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Dissipation in quantum field theory

o Dissipation is generation of entropy

e Unitary evolution conserves entropy

@ in practice often only incomplete information available

@ expectation values of fundamental quantum fields and some composite
operators

@ quantum states with minimal information given some constraints

@ use truncation of 1 Pl effective action



Dissipation from integrating out fields

Example 1
@ consider muon with decay = — e~ + Ve + 1,
o full electroweak theory is unitary

o consider now effective action where fields for e™, 7. and v, have been
integrated out

o effective action for p~ contains decay width: appears as dissipative term

Example 2
@ consider electromagnetic field A,
o field strength above Schwinger threshold: electron-positron pair production

o electron / positron field can be integrated out: dissipative term for
electromagnetic field



Double

time path formalism

formalism for general, far-from-equilibrium situations: Schwinger-Keldysh
double time path

can be formulated with two fields ® (¢+ +¢-), x =+ — P—

in principle for arbitrary initial density matrices, in praxis mainly Gaussian
initial states

allows to treat also dissipation

useful also to treat initial state fluctuations or forced noise in classical
statistical theories
[talks by N. Tetradis, L. Canet]

difficult to recover thermal equilibrium, in particular non-perturbatively

formalism algebraically somewhat involved



Close-to-equilibrium situations

@ out-of-equilibrium situations

@ close-to-equilibrium: description by field expectation values and
thermodynamic fields

@ more complete description by following more fields explicitly

o example: Viscous fluid dynamics plus additional fields
@ usually discussed in terms of

o phenomenological constitutive relations
e as a limit of kinetic theory
e in AdS/CFT

@ want non-perturbative formulation in terms of QFT concepts
@ Analytic continuation as an alternative to Schwinger-Keldysh

o direct generalization of equilibrium formalism



Local equilibrium states

o Dissipation: energy and momentum get transferred to a heat bath

o Even if one starts with pure state 7' = 0 initially, dissipation will generate
nonzero temperature

o Close-to-equilibrium situations: dissipation is local

o Convenient to use general coordinates with metric

Guv ()

o Need approximate local equilibrium description with temperature T'(z)
and fluid velocity u*(x), will appear in combination

u*(x)

T(x)

g (x) =

@ Global thermal equilibrium corresponds to 5" Killing vector

VuBu(z) + VuBu(z) =0



Local equilibrium

o Use similarity between local density matrix and translation operator

eﬂ“(m)?f’u eiAac“ Pu

—

to represent partition function as functional integral with periodicity in
imaginary direction such that

o(a" — i (z)) = +o(a")
e Partition function Z[.J], Schwinger functional W[J] in Euclidean domain
Z[J] = eWEl] _ /DQS@*SEW’H]; J¢

o First defined on Euclidean manifold X x M at constant time
o Approximate local equilibrium at all times: Hypersurface ¥ can be shifted

(a) Global thermal equilibrium (b) Local thermal equilibrium

IHD (D
x xT
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Effective action

o Defined in euclidean domain by Legendre transform
(@] = / o (@) (x) — WalJ]

with expectation values

D, (z) = J3@) 57a(@) WglJ]
o Euclidean field equation
1)
WFE[‘I’} =9(z) Ja()

resembles classical equation of motion for J = 0.

@ Need analytic continuation to obtain a viable equation of motion



Two-point functions

o Consider homogeneous background fields and global equilibrium

5 = (1.0.00)

o Propagator and inverse propagator
52

dJa(—p)dJu(q)
52

6®a(—p)0Ps(q)

Wg[J] = Gas(iwn, P) 6(p — q)

Lg[®] = Pab(iwn, p) 6(p — q)

@ From definition of effective action

Z Gab Pbc = 5ac



Spectral representation

o Kallen-Lehmann spectral representation

o 2 2

zZ—Ww

—o0

with pqp € R

correlation functions can be analytically continued in w = —u*p,,

@ branch cut or poles on real frequency axis w € R but nowhere else

o different propagators follow by evaluation of G in different regions
Im(w)
Matsubara M .
Agy (p) =Gap (an, P)
retarded Feynman AaRb(p) =G (po + i€, p)
Re(w) .
————————————————————————————————— N AL(p) =Gab (p° — i, p)
advanced
AL (p) =Gap ( O+ ie sign (po) .P)




Inverse propagator

o spectral representation for G4, implies that inverse propagator Pus(w, p)

e can have zero-crossings for w = p® € R
o has in general branch-cut for w = p® € R

@ so far reference frame with u* = (1,0, 0,0)

@ more general: analytic continuation with respect to

w=—u"py,

o use decomposition
Pab(p) = Pr.ab(p) — is1(—=u"pu) P2.ab(p)

with sign function
si(w) = sign(lm w)

@ both functions Pi 4,(p) and P> q4(p) are regular (no discontinuities)



Sign operator in position space

@ In position space, sign function becomes operator

s1 (—u"py) = sign (Im(—u"py))

— sign (Im (iu”52;)) = sign (Re (u”527)) = sr (u" 52:)

o Geometric representation in terms of Lie derivative

srR(Lw) or sr(Lg)

e Sign operator appears also in analytically continued quantum effective
action I'[®]
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Analytically continued 1 PI effective action

@ Analytically continued quantum effective action defined by analytic
continuation of correlation functions

@ Quadratic part

1

F2[@] = /Ly Do (2) [Pl,ab(iE —Y) + Poav(z — y)sk (UH&%H @(y)

o Higher orders correlation functions less understood: no spectral
representation

o Use inverse Hubbard-Stratonovich trick: terms quadratic in auxiliary field
can be integrated out

@ Allows to understand analytic structures of higher order terms
[Floerchinger, 1603.07148]

> /30



FEquations of motion

@ Can one obtain causal and real renormalized equations of motion from the
1 PI effective action?

@ naively: time-ordered action / Feynman ie prescription:

0

mrtime ordered [Q] = \/§Ja(x)

@ This does not lead to causal and real equations of motion !
[e.g. Calzetta & Hu: Non-equilibrium Quantum Field Theory (2008)]
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Retarded functional derivative

[Floerchinger, 1603.07148]

o Real and causal dissipative field equations follow from analytically
continued effective action

oI [®] -
5CI)a(l') ret - \/gj(x)
@ to calculate retarded variational derivative determine
or[®]

by varying the fields §®(x) including dissipative terms
@ set signs according to

sr(u"9,) 69(z) — —09(x), 0@ () sr(u"0u) = +0P(x)

@ proceed as usual

@ opposite choice of sign: field equations for backward time evolution



Causality

o consider derivative of field equation (in flat space with /g = 1)

5 6T 5
5@y (y) 6@, (z)| .. IPp(y)

Jao ()
ret
@ inverting this equation gives retarded Green's function

)
8Ju(y)

D, (x) = AE (2,9)

@ only non-zero for x future or null to y

o Causality: Field expectation value ®,(z) can only be influenced by the
source Jy(y) in or on the past light cone v/



Damped harmonic oscillator 1

o Equation of motion
mz+ct+kr=0

or
&+ 2Cwot +wiz =0

with wo = \/k/m and ¢ = ¢/vV4mk

@ What is action for damped oscillator? This does not work:

/(21—: %x*(w) [w2 + 2iw Cwo — wg] z(w)

o Consider inverse propagator
w? +2i si(w) w Cwo — wh

with
si(w) = sign (Imw)

zero crossings (poles in the eff. propagator) are broadened to branch cut



Damped harmonic oscillator 2

o Take for effective action

INEY :/3—: %m*(w) [wa — 2is1(w) w Cwo erg] z(w)

1 . 1 o1
:/dt {fime + icac sr(O)Z + ika:Q}
where the second line uses

si(w) = sign(Imw) — sign(Im:9;) = sign(Re d;) = sr(d:)
@ Variation gives up to boundary terms
or :/dt {mi or + %cém sr(O)x — %ca’csR(&)éaz + kxdx}

Set now sg(0:)6x — —dx and 6z sr(;) — dz. Defines 2& .

e Equation of motion for forward time evolution

or

=mi+ct+kr=0
ox

ret




Scalar field with O(N) symmetry

o Consider effective action (with p = ¢;¢;)
1 v
L, guv, B] = /ddmx/é{QZ(MT)g” ;O +U(p,T)

+300LT) [, se(00,)] 701

e Variation at fixed metric g, and 8" gives

1
or = /ddwﬁ{z(p, T)g"" 0uép;0up; + §Z'(p7T)s0m6<pm 9" 0p;0uep;
+ U (p, T)pmbpm
1
+ 50 T) [0, sr(uMOu)) B 0v

Clp,T) [pj, sr(utOu)] B 064

L1
2

1
+ 50'(p,T)<pm6gom [ej,sR(u"Opu)] 6”8ue0j}

@ set now dp; sr(ut9,) — dp; and sr(u'dy) dp; — —dp;



Scalar field with O(N) symmetry

o Field equation becomes

1.,
~VulZ(p, T)0" 0] + 52 (0, T)i0upm0" pm
+U'(p, T)ip; + C(p, T)B" Oupj = 0

o Generalized Klein-Gordon equation with additional damping term



Where do energy & momentum go?

@ Modified variational principle leads to equations of motion with dissipation.
@ But what happens to the dissipated energy and momentum?

And other conserved quantum numbers?

o What about entropy production?



Energy-momentum tensor expectation value

Analogous to field equation, obtain by retarded variation

5]'—‘[@)9}“/75#} _ 1 %
5guu(:r) ot - 75\/5 <T (x»

Leads to Einstein's field equation when I'[®, g,..,, 8%] contains
Einstein-Hilbert term

o Useful to decompose
F[©7 gH«V7 BM} = FR[(Dv gHV7 /BH] + FD [4)7 gl“’? ﬁ”]

where reduced action T'r contains no dissipative / discontinuous terms
and I'p only dissipative terms

@ Energy-momentum tensor has two parts

(T") = (Tr)"" + (Tp)"”



General covariance

@ Infinitesimal general coordinate transformations as a “gauge
transformation” of the metric

e (z)

9() , au(z) »
oxv

ozt ox* (@)

G
09y (x) = gux(x) + gu ()
o Temperature / fluid velocity field transforms as vector

o' (z) 9B (x) .,
oxv ox” ¢ ()

0BG (x) = =B (x)

o Also fields ®, transform in some representation, e. g. as scalars

B}
605 (z) = &(m)@%(x)

@ Reduced action is invariant

Tr[® + 60, g + 095, B* + BE] = Tr[®, g, 5]



Situation without dissipation

Consider first situation without dissipation I'[®, g,.., 8"] = T'r[®, guv ]

Field equation implies (for J = 0)

1)
WFR[‘I’,gw] =0

@ Gauge variation of the metric

n = [ a5 @)V (@)

General covariance 6I'r = 0 and field equations imply covariant
energy-momentum conservation

Vi (T*\(2)) =0



Situation with dissipation

o Consider now situation with dissipation. General covariance of I'g:

or — or
d R G A n R n
5FR:/d I{T a5q>a+\/§€ CM(TR) )\-‘,-76 66(;}:0

Reduced action not stationary with respect to field variations
Tr _ 6Tp
§®q(z)  6Pu(x)

= —v9(x) Ma(z)

ret

@ Reduced energy-momentum tensor not conserved
Vu(Tr)"\ (@) = =Vu(Tp)", (x)

o Dependence on 8 (z) cannot be dropped

oTr

General covariance implies four additional differential equations that
determine "

MaOx®a + VM(TD)MA = Vu [IB‘LKA] + KMVA/JW



Entropy production

o Contraction of previous equation with 5> gives

MaﬁAaAq)a + ﬁAvu(TD)H/\ = v“ [BH’BAKA]

o Consider special case

with grand canonical potential density U(T) = —p(T') and temperature
1
V= guw BHBY
o Using s = Op/dT gives entropy current
BB K, = s* = su”

@ Local form of second law of thermodynamics

Vst = Mofror®a + BV, (Tp)", >0



Energy-momentum tensor for scalar field

Analytic action
1
F[‘Pv Juv, BH} = /ddx\/g{ 5Z(p, T)g‘wa,u@jalﬂpj + U(p, T)
1
+500T) o (u0,)] 5003

o Energy-momentum tensor
(T (@) =Z(p, T)0" ;0" ¢;

B 1
- (g“” + U“uVTafT) {gz(p,T)g“”amﬁuw +Ul(p, T)}

o Generalizes T"” for scalar field and T#” = (e + p)u”u” + g"”p for ideal
fluid with pressure p = —U and enthalpy density e + p = sT = —T(%U.

General covariance and covariant conservation law imply

Vu(T*"(x)) =0 = Differential eqgs. for g"(z)



Entropy production for scalar field

o Entropy current

a (1 o
s = BB = =" T o {5Z(p, T)g"" datp;03%; + Ulp, T)}

o Generalized entropy density

o [1 a
56 = ~3r {§Z(p,T)g P 8ap; 0805 + U(p, T)}

@ Entropy generation positive semi-definite for C'(p,T") > 0

Vus" = C(p,T) (8" 0ups) (B"0uipj) > 0

o For fluid at rest u* = (1,0,0,0)

. Cp,T) . .
Vo =i = S0,

entropy increases when ; oscillates. For example reheating after inflation.



Ideal fluid

o Consider effective action
Dlgpn ) = Lalgun ) = [ dayg U(T)

with effective potential U(T) = —p(T") and temperature
1

B vV —9uv B BY
e Variation of g, at fixed 5" leads to
" = (e + p)u"u” +pg™”

where e + p=T's = T%p is the enthalpy density

@ Describes ideal fluid. General covariance of covariant conservation
V. T"" =0 leads to ideal fluid equations

uOpe+ (e+p)Vyuu' =0 (e+p)u"Vyuu” + A""9,p=0



Viscous fluid
@ Analytic action
1 v v
Clgp 8] = | {U)+ § g (L] 20D)r" + ()M T ) }
with projector

AP = yPu” + g

and

1 1 1
o = CAWMB + SARB AR —A*‘“A‘m) Vaug
2 2 d—1

leads to

v ST [guw,BH v v v v
(1) = *%%\m = (e +p)uu” + pg"” — 2na" — CAMV pu”

@ Describes viscous fluid with shear viscosity 7(7") and bulk viscosity ¢(7")
e Entropy production

1
Vst = T [Qnawo’w + C(Vpup)Q]



Conclusions

@ A variational principle for theories with dissipation can be based on
analytic continuation.

o Needs a local equilibrium setup: Generalized Gibbs ensemble with T'(z)
and u*(x).

o Works at least for close-to-equilibrium situations, e. g. fluid dynamics
coupled to additional fields.

@ General covariance and energy-momentum conservation lead to equations
for fluid velocity and entropy production.

@ Local form of second law of thermodynamics is implemented on the level
of the effective action I'[®].

o Many potential applications.



BAckup



FEquations of motion from the Feynman action ¢

o Consider damped harmonic oscillator as example. Time-ordered or
Feynman action is obtained from analytic action by replacing
si(w) — sign(w)

dw m . .
Ttime ordered[x} = / g 51’ (UJ) [-UJQ — 22|UJ‘ CUJO +UJ§] a:(w)

o Field equation 5755 Tiime orderea[] = J () would give

[fwz — 24|w| Cwo + wg] z(w) = J(w)

@ Violates reality constraint z*(w) = z(—w) for J*(w) = J(—w)
@ Solution not causal

x(t) = /t Ap(t—t)J(t)

because Feynman propagator Ap(t —t') not causal.

@ In contrast, retarded variation of analytic action leads to real and causal
equation of motion



Tree-like structures
@ Discontinuous terms in analytic action could be of the form

Poiec[@] = / A2 /G {F10)(x) sr (v (@) 52r) g[®](z)}

@ More general, tree-like structure are possible such as

Poisc[®] = F1®)(x) sr(u*(x) 52
fA

or

Toicl®] = / {719)(@) sr (" (2) 52) 9l@)(w, 9, 2) sw (" (1) 55) h[@)(y)
x s (1 (2) 52¢) J1@](2) }

) gl®](z, ) 5w (u" (4) 52) RIP](v) }

o For retarded variation calculate 6" and set sg(u”9,) — —1 if derivative
operator points towards node that is varied and sg(u”9,) — 1 if derivative
operator points in opposite direction



Analé/tz(' continuation of FRG equations
[Floerchinger, JHEP 1205 (2012 021?

o Consider a point pi — p° = m? where P (m?) = 0.
@ One can expand around this point

Pi= Z(-pi+ 7 +m) £
Po=2Zv+---

o Leads to Breit-Wigner form of propagator (with 4> = mI")

1 —pj +p° +m? 4+ is(po) mI’
Z (—pg+p*+m2)2+m2r?

G(p) =

o A few flowing parameters describe efficiently the singular structure of the
propagator.

A2 /A2
Vi /A
0.00008

0.00006

0.00004

000002

0

~0.00002




Truncation for relativistic scalar O(N) theory

. _ N T
with p = 1 >im ¢

o Goldstone propagator massless, expanded around py — p% =0

Py(po, P) = Zo (—ps + °)

o Radial mode is massive, expanded around p3 — 5° = m?
Py(po, §) + poPp(po, p) + Ui, + 2pUy,
~ 2o (=93 + 8 +md) — is(po) 7]



Flow of the effective potential

1 (N —1)
i1
t k(p)|p 2 po—itwn . ﬁg—pg-i—U'-‘r%quk

+ . }iaR
Z0[(* = i) —is(po)f] + U + 200" + LR S Zs

@ Summation over Matsubara frequencies po = i27T'n can be done using
contour integrals.

@ Radial mode has non-zero decay width since it can decay into Goldstone
excitations.

o Use Taylor expansion for numerical calculations

1
Uk(p) = Uk(po.k) + mi(p — pox) + 5>\k(p — pok)’



