Fluctuations in the quark-gluon plasma and in the cosmological fluid

Stefan Floerchinger (U. Heidelberg)

CERN, The big bang and the little bangs, 08/2016.

Big bang – little bang analogy

- cosmol. scale: MPc= 3.1×10^{22} m nuclear scale: fm= 10^{-15} m
- Gravity + QED + Dark sector
- one big event

- QCD
- very many events
- initial conditions not directly accessible
- all information must be reconstructed from final state
- dynamical description as a fluid

Symmetries in a statistical sense

- Concrete realization breaks symmetry
- Statistical properties are symmetric

Cosmology

- Cosmological principle: universe homogeneous and isotropic
- 3D translation and rotation
- \rightarrow 3D Fourier expansion

Heavy ion collisions

- 1D azimuthal rotation for central collisions
- 1D Bjorken boost (approximate)
- \rightarrow Bessel-Fourier expansion [Floerchinger & Wiedemann (2013)]

The problem of initial conditions

• Problem for cosmology and heavy ion physics: precise initial conditions for fluid dynamic description not known

	Planck+WP	Planck+WP	WMAP9+eCMB	
	+ highL	+highL+BAO	+BAO	S PDG
$\Omega_{\rm b}h^2$	0.02207 ± 0.00027	0.02214 ± 0.00024	0.02211 ± 0.00034	particle data group
$\Omega_{\rm c}h^2$	0.1198 ± 0.0026	0.1187 ± 0.0017	0.1162 ± 0.0020	July 2014
$100\theta_{\rm MC}$	1.0413 ± 0.0006	1.0415 ± 0.0006	-	PARTICIE
$n_{\rm s}$	0.958 ± 0.007	0.961 ± 0.005	0.958 ± 0.008	
τ	$0.091\substack{+0.013\\-0.014}$	0.092 ± 0.013	$0.079\substack{+0.011\\-0.012}$	PHYSICS
$\ln(10^{10}\Delta_R^2)$	3.090 ± 0.025	3.091 ± 0.025	3.212 ± 0.029	BOOKLET
h	0.673 ± 0.012	0.678 ± 0.008	0.688 ± 0.008	Extracted from the Review of Particle Physics K.A. Clive et al. (Particle Data Group), Chin. Phys. C. 35, 090001 (2014)
σ_8	0.828 ± 0.012	0.826 ± 0.012	$0.822^{+0.013}_{-0.014}$	See http://pdg.bl.gov/ for Particle Listings, complete reviews and pdgLive (our interactive database)
$\Omega_{\rm m}$	$0.315\substack{+0.016\\-0.017}$	0.308 ± 0.010	0.293 ± 0.010	Chinese Physics C
Ω_{Λ}	$0.685\substack{+0.017\\-0.016}$	0.692 ± 0.010	0.707 ± 0.010	Available from PDG of LBNL and CERN

- Nevertheless, cosmology is now a precision science...
- How is that possible ?

Initial conditions in cosmology

- Perturbations are classified into scalars, vectors, tensors
- Vector modes are decaying, need not be specified
- Tensor modes are gravitational waves, can be neglected for most purposes
- Decaying scalar modes also not relevant
- Growing scalar modes are further classified by wavelength
- For relevant range of wavelength: close to Gaussian probability distribution
- Almost scale invariant initial spectrum

$$\langle \delta(\mathbf{k}) \, \delta(\mathbf{k}') \rangle = P(k) \, \delta^{(3)}(\mathbf{k} + \mathbf{k}')$$

with

$$P(k) \sim k^{n_s-1}$$
 $n_s = 0.968 \pm 0.006$ [Planck (2015)]

Initial conditions heavy ion collisions

• State of the art: Explicit realizations in terms of Monte-Carlo models

- Can heavy ion physics follow the successful approach used in cosmology?
 - Characterize statistical properties rather than explicit realizations
 - Focus on relevant wavelengths
- First attempts in this direction have been made [Teaney & Yan (2011), Coleman-Smith, Petersen & Wolpert (2012), Floerchinger & Wiedemann (2013), Yan & Ollitrault (2014), Bzdak & Skokov (2014), ...]

Mode expansion for fluid fields

Bessel-Fourier expansion at fixed time τ [Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012, Floerchinger & Wiedemann 2014]

$$w(r,\phi,\eta) = w_{\rm BG}(r) + w_{\rm BG}(r) \sum_{m,l} \int_k w_l^{(m)}(k) \, e^{im\phi + ik\eta} \, J_m\left(z_l^{(m)}\rho(r)\right)$$

- azimuthal wavenumber m, radial wavenumber l, rapidity wavenumber k• $w_l^{(m)}$ dimensionless
- \bullet higher m and l correspond to finer spatial resolution
- \bullet coefficients $w_l^{(m)}$ can be related to eccentricienies
- works similar for vectors (velocity) and tensors (shear stress)

Transverse density from Glauber model

Statistics of initial density perturbations

Independent point-sources model (IPSM)

$$w(\vec{x}) = \left[\frac{1}{\tau_0} \frac{dW_{\rm BG}}{d\eta}\right] \frac{1}{N} \sum_{j=1}^N \delta^{(2)}(\vec{x} - \vec{x}_j)$$

- random positions \vec{x}_j , independent and identically distributed
- probability distribution $p(\vec{x}_j)$ reflects collision geometry
- possible to determine correlation functions analytically for *central* and non-central collisions [Floerchinger & Wiedemann (2014)]
- Long-wavelength modes (small *m* and *l*) that don't resolve differences between point-like and extended sources have *universal statistics*.

$Cosmological\ perturbation\ theory$

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]

- Solves evolution equations for fluid + gravity
- Expands in perturbations around homogeneous background
- Detailed understanding how different modes evolve
- Diagramatic formalism for non-linear mode-mode interactions
- Very simple equations of state $p = w \epsilon$
- Viscosities usually neglected $\eta = \zeta = 0$
- Photons and neutrinos are free streaming

Fluid dynamic perturbation theory for heavy ions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

- goal: understand dynamics of heavy ion collisions and determine QCD transport properties experimentally
- so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]
- new: solve fluid equations for smooth and symmetric background and order-by-order in perturbations
- good convergence properties [Floerchinger *et al.*, PLB 735, 305 (2014), Brouzakis *et al.* PRD 91, 065007 (2015)]

Perturbative expansion

Write the hydrodynamic fields $h = (T, u^{\mu}, \pi^{\mu\nu}, \pi_{\text{Bulk}}, \ldots)$

• at initial time τ_0 as

 $h = h_0 + \epsilon h_1$

with background h_0 , fluctuation part ϵh_1

```
• at later time \tau > \tau_0 as
```

$$h = h_0 + \epsilon h_1 + \epsilon^2 h_2 + \epsilon^3 h_3 + \dots$$

Solve for time evolution in this scheme

- h_0 is solution of full, non-linear hydro equations in symmetric situation: azimuthal rotation and Bjorken boost invariant
- h_1 is solution of linearized hydro equations around h_0 , can be solved mode-by-mode
- h_2 can be obtained by from interactions between modes etc.

Background evolution

System of coupled $1\!+\!1$ dimensional non-linear partial differential equations for

- enthalpy density $w(\tau,r)$ (or temperature $T(\tau,r)$)
- fluid velocity $u^\tau(\tau,r), u^r(\tau,r)$
- two independent components of shear stress $\pi^{\mu\nu}(\tau,r)$

Can be easily solved numerically

Evolving perturbation modes

- Linearized hydro equations: set of coupled 3+1 dimensional, linear, partial differential equations.
- Use Fourier expansion

$$h_j(\tau, r, \phi, \eta) = \sum_m \int \frac{dk_\eta}{2\pi} h_j^{(m)}(\tau, r, k_\eta) e^{i(m\phi + k_\eta \eta)}$$

- Reduces to 1+1 dimensions.
- Can be solved numerically for each initial Bessel-Fourier mode.

- Non-linear terms in the evolution equations lead to mode interactions.
- Quadratic and higher order in initial perturbations.
- Can be determined from iterative solution but has not been fully worked out yet.
- Convergence can be tested with numerical solution of full hydro equations.

Evolution of spectrum of density perturbations

Density-density spectrum

$$P_{11}(\vec{k}) = \int d^2x \, e^{-i\vec{k}(\vec{x}-\vec{y})} \, \langle \, d(\vec{x}_1) \, d(\vec{x}_2) \, \rangle_c$$

dashed: linear evolution, solid: including first non-linear correction left: $\eta/s = 0.08$, $\tau = 1.5, 2.5, 3.5, 4.5$ fm/c, right: $\eta/s = 0.08$ and $\eta/s = 0.8$, $\tau = 7.5$ fm/c [Brouzakis, Floerchinger, Tetradis & Wiedemann, PRD 91, 065007 (2015)]

Backreaction: General idea

• for 0+1 dimensional, non-linear dynamics

$$\dot{\varphi} = f(\varphi) = f_0 + f_1 \varphi + \frac{1}{2} f_2 \varphi^2 + \dots$$

 \bullet one has for expectation values $\bar{\varphi}=\langle \varphi \rangle$

$$\dot{\bar{\varphi}} = f_0 + f_1 \,\bar{\varphi} + \frac{1}{2} f_2 \,\bar{\varphi}^2 + \frac{1}{2} f_2 \,\langle (\varphi - \bar{\varphi})^2 \rangle + \dots$$

- evolution equation for expectation value $\bar{\varphi}$ depends on two-point correlation function or spectrum $P_2 = \langle (\varphi \bar{\varphi})^2 \rangle$
- evolution equation for spectrum depends on bispectrum and so on
- more complicated for higher dimensional theories
- more complicated for gauge theories such as gravity

Backreaction in gravity

- Einstein's equations are non-linear.
- Important question [G. F. R. Ellis (1984)]: If Einstein's field equations describe small scales, including inhomogeneities, do they also hold on large scales?
- Is there a sizable backreaction from inhomogeneities to the cosmological expansion?
- Difficult question, has been studied by many people
 [Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998); Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003); Räsänen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009); Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ...]
- Recent reviews: [Buchert & Räsänen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green & Wald, Class. Quant. Grav. 31, 234003 (2014)]
- No general consensus but most people believe now that gravitational backreaction is rather small.
- In the following we look at a new backreaction on the matter side of Einstein's equations.

Fluid equation for energy density

First order viscous fluid dynamics

$$u^{\mu}\partial_{\mu}\epsilon + (\epsilon + p)\nabla_{\mu}u^{\mu} - \zeta\Theta^2 - 2\eta\sigma^{\mu\nu}\sigma_{\mu\nu} = 0$$

For $\vec{v}^2 \ll c^2$ and Newtonian potentials $\Phi, \Psi \ll 1$

$$\dot{\epsilon} + \vec{v} \cdot \vec{\nabla} \epsilon + (\epsilon + p) \left(3\frac{\dot{a}}{a} + \vec{\nabla} \cdot \vec{v} \right) \\ = \frac{\zeta}{a} \left[3\frac{\dot{a}}{a} + \vec{\nabla} \cdot \vec{v} \right]^2 + \frac{\eta}{a} \left[\partial_i v_j \partial_i v_j + \partial_i v_j \partial_j v_i - \frac{2}{3} (\vec{\nabla} \cdot \vec{v})^2 \right]$$

Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density $\bar{\epsilon} = \langle \epsilon \rangle$

$$\frac{1}{a}\dot{\bar{\epsilon}} + 3H\left(\bar{\epsilon} + \bar{p} - 3\bar{\zeta}H\right) = D$$

with dissipative backreaction term

$$D = \frac{1}{a^2} \langle \eta \left[\partial_i v_j \partial_i v_j + \partial_i v_j \partial_j v_i - \frac{2}{3} \partial_i v_i \partial_j v_j \right] \rangle \\ + \frac{1}{a^2} \langle \zeta [\vec{\nabla} \cdot \vec{v}]^2 \rangle + \frac{1}{a} \langle \vec{v} \cdot \vec{\nabla} \left(p - 6\zeta H \right) \rangle$$

- D vanishes for unperturbed homogeneous and isotropic universe
- D has contribution from shear & bulk viscous dissipation and thermodynamic work done by contraction against pressure gradients
- dissipative terms in D are positive semi-definite
- for spatially constant viscosities and scalar perturbations only

$$D = \frac{\bar{\zeta} + \frac{4}{3}\bar{\eta}}{a^2} \int d^3q \ P_{\theta\theta}(q)$$

$Dissipation \ of \ perturbations$

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

• Dissipative backreaction does not need negative effective pressure

```
\frac{1}{a}\dot{\bar{\epsilon}} + 3H\left(\bar{\epsilon} + \bar{p}_{\text{eff}}\right) = D
```

- D is an integral over perturbations, could become large at late times.
- Can it potentially accelerate the universe?
- \bullet Need additional equation for scale parameter a
- Use trace of Einstein's equations $R = 8\pi G_{\rm N} T^{\mu}_{\ \mu}$

 $\frac{1}{a}\dot{H} + 2H^2 = \frac{4\pi G_{\rm N}}{3}\left(\bar{\epsilon} - 3\bar{p}_{\rm eff}\right)$

does not depend on unknown quantities like $\langle (\epsilon + p_{\text{eff}}) u^{\mu} u^{\nu} \rangle$

• To close the equations one needs equation of state $\bar{p}_{\rm eff} = \bar{p}_{\rm eff}(\bar{\epsilon})$ and dissipation parameter D

Deceleration parameter

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

- \bullet assume now vanishing effective pressure $\bar{p}_{\rm eff}=0$
- obtain for deceleration parameter $q = -1 \frac{\dot{H}}{aH^2}$

$$-\frac{dq}{d\ln a} + 2(q-1)\left(q - \frac{1}{2}\right) = \frac{4\pi G_{\rm N}D}{3H^3}$$

- for D = 0 attractive fixed point at $q_* = \frac{1}{2}$ (deceleration)
- for D > 0 fixed point shifted towards $q_* < 0$ (acceleration)

Estimating viscous backreaction D

- For $\frac{4\pi G_{\rm N}D}{3H^3} \approx 4$ one could explain the current accelerated expansion $(q \approx -0.6)$ by dissipative backreaction.
- Is this possible?
- In principle one can determine *D* for given equation of state and viscous properties from dynamics of structure formation.
- So far only rough estimates. If shear viscosity dominates:

$$D = \frac{1}{a^2} \langle \eta \left[\partial_i v_j \partial_i v_j + \partial_i v_j \partial_j v_i - \frac{2}{3} \partial_i v_i \partial_j v_j \right] \rangle \approx c_D \bar{\eta} H^2$$

with $c_D = \mathcal{O}(1)$. Corresponds to $\Delta v \approx 100 \text{ km/s}$ for $\Delta x \approx 1 \text{ MPc}$ • Leads to

$$\frac{4\pi G_{\rm N}D}{3H^3}\approx \frac{c_D\bar\eta H}{2\rho_c}$$

with $\rho_c = rac{3H^2}{8\pi G_{\sf N}}$

Viscosities

• Relativistic particles / radiation contribute to shear viscosity

 $\eta = c_\eta \, \epsilon_R \, \tau_R$

- prefactor $c_{\eta} = \mathcal{O}(1)$
- energy density of radiation ϵ_R
- mean free time au_R
- Bulk viscosity vanishes in situations with conformal symmetry but can be large when conformal symmetry is broken.
- For massive scalar particles with $\lambda arphi^4$ interaction [Jeon & Yaffe (1996)]

$$\zeta \sim \frac{m^6}{\lambda^4 T^3} e^{2m/T}, \qquad \eta \sim \frac{m^{5/2} T^{1/2}}{\lambda^2} \qquad \text{for} \qquad \frac{T}{m} \ll 1$$

$Estimating \ viscous \ backreaction \ D$

Consider shear viscosity from radiation

 $\eta = c_{\eta} \epsilon_R \tau_R$

Backreaction term

$$\frac{4\pi G_{\rm N}D}{3H^3} \approx \frac{c_D c_\eta}{2} \frac{\epsilon_R}{\rho_c} \tau_R H$$

- fluid approximation needs $\tau_R H < 1$
- for sizeable effect one would need $\epsilon_R/\rho_c=\mathcal{O}(1)$
- unlikely that *D* becomes large enough in this scenario Needed refinements:
 - full dynamics of perturbations
 - second order fluid dynamics
 - complete model(s)

Dissipation from the effective action

- Dissipative effects are usually discusses on the level of equations of motion.
- For some questions one would like to have a formulation in terms of an effective action
 - causality & stability analysis
 - fluctuations
 - renormalization
 - effective field theories
 - coupling to gravity
- One possibility: Schwinger-Keldysh double time path formalism
- Another possibility: Analytic continuation of the 1PI effective action [Floerchinger, 1603.07148]
 - Theories in approximate local equilibrium
 - General covariance and energy-momentum conservation
 - · Local form of second law of thermodynamics
 - Effective action for fluid dynamics including viscosity terms

Local equilibrium & partition function

• Local equilibrium description with T(x) and $u^{\mu}(x)$

$$\beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

• Use similarity between local density matrix and translation operator

$$e^{\beta^{\mu}(x)\mathscr{P}_{\mu}} \quad \longleftrightarrow \quad e^{i\Delta x^{\mu}\mathscr{P}_{\mu}}$$

to represent partition function as functional integral with periodicity in imaginary direction such that

$$\phi(x^{\mu} - i\beta^{\mu}(x)) = \pm \phi(x^{\mu})$$

 \bullet Partition function Z[J], Schwinger functional W[J] in Euclidean domain

$$Z[J] = e^{W_E[J]} = \int D\phi \, e^{-S_E[\phi] + \int_x J\phi}$$

One particle irreducible effective action

• In Euclidean domain defined by standard Legendre transform

$$\Gamma_E[\Phi] = \int_x J_a(x)\Phi_a(x) - W_E[J]$$

with expectation values

$$\Phi_a(x) = \frac{1}{\sqrt{g}(x)} \frac{\delta}{\delta J_a(x)} W_E[J]$$

• Euclidean field equation

$$\frac{\delta}{\delta \Phi_a(x)} \Gamma_E[\Phi] = \sqrt{g}(x) J_a(x)$$

resembles classical equation of motion for J = 0.

• Need analytic continuation to obtain a viable equation of motion.

Analytic continuation 1

• Define for homogeneous background field and in global equilibrium

$$\frac{\delta^2}{\delta J_a(-p)\delta J_b(q)} W_E[J] = G_{ab}(p) \ (2\pi)^4 \delta^{(4)}(p-q)$$
$$\frac{\delta^2}{\delta \Phi_a(-p)\delta \Phi_b(q)} \Gamma_E[\Phi] = P_{ab}(p) \ (2\pi)^4 \delta^{(4)}(p-q)$$

• From definition of effective action

$$\sum_{b} G_{ab}(p) P_{bc}(p) = \delta_{ac}$$

- Correlation functions can be analytically continued in $\omega = -u^{\mu}p_{\mu}$.
- Branch cut on real frequency axis $\omega \in \mathbb{R}$.

Analytic continuation 2

• Decompose inverse two-point function

$$P_{ab}(p) = P_{1,ab}(p) - is_{\mathsf{I}}(-u^{\mu}p_{\mu}) P_{2,ab}(p),$$

with $s_{I}(\omega) = \operatorname{sign}(\operatorname{Im} \omega)$.

• In position space, replace

$$\begin{split} s_{\mathsf{I}}\left(-u^{\mu}p_{\mu}\right) &= \mathsf{sign}\left(\mathsf{Im}\left(-u^{\mu}p_{\mu}\right)\right) \\ \to \mathsf{sign}\left(\mathsf{Im}\left(iu^{\mu}\frac{\partial}{\partial x^{\mu}}\right)\right) &= \mathsf{sign}\left(\mathsf{Re}\left(u^{\mu}\frac{\partial}{\partial x^{\mu}}\right)\right) = s_{\mathsf{R}}\left(u^{\mu}\frac{\partial}{\partial x^{\mu}}\right) \end{split}$$

- This symbol appears also in $\Gamma[\Phi]$
- Real and causal field equations follow from [Floerchinger, 1603.07148]

$$\frac{\delta \Gamma[\Phi]}{\delta \Phi_a(x)}\Big|_{\rm ret} = 0$$

with certain algebraic rules for $s_{\mathsf{R}}\left(u^{\mu}\frac{\partial}{\partial x^{\mu}}\right)\rightarrow\pm1.$

• Energy momentum conservation, entropy production, fluid dynamics, ...

$Gravitational\ growth\ of\ perturbations$

• Small initial density perturbations

$$\delta = \frac{\Delta \epsilon}{\bar{\epsilon}} \ll 1$$

• At photon decoupling (CMB)

 $\delta \approx 10^{-5}$

- Structure growth due to attractive gravitational interaction
- Perturbative treatment possible up to

$\delta\approx 1$

• For late times and small wavelengths

 $\delta \gg 1$

[Springel, Frenk & White, Nature 440, 1137 (2006)]

The dark matter fluid

Heavy ion collisions

$\mathscr{L}_{\mathsf{QCD}} \quad \rightarrow \quad \mathsf{fluid properties}$

• Late time cosmology

fluid properties $\rightarrow \mathscr{L}_{\mathsf{dark matter}}$

• Until direct detection of dark matter, it can only be observed via

 $T^{\mu\nu}_{\rm dark\ matter}$

Formation of large scale structure

Formation of large scale structure is interesting

- tests physics of dark matter
- tests physics of dark energy
- gets tested by missions like Euclid, ...
- Cosmological perturbation theory breaks down when density contrast

$$\delta(\mathbf{k}) = \frac{\delta\rho(\mathbf{k})}{\bar{\rho}} \gg 1$$

grows large at late times and for small scales.

- Numerical simulations (N-body) are expensive and time-consuming
- One would like to have better analytical understanding

Renormalization group apprach

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)] [Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

- Start from ideal fluid approximation
- Large scale structure formation can be formulated as classical field theory with stochastic initial conditions
- Leads to classical statistical field theory
- Initial state fluctuations can be treated by functional renormalization group, similar to thermal or quantum fluctuations in other contexts [Matarrese & Pietroni (2007)]
- Modify theory by cutting off the initial spectrum in the IR

$$P_k^0(\mathbf{q}) = P^0(\mathbf{q})\,\Theta(|\mathbf{q}| - k)$$

• Use flow equation for 1PI effective action [Wetterich (1993)]

$$\partial_k \Gamma_k[\phi, \chi] = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_k^{(2)}[\phi, \chi] - i \left(P_k^0 - P^0 \right) \right)^{-1} \partial_k P_k^0 \right\}$$

Renormalization of effective viscosity and pressure

- Effective theory at scale k has additional terms in equations of motion
- Order them by derivative expansion.
- Lowest order: ideal fluid
- Next-to-lowest order: effective sound velocity parameter

$$\gamma_s = rac{c_s^2}{\mathcal{H}^2} = rac{dp/d
ho}{\mathcal{H}^2}.$$

and effective viscosity parameter

$$\gamma_{\nu} = \frac{4\eta/3 + \zeta}{(\rho + p)\mathcal{H}a} \,.$$

• Both depend on cosmological time or scale factor a

$$\gamma_s = \lambda_s \, a^{\kappa}, \qquad \qquad \gamma_\nu = \lambda_\nu \, a^{\kappa}$$

with exponent $\kappa \approx 2$.

RG flow of effective sound velocity parameter

- left: RG flow of effective sound velocity today $\lambda_s = \frac{c_s^2}{H_c^2} = \frac{dp/d\rho}{H_c^2}$
 - dashed line: one-loop approximation

$$\partial_k \lambda_s = -\frac{4\pi}{3} \frac{31}{70} P^0(k)$$

- solid line: functional RG
- right: linear density power spectrum

RG flow of effective viscosity parameter

- left: RG flow of effective viscosity today $\lambda_{\nu} = \frac{4\eta/3+\zeta}{(\rho+p)_0H_0}$
 - dashed line: one-loop approximation

$$\partial_k \lambda_\nu = -\frac{4\pi}{3} \frac{78}{35} P^0(k)$$

- solid line: functional RG
- right: linear density power spectrum

RG flow of exponent κ

- left: RG flow of exponent κ
 - dashed line: one-loop approximation

$$\partial_k \kappa = \frac{4\pi}{3} P^0(k) \frac{78(\kappa - 2)}{35\tilde{\lambda}_{\nu}}$$

- solid line: functional RG
- right: linear density power spectrum

Fixed point behavior

- growing mode is sensitive to $\lambda_s+\lambda_\nu$
- functional RG has IR fixed points

Functional RG + perturbation theory

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)] [Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

- RG evolution to determine effective viscosity and sound velocity at intermediate scale k_m
- Perturbation theory for power spectrum for scales $0 < |\mathbf{q}| < k_m$
- Theory with effective parameters

P₆₅(k,z=0), SPT with cutoff

Conclusions

- Interesting parallels between cosmology and heavy ion collisions.
- Analog of cosmological perturbation theory can help to solve the fluid dynamics of heavy ion collisions.
- Dissipation of perturbations can have interesting effects in cosmology.
- Analytically continued one-particle irreducible effective action contains dissipative effects.
- Modified variational principle leads to real and causal equations of motion.
- Renormalization group and description as an effective fluid can help to understand large scale structure formation.

Backup slides

Ideal fluid versus collision-less gas

• Many codes used in cosmology describe dark matter as ideal, cold and pressure-less fluid

$$T^{\mu\nu} = \epsilon \ u^{\mu}u^{\nu}$$

- Equation of state p = 0
- No shear stress and bulk viscous pressure $\pi^{\mu\nu} = \pi_{\text{bulk}} = 0$
- Dark matter is also modeled as collision-less gas of massive particles, interacting via gravity only
- Two pictures are in general not consistent

$Dissipative \ properties$

Viscosities

- Diffusive transport of momentum [Maxwell (1860)]
- Depend strongly on interaction properties
- Example: non-relativistic gas of particles with mass m, mean peculiar velocity \bar{v} , elastic $2 \rightarrow 2$ cross-section $\sigma_{\rm el}$

$$\eta = \frac{m \, \bar{v}}{3 \, \sigma_{\rm el}} \qquad \qquad \zeta = 0$$

• Interesting additional information about dark matter

How is structure formation modified?

Linear dynamics

• energy conservation
$$(\theta = \vec{\nabla} \cdot \vec{v})$$

$$\dot{\delta\epsilon} + 3\frac{\dot{a}}{a}\delta\epsilon + \bar{\epsilon}\,\theta = 0$$

• Navier-Stokes equation

$$\bar{\epsilon}\left[\dot{\theta} + \frac{\dot{a}}{a}\theta - k^2\psi\right] + \frac{1}{a}\left(\zeta + \frac{4}{3}\eta\right)k^2\theta = 0$$

Poisson equation

$$-k^2\psi = 4\pi G_{\rm N}a^2\delta\epsilon$$

Scalar perturbations ($\delta = rac{\delta \epsilon}{ar \epsilon}$)

$$\ddot{\delta} + \left[\frac{\dot{a}}{a} + \frac{\zeta + \frac{4}{3}\eta}{a\bar{\epsilon}}k^2\right]\dot{\delta} - 4\pi G_{\mathsf{N}}\bar{\epsilon}\,\delta = 0$$

Viscosites slow down gravitational collapse but do not wash out structure

Structure formation with viscosities

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

- k-dependent growth factor for scalar modes
- Could be tested by observation of large scale structure
- Depends on $\zeta + \frac{4}{3}\eta$ as function of time (or density)

Material properties of dark matter

Gravitational lensing and x-ray image of "bullet cluster" 1E0657-56

- so far: dark matter is non-interacting \rightarrow can collide without stopping
- Future decade: analysis of colliding galaxy clusters will refine this picture
- Dark energy self interacting
 - $\rightarrow\,$ modification of equation of state
 - \rightarrow dissipation

Is dark matter self-interacting?

- Offset between stars and dark matter falling into cluster
- Is this a first indication for a dark matter self interaction? [Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]

$$\frac{\sigma}{m_{\rm DM}} \approx 3 \frac{{\rm cm}^2}{{\rm g}} \approx 0.5 \frac{{\rm b}}{{\rm GeV}}$$

(under debate)

Precision cosmology can measure shear stress

• Scalar excitations in gravity

$$ds^{2} = a^{2} \left[-(1+2\psi)d\eta^{2} + (1-2\phi)dx_{i}dx_{i} \right]$$

with two Newtonian potentials ψ and ϕ .

• Einsteins equations imply

$$\left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \partial_k^2\right) (\phi - \psi) = 8\pi G_{\mathsf{N}} a^2 \left. \pi_{ij} \right|_{\mathsf{scalar}}$$

with scalar part of shear stress

$$\pi_{ij}\big|_{\text{scalar}} = \left(\partial_i \partial_j - \frac{1}{3}\delta_{ij}\partial_k^2\right)\tilde{\pi}$$

• Detailed data at small redshift e.g. from Euclid satellite (esa, 2020) [Amendola *et al.* (2012)]

- ψ can be measured via acceleration of matter
- $\psi+\phi$ can be meaured by weak lensing and Sachs-Wolfe effect
- fluid velocity can be accessed by redshift space distortions
- New quantitative precise insights into fluid properties of dark matter!

Relativistic fluid dynamics

Energy-momentum tensor and conserved current

$$\begin{split} T^{\mu\nu} &= (\epsilon+p+\pi_{\rm bulk}) u^{\mu} u^{\nu} + (p+\pi_{\rm bulk}) g^{\mu\nu} + \pi^{\mu\nu} \\ N^{\mu} &= n\, u^{\mu} + \nu^{\mu} \end{split}$$

- \bullet tensor decomposition w. r. t. fluid velocity u^{μ}
- pressure $p = p(\epsilon, n)$
- constitutive relations for viscous terms in derivative expansion
 - bulk viscous pressure $\pi_{\mathsf{bulk}} = -\zeta \
 abla_{\mu} u^{\mu} + \dots$
 - shear stress $\pi^{\mu\nu} = -\eta \left[\Delta^{\mu\alpha} \nabla_{\alpha} u^{\nu} + \Delta^{\nu\alpha} \nabla_{\alpha} u^{\mu} \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \right] + \dots$

• diffusion current
$$\nu^{\alpha} = -\kappa \left[\frac{nT}{\epsilon+p}\right]^2 \Delta^{\alpha\beta} \partial_{\beta} \left(\frac{\mu}{T}\right) + \dots$$

Fluid dynamic equations from covariant conservation laws

$$\nabla_{\mu}T^{\mu\nu} = 0, \qquad \nabla_{\mu}N^{\mu} = 0.$$

Bulk viscosity

• Bulk viscous pressure is negative for expanding universe

 $\pi_{\mathsf{bulk}} = -\zeta \, \nabla_\mu u^\mu = -\zeta \, 3H < 0$

Negative effective pressure

$$p_{\mathsf{eff}} = p + \pi_{\mathsf{bulk}} < 0$$

would act similar to dark energy in Friedmann's equations [Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006), Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

- Is negative effective pressure physical?
- In context of heavy ion physics: instability for p_{eff} < 0 ("cavitation") [Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein (2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]
- What precisely happens at the instability?

Is negative effective pressure physical?

Kinetic theory

$$p_{\rm eff}(x) = \int \frac{d^3p}{(2\pi)^3} \frac{\vec{p}^2}{3E_{\vec{p}}} f(x, \vec{p}) \ge 0$$

Stability argument

If there is a vacuum with $\epsilon = p_{\text{eff}} = 0$, phases with $p_{\text{eff}} < 0$ cannot be mechanically stable. (But could be metastable.)

Bulk viscosity in heavy ion physics

- In heavy ion physics people start now to consider bulk viscosity.
- Becomes relevant close to chiral crossover

[Denicol, Gale & Jeon (2015)]

- Is there a first-order phase transition triggered by the expansion?
- What is the relation to chemical and kinetic freeze-out?
- More detailed understanding needed, both for heavy ion physics and cosmology

"Fundamental" and "effective" viscosity

Two types of viscosities for cosmological fluid

Ø Momentum transport by particles or radiation

- governed by interactions
- from linear response theory [Green (1954), Kubo (1957)]
- close to equilibrium

Ø Momentum transport in the inhomogeneous, coarse-grained fluid

- · governed by non-linear fluid mode couplings
- determined perturbatively [Blas, Floerchinger, Garny, Tetradis & Wiedemann]
- non-equilibrium
- heavy ions: anomalous plasma viscosity [Asakawa, Bass & Müller (2006)] eddy viscosity [Romatschke (2008)]

Power spectrum at different redshifts

 $P_{\delta\delta}(k,z=0.375), k_m = 0.6h/Mpc$

Velocity spectra

Power spectrum, standard perturbation theory

[D. Blas, M. Garny and T. Konstandin, JCAP 1309 (2013) 024]

Could viscous backreaction lead to ΛCDM -type expansion?

[Floerchinger, Tetradis & Wiedemann, 1506.00407]

- Backreaction term D(z) will be *some* function of redshift.
- For given dissipative properties D(z) can be determined, but calculation is involved.
- One may ask simpler question: For what form of D(z) would the expansion be as in the $\Lambda {\rm CDM}$ model?
- $\bullet~$ The $\mathit{ad}~\mathit{hoc}~\mathrm{ansatz}~D(z)=\mathrm{const}\cdot H(z)$ leads to modified Friedmann equations

$$\bar{\epsilon} - \frac{D}{4H} = \frac{3}{8\pi G_{\rm N}} H^2, \qquad \qquad \bar{p}_{\rm eff} - \frac{D}{12H} = -\frac{1}{8\pi G_{\rm N}} \left(2\frac{1}{a}\dot{H} + 3H^2 \right)$$

• In terms of
$$\hat{\epsilon} = \bar{\epsilon} - \frac{D}{3H}$$
 one can write

$$\frac{1}{a}\dot{\hat{\epsilon}} + 3H(\hat{\epsilon} + \bar{p}_{\text{eff}}) = 0, \qquad \qquad R + \frac{8\pi G_{\text{N}}D}{3H} = -8\pi G_{\text{N}}(\hat{\epsilon} - 3\bar{p}_{\text{eff}})$$

• For $\bar{p}_{\rm eff}=0$ these are standard equations for $\Lambda {\rm CDM}$ model with

$$\Lambda = \frac{2\pi G_{\mathsf{N}} D}{3H}$$

Modification of Friedmann's equations by backreaction 1

- For universe with fluid velocity inhomogeneities one cannot easily take direct average of Einstein's equations.
- However, fluid equation for energy density and trace of Einstein's equations can be used.
- By integration one finds modified Friedmann equation

$$H(\tau)^2 = \frac{8\pi G_{\rm N}}{3} \left[\bar{\epsilon}(\tau) - \int_{\tau_{\rm I}}^{\tau} d\tau' \left(\frac{a(\tau')}{a(\tau)} \right)^4 a(\tau') D(\tau') \right]$$

- \bullet Additive deviation from Friedmann's law for $D(\tau')>0$
- Part of the total energy density is due to dissipative production

 $\bar{\epsilon} = \bar{\epsilon}_{nd} + \bar{\epsilon}_{d}$

Assume for dissipatively produced part

$$\dot{\bar{\epsilon}}_{\mathsf{d}} + 3\frac{\dot{a}}{a}(1+\hat{w}_{\mathsf{d}})\bar{\epsilon}_{\mathsf{d}} = aD$$

Modification of Friedmann's equations by backreaction 2

Leads to another variant of Friedmann's equation

$$H(\tau)^2 = \frac{8\pi G_{\rm N}}{3} \left[\bar{\epsilon}_{\rm nd}(\tau) + \int_{\tau_{\rm l}}^{\tau} d\tau' \left[\left(\frac{a(\tau')}{a(\tau)} \right)^{3+3\hat{w}_{\rm d}} - \left(\frac{a(\tau')}{a(\tau)} \right)^4 \right] a(\tau') D(\tau') \right]$$

- If the dissipative backreaction D produces pure radiation, $\hat{w}_{\rm d}=1/3,$ it does not show up in effective Friedmann equation at all!
- For $\hat{w}_d < 1/3$ there is a new component with positive contribution on the right hand side of the effective Friedmann equation.
- To understand expansion, parametrize for late times

$$D(\tau) = H(\tau) \left(\frac{a(\tau)}{a(\tau_0)}\right)^{-\kappa} \tilde{D}$$

with constants \tilde{D} and κ .

• Hubble parameter as function of $(a_0/a) = 1 + z$

$$H(a) = H_0 \sqrt{\Omega_{\Lambda} + \Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_R \left(\frac{a_0}{a}\right)^4 + \Omega_D \left(\frac{a_0}{a}\right)^{\kappa}}$$

• For $\kappa \approx 0$ the role of Ω_{Λ} and Ω_D would be similar.

Inhomogeneities in heavy ion collisions

Inhomogeneities are main source of information in cosmology.

Similarly, in heavy ion collisions:

- Initial fluid perturbations: Event-by-event fluctuations around averaged fluid fields at time τ_0 and their evolution:
 - energy density ϵ
 - fluid velocity u^{μ}
 - shear stress $\pi^{\mu\nu}$
 - more general also: baryon number density n, electric charge density, electromagnetic fields, ...
- governed by universal evolution equations
- determine particle distributions after freeze-out, e.g. $v_n(p_T)$
- usefull to constrain thermodynamic and transport properties of QCD
- contain interesting information from early times

First steps towards fluid dynamic perturbation or response theory

- Linear perturbations around Bjorken flow [Floerchinger & Wiedemann (2011)]
- Linear perturbations around Gubser solution for conformal fluids [Gubser & Yarom (2010), Staig & Shuryak (2011), Springer & Stephanov (2013)]
- More detailed investigation of linear perturbations and first steps towards non-linear perturbations around Gubser solution [Hatta, Noronha, Torrieri, Xiao (2014)]
- Linear perturbations around general azimuthally symmetric initial state, realistic equation of state
 [Floerchinger & Wiedemann (2013)]
- Characterization of initial conditions by Bessel-Fourier expansion [Coleman-Smith, Petersen & Wolpert (2012), Floerchinger & Wiedemann (2013)]
- Comparison to full numerical solution shows good convergence properties of perturbative expansion [Floerchinger, Wiedemann, Beraudo, Del Zanna, Inghirami, Rolando (2013)]
- Related response formalism for expansion in eccentricities [Teaney & Yan (2012), Yan & Ollitrault (2015]

Consider ensemble of massive particles interacting via gravity only. Start with some velocity distribution. Is there **equilibration/thermalization**...

- ... in Newtonian gravity?
- ... in classical General relativity?
- ... in quantized gravity?

Analogy to other gauge theories suggests that **quantum properties are important for thermalization**

Dissipation by gravity

• Gravitational waves in viscous fluid have life time [Hawking (1966)]

 $\tau_G = \frac{1}{16\pi G_{\rm N}\eta}$

• Diffusive momentum transport by graviton radiation induces viscosity

 $\eta \approx \epsilon_G \tau_G$

with energy density of gravitational field ϵ_G

• Can be solved for η and τ_G [Weinberg (1972)]

$$\eta = \sqrt{\frac{\epsilon_G}{16\pi G_{\rm N}}}, \qquad \qquad \tau_G = \sqrt{\frac{1}{16\pi G_{\rm N}\epsilon_G}}$$

- Can this really be independent of dark matter mass and density?
- Thermalization time $\sim m_{\rm P}/T^2$ is very large
- What determines dissipation on shorter time scales, when classical fields dominate?