i k \ln (\tau)-i \theta(k, M)}
$$

- Phase varies strongly with k for $M \rightarrow 0$

$$
\theta(k, M)=k \ln (M / 2)+\arg (\Gamma(1-i k))
$$

- Off-diagonal term $\bar{u}(k)$ have factors strongly oscillating with k

$$
\begin{aligned}
\left\langle\varphi(\tau, k) \varphi^{*}\left(\tau, k^{\prime}\right)\right\rangle_{c} & =2 \pi \delta\left(k-k^{\prime}\right) \frac{1}{|k|} \\
& \times\left\{\left[\frac{1}{2}+\bar{n}(k)\right]+\cos [2 k \ln (\tau)+2 \theta(k, M)] \bar{u}(k)\right\}
\end{aligned}
$$

cancel out when going to finite interval !

- Only Bose-Einstein occupation numbers $\bar{n}(k)$ remain

Physics picture

- Coherent state vacuum at early time contains entangled pairs of quasi-particles with opposite wave numbers
- On finite rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- Technically limits $\Delta \eta \rightarrow \infty$ and $M \tau \rightarrow 0$ do not commute
- $\Delta \eta \rightarrow \infty$ for any finite $M \tau$ gives pure state
- $M \tau \rightarrow 0$ for any finite $\Delta \eta$ gives thermal state with $T=1 /(2 \pi \tau)$

Testing the mechanism with cold atoms

- Lieb-Liniger model for interacting bosonic atoms in $D=1$ dimensions has linear dispersion at small momenta $\omega=v_{s} p$
- strong interaction $\gamma \gg 1$ sound velocity $v_{s}=v_{F}=\pi n / m$
- weak interaction $\gamma \ll 1$ sound velocity $v_{s}=\sqrt{\gamma} n / m=\sqrt{g n m}$

$$
\text { strong interactios } \gamma \gg 1 \text { [De Rosi et al. (2017)] }
$$

- Effective metric for phonons

$$
d s^{2}=-v_{s}^{2} d t^{2}+d x^{2}
$$

Expanding geometries in cold atom experiments

- Expanding geometries can be realized by interplay of
- longitudinal expansion
- time dependent change of sound velocity $v_{s}(t)$
- time dependent gap or mass $M^{2}(t)$

Conclusions

- Rapidity intervals in an expanding string are entangled
- Entanglement comes in via boundary terms
- At very early times theory effectively conformal

$$
\frac{1}{\tau} \gg m, q
$$

- Entanglement entropy extensive in rapidity $\frac{d S}{d \Delta \eta}=\frac{c}{6}$
- Determined by conformal charge $c=N_{c} \times N_{f}+2$
- Reduced density matrix for conformal field theory is of locally thermal form with temperature

$$
T=\frac{\hbar}{2 \pi \tau}
$$

- Entanglement could be important ingredient to understand apparent "thermal effects" in $e^{+} e^{-}$and other collider experiments

