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Motivation
Elementary particle collision experiments such as e+ e− collisions
show thermal-like features.

Example: particle multiplicities500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

Conventional thermalization by collisions unlikely.

Alternative explanations needed.
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QCD strings

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

Particle production from QCD strings.

e. g. Lund model (Pythia).

Different regions in a string are entangled.

Subinterval A is described by reduced density matrix

ρA = TrBρ.

Reduced density matrix is of mixed state form.

Could this lead to thermal-like effects?
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Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

Fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

Gluons are not dynamical in two dimensions

Gauge coupling g has dimension of mass

Non-trivial, interacting theory, cannot be solved exactly

Spectrum of excitations known for Nc →∞ with g2Nc fixed
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Schwinger model

QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

Geometric confinement

U(1) charge related to string tension q =
√

2σ

For single massless fermion one can bosonize theory exactly

S =

∫
d2x
√
g

{
−1

2
gµν∂µφ∂νφ−

1

2
M2φ2

}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
Mass is related to U(1) charge by M = q/

√
π
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Transverse coordinates

So far dynamics strictly confined to 1+1 dimensions

Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hµν = ∂µX

m∂νXm)

SNG =

∫
d2x
√
−dethµν {−σ + . . .}

≈
∫
d2x
√
g
{
−σ − σ

2
gµν∂µX

i∂νX
i + . . .

}
Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates Xi with i = 1, 2.
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Expanding string solution 1

z

t

Consider string formed between (external) quark-anti-quark pair on
trajectories

z = ±t

Coordinate system with Bjorken time τ =
√
t2 − z2 and rapidity

η = arctanh(z/t)

Symmetry with respect to longitudinal boosts η → η + ∆η
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Expanding string solution 2
Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

Equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ/
√
π must approach the U(1) charge

of the external quarks E → qe for τ → 0+

φ̄(τ)→
√
πqe
q

(τ → 0+)

Solution of equation of motion

φ̄(τ) =

√
πqe
q

J0(Mτ)
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Reduced density matrix

Consider now physical processes such as hadron formation

Assume that these are local processes in some space region A

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

Reduced density matrix, trace over complement region B

ρA = TrB ρ

In general ρA mixed state density matrix even if ρ is pure

Reason: entanglement between regions A and B

Characterization by entanglement entropy

SA = −Tr {ρA ln(ρA)}
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Gaussian states

Theories with quadratic action typically have Gaussian density matrix

Fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

If ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Entanglement entropy for Gaussian state

Entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, to appear]

SA =
1

2
TrA

{
D ln(D2)

}
,

Operator trace over region A only

Matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)
.

Involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

Expectation value φ̄ does not appear explicitly

Coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

z

t

Consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

Entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

Can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at
fixed time t = τ cosh(∆η/2)

Need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

Entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

Entanglement entropy density dS/d∆η for bosonized massless
Schwinger model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5
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Conformal limit
For Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff.

Here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

Conformal charge c = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

Entropy becomes extensive in ∆η !
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Free massive fermions

Entanglement entropy can also be calculated for free Dirac fermions
of mass m

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5

Same universal plateau c/6 with c = 1 at early time

Conformal limit corresponds to non-interacting fermions

Consistent with or without bosonization
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Universal entanglement entropy density
For very early times “Hubble” expansion rate dominates over masses
and interactions

H =
1

τ
�M =

q√
π
,m

Theory dominated by free, massless fermions

Universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

For QCD in 1+1 dimensions (gluons not dynamical)

c = Nc ×Nf

From fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Experimental access to entanglement ?

Could longitudinal entanglement be tested experimentally?

Unfortunately entropy density dS/dη not straight-forward to access.

Measured in e+e− is the number of charged particles per unit
rapidity dNch/dη (rapidity defined with respect to the thrust axis)

Around mid-rapidity logarithmic dependence on the collision energy.

Typical values for collision energies
√
s = 14− 206 GeV in the range

dNch/dη ≈ 2− 4

Entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Nch = 7.2 would give

dS/dη ≈ 14− 28

This is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy.
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Temperature and entanglement entropy

For conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

For static interval of length l [Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πlT )

)
+ const

Compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ constant

Expressions agree for l = τ∆η (with metric ds2 = −dτ2 + τ2dη2)
and time-dependent temperature

T =
1

2πτ
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Modular or entanglement Hamiltonian 1

z

t

Conformal field theory

Hypersurface Σ with boundary on the intersection of two light cones

Reduced density matrix
[Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017)]

ρA =
1

ZA
e−K , ZA = Tr e−K ,

Modular or entanglement Hamiltonian K.
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Modular or entanglement Hamiltonian 2

Modular or entanglement Hamiltonian is local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x).

Energy-momentum tensor Tµν(x) and ξν(x) is a vector field

ξµ(x) = 2π
(k−p)2 [(k − x)µ(x− p)(k − p) + (x− p)µ

× (k − x)(k − p)− (k − p)µ(x− p)(k − x)]

with end point of the future light cone k and starting point of the
past light cone p.

Inverse temperature and fluid velocity

ξµ(x) = βµ(x) =
uµ(x)

T (x)
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Modular or entanglement Hamiltonian 3

z

t

For k very far in the future ξµ(x)→ 2π xµ

Fluid velocity in τ -direction & time-dependent temperature

T (τ) =
~

2πτ

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c/(2πx)
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Conclusions

Rapidity intervals in an expanding string are entangled

Entanglement comes in via boundary terms

At very early times theory effectively conformal

1

τ
� m, g

Entanglement entropy extensive in rapidity dS
d∆η = c

6

Determined by conformal charge c = Nc ×Nf + 2

Reduced density matrix for conformal field theory is of locally
thermal form with temperature

T =
~

2πτ

Entanglement could be important ingredient to understand apparent
“thermal effects” in e+e− and other collider experiments
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