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Motivation

@ elementary particle collision experiments such as e™ e~ collisions
show some thermal-like features
@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely
@ more thermal-like features difficult to understand in PYTHIA
[Fischer, Sjostrand (2017)]

@ alternative explanations needed 1720



Rapidity distribution
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[open (filled) symbols: ete™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o rapidity distribution dN/dn has plateau around midrapidity
@ only logarithmic dependence on collision energy
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QCD strings

==

B A B

particle production from QCD strings
Lund string model (e. g. PYTHIA)

different regions in a string are entangled

subinterval A is described by reduced density matrix

pa=Trgp

reduced density matrix is of mixed state form

could this lead to thermal-like effects?
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Entropy in quantum theory

[John von Neumann (1932)]

S =—-Tr{plnp}

based on the quantum density operator p

e for pure states p = |1))(¢)| one has S =0

o for mixed states p = >, p;|j)(j| one has = —3" . p;jlnp; >0
"]

unitary time evolution conserves entropy

global characterization of quantum state
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Entropy and entanglement

consider a split of a quantum system into two A + B

— =

B A B

reduced density operator for system A

pa = Tre{p}

entropy associated with subsystem A: entanglement entropy

Sa=—Tra{palnps}

globally pure state S = 0 can be locally mixed S4 > 0
pure product state p = p4 ® pp leads to S4 =0

pure entangled state p # p4 ® pp leads to S4 > 0
coherent information Iy 4 = S4 — S can be positive
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Microscopic model

QCD in 1+1 dimensions described by 't Hooft model
. . 1
L=~y (Op — igA L)Y — miinh; — itl’ F, F"
fermionic fields ¢; with sums over flavor species i =1,..., Ny
SU(NV.) gauge fields A, with field strength tensor F,,,
gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass
non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — co with g2, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 1+1 dimension

L = 7151'7;%8# - iquW mﬂ/&% - [LVFMV

@ geometric confinement
@ U(1) charge related to string tension ¢ = v/20

@ for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S = /dzx\@{ — lgwamam — %M%Q

mqe

27375 cos(2f¢+9)}

@ Schwinger bosons are dipoles ¢ ~ 1)

@ scalar mass related to U(1) charge by M = ¢/\/7 = /20 /7
@ massless Schwinger model m = 0 leads to free bosonic theory
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Ezxpanding string solution 1

@ external quark-anti-quark pair on trajectories z = =+t
e coordinates: Bjorken time T = v/t? — 22, rapidity n = arctanh(z/t)
e metric ds? = —d7? 4 12dn?

@ symmetry with respect to longitudinal boosts n — 1 + An
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FExpanding string solution 2

@ Schwinger boson field depends only on 7

¢ = o(7)
@ equation of motion
026+ 10:0+ MG =0,

o Gauss law: electric field E = g¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 04

- VTGe
o(7) — .

(1= 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

d7) = Y2 (o)
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Gaussian states

o theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

o(z) = (o(2)), m(z) = (7 (z))

and connected two-point correlation functions, e. g.

(D(@)d(y))e = ($(2)d(y)) — d(x)(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, 1712.09362]

1
Sa=5Tra {DIn(D?)}

@ operator trace over region A only
@ matrix of correlation functions

_(—ilg@T@)e  ild(2)b(y))e
Dia,y) = <i<w<x>w<y>>c i<w<x)¢<y>>c>

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly
@ coherent states and vacuum have equal entanglement entropy S4
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Rapidity interval

T = const
n = const
————— region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time 7

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)
@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density dS/dAn for bosonized massless
Schwinger model (M = \/i%)

dS/dAn
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Conformal limat

@ For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/e) + constant

with small length € acting as UV cutoff.

Here this implies

S(r,An) = %ln (27 sinh(An/2)/€) + constant

Additive constant not universal but entropy density is

0 c

—>g (A > 1)

Entropy becomes extensive in An !

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.
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Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses

and interactions

1
H=>->M=-"L n
T

V3

theory dominated by free, massless fermions

@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
e for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

C:NCXNf

from fluctuating transverse coordinates (Nambu-Goto action)

c=N.XNy+2=9+2=11
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Fxperimental access to entanglement ¢

o could longitudinal entanglement be tested experimentally?
e unfortunately entropy density d.S/dn not straight-forward to access

@ measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

o typical values for collision energies /s = 14 — 206 GeV in the range

ANy /dn ~ 2 — 4

@ entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Ng, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = <In <T sinh(wLT)) + const

3 mTe

compare this to our result in expanding geometry
c 2T .
S(r,An) = 3 In ( smh(An/2)> + const
€
expressions agree for L = 7An (with metric ds?> = —dr? + 72dn?)

and time-dependent temperature
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Modular or entanglement Hamiltonian 1

t

| ——— t=const

| Sy - n = const

----- region A
region B

z

o conformal field theory
o hypersurface ¥ with boundary on the intersection of two light cones

@ reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e_K, ZA:Tre_K
Za

@ modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K:/Edzué“,,(x)T‘“’(x).

@ energy-momentum tensor T+ (z) of excitations

@ vector field
&(z) = gopzlla —2)"(z = p)(g —p)

+ (@ —p)*(g—2)(qg—p) — (¢ —p)"(z —p)g — )]

end point of future light cone ¢, starting point of past light cone p

(qp

@ inverse temperature and fluid velocity

ut(x)

€ (x) = () = T
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Modular or entanglement Hamiltonian 3

——— 1 =const
————— n = const
————— region A

region B

z

o for An — oo: fluid velocity in 7-direction, 7-dependent temperature

h
T(T) = %

o Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

e Hawking-Unruh temperature in Rindler wedge T'(x) = he/(27x)
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Alternative derivation: mode functions

o fluctuation field ¢ = ¢ — ¢ has equation of motion

2o( = 1\42—1‘9—2 =0
=o(T,m) + ~0rp(7,m) + 20 o(1,m) =

@ solution in terms of plane waves

plrn) = [ G a®f (KD +af () £ e )

@ mode functions as Hankel functions
T kr 2
(k) = YT BP (017)
or alternatively as Bessel functions

o E o
fr k) = 2sinh(7k) J-ix(MT)
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Bogoliubov transformation

@ mode functions are related

f(r, k) =a(k) f(
f(r, k) =a*(k)f

@ creation and annihilation operators are related by

a(k) =a* (k)a(k) — B* (k)a' (k)
a(k) =a(k)a(k) + B(k)a' (k)

@ Bogoliubov coefficients

eﬂ"k‘ 677rk
ok) = 2sinh(wk) Bk) = 2sinh(wk)

@ vacuum Q) with respect to a(k) such that a(k)|Q2) = 0 contains
excitations with respect to a(k) such that a(k)|Q2) # 0 and vice versa
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Role of different mode functions

@ Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

@ Bessel functions f(r, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

@ at very early time 1/7 > M, m conformal symmetry

ds* = 7% [—dIn(1)? + dn?*]

@ Hankel functions f(, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(r, k) are superpositions of positive frequency
modes with respect to conformal time In(7)

23/29



Occupation numbers

@ Minkowski space coherent states have two-point functions

(@'(k)a(k")e = n(k) 2w 6(k — k') = |B(k)[> 27 6(k — K)
(a(k)a(k'))e = a(k) 2n 6(k + k') = —a*(k)B* (k) 2w 5 (k + &)
(@'(k)a' (k') = a* (k) 2m 8(k + k') = —a(k)B(k) 27 6(k + k')

@ occupation number
1

ak) = [B(k)* = 57—

@ Bose-Einstein distribution with excitation energy E = |k|/7 and

temperature
1
T=—
2nT
o off-diagonal occupation number @(k) = —1/(2sinh(7k)) make sure

we still have pure state
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Local description

o consider now rapidity interval (—An/2, An/2)
@ Fourier expansion becomes discrete

=
—
90(7]) = i3 Z on €720

n=—oo

an/2 17 . » N
©n :/ dn o(n) - [6""“7 + (*1)"6””?7]
—An/2 2

@ relation to continuous momentum modes by integration kernel

dk . A 1 1
oo = [ (3 =) |+
2 2 -y k+ X

o(k)

o local density matrix determined by correlation functions

<507L>7 <7Tn>7 <<,0n,(,0m>c, etc.
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Emergence of locally thermal state

@ mode functions at early time

- 1, S
Fir,) = e Oi000

@ phase varies strongly with k for M — 0

O(k, M) = kIn(M/2) + arg(T(1 — ik))

o off-diagonal term @(k) have factors strongly oscillating with &

(o(r, k)" (1, K)o = 2m8(k — k/)%
x {[3 + n(k)] + cos [2kIn(7) + 20(k, M)] u(k)}

cancel out when going to finite interval !
o only Bose-Einstein occupation numbers 7i(k) remain
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Physics picture

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

e on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Anp — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
o M7 — 0 for any finite An gives thermal state with 7' =1/(27T)
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Entanglement and QCD physics

@ how strongly entangled is the nuclear wave function?

o what is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

S = In[zG(x)]

@ does saturation at small Bjorken-x have an entropic meaning?

@ entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015)]

@ could entanglement entropy help for a non-perturbative extension of
the parton model?

@ entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]
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Conclusions

rapidity intervals in an expanding string are entangled

at very early times theory effectively conformal

1
—>m,q
p

entanglement entropy extensive in rapidity ddTSn =5

determined by conformal charge ¢ = N, x Ny + 2

reduced density matrix for conformal field theory is of locally thermal
form with temperature
h

T on7T

entanglement could be important ingredient to understand apparent
“thermal effects” in eTe™ and other collider experiments
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Backup



Entropy and information
[Claude Shannon (1948)]
@ consider a random variable = with probability distribution p(x)
@ information content or “surprise” associated with outcome z

i(x)
8

. 6

i(x) = —Inp(z) ,

2

00 02 04 06 08 10"

o Entropy is expectation value of information content

S = Zp YInp(x

S=0 S =1n(2) S =2In(2)



Classical statistics

consider system of two random variables = and y

joint probability p(x,y) , joint entropy

S =— Zp(x, y)Inp(z,y)

T,y

reduced or marginal probability p(z) = Zy p(z,y)

reduced or marginal entropy

Sy = Zp YInp(x

@ joint entropy is greater than or equal to reduced entropy

S > 5,

globally pure state S = 0 is also locally pure S, =0



Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X™0,Xn)

Sng = /dzx\/fdethm, {(—o+4...}

~ /d%\/g{—a - 29" 0, X'0,X 4. y

@ two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with i = 1,2



Free massive fermions

@ entanglement entropy for free Dirac fermions of mass m

dS/dAn
0.4

0.3+

0.2+

0.1F

0.0

L Aq
0 5 10 15 20 25

mr=1,10"", 1072 107, 107*, and 107°
@ same universal plateau ¢/6 with ¢ = 1 at early time

@ conformal limit corresponds to non-interacting fermions

@ consistent with or without bosonization



