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Dissipation in quantum field theory

o Dissipation is generation of entropy

e Unitary evolution conserves entropy

@ in practice often only incomplete information available

@ expectation values of fundamental quantum fields and some composite
operators

@ quantum states with minimal information given some constraints

@ use truncation of 1 Pl effective action



Dissipation from integrating out fields

Example 1
@ consider muon with decay = — e~ + Ve + 1,
o full electroweak theory is unitary

o consider now effective action where fields for e™, 7. and v, have been
integrated out

o effective action for p~ contains decay width: appears as dissipative term

Example 2
@ consider electromagnetic field A,
o field strength above Schwinger threshold: electron-positron pair production

o electron / positron field can be integrated out: dissipative term for
electromagnetic field



Double time path formalism

o formalism for general, far-from-equilibrium situations: Schwinger-Keldysh
double time path

e can be formulated with two fields ® = 1(¢4 + ¢_), x = ¢4 — ¢

@ in principle for arbitrary initial density matrices, in praxis mainly Gaussian
initial states

@ allows to treat also dissipation

o useful also to treat initial state fluctuations or forced noise in classical
statistical theories

o difficult to recover thermal equilibrium, in particular non-perturbatively

o formalism algebraically somewhat involved
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Close-to-equilibrium situations

@ out-of-equilibrium situations

@ close-to-equilibrium: description by field expectation values and
thermodynamic fields

@ more complete description by following more fields explicitly

o example: Viscous fluid dynamics plus additional fields
@ usually discussed in terms of

o phenomenological constitutive relations
e as a limit of kinetic theory
e in AdS/CFT

@ want non-perturbative formulation in terms of QFT concepts
@ Analytic continuation as an alternative to Schwinger-Keldysh

o direct generalization of equilibrium formalism



Local equilibrium states

o Dissipation: energy and momentum get transferred to a heat bath

o Even if one starts with pure state 7' = 0 initially, dissipation will generate
nonzero temperature

o Close-to-equilibrium situations: dissipation is local

o Convenient to use general coordinates with metric

Guv ()

o Need approximate local equilibrium description with temperature T'(z)
and fluid velocity u*(x), will appear in combination

u*(x)

T(x)

g (x) =

@ Global thermal equilibrium corresponds to 5" Killing vector

VuBu(z) + VuBu(z) =0



Local equilibrium

o Use similarity between local density matrix and translation operator

eﬂ“(m)?f’u eiAac“ Pu

—

to represent partition function as functional integral with periodicity in
imaginary direction such that

o(a" — i (z)) = +o(a")
e Partition function Z[.J], Schwinger functional W[J] in Euclidean domain
Z[J] = eWEl] _ /DQS@*SEW’H]; J¢

o First defined on Euclidean manifold X x M at constant time
o Approximate local equilibrium at all times: Hypersurface ¥ can be shifted

(a) Global thermal equilibrium (b) Local thermal equilibrium
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x xT
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Effective action

o Defined in euclidean domain by Legendre transform
(@] = / o (@) (x) — WalJ]

with expectation values

D, (z) = J3@) 57a(@) WglJ]
o Euclidean field equation
1)
WFE[‘I’} =9(z) Ja()

resembles classical equation of motion for J = 0.

@ Need analytic continuation to obtain a viable equation of motion



Two-point functions

o Consider homogeneous background fields and global equilibrium

5 = (1.0.00)

o Propagator and inverse propagator
52

dJa(—p)dJu(q)
52

6®a(—p)0Ps(q)

Wg[J] = Gas(iwn, P) 6(p — q)

Lg[®] = Pab(iwn, p) 6(p — q)

@ From definition of effective action

Z Gab Pbc = 5ac



Spectral representation

o Kallen-Lehmann spectral representation

o 2 2

zZ—Ww

—o0

with pqp € R

correlation functions can be analytically continued in w = —u*p,,

@ branch cut or poles on real frequency axis w € R but nowhere else

o different propagators follow by evaluation of G in different regions
Im(w)
Matsubara M .
Agy (p) =Gap (an, P)
retarded Feynman AaRb(p) =G (po + i€, p)
Re(w) .
————————————————————————————————— N AL(p) =Gab (p° — i, p)
advanced
AL (p) =Gap ( O+ ie sign (po) .P)




Inverse propagator

o spectral representation for G4, implies that inverse propagator Pus(w, p)

e can have zero-crossings for w = p® € R
o has in general branch-cut for w = p® € R

@ so far reference frame with u* = (1,0, 0,0)

@ more general: analytic continuation with respect to

w=—u"py,

o use decomposition
Pab(p) = Pr.ab(p) — is1(—=u"pu) P2.ab(p)

with sign function
si(w) = sign(lm w)

@ both functions Pi 4,(p) and P> q4(p) are regular (no discontinuities)



Sign operator in position space

@ In position space, sign function becomes operator

s1 (—u"py) = sign (Im(—u"py))

— sign (Im (iu”52;)) = sign (Re (u”527)) = sr (u" 52:)

o Geometric representation in terms of Lie derivative

srR(Lw) or sr(Lg)

e Sign operator appears also in analytically continued quantum effective
action I'[®]
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Analytically continued 1 PI effective action

@ Analytically continued quantum effective action defined by analytic
continuation of correlation functions

@ Quadratic part

1

F2[@] = /Ly Do (2) [Pl,ab(iE —Y) + Poav(z — y)sk (UH&%H @(y)

o Higher orders correlation functions less understood: no spectral
representation

o Use inverse Hubbard-Stratonovich trick: terms quadratic in auxiliary field
can be integrated out

@ Allows to understand analytic structures of higher order terms
[Floerchinger, 1603.07148]
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FEquations of motion

@ Can one obtain causal and real renormalized equations of motion from the
1 PI effective action?

@ naively: time-ordered action / Feynman ie prescription:

0

mrtime ordered [Q] = \/§Ja(x)

@ This does not lead to causal and real equations of motion !
[e.g. Calzetta & Hu: Non-equilibrium Quantum Field Theory (2008)]
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Retarded functional derivative

[Floerchinger, 1603.07148]

o Real and causal dissipative field equations follow from analytically
continued effective action

oI [®] -
5CI)a(l') ret - \/gj(x)
@ to calculate retarded variational derivative determine
or[®]

by varying the fields §®(x) including dissipative terms
@ set signs according to

sr(u"9,) 69(z) — —09(x), 0@ () sr(u"0u) = +0P(x)

@ proceed as usual

@ opposite choice of sign: field equations for backward time evolution



Causality

o consider derivative of field equation (in flat space with /g = 1)

5 6T 5
5@y (y) 6@, (z)| .. IPp(y)

Jao ()
ret
@ inverting this equation gives retarded Green's function

)
8Ju(y)

D, (x) = AE (2,9)

@ only non-zero for x future or null to y

o Causality: Field expectation value ®,(z) can only be influenced by the
source Jy(y) in or on the past light cone v/



Damped harmonic oscillator 1

o Equation of motion
mz+ct+kr=0

or
&+ 2Cwot +wiz =0

with wo = \/k/m and ¢ = ¢/vV4mk

@ What is action for damped oscillator? This does not work:

/(21—: %x*(w) [w2 + 2iw Cwo — wg] z(w)

o Consider inverse propagator
w? +2i si(w) w Cwo — wh

with
si(w) = sign (Imw)

zero crossings (poles in the eff. propagator) are broadened to branch cut



Damped harmonic oscillator 2

o Take for effective action

INEY :/3—: %m*(w) [wa — 2is1(w) w Cwo erg] z(w)

1 . 1 o1
:/dt {fime + icac sr(O)Z + ika:Q}
where the second line uses

si(w) = sign(Imw) — sign(Im:9;) = sign(Re d;) = sr(d:)
@ Variation gives up to boundary terms
or :/dt {mi or + %cém sr(O)x — %ca’csR(&)éaz + kxdx}

Set now sg(0:)6x — —dx and 6z sr(;) — dz. Defines 2& .

e Equation of motion for forward time evolution

or

=mi+ct+kr=0
ox

ret




Scalar field with O(N) symmetry

o Consider effective action (with p = ¢;¢;)
1 v
L, guv, B] = /ddmx/é{QZ(MT)g” ;O +U(p,T)

+300LT) [, se(00,)] 701

e Variation at fixed metric g, and 8" gives

1
or = /ddwﬁ{z(p, T)g"" 0uép;0up; + §Z'(p7T)s0m6<pm 9" 0p;0uep;
+ U (p, T)pmbpm
1
+ 50 T) [0, sr(uMOu)) B 0v

Clp,T) [pj, sr(utOu)] B 064

L1
2

1
+ 50'(p,T)<pm6gom [ej,sR(u"Opu)] 6”8ue0j}

@ set now dp; sr(ut9,) — dp; and sr(u'dy) dp; — —dp;



Scalar field with O(N) symmetry

o Field equation becomes

1.,
~VulZ(p, T)0" 0] + 52 (0, T)i0upm0" pm
+U'(p, T)ip; + C(p, T)B" Oupj = 0

o Generalized Klein-Gordon equation with additional damping term



Where do energy & momentum go?

@ Modified variational principle leads to equations of motion with dissipation.
@ But what happens to the dissipated energy and momentum?

And other conserved quantum numbers?

o What about entropy production?



Energy-momentum tensor expectation value

Analogous to field equation, obtain by retarded variation

5]'—‘[@)9}“/75#} _ 1 %
5guu(:r) ot - 75\/5 <T (x»

Leads to Einstein's field equation when I'[®, g,..,, 8%] contains
Einstein-Hilbert term

o Useful to decompose
F[©7 gH«V7 BM} = FR[(Dv gHV7 /BH] + FD [4)7 gl“’? ﬁ”]

where reduced action T'r contains no dissipative / discontinuous terms
and I'p only dissipative terms

@ Energy-momentum tensor has two parts

(T") = (Tr)"" + (Tp)"”



General covariance

@ Infinitesimal general coordinate transformations as a “gauge
transformation” of the metric

e (z)

9() , au(z) »
oxv

ozt ox* (@)

G
09y (x) = gux(x) + gu ()
o Temperature / fluid velocity field transforms as vector

o' (z) 9B (x) .,
oxv ox” ¢ ()

0BG (x) = =B (x)

o Also fields ®, transform in some representation, e. g. as scalars

B}
605 (z) = &(m)@%(x)

@ Reduced action is invariant

Tr[® + 60, g + 095, B* + BE] = Tr[®, g, 5]



Situation without dissipation

Consider first situation without dissipation I'[®, g,.., 8"] = T'r[®, guv ]

Field equation implies (for J = 0)

1)
WFR[‘I’,gw] =0

@ Gauge variation of the metric

n = [ a5 @)V (@)

General covariance 6I'r = 0 and field equations imply covariant
energy-momentum conservation

Vi (T*\(2)) =0



Situation with dissipation

o Consider now situation with dissipation. General covariance of I'g:

or — or
d R G A n R n
5FR:/d I{T a5q>a+\/§€ CM(TR) )\-‘,-76 66(;}:0

Reduced action not stationary with respect to field variations
Tr _ 6Tp
§®q(z)  6Pu(x)

= —v9(x) Ma(z)

ret

@ Reduced energy-momentum tensor not conserved
Vu(Tr)"\ (@) = =Vu(Tp)", (x)

o Dependence on 8 (z) cannot be dropped

oTr

General covariance implies four additional differential equations that
determine "

MaOx®a + VM(TD)MA = Vu [IB‘LKA] + KMVA/JW



Entropy production

o Contraction of previous equation with 5> gives

MaﬁAaAq)a + ﬁAvu(TD)H/\ = v“ [BH’BAKA]

o Consider special case

with grand canonical potential density U(T) = —p(T') and temperature
1
V= guw BHBY
o Using s = Op/dT gives entropy current
BB K, = s* = su”

@ Local form of second law of thermodynamics

Vst = Mofror®a + BV, (Tp)", >0



Energy-momentum tensor for scalar field

Analytic action
1
F[‘Pv Juv, BH} = /ddx\/g{ 5Z(p, T)g‘wa,u@jalﬂpj + U(p, T)
1
+500T) o (u0,)] 5003

o Energy-momentum tensor
(T (@) =Z(p, T)0" ;0" ¢;

B 1
- (g“” + U“uVTafT) {gz(p,T)g“”amﬁuw +Ul(p, T)}

o Generalizes T"” for scalar field and T#” = (e + p)u”u” + g"”p for ideal
fluid with pressure p = —U and enthalpy density e + p = sT = —T(%U.

General covariance and covariant conservation law imply

Vu(T*"(x)) =0 = Differential eqgs. for g"(z)



Entropy production for scalar field

o Entropy current

a (1 o
s = BB = =" T o {5Z(p, T)g"" datp;03%; + Ulp, T)}

o Generalized entropy density

o [1 a
56 = ~3r {§Z(p,T)g P 8ap; 0805 + U(p, T)}

@ Entropy generation positive semi-definite for C'(p,T") > 0

Vus" = C(p,T) (8" 0ups) (B"0uipj) > 0

o For fluid at rest u* = (1,0,0,0)

. Cp,T) . .
Vo =i = S0,

entropy increases when ; oscillates. For example reheating after inflation.



Ideal fluid

o Consider effective action
Dlgpn ) = Lalgun ) = [ dayg U(T)

with effective potential U(T) = —p(T") and temperature
1

B vV —9uv B BY
e Variation of g, at fixed 5" leads to
" = (e + p)u"u” +pg™”

where e + p=T's = T%p is the enthalpy density

@ Describes ideal fluid. General covariance of covariant conservation
V. T"" =0 leads to ideal fluid equations

uOpe+ (e+p)Vyuu' =0 (e+p)u"Vyuu” + A""9,p=0



Viscous fluid
@ Analytic action
1 v v
Clgp 8] = | {U)+ § g (L] 20D)r" + ()M T ) }
with projector

AP = yPu” + g

and

1 1 1
o = CAWMB + SARB AR —A*‘“A‘m) Vaug
2 2 d—1

leads to

v ST [guw,BH v v v v
(1) = *%%\m = (e +p)uu” + pg"” — 2na" — CAMV pu”

@ Describes viscous fluid with shear viscosity 7(7") and bulk viscosity ¢(7")
e Entropy production

1
Vst = T [Qnawo’w + C(Vpup)Q]



Conclusions

@ A variational principle for theories with dissipation can be based on
analytic continuation.

o Needs a local equilibrium setup: Generalized Gibbs ensemble with T'(z)
and u*(x).

o Works at least for close-to-equilibrium situations, e. g. fluid dynamics
coupled to additional fields.

@ General covariance and energy-momentum conservation lead to equations
for fluid velocity and entropy production.

@ Local form of second law of thermodynamics is implemented on the level
of the effective action I'[®].

o Many potential applications.
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FEquations of motion from the Feynman action ¢

o Consider damped harmonic oscillator as example. Time-ordered or
Feynman action is obtained from analytic action by replacing
si(w) — sign(w)

dw m . .
Ttime ordered[x} = / g 51’ (UJ) [-UJQ — 22|UJ‘ CUJO +UJ§] a:(w)

o Field equation 5755 Tiime orderea[] = J () would give

[fwz — 24|w| Cwo + wg] z(w) = J(w)

@ Violates reality constraint z*(w) = z(—w) for J*(w) = J(—w)
@ Solution not causal

x(t) = /t Ap(t—t)J(t)

because Feynman propagator Ap(t —t') not causal.

@ In contrast, retarded variation of analytic action leads to real and causal
equation of motion



Tree-like structures
@ Discontinuous terms in analytic action could be of the form

Poiec[@] = / A2 /G {F10)(x) sr (v (@) 52r) g[®](z)}

@ More general, tree-like structure are possible such as

Poisc[®] = F1®)(x) sr(u*(x) 52
fA

or

Toicl®] = / {719)(@) sr (" (2) 52) 9l@)(w, 9, 2) sw (" (1) 55) h[@)(y)
x s (1 (2) 52¢) J1@](2) }

) gl®](z, ) 5w (u" (4) 52) RIP](v) }

o For retarded variation calculate 6" and set sg(u”9,) — —1 if derivative
operator points towards node that is varied and sg(u”9,) — 1 if derivative
operator points in opposite direction



Analé/tz(' continuation of FRG equations
[Floerchinger, JHEP 1205 (2012 021?

o Consider a point pi — p° = m? where P (m?) = 0.
@ One can expand around this point

Pi= Z(-pi+ 7 +m) £
Po=2Zv+---

o Leads to Breit-Wigner form of propagator (with 4> = mI")

1 —pj +p° +m? 4+ is(po) mI’
Z (—pg+p*+m2)2+m2r?

G(p) =

o A few flowing parameters describe efficiently the singular structure of the
propagator.

A2 /A2
Vi /A
0.00008

0.00006

0.00004

000002

0

~0.00002




Truncation for relativistic scalar O(N) theory

. _ N T
with p = 1 >im ¢

o Goldstone propagator massless, expanded around py — p% =0

Py(po, P) = Zo (—ps + °)

o Radial mode is massive, expanded around p3 — 5° = m?
Py(po, §) + poPp(po, p) + Ui, + 2pUy,
~ 2o (=93 + 8 +md) — is(po) 7]



Flow of the effective potential

1 (N —1)
i1
t k(p)|p 2 po—itwn . ﬁg—pg-i—U'-‘r%quk

+ . }iaR
Z0[(* = i) —is(po)f] + U + 200" + LR S Zs

@ Summation over Matsubara frequencies po = i27T'n can be done using
contour integrals.

@ Radial mode has non-zero decay width since it can decay into Goldstone
excitations.

o Use Taylor expansion for numerical calculations

1
Uk(p) = Uk(po.k) + mi(p — pox) + 5>\k(p — pok)’



