Dissipation from the analytically continued 1 PI effective action

Stefan Flörchinger (Heidelberg U.)

Imperial College London, October 4, 2016.
[based on JHEP09 (2016) 099 (arxiv:1603.07148)]

Dissipation in quantum field theory

- Dissipation is generation of entropy
- Unitary evolution conserves entropy
- in practice often only incomplete information available
- expectation values of fundamental quantum fields and some composite operators
- quantum states with minimal information given some constraints
- use truncation of 1 PI effective action

Dissipation from integrating out fields

Example 1

- consider muon with decay $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$
- full electroweak theory is unitary
- consider now effective action where fields for $e^{-}, \bar{\nu}_{e}$ and ν_{μ} have been integrated out
- effective action for μ^{-}contains decay width: appears as dissipative term

Example 2

- consider electromagnetic field A_{μ}
- field strength above Schwinger threshold: electron-positron pair production
- electron / positron field can be integrated out: dissipative term for electromagnetic field

Double time path formalism

- formalism for general, far-from-equilibrium situations: Schwinger-Keldysh double time path
- can be formulated with two fields $\Phi=\frac{1}{2}\left(\phi_{+}+\phi_{-}\right), \chi=\phi_{+}-\phi_{-}$
- in principle for arbitrary initial density matrices, in praxis mainly Gaussian initial states
- allows to treat also dissipation
- useful also to treat initial state fluctuations or forced noise in classical statistical theories
- difficult to recover thermal equilibrium, in particular non-perturbatively
- formalism algebraically somewhat involved

- out-of-equilibrium situations
- close-to-equilibrium: description by field expectation values and thermodynamic fields
- more complete description by following more fields explicitly
- example: Viscous fluid dynamics plus additional fields
- usually discussed in terms of
- phenomenological constitutive relations
- as a limit of kinetic theory
- in AdS/CFT
- want non-perturbative formulation in terms of QFT concepts
- Analytic continuation as an alternative to Schwinger-Keldysh
- direct generalization of equilibrium formalism

Local equilibrium states

- Dissipation: energy and momentum get transferred to a heat bath
- Even if one starts with pure state $T=0$ initially, dissipation will generate nonzero temperature
- Close-to-equilibrium situations: dissipation is local
- Convenient to use general coordinates with metric

$$
g_{\mu \nu}(x)
$$

- Need approximate local equilibrium description with temperature $T(x)$ and fluid velocity $u^{\mu}(x)$, will appear in combination

$$
\beta^{\mu}(x)=\frac{u^{\mu}(x)}{T(x)}
$$

- Global thermal equilibrium corresponds to β^{μ} Killing vector

$$
\nabla_{\mu} \beta_{\nu}(x)+\nabla_{\nu} \beta_{\mu}(x)=0
$$

Local equilibrium

- Use similarity between local density matrix and translation operator

$$
e^{\beta^{\mu}(x) \mathscr{P}_{\mu}} \quad \longleftrightarrow \quad e^{i \Delta x^{\mu} \mathscr{P}_{\mu}}
$$

to represent partition function as functional integral with periodicity in imaginary direction such that

$$
\phi\left(x^{\mu}-i \beta^{\mu}(x)\right)= \pm \phi\left(x^{\mu}\right)
$$

- Partition function $Z[J]$, Schwinger functional $W[J]$ in Euclidean domain

$$
Z[J]=e^{W_{E}[J]}=\int D \phi e^{-S_{E}[\phi]+\int_{x} J \phi}
$$

- First defined on Euclidean manifold $\Sigma \times M$ at constant time
- Approximate local equilibrium at all times: Hypersurface Σ can be shifted
(a) Global thermal equilibrium

(b) Local thermal equilibrium

Effective action

- Defined in euclidean domain by Legendre transform

$$
\Gamma_{E}[\Phi]=\int_{x} J_{a}(x) \Phi_{a}(x)-W_{E}[J]
$$

with expectation values

$$
\Phi_{a}(x)=\frac{1}{\sqrt{g}(x)} \frac{\delta}{\delta J_{a}(x)} W_{E}[J]
$$

- Euclidean field equation

$$
\frac{\delta}{\delta \Phi_{a}(x)} \Gamma_{E}[\Phi]=\sqrt{g}(x) J_{a}(x)
$$

resembles classical equation of motion for $J=0$.

- Need analytic continuation to obtain a viable equation of motion
- Consider homogeneous background fields and global equilibrium

$$
\beta^{\mu}=\left(\frac{1}{T}, 0,0,0\right)
$$

- Propagator and inverse propagator

$$
\begin{aligned}
& \frac{\delta^{2}}{\delta J_{a}(-p) \delta J_{b}(q)} W_{E}[J]=G_{a b}\left(i \omega_{n}, \mathbf{p}\right) \delta(p-q) \\
& \frac{\delta^{2}}{\delta \Phi_{a}(-p) \delta \Phi_{b}(q)} \Gamma_{E}[\Phi]=P_{a b}\left(i \omega_{n}, \mathbf{p}\right) \delta(p-q)
\end{aligned}
$$

- From definition of effective action

$$
\sum_{b} G_{a b}(p) P_{b c}(p)=\delta_{a c}
$$

- Källen-Lehmann spectral representation

$$
G_{a b}(\omega, \mathbf{p})=\int_{-\infty}^{\infty} d z \frac{\rho_{a b}\left(z^{2}-\mathbf{p}^{2}, z\right)}{z-\omega}
$$

with $\rho_{a b} \in \mathbb{R}$

- correlation functions can be analytically continued in $\omega=-u^{\mu} p_{\mu}$
- branch cut or poles on real frequency axis $\omega \in \mathbb{R}$ but nowhere else
- different propagators follow by evaluation of $G_{a b}$ in different regions

- spectral representation for $G_{a b}$ implies that inverse propagator $P_{a b}(\omega, \mathbf{p})$
- can have zero-crossings for $\omega=p^{0} \in \mathbb{R}$
- has in general branch-cut for $\omega=p^{0} \in \mathbb{R}$
- so far reference frame with $u^{\mu}=(1,0,0,0)$
- more general: analytic continuation with respect to

$$
\omega=-u^{\mu} p_{\mu}
$$

- use decomposition

$$
P_{a b}(p)=P_{1, a b}(p)-i s_{।}\left(-u^{\mu} p_{\mu}\right) P_{2, a b}(p)
$$

with sign function

$$
s_{1}(\omega)=\operatorname{sign}(\operatorname{Im} \omega)
$$

- both functions $P_{1, a b}(p)$ and $P_{2, a b}(p)$ are regular (no discontinuities)
- In position space, sign function becomes operator

$$
\begin{aligned}
& s_{\mathrm{I}}\left(-u^{\mu} p_{\mu}\right)=\operatorname{sign}\left(\operatorname{Im}\left(-u^{\mu} p_{\mu}\right)\right) \\
& \rightarrow \operatorname{sign}\left(\operatorname{lm}\left(i u^{\mu} \frac{\partial}{\partial x^{\mu}}\right)\right)=\operatorname{sign}\left(\operatorname{Re}\left(u^{\mu} \frac{\partial}{\partial x^{\mu}}\right)\right)=s_{\mathrm{R}}\left(u^{\mu} \frac{\partial}{\partial x^{\mu}}\right)
\end{aligned}
$$

- Geometric representation in terms of Lie derivative

$$
s_{\mathrm{R}}\left(\mathcal{L}_{u}\right) \quad \text { or } \quad s_{\mathrm{R}}\left(\mathcal{L}_{\beta}\right)
$$

- Sign operator appears also in analytically continued quantum effective action $\Gamma[\Phi]$

Analytically continued 1 PI effective action

- Analytically continued quantum effective action defined by analytic continuation of correlation functions
- Quadratic part

$$
\Gamma_{2}[\Phi]=\frac{1}{2} \int_{x, y} \Phi_{a}(x)\left[P_{1, a b}(x-y)+P_{2, a b}(x-y) s_{\mathrm{R}}\left(u^{\mu} \frac{\partial}{\partial y^{\mu}}\right)\right] \Phi_{b}(y)
$$

- Higher orders correlation functions less understood: no spectral representation
- Use inverse Hubbard-Stratonovich trick: terms quadratic in auxiliary field can be integrated out
- Allows to understand analytic structures of higher order terms [Floerchinger, 1603.07148]
- Can one obtain causal and real renormalized equations of motion from the 1 PI effective action?
- naively: time-ordered action / Feynman $i \epsilon$ prescription:

$$
\frac{\delta}{\delta \Phi_{a}(x)} \Gamma_{\text {time ordered }}[\Phi]=\sqrt{g} J_{a}(x)
$$

- This does not lead to causal and real equations of motion ! [e.g. Calzetta \& Hu: Non-equilibrium Quantum Field Theory (2008)]

Retarded functional derivative

[Floerchinger, 1603.07148]

- Real and causal dissipative field equations follow from analytically continued effective action

$$
\left.\frac{\delta \Gamma[\Phi]}{\delta \Phi_{a}(x)}\right|_{\mathrm{ret}}=\sqrt{g} J(x)
$$

- to calculate retarded variational derivative determine

$$
\delta \Gamma[\Phi]
$$

by varying the fields $\delta \Phi(x)$ including dissipative terms

- set signs according to

$$
s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right) \delta \Phi(x) \rightarrow-\delta \Phi(x), \quad \delta \Phi(x) s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right) \rightarrow+\delta \Phi(x)
$$

- proceed as usual
- opposite choice of sign: field equations for backward time evolution
- consider derivative of field equation (in flat space with $\sqrt{g}=1$)

$$
\left.\frac{\delta}{\delta \Phi_{b}(y)} \frac{\delta \Gamma}{\delta \Phi_{a}(x)}\right|_{\mathrm{ret}}=\frac{\delta}{\delta \Phi_{b}(y)} J_{a}(x)
$$

- inverting this equation gives retarded Green's function

$$
\frac{\delta}{\delta J_{b}(y)} \Phi_{a}(x)=\Delta_{a b}^{R}(x, y)
$$

- only non-zero for x future or null to y
- Causality: Field expectation value $\Phi_{a}(x)$ can only be influenced by the source $J_{b}(y)$ in or on the past light cone \checkmark

Damped harmonic oscillator 1

- Equation of motion

$$
m \ddot{x}+c \dot{x}+k x=0
$$

or

$$
\ddot{x}+2 \zeta \omega_{0} \dot{x}+\omega_{0}^{2} x=0
$$

with $\omega_{0}=\sqrt{k / m}$ and $\zeta=c / \sqrt{4 m k}$

- What is action for damped oscillator? This does not work:

$$
\int \frac{d \omega}{2 \pi} \frac{m}{2} x^{*}(\omega)\left[\omega^{2}+2 i \omega \zeta \omega_{0}-\omega_{0}^{2}\right] x(\omega)
$$

- Consider inverse propagator

$$
\omega^{2}+2 i s_{\mathrm{l}}(\omega) \omega \zeta \omega_{0}-\omega_{0}^{2}
$$

with

$$
s_{1}(\omega)=\operatorname{sign}(\operatorname{lm} \omega)
$$

zero crossings (poles in the eff. propagator) are broadened to branch cut

Damped harmonic oscillator 2

- Take for effective action

$$
\begin{aligned}
\Gamma[x] & =\int \frac{d \omega}{2 \pi} \frac{m}{2} x^{*}(\omega)\left[-\omega^{2}-2 i s_{\mathrm{I}}(\omega) \omega \zeta \omega_{0}+\omega_{0}^{2}\right] x(\omega) \\
& =\int d t\left\{-\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} c x s_{\mathrm{R}}\left(\partial_{t}\right) \dot{x}+\frac{1}{2} k x^{2}\right\}
\end{aligned}
$$

where the second line uses

$$
s_{1}(\omega)=\operatorname{sign}(\operatorname{Im} \omega) \rightarrow \operatorname{sign}\left(\operatorname{Im} i \partial_{t}\right)=\operatorname{sign}\left(\operatorname{Re} \partial_{t}\right)=s_{\mathrm{R}}\left(\partial_{t}\right)
$$

- Variation gives up to boundary terms

$$
\delta \Gamma=\int d t\left\{m \ddot{x} \delta x+\frac{1}{2} c \delta x s_{\mathrm{R}}\left(\partial_{t}\right) \dot{x}-\frac{1}{2} c \dot{x} s_{\mathrm{R}}\left(\partial_{t}\right) \delta x+k x \delta x\right\}
$$

Set now $s_{\mathrm{R}}\left(\partial_{t}\right) \delta x \rightarrow-\delta x$ and $\delta x s_{\mathrm{R}}\left(\partial_{t}\right) \rightarrow \delta x$. Defines $\left.\frac{\delta \Gamma}{\delta x}\right|_{\text {ret }}$.

- Equation of motion for forward time evolution

$$
\left.\frac{\delta \Gamma}{\delta x}\right|_{\mathrm{ret}}=m \ddot{x}+c \dot{x}+k x=0
$$

Scalar field with $O(N)$ symmetry

- Consider effective action (with $\rho=\frac{1}{2} \varphi_{j} \varphi_{j}$)

$$
\begin{aligned}
\Gamma\left[\varphi, g_{\mu \nu}, \beta^{\mu}\right]=\int d^{d} x \sqrt{g}\{ & \frac{1}{2} Z(\rho, T) g^{\mu \nu} \partial_{\mu} \varphi_{j} \partial_{\nu} \varphi_{j}+U(\rho, T) \\
& \left.+\frac{1}{2} C(\rho, T)\left[\varphi_{j}, s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right)\right] \beta^{\nu} \partial_{\nu} \varphi_{j}\right\}
\end{aligned}
$$

- Variation at fixed metric $g_{\mu \nu}$ and β^{μ} gives

$$
\begin{aligned}
\delta \Gamma=\int d^{d} x \sqrt{g}\{ & Z(\rho, T) g^{\mu \nu} \partial_{\mu} \delta \varphi_{j} \partial_{\nu} \varphi_{j}+\frac{1}{2} Z^{\prime}(\rho, T) \varphi_{m} \delta \varphi_{m} g^{\mu \nu} \partial_{\mu} \varphi_{j} \partial_{\nu} \varphi_{j} \\
& +U^{\prime}(\rho, T) \varphi_{m} \delta \varphi_{m} \\
& +\frac{1}{2} C(\rho, T)\left[\delta \varphi_{j}, s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right)\right] \beta^{\nu} \partial_{\nu} \varphi_{j} \\
& +\frac{1}{2} C(\rho, T)\left[\varphi_{j}, s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right)\right] \beta^{\nu} \partial_{\nu} \delta \varphi_{j} \\
& \left.+\frac{1}{2} C^{\prime}(\rho, T) \varphi_{m} \delta \varphi_{m}\left[\varphi_{j}, s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right)\right] \beta^{\nu} \partial_{\nu} \varphi_{j}\right\}
\end{aligned}
$$

- set now $\delta \varphi_{j} s_{\mathbb{R}}\left(u^{\mu} \partial_{\mu}\right) \rightarrow \delta \varphi_{j}$ and $s_{\mathbb{R}}\left(u^{\mu} \partial_{\mu}\right) \delta \varphi_{j} \rightarrow-\delta \varphi_{j}$

Scalar field with $O(N)$ symmetry

- Field equation becomes

$$
\begin{array}{r}
-\nabla_{\mu}\left[Z(\rho, T) \partial^{\mu} \varphi_{j}\right]+\frac{1}{2} Z^{\prime}(\rho, T) \varphi_{j} \partial_{\mu} \varphi_{m} \partial^{\mu} \varphi_{m} \\
+U^{\prime}(\rho, T) \varphi_{j}+C(\rho, T) \beta^{\mu} \partial_{\mu} \varphi_{j}=0
\end{array}
$$

- Generalized Klein-Gordon equation with additional damping term
- Modified variational principle leads to equations of motion with dissipation.
- But what happens to the dissipated energy and momentum?
- And other conserved quantum numbers?
- What about entropy production?

Energy-momentum tensor expectation value

- Analogous to field equation, obtain by retarded variation

$$
\left.\frac{\delta \Gamma\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]}{\delta g_{\mu \nu}(x)}\right|_{\mathrm{ret}}=-\frac{1}{2} \sqrt{g}\left\langle T^{\mu \nu}(x)\right\rangle
$$

- Leads to Einstein's field equation when $\Gamma\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]$ contains Einstein-Hilbert term
- Useful to decompose

$$
\Gamma\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]=\Gamma_{R}\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]+\Gamma_{D}\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]
$$

where reduced action Γ_{R} contains no dissipative / discontinuous terms and Γ_{D} only dissipative terms

- Energy-momentum tensor has two parts

$$
\left\langle T^{\mu \nu}\right\rangle=\left(\bar{T}_{R}\right)^{\mu \nu}+\left(\bar{T}_{D}\right)^{\mu \nu}
$$

General covariance

- Infinitesimal general coordinate transformations as a "gauge transformation" of the metric

$$
\delta g_{\mu \nu}^{G}(x)=g_{\mu \lambda}(x) \frac{\partial \epsilon^{\lambda}(x)}{\partial x^{\nu}}+g_{\nu \lambda}(x) \frac{\partial \epsilon^{\lambda}(x)}{\partial x^{\mu}}+\frac{\partial g_{\mu \nu}(x)}{\partial x^{\lambda}} \epsilon^{\lambda}(x)
$$

- Temperature / fluid velocity field transforms as vector

$$
\delta \beta_{G}^{\mu}(x)=-\beta^{\nu}(x) \frac{\partial \epsilon^{\mu}(x)}{\partial x^{\nu}}+\frac{\partial \beta^{\mu}(x)}{\partial x^{\nu}} \epsilon^{\nu}(x)
$$

- Also fields Φ_{a} transform in some representation, e. g. as scalars

$$
\delta \Phi_{a}^{G}(x)=\epsilon^{\lambda}(x) \frac{\partial}{\partial x^{\lambda}} \Phi_{a}(x)
$$

- Reduced action is invariant

$$
\Gamma_{R}\left[\Phi+\delta \Phi^{G}, g_{\mu \nu}+\delta g_{\mu \nu}^{G}, \beta^{\mu}+\beta_{G}^{\mu}\right]=\Gamma_{R}\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]
$$

Situation without dissipation

- Consider first situation without dissipation $\Gamma\left[\Phi, g_{\mu \nu}, \beta^{\mu}\right]=\Gamma_{R}\left[\Phi, g_{\mu \nu}\right]$
- Field equation implies (for $J=0$)

$$
\frac{\delta}{\delta \Phi_{a}(x)} \Gamma_{R}\left[\Phi, g_{\mu \nu}\right]=0
$$

- Gauge variation of the metric

$$
\delta \Gamma_{R}=\int d^{d} x \sqrt{g} \epsilon^{\lambda}(x) \nabla_{\mu}\left\langle T_{\lambda}^{\mu}(x)\right\rangle
$$

- General covariance $\delta \Gamma_{R}=0$ and field equations imply covariant energy-momentum conservation

$$
\nabla_{\mu}\left\langle T_{\lambda}^{\mu}(x)\right\rangle=0
$$

Situation with dissipation

- Consider now situation with dissipation. General covariance of Γ_{R} :

$$
\delta \Gamma_{R}=\int d^{d} x\left\{\frac{\delta \Gamma_{R}}{\delta \Phi_{a}} \delta \Phi_{a}^{G}+\sqrt{g} \epsilon^{\lambda} \nabla_{\mu}\left(\bar{T}_{R}\right)_{\lambda}^{\mu}+\frac{\delta \Gamma_{R}}{\delta \beta^{\mu}} \delta \beta_{G}^{\mu}\right\}=0
$$

- Reduced action not stationary with respect to field variations

$$
\frac{\delta \Gamma_{R}}{\delta \Phi_{a}(x)}=-\left.\frac{\delta \Gamma_{D}}{\delta \Phi_{a}(x)}\right|_{\mathrm{ret}}=:-\sqrt{g}(x) M_{a}(x)
$$

- Reduced energy-momentum tensor not conserved

$$
\nabla_{\mu}\left(\bar{T}_{R}\right)_{\lambda}^{\mu}(x)=-\nabla_{\mu}\left(\bar{T}_{D}\right)_{\lambda}^{\mu}(x)
$$

- Dependence on $\beta^{\mu}(x)$ cannot be dropped

$$
\frac{\delta \Gamma_{R}}{\delta \beta^{\mu}(x)}=: \sqrt{g}(x) K_{\mu}(x)
$$

- General covariance implies four additional differential equations that determine β^{μ}

$$
M_{a} \partial_{\lambda} \Phi_{a}+\nabla_{\mu}\left(\bar{T}_{D}\right)_{\lambda}^{\mu}=\nabla_{\mu}\left[\beta^{\mu} K_{\lambda}\right]+K_{\mu} \nabla_{\lambda} \beta^{\mu}
$$

Entropy production

- Contraction of previous equation with β^{λ} gives

$$
M_{a} \beta^{\lambda} \partial_{\lambda} \Phi_{a}+\beta^{\lambda} \nabla_{\mu}\left(\bar{T}_{D}\right)_{\lambda}^{\mu}=\nabla_{\mu}\left[\beta^{\mu} \beta^{\lambda} K_{\lambda}\right]
$$

- Consider special case

$$
\sqrt{g} K_{\mu}(x)=\frac{\delta \Gamma_{R}}{\delta \beta^{\mu}(x)}=\frac{\delta}{\delta \beta^{\mu}(x)} \int d^{d} x \sqrt{g} U(T)
$$

with grand canonical potential density $U(T)=-p(T)$ and temperature

$$
T=\frac{1}{\sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}}
$$

- Using $s=\partial p / \partial T$ gives entropy current

$$
\beta^{\mu} \beta^{\lambda} K_{\lambda}=s^{\mu}=s u^{\mu}
$$

- Local form of second law of thermodynamics

$$
\nabla_{\mu} s^{\mu}=M_{a} \beta^{\lambda} \partial_{\lambda} \Phi_{a}+\beta^{\lambda} \nabla_{\mu}\left(\bar{T}_{D}\right)^{\mu}{ }_{\lambda} \geq 0
$$

Energy-momentum tensor for scalar field

- Analytic action

$$
\begin{aligned}
\Gamma\left[\varphi, g_{\mu \nu}, \beta^{\mu}\right]=\int d^{d} x \sqrt{g}\{ & \frac{1}{2} Z(\rho, T) g^{\mu \nu} \partial_{\mu} \varphi_{j} \partial_{\nu} \varphi_{j}+U(\rho, T) \\
& \left.+\frac{1}{2} C(\rho, T)\left[\varphi_{j}, s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right)\right] \beta^{\nu} \partial_{\nu} \varphi_{j}\right\}
\end{aligned}
$$

- Energy-momentum tensor

$$
\begin{aligned}
\left\langle T^{\mu \nu}(x)\right\rangle= & Z(\rho, T) \partial^{\mu} \varphi_{j} \partial^{\nu} \varphi_{j} \\
& -\left(g^{\mu \nu}+u^{\mu} u^{\nu} T \frac{\partial}{\partial T}\right)\left\{\frac{1}{2} Z(\rho, T) g^{\mu \nu} \partial_{\mu} \varphi_{j} \partial_{\nu} \varphi_{j}+U(\rho, T)\right\}
\end{aligned}
$$

- Generalizes $T^{\mu \nu}$ for scalar field and $T^{\mu \nu}=(\epsilon+p) u^{\mu} u^{\nu}+g^{\mu \nu} p$ for ideal fluid with pressure $p=-U$ and enthalpy density $\epsilon+p=s T=-T \frac{\partial}{\partial T} U$.
- General covariance and covariant conservation law imply

$$
\nabla_{\mu}\left\langle T^{\mu \nu}(x)\right\rangle=0 \quad \Longrightarrow \quad \text { Differential eqs. for } \beta^{\mu}(x)
$$

Entropy production for scalar field

- Entropy current

$$
s^{\mu}=\beta^{\mu} \beta^{\lambda} K_{\lambda}=-\beta^{\mu} T \frac{\partial}{\partial T}\left\{\frac{1}{2} Z(\rho, T) g^{\alpha \beta} \partial_{\alpha} \varphi_{j} \partial_{\beta} \varphi_{j}+U(\rho, T)\right\}
$$

- Generalized entropy density

$$
s_{G}=-\frac{\partial}{\partial T}\left\{\frac{1}{2} Z(\rho, T) g^{\alpha \beta} \partial_{\alpha} \varphi_{j} \partial_{\beta} \varphi_{j}+U(\rho, T)\right\}
$$

- Entropy generation positive semi-definite for $C(\rho, T) \geq 0$

$$
\nabla_{\mu} s^{\mu}=C(\rho, T)\left(\beta^{\mu} \partial_{\mu} \varphi_{j}\right)\left(\beta^{\nu} \partial_{\nu} \varphi_{j}\right) \geq 0
$$

- For fluid at rest $u^{\mu}=(1,0,0,0)$

$$
\nabla_{\mu} s^{\mu}=\dot{s}_{G}=\frac{C(\rho, T)}{T^{2}} \dot{\varphi}_{j} \dot{\varphi}_{j}
$$

entropy increases when φ_{j} oscillates. For example reheating after inflation.

Ideal fluid

- Consider effective action

$$
\Gamma\left[g_{\mu \nu}, \beta^{\mu}\right]=\Gamma_{R}\left[g_{\mu \nu}, \beta^{\mu}\right]=\int d^{d} x \sqrt{g} U(T)
$$

with effective potential $U(T)=-p(T)$ and temperature

$$
T=\frac{1}{\sqrt{-g_{\mu \nu} \beta^{\mu} \beta^{\nu}}}
$$

- Variation of $g_{\mu \nu}$ at fixed β^{μ} leads to

$$
T^{\mu \nu}=(\epsilon+p) u^{\mu} u^{\nu}+p g^{\mu \nu}
$$

where $\epsilon+p=T s=T \frac{\partial}{\partial T} p$ is the enthalpy density

- Describes ideal fluid. General covariance of covariant conservation $\nabla_{\mu} T^{\mu \nu}=0$ leads to ideal fluid equations

$$
u^{\mu} \partial_{\mu} \epsilon+(\epsilon+p) \nabla_{\mu} u^{\mu}=0 \quad(\epsilon+p) u^{\mu} \nabla_{\mu} u^{\nu}+\Delta^{\nu \mu} \partial_{\mu} p=0
$$

Viscous fluid

- Analytic action

$$
\Gamma\left[g_{\mu \nu}, \beta^{\mu}\right]=\int_{x}\left\{U(T)+\frac{1}{4}\left[g_{\mu \nu}, s_{\mathrm{R}}\left(\mathcal{L}_{u}\right)\right]\left(2 \eta(T) \sigma^{\mu \nu}+\zeta(T) \Delta^{\mu \nu} \nabla_{\rho} u^{\rho}\right)\right\}
$$

with projector

$$
\Delta^{\mu \nu}=u^{\mu} u^{\nu}+g^{\mu \nu}
$$

and

$$
\sigma^{\mu \nu}=\left(\frac{1}{2} \Delta^{\mu \alpha} \Delta^{\mu \beta}+\frac{1}{2} \Delta^{\mu \beta} \Delta^{\mu \alpha}-\frac{1}{d-1} \Delta^{\mu \nu} \Delta^{\alpha \beta}\right) \nabla_{\alpha} u_{\beta}
$$

leads to

$$
\left\langle T^{\mu \nu}\right\rangle=-\left.\frac{2}{\sqrt{g}} \frac{\delta \Gamma\left[g_{\mu \nu}, \beta^{\mu}\right]}{\delta g_{\mu \nu}}\right|_{\mathrm{ret}}=(\epsilon+p) u^{\mu} u^{\nu}+p g^{\mu \nu}-2 \eta \sigma^{\mu \nu}-\zeta \Delta^{\mu \nu} \nabla_{\rho} u^{\rho}
$$

- Describes viscous fluid with shear viscosity $\eta(T)$ and bulk viscosity $\zeta(T)$
- Entropy production

$$
\nabla_{\mu} s^{\mu}=\frac{1}{T}\left[2 \eta \sigma_{\mu \nu} \sigma^{\mu \nu}+\zeta\left(\nabla_{\rho} u^{\rho}\right)^{2}\right]
$$

- A variational principle for theories with dissipation can be based on analytic continuation.
- Needs a local equilibrium setup: Generalized Gibbs ensemble with $T(x)$ and $u^{\mu}(x)$.
- Works at least for close-to-equilibrium situations, e. g. fluid dynamics coupled to additional fields.
- General covariance and energy-momentum conservation lead to equations for fluid velocity and entropy production.
- Local form of second law of thermodynamics is implemented on the level of the effective action $\Gamma[\Phi]$.
- Many potential applications.

BACKUP

Equations of motion from the Feynman action?

- Consider damped harmonic oscillator as example. Time-ordered or Feynman action is obtained from analytic action by replacing $s_{1}(\omega) \rightarrow \operatorname{sign}(\omega)$

$$
\Gamma_{\text {time ordered }}[x]=\int \frac{d \omega}{2 \pi} \frac{m}{2} x^{*}(\omega)\left[-\omega^{2}-2 i|\omega| \zeta \omega_{0}+\omega_{0}^{2}\right] x(\omega)
$$

- Field equation $\frac{\delta}{\delta x(t)} \Gamma_{\text {time ordered }}[x]=J(t)$ would give

$$
\left[-\omega^{2}-2 i|\omega| \zeta \omega_{0}+\omega_{0}^{2}\right] x(\omega)=J(\omega)
$$

- Violates reality constraint $x^{*}(\omega)=x(-\omega)$ for $J^{*}(\omega)=J(-\omega)$
- Solution not causal

$$
x(t)=\int_{t^{\prime}} \Delta_{F}\left(t-t^{\prime}\right) J\left(t^{\prime}\right)
$$

because Feynman propagator $\Delta_{F}\left(t-t^{\prime}\right)$ not causal.

- In contrast, retarded variation of analytic action leads to real and causal equation of motion

Tree-like structures

- Discontinuous terms in analytic action could be of the form

$$
\Gamma_{\mathrm{Disc}}[\Phi]=\int d^{d} x \sqrt{g}\left\{f[\Phi](x) s_{\mathrm{R}}\left(u^{\mu}(x) \frac{\partial}{\partial x^{\mu}}\right) g[\Phi](x)\right\}
$$

- More general, tree-like structure are possible such as

$$
\Gamma_{\mathrm{Disc}}[\Phi]=\int_{x, y}\left\{f[\Phi](x) s_{\mathrm{R}}\left(u^{\mu}(x) \frac{\partial}{\partial x^{\mu}}\right) g[\Phi](x, y) s_{\mathrm{R}}\left(u^{\mu}(y) \frac{\partial}{\partial y^{\mu}}\right) h[\Phi](y)\right\}
$$

or

$$
\begin{aligned}
\Gamma_{\mathrm{Disc}}[\Phi]=\int_{x, y, z}\{ & \left\{[\Phi](x) s_{\mathrm{R}}\left(u^{\mu}(x) \frac{\partial}{\partial x^{\mu}}\right) g[\Phi](x, y, z) s_{\mathrm{R}}\left(u^{\mu}(y) \frac{\partial}{\partial y^{\mu}}\right) h[\Phi](y)\right. \\
& \left.\times s_{\mathrm{R}}\left(u^{\mu}(z) \frac{\partial}{\partial z^{\mu}}\right) j[\Phi](z)\right\}
\end{aligned}
$$

- For retarded variation calculate $\delta \Gamma$ and set $s_{\mathrm{R}}\left(u^{\mu} \partial_{\mu}\right) \rightarrow-1$ if derivative operator points towards node that is varied and $s_{\mathbb{R}}\left(u^{\mu} \partial_{\mu}\right) \rightarrow 1$ if derivative operator points in opposite direction
- Consider a point $p_{0}^{2}-\vec{p}^{2}=m^{2}$ where $P_{1}\left(m^{2}\right)=0$.
- One can expand around this point

$$
\begin{aligned}
& P_{1}=Z\left(-p_{0}^{2}+\vec{p}^{2}+m^{2}\right)+\cdots \\
& P_{2}=Z \gamma^{2}+\cdots
\end{aligned}
$$

- Leads to Breit-Wigner form of propagator (with $\gamma^{2}=m \Gamma$)

$$
G(p)=\frac{1}{Z} \frac{-p_{0}^{2}+\vec{p}^{2}+m^{2}+i s\left(p_{0}\right) m \Gamma}{\left(-p_{0}^{2}+\vec{p}^{2}+m^{2}\right)^{2}+m^{2} \Gamma^{2}}
$$

- A few flowing parameters describe efficiently the singular structure of the propagator.

Truncation for relativistic scalar $O(N)$ theory

$$
\begin{aligned}
\Gamma_{k}=\int_{t, \vec{x}}\{ & \sum_{j=1}^{N} \frac{1}{2} \bar{\phi}_{j} \bar{P}_{\phi}\left(i \partial_{t},-i \vec{\nabla}\right) \bar{\phi}_{j} \\
& \left.+\frac{1}{4} \bar{\rho} \bar{P}_{\rho}\left(i \partial_{t},-i \vec{\nabla}\right) \bar{\rho}+\bar{U}_{k}(\bar{\rho})\right\}
\end{aligned}
$$

with $\bar{\rho}=\frac{1}{2} \sum_{j=1}^{N} \bar{\phi}_{j}^{2}$.

- Goldstone propagator massless, expanded around $p_{0}-\vec{p}^{2}=0$

$$
\bar{P}_{\phi}\left(p_{0}, \vec{p}\right) \approx \bar{Z}_{\phi}\left(-p_{0}^{2}+\vec{p}^{2}\right)
$$

- Radial mode is massive, expanded around $p_{0}^{2}-\vec{p}^{2}=m_{1}^{2}$

$$
\begin{aligned}
& \bar{P}_{\phi}\left(p_{0}, \vec{p}\right)+\bar{\rho}_{0} \bar{P}_{\rho}\left(p_{0}, \vec{p}\right)+\bar{U}_{k}^{\prime}+2 \bar{\rho} \bar{U}_{k}^{\prime \prime} \\
& \approx \bar{Z}_{\phi} Z_{1}\left[\left(-p_{0}^{2}+\bar{p}^{2}+m_{1}^{2}\right)-i s\left(p_{0}\right) \gamma_{1}^{2}\right]
\end{aligned}
$$

Flow of the effective potential

$$
\begin{aligned}
\left.\partial_{t} U_{k}(\rho)\right|_{\bar{\rho}} & =\frac{1}{2} \int_{p_{0}=i \omega_{n}, \vec{p}}\left\{\frac{(N-1)}{\vec{p}^{2}-p_{0}^{2}+U^{\prime}+\frac{1}{Z_{\phi}} R_{k}}\right. \\
& \left.+\frac{1}{Z_{1}\left[\left(\vec{p}^{2}-p_{0}^{2}\right)-i s\left(p_{0}\right) \gamma_{1}^{2}\right]+U^{\prime}+2 \rho U^{\prime \prime}+\frac{1}{Z_{\phi}} R_{k}}\right\} \frac{1}{\bar{Z}_{\phi}} \partial_{t} R_{k} .
\end{aligned}
$$

- Summation over Matsubara frequencies $p_{0}=i 2 \pi T n$ can be done using contour integrals.
- Radial mode has non-zero decay width since it can decay into Goldstone excitations.
- Use Taylor expansion for numerical calculations

$$
U_{k}(\rho)=U_{k}\left(\rho_{0, k}\right)+m_{k}^{2}\left(\rho-\rho_{0, k}\right)+\frac{1}{2} \lambda_{k}\left(\rho-\rho_{0, k}\right)^{2}
$$

